WO2022152047A1 - 通信方法、装置、设备、存储介质、程序产品 - Google Patents

通信方法、装置、设备、存储介质、程序产品 Download PDF

Info

Publication number
WO2022152047A1
WO2022152047A1 PCT/CN2022/070637 CN2022070637W WO2022152047A1 WO 2022152047 A1 WO2022152047 A1 WO 2022152047A1 CN 2022070637 W CN2022070637 W CN 2022070637W WO 2022152047 A1 WO2022152047 A1 WO 2022152047A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
pusch
occupied
physical resource
time
Prior art date
Application number
PCT/CN2022/070637
Other languages
English (en)
French (fr)
Inventor
费永强
邢艳萍
高雪娟
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2022152047A1 publication Critical patent/WO2022152047A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present disclosure relates to communication technologies, and in particular, to a communication method, apparatus, device, storage medium, and program product.
  • Cellular Mobile Communication adopts the cellular wireless networking method to connect terminals and network devices through wireless channels, so that user terminals can communicate with each other during activities. Its main feature is the mobility of the terminal, and has the function of handover and automatic roaming across the local network.
  • a user terminal User Equipment, UE
  • the coverage of the uplink channel is more limited than that of the downlink channel.
  • the purpose of this application is to provide a communication method, apparatus, device, storage medium, and program product, so as to improve the coverage of the uplink channel of the user terminal.
  • a first aspect of the present disclosure is to provide a communication method, comprising:
  • the determining the transport block size according to the time-frequency resources occupied by the physical uplink shared channel PUSCH of the multi-slot includes:
  • the size of the transport block is determined according to the product of the number of available resource elements, the coding rate, the modulation order, and the number of transmission layers.
  • determining the number of available resource elements of the multi-slot PUSCH according to the time-frequency resources occupied by the multi-slot PUSCH and a preset upper limit of available resource elements including:
  • the smaller of the product of N' RE and the number of physical resource blocks occupied by the multi-slot PUSCH and a preset upper limit of available resource elements is determined as the number of available resource elements N RE of the multi-slot PUSCH.
  • a preset upper limit value of available resource elements can be used to limit the number of available resource elements N RE of the multi-slot PUSCH, so as to prevent the determined number of available resource elements of the multi-slot PUSCH from exceeding the preset available resource elements limit, resulting in the problem that data cannot be transmitted normally.
  • the number of available resource elements N′ RE of a physical resource block occupied by the PUSCH of the multi-slot in multiple time slots is determined ,include:
  • the number of time slots occupied by the multi-slot PUSCH the number of subcarriers included in a physical resource block, the number of symbols occupied by the multi-slot PUSCH in the reference time slot, and a physical resource occupied by the multi-slot PUSCH.
  • the number of time slots occupied by the multi-slot PUSCH the number of subcarriers included in one physical resource block, the number of symbols occupied by the multi-slot PUSCH in the reference time slot, one of the multi-slot PUSCH occupied
  • the number of resource elements used by the physical resource block to carry the demodulation reference signal in the reference time slot, and the number of resource elements used by one physical resource block occupied by the multi-slot PUSCH for overhead in multiple time slots determining the number of available resource particles N′ RE in a plurality of time slots of a physical resource block occupied by the multi-slot PUSCH;
  • the number of time slots occupied by the multi-slot PUSCH the number of subcarriers included in one physical resource block, the total number of symbols occupied by the multi-slot PUSCH in multiple time slots, the multi-slot PUSCH occupied by the PUSCH
  • One physical resource block is used to carry the number of resource elements used by the demodulation reference signal in multiple time slots, and one physical resource block occupied by the multi-slot PUSCH is used in the reference time slot for resources used for overhead
  • the number of particles to determine the number of available resource particles N′ RE in multiple time slots of a physical resource block occupied by a multi-slot PUSCH;
  • the total number of symbols occupied by the multi-slot PUSCH in multiple time slots, and one physical resource block occupied by the multi-slot PUSCH is used in multiple time slots.
  • the number of resource elements used for carrying the demodulation reference signal and the number of resource elements used for additional overhead in a physical resource block occupied by the multi-slot PUSCH determine the multi-slot PUSCH occupancy The number N' RE of available resource elements of one physical resource block in multiple time slots.
  • determining the number of available resource elements of the multi-slot PUSCH according to the time-frequency resources occupied by the multi-slot PUSCH and a preset upper limit of available resource elements including:
  • the smaller of the product of N' RE and the number of unit durations occupied by the multi-slot PUSCH and a preset upper limit of available resource elements is determined as the number of available resource elements N RE of the multi-slot PUSCH.
  • a preset upper limit value of available resource elements can be used to limit the number of available resource elements N RE of the multi-slot PUSCH, so as to prevent the determined number of available resource elements of the multi-slot PUSCH from exceeding the preset available resource elements limit, resulting in the problem that data cannot be transmitted normally.
  • the multiple physical resource blocks occupied by the multi-slot PUSCH are determined according to the time-frequency resources occupied by the multi-slot PUSCH
  • the number of available resource particles N' RE in unit time including:
  • the number of physical resource blocks occupied by the multi-slot PUSCH the number of subcarriers included in one physical resource block, the number of symbols occupied by the multi-slot PUSCH in the reference time slot, a physical resource occupied by the multi-slot PUSCH
  • the number of physical resource blocks occupied by the multi-slot PUSCH the number of subcarriers included in one physical resource block, the number of symbols occupied by the multi-slot PUSCH in the reference time slot, a physical resource occupied by the multi-slot PUSCH
  • the resource block is used to carry the number of resource elements used for demodulation reference signals in the reference time slot, and the number of resource elements used by a physical resource block occupied by the multi-slot PUSCH for additional overhead in one symbol.
  • the number of unit durations included in the PUSCH is the number of time slots occupied by the multi-slot PUSCH; when the unit duration is one symbol, the number of units included in the PUSCH The number of unit durations is the number of symbols occupied by the multi-slot PUSCH.
  • determining the number of available resource elements of the multi-slot PUSCH according to the time-frequency resources occupied by the multi-slot PUSCH and a preset upper limit of available resource elements including:
  • the smaller value of N' RE and a preset upper limit value of available resource elements is determined as the number N RE of available resource elements of the multi-slot PUSCH.
  • a preset upper limit value of available resource elements can be used to limit the number of available resource elements N RE of the multi-slot PUSCH, so as to prevent the determined number of available resource elements of the multi-slot PUSCH from exceeding the preset available resource elements limit, resulting in the problem that data cannot be transmitted normally.
  • the number N' of available resource elements in the multiple physical resource blocks occupied by the PUSCH of the multi-slot is determined in multiple time slots.
  • RE including:
  • the number of physical resource blocks occupied by the multi-slot PUSCH the number of subcarriers included in one physical resource block, the total number of symbols occupied by the multi-slot PUSCH in multiple time slots, the number of occupied by the multi-slot PUSCH
  • the number of resource elements used by the multiple physical resource blocks to carry the demodulation reference signal in multiple time slots, the multiple physical resource blocks occupied by the PUSCH of the multiple time slots are used for the overhead in multiple time slots
  • the number of resource elements determining the number of available resource elements N′ RE in multiple physical resource blocks occupied by the multi-slot PUSCH;
  • the number of resource elements used for carrying the demodulation reference signal in multiple physical resource blocks in multiple time slots, and one physical resource block occupied by the multi-slot PUSCH is used in multiple time slots for additional overhead. determine the number of available resource elements N′ RE in multiple time slots of multiple physical resource blocks occupied by the multi-slot PUSCH;
  • the number of physical resource blocks occupied by the multi-slot PUSCH the number of subcarriers included in one physical resource block, the total number of symbols occupied by the multi-slot PUSCH in multiple time slots, the multi-slot PUSCH occupied by the PUSCH
  • the multiple physical resource blocks are used to carry the number of resource elements used for demodulation reference signals in multiple time slots, and one physical resource block occupied by the multi-slot PUSCH is used in one time slot for additional overhead.
  • the number of resource elements and a predefined value are used to determine the number N' RE of available resource elements in multiple time slots of multiple physical resource blocks occupied by the multi-slot PUSCH.
  • the reference time slot is a predefined time slot
  • the predefined time slot includes any of the following time slots:
  • the jth time slot in the time slots occupied by the multi-slot PUSCH, 1 ⁇ j ⁇ J, J is the number of time slots occupied by the multi-slot PUSCH, and j is an integer;
  • the time slot with the largest number of symbols used to carry the multi-slot PUSCH is the time slot with the largest number of symbols used to carry the multi-slot PUSCH;
  • the time slot with the least number of symbols used to carry the multi-slot PUSCH is Among the time slots occupied by the multi-slot PUSCH, the time slot with the least number of symbols used to carry the multi-slot PUSCH;
  • the time slot with the largest number of symbols for carrying the demodulation reference signal of the multi-slot PUSCH the time slot with the largest number of symbols for carrying the demodulation reference signal of the multi-slot PUSCH
  • the reference time slot is the time slot indicated by the control information
  • the reference time slot is a time slot configured by higher layer signaling.
  • the preset upper limit value of available resource elements is the product of the number of physical resource blocks of the reference bandwidth and the preset value.
  • the reference bandwidth is any of the following bandwidths:
  • the preset value is used to represent the maximum number of available resource particles used for carrying uplink data in one physical resource block in the reference bandwidth in one time slot.
  • the reference bandwidth is the bandwidth occupied by the multi-slot PUSCH
  • the preset value is used to represent the maximum number of time slots occupied by the multi-slot PUSCH in one physical resource block The maximum number of available resource particles used to carry uplink data in .
  • a second aspect of the present disclosure is to provide a communication method, comprising:
  • the coding block sent by the user terminal through the multi-slot physical uplink shared channel PUSCH; wherein, the coding block is obtained by coding a transport block, and the size of the transport block is determined according to the time-frequency resources of the multi-slot PUSCH ;
  • the time-frequency resources occupied by the multi-slot PUSCH include time-frequency resources in multiple time slots.
  • the size of the transport block is determined according to the product of the number of available resource elements, the coding rate, the modulation order, and the number of transmission layers, and the number of available resource elements is determined according to the multi-time It is determined by the time-frequency resources occupied by the PUSCH of the slot and the preset upper limit value of available resource elements.
  • the number of available resource elements N RE of the multi-slot PUSCH is:
  • N' RE is the number of available resource elements in multiple time slots of a physical resource block occupied by the multi-slot PUSCH, and N' RE is determined according to the time-frequency resources occupied by the multi-slot PUSCH.
  • the number of available resource elements N′ RE of one physical resource block occupied by the multi-slot PUSCH in multiple time slots is based on the number of time slots occupied by the multi-slot PUSCH , the number of subcarriers included in one physical resource block, the number of symbols occupied by the multi-slot PUSCH in the reference time slot, and one physical resource block occupied by the multi-slot PUSCH is used in the reference time slot to carry the demodulation reference Determined by the number of resource elements used by the signal and the number of resource elements used for additional overhead in the reference time slot of a physical resource block occupied by the multi-slot PUSCH;
  • the number of available resource elements N′ RE in multiple timeslots of a physical resource block occupied by the multi-slot PUSCH is based on the number of timeslots occupied by the multi-slot PUSCH, the number of sub-elements included in a physical resource block
  • a physical resource block occupied by the multi-slot PUSCH is determined by the number of resource elements used for additional overhead in multiple time slots;
  • the number of available resource elements N′ RE in multiple timeslots of a physical resource block occupied by the multi-slot PUSCH is based on the number of timeslots occupied by the multi-slot PUSCH, the number of sub-elements included in a physical resource block
  • the number of carriers, the number of symbols occupied by the multi-slot PUSCH in the reference time slot, the total number of symbols included in the time slot occupied by the multi-slot PUSCH, a physical resource block occupied by the multi-slot PUSCH is in the Determined by the number of resource elements used for carrying the demodulation reference signal in the multiple time slots, and the number of resource elements used for additional overhead in the reference time slot of a physical resource block occupied by the PUSCH of the multi-slot;
  • the number N′ RE of available resource elements in multiple timeslots of a physical resource block occupied by the multi-slot PUSCH is based on the number of subcarriers included in a physical resource block, the multi-slot PUSCH at the reference time
  • the number of symbols occupied in the slot, the total number of symbols occupied in the time slot occupied by the multi-slot PUSCH, and one physical resource block occupied by the multi-slot PUSCH is used in multiple time slots for carrying demodulation reference signals
  • the number of resource elements used and the number of resource elements used for additional overhead in multiple time slots in one physical resource block occupied by the multi-slot PUSCH are determined.
  • the number of available resource elements N RE of the multi-slot PUSCH is:
  • N' RE is the number of available resource particles in a unit time length of multiple physical resource blocks occupied by the multi-slot PUSCH, and N' RE is determined according to the time-frequency resources occupied by the multi-slot PUSCH.
  • the number of available resource elements N′ RE in the unit duration of the multiple physical resource blocks occupied by the multi-slot PUSCH is According to the number of physical resource blocks occupied by the multi-slot PUSCH, the number of subcarriers included in one physical resource block, the number of symbols occupied by the multi-slot PUSCH in the reference time slot, a physical resource occupied by the multi-slot PUSCH The number of resource elements used by the resource block to carry the demodulation reference signal in the reference time slot, and the number of resource elements used by one physical resource block occupied by the multi-slot PUSCH in the reference time slot for the additional overhead determined by ;
  • the number of available resource elements N′ RE within the unit duration of the multiple physical resource blocks occupied by the multi-slot PUSCH is based on the physical resource blocks occupied by the multi-slot PUSCH number, the number of subcarriers included in one physical resource block, the number of symbols occupied by the multi-slot PUSCH in the reference time slot, and one physical resource block occupied by the multi-slot PUSCH is used in the reference time slot for carrying demodulation Determined by the number of resource elements used for the reference signal and the number of resource elements used for additional overhead in one symbol of a physical resource block occupied by the multi-slot PUSCH;
  • the number of unit durations included in the PUSCH is the number of time slots occupied by the multi-slot PUSCH; when the unit duration is one symbol, the number of units included in the PUSCH The number of unit durations is the number of symbols occupied by the multi-slot PUSCH.
  • the number of available resource elements N RE of the multi-slot PUSCH is:
  • N' RE the smaller value of the preset upper limit value of available resource particles
  • N' RE is the number of available resource elements of multiple physical resource blocks occupied by the multi-slot PUSCH in multiple time slots, and N' RE is determined according to the time-frequency resources occupied by the multi-slot PUSCH.
  • the number of available resource elements N′ RE of the multiple physical resource blocks occupied by the multi-slot PUSCH in the multiple time slots is based on the physical resources occupied by the multi-slot PUSCH
  • the number of blocks, the number of subcarriers included in one physical resource block, the total number of symbols occupied by the multi-slot PUSCH in multiple time slots, and the multiple physical resource blocks occupied by the multi-slot PUSCH are used in multiple time slots. Determined by the number of resource elements used for carrying the demodulation reference signal and the number of resource elements used for additional overhead in multiple timeslots of multiple physical resource blocks occupied by the multi-slot PUSCH;
  • the number of available resource elements N′ RE in the multiple physical resource blocks occupied by the multi-slot PUSCH is the number of physical resource blocks occupied by the multi-slot PUSCH
  • one physical resource block includes The number of subcarriers, the total number of symbols occupied by the multi-slot PUSCH in multiple time slots, the multiple physical resource blocks occupied by the multi-slot PUSCH are used in multiple time slots for carrying demodulation reference signals Determined by the number of resource elements, the number of resource elements used for additional overhead in multiple timeslots in a physical resource block occupied by the multi-slot PUSCH;
  • the number of available resource elements N′ RE in the multiple physical resource blocks occupied by the multi-slot PUSCH is the number of physical resource blocks occupied by the multi-slot PUSCH
  • one physical resource block includes The number of subcarriers, the total number of symbols occupied by the multi-slot PUSCH in multiple time slots, the multiple physical resource blocks occupied by the multi-slot PUSCH are used in multiple time slots for carrying demodulation reference signals It is determined by the number of resource elements, the number of resource elements used for additional overhead in one time slot of a physical resource block occupied by the multi-slot PUSCH, and a predefined value.
  • the reference time slot is a predefined time slot
  • the predefined time slot includes any of the following time slots:
  • the jth time slot in the time slots occupied by the multi-slot PUSCH, 1 ⁇ j ⁇ J, J is the number of time slots occupied by the multi-slot PUSCH, and j is an integer;
  • the time slot with the largest number of symbols used to carry the multi-slot PUSCH is the time slot with the largest number of symbols used to carry the multi-slot PUSCH;
  • the time slot with the least number of symbols used to carry the multi-slot PUSCH is Among the time slots occupied by the multi-slot PUSCH, the time slot with the least number of symbols used to carry the multi-slot PUSCH;
  • the time slot with the largest number of symbols for carrying the demodulation reference signal of the multi-slot PUSCH the time slot with the largest number of symbols for carrying the demodulation reference signal of the multi-slot PUSCH
  • the reference time slot is the time slot indicated by the control information
  • the reference time slot is a time slot configured by higher layer signaling.
  • the preset upper limit value of available resource elements is the product of the number of physical resource blocks of the reference bandwidth and the preset value.
  • the reference bandwidth is any of the following bandwidths:
  • the preset value is used to represent the maximum number of available resource particles used for carrying uplink data in one physical resource block in the reference bandwidth in one time slot.
  • the reference bandwidth is the bandwidth occupied by the multi-slot PUSCH
  • the preset value is used to represent the maximum number of time slots occupied by the multi-slot PUSCH in one physical resource block The maximum number of available resource particles used to carry uplink data in .
  • a third aspect of the present disclosure is to provide a communication device, comprising:
  • a determining unit configured to determine the size of the transport block according to the time-frequency resources occupied by the multi-slot physical uplink shared channel PUSCH, where the time-frequency resources occupied by the multi-slot PUSCH include time-frequency resources in multiple time slots;
  • a transmission unit configured to acquire a transport block corresponding to the size of the transport block, encode the transport block to obtain a coded block, and send the coded block through the multi-slot PUSCH.
  • a fourth aspect of the present disclosure is to provide a communication device, comprising:
  • the receiving unit is configured to receive the coding block sent by the user terminal through the multi-slot physical uplink shared channel PUSCH; wherein, the coding block is obtained by coding the transport block, and the size of the transport block is based on the multi-slot PUSCH. Time-frequency resources are determined;
  • the time-frequency resources occupied by the multi-slot PUSCH include time-frequency resources in multiple time slots.
  • a fifth aspect of the present disclosure is to provide a user terminal, including the communication device of the third aspect.
  • a sixth aspect of the present disclosure is to provide a network device including the communication apparatus of the fourth aspect.
  • a seventh aspect of the present disclosure is to provide an electronic device, comprising:
  • the computer program is stored in the memory and configured to be executed by the processor to implement the communication method according to the first aspect above.
  • An eighth aspect of the present disclosure is to provide a computer-readable storage medium on which a computer program is stored, the computer program being executed by a processor to implement the communication method as described in the first aspect or the second aspect.
  • the communication method, device, device, storage medium, and program product provided by the present disclosure include: determining the size of the transport block according to the time-frequency resources occupied by the physical uplink shared channel of the multi-slot PUSCH, and the time-frequency resources occupied by the multi-slot PUSCH include multiple Time-frequency resources in the time slot; obtain the transmission block corresponding to the size of the transmission block, encode the transmission block to obtain the encoded block, and send the encoded block through the multi-slot PUSCH.
  • the size of the transport block can be increased, so that more data can be sent through one-time encoding, which improves the coding gain and thus improves the coverage performance.
  • Fig. 1 is a kind of communication scene diagram
  • FIG. 2 is a data transmission diagram shown in an exemplary embodiment of the present application
  • FIG. 3 is a data transmission diagram shown in another exemplary embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a communication method according to an exemplary embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a communication method according to another exemplary embodiment of the present application.
  • FIG. 6 is a structural diagram of a communication device according to an exemplary embodiment of the present application.
  • FIG. 7 is a structural diagram of a communication device according to another exemplary embodiment of the present application.
  • FIG. 8 is a structural diagram of an electronic device according to an exemplary embodiment of the present invention.
  • FIG. 1 is a communication scene diagram.
  • a communication system includes a network device 11 and a user terminal 12 , and the user terminal 12 can send an uplink signal to the network device 11 .
  • the user terminal 12 may initiate random access to the network device 11 to apply for a wireless network connection service; the network device 11 receives a random access request from at least one user terminal 12 and provides wireless services for it. Data interaction and transmission are performed between the network device 11 and the user terminal 12 through wireless communication.
  • the user terminal 12 sends an uplink signal to the network device 11, as the frequency of the signal required to be sent in the communication technology increases, the loss of the signal during propagation increases. Especially for user terminals located at the edge of a cell or in an area with relatively large fading, such as a basement, the propagation loss of the uplink signal is large, and therefore coverage enhancement is required.
  • FIG. 2 is a data transmission diagram shown in an exemplary embodiment of the present application.
  • a transport block (Transport Block, TB) 21 can only be transmitted in a physical uplink shared channel (Physical uplink shared channel, PUSCH) of a single time slot.
  • PUSCH Physical uplink shared channel
  • 300-bit data can be transmitted in each slot, and the 300-bit data is a 300-bit encoded block obtained by encoding a 200-bit transmission block.
  • the UE often sends the coded block after channel coding in the PUSCH, but the information in the transport block is still sent in essence. Blocks are interchangeable in this application.
  • the signal of the user terminal in a single slot often needs to concentrate energy and transmit it in a narrowband, which makes the number of bits sent in a single slot very limited, which leads to a long code length after the user terminal sends the PUSCH TB after encoding. Short, reduces encoding performance, so coverage will also be poor.
  • FIG. 3 is a data transmission diagram shown in another exemplary embodiment of the present application.
  • the solution provided by the present application proposes a solution for sending transport blocks in PUSCH with multiple slots.
  • the PUSCH with multiple slots can be used to carry the same TB 31, which increases the coding code length while ensuring the transmission of narrowband and high power density, thereby improving the coding gain and thus the coverage performance.
  • a TB is transmitted across the PUSCH of four slots, data of 800 bits can be transmitted, and the encoded code length is 1200.
  • FIG. 4 is a schematic flowchart of a communication method according to an exemplary embodiment of the present application.
  • the communication method provided by this application includes:
  • Step 401 Determine the size of the transport block according to the time-frequency resources occupied by the physical uplink shared channel PUSCH; the time-frequency resources occupied by the PUSCH of multiple time slots include time-frequency resources in multiple time slots.
  • the method provided in this application may be executed by a user terminal.
  • the size of the transport block may first be determined according to the time-frequency resources occupied by the physical uplink shared channel PUSCH.
  • the network device may send control information for instructing the multi-slot-based PUSCH to send the transport block to the user terminal. Therefore, in an optional implementation manner, the user terminal may send data to the network device in response to the control information sent by the network device.
  • the control information may be, for example, radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the network device may configure through RRC signaling that the user terminal can transmit one TB through the PUSCH of multiple slots.
  • the control information may also be downlink control information (Downlink Control Information, DCI), and the network device may also send DCI to the user terminal, and schedule the user terminal to send a TB in a multi-slot PUSCH through the DCI.
  • DCI Downlink Control Information
  • the user terminal may spontaneously send the PUSCH on the semi-statically configured resource by means of a configured grant.
  • the configured resources may be, for example, time-frequency resources spanning multiple time slots.
  • the user terminal when it needs to send data, it can determine the transport block size (Transport Block Size, TBS) according to the time-frequency resources occupied by the PUSCH of multiple slots.
  • TBS Transport Block Size
  • the time-frequency resources occupied by the PUSCH of multiple slots include time-frequency resources in multiple slots.
  • one TB is transmitted based on the PUSCH with multiple slots. Therefore, the size of one TB depends on the range of the slot occupied by the PUSCH and the range of the physical resource block PRB occupied by the PUSCH.
  • the multi-slot PUSCH occupies several slots in the time domain, and also occupies several PRBs in the frequency domain.
  • the number of all resource elements (Resource Element, RE) of the PUSCH may be determined according to the number of slots occupied by the PUSCH with multiple slots and the number of occupied PRBs.
  • each slot includes several symbols, and each PRB also includes several subcarriers. Therefore, according to the number of slots occupied by the PUSCH, the number of PRBs occupied by the PUSCH, and the number of symbols used to carry the PUSCH in a slot The number and the number of subcarriers included in the PRB determine the number of all resource elements (Resource Element, RE) of the PUSCH.
  • RE resource Element
  • the PUSCH needs to carry some information other than data, such as a demodulation reference signal (Demodulation Reference Signal, DMRS).
  • DMRS Demodulation Reference Signal
  • the number of REs used to carry information other than data can be removed from the total number of REs occupied by the PUSCH, and the number of REs that can be used to carry data in the PUSCH can be obtained.
  • the bandwidth of the terminal sending PUSCH cannot exceed the bandwidth of the BWP where it is located, and the size of the transport block carried in the PUSCH cannot exceed its bandwidth.
  • the maximum amount of data corresponding to the BWP in which it is located therefore, the preset number of available resource particles can also be set, and the smaller value of the number of available REs in the PUSCH and the number of preset available resource particles is used as the size TBS of the transport block.
  • the maximum value of the TBS that the PUSCH can carry is obtained.
  • Step 402 Obtain a transport block corresponding to the size of the transport block, encode the transport block to obtain the encoded block, and send the encoded block through the PUSCH.
  • the user terminal may obtain data information from a higher layer according to the TBS, thereby obtaining a transport block TB, and the size of the obtained TB is consistent with the determined TBS. For example, if the determined TBS is N Info , a TB with a length of N Info can be obtained.
  • the user terminal may perform encoding processing on the acquired TB to obtain a code block (Code Block, CB), and send the generated code block through a multi-slot PUSCH. Since the encoding block is obtained by encoding the transport block, when the size of the transport block is fixed, the size of the encoding block can also be fixed.
  • the size of the transmission block acquired at a time can be increased, and the size of the encoding block can be increased, so that more data can be sent through one encoding, and the number of encoding times and the overhead of cyclic redundancy check bits can be reduced. Thereby, the data transmission efficiency is improved.
  • the same TB is carried by the PUSCH with multiple slots, and the code length can be increased when the coding block corresponding to the TB is transmitted with narrowband and high power, thereby improving the coding gain and improving the coverage performance.
  • the method provided in this embodiment is used to send the transport block through the physical uplink shared channel of multiple time slots, thereby improving the coverage performance of the user terminal.
  • the method is executed by a device provided with the method provided in this embodiment, and the device is usually implemented in hardware and/or software.
  • the communication method provided by the present application includes: determining the size of the transport block according to the time-frequency resources occupied by the physical uplink shared channel PUSCH of the multi-slot, and the time-frequency resources occupied by the PUSCH of the multi-slot include the time-frequency resources in multiple time slots; For the transport block corresponding to the transport block size, the transport block is encoded to obtain the encoded block, and the encoded block is sent through the multi-slot PUSCH.
  • the size of the transport block can be increased, so that more data can be sent through one-time encoding, which improves the coding gain and thus improves the coverage performance.
  • FIG. 5 is a schematic flowchart of a communication method according to another exemplary embodiment of the present application.
  • the communication method provided by this application includes:
  • Step 501 Determine the number of available resource elements of the multi-slot PUSCH according to the time-frequency resources occupied by the multi-slot PUSCH and a preset upper limit of available resource elements.
  • the method provided in this application may be executed by a user terminal.
  • the size of the transport block may be determined first according to the time-frequency resources occupied by the physical uplink shared channel PUSCH.
  • the number of slots occupied by the multi-slot PUSCH may be configured for the user terminal by the network device, for example, the network device may be configured for the user terminal by the network device.
  • the multi-slot PUSCH occupies 4 slots in total.
  • the number of slots occupied by the PUSCH with multiple slots may also be configured for the user terminal by configuring a license.
  • the number of slots occupied by the PUSCH with multiple slots of the user terminal may be indicated by the network device through the DCI. You can also set some rules for determining the slot, and the user terminal can determine the number of slots by itself. It is only necessary to make the network device and the terminal device have the same understanding of the number of slots occupied by the PUSCH with multiple slots. This embodiment does not limit this.
  • a multi-slot PUSCH occupies several PRBs in the frequency domain.
  • the number of PRBs occupied by the multi-slot PUSCH of the user terminal can be configured by the network device, or the user terminal can be configured with the multi-slot PUSCH by configuring permissions.
  • the number of PRBs, or the number of PRBs occupied by the multi-slot PUSCH may be indicated by the network device through the DCI to the user terminal, or the number of PRBs occupied by the multi-slot PUSCH may be determined by the user terminal based on certain rules. This embodiment does not limit this.
  • the number of REs that can be used to carry data in the multi-slot PUSCH may be determined according to the time-frequency resources occupied by the multi-slot PUSCH.
  • RE is a unit used to carry data in a multi-slot PUSCH, and is specifically used to carry coding blocks.
  • some REs are used to carry information other than data. For example, if some REs need to carry DMRS, these REs cannot carry other data.
  • a resource element includes one symbol in the time domain, one subcarrier in the frequency domain, and one slot includes several symbols, and one PRB includes several subcarriers.
  • the user terminal can also determine based on configuration information or preset rules. The number of REs required for carrying information other than data is obtained. Therefore, in combination with the above information, the user terminal can determine the number of REs that can be used to carry data in the multi-slot PUSCH.
  • an upper limit value of available resource particles may also be preset, and the upper limit value of available resource particles may be the maximum number of available resource particles determined based on a reference bandwidth during data transmission.
  • the smaller of the number of REs that can be used to carry data and the upper limit of available resource elements in the multi-slot PUSCH may be determined as the number of available resource elements N RE of the multi-slot PUSCH.
  • Step 502 Determine the size of the transport block according to the product of the number of available resource particles, the coding rate, the modulation order, and the number of transmission layers.
  • the user terminal may further determine the TBS according to N RE , the coding rate, the modulation order, and the number of transmission layers.
  • the TBS can be determined according to the product of N RE , the coding rate, the modulation order, and the number of transmission layers.
  • the value of the product can be directly used as TBS.
  • other processing can be performed on the product to obtain TBS.
  • the product can be multiplied by 8 bits according to a predefined rule. quantification and other steps.
  • Step 503 Acquire a transport block corresponding to the size of the transport block, encode the transport block to obtain the encoded block, and send the encoded block through the multi-slot PUSCH.
  • Step 503 is similar to step 402 and will not be repeated here.
  • a physical resource block occupied by the multi-slot PUSCH may be determined first according to the time-frequency resources occupied by the multi-slot PUSCH The number of available resource elements N' RE in multiple time slots.
  • the multi-slot PUSCH occupies multiple slots in the time domain and occupies multiple PRBs in the frequency domain, and the available resources included in the multiple slots of a PRB occupied by the PUSCH can be determined The number of particles N' RE .
  • a multi-slot PUSCH occupies multiple slots in the time domain and multiple PRBs in the frequency domain.
  • Each time domain includes n symbols.
  • a PUSCH with multiple slots may occupy n1 symbols, and each PRB includes n2 subcarriers.
  • a PRB occupied by a PUSCH with multiple slots includes n1*n2 REs in one slot.
  • the multi-slot PUSCH needs to carry some information other than data, for example, the DMRS needs to be carried, some REs in the multi-slot PUSCH need to be occupied. Therefore, based on the time-frequency resources occupied by the PUSCH, it is possible to determine the number of remaining available resource particles N′ RE in multiple slots of one PRB occupied by the PUSCH of multiple slots. Then, the number of REs that can be used to carry data in the entire PUSCH is determined according to the N' REs and the number of PRBs occupied by the multi-slot PUSCH.
  • the time-frequency resources occupied by the multi-slot PUSCH in each PRB are the same, so the product of the N′ RE and the number of PRBs occupied by the multi-slot PUSCH can be used as the number of REs that can be used to carry data in the multi-slot PUSCH .
  • an upper limit value of available resource particles may also be preset, and the upper limit value of available resource particles may be the maximum number of available resource particles determined based on a reference bandwidth during data transmission.
  • the upper limit of available resource particles may be the number of available resource particles in one slot when the PUSCH of multiple slots occupies the reference bandwidth.
  • the upper limit of the available resource particles may also be the number of available resource particles of the reference bandwidth in the N slots.
  • the product of N' RE and the number of physical resource blocks occupied by the multi-slot PUSCH, and the smaller value of the preset upper limit of available resource particles may be determined as the number of available resource particles N RE of the multi-slot PUSCH.
  • N RE the number of available resource particles
  • the number of available resource particles N RE of the multi-slot PUSCH is:
  • N RE min (N′ RE ⁇ n PRB , the preset upper limit of available resource particles)
  • n PRB is the number of physical resource blocks occupied by the PUSCH.
  • the number of timeslots K occupied by the multi-slot PUSCH, the number of subcarriers included in a physical resource block can be calculated according to The number of symbols occupied by the multi-slot PUSCH in the reference slot A physical resource block occupied by a multi-slot PUSCH is used in the reference time slot to carry the number of resource elements used by the demodulation reference signal
  • the number of resource elements used for overhead in the reference time slot for a physical resource block occupied by a multi-slot PUSCH Determine the number N' RE of available resource elements in multiple time slots of one physical resource block occupied by the multi-slot PUSCH.
  • the number of available REs N′ REs of a physical resource block occupied by a PUSCH of multiple slots in multiple slots occupied by the PUSCH is:
  • the reference slot may be a slot determined according to a preset rule, or may be a slot configured by the network device for the user terminal.
  • the situation in which one PRB occupied by the multi-slot PUSCH carries data in multiple slots may be determined according to the situation in which one PRB occupied by the multi-slot PUSCH carries data in the reference slot.
  • the number of subcarriers included in a PRB is The number of symbols occupied by multi-slot PUSCH in the reference slot is So and The product of , can be considered as the total number of REs in the reference slot of a PRB occupied by a multi-slot PUSCH.
  • a PRB occupied by a multi-slot PUSCH needs to be occupied in the reference slot
  • Each RE carries DMRS, and one PRB occupied by the PUSCH of multiple slots needs to be occupied in the reference slot.
  • REs are used for extra overhead, therefore, can be used in and subtract the product of and Obtain the number of available REs in the reference slot for a PRB occupied by a PUSCH with multiple slots.
  • the number of slots occupied by multi-slot PUSCH is K. Therefore, you can use The product of K and K is the number of available REs N′ RE of one PRB in multiple slots occupied by the PUSCH of multiple slots.
  • the number of timeslots K occupied by the multi-slot PUSCH and the number of subcarriers included in one physical resource block can be The number of symbols occupied by the multi-slot PUSCH in the reference slot A physical resource block occupied by a multi-slot PUSCH is used in the reference time slot to carry the number of resource elements used by the demodulation reference signal
  • the number of resource elements used for overhead in multiple time slots in one physical resource block occupied by a multi-slot PUSCH Determine the number N' RE of available resource elements in multiple time slots of one physical resource block occupied by the multi-slot PUSCH.
  • the number of available REs N′ REs of a physical resource block occupied by a PUSCH with multiple slots in the multiple slots occupied by the PUSCH is:
  • the reference slot may be a slot determined according to a preset rule, or may be a slot configured by the network device for the user terminal.
  • the situation in which one PRB occupied by the multi-slot PUSCH carries data in multiple slots may be determined according to the situation in which one PRB occupied by the multi-slot PUSCH carries data in the reference slot.
  • the number of subcarriers included in a PRB is The number of symbols occupied by multi-slot PUSCH in the reference slot is So and The product of , can be considered as the total number of REs in the reference slot of a PRB occupied by a multi-slot PUSCH.
  • a PRB occupied by a multi-slot PUSCH needs to be occupied in the reference slot.
  • REs carry DMRS, therefore, can be and Based on the product of , subtract Obtain the number of REs remaining in the reference slot for a PRB occupied by a PUSCH with multiple slots.
  • the number of slots occupied by multi-slot PUSCH is K. Therefore, the The product of K and the number of remaining REs of one PRB in multiple slots occupied by the PUSCH of multiple slots.
  • a PRB occupied by a multi-slot PUSCH also needs to be occupied in multiple slots REs are used for extra overhead, therefore, can be used in on the basis of minus The number N′ RE of available REs in multiple slots of one PRB occupied by the PUSCH of multiple slots is obtained.
  • the number of timeslots K occupied by the multi-slot PUSCH, the number of subcarriers included in a physical resource block can be calculated according to The total number of symbols occupied by a multi-slot PUSCH in multiple slots
  • a physical resource block occupied by a multi-slot PUSCH is used to carry the number of resource elements used by the demodulation reference signal in multiple time slots
  • the number of resource elements used for overhead in the reference time slot for a physical resource block occupied by a multi-slot PUSCH Determine the number N' RE of available resource elements in multiple time slots of one physical resource block occupied by the multi-slot PUSCH.
  • the number of available REs N′ REs in a physical resource block occupied by a PUSCH of multiple slots in the multiple slots occupied by the PUSCH is:
  • the number of subcarriers included in a PRB is The total number of symbols occupied by multi-slot PUSCH in multiple slots is So and The product of , can be considered as the total number of REs in a PRB occupied by a multi-slot PUSCH in multiple slots.
  • a PRB occupied by a multi-slot PUSCH needs to be used in multiple slots.
  • REs carry DMRS, therefore, can be and Based on the product of , subtract Obtain the number of remaining REs of a PRB in multiple slots occupied by a PUSCH with multiple slots.
  • a PRB occupied by a multi-slot PUSCH is in the reference slot and needs to be used REs carry additional overhead, therefore, Subtract the number of slots K occupied by multi-slot PUSCH and The product of , as the number of available REs N′ RE of one PRB in multiple slots occupied by the PUSCH of multiple slots.
  • the number of subcarriers included in a physical resource block may be The total number of symbols occupied by multi-slot PUSCH in multiple time slots
  • One physical resource block occupied by a multi-slot PUSCH is used to carry the number of REs used by the demodulation reference signal in multiple slots
  • Number of REs used for overhead in multiple slots in one physical resource block occupied by a multi-slot PUSCH Determine the number N' RE of available REs in multiple slots of one physical resource block occupied by the multi-slot PUSCH.
  • the number of available REs N′ REs in multiple slots of a PRB occupied by a PUSCH of multiple slots is:
  • the number of subcarriers included in a PRB is The total number of symbols occupied by multi-slot PUSCH in multiple slots is So and The product of , can be considered as the total number of REs in a PRB occupied by a multi-slot PUSCH in multiple slots.
  • a PRB occupied by a multi-slot PUSCH needs to be used in multiple slots.
  • REs carry DMRS and also need to use REs are used for extra overhead, therefore, can be used in and Based on the product of , subtract and The number N′ RE of available REs in multiple slots of one PRB occupied by the PUSCH of multiple slots is obtained.
  • the number of available resource elements N RE of the multi-slot PUSCH in an optional embodiment, according to the time-frequency resources occupied by the multi-slot PUSCH, it may be determined that the multiple physical resource blocks occupied by the multi-slot PUSCH are The number of available resource particles N′ RE in unit time.
  • the PUSCH with multiple slots occupies multiple slots in the time domain and multiple PRBs in the frequency domain, and the number N of available REs in the unit time length of the multiple PRBs occupied by the PUSCH with multiple slots can be determined. ' RE .
  • a multi-slot PUSCH occupies multiple slots in the time domain and multiple PRBs in the frequency domain.
  • Each time domain includes n symbols.
  • a PUSCH with multiple slots may occupy n1 symbols, and each PRB includes n2 subcarriers.
  • one PRB occupied by the PUSCH with multiple slots is in one slot, and includes n1*n2 REs in total.
  • the multi-slot PUSCH needs to carry some information other than data, for example, DMRS needs to be carried. This results in the need to occupy some REs in the PUSCH with multiple slots. Therefore, based on the time-frequency resources occupied by the multi-slot PUSCH, the number N′ RE of REs available in the unit duration of the multiple PRBs occupied by the multi-slot PUSCH can be determined. Then, according to the N' REs and the number of unit durations included in the multi-slot PUSCH, the number of REs that can be used to carry data in the entire multi-slot PUSCH is determined.
  • an upper limit value of available resource particles may also be preset, and the upper limit value of available resource particles may be the maximum number of available resource particles determined based on a reference bandwidth during data transmission.
  • the upper limit of available resource elements may be the number of available REs in one slot when the PUSCH of multiple slots occupies the reference bandwidth.
  • the upper limit value of the available resource elements may be the number of available REs of the reference bandwidth in the N slots.
  • the smaller value of the product of the determined N′ RE and the number of the multi-slot PUSCH occupied per unit duration, and the preset upper limit value of available resource particles may be used as the number N RE of available REs for the multi-slot PUSCH.
  • the number N REs available for PUSCH with multiple slots is:
  • N RE min (N' RE ⁇ K, preset upper limit of available resource particles)
  • K is the number of timeslots occupied by the PUSCH with multiple slots.
  • the number of available REs N REs for multi-slot PUSCH is:
  • N RE min (N' RE ⁇ L, preset upper limit of available resource particles)
  • L is the total number of symbols occupied by the multi-slot PUSCH in multiple time slots.
  • the number of physical resource blocks n PRB occupied by the multi-slot PUSCH and the number of subcarriers included in one physical resource block can be determined according to The number of symbols occupied by the multi-slot PUSCH in the reference slot
  • a physical resource block occupied by a multi-slot PUSCH is used in the reference time slot to carry the number of resource elements used by the demodulation reference signal
  • the unit duration is one slot, and at this time, the number of available resource particles N′ RE is:
  • the reference slot may be a slot determined according to a preset rule, or may be a slot configured by the network device for the user terminal.
  • the situation in which one PRB occupied by the multi-slot PUSCH carries data in multiple slots may be determined according to the situation in which one PRB occupied by the multi-slot PUSCH carries data in the reference slot.
  • the number of subcarriers included in a PRB is The number of symbols occupied by multi-slot PUSCH in the reference slot is So and The product of , can be considered as the number of REs included in the reference slot for a PRB occupied by a multi-slot PUSCH.
  • a PRB occupied by a multi-slot PUSCH needs to be occupied in the reference slot.
  • Each RE carries DMRS, and one PRB occupied by the PUSCH of multiple slots needs to be occupied in the reference slot.
  • REs are used for extra overhead, therefore, can be used in and Based on the product of , subtract and Obtain the number of available REs in the reference slot for a PRB occupied by a PUSCH with multiple slots.
  • the number of PRBs occupied by multi-slot PUSCH is n PRBs . Therefore, the The product of n PRBs is the number of available REs in the reference slot for multiple PRBs occupied by the multi-slot PUSCH.
  • the unit duration is a slot, That is, the number of available resource particles N′ RE of multiple PRBs in a unit duration of PRBs occupied by the PUSCH with multiple slots.
  • the product of N′ RE and the number of unit durations included in the multi-slot PUSCH, and the smaller value of the preset upper limit value of available resource elements is determined as the multi-slot PUSCH
  • the number per unit duration is the number of time slots occupied by the multi-slot PUSCH.
  • the unit duration is one symbol
  • the number of available resource particles N′ RE is:
  • the ratio to the number of symbols occupied by the multi-slot PUSCH in the reference slot is the number of available REs N′ RE in one symbol of the multiple PRBs occupied by the multi-slot PUSCH.
  • the product of N′ RE and the number of unit durations included in the multi-slot PUSCH, and the smaller value of the preset upper limit value of available resource elements is determined as the multi-slot PUSCH
  • the number per unit duration is the number of symbols occupied by the PUSCH of the multi-slot.
  • the number of physical resource blocks n PRB occupied by the multi-slot PUSCH and the number of subcarriers included in one physical resource block can be determined according to The number of symbols occupied by the multi-slot PUSCH in the reference slot A physical resource block occupied by a multi-slot PUSCH is used in the reference time slot to carry the number of resource elements used by the demodulation reference signal
  • the number of resource elements used for overhead in one symbol for a physical resource block occupied by a multi-slot PUSCH Determine the number N' RE of available resource elements within a unit duration of multiple physical resource blocks occupied by the multi-slot PUSCH.
  • the unit duration is a symbol
  • the number of available resource particles N′ RE is:
  • the reference slot may be a slot determined according to a preset rule, or may be a slot configured by the network device for the user terminal. According to the fact that one PRB occupied by the PUSCH of multiple slots carries data in the reference slot, it can be determined that one PRB occupied by the PUSCH of multiple slots carries data in a unit duration.
  • the number of REs used to carry the DMRS in one symbol for one PRB occupied by the PUSCH of multiple slots determined based on the reference slot, The number of REs used for overhead in one symbol for one PRB occupied by a multi-slot PUSCH.
  • the number of subcarriers included in a PRB is One RE includes one symbol in the time domain. Therefore, one PRB occupied by the multi-slot PUSCH is in one symbol, and the total number of REs is also use minus and The number of available REs in one symbol of one PRB occupied by the PUSCH with multiple slots can be obtained.
  • the multi-slot PUSCH occupies n PRB PRBs. Therefore, the
  • n PRBs The product of n PRBs is the number of available resource particles N′ RE in one symbol of multiple PRBs occupied by the multi-slot PUSCH.
  • the product of N' RE and the number of unit durations included in the multi-slot PUSCH, and the smaller value of the preset upper limit value of available resource elements is determined as the multi-slot PUSCH
  • the number per unit duration is the number of symbols occupied by PUSCH with multiple slots.
  • the multiple physical resources occupied by the multi-slot PUSCH may be determined first according to the time-frequency resources occupied by the multi-slot PUSCH The number of available resource elements N' RE for a block in multiple slots.
  • the multi-slot PUSCH occupies multiple slots in the time domain, and the multi-slot PUSCH occupies multiple PRBs in the frequency domain.
  • the number of available REs in the slot N' RE is the number of available REs in the slot.
  • a multi-slot PUSCH occupies multiple slots in the time domain and multiple PRBs in the frequency domain.
  • Each time domain includes n symbols.
  • a PUSCH with multiple slots may occupy n1 symbols, and each PRB includes n2 subcarriers.
  • one PRB occupied by the PUSCH of multiple slots is in one slot, and includes n1*n2 REs in total.
  • N' RE is the number of REs that can be used to carry data in the entire multi-slot PUSCH.
  • an upper limit value of available resource particles may also be preset, and the upper limit value of available resource particles may be the maximum number of available resource particles determined based on a reference bandwidth during data transmission.
  • the upper limit of available resource particles may be the number of available resource particles in one slot when the PUSCH of multiple slots occupies the reference bandwidth.
  • the upper limit value of the available resource particles may be the number of available resource particles of the reference bandwidth in the N slots.
  • the smaller value of the determined N′ RE and the preset upper limit value of available resource elements may be used as the number N RE of available REs of the multi-slot PUSCH.
  • the maximum number of resource elements that can be carried by the multi-slot PUSCH and does not exceed the upper limit of the reference bandwidth carrying can be determined. Further, the PUSCH with multiple slots can be fully utilized for data transmission.
  • the number of available resource particles N RE of the multi-slot PUSCH is:
  • N RE min (N' RE , preset upper limit value of available resource particles)
  • the number of physical resource blocks n PRB occupied by the multi-slot PUSCH and the number of subcarriers included in one physical resource block can be determined according to The total number of symbols occupied by a multi-slot PUSCH in multiple slots The number of resource elements used by the multiple physical resource blocks occupied by the multi-slot PUSCH to carry the demodulation reference signal in multiple time slots Number of resource elements used for overhead in multiple physical resource blocks occupied by multi-slot PUSCH Determine the number N' RE of the available resource elements in the multiple physical resource blocks occupied by the multi-slot PUSCH in multiple time slots.
  • the number of available resource particles N' RE is:
  • the multi-slot PUSCH occupies a total of n PRB PRBs in the frequency domain, and each PRB includes Subcarriers, multi-slot PUSCH co-occupy in the time domain symbols, therefore,
  • the PRB occupied by the PUSCH of multiple slots is the total number of REs in multiple slots.
  • the above formula can be replace with Indicates the number of REs used for additional overhead in multiple slots by a PRB occupied by a PUSCH with multiple slots.
  • the number of available resource particles N′ RE is:
  • s is a predefined value, for example, may be the number of slots occupied by the PUSCH with multiple slots, or may be a value configured in the RRC configuration information, or may be a scaling parameter indicated by DCI, for example.
  • the replace with in Indicates the number of REs used to carry DMRS in multiple slots in one PRB occupied by the PUSCH of multiple slots.
  • the reference time slot is a predefined time slot.
  • the predefined time slot may be the jth time slot in the time slot occupied by the multi-slot PUSCH, 1 ⁇ j ⁇ J, J is the number of time slots occupied by the multi-slot PUSCH, and j is an integer.
  • the predefined time slot may be the time slot with the largest or the smallest number of symbols used to carry data among the time slots occupied by the multi-slot PUSCH.
  • the user terminal can determine which symbols need to carry data when the multi-slot PUSCH transmits data according to the control information or configuration information of the network device, and then can determine the time slot with the largest or least number of symbols used to carry data, and use the time slot as a reference time slot.
  • the time slot with the largest number of symbols used to carry a demodulation reference signal (Demodulation Reference Signal, DMRS).
  • DMRS Demodulation Reference Signal
  • the user terminal can determine, according to the control information or configuration information of the network device, which symbols need to carry DMRS when the PUSCH transmits data in multiple slots, and then can determine the slot with the largest or the least number of symbols used to carry the DMRS, and use the symbol to carry the DMRS. time slot as a reference time slot.
  • the user terminal may also determine the virtual time slot according to the time slot occupied by the PUSCH of the multi-slot.
  • the number of symbols occupied by the multi-slot PUSCH in the virtual time slot is the average number of symbols occupied by the multi-slot PUSCH in the multiple time slots occupied; and/or the virtual number of symbols occupied by the multi-slot PUSCH
  • the number of resource elements of the time slot used to carry the demodulation reference signal of the multi-slot PUSCH is the average number of resource elements of the DMRS used to carry the multi-slot PUSCH in the multiple time slots occupied by the multi-slot PUSCH.
  • a definition mode of the reference time slot can be set and written into the user terminal, so that the user terminal can determine the reference time slot by itself.
  • the reference time slot may be indicated in the control information sent by the network device to the user terminal.
  • a variable may be set in the control information, and the value of the variable is used to indicate the sequence number of the reference time slot.
  • the reference time slot may also be a time slot configured by higher layer signaling.
  • the preset upper limit of available resource elements is the product of the number of physical resource blocks of the reference bandwidth and the preset value.
  • the preset value is used to represent the maximum number of available resource elements for carrying uplink data in one physical resource block in one slot in the reference bandwidth.
  • the reference bandwidth may be, for example, a carrier bandwidth.
  • the reference bandwidth may also be the bandwidth part where the user terminal sends the PUSCH with multiple slots.
  • bandwidth part, BWP bandwidth part
  • the bandwidth of the BWP can be considered as the possible maximum bandwidth occupied by the UE for sending the PUSCH of multiple slots in the BWP.
  • the reference bandwidth may also be the maximum bandwidth that can be scheduled when the user terminal transmits the PUSCH of multiple slots in one slot.
  • the overall transport block size can be limited by referring to the carrying capacity of the bandwidth.
  • the size of the buffer can be determined according to the maximum number of transmitted bits of the user terminal in one slot. Therefore, existing user terminals often have The buffering capacity of TBS corresponding to each RE; when the user terminal supports the technology of "multi-slot PUSCH transmission of one TB", this solution limits the TBS to TBS that does not exceed "1 slot PUSCH transmission". It is necessary to re-develop the buffer size of the user terminal, and in particular, it is not necessary to increase the buffer size to increase the cost of the user terminal. On the other hand, "multi-slot PUSCH transmission of one TB" is often used in scenarios with limited coverage. At this time, the user terminal does not need to transmit a large TB, so this limitation will not adversely affect the transmission performance of the user terminal.
  • the reference bandwidth is a bandwidth occupied by the multi-slot PUSCH.
  • the preset value is used to represent the maximum number of available resource elements for carrying uplink data in the maximum number of time slots occupied by the multi-slot PUSCH in one physical resource block.
  • the present application also provides another communication method, including:
  • the coding block is obtained by coding the transport block, and the size of the transport block is determined according to the time-frequency resources of the multi-slot PUSCH ;
  • the time-frequency resources occupied by the multi-slot PUSCH include time-frequency resources in multiple time slots.
  • This method can be performed by a network device, and the user terminal can determine the size of the transport block based on any of the above implementations, obtain a transport block of a corresponding size, and then encode it to obtain a coding block, and the user terminal can send the code through the multi-slot PUSCH piece.
  • the network device may process the received coding block.
  • the encoded block may be decoded to obtain the transport block therein.
  • the network device may first determine the transport block size TBS, and then perform decoding processing on the coding block according to the TBS.
  • the TBS determined by the network device may be any of the following TBSs.
  • the manner in which the network device determines the TBS may be the same as the manner in which the user terminal to which the coded block is sent determines the TBS.
  • the manner in which the user terminal determines the TBS may be any of the manners described in the embodiment shown in FIG. 4 or FIG. 5 , and details are not described herein again.
  • the size of the transport block is determined according to the product of the number of available resource elements, the coding rate, the modulation order, and the number of transmission layers, and the number of available resource elements is determined according to the multi-time It is determined by the time-frequency resources occupied by the PUSCH of the slot and the preset upper limit value of available resource elements.
  • the number of available resource elements N RE of the multi-slot PUSCH is:
  • N' RE is the number of available resource elements in multiple time slots of a physical resource block occupied by the multi-slot PUSCH, and N' RE is determined according to the time-frequency resources occupied by the multi-slot PUSCH.
  • the number of available resource elements N′ RE of one physical resource block occupied by the multi-slot PUSCH in multiple time slots is based on the number of time slots occupied by the multi-slot PUSCH , the number of subcarriers included in one physical resource block, the number of symbols occupied by the multi-slot PUSCH in the reference time slot, and one physical resource block occupied by the multi-slot PUSCH is used in the reference time slot to carry the demodulation reference Determined by the number of resource elements used by the signal and the number of resource elements used for additional overhead in the reference time slot of a physical resource block occupied by the multi-slot PUSCH;
  • the number of available resource elements N′ RE in multiple timeslots of a physical resource block occupied by the multi-slot PUSCH is based on the number of timeslots occupied by the multi-slot PUSCH, the number of sub-elements included in a physical resource block
  • a physical resource block occupied by the multi-slot PUSCH is determined by the number of resource elements used for additional overhead in multiple time slots;
  • the number of available resource elements N′ RE in multiple timeslots of a physical resource block occupied by the multi-slot PUSCH is based on the number of timeslots occupied by the multi-slot PUSCH, the number of sub-elements included in a physical resource block
  • the number N′ RE of available resource elements in multiple timeslots of a physical resource block occupied by the multi-slot PUSCH is based on the number of subcarriers included in a physical resource block, the multi-slot PUSCH at the reference time
  • the number of symbols occupied in the slot, the total number of symbols occupied in the time slot occupied by the multi-slot PUSCH, and one physical resource block occupied by the multi-slot PUSCH is used in multiple time slots for carrying demodulation reference signals
  • the number of resource elements used and the number of resource elements used for additional overhead in multiple time slots in one physical resource block occupied by the multi-slot PUSCH are determined.
  • the number of available resource elements N RE of the multi-slot PUSCH is:
  • N' RE is the number of available resource particles in a unit time length of multiple physical resource blocks occupied by the multi-slot PUSCH, and N' RE is determined according to the time-frequency resources occupied by the multi-slot PUSCH.
  • the number of available resource elements N′ RE in the unit duration of the multiple physical resource blocks occupied by the multi-slot PUSCH is According to the number of physical resource blocks occupied by the multi-slot PUSCH, the number of subcarriers included in one physical resource block, the number of symbols occupied by the multi-slot PUSCH in the reference time slot, a physical resource occupied by the multi-slot PUSCH The number of resource elements used by the resource block to carry the demodulation reference signal in the reference time slot, and the number of resource elements used by one physical resource block occupied by the multi-slot PUSCH in the reference time slot for the additional overhead determined by ;
  • the number of available resource elements N′ RE within the unit duration of the multiple physical resource blocks occupied by the multi-slot PUSCH is based on the physical resource blocks occupied by the multi-slot PUSCH number, the number of subcarriers included in one physical resource block, the number of symbols occupied by the multi-slot PUSCH in the reference time slot, and one physical resource block occupied by the multi-slot PUSCH is used in the reference time slot for carrying demodulation Determined by the number of resource elements used for the reference signal and the number of resource elements used for additional overhead in one symbol of a physical resource block occupied by the multi-slot PUSCH;
  • the number of unit durations included in the PUSCH is the number of time slots occupied by the multi-slot PUSCH; when the unit duration is one symbol, the number of units included in the PUSCH The number of unit durations is the number of symbols occupied by the multi-slot PUSCH.
  • the number of available resource elements N RE of the multi-slot PUSCH is:
  • N' RE the smaller value of the upper limit value of the preset available resource particles
  • N' RE is the number of available resource elements of multiple physical resource blocks occupied by the multi-slot PUSCH in multiple time slots, and N' RE is determined according to the time-frequency resources occupied by the multi-slot PUSCH.
  • the number of available resource elements N′ RE of the multiple physical resource blocks occupied by the multi-slot PUSCH in the multiple time slots is based on the physical resources occupied by the multi-slot PUSCH
  • the number of blocks, the number of subcarriers included in one physical resource block, the total number of symbols occupied by the multi-slot PUSCH in multiple time slots, and the multiple physical resource blocks occupied by the multi-slot PUSCH are used in multiple time slots. Determined by the number of resource elements used for carrying the demodulation reference signal and the number of resource elements used for additional overhead in multiple timeslots of multiple physical resource blocks occupied by the multi-slot PUSCH;
  • the number of available resource elements N′ RE in the multiple physical resource blocks occupied by the multi-slot PUSCH is the number of physical resource blocks occupied by the multi-slot PUSCH
  • one physical resource block includes The number of subcarriers, the total number of symbols occupied by the multi-slot PUSCH in multiple time slots, the multiple physical resource blocks occupied by the multi-slot PUSCH are used in multiple time slots for carrying demodulation reference signals Determined by the number of resource elements, the number of resource elements used for additional overhead in multiple timeslots in a physical resource block occupied by the multi-slot PUSCH;
  • the number of available resource elements N′ RE in the multiple physical resource blocks occupied by the multi-slot PUSCH is the number of physical resource blocks occupied by the multi-slot PUSCH
  • one physical resource block includes The number of subcarriers, the total number of symbols occupied by the multi-slot PUSCH in multiple time slots, the multiple physical resource blocks occupied by the multi-slot PUSCH are used in multiple time slots for carrying demodulation reference signals It is determined by the number of resource elements, the number of resource elements used for additional overhead in one time slot of a physical resource block occupied by the multi-slot PUSCH, and a predefined value.
  • the reference time slot is a predefined time slot
  • the predefined time slot includes any of the following time slots:
  • the jth time slot in the time slots occupied by the multi-slot PUSCH, 1 ⁇ j ⁇ J, J is the number of time slots occupied by the multi-slot PUSCH, and j is an integer;
  • the time slot with the largest number of symbols used to carry the multi-slot PUSCH is the time slot with the largest number of symbols used to carry the multi-slot PUSCH;
  • the time slot with the least number of symbols used to carry the multi-slot PUSCH is Among the time slots occupied by the multi-slot PUSCH, the time slot with the least number of symbols used to carry the multi-slot PUSCH;
  • the time slot with the largest number of symbols for carrying the demodulation reference signal of the multi-slot PUSCH the time slot with the largest number of symbols for carrying the demodulation reference signal of the multi-slot PUSCH
  • the reference time slot is the time slot indicated by the control information
  • the reference time slot is a time slot configured by higher layer signaling.
  • the preset upper limit value of available resource elements is the product of the number of physical resource blocks of the reference bandwidth and the preset value.
  • the reference bandwidth is any of the following bandwidths:
  • the preset value is used to represent the maximum number of available resource particles used for carrying uplink data in one physical resource block in the reference bandwidth in one time slot.
  • the reference bandwidth is the bandwidth occupied by the multi-slot PUSCH
  • the preset value is used to represent the maximum number of time slots occupied by the multi-slot PUSCH in one physical resource block The maximum number of available resource particles used to carry uplink data in .
  • FIG. 6 is a structural diagram of a communication device according to an exemplary embodiment of the present application.
  • the communication device 60 provided in this embodiment includes:
  • a determining unit 61 configured to determine the size of the transport block according to the time-frequency resources occupied by the physical uplink shared channel PUSCH of the multi-slot, where the time-frequency resources occupied by the PUSCH of the multi-slot include time-frequency resources in multiple time slots;
  • the transmission unit 62 is configured to acquire a transmission block corresponding to the size of the transmission block, encode the transmission block to obtain a coded block, and send the coded block through a multi-slot PUSCH.
  • the principles and effects of the device provided by the present application are similar to those of the method shown in FIG. 4 , and will not be described again.
  • FIG. 7 is a structural diagram of a communication apparatus according to another exemplary embodiment of the present application.
  • the determining unit 61 includes:
  • An available number determination module 611 configured to determine the number of available resource particles of the multi-slot PUSCH according to the time-frequency resources occupied by the multi-slot PUSCH and a preset upper limit of available resource particles;
  • the transport block size determination module 612 is configured to determine the transport block size according to the product of the number of available resource particles, the coding rate, the modulation order, and the number of transmission layers.
  • the available quantity determination module 611 is specifically used for:
  • the smaller of the product of N' RE and the number of physical resource blocks occupied by the multi-slot PUSCH and a preset upper limit of available resource elements is determined as the number of available resource elements N RE of the multi-slot PUSCH.
  • the available quantity determination module 611 is specifically used for:
  • the number of time slots occupied by the multi-slot PUSCH the number of subcarriers included in one physical resource block, the number of symbols occupied by the multi-slot PUSCH in the reference time slot, and a physical resource occupied by the multi-slot PUSCH.
  • the number of resource elements used by the block in the reference time slot for carrying the demodulation reference signal the number of resource elements used for the additional overhead of a physical resource block occupied by the multi-slot PUSCH in the reference time slot, and the number of resource elements used to determine the the number N' RE of available resource elements in multiple time slots of one physical resource block occupied by the multi-slot PUSCH;
  • the number of time slots occupied by the multi-slot PUSCH the number of subcarriers included in one physical resource block, the number of symbols occupied by the multi-slot PUSCH in the reference time slot, one of the multi-slot PUSCH occupied
  • the number of resource elements used by the physical resource block to carry the demodulation reference signal in the reference time slot, and the number of resource elements used by one physical resource block occupied by the multi-slot PUSCH for overhead in multiple time slots determining the number of available resource particles N′ RE in multiple time slots of a physical resource block occupied by the multi-slot PUSCH;
  • the number of time slots occupied by the multi-slot PUSCH the number of subcarriers included in one physical resource block, the total number of symbols occupied by the multi-slot PUSCH in multiple time slots, the multi-slot PUSCH occupied by the PUSCH
  • One physical resource block is used to carry the number of resource elements used by the demodulation reference signal in multiple time slots, and one physical resource block occupied by the multi-slot PUSCH is used in the reference time slot for resources used for overhead
  • the number of particles to determine the number of available resource particles N′ RE in a plurality of time slots of a physical resource block occupied by a multi-slot PUSCH;
  • the total number of symbols occupied by the multi-slot PUSCH in multiple time slots, and one physical resource block occupied by the multi-slot PUSCH is used in multiple time slots.
  • the number of resource elements used for carrying the demodulation reference signal and the number of resource elements used for additional overhead in a physical resource block occupied by the multi-slot PUSCH determine the multi-slot PUSCH occupancy The number N' RE of available resource elements in a plurality of time slots of one physical resource block.
  • the available quantity determination module 611 is specifically used for:
  • the product of N' RE and the number of unit durations occupied by the multi-slot PUSCH, and the smaller value of the preset upper limit of available resource elements is determined as the number of available resource elements of the multi-slot PUSCH.
  • Resource particle number N′ RE including:
  • the number of physical resource blocks occupied by the multi-slot PUSCH the number of subcarriers included in one physical resource block, the number of symbols occupied by the multi-slot PUSCH in the reference time slot, and a physical resource occupied by the multi-slot PUSCH
  • the number of physical resource blocks occupied by the multi-slot PUSCH the number of subcarriers included in one physical resource block, the number of symbols occupied by the multi-slot PUSCH in the reference time slot, a physical resource occupied by the multi-slot PUSCH
  • the resource block is used to carry the number of resource elements used for demodulation reference signals in the reference time slot, and the number of resource elements used by a physical resource block occupied by the multi-slot PUSCH for additional overhead in one symbol is determined.
  • the number of unit durations included in the PUSCH is the number of time slots occupied by the multi-slot PUSCH; when the unit duration is one symbol, the number of units included in the PUSCH The number of unit durations is the number of symbols occupied by the multi-slot PUSCH.
  • the available quantity determination module 611 is specifically used for:
  • the smaller value of N' RE and a preset upper limit value of available resource elements is determined as the number N RE of available resource elements of the multi-slot PUSCH.
  • the available quantity determination module 611 is specifically used for:
  • the number of physical resource blocks occupied by the multi-slot PUSCH the number of subcarriers included in one physical resource block, the total number of symbols occupied by the multi-slot PUSCH in multiple time slots, the number of occupied by the multi-slot PUSCH
  • the number of resource elements used by the multiple physical resource blocks to carry the demodulation reference signal in multiple time slots, the multiple physical resource blocks occupied by the PUSCH of the multiple time slots are used for the overhead in multiple time slots
  • the number of resource elements determining the number of available resource elements N′ RE in multiple physical resource blocks occupied by the multi-slot PUSCH;
  • the number of resource elements used for carrying the demodulation reference signal in multiple physical resource blocks in multiple time slots, and one physical resource block occupied by the multi-slot PUSCH is used in multiple time slots for additional overhead. determine the number of available resource elements N′ RE in multiple time slots of multiple physical resource blocks occupied by the multi-slot PUSCH;
  • the number of physical resource blocks occupied by the multi-slot PUSCH the number of subcarriers included in one physical resource block, the total number of symbols occupied by the multi-slot PUSCH in multiple time slots, the multi-slot PUSCH occupied by the PUSCH
  • the multiple physical resource blocks are used to carry the number of resource elements used for demodulation reference signals in multiple time slots, and one physical resource block occupied by the multi-slot PUSCH is used in one time slot for additional overhead.
  • the number of resource elements and a predefined value are used to determine the number N' RE of available resource elements in multiple time slots of multiple physical resource blocks occupied by the multi-slot PUSCH.
  • the reference time slot is a predefined time slot
  • the predefined time slot includes any of the following time slots:
  • the jth time slot in the time slots occupied by the multi-slot PUSCH, 1 ⁇ j ⁇ J, J is the number of time slots occupied by the multi-slot PUSCH, and j is an integer;
  • the time slot with the largest number of symbols used to carry the multi-slot PUSCH is the time slot with the largest number of symbols used to carry the multi-slot PUSCH;
  • the time slot with the least number of symbols used to carry the multi-slot PUSCH is Among the time slots occupied by the multi-slot PUSCH, the time slot with the least number of symbols used to carry the multi-slot PUSCH;
  • the time slot with the largest number of symbols for carrying the demodulation reference signal of the multi-slot PUSCH the time slot with the largest number of symbols for carrying the demodulation reference signal of the multi-slot PUSCH
  • the reference time slot is the time slot indicated by the control information
  • the reference time slot is a time slot configured by higher layer signaling.
  • the preset upper limit value of available resource particles is the product of the number of physical resource blocks of the reference bandwidth and the preset value.
  • the reference bandwidth is any of the following bandwidths:
  • the preset value is used to represent the maximum number of available resource particles used for carrying uplink data in one physical resource block in the reference bandwidth in one time slot.
  • the reference bandwidth is the bandwidth occupied by the multi-slot PUSCH
  • the preset value is used to represent the maximum number of time slots occupied by the multi-slot PUSCH in one physical resource block for carrying uplink data. The maximum number of resource particles available.
  • the present application also provides a user terminal, including the communication device shown in FIG. 5 or 6 .
  • the present application also provides a third communication device, including:
  • the receiving unit is configured to receive the coding block sent by the user terminal through the multi-slot physical uplink shared channel PUSCH; wherein, the coding block is obtained by coding the transport block, and the size of the transport block is based on the multi-slot PUSCH. Time-frequency resources are determined;
  • the time-frequency resources occupied by the multi-slot PUSCH include time-frequency resources in multiple time slots.
  • the third communication apparatus may further include a processing unit for processing the received encoding block, specifically, decoding the received encoding block to obtain a transmission block corresponding to the encoding block.
  • the size of the transport block is determined according to the product of the number of available resource particles, the coding rate, the modulation order, and the number of transmission layers, and the number of available resource particles is determined according to the time occupied by the multi-slot PUSCH. It is determined by frequency resources and the upper limit of preset available resource particles.
  • the number of available resource elements N RE of the multi-slot PUSCH is:
  • N' RE is the number of available resource particles in multiple time slots of one physical resource block occupied by the multi-slot PUSCH, and N' RE is determined according to the time-frequency resources occupied by the multi-slot PUSCH.
  • the number N' RE of available resource elements in multiple time slots of a physical resource block occupied by the multi-slot PUSCH is based on the number of time slots occupied by the multi-slot PUSCH
  • a physical resource block includes: The number of subcarriers in the reference time slot, the number of symbols occupied by the multi-slot PUSCH in the reference time slot, and a physical resource block occupied by the multi-slot PUSCH in the reference time slot is used to carry the resource element used by the demodulation reference signal The number is determined by the number of resource elements used for additional overhead in a reference time slot of a physical resource block occupied by the multi-slot PUSCH;
  • the number of available resource elements N′ RE in multiple timeslots of a physical resource block occupied by the multi-slot PUSCH is based on the number of timeslots occupied by the multi-slot PUSCH, the number of sub-elements included in a physical resource block
  • a physical resource block occupied by the multi-slot PUSCH is determined by the number of resource elements used for additional overhead in multiple time slots;
  • the number of available resource elements N′ RE in multiple timeslots of a physical resource block occupied by the multi-slot PUSCH is based on the number of timeslots occupied by the multi-slot PUSCH, the number of sub-elements included in a physical resource block
  • the number N′ RE of available resource elements in multiple timeslots of a physical resource block occupied by the multi-slot PUSCH is based on the number of subcarriers included in a physical resource block, the multi-slot PUSCH at the reference time
  • the number of symbols occupied in the slot, the total number of symbols occupied in the time slot occupied by the multi-slot PUSCH, and one physical resource block occupied by the multi-slot PUSCH is used in multiple time slots for carrying demodulation reference signals
  • the number of resource elements used and the number of resource elements used for additional overhead in multiple time slots in one physical resource block occupied by the multi-slot PUSCH are determined.
  • the number of available resource elements N RE of the multi-slot PUSCH is:
  • N' RE is the number of available resource particles in a unit time length of multiple physical resource blocks occupied by the multi-slot PUSCH, and N' RE is determined according to the time-frequency resources occupied by the multi-slot PUSCH.
  • the number N' RE of the available resource elements within the unit duration of the multiple physical resource blocks occupied by the multi-slot PUSCH is determined according to the multi-slot.
  • the number of physical resource blocks occupied by the PUSCH, the number of subcarriers included in one physical resource block, the number of symbols occupied by the multi-slot PUSCH in the reference time slot, the number of physical resource blocks occupied by the multi-slot PUSCH in the reference time slot Determined by the number of resource elements used for carrying the demodulation reference signal and the number of resource elements used for additional overhead in the reference time slot of a physical resource block occupied by the multi-slot PUSCH;
  • the number of available resource elements N′ RE within the unit duration of the multiple physical resource blocks occupied by the multi-slot PUSCH is based on the physical resource blocks occupied by the multi-slot PUSCH number, the number of subcarriers included in one physical resource block, the number of symbols occupied by the multi-slot PUSCH in the reference time slot, and one physical resource block occupied by the multi-slot PUSCH is used in the reference time slot for carrying demodulation Determined by the number of resource elements used for the reference signal and the number of resource elements used for additional overhead in one symbol of a physical resource block occupied by the multi-slot PUSCH;
  • the number of unit durations included in the PUSCH is the number of time slots occupied by the multi-slot PUSCH; when the unit duration is one symbol, the number of units included in the PUSCH The number of unit durations is the number of symbols occupied by the multi-slot PUSCH.
  • the number of available resource elements N RE of the multi-slot PUSCH is:
  • N' RE the smaller value of the upper limit value of the preset available resource particles
  • N' RE is the number of available resource elements of multiple physical resource blocks occupied by the multi-slot PUSCH in multiple time slots, and N' RE is determined according to the time-frequency resources occupied by the multi-slot PUSCH.
  • the number of available resource particles N′ RE in multiple physical resource blocks occupied by the multi-slot PUSCH is based on the number of physical resource blocks occupied by the multi-slot PUSCH, a physical resource
  • the number of subcarriers included in the block, the total number of symbols occupied by the multi-slot PUSCH in multiple time slots, and the multiple physical resource blocks occupied by the multi-slot PUSCH are used to carry demodulation reference signals in multiple time slots Determined by the number of resource elements used and the number of resource elements used for additional overhead in multiple time slots in multiple physical resource blocks occupied by the multi-slot PUSCH;
  • the number of available resource elements N′ RE in multiple physical resource blocks occupied by the multi-slot PUSCH is based on the number of physical resource blocks occupied by the multi-slot PUSCH and the number of elements included in one physical resource block.
  • the number of carriers, the total number of symbols occupied by the multi-slot PUSCH in multiple time slots, and the resources used by the multiple physical resource blocks occupied by the multi-slot PUSCH to carry the demodulation reference signal in the multiple time slots Determined by the number of particles and the number of resource particles used for additional overhead in multiple time slots in a physical resource block occupied by the multi-slot PUSCH;
  • the number of available resource elements N′ RE in the multiple physical resource blocks occupied by the multi-slot PUSCH is the number of physical resource blocks occupied by the multi-slot PUSCH
  • one physical resource block includes The number of subcarriers, the total number of symbols occupied by the multi-slot PUSCH in multiple time slots, the multiple physical resource blocks occupied by the multi-slot PUSCH are used in multiple time slots for carrying demodulation reference signals It is determined by the number of resource elements, the number of resource elements used for additional overhead in one time slot of a physical resource block occupied by the multi-slot PUSCH, and a predefined value.
  • the reference time slot is a predefined time slot
  • the predefined time slot includes any of the following time slots:
  • the jth time slot in the time slots occupied by the multi-slot PUSCH, 1 ⁇ j ⁇ J, J is the number of time slots occupied by the multi-slot PUSCH, and j is an integer;
  • the time slot with the largest number of symbols used to carry the multi-slot PUSCH is the time slot with the largest number of symbols used to carry the multi-slot PUSCH;
  • the time slot with the least number of symbols used to carry the multi-slot PUSCH is Among the time slots occupied by the multi-slot PUSCH, the time slot with the least number of symbols used to carry the multi-slot PUSCH;
  • the time slot with the largest number of symbols for carrying the demodulation reference signal of the multi-slot PUSCH the time slot with the largest number of symbols for carrying the demodulation reference signal of the multi-slot PUSCH
  • the reference time slot is the time slot indicated by the control information
  • the reference time slot is a time slot configured by higher layer signaling.
  • the preset upper limit value of available resource particles is the product of the number of physical resource blocks of the reference bandwidth and the preset value.
  • the reference bandwidth is any of the following bandwidths:
  • the preset value is used to represent the maximum number of available resource particles used for carrying uplink data in one physical resource block in the reference bandwidth in one time slot.
  • the reference bandwidth is the bandwidth occupied by the multi-slot PUSCH
  • the preset value is used to represent the maximum number of time slots occupied by the multi-slot PUSCH in one physical resource block for carrying uplink data. The maximum number of resource particles available.
  • the present application also provides a network device, including any one of the third communication apparatuses.
  • FIG. 8 is a structural diagram of an electronic device according to an exemplary embodiment of the present invention.
  • the electronic device provided in this embodiment includes:
  • the computer program is stored in the memory 81 and configured to be executed by the processor 82 to implement any one of the communication methods described above.
  • This embodiment also provides a computer-readable storage medium on which a computer program is stored,
  • the computer program is executed by a processor to implement any of the communication methods described above.
  • This embodiment also provides a computer program product, including a computer program, which implements any of the above communication methods when the computer program is executed by a processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供的通信方法、装置、设备、存储介质、程序产品,涉及通信技术,包括:根据多时隙的物理上行共享信道PUSCH占用的时频资源确定传输块大小,多时隙的PUSCH占用的时频资源包括多个时隙中的时频资源;获取与传输块大小对应的传输块,对传输块进行编码得到编码块,并通过多时隙的PUSCH发送编码块。这种实施方式中,可以增加传输块的大小,进而可以通过一次编码发送更多的数据,提高了编码增益,进而提升覆盖性能。

Description

通信方法、装置、设备、存储介质、程序产品
本申请要求于2021年1月15日提交中国专利局、申请号为202110057981.3、申请名称为“通信方法、装置、设备、存储介质、程序产品”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉通信技术,尤其涉及一种通信方法、装置、设备、存储介质、程序产品。
背景技术
蜂窝移动通信(Cellular Mobile Communication)是采用蜂窝无线组网方式,在终端和网络设备之间通过无线通道连接起来,进而实现用户终端在活动中可相互通信。其主要特征是终端的移动性,并具有越区切换和跨本地网自动漫游功能。
随着移动通信技术中信号频率越高,信号在传播时的损耗越大。例如,在5GNR(New Radio)系统中,随着无线系统部署的频率升高,导致无线信号传播时的损耗加剧,进而导致信号传输的距离缩短、网络覆盖性能下降。
尤其对于用户终端(User Equipment,UE)进行上行传输时,由于UE的发送功率较低,因此上行信道的覆盖范围相比下行信道更为受限。
发明内容
本申请的目的在于提供一种通信方法、装置、设备、存储介质、程序产品,以提高用户终端上行信道的覆盖范围。
本公开的第一个方面是提供一种通信方法,包括:
根据多时隙的物理上行共享信道PUSCH占用的时频资源确定传输块大小,所述多时隙的PUSCH占用的时频资源包括多个时隙中的时频资源;
获取与所述传输块大小对应的传输块,对所述传输块进行编码得到编码块,并通过所述多时隙的PUSCH发送所述编码块。
在一种可选的实施方式中,所述根据多时隙的物理上行共享信道PUSCH占用的时频资源确定传输块大小,包括:
根据所述多时隙的PUSCH占用的时频资源、预设可用资源粒子上限值,确定所 述多时隙的PUSCH的可用资源粒子数;
根据所述可用资源粒子数、编码码率、调制阶数、传输层数的乘积,确定所述传输块大小。
在一种可选的实施方式中,根据所述多时隙的PUSCH占用的时频资源、预设可用资源粒子上限值,确定所述多时隙的PUSCH的可用资源粒子数,包括:
根据所述多时隙的PUSCH占用的时频资源,确定所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE
将N′ RE与所述多时隙的PUSCH占用的物理资源块数量的乘积、预设可用资源粒子上限值中的较小值,确定为所述多时隙的PUSCH的可用资源粒子数N RE
在这种实施方式中,可以利用预设可用资源粒子上限值限制多时隙的PUSCH的可用资源粒子数N RE,从而避免确定的多时隙的PUSCH的可用资源粒子数超出预设可用资源粒子上限值,导致无法正常传输数据的问题。
在一种可选的实施方式中,根据所述多时隙的PUSCH占用的时频资源,确定所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE,包括:
根据所述多时隙的PUSCH占用的时隙数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于额外开销所使用的资源粒子数量,确定所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE
或者,根据所述多时隙的PUSCH占用的时隙数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量,确定所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE
或者,根据所述多时隙的PUSCH占用的时隙数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于额外开销所使用的资源粒子数量,确定多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源 粒子数N′ RE
或者,根据一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量,确定所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE
在一种可选的实施方式中,根据所述多时隙的PUSCH占用的时频资源、预设可用资源粒子上限值,确定所述多时隙的PUSCH的可用资源粒子数,包括:
根据所述多时隙的PUSCH占用的时频资源,确定所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数N′ RE
将N′ RE与所述多时隙的PUSCH占用的单位时长的数量的乘积、预设可用资源粒子上限值中的较小值,确定为所述多时隙的PUSCH的可用资源粒子数N RE
在这种实施方式中,可以利用预设可用资源粒子上限值限制多时隙的PUSCH的可用资源粒子数N RE,从而避免确定的多时隙的PUSCH的可用资源粒子数超出预设可用资源粒子上限值,导致无法正常传输数据的问题。
在一种可选的实施方式中,所述单位时长为一个时隙或一个符号时,根据所述多时隙的PUSCH占用的时频资源,确定所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数N′ RE,包括:
根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于额外开销所使用的资源粒子数量,确定所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数N′ RE
或者,所述单位时长为一个符号时,根据所述多时隙的PUSCH占用的时频资源,确定所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数N′ RE,包括:
根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在一个符号中用于额外开销所使用的资 源粒子数量,确定所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数N′ RE
其中,所述单位时长为一个时隙时,所述PUSCH中包括的单位时长的数量为所述多时隙的PUSCH占用的时隙数量;所述单位时长为一个符号时,所述PUSCH中包括的单位时长的数量为所述多时隙的PUSCH占用的符号数量。
在一种可选的实施方式中,根据所述多时隙的PUSCH占用的时频资源、预设可用资源粒子上限值,确定所述多时隙的PUSCH的可用资源粒子数,包括:
根据所述多时隙的PUSCH占用的时频资源,确定所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE
将N′ RE、预设可用资源粒子上限值中的较小值,确定为所述多时隙的PUSCH的可用资源粒子数N RE
在这种实施方式中,可以利用预设可用资源粒子上限值限制多时隙的PUSCH的可用资源粒子数N RE,从而避免确定的多时隙的PUSCH的可用资源粒子数超出预设可用资源粒子上限值,导致无法正常传输数据的问题。
在一种可选的实施方式中,根据所述多时隙的PUSCH占用的时频资源,确定所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE,包括:
根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量,确定所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE
或者,根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量,确定所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE
或者,根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒 子数量、所述多时隙的PUSCH占用的一个物理资源块在一个时隙中用于额外开销所使用的资源粒子数量、预定义值,确定所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE
在一种可选的实施方式中,所述参考时隙为预定义的时隙,所述预定义的时隙包括以下任一种时隙:
所述多时隙的PUSCH占用的时隙中的第j个时隙,1≤j≤J,J为多时隙的PUSCH占用的时隙数量,j为整数;
所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的符号数量最多的时隙;
所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的符号数量最少的时隙;
所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的解调参考信号的符号数量最多的时隙;
所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的解调参考信号的符号数量最少的时隙;
根据所述多时隙的PUSCH占用的时隙确定的虚拟时隙;其中,所述多时隙的PUSCH在虚拟时隙中占用的符号数,为所述多时隙的PUSCH在占用的多个时隙中所占用的符号数量平均数;和/或,所述虚拟时隙用于承载多时隙的PUSCH的解调参考信号的资源粒子数量,为所述多时隙的PUSCH占用的多个时隙中用于承载多时隙的PUSCH的DMRS的资源粒子数量的平均数;
或者,所述参考时隙为所述控制信息指示的时隙;
或者,所述参考时隙为高层信令配置的时隙。
在一种可选的实施方式中,所述预设可用资源粒子上限值为参考带宽的物理资源块数量与预设值的乘积。
在一种可选的实施方式中,所述参考带宽为以下任一种带宽:
载波带宽;
所述多时隙的PUSCH所在的带宽部分的带宽;
一个时隙中传输PUSCH时可调度的最大带宽;
所述预设值用于表征所述参考带宽中一个物理资源块在一个时隙中用于承载上行数据的最大可用资源粒子数。
在一种可选的实施方式中,所述参考带宽为所述多时隙的PUSCH所占用的带宽, 所述预设值用于表征多时隙的PUSCH在一个物理资源块中占用的最大时隙数中用于承载上行数据的最大可用资源粒子数。
本公开的第二个方面是提供一种通信方法,包括:
接收用户终端通过多时隙的物理上行共享信道PUSCH发送的编码块;其中,所述编码块是对传输块进行编码得到的,所述传输块的大小是根据多时隙的PUSCH的时频资源确定的;
其中,所述多时隙的PUSCH占用的时频资源包括多个时隙中的时频资源。
在一种可选的实施方式中,所述传输块的大小是根据可用资源粒子数、编码码率、调制阶数、传输层数的乘积确定的,所述可用资源粒子数是根据所述多时隙的PUSCH占用的时频资源、预设可用资源粒子上限值确定的。
在一种可选的实施方式中,所述多时隙的PUSCH的可用资源粒子数N RE为:
N′ RE与所述多时隙的PUSCH占用的物理资源块数量的乘积、预设可用资源粒子上限值中的较小值;
其中,N′ RE为所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数,N′ RE是根据所述多时隙的PUSCH占用的时频资源确定的。
在一种可选的实施方式中,所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的时隙数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于额外开销所使用的资源粒子数量确定的;
或者,所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的时隙数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量确定的;
或者,所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的时隙数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH 所占用的时隙中包括的符号总数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于额外开销所使用的资源粒子数量确定的;
或者,所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH所占用的时隙中占用的符号总数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量确定的。
在一种可选的实施方式中,所述多时隙的PUSCH的可用资源粒子数N RE为:
N′ RE与所述多时隙的PUSCH占用的单位时长的数量的乘积、预设可用资源粒子上限值中的较小值;
其中,N′ RE为所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数,N′ RE是根据所述多时隙的PUSCH占用的时频资源确定的。
在一种可选的实施方式中,所述单位时长为一个时隙或一个符号时,所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于额外开销所使用的资源粒子数量确定的;
或者,所述单位时长为一个符号时,所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在一个符号中用于额外开销所使用的资源粒子数量确定的;
其中,所述单位时长为一个时隙时,所述PUSCH中包括的单位时长的数量为所述多时隙的PUSCH占用的时隙数量;所述单位时长为一个符号时,所述PUSCH中包括的单位时长的数量为所述多时隙的PUSCH占用的符号数量。
在一种可选的实施方式中,所述多时隙的PUSCH的可用资源粒子数N RE为:
N′ RE、预设可用资源粒子上限值中的较小值;
其中,N′ RE为所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数,N′ RE是根据所述多时隙的PUSCH占用的时频资源确定的。
在一种可选的实施方式中,所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量确定的;
或者,所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量确定的;
或者,所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在一个时隙中用于额外开销所使用的资源粒子数量、预定义值确定的。
在一种可选的实施方式中,所述参考时隙为预定义的时隙,所述预定义的时隙包括以下任一种时隙:
所述多时隙的PUSCH占用的时隙中的第j个时隙,1≤j≤J,J为多时隙的PUSCH占用的时隙数量,j为整数;
所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的符号数量最多的时隙;
所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的符号数量最少的时隙;
所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的解调参考信号的符号数量最多的时隙;
所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的解调参考信号的符号数量最少的时隙;
根据所述多时隙的PUSCH占用的时隙确定的虚拟时隙;其中,所述多时隙的PUSCH在虚拟时隙中占用的符号数,为所述多时隙的PUSCH在占用的多个时隙中所占用的符号数量平均数;和/或,所述虚拟时隙用于承载多时隙的PUSCH的解调参考信号的资源粒子数量,为所述多时隙的PUSCH占用的多个时隙中用于承载多时隙的PUSCH的DMRS的资源粒子数量的平均数;
或者,所述参考时隙为所述控制信息指示的时隙;
或者,所述参考时隙为高层信令配置的时隙。
在一种可选的实施方式中,所述预设可用资源粒子上限值为参考带宽的物理资源块数量与预设值的乘积。
在一种可选的实施方式中,所述参考带宽为以下任一种带宽:
载波带宽;
所述多时隙的PUSCH所在的带宽部分的带宽;
一个时隙中传输PUSCH时可调度的最大带宽;
所述预设值用于表征所述参考带宽中一个物理资源块在一个时隙中用于承载上行数据的最大可用资源粒子数。
在一种可选的实施方式中,所述参考带宽为所述多时隙的PUSCH所占用的带宽,所述预设值用于表征多时隙的PUSCH在一个物理资源块中占用的最大时隙数中用于承载上行数据的最大可用资源粒子数。
本公开的第三个方面是提供一种通信装置,包括:
确定单元,用于根据多时隙的物理上行共享信道PUSCH占用的时频资源确定传输块大小,所述多时隙的PUSCH占用的时频资源包括多个时隙中的时频资源;
传输单元,用于获取与所述传输块大小对应的传输块,对所述传输块进行编码得到编码块,并通过所述多时隙的PUSCH发送所述编码块。
本公开的第四个方面是提供一种通信装置,包括:
接收单元,用于接收用户终端通过多时隙的物理上行共享信道PUSCH发送的编码块;其中,所述编码块是对传输块进行编码得到的,所述传输块的大小是根据多时隙的PUSCH的时频资源确定的;
其中,所述多时隙的PUSCH占用的时频资源包括多个时隙中的时频资。
本公开的第五个方面是提供一种用户终端,包括如第三方面所述的通信装置。
本公开的第六个方面是提供一种网络设备,包括如第四方面所述的通信装置。
本公开的第七个方面是提供一种电子设备,包括:
存储器;
处理器;以及
计算机程序;
其中,所述计算机程序存储在所述存储器中,并配置为由所述处理器执行以实现如上述第一方面所述的通信方法。
本公开的第八个方面是提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行以实现如上述第一方面或第二方面所述的通信方法。
本公开提供的通信方法、装置、设备、存储介质、程序产品的技术效果是:
本公开提供的通信方法、装置、设备、存储介质、程序产品,包括:根据多时隙的物理上行共享信道PUSCH占用的时频资源确定传输块大小,多时隙的PUSCH占用的时频资源包括多个时隙中的时频资源;获取与传输块大小对应的传输块,对传输块进行编码得到编码块,并通过多时隙的PUSCH发送编码块。这种实施方式中,可以增加传输块的大小,进而可以通过一次编码发送更多的数据,提高了编码增益,进而提升覆盖性能。
附图说明
图1为一种通信场景图;
图2为本申请一示例性实施例示出的数据传输图;
图3为本申请另一示例性实施例示出的数据传输图;
图4为本申请一示例性实施例示出的通信方法的流程示意图;
图5为本申请另一示例性实施例示出的通信方法的流程示意图;
图6为本申请一示例性实施例示出的通信装置的结构图;
图7为本申请另一示例性实施例示出的通信装置的结构图;
图8为本发明一示例性实施例示出的电子设备的结构图。
具体实施方式
图1为一种通信场景图。
如图1所示,在一通信系统中包括网络设备11和用户终端12,用户终端12可以向网络设备11发送上行信号。
其中,用户终端12可以向网络设备11发起随机接入,申请无线网络连接服务;网络设备11接收来自至少一个用户终端12的随机接入请求,并为其进行无线服务。网络设备11和用户终端12之间通过无线通信进行数据交互和传输。
具体的,用户终端12在向网络设备11发送上行信号时,随着通信技术中要求发送的信号频率升高,信号在传播时的损耗越大。尤其处在小区边沿或者地下室等衰落较大的区域的用户终端,其上行信号的传播损耗大,因此需要对其进行覆盖增强。
图2为本申请一示例性实施例示出的数据传输图。
如图2所示,在现有的通信技术中,一个传输块(Transport Block,TB)21仅可在一个单时隙slot的物理上行共享信道(Physical uplink shared channel,PUSCH)中传输。比如,在每个slot内都可以传输300比特的数据,该300比特的数据为200比特的传输块经过编码后得到的300比特的编码块。应当注意的是,UE在PUSCH中发送的往往是经过信道编码后的编码块,但是本质上仍然是发送了传输块中的信息,因此,发送传输块、传输传输块与发送编码块、传输编码块在本申请中可互相替换。
在覆盖恶劣的场景下,用户终端在单个slot中的信号往往需要集中能量在窄带发送,这使得在单slot中发送的比特数非常有限,这导致用户终端发送PUSCH的TB的编码后码长很短,降低了编码性能,因此覆盖也会变差。
图3本申请另一示例性实施例示出的数据传输图。
如图3所示,为了提高用户终端的网络覆盖,本申请提供的方案中提出一种多slot的PUSCH发送传输块的方案。
如图3所示,可以使用多slot的PUSCH承载同一个TB 31,在保证了窄带高功率密度发送的同时,增长了编码码长,从而可以提升编码增益,进而提升覆盖性能。比如,在跨四个slot的PUSCH传输TB时,能够传输800比特的数据,编码后的码长为1200。
图4为本申请一示例性实施例示出的通信方法的流程示意图。
如图4所示,本申请提供的通信方法,包括:
步骤401,根据物理上行共享信道PUSCH占用的时频资源确定传输块大小;多时隙的PUSCH占用的时频资源包括多个时隙中的时频资源。
其中,本申请提供的方法可以由用户终端来执行。在用户终端需要向网络设备发送数据时,可以先根据物理上行共享信道PUSCH占用的时频资源确定传输块大小。
在通信系统中,网络设备可以向用户终端发送用于指示基于多slot的PUSCH发送传输块的控制信息。因此,在一种可选的实施方式中,用户终端可以响应网络设备发送的控制信息,向网络设备发送数据。例如,该控制信息例如可以是无线资源控制(Radio Resource Control,RRC)信令,比如网络设备可以通过RRC信令配置用户终端可以通过多slot的PUSCH传输一个TB。例如,控制信息还可以是下行控制信息(Downlink Control Information,DCI),网络设备还可以向用户终端发送DCI,通过DCI调度用户终端在多slot的PUSCH中发送一个TB。
可选的,还可以通过配置许可(configured grant)的方式,使用户终端可以自发地在半静态配置好的资源上发送PUSCH。配置好的资源例如可以是跨多时隙slot的时频资源。
实际应用时,用户终端在需要发送数据时,可以根据多slot的PUSCH占用的时频资源确定传输块大小(Transport Block Size,TBS)。多slot的PUSCH占用的时频资源包括多个slot中的时频资源。
本申请提供的方法中,是基于多slot的PUSCH传输一个TB,因此,一个TB的大小取决于该PUSCH占用的slot范围,以及该PUSCH占用的物理资源块PRB的范围。
其中,多slot的PUSCH在时域上占用了若干个slot,还在频域上占用了若干个PRB。可以根据多slot的PUSCH占用的slot的数量以及占用的PRB的数量,确定PUSCH的全部资源粒子(Resource Element,RE)数。
具体的,每个slot包括若干个符号,每个PRB还包括若干个子载波,因此,可以根据该PUSCH占用的slot的数量、该PUSCH占用的PRB的数量、一个slot中用于承载PUSCH的符号的数量、PRB中包括的子载波数量,确定出该PUSCH的全部资源粒子(Resource Element,RE)数。
进一步的,用户终端在传输数据时,PUSCH中需要承载一些数据以外的信息,比如解调参考信号(Demodulation Reference Signal,DMRS)。可以在PUSCH占用的全部RE的数量中去除用于承载数据以外的信息的RE数量,就能够得到PUSCH中能够用于承载数据的RE数。
实际应用时,由于终端仅能在当前激活的带宽部分(bandwidth part,BWP)的中 传输,因此终端发送PUSCH的带宽不能超出其所处的BWP的带宽,PUSCH中承载的传输块大小不能超出其所处的BWP所对应的最大数据量,因此,还可以设置预设可用资源粒子数,并将PUSCH中的可用RE数、预设可用资源粒子数中的较小值作为传输块的大小TBS。从而得到PUSCH能够承载的TBS的最大值。
步骤402,获取与传输块大小对应的传输块,对传输块进行编码得到编码块,并通过PUSCH发送编码块。
其中,用户终端可以根据TBS获取来自高层的数据信息,从而得到传输块TB,获取的TB的大小与确定的TBS一致。比如,确定的TBS为N Info,则可以获取长度为N Info的TB。
具体的,用户终端可以对获取的TB进行编码处理得到编码块(Code Block,CB),并通过多slot的PUSCH发送生成的编码块。由于编码块是对传输块进行编码得到的,因此,当传输块的大小固定后,编码块的大小也能固定。
这种实施方式中,可以增加单次获取的传输块的大小,也就能够增加编码块的大小,进而可以通过一次编码发送更多的数据,降低编码次数和循环冗余校验比特的开销,从而提高数据发送效率。
此外,在覆盖恶劣的场景下,通过多slot的PUSCH承载同一个TB,在窄带高功率发送与该TB对应的编码块时,能够增加码长,进而提高编码增益,进而提升覆盖性能。
本实施例提供的方法用于通过多时隙的物理上行共享信道发送传输块,从而提升用户终端的覆盖性能。该方法由设置有本实施例提供的方法的设备执行,该设备通常以硬件和/或软件的方式来实现。
本申请提供的通信方法,包括:根据多时隙的物理上行共享信道PUSCH占用的时频资源确定传输块大小,多时隙的PUSCH占用的时频资源包括多个时隙中的时频资源;获取与传输块大小对应的传输块,对传输块进行编码得到编码块,并通过多时隙的PUSCH发送编码块。这种实施方式中,可以增加传输块的大小,进而可以通过一次编码发送更多的数据,提高了编码增益,进而提升覆盖性能。
图5为本申请另一示例性实施例示出的通信方法的流程示意图。
如图5所示,本申请提供的通信方法,包括:
步骤501,根据多时隙的PUSCH占用的时频资源、预设可用资源粒子上限值,确定多时隙的PUSCH的可用资源粒子数。
其中,本申请提供的方法可以由用户终端来执行。在用户终端需要向网络设备发送数据时,可以先根据根据物理上行共享信道PUSCH占用的时频资源确定传输块大小。
一种可选的实施方式中,可以通过网络设备为用户终端配置多slot的PUSCH占用的slot数量,比如,可以由网络设备为用户终端配置多slot的PUSCH共占用4个slot。另一种实施方式中,还可以通过配置许可的方式为用户终端配置多slot的PUSCH占用的slot数量。另一种实施方式中,可以由网络设备通过DCI指示用户终端多slot的PUSCH所占用的slot数量。还可以设置一些确定slot的规则,可以由用户终端自行确定slot的数量,只需要让网络设备与终端设备对多slot的PUSCH占用的slot的数量的理解一致即可。本实施例不对此进行限制。
具体的,多slot的PUSCH在频域上占用若干个PRB,可以由网络设备配置用户终端多slot的PUSCH具体占用的PRB的数量,或者通过配置许可的方式为用户终端配置多slot的PUSCH占用的PRB数量,或者可以由网络设备通过DCI指示用户终端多slot的PUSCH所占用的PRB数量,还可以由用户终端基于一定的规则确定多slot的PUSCH占用的PRB数量。本实施例不对此进行限制。
进一步的,可以根据多slot的PUSCH占用的时频资源,确定多slot的PUSCH中能够用于承载数据的RE数。
实际应用时,RE是多slot的PUSCH中用于承载数据的单元,具体用于承载编码块。用户终端在传输数据时,一些RE被用于承载数据以外的信息,比如,一部分RE需要承载DMRS,则这部分RE就不能够再承载其他数据了。
一个资源粒子在时域上包括一个符号,在频域包括一个子载波,而一个slot中包括若干个符号,一个PRB又包括了若干个子载波,用户终端还可以基于配置信息或者预设规则,确定出用于承载数据以外的信息所需要的RE数量,因此,结合上述信息,用户终端能够确定出多slot的PUSCH中能够用于承载数据的RE数。
其中,还可以预先设置可用资源粒子上限值,该可用资源粒子上限值可以是传输数据时基于参考带宽确定的、最多可以使用的资源粒子的数量。
具体的,可以将多slot的PUSCH中能够用于承载数据的RE数与可用资源粒子上限值中的较小值,确定为多slot的PUSCH的可用资源粒子数N RE
步骤502,根据可用资源粒子数、编码码率、调制阶数、传输层数的乘积,确定传输块大小。
确定出多slot的PUSCH的可用资源粒子数N RE之后,用户终端还可以根据N RE、编码码率、调制阶数、传输层数,确定TBS。
进一步的,可以根据N RE、编码码率、调制阶数、传输层数的乘积,确定出TBS。例如,可以直接将该乘积的值作为TBS,再例如,确定出该乘积以后,还可以对该乘积进行其他处理,进而得到TBS,比如,可以对该乘积按照预定义的规则进行8比特的倍数量化等步骤。
步骤503,获取与传输块大小对应的传输块,对传输块进行编码得到编码块,并通过多slot的PUSCH发送编码块。
步骤503与步骤402相似,不再赘述。
在一种可选的实施方式中,在确定多slot的PUSCH的可用资源粒子数N RE时,可以先根据多时隙的PUSCH占用的时频资源,确定出多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE
其中,采用多slot的PUSCH发送传输块时,多slot的PUSCH在时域占用多个slot,在频域占用多个PRB,可以确定出该PUSCH占用的一个PRB在多个slot中包括的可用资源粒子数N′ RE
多slot的PUSCH在时域占用多个slot,在频域占用多个PRB。而每个时域中又包括n个符号,例如在一个slot中,多slot的PUSCH可以在其中占用n1个符号,每个PRB又包括了n2个子载波。则多slot的PUSCH占用的一个PRB在一个slot中共包括n1*n2个RE。
在一种可选的实施方式中,n=14,多slot的PUSCH占用一个slot中的前12个符号,则n1=12,n2=12。
进一步的,由于多slot的PUSCH中需要承载一些数据以外的信息,比如,需要承载DMRS,这就导致需要占用多slot的PUSCH中的一些RE。因此,可以基于PUSCH占用的时频资源,确定多slot的PUSCH占用的一个PRB在多个slot中,剩余的可用资源粒子数N′ RE。再根据N′ RE和多slot的PUSCH占用的PRB的数量,确定出整个PUSCH中能够用于承载数据的RE数。
多slot的PUSCH在各PRB中所占的时频资源相同,所以,可以将N′ RE和多slot的PUSCH占用的PRB的数量的乘积,作为多slot的PUSCH中能够用于承载数据的RE数。
其中,还可以预先设置可用资源粒子上限值,该可用资源粒子上限值可以是传输数据时基于参考带宽确定的、最多可以使用的资源粒子的数量。
例如,可用资源粒子上限值可以是多slot的PUSCH占用参考带宽时在1个slot中的可用资源粒子数。再例如,若多slot的PUSCH占用了N个slot,则可用资源粒子上限值还可以是参考带宽在N个slot中的可用资源粒子数。
可以将N′ RE与多slot的PUSCH占用的物理资源块数量的乘积、预设可用资源粒子上限值中的较小值,确定为多slot的PUSCH的可用资源粒子数N RE。这种实施方式中,能够确定出多slot的PUSCH能够承载的不超过参考带宽承载上限值的最大资源粒子数量,进而可以充分利用PUSCH进行数据传输。
具体的,多slot的PUSCH的可用资源粒子数N RE为:
N RE=min(N′ RE·n PRB,预设可用资源粒子上限值)
其中,n PRB为PUSCH占用的物理资源块数量。
一种可选的实施方式中,可以根据多时隙的PUSCH占用的时隙数量K、一个物理资源块包括的子载波数量
Figure PCTCN2022070637-appb-000001
多时隙的PUSCH在参考时隙中占用的符号数量
Figure PCTCN2022070637-appb-000002
多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量
Figure PCTCN2022070637-appb-000003
多时隙的PUSCH占用的一个物理资源块在参考时隙中用于额外开销所使用的资源粒子数量
Figure PCTCN2022070637-appb-000004
确定多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE
具体的,多slot的PUSCH占用的一个物理资源块在该PUSCH占用的多个slot中的可用RE数N′ RE为:
Figure PCTCN2022070637-appb-000005
其中,参考slot可以是根据预设规则确定的slot,也可以是网络设备为用户终端配置的slot。可以根据多slot的PUSCH占用的一个PRB在参考slot中承载数据的情况,确定出多slot的PUSCH占用的一个PRB在多个slot中承载数据的情况。
一个PRB包括的子载波数量为
Figure PCTCN2022070637-appb-000006
多slot的PUSCH在参考slot中占用的符号数量为
Figure PCTCN2022070637-appb-000007
那么
Figure PCTCN2022070637-appb-000008
Figure PCTCN2022070637-appb-000009
的乘积可以认为是多slot的PUSCH占用的一个PRB在参考slot中,全部的RE数。
而多slot的PUSCH占用的一个PRB在参考slot中需要占用
Figure PCTCN2022070637-appb-000010
个RE承载DMRS,多slot的PUSCH占用的一个PRB在参考slot中还需要占用
Figure PCTCN2022070637-appb-000011
个RE用于额外开销, 因此,可以在
Figure PCTCN2022070637-appb-000012
Figure PCTCN2022070637-appb-000013
的乘积的基础上减去
Figure PCTCN2022070637-appb-000014
Figure PCTCN2022070637-appb-000015
得到多slot的PUSCH占用的一个PRB在参考slot中的可用RE数。
多slot的PUSCH占用的slot数量为K,因此,可以将
Figure PCTCN2022070637-appb-000016
与K的乘积,作为多slot的PUSCH占用的一个PRB在多个slot中的可用RE数N′ RE
在一种可选的实施方式中,可以根据多时隙的PUSCH占用的时隙数量K、一个物理资源块包括的子载波数量
Figure PCTCN2022070637-appb-000017
多时隙的PUSCH在参考时隙占用的符号数量
Figure PCTCN2022070637-appb-000018
多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量
Figure PCTCN2022070637-appb-000019
多时隙的PUSCH占用的一个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量
Figure PCTCN2022070637-appb-000020
确定多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE
多slot的PUSCH的占用的一个物理资源块在该PUSCH占用的多个slot中的可用RE数N′ RE为:
Figure PCTCN2022070637-appb-000021
其中,参考slot可以是根据预设规则确定的slot,也可以是网络设备为用户终端配置的slot。可以根据多slot的PUSCH占用的一个PRB在参考slot中承载数据的情况,确定出多slot的PUSCH占用的一个PRB在多个slot中承载数据的情况。
一个PRB包括的子载波数量为
Figure PCTCN2022070637-appb-000022
多slot的PUSCH在参考slot占用的符号数量为
Figure PCTCN2022070637-appb-000023
那么
Figure PCTCN2022070637-appb-000024
Figure PCTCN2022070637-appb-000025
的乘积可以认为是多slot的PUSCH占用的一个PRB在参考slot中,全部的RE数。
而多slot的PUSCH占用的一个PRB在参考slot中,需要占用
Figure PCTCN2022070637-appb-000026
个RE承载DMRS,因此,可以在
Figure PCTCN2022070637-appb-000027
Figure PCTCN2022070637-appb-000028
的乘积的基础上,减去
Figure PCTCN2022070637-appb-000029
得到多slot的PUSCH占用的一个PRB在参考slot中剩余的RE数量。
多slot的PUSCH所占的slot数量为K,因此,可以将
Figure PCTCN2022070637-appb-000030
与K的乘积,作为多slot的PUSCH占用的一个PRB在多个slot中的剩余RE数量。
此外,多slot的PUSCH占用的一个PRB在多个slot内还需要占用
Figure PCTCN2022070637-appb-000031
个RE用于额外开销,因此,可以在
Figure PCTCN2022070637-appb-000032
的基础上,减去
Figure PCTCN2022070637-appb-000033
得到多slot的PUSCH占用的一个PRB在多个slot中的可用RE数N′ RE
一种可选的实施方式中,可以根据多时隙的PUSCH占用的时隙数量K、一个物理 资源块包括的子载波数量
Figure PCTCN2022070637-appb-000034
多时隙的PUSCH在多个时隙中占用的符号总数量
Figure PCTCN2022070637-appb-000035
多时隙的PUSCH占用的一个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量
Figure PCTCN2022070637-appb-000036
多时隙的PUSCH占用的一个物理资源块在参考时隙中用于额外开销所使用的资源粒子数量
Figure PCTCN2022070637-appb-000037
确定多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE
一种可选的实施方式中,多slot的PUSCH占用的一个物理资源块在该PUSCH占用的多个slot中的可用RE数N′ RE为:
Figure PCTCN2022070637-appb-000038
一个PRB包括的子载波数量为
Figure PCTCN2022070637-appb-000039
多slot的PUSCH在多个slot中占用的的符号总数量为
Figure PCTCN2022070637-appb-000040
那么
Figure PCTCN2022070637-appb-000041
Figure PCTCN2022070637-appb-000042
的乘积可以认为是多slot的PUSCH占用的一个PRB在多个slot中,全部的RE数。
而多slot的PUSCH占用的一个PRB在多个slot中,需要使用
Figure PCTCN2022070637-appb-000043
个RE承载DMRS,因此,可以在
Figure PCTCN2022070637-appb-000044
Figure PCTCN2022070637-appb-000045
的乘积的基础上,减去
Figure PCTCN2022070637-appb-000046
得到多slot的PUSCH占用的一个PRB在多个slot中的剩余RE数。
多slot的PUSCH占用的一个PRB在参考slot中,需要使用
Figure PCTCN2022070637-appb-000047
个RE承载额外开销,因此,
Figure PCTCN2022070637-appb-000048
减去多slot的PUSCH占用的slot数量K与
Figure PCTCN2022070637-appb-000049
的乘积,作为多slot的PUSCH占用的一个PRB在多个slot中的可用RE数N′ RE
一种可选的实施方式中,可以根据一个物理资源块包括的子载波数量
Figure PCTCN2022070637-appb-000050
多slot的PUSCH在多个时隙中占用的符号总数量
Figure PCTCN2022070637-appb-000051
多时隙的PUSCH占用的一个物理资源块在多个slot中用于承载解调参考信号所使用的RE数量
Figure PCTCN2022070637-appb-000052
多时隙的PUSCH占用的一个物理资源块在多个slot中用于额外开销所使用的RE数量
Figure PCTCN2022070637-appb-000053
确定多时隙的PUSCH占用的一个物理资源块在多个slot中的可用RE数N′ RE
一种可选的实施方式中,多slot的PUSCH占用的一个PRB在多个slot中的可用RE数N′ RE为:
Figure PCTCN2022070637-appb-000054
一个PRB包括的子载波数量为
Figure PCTCN2022070637-appb-000055
多slot的PUSCH在多个slot中占用的符号总数量为
Figure PCTCN2022070637-appb-000056
那么
Figure PCTCN2022070637-appb-000057
Figure PCTCN2022070637-appb-000058
的乘积可以认为是多slot的PUSCH占用的一个PRB在多个slot中,全部的RE数。
而多slot的PUSCH占用的一个PRB在多个slot中,需要使用
Figure PCTCN2022070637-appb-000059
个RE承载DMRS,还需要使用
Figure PCTCN2022070637-appb-000060
个RE用于额外开销,因此,可以在
Figure PCTCN2022070637-appb-000061
Figure PCTCN2022070637-appb-000062
的乘积的基础上,减去
Figure PCTCN2022070637-appb-000063
Figure PCTCN2022070637-appb-000064
得到多slot的PUSCH占用的一个PRB在多个slot中的可用RE数N′ RE
在确定多slot的PUSCH的可用资源粒子数N RE时,一种可选的实施方式中,可以先根据多时隙的PUSCH占用的时频资源,确定多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数N′ RE
其中,采用多slot发送传输块时,多slot的PUSCH在时域占用多个slot,在频域占用多个PRB,可以确定多slot的PUSCH占用的多个PRB在单位时长内的可用RE数N′ RE
多slot的PUSCH在时域占用多个slot,在频域占用多个PRB。而每个时域中又包括n个符号,例如在一个slot中,多slot的PUSCH可以在其中占用n1个符号,每个PRB又包括了n2个子载波。则多slot的PUSCH占用的一个PRB在一个slot内,共包括n1*n2个RE。
在一种可选的实施方式中,n=14,多slot的PUSCH占用一个slot中的前12个符号,则n1=12,n2=12。
进一步的,由于多slot的PUSCH中需要承载一些数据以外的信息,比如,需要承载DMRS。这就导致需要占用多slot的PUSCH中的一些RE。因此,可以基于多slot的PUSCH占用的时频资源,确定多slot的PUSCH占用的多个PRB在单位时长中可用RE数N′ RE。再根据N′ RE和多slot的PUSCH中包括的单位时长的数量,确定出整个多slot的PUSCH中能够用于承载数据的RE数。
其中,还可以预先设置可用资源粒子上限值,该可用资源粒子上限值可以是传输数据时基于参考带宽确定的、最多可以使用的资源粒子的数量。
例如,可用资源粒子上限值可以是多slot的PUSCH占用参考带宽时在1个slot中的可用RE数。再例如,若多slot的PUSCH占用了N个slot,则可用资源粒子上限值可以是参考带宽在N个slot中的可用RE数。
可以将确定的N′ RE与所述多slot的PUSCH占用单位时长的数量的乘积、预设可用资源粒子上限值中的较小值作为多slot的PUSCH的可用RE数N RE。这种实施方式中, 能够确定出多slot的PUSCH能够承载的不超过参考带宽承载上限值的最大RE数量。进而可以充分利用多slot的PUSCH进行数据传输。
具体的,当单位时长为一个slot时,多slot的PUSCH的可用RE数N RE为:
N RE=min(N′ RE·K,预设可用资源粒子上限值)
其中,K为多slot的PUSCH占用的时隙的数量。
当单位时长为一个符号时,多slot的PUSCH的可用RE数N RE为:
N RE=min(N′ RE·L,预设可用资源粒子上限值)
其中,L为多slot的PUSCH在多个时隙中占用的符号总数量。
在一种可选的实施方式中,在单位时长为一个时隙或一个符号时,可以根据多时隙的PUSCH占用的物理资源块数量n PRB、一个物理资源块包括的子载波数量
Figure PCTCN2022070637-appb-000065
多时隙的PUSCH在参考时隙占用的符号数量
Figure PCTCN2022070637-appb-000066
多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量
Figure PCTCN2022070637-appb-000067
多时隙的PUSCH占用的一个物理资源块在参考时隙中用于额外开销所使用的资源粒子数量
Figure PCTCN2022070637-appb-000068
确定多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数N′ RE
一种可选的实施方式中,单位时长为一个slot,此时,可用资源粒子数N′ RE为:
Figure PCTCN2022070637-appb-000069
其中,参考slot可以是根据预设规则确定的slot,也可以是网络设备为用户终端配置的slot。可以根据多slot的PUSCH占用的一个PRB在参考slot中承载数据的情况,确定出多slot的PUSCH占用的一个PRB在多个slot中承载数据的情况。
一个PRB包括的子载波数量为
Figure PCTCN2022070637-appb-000070
多slot的PUSCH在参考slot中占用的符号数量为
Figure PCTCN2022070637-appb-000071
那么
Figure PCTCN2022070637-appb-000072
Figure PCTCN2022070637-appb-000073
的乘积可以认为是多slot的PUSCH占用的一个PRB在参考slot中包括的RE数。
而多slot的PUSCH占用的一个PRB在参考slot中,需要占用
Figure PCTCN2022070637-appb-000074
个RE承载DMRS,多slot的PUSCH占用的一个PRB在参考slot中还需要占用
Figure PCTCN2022070637-appb-000075
个RE用于额外开销,因此,可以在
Figure PCTCN2022070637-appb-000076
Figure PCTCN2022070637-appb-000077
的乘积的基础上,减去
Figure PCTCN2022070637-appb-000078
Figure PCTCN2022070637-appb-000079
得到多slot的PUSCH占用的一个PRB在参考slot中的可用RE数。
多slot的PUSCH占用的PRB数量为n PRB,因此,可以将
Figure PCTCN2022070637-appb-000080
Figure PCTCN2022070637-appb-000081
与n PRB的乘积,作为多slot的PUSCH占用的多个PRB在参考slot内的可用RE数。在单位时长为一个slot时,
Figure PCTCN2022070637-appb-000082
即为多slot的PUSCH占用的PRB多个PRB在单位时长内的可用资源粒子数N′ RE
在这种实施方式中,将N′ RE与所述多时隙的PUSCH包括的单位时长的数量的乘积、预设可用资源粒子上限值中的较小值,确定为所述多时隙的PUSCH的可用资源粒子数时,单位时长的数量为多时隙的PUSCH占用的时隙数量。
另一种可选的实施方式中,单位时长为一个符号,可用资源粒子数N′ RE为:
Figure PCTCN2022070637-appb-000083
参考上述内容可以获知,
Figure PCTCN2022070637-appb-000084
为多slot的PUSCH占用的多个PRB在参考slot内的可用RE数,那么
Figure PCTCN2022070637-appb-000085
与多slot的PUSCH在参考slot占用的符号数量的比值,为多slot的PUSCH占用的多个PRB在一个符号内的可用RE数N′ RE
在这种实施方式中,将N′ RE与所述多时隙的PUSCH包括的单位时长的数量的乘积、预设可用资源粒子上限值中的较小值,确定为所述多时隙的PUSCH的可用资源粒子数时,单位时长的数量为多时隙的PUSCH占用的符号数量。
在一种可选的实施方式中,可以根据多时隙的PUSCH占用的物理资源块数量n PRB、一个物理资源块包括的子载波数量
Figure PCTCN2022070637-appb-000086
多时隙的PUSCH在参考时隙占用的符号数量
Figure PCTCN2022070637-appb-000087
多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量
Figure PCTCN2022070637-appb-000088
多时隙的PUSCH占用的一个物理资源块在一个符号中用于额外开销所使用的资源粒子数量
Figure PCTCN2022070637-appb-000089
确定多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数N′ RE
其中,单位时长为一个符号,可用资源粒子数N′ RE为:
Figure PCTCN2022070637-appb-000090
其中,参考slot可以是根据预设规则确定的slot,也可以是网络设备为用户终端配置的slot。可以根据多slot的PUSCH占用的一个PRB在参考slot中承载数据的情况,确定出多slot的PUSCH占用的一个PRB在单位时长中承载数据的情况。
Figure PCTCN2022070637-appb-000091
为基于参考slot确定的多slot的PUSCH占用的一个PRB在一个符号 中承载DMRS使用的RE数,
Figure PCTCN2022070637-appb-000092
为多slot的PUSCH占用的一个PRB在一个符号内用于额外开销的RE数。
一个PRB包括的子载波数量为
Figure PCTCN2022070637-appb-000093
一个RE在时域包括一个符号,因此,多slot的PUSCH占用的一个PRB在一个符号中,RE总数也为
Figure PCTCN2022070637-appb-000094
Figure PCTCN2022070637-appb-000095
减去
Figure PCTCN2022070637-appb-000096
Figure PCTCN2022070637-appb-000097
能够得到多slot的PUSCH占用的一个PRB在一个符号内的可用RE数。
进一步的,多slot的PUSCH共占用n PRB个PRB,因此,可以将
Figure PCTCN2022070637-appb-000098
Figure PCTCN2022070637-appb-000099
与n PRB的乘积,作为多slot的PUSCH占用的多个PRB在一个符号内的可用资源粒子数N′ RE
在这种实施方式中,将N′ RE与所述多slot的PUSCH包括的单位时长的数量的乘积、预设可用资源粒子上限值中的较小值,确定为所述多slot的PUSCH的可用资源粒子数时,单位时长的数量为多slot的PUSCH占用的符号数量。
在确定多slot的PUSCH的可用资源粒子数N RE时,一种可选的实施方式中,可以先根据多时隙的PUSCH占用的时频资源,确定所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE
其中,采用多slot的PUSCH发送传输块时,多slot的PUSCH在时域占用多个slot,多slot的PUSCH在频域占用多个PRB,可以确定多slot的PUSCH占用的多个PRB在多个slot内的可用RE数N′ RE
多slot的PUSCH在时域占用多个slot,在频域占用多个PRB。而每个时域中又包括n个符号,例如在一个slot中,多slot的PUSCH可以在其中占用n1个符号,每个PRB又包括了n2个子载波。则多slot的PUSCH占用的一个PRB在一个slot中,共包括n1*n2个RE。
在一种可选的实施方式中,n=14,多slot的PUSCH占用一个slot中的前12个符号,则n1=12,n2=12。
进一步的,由于多slot的PUSCH中需要承载一些数据以外的信息,比如,需要承载DMRS。这就导致需要占用多slot的PUSCH中的一些RE。因此,可以基于多slot的PUSCH占用的时频资源,确定多slot的PUSCH占用的多个PRB在多个slot内,剩余的可用RE数N′ RE。这种实施方式中,N′ RE为整个多slot的PUSCH中能够用于承载 数据的RE数。
其中,还可以预先设置可用资源粒子上限值,该可用资源粒子上限值可以是传输数据时基于参考带宽确定的、最多可以使用的资源粒子的数量。
例如,可用资源粒子上限值可以是多slot的PUSCH占用参考带宽时在1个slot中的可用资源粒子数。再例如,若多slot的PUSCH占用了N个slot,则可用资源粒子上限值可以是参考带宽在N个slot中的可用资源粒子数。
可以将确定的N′ RE、预设可用资源粒子上限值中的较小值作为多slot的PUSCH的可用RE数N RE。这种实施方式中,能够确定出多slot的PUSCH能够承载的不超过参考带宽承载上限值的最大资源粒子数量。进而可以充分利用多slot的PUSCH进行数据传输。
具体的,多slot的PUSCH的可用资源粒子数N RE为:
N RE=min(N′ RE,预设可用资源粒子上限值)
在一种可选的实施方式中,可以根据多时隙的PUSCH占用的物理资源块数量n PRB、一个物理资源块包括的子载波数量
Figure PCTCN2022070637-appb-000100
多时隙的PUSCH在多个时隙中占用的符号总数
Figure PCTCN2022070637-appb-000101
多时隙的PUSCH占用的多个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量
Figure PCTCN2022070637-appb-000102
多时隙的PUSCH占用的多个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量
Figure PCTCN2022070637-appb-000103
确定多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE
一种实施方式中,可用资源粒子数N′ RE为:
Figure PCTCN2022070637-appb-000104
其中,多slot的PUSCH在频域共占用n PRB个PRB,而每个PRB包括
Figure PCTCN2022070637-appb-000105
子载波,多slot的PUSCH在时域共占用
Figure PCTCN2022070637-appb-000106
个符号,因此,
Figure PCTCN2022070637-appb-000107
为多slot的PUSCH占用的PRB在多个slot中,全部的RE数。
多slot的PUSCH中,需要占用
Figure PCTCN2022070637-appb-000108
个RE承载数据以外的信息,因此,可以在
Figure PCTCN2022070637-appb-000109
的基础上,减去这些
Figure PCTCN2022070637-appb-000110
Figure PCTCN2022070637-appb-000111
得到多slot的PUSCH的可用RE数N′ RE
在另一种实施方式中,可以将上式中的
Figure PCTCN2022070637-appb-000112
替换为
Figure PCTCN2022070637-appb-000113
表 示多slot的PUSCH占用的一个PRB在多个slot中用于额外开销的RE数。
可用资源粒子数N′ RE为:
Figure PCTCN2022070637-appb-000114
Figure PCTCN2022070637-appb-000115
则为多slot的PUSCH中全部的用于额外开销的RE数。
在另一种实施方式中,可以将上式中的
Figure PCTCN2022070637-appb-000116
替换为
Figure PCTCN2022070637-appb-000117
可用资源粒子数N′ RE为:
Figure PCTCN2022070637-appb-000118
其中,s为预定义值,例如可以是多slot的PUSCH占用的slot数量,再例如可以是RRC配置信息中配置的值,再例如还可以是DCI指示的缩放参数。
在其他的实施方式中,在上述实施方式的基础上,还可以把
Figure PCTCN2022070637-appb-000119
替换为
Figure PCTCN2022070637-appb-000120
其中
Figure PCTCN2022070637-appb-000121
表示多slot的PUSCH占用的一个PRB在多个slot中用于承载DMRS的RE数。
在一种可选的实施方式中,参考时隙为预定义的时隙。
预定义的时隙可以是多时隙的PUSCH占用的时隙中的第j个时隙,1≤j≤J,J为多时隙的PUSCH占用的时隙数量,j为整数。例如,可以预先设置固定值j=1,用户终端可以将多slot的PUSCH占用的第1个时隙,作为参考时隙。
在一种可选的实施方式中,预定义的时隙可以是多时隙的PUSCH占用的时隙中,用于承载数据的符号数量最多或最少的时隙。比如,用户终端可以根据网络设备的控制信息或配置信息,确定多时隙的PUSCH传输数据时哪些符号需要承载数据,进而可以确定出用于承载数据的符号数量最多或最少的时隙,并将该时隙作为参考时隙。
在一种可选的实施方式中,多时隙的PUSCH占用的时隙中,用于承载解调参考信号(Demodulation Reference Signal,DMRS)的符号数量最多的时隙。比如,用户终端可以根据网络设备的控制信息或配置信息,确定多时隙的PUSCH传输数据时哪些符号需要承载DMRS,进而可以确定出用于承载DMRS的符号数量最多或最少的时隙,并将该时隙作为参考时隙。
在一种可选的实施方式中,用户终端还可以根据多时隙的PUSCH占用的时隙确定的虚拟时隙。
一种可选的实施方式中,所述多时隙的PUSCH在虚拟时隙中占用的符号数,为多slot的PUSCH在占用的多个时隙中所占用的符号数量平均数;和/或虚拟时隙用于承载多slot的PUSCH的解调参考信号的资源粒子数量,为多slot的PUSCH占用的多 个时隙中用于承载多时隙的PUSCH的DMRS的资源粒子数量的平均数。
一种可选的实施方式中,可以设置参考时隙的定义方式,并将该定义方式写入用户终端中,从而使用户终端能够自行确定参考时隙。
一种可选的实施方式中,网络设备向用户终端发送的控制信息中可以指示参考时隙。例如,在控制信息中可以设置一个变量,该变量的值用于指示参考时隙的序号。
一种可选的实施方式中,参考时隙还可以为高层信令配置的时隙。
在一种可选的实施方式中,预设可用资源粒子上限值为参考带宽的物理资源块数量与预设值的乘积。
在一种可选的实施方式中,预设值用于表征参考带宽中一个物理资源块在一个slot中用于承载上行数据的最大可用资源粒子数。
具体的,参考带宽例如可以是载波带宽。
进一步的,参考带宽还可以是用户终端发送多slot的PUSCH所在的带宽部分
(bandwidth part,BWP)的带宽。BWP的带宽,可以认为是UE在该BWP中发送多slot的PUSCH占用的可能的最大带宽。
实际应用时,参考带宽还可以是用户终端在一个slot中传输多slot的PUSCH时可调度的最大带宽。
本申请的方案中,能够通过参考带宽的承载能力对总体的传输块大小进行限制。
目前的用户终端中,仅需要考虑1个slot中的PUSCH传输,因此优选地,可以根据用户终端在一个slot中的最大传输比特数来确定缓存的大小,因此现有用户终端往往具备
Figure PCTCN2022070637-appb-000122
个RE对应的TBS的缓存能力;当用户终端支持“多slot的PUSCH传输一个TB”这一技术时,本方案把TBS限制到不超过“1个slot的PUSCH传输”的TBS,一方面,不需要重新开发用户终端的缓存器大小,尤其不需要增加缓存器大小而导致用户终端的成本提高。另一方面,“多slot的PUSCH传输一个TB”往往应用于覆盖受限场景,此时用户终端往往不需要传输很大的TB,因此该限制也不会对用户终端的传输性能产生不利影响。
在一种可选的实施方式中,所述参考带宽为所述多时隙的PUSCH所占用的带宽。
在一种可选的实施方式中,所述预设值用于表征多时隙的PUSCH在一个物理资源块中占用的最大时隙数中用于承载上行数据的最大可用资源粒子数。
比如,多时隙的PUSCH所占的时隙数的可选值为{2,4,8,…,K max},则最大时隙数为K jax;当多时隙的PUSCH以最大时隙数进行传输时,用于承载数据的符号数记为L max;例如假设每个时隙中承载数据的符号数相同,为l,则L max=l·K max;一个PRB包括n2个子载波,则预设值可以等于L max与n2的乘积,该乘积为多时隙的PUSCH在一个物理资源块中占用的最大时隙数K max中用于承载上行数据的最大可用资源粒子数。
本申请还提供另一种通信方法,包括:
接收用户终端通过多时隙的物理上行共享信道PUSCH发送的传输块;其中,所述编码块是对传输块进行编码得到的,所述传输块的大小是根据多时隙的PUSCH的时频资源确定的;
其中,所述多时隙的PUSCH占用的时频资源包括多个时隙中的时频资源。
本方法可以由网络设备执行,用户终端可以基于上述任一种实施方式确定传输块大小,并获取相应大小的传输块,再对其进行编码得到编码块,用户终端可以通过多slot的PUSCH发送编码块。
其中,网络设备接收到编码块后,可以对接收的编码块进行处理。比如,可以对编码块进行解码,得到其中的传输块。
在一种可选的实施方式中,网络设备在对接收的编码块进行解码时,可以先确定出传输块大小TBS,再根据TBS对编码块进行解码处理。
一种实施方式中,网络设备确定的TBS可以是下述任一种TBS。
一种实施方式中,网络设备确定TBS的方式,可以与向其发送编码块的用户终端确定TBS的方式相同。该用户终端确定TBS的方式可以是图4或图5所示实施例所述的任一种方式,此处不再赘述。
在一种可选的实施方式中,所述传输块的大小是根据可用资源粒子数、编码码率、调制阶数、传输层数的乘积确定的,所述可用资源粒子数是根据所述多时隙的PUSCH占用的时频资源、预设可用资源粒子上限值确定的。
在一种可选的实施方式中,所述多时隙的PUSCH的可用资源粒子数N RE为:
N′ RE与所述多时隙的PUSCH占用的物理资源块数量的乘积、预设可用资源粒子上限值中的较小值;
其中,N′ RE为所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资 源粒子数,N′ RE是根据所述多时隙的PUSCH占用的时频资源确定的。
在一种可选的实施方式中,所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的时隙数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于额外开销所使用的资源粒子数量确定的;
或者,所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的时隙数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量确定的;
或者,所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的时隙数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH所占用的时隙中包括的符号总数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于额外开销所使用的资源粒子数量确定的;
或者,所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH所占用的时隙中占用的符号总数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量确定的。
在一种可选的实施方式中,所述多时隙的PUSCH的可用资源粒子数N RE为:
N′ RE与所述多时隙的PUSCH占用的单位时长的数量的乘积、预设可用资源粒子上限值中的较小值;
其中,N′ RE为所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数,N′ RE是根据所述多时隙的PUSCH占用的时频资源确定的。
在一种可选的实施方式中,所述单位时长为一个时隙或一个符号时,所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于额外开销所使用的资源粒子数量确定的;
或者,所述单位时长为一个符号时,所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在一个符号中用于额外开销所使用的资源粒子数量确定的;
其中,所述单位时长为一个时隙时,所述PUSCH中包括的单位时长的数量为所述多时隙的PUSCH占用的时隙数量;所述单位时长为一个符号时,所述PUSCH中包括的单位时长的数量为所述多时隙的PUSCH占用的符号数量。
在一种可选的实施方式中,所述多时隙的PUSCH的可用资源粒子数N RE为:
N′ RE、预设可用资源粒子上限值中的较小值;
其中,N′ RE为所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数,N′ RE是根据所述多时隙的PUSCH占用的时频资源确定的。
在一种可选的实施方式中,所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量确定的;
或者,所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒 子数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量确定的;
或者,所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在一个时隙中用于额外开销所使用的资源粒子数量、预定义值确定的。
在一种可选的实施方式中,所述参考时隙为预定义的时隙,所述预定义的时隙包括以下任一种时隙:
所述多时隙的PUSCH占用的时隙中的第j个时隙,1≤j≤J,J为多时隙的PUSCH占用的时隙数量,j为整数;
所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的符号数量最多的时隙;
所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的符号数量最少的时隙;
所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的解调参考信号的符号数量最多的时隙;
所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的解调参考信号的符号数量最少的时隙;
根据所述多时隙的PUSCH占用的时隙确定的虚拟时隙;其中,所述多时隙的PUSCH在虚拟时隙中占用的符号数,为所述多时隙的PUSCH在占用的多个时隙中所占用的符号数量平均数;和/或,所述虚拟时隙用于承载多时隙的PUSCH的解调参考信号的资源粒子数量,为所述多时隙的PUSCH占用的多个时隙中用于承载多时隙的PUSCH的DMRS的资源粒子数量的平均数;
或者,所述参考时隙为所述控制信息指示的时隙;
或者,所述参考时隙为高层信令配置的时隙。
在一种可选的实施方式中,所述预设可用资源粒子上限值为参考带宽的物理资源块数量与预设值的乘积。
在一种可选的实施方式中,所述参考带宽为以下任一种带宽:
载波带宽;
所述多时隙的PUSCH所在的带宽部分的带宽;
一个时隙中传输PUSCH时可调度的最大带宽;
所述预设值用于表征所述参考带宽中一个物理资源块在一个时隙中用于承载上行数据的最大可用资源粒子数。
在一种可选的实施方式中,所述参考带宽为所述多时隙的PUSCH所占用的带宽,所述预设值用于表征多时隙的PUSCH在一个物理资源块中占用的最大时隙数中用于承载上行数据的最大可用资源粒子数。
图6为本申请一示例性实施例示出的通信装置的结构图。
如图6所示,本实施例提供的通信装置60,包括:
确定单元61,用于根据多时隙的物理上行共享信道PUSCH占用的时频资源确定传输块大小,所述多时隙的PUSCH占用的时频资源包括多个时隙中的时频资源;
传输单元62,用于获取与所述传输块大小对应的传输块,对所述传输块进行编码得到编码块,并通过多时隙的PUSCH发送所述编码块。本申请提供的装置与图4所示的方法的原理、效果类似,不再赘述。
图7为本申请另一示例性实施例示出的通信装置的结构图。
在上述实施例基础上,可选的,确定单元61,包括:
可用数量确定模块611,用于根据所述多时隙的PUSCH占用的时频资源、预设可用资源粒子上限值,确定所述多时隙的PUSCH的可用资源粒子数;
传输块大小确定模块612,用于根据所述可用资源粒子数、编码码率、调制阶数、传输层数的乘积,确定所述传输块大小。
可选的,可用数量确定模块611具体用于:
根据所述多时隙的PUSCH占用的时频资源,确定所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE
将N′ RE与所述多时隙的PUSCH占用的物理资源块数量的乘积、预设可用资源粒子上限值中的较小值,确定为所述多时隙的PUSCH的可用资源粒子数N RE
可选的,可用数量确定模块611具体用于:
根据所述多时隙的PUSCH占用的时隙数量、一个物理资源块包括的子载波数量、 所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于额外开销所使用的资源粒子数量,确定所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE
或者,根据所述多时隙的PUSCH占用的时隙数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量,确定所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE
或者,根据所述多时隙的PUSCH占用的时隙数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于额外开销所使用的资源粒子数量,确定多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE
或者,根据一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量,确定所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE
可选的,可用数量确定模块611具体用于:
根据所述多时隙的PUSCH占用的时频资源,确定所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数N′ RE
将N′ RE与所述多时隙的PUSCH占用的单位时长的数量的乘积、预设可用资源粒子上限值中的较小值,确定为所述多时隙的PUSCH的可用资源粒子数。
可选的,所述单位时长为一个时隙或一个符号时,根据所述多时隙的PUSCH占用的时频资源,确定所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数N′ RE,包括:
根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于额外开销所使用的资源粒子数量,确定所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数N′ RE
或者,所述单位时长为一个符号时,根据所述多时隙的PUSCH占用的时频资源,确定所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数N′ RE,包括:
根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在一个符号中用于额外开销所使用的资源粒子数量,确定所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数N′ RE
其中,所述单位时长为一个时隙时,所述PUSCH中包括的单位时长的数量为所述多时隙的PUSCH占用的时隙数量;所述单位时长为一个符号时,所述PUSCH中包括的单位时长的数量为所述多时隙的PUSCH占用的符号数量。
可选的,可用数量确定模块611具体用于:
根据所述多时隙的PUSCH占用的时频资源,确定所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE
将N′ RE、预设可用资源粒子上限值中的较小值,确定为所述多时隙的PUSCH的可用资源粒子数N RE
可选的,可用数量确定模块611具体用于:
根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量,确定所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE
或者,根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量,确定所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE
或者,根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在一个时隙中用于额外开销所使用的资源粒子数量、预定义值,确定所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE
可选的,所述参考时隙为预定义的时隙,所述预定义的时隙包括以下任一种时隙:
所述多时隙的PUSCH占用的时隙中的第j个时隙,1≤j≤J,J为多时隙的PUSCH占用的时隙数量,j为整数;
所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的符号数量最多的时隙;
所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的符号数量最少的时隙;
所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的解调参考信号的符号数量最多的时隙;
所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的解调参考信号的符号数量最少的时隙;
根据所述多时隙的PUSCH占用的时隙确定的虚拟时隙;其中,所述多时隙的PUSCH在虚拟时隙中占用的符号数,为所述多时隙的PUSCH在占用的多个时隙中所占用的符号数量平均数;和/或,所述虚拟时隙用于承载多时隙的PUSCH的解调参考信号的资源粒子数量,为所述多时隙的PUSCH占用的多个时隙中用于承载多时隙的PUSCH的DMRS的资源粒子数量的平均数;
或者,所述参考时隙为所述控制信息指示的时隙;
或者,所述参考时隙为高层信令配置的时隙。
可选的,所述预设可用资源粒子上限值为参考带宽的物理资源块数量与预设值的乘积。
可选的,所述参考带宽为以下任一种带宽:
载波带宽;
所述多时隙的PUSCH所在的带宽部分的带宽;
一个时隙中传输PUSCH时可调度的最大带宽;
所述预设值用于表征所述参考带宽中一个物理资源块在一个时隙中用于承载上行数据的最大可用资源粒子数。
可选的,所述参考带宽为所述多时隙的PUSCH所占用的带宽,所述预设值用于表征多时隙的PUSCH在一个物理资源块中占用的最大时隙数中用于承载上行数据的最大可用资源粒子数。
本申请还提供一种用户终端,包括如图5或6所示出的通信装置。
本申请还提供第三种通信装置,包括:
接收单元,用于接收用户终端通过多时隙的物理上行共享信道PUSCH发送的编码块;其中,所述编码块是对传输块进行编码得到的,所述传输块的大小是根据多时隙的PUSCH的时频资源确定的;
其中,所述多时隙的PUSCH占用的时频资源包括多个时隙中的时频资。
可选的,第三种通信装置中还可以包括处理单元,用于对接收的编码块进行处理,具体可以对其进行解码处理,得到与编码块对应的传输块。
可选的,所述传输块的大小是根据可用资源粒子数、编码码率、调制阶数、传输层数的乘积确定的,所述可用资源粒子数是根据所述多时隙的PUSCH占用的时频资源、预设可用资源粒子上限值确定的。
可选的,所述多时隙的PUSCH的可用资源粒子数N RE为:
N′ RE与所述多时隙的PUSCH占用的物理资源块数量的乘积、预设可用资源粒子上限值中的较小值;
其中,N′ RE为所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数,N′ RE是根据所述多时隙的PUSCH占用的时频资源确定的。
可选的,所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的时隙数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于额外开销所使用的资源粒子数量确定的;
或者,所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的时隙数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量确定的;
或者,所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的时隙数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH所占用的时隙中包括的符号总数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于额外开销所使用的资源粒子数量确定的;
或者,所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH所占用的时隙中占用的符号总数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量确定的。
可选的,所述多时隙的PUSCH的可用资源粒子数N RE为:
N′ RE与所述多时隙的PUSCH占用的单位时长的数量的乘积、预设可用资源粒子上限值中的较小值;
其中,N′ RE为所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数,N′ RE是根据所述多时隙的PUSCH占用的时频资源确定的。
可选的,所述单位时长为一个时隙或一个符号时,所述多时隙的PUSCH占用的 多个物理资源块在单位时长内的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于额外开销所使用的资源粒子数量确定的;
或者,所述单位时长为一个符号时,所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在一个符号中用于额外开销所使用的资源粒子数量确定的;
其中,所述单位时长为一个时隙时,所述PUSCH中包括的单位时长的数量为所述多时隙的PUSCH占用的时隙数量;所述单位时长为一个符号时,所述PUSCH中包括的单位时长的数量为所述多时隙的PUSCH占用的符号数量。
可选的,所述多时隙的PUSCH的可用资源粒子数N RE为:
N′ RE、预设可用资源粒子上限值中的较小值;
其中,N′ RE为所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数,N′ RE是根据所述多时隙的PUSCH占用的时频资源确定的。
可选的,所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量确定的;
所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量确定的;
或者,所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在一个时隙中用于额外开销所使用的资源粒子数量、预定义值确定的。
可选的,所述参考时隙为预定义的时隙,所述预定义的时隙包括以下任一种时隙:
所述多时隙的PUSCH占用的时隙中的第j个时隙,1≤j≤J,J为多时隙的PUSCH占用的时隙数量,j为整数;
所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的符号数量最多的时隙;
所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的符号数量最少的时隙;
所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的解调参考信号的符号数量最多的时隙;
所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的解调参考信号的符号数量最少的时隙;
根据所述多时隙的PUSCH占用的时隙确定的虚拟时隙;其中,所述多时隙的PUSCH在虚拟时隙中占用的符号数,为所述多时隙的PUSCH在占用的多个时隙中所占用的符号数量平均数;和/或,所述虚拟时隙用于承载多时隙的PUSCH的解调参考信号的资源粒子数量,为所述多时隙的PUSCH占用的多个时隙中用于承载多时隙的PUSCH的DMRS的资源粒子数量的平均数;
或者,所述参考时隙为所述控制信息指示的时隙;
或者,所述参考时隙为高层信令配置的时隙。
可选的,所述预设可用资源粒子上限值为参考带宽的物理资源块数量与预设值的乘积。
可选的,所述参考带宽为以下任一种带宽:
载波带宽;
所述多时隙的PUSCH所在的带宽部分的带宽;
一个时隙中传输PUSCH时可调度的最大带宽;
所述预设值用于表征所述参考带宽中一个物理资源块在一个时隙中用于承载上行数据的最大可用资源粒子数。
可选的,所述参考带宽为所述多时隙的PUSCH所占用的带宽,所述预设值用于表征多时隙的PUSCH在一个物理资源块中占用的最大时隙数中用于承载上行数据的最大可用资源粒子数。
本申请还提供一种网络设备,包括任一种的所述第三种通信装置。
图8为本发明一示例性实施例示出的电子设备的结构图。
如图8所示,本实施例提供的电子设备包括:
存储器81;
处理器82;以及
计算机程序;
其中,所述计算机程序存储在所述存储器81中,并配置为由所述处理器82执行以实现如上所述的任一种通信方法。
本实施例还提供一种计算机可读存储介质,其上存储有计算机程序,
所述计算机程序被处理器执行以实现如上所述的任一种通信方法。
本实施例还提供一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现如上所述的任一项通信方法。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (31)

  1. 一种通信方法,其特征在于,包括:
    根据多时隙的物理上行共享信道PUSCH占用的时频资源确定传输块大小,所述多时隙的PUSCH占用的时频资源包括多个时隙中的时频资源;
    获取与所述传输块大小对应的传输块,对所述传输块进行编码得到编码块,并通过所述多时隙的PUSCH发送所述编码块。
  2. 根据权利要求1所述的方法,其特征在于,所述根据多时隙的物理上行共享信道PUSCH占用的时频资源确定传输块大小,包括:
    根据所述多时隙的PUSCH占用的时频资源、预设可用资源粒子上限值,确定所述多时隙的PUSCH的可用资源粒子数;
    根据所述可用资源粒子数、编码码率、调制阶数、传输层数的乘积,确定所述传输块大小。
  3. 根据权利要求2所述的方法,其特征在于,根据所述多时隙的PUSCH占用的时频资源、预设可用资源粒子上限值,确定所述多时隙的PUSCH的可用资源粒子数,包括:
    根据所述多时隙的PUSCH占用的时频资源,确定所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE
    将N′ RE与所述多时隙的PUSCH占用的物理资源块数量的乘积、预设可用资源粒子上限值中的较小值,确定为所述多时隙的PUSCH的可用资源粒子数N RE
  4. 根据权利要求3所述的方法,其特征在于,根据所述多时隙的PUSCH占用的时频资源,确定所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE,包括:
    根据所述多时隙的PUSCH占用的时隙数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于额外开销所使用的资源粒子数量,确定所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE
    或者,根据所述多时隙的PUSCH占用的时隙数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH 占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量,确定所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE
    或者,根据所述多时隙的PUSCH占用的时隙数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于额外开销所使用的资源粒子数量,确定多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE
    或者,根据一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量,确定所述多时隙的
    PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE
  5. 根据权利要求2所述的方法,其特征在于,根据所述多时隙的PUSCH占用的时频资源、预设可用资源粒子上限值,确定所述多时隙的PUSCH的可用资源粒子数,包括:
    根据所述多时隙的PUSCH占用的时频资源,确定所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数N′ RE
    将N′ RE与所述多时隙的PUSCH占用的单位时长的数量的乘积、预设可用资源粒子上限值中的较小值,确定为所述多时隙的PUSCH的可用资源粒子数N RE
  6. 根据权利要求5所述的方法,其特征在于,
    所述单位时长为一个时隙或一个符号时,根据所述多时隙的PUSCH占用的时频资源,确定所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数N′ RE,包括:
    根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于额外开销所使用的资源粒子数量,确定所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用 资源粒子数N′ RE
    或者,所述单位时长为一个符号时,根据所述多时隙的PUSCH占用的时频资源,确定所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数N′ RE,包括:
    根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在一个符号中用于额外开销所使用的资源粒子数量,确定所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数N′ RE
    其中,所述单位时长为一个时隙时,所述PUSCH中包括的单位时长的数量为所述多时隙的PUSCH占用的时隙数量;所述单位时长为一个符号时,所述PUSCH中包括的单位时长的数量为所述多时隙的PUSCH占用的符号数量。
  7. 根据权利要求2所述的方法,其特征在于,根据所述多时隙的PUSCH占用的时频资源、预设可用资源粒子上限值,确定所述多时隙的PUSCH的可用资源粒子数,包括:
    根据所述多时隙的PUSCH占用的时频资源,确定所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE
    将N′ RE、预设可用资源粒子上限值中的较小值,确定为所述多时隙的PUSCH的可用资源粒子数N RE
  8. 根据权利要求7所述的方法,其特征在于,根据所述多时隙的PUSCH占用的时频资源,确定所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE,包括:
    根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量,确定所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE
    或者,根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数、所述多时隙的 PUSCH占用的多个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量,确定所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE
    或者,根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在一个时隙中用于额外开销所使用的资源粒子数量、预定义值,确定所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE
  9. 根据权利要求4或6所述的方法,其特征在于,所述参考时隙为预定义的时隙,所述预定义的时隙包括以下任一种时隙:
    所述多时隙的PUSCH占用的时隙中的第j个时隙,1≤j≤J,J为多时隙的PUSCH占用的时隙数量,j为整数;
    所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的符号数量最多的时隙;
    所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的符号数量最少的时隙;
    所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的解调参考信号的符号数量最多的时隙;
    所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的解调参考信号的符号数量最少的时隙;
    根据所述多时隙的PUSCH占用的时隙确定的虚拟时隙;其中,所述多时隙的PUSCH在虚拟时隙中占用的符号数,为所述多时隙的PUSCH在占用的多个时隙中所占用的符号数量平均数;和/或,所述虚拟时隙用于承载多时隙的PUSCH的解调参考信号的资源粒子数量,为所述多时隙的PUSCH占用的多个时隙中用于承载多时隙的PUSCH的DMRS的资源粒子数量的平均数;
    或者,所述参考时隙为所述控制信息指示的时隙;
    或者,所述参考时隙为高层信令配置的时隙。
  10. 根据权利要求2至8中任一项所述的方法,其特征在于,所述预设可用资源粒子上限值为参考带宽的物理资源块数量与预设值的乘积。
  11. 根据权利要求10所述的方法,其特征在于,所述参考带宽为以下任一种带宽:
    载波带宽;
    所述多时隙的PUSCH所在的带宽部分的带宽;
    一个时隙中传输PUSCH时可调度的最大带宽;
    和/或,所述预设值用于表征所述参考带宽中一个物理资源块在一个时隙中用于承载上行数据的最大可用资源粒子数。
  12. 根据权利要求10所述的方法,其特征在于,所述参考带宽为所述多时隙的PUSCH所占用的带宽;
    和/或,所述预设值用于表征多时隙的PUSCH在一个物理资源块中占用的最大时隙数中用于承载上行数据的最大可用资源粒子数。
  13. 一种通信方法,其特征在于,包括:
    接收用户终端通过多时隙的物理上行共享信道PUSCH发送的编码块;其中,所述编码块是对传输块进行编码得到的,所述传输块的大小是根据多时隙的PUSCH的时频资源确定的;
    其中,所述多时隙的PUSCH占用的时频资源包括多个时隙中的时频资源。
  14. 根据权利要求13所述的方法,其特征在于,所述传输块的大小是根据可用资源粒子数、编码码率、调制阶数、传输层数的乘积确定的,所述可用资源粒子数是根据所述多时隙的PUSCH占用的时频资源、预设可用资源粒子上限值确定的。
  15. 根据权利要求14所述的方法,其特征在于,所述多时隙的PUSCH的可用资源粒子数N RE为:
    N′ RE与所述多时隙的PUSCH占用的物理资源块数量的乘积、预设可用资源粒子上限值中的较小值;
    其中,N′ RE为所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数,N′ RE是根据所述多时隙的PUSCH占用的时频资源确定的。
  16. 根据权利要求15所述的方法,其特征在于,
    所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的时隙数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于额外开销所使用的资源粒子数量确定的;
    或者,所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的时隙数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量确定的;
    或者,所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的时隙数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH所占用的时隙中包括的符号总数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于额外开销所使用的资源粒子数量确定的;
    或者,所述多时隙的PUSCH占用的一个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH所占用的时隙中占用的符号总数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量确定的。
  17. 根据权利要求14所述的方法,其特征在于,所述多时隙的PUSCH的可用资源粒子数N RE为:
    N′ RE与所述多时隙的PUSCH占用的单位时长的数量的乘积、预设可用资源粒子上限值中的较小值;
    其中,N′ RE为所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数,N′ RE是根据所述多时隙的PUSCH占用的时频资源确定的。
  18. 根据权利要求17所述的方法,其特征在于,
    所述单位时长为一个时隙或一个符号时,所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于额外开销所使用的资源粒子数量确定的;
    或者,所述单位时长为一个符号时,所述多时隙的PUSCH占用的多个物理资源块在单位时长内的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在参考时隙中占用的符号数量、所述多时隙的PUSCH占用的一个物理资源块在参考时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在一个符号中用于额外开销所使用的资源粒子数量确定的;
    其中,所述单位时长为一个时隙时,所述PUSCH中包括的单位时长的数量为所述多时隙的PUSCH占用的时隙数量;所述单位时长为一个符号时,所述PUSCH中包括的单位时长的数量为所述多时隙的PUSCH占用的符号数量。
  19. 根据权利要求14所述的方法,其特征在于,所述多时隙的PUSCH的可用资源粒子数N RE为:
    N′ RE、预设可用资源粒子上限值中的较小值;
    其中,N′ RE为所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数,N′ RE是根据所述多时隙的PUSCH占用的时频资源确定的。
  20. 根据权利要求19所述的方法,其特征在于,
    所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量确定的;
    或者,所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒子数量、所述多时隙的PUSCH占用的一个物理资源块在多个时隙中用于额外开销所使用的资源粒子数量确定的;
    或者,所述多时隙的PUSCH占用的多个物理资源块在多个时隙中的可用资源粒子数N′ RE,是根据所述多时隙的PUSCH占用的物理资源块数量、一个物理资源块包括的子载波数量、所述多时隙的PUSCH在多个时隙中占用的符号总数、所述多时隙的PUSCH占用的多个物理资源块在多个时隙中用于承载解调参考信号所使用的资源粒 子数量、所述多时隙的PUSCH占用的一个物理资源块在一个时隙中用于额外开销所使用的资源粒子数量、预定义值确定的。
  21. 根据权利要求16或18所述的方法,其特征在于,所述参考时隙为预定义的时隙,所述预定义的时隙包括以下任一种时隙:
    所述多时隙的PUSCH占用的时隙中的第j个时隙,1≤j≤J,J为多时隙的PUSCH占用的时隙数量,j为整数;
    所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的符号数量最多的时隙;
    所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的符号数量最少的时隙;
    所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的解调参考信号的符号数量最多的时隙;
    所述多时隙的PUSCH占用的时隙中,用于承载多时隙的PUSCH的解调参考信号的符号数量最少的时隙;
    根据所述多时隙的PUSCH占用的时隙确定的虚拟时隙;其中,所述多时隙的PUSCH在虚拟时隙中占用的符号数,为所述多时隙的PUSCH在占用的多个时隙中所占用的符号数量平均数;和/或,所述虚拟时隙用于承载多时隙的PUSCH的解调参考信号的资源粒子数量,为所述多时隙的PUSCH占用的多个时隙中用于承载多时隙的PUSCH的DMRS的资源粒子数量的平均数;
    或者,所述参考时隙为所述控制信息指示的时隙;
    或者,所述参考时隙为高层信令配置的时隙。
  22. 根据权利要求14至20中任一项所述的方法,其特征在于,所述预设可用资源粒子上限值为参考带宽的物理资源块数量与预设值的乘积。
  23. 根据权利要求22所述的方法,其特征在于,所述参考带宽为以下任一种带宽:
    载波带宽;
    所述多时隙的PUSCH所在的带宽部分的带宽;
    一个时隙中传输PUSCH时可调度的最大带宽;和/或,
    所述预设值用于表征所述参考带宽中一个物理资源块在一个时隙中用于承载上行数据的最大可用资源粒子数。
  24. 根据权利要求22所述的方法,其特征在于,所述参考带宽为所述多时隙的 PUSCH所占用的带宽;和/或,
    所述预设值用于表征多时隙的PUSCH在一个物理资源块中占用的最大时隙数中用于承载上行数据的最大可用资源粒子数。
  25. 一种通信装置,其特征在于,包括:
    确定单元,用于根据多时隙的物理上行共享信道PUSCH占用的时频资源确定传输块大小,所述多时隙的PUSCH占用的时频资源包括多个时隙中的时频资源;
    传输单元,用于获取与所述传输块大小对应的传输块,对所述传输块进行编码得到编码块,并通过所述多时隙的PUSCH发送所述编码块。
  26. 一种通信装置,其特征在于,包括:
    接收单元,用于接收用户终端通过多时隙的物理上行共享信道PUSCH发送的编码块;其中,所述编码块是对传输块进行编码得到的,所述传输块的大小是根据多时隙的PUSCH的时频资源确定的;
    其中,所述多时隙的PUSCH占用的时频资源包括多个时隙中的时频资。
  27. 一种用户终端,其特征在于,包括如权利要求15所述的通信装置。
  28. 一种网络设备,其特征在于,包括如权利要求16所述的通信装置。
  29. 一种电子设备,其特征在于,包括:
    存储器;
    处理器;以及
    计算机程序;
    其中,所述计算机程序存储在所述存储器中,并配置为由所述处理器执行以实现如权利要求1-12或13-24任一种所述的方法。
  30. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,
    所述计算机程序被处理器执行以实现如权利要求1-12或13-24任一种所述的方法。
  31. 一种计算机程序产品,其特征在于,包括计算机程序,该计算机程序被处理器执行时实现权利要求1-12或13-24中任一项所述的方法。
PCT/CN2022/070637 2021-01-15 2022-01-07 通信方法、装置、设备、存储介质、程序产品 WO2022152047A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110057981.3A CN114765880A (zh) 2021-01-15 2021-01-15 通信方法、装置、设备、存储介质、程序产品
CN202110057981.3 2021-01-15

Publications (1)

Publication Number Publication Date
WO2022152047A1 true WO2022152047A1 (zh) 2022-07-21

Family

ID=82365155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070637 WO2022152047A1 (zh) 2021-01-15 2022-01-07 通信方法、装置、设备、存储介质、程序产品

Country Status (2)

Country Link
CN (1) CN114765880A (zh)
WO (1) WO2022152047A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200162208A1 (en) * 2018-11-21 2020-05-21 Electronics And Telecommunications Research Institute Method for transmitting and receiving data channel in communication system and apparatus for the same
CN112187401A (zh) * 2019-07-03 2021-01-05 华为技术有限公司 多时间单元传输方法及相关装置
CN112219364A (zh) * 2018-04-05 2021-01-12 株式会社Ntt都科摩 发送装置以及接收装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112219364A (zh) * 2018-04-05 2021-01-12 株式会社Ntt都科摩 发送装置以及接收装置
US20200162208A1 (en) * 2018-11-21 2020-05-21 Electronics And Telecommunications Research Institute Method for transmitting and receiving data channel in communication system and apparatus for the same
CN112187401A (zh) * 2019-07-03 2021-01-05 华为技术有限公司 多时间单元传输方法及相关装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OPPO: "Issues for TB over multi-slot PUSCH", 3GPP DRAFT; R1-2102408, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 7 April 2021 (2021-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052177125 *
QUALCOMM INCORPORATED: "TB Processing over multi-slot PUSCH", 3GPP DRAFT; R1-2103179, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 7 April 2021 (2021-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052177978 *

Also Published As

Publication number Publication date
CN114765880A (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
CN111357233A (zh) 在电信系统中配置和用信号传递ptrs的方法和装置
CN110391870B (zh) 速率匹配的方法和装置,以及解速率匹配的方法和装置
AU2019248164B2 (en) Terminal device, base station device, and communication method
US11917659B2 (en) Telecommunications apparatus and methods including selecting a TBS based on an indicated maximum TBS
CN113692771B (zh) 用于在无线通信系统中确定信道接入过程的方法和装置
US10568051B2 (en) Method and device in user equipment and base station for low latency communication
CN114157400B (zh) 一种码本的处理方法及装置
EP3857778A1 (en) Communications device, infrastructure equipment and methods
WO2022017992A1 (en) Communications device, infrastructure equipment and methods
US20230101531A1 (en) Uplink medium access control token scheduling for multiple-carrier packet data transmission
WO2022152047A1 (zh) 通信方法、装置、设备、存储介质、程序产品
CN110582118A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN114095133B (zh) 一种用于无线通信的节点中的方法和装置
TW201828738A (zh) 無線通信方法、終端設備和網絡設備
CN111432461A (zh) 通信方法、装置和存储介质
WO2022239289A1 (ja) 通信装置、及び、通信方法
WO2024168629A1 (zh) 传输块大小的确定方法、装置、设备及存储介质
US20240215025A1 (en) Method and device for wireless communication in nodes
WO2022116982A1 (zh) 数据传输方法及装置
WO2019201196A1 (zh) 速率匹配的方法和装置,以及解速率匹配的方法和装置
CN117294408A (zh) 一种用于无线通信的节点中的方法和装置
WO2024161380A1 (en) Techniques for managing sidelink feedback resources on an unlicensed carrier
WO2022008357A1 (en) Communications device, infrastructure equipment and methods
CN117200948A (zh) 一种用于无线通信的节点中的方法和装置
CN117694010A (zh) 终端、基站及通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22738928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22738928

Country of ref document: EP

Kind code of ref document: A1