WO2022143195A1 - 确定终端的特性的方法和通信装置 - Google Patents

确定终端的特性的方法和通信装置 Download PDF

Info

Publication number
WO2022143195A1
WO2022143195A1 PCT/CN2021/138707 CN2021138707W WO2022143195A1 WO 2022143195 A1 WO2022143195 A1 WO 2022143195A1 CN 2021138707 W CN2021138707 W CN 2021138707W WO 2022143195 A1 WO2022143195 A1 WO 2022143195A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
type
characteristic
terminals
network device
Prior art date
Application number
PCT/CN2021/138707
Other languages
English (en)
French (fr)
Inventor
王婷
吕永霞
王君
马江镭
张立清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21913936.7A priority Critical patent/EP4258808A4/en
Publication of WO2022143195A1 publication Critical patent/WO2022143195A1/zh
Priority to US18/343,911 priority patent/US20230345376A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0264Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by selectively disabling software applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present application relates to the field of communications, and more particularly to a method and a communications apparatus for determining characteristics of a terminal.
  • the existing new radio (NR) is designed for the characteristics of the terminal, which will lead to high cost and chip complexity, and high terminal energy consumption when various types of terminals are mass-produced. Therefore, the design of the characteristics of the terminal needs to be further optimized in the research of the next generation technology or the research of the 6th Generation (6th Generation, 6G) communication technology.
  • the present application provides a method and a communication device for determining the characteristics of a terminal, which can realize the customization of the characteristics of the terminal, thereby simplifying the design of the terminal chip, reducing the cost of the terminal chip, reducing the implementation complexity of the chip and the terminal, thereby reducing the energy consumption of the terminal .
  • the present application provides a method for determining a characteristic of a terminal.
  • the terminal determines a feature set
  • the feature set may include a mandatory feature set and an optional feature set, wherein the mandatory feature set is related to the type of the terminal.
  • the required attribute set is a non-empty set.
  • the set of optional attributes can be an empty set or a non-empty set.
  • the terminal can communicate with the network device according to the characteristic in the determined characteristic set.
  • the required characteristic sets are related to the type of the terminal, so that for different types of terminals, the required characteristic sets can be defined respectively. In this way, the characteristics of the terminal can be customized, which helps to minimize the characteristics of the terminal. While meeting the characteristics requirements of different types of terminals, the cost of the chip and the processing complexity of the terminal implementation can be reduced, and the energy saving of the terminal can be realized.
  • the feature set of the terminal includes a first feature, and the first feature may be a required feature or an optional feature.
  • the default value of the first characteristic and/or the set of candidate values of the first characteristic are related to the type of the terminal. That is to say, default values or candidate value sets of characteristics can be defined for different types of terminals respectively.
  • a default value and/or a set of candidate values for only one characteristic is defined for enhanced mobile broadband (eMBB), and it is applicable to a variety of different types of terminals at the same time, which may lead to the value of some characteristics. It is not applicable to terminals of other terminal types, resulting in high signaling overhead.
  • eMBB enhanced mobile broadband
  • default values or candidate value sets of characteristics can be defined for different types of terminals, so as to meet the characteristics requirements of different types of terminals, reduce chip cost and signaling overhead, realize terminal energy saving, and improve communication efficiency .
  • the second characteristic in the characteristic set needs to be determined by interacting with signaling.
  • the terminal may also receive first indication information from the network device, where the first indication information indicates to enable or disable the second characteristic. characteristic, or indicating the value of the second characteristic, and enabling or disabling the second characteristic according to the first indication information, or determining the value of the second characteristic.
  • the terminal may also send first confirmation information to the network device, where the first confirmation information indicates that the second feature has been enabled or disabled, or that the first indication information has been correctly received. In this way, it can be ensured that the terminal and the network device have a consistent understanding of the feature set of the terminal, thereby enhancing the robustness and reliability of communication, and improving communication performance.
  • the third feature in the feature set needs to be determined through interaction with signaling.
  • the terminal sends second indication information to the network device, and the second indication information indicates to enable or disable the third feature, or Indicates the value of the third characteristic.
  • the terminal recommends or informs the network device to enable, disable or set the terminal feature, which can better adapt to the needs of the environment or service, improve the flexibility of feature opening, reduce the power consumption of the terminal, realize energy saving, and improve communication performance.
  • the terminal may also receive second confirmation information sent by the network device, where the second confirmation information indicates that the third characteristic is enabled or disabled, or the value of the third characteristic, or indicates that the second indication information has been correctly received. In this way, it can be ensured that the terminal and the network device have a consistent understanding of the feature set of the terminal, thereby enhancing the robustness and reliability of communication and improving communication performance.
  • different terminal types have different at least one of the following attributes: supported service types, requirements for mobility, requirements for transmission delay of service data, wireless channel environment in which they are located, and transmission of service data. Reliability requirements, requirements for coverage, and deployment scenarios.
  • different terminal characteristics are considered, such as service type, mobility, delay requirement, reliability requirement, coverage requirement, etc., to determine different terminal characteristics.
  • the method can design different terminal characteristics according to different attributes, meet the communication requirements of each attribute, improve the communication performance, and then realize the energy saving of the terminal.
  • the type of the terminal is one of the following: eMBB terminal, ultra-reliable and low-latency communication (URLLC) terminal, internet of thing (IoT) terminal, front-end customer equipment (customer premise equipment, CPE), augmented reality (augmented reality, AR) terminal, virtual reality (virtual reality, VR) terminal, machine type communication (machine type communication, MTC) terminal, and vehicle to everything (vehicle to everything, V2X) terminal.
  • eMBB terminal ultra-reliable and low-latency communication (URLLC) terminal
  • IoT internet of thing
  • CPE front-end customer equipment
  • augmented reality (augmented reality, AR) terminal virtual reality (virtual reality, VR) terminal
  • machine type communication machine type communication
  • V2X vehicle to everything
  • different terminal types are considered, such as eMBB terminal, URLLC terminal, IoT terminal, V2X terminal, etc., and then different terminal characteristics are determined.
  • the method can design different terminal characteristics for different terminal types, meet the communication requirements of each terminal type, improve communication performance, and further realize terminal energy saving.
  • the mandatory feature set includes positioning features and sidelink communication features; and/or, if the terminal type is the second type, the mandatory feature set Including perception characteristics and non-terrestrial networks (non-terrestrial networks, NTN) communication characteristics; and/or; if the type of the terminal is the third type, the mandatory characteristic set includes artificial intelligence (artificial intelligence, AI) characteristics.
  • AI artificial intelligence
  • the required feature set further includes air interface communication features, and the air interface communication features include at least one of the following features: ultra-low latency processing timing, cyclic Prefix-orthogonal frequency division multiplexing (cyclic prefix-orthogonal frequency division multiplexing, CP-OFDM) waveform, data transmission based on configuration grant, time slot aggregation, hybrid automatic repeat request (HARQ)
  • the number of processes is 2.
  • the air interface communication characteristics include at least one of the following characteristics: low-cost waveform, data channel repetition, data transmission based on configuration grant, time slot aggregation, and a HARQ process number of one.
  • the present application provides a method for determining a characteristic of a terminal.
  • the method is a method on the network device side corresponding to the first aspect, and for its beneficial effects, reference may be made to the description of the beneficial effects in the first aspect.
  • the network device determines the feature set of the terminal according to the type of the terminal.
  • the feature set may include a required feature set and an optional feature set, where the required feature set is the same as the Depends on the type of terminal.
  • the required attribute set is a non-empty set.
  • the set of optional attributes can be an empty set or a non-empty set.
  • the network device communicates with the terminal according to the characteristic in the characteristic set.
  • the feature set of the terminal includes a first feature, and the first feature may be a required feature or an optional feature.
  • the default value of the first characteristic and/or the set of candidate values of the first characteristic are related to the type of the terminal. That is to say, default values or candidate value sets of characteristics can be defined for different types of terminals respectively.
  • the second characteristic in the characteristic set needs to be determined by interacting with signaling.
  • the network device may also send first indication information to the terminal, where the first indication information indicates to enable or disable the second characteristic , or indicates the value of the second characteristic.
  • the network device may also receive first confirmation information sent by the terminal, where the first confirmation information indicates that the second feature has been enabled or disabled, or that the first indication information has been correctly received.
  • the third characteristic in the characteristic set needs to be determined by interacting with signaling.
  • the network device may also receive second indication information sent by the terminal, where the second indication information indicates to enable or disable the third characteristic characteristic, or a value indicating a third characteristic.
  • the network device may also send second confirmation information to the terminal, where the second confirmation information indicates that the third characteristic is turned on or off, or the value of the third characteristic, or that the second indication information has been correctly received.
  • different terminal types have different at least one of the following attributes: supported service types, requirements for mobility, requirements for transmission delay of service data, wireless channel environment in which they are located, and transmission of service data. Reliability requirements, requirements for coverage, and deployment scenarios.
  • the type of terminal is one of the following: eMBB terminal, URLLC terminal, IoT terminal, CPE, AR terminal, VR terminal, MTC terminal, and V2X terminal.
  • the mandatory feature set includes positioning features and sidelink communication features; and/or, if the terminal type is the second type, the mandatory feature set Including perception characteristics and non-terrestrial network NTN communication characteristics; and/or; if the type of the terminal is the third type, the mandatory characteristic set includes artificial intelligence AI characteristics.
  • the required feature set further includes air interface communication features, and the air interface communication features include at least one of the following features: ultra-low latency processing timing, cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM waveform, configuration grant based data transmission, time slot aggregation, Hybrid Automatic Repeat Request (HARQ) with 2 processes, radio link management and/or radio resource management based on synchronization signal blocks , aperiodic channel state information measurement reporting, beam tracking, and beam management; and/or, the positioning characteristics include at least one of the following characteristics: positioning characteristics based on downlink departure angle, positioning characteristics based on downlink time difference of arrival, positioning reference The bandwidth size of the signal, the number of downlink positioning reference signal resources, and support for sending periodic sounding reference signals for positioning; and/or, if the type of the terminal is the second type, the mandatory feature set also includes air interface communication characteristics, the air interface communication characteristics include at least one of the following characteristics: low-cost
  • the present application provides a communication device, the device includes a module for executing the method in the first aspect or any possible implementation manner of the first aspect; or, includes a module for executing the second aspect or A module of the method in any possible implementation of the second aspect.
  • a communication apparatus including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the method in any one of the possible implementations of the first aspect above.
  • the apparatus further includes a memory.
  • the apparatus further includes a communication interface to which the processor is coupled.
  • the apparatus is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the apparatus is a chip configured in a terminal device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the present application provides a communication device including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the method in any of the possible implementations of the second aspect above.
  • the apparatus further includes a memory.
  • the apparatus further includes a communication interface to which the processor is coupled.
  • the apparatus is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the apparatus is a chip configured in a network device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the present application provides a processor, including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and output a signal through the output circuit, so that the processor executes any one of the possible implementations of the first aspect or the second aspect. Methods.
  • the above-mentioned processor may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by a transmitter
  • the circuit can be the same circuit that acts as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • the present application provides a communication device including a processor and a memory.
  • the processor is configured to read instructions stored in the memory, and can receive signals through a receiver and transmit signals through a transmitter, so as to perform the method in any one of the possible implementations of the first aspect or the second aspect .
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the memory can be a non-transitory memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be separately set in different On the chip, the embodiment of the present application does not limit the type of the memory and the setting manner of the memory and the processor.
  • ROM read only memory
  • the relevant data interaction process such as sending indication information, may be a process of outputting indication information from the processor, and receiving capability information may be a process of receiving input capability information by the processor.
  • the data output by the processing can be output to the transmitter, and the input data received by the processor can be from the receiver.
  • the transmitter and the receiver may be collectively referred to as a transceiver.
  • the device in the above seventh aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software , the processor may be a general-purpose processor, and is implemented by reading software codes stored in a memory, which may be integrated in the processor or located outside the processor and exist independently.
  • the present application provides a computer-readable storage medium, in which a computer program or instruction is stored, and when the computer program or instruction is executed, the above-mentioned first aspect or the second aspect is realized.
  • the present application provides a computer program product comprising instructions that, when executed, implement the method of any possible implementation of any of the first or second aspects.
  • the present application provides a communication system, where the communication system includes a terminal and a network device.
  • FIG. 1 is a schematic structural diagram of a communication system to which an embodiment of the present application is applied.
  • FIG. 2 is a schematic flowchart of a method for determining a characteristic of a terminal according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for determining a characteristic of a terminal according to another embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for determining a characteristic of a terminal according to another embodiment of the present application.
  • Figure 5 is an example of feature analysis for different types of terminals.
  • FIG. 6 is a schematic structural diagram of a possible communication apparatus provided by an embodiment of the present application.
  • FIG. 7 is another schematic structural diagram of a possible communication apparatus provided by an embodiment of the present application.
  • eMBB service refers to the further improvement of network speed, user experience and other performance based on the existing mobile broadband service scenarios, which is also the application scenario closest to our daily life. For example, when users watch 4K high-definition video, the peak can reach 10Gbps.
  • the eMBB service may be a high-traffic mobile broadband service such as three-dimensional (three-dimensional, 3D)/ultra-high-definition video.
  • URLLC services can include services in the following scenarios: industrial application and control, traffic safety and control, remote manufacturing, remote training, remote surgery, unmanned driving, security industry, etc.
  • MTC services may refer to low-cost, coverage-enhanced services, also known as machine-to-machine (M2M) services, or massive machine-type communications (mMTC) services.
  • M2M machine-to-machine
  • mMTC massive machine-type communications
  • IoT services can be services featuring wide coverage, multiple connections, low speed, low cost, low power consumption, and excellent architecture.
  • IoT services can be applied to scenarios such as smart water meters, smart parking, smart pet tracking, smart bicycles, smart smoke detectors, smart toilets, and smart vending machines.
  • IoT terminals can be sensors, controllers, etc., such as temperature sensors, humidity sensors, fire alarms, sensors, detectors, etc.
  • the IoT terminal may also be an MTC terminal, a narrowband IoT (narrow band IoT, NB-IoT) terminal or a mMTC terminal.
  • the CPE can be understood as a relay device of the mobile communication network and the WiFi network. It can send the information received in the mobile communication network to the terminal through the WiFi signal, or send the information received in the WiFi network through the air of the mobile communication network.
  • the interface is sent to the base station.
  • the CPE has two wireless communication interfaces, one is the mobile communication network air interface for communicating with the base station in the mobile communication network, and the other is the WiFi wireless communication interface for communicating with the terminal.
  • the mobile communication network here can be any kind of mobile communication network, for example, it can be a fourth generation (4th Generation, 4G) mobile communication network, a fifth generation (5th generation, 5G) mobile communication network, a 6G mobile communication network or a future mobile communication network mobile communication network.
  • CPE can support multiple terminal access at the same time. CPE can be widely used in rural, urban, hospital, office, factory, residential and other application scenarios, which can save the cost of laying wired network and replace wired broadband.
  • V2X Vehicle to everything
  • V2X can enable communication between vehicles, vehicles and base stations, and base stations and base stations.
  • a series of traffic information such as real-time road conditions, road information, and pedestrian information can be obtained, thereby improving driving safety, reducing congestion, and improving traffic efficiency.
  • it can also provide in-vehicle entertainment information.
  • characteristics can also be replaced by capabilities, functions, features, characteristic capabilities, etc., that is, terminal characteristics can also be described as terminal capabilities, terminal functions, terminal characteristics, terminal characteristic capabilities, and the like. The description methods of characteristics are uniformly adopted below.
  • the characteristics of the terminal may include mandatory characteristics and optional characteristics.
  • a property set is a set consisting of the properties of one or more terminals.
  • Mandatory features are the basic features of the terminal and the features that the terminal must support.
  • a feature set composed of mandatory features may also be described as a minimum feature set, a mandatory feature set, and the like.
  • the main scenario studied is the eMBB scenario, so the mandatory features of the terminal are defined for eMBB.
  • the terminal needs to support various channel bandwidths of each carrier and frequency band in Table 1.
  • the terminal in the n1 frequency band needs to support 20MHz bandwidth; the terminal in the n2 frequency band needs to support 20MHz; the terminal in the n3 frequency band needs to support 30MHz bandwidth; and so on.
  • a terminal needs to support orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) waveforms.
  • OFDM orthogonal frequency division multiplexing
  • the terminal needs to support OFDM waveform and discrete Fourier transform-spread OFDM (discrete Fourier transform-spread OFDM, DFT-S-OFDM) waveform.
  • the terminal needs to support 64 quadrature amplitude modulation (quadrature amplitude modulation, QAM).
  • the terminal needs to support interleaving for VRB-to-PRB mapping (interleaving for VRB-to-PRB mapping) from virtual resource blocks to physical resource blocks.
  • Optional features are capabilities that the terminal may or may not support.
  • the positioning characteristics include the basic positioning reference signal (position reference signal, PRS) processing capability.
  • position reference signal position reference signal, PRS
  • the terminal sends a PRS
  • the base station determines the location of the terminal according to the PRS.
  • the terminal receives the PRS, and the terminal determines the location of the terminal according to the PRS and the location of the base station.
  • Sidelink communication characteristics include basic sidelink communication capabilities, eg, receiving and transmitting sidelink information.
  • the sidelink information may include at least one of the following: a sidelink control channel (SCCH), a sidelink shared channel (SSCH), and a sidelink feedback channel (SFCH) .
  • SCCH sidelink control channel
  • SSCH sidelink shared channel
  • SFCH sidelink feedback channel
  • the terminal PUSCH processing capability may be referred to as PUSCH preparation time (PUSCH preparation time).
  • the terminal PUSCH processing capability may refer to the time from the terminal receiving the physical downlink control channel (PDCCH) to the terminal transmitting the PUSCH, wherein the PDCCH carries the downlink control information (DCI), and the DCI is used to schedule the PUSCH.
  • PDCCH physical downlink control channel
  • DCI downlink control information
  • the PUSCH processing capability includes capability 1 and capability 2.
  • Table 2 is PUSCH processing capability 1
  • Table 3 is PUSCH processing capability 2
  • Table 4 is frame structure parameters.
  • ⁇ in Table 2 and Table 3 represents the subcarrier spacing configuration information, and the value is shown in Table 4.
  • ⁇ ⁇ f 2 ⁇ ⁇ 15[kHz] cyclic prefix 0 15 normal 1 30 normal 2 60 normal, extended 3 120 normal 4 240 normal
  • a schedule can perform multiple repeated data transmissions. Multiple data transmissions can occupy multiple time slots. The number of repetitions may be predefined, may also be indicated by higher layer signaling, or may also be indicated by physical layer signaling. The multiple repeated data may be the same data of different redundancy versions, and the data transmission in this manner can reduce the bit rate, obtain diversity gain by repeating the transmission multiple times, improve the reliability of data transmission, and improve the coverage.
  • Multiple transmissions can be scheduled through one DCI, the number of multiple transmissions can be predefined, or the transmission of SPS can be terminated through DCI. Based on data transmission under SPS, fast large-packet data transmission can be realized, the signaling overhead of DCI can be reduced, and the transmission delay can be reduced.
  • Configured grant type 1 (configured grant type 1): Data transmission is performed based on scheduling information configured by radio resource control (RRC) signaling, and there may be no DCI indication.
  • RRC radio resource control
  • Configured grant type 2 (configured grant type 2): Data transmission is performed based on the scheduling information configured by RRC signaling, which needs to be activated and deactivated with DCI.
  • the terminal can realize fast data transmission without the need of DCI scheduling, thus reducing the transmission delay.
  • the characteristic of the terminal if the characteristic does not require interaction between the terminal and other devices (for example, other terminals, base stations, etc.) to confirm the characteristic, it can be determined as a default value.
  • This default value can be predefined by the protocol. For example, a protocol directly defines the value of a property. For another example, the protocol defines which of the set of candidate values the default value of a certain characteristic selects.
  • the set of candidate values includes possible values for the characteristics of a certain terminal.
  • the terminal can report whether it supports a certain feature and/or report the supported value. For a certain feature, if the terminal reports one or more supported values, the network device can determine the value of the feature according to the situation reported by the terminal; if the terminal does not report, the network device defaults to a certain value. The value is the default value.
  • different terminal types have different at least one of the following attributes: service type supported, mobility requirements, transmission delay requirements for service data, wireless channel environment in which they are located, reliable transmission of service data Sexuality requirements, requirements for coverage, and deployment scenarios.
  • the type of the terminal is at least one of the following: eMBB terminal, URLLC terminal, IoT terminal, CPE, AR terminal, VR terminal, MTC terminal, and V2X terminal.
  • the type of the terminal may also refer to the service type of the terminal.
  • FIG. 1 is a schematic structural diagram of a communication system 1000 to which an embodiment of the present application is applied.
  • the communication system includes a radio access network 100 and a core network 200 .
  • the communication system 1000 may further include the Internet 300 .
  • the radio access network 100 may include at least one radio access network device (such as 110a and 110b in FIG. 1 ), and may also include at least one terminal (such as 120a-120j in FIG. 1 ).
  • the terminal is connected to the wireless access network device in a wireless way, and the wireless access network device is connected to the core network in a wireless or wired way.
  • the core network device and the radio access network device can be independent and different physical devices, or the functions of the core network device and the logical functions of the radio access network device can be integrated on the same physical device, or they can be one physical device. It integrates the functions of some core network equipment and some functions of the wireless access network equipment. Terminals and terminals and wireless access network devices and wireless access network devices may be connected to each other in a wired or wireless manner.
  • FIG. 1 is just a schematic diagram, and the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the radio access network equipment may be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP), the next generation in the fifth generation (5th generation, 5G) mobile communication system
  • Base station (next generation NodeB, gNB), the next generation base station in the sixth generation (6th generation, 6G) mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also complete the base station part
  • a functional module or unit for example, may be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the radio access network device may be a macro base station (110a in FIG.
  • the radio access network device is simply referred to as a network device in the following, and the terms of the network device and the base station are interchangeable.
  • the terminal in FIG. 1 may be located within the cell coverage of the network device.
  • the terminal can perform air interface communication with the network device through uplink (uplink, UL) or downlink (downlink, DL), and in the UL direction, the terminal can send data to the network device; in the DL direction, the network device can The control information is sent to the terminal, and data can also be sent to the terminal, that is, the terminal can receive the control information and/or data sent by the network device.
  • a terminal may also be referred to as a terminal device, user equipment (user equipment, UE), a mobile station, a mobile terminal, and the like.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), V2X communication, MTC, IoT, virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart Furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal.
  • network equipment and/or terminals can be deployed on land, including indoors or outdoors, hand-held or vehicle-mounted; on water; and on aircraft, balloons, and satellites in the air.
  • helicopter or drone 120i in FIG. 1 may be configured as a mobile base station, for those terminals 120j that access the radio access network 100 through 120i, terminal 120i It is a base station; but for the base station 110a, 120i is a terminal, that is, communication between 110a and 120i is performed through a wireless air interface protocol. Of course, the communication between 110a and 120i may also be performed through an interface protocol between the base station and the base station. In this case, compared to 110a, 120i is also a base station. Therefore, both the base station and the terminal may be collectively referred to as communication devices, 110a and 110b in FIG. 1 may be referred to as communication devices with base station functions, and 120a-120j in FIG. 1 may be referred to as communication devices with terminal functions.
  • communication between network devices and terminals, between network devices and network devices, and between terminals and terminals can be performed through licensed spectrum, or through licensed spectrum, or simultaneously through licensed spectrum. Communicate with unlicensed spectrum.
  • the embodiments of the present application are applicable to both low frequency scenarios (sub 6G) and high frequency scenarios (above 6G), terahertz, optical communication, and the like.
  • a network device and a terminal can communicate through a spectrum below 6 GHz (gigahertz, GHz), or communicate through a spectrum above 6 GHz, and can also communicate using a spectrum below 6 GHz and a spectrum above 6 GHz at the same time.
  • the embodiments of the present application do not limit the spectrum resources used for communication.
  • the function of the network device may also be performed by a module (eg, a chip) in the network device, or may be performed by a control subsystem including the function of the network device.
  • the control subsystem including the function of the network device here can be the control center in the application scenarios of the above-mentioned terminals such as smart grid, industrial control, intelligent transportation, and smart city.
  • the functions of the terminal can also be performed by a module (such as a chip or a modem) in the terminal, and can also be performed by a device including the terminal functions.
  • PDSCH, PDCCH, and PUSCH are only used as examples of downlink data channels, downlink control channels, and uplink data channels.
  • data channels and control channels may be There are different names, which are not limited by the embodiments of the present application.
  • the measurement unit in the time domain of communication may be referred to as a time unit or a time scheduling unit.
  • the time scheduling unit or time unit may be a radio frame, a subframe, a time slot (slot), a mini-slot (mini-slot) or a sub-slot, and the like.
  • the time scheduling unit or time unit may also be one or more symbols, etc., wherein a symbol is a basic unit in the time domain.
  • a time slot is used as an example for description.
  • the time slot may refer to a time unit, which may be replaced by the example of the above time unit, which is not limited in this application.
  • the measurement unit in the frequency domain of communication may be referred to as a frequency domain resource unit or a frequency domain scheduling unit.
  • the frequency domain resource unit may be a basic resource element (resource element, RE), a resource block (resource block), a resource block group (resource block group), and the like.
  • one resource block may include one or more resource units.
  • a resource block group may include one or more resource blocks.
  • a frequency domain resource unit used for data transmission may include several basic resource units, one RE may correspond to one subcarrier, and there are X1 basic resource units in a physical resource block (physical resource block, PRB), where X1 is Integer greater than or equal to 1.
  • X1 is 12.
  • a resource block is used as an example for description.
  • the resource block may refer to a frequency-domain resource unit, which may be replaced by the example of the above-mentioned frequency-domain resource unit, which is not limited in this application.
  • the high-level signaling may refer to at least one of RRC signaling, medium access control (medium access control, MAC) signaling, radio link control (radio link control, RLC) signaling, and the like.
  • RRC signaling is used as an example for description.
  • the RRC signaling may refer to high-level signaling, which may be replaced by the examples in the above-mentioned high-level signaling, which is not limited in this application.
  • the physical layer signaling may be downlink control information (DCI), receive control information (receive control information, RCI), uplink control information (UCI), and transmit control information (transmit control information, TxCI). at least one.
  • DCI is taken as an example for description.
  • DCI may refer to physical layer signaling, which may be replaced by the examples in the above physical layer signaling, which is not limited in this application.
  • eMBB terminals In the NR standard, the mandatory characteristics of terminals are defined for eMBB terminals, while for other types of terminals (such as URLLC terminals, IoT terminals, etc.), when studying the characteristics of terminals, it is to continue to superimpose on the basis of eMBB terminals. , and most of the features are optional features, which will lead to high cost and chip complexity, and high terminal energy consumption in the large-scale production of various types of terminals.
  • An example analysis is as follows.
  • eMBB terminals For other types of terminals, some mandatory features of eMBB terminals may not need to be supported. If other types of terminals must support all the required features of eMBB terminals, it will lead to higher chip cost, higher terminal power consumption, and higher chip complexity, and large-scale commercial use of other types of terminals will not be used.
  • the terminal needs to support strong storage capacity. Therefore, if other types of terminals must support 16 HARQ processes, it will lead to higher cost of the chip, higher energy consumption, and lower capability. For some terminals that only transmit small packets of data, such as IoT terminals, they cannot meet the low-cost requirements.
  • the channel bandwidth for IoT terminals, etc., it is not necessary to support a bandwidth of 20MHz, and it can only support a bandwidth of 5M or less. According to the current design, the cost will be higher.
  • terminal PUSCH processing capability 2 and configuration authorization are key features.
  • it will lead to longer processing time and longer delay. It is too large to meet the requirement of low latency.
  • the candidate value sets or default values of the characteristics corresponding to different types of terminals are fixed and the same. Adopting a unified design may result in a large overhead for reporting feature values and reduce communication performance.
  • the set of candidate values for the modulation order characteristic may include bpsk-halfpi, bpsk, qam16, qam64, and qam256. If represented in binary, each candidate value needs to be indicated by 3 bits.
  • ModulationOrder Take the characteristic parameter ModulationOrder as an example:
  • the set of candidate values for the maximum number of channel state information-reference signal (CSI-RS) resources for radio link measurement (RLM) supported by the terminal may include 2, 4 , 6, 8. If represented in binary, each candidate value needs to be indicated with 2 bits.
  • CSI-RS channel state information-reference signal
  • RLM radio link measurement
  • the set of candidate values for the maximum number of CSI-RS resources supported by the terminal for radio resource management may include 4, 8, 16, 32, 64, 96, and so on. If represented in binary, each candidate value needs to be indicated by 3 bits.
  • RRM radio resource management
  • the set of candidate values for the number of multiple input multiple output (multiple input multiple output, MIMO) layers of downlink transmission supported by the terminal may include 2, 4, 8, and so on. If represented in binary, each candidate value needs to be indicated with 2 bits. Take the characteristic parameter MIMO-LayersDL as an example:
  • MIMO-LayersDL:: ENUMERATED ⁇ twoLayers,fourLayers,eightLayers ⁇
  • the set of candidate values for the number of MIMO layers for uplink transmission supported by the terminal may include 1, 2, 4, and so on. If represented in binary, each candidate value needs to be indicated with 2 bits. Take the characteristic parameter MIMO-LayersUL as an example:
  • MIMO-LayersUL:: ENUMERATED ⁇ oneLayer, twoLayers, fourLayers ⁇
  • the set of candidate values can include 5MHz, 10MHz, 15MHz, 20MHz, 25MHz, 30MHz, 40MHz, 50MHz, 60MHz, 80MHz, 100MHz, etc. If expressed in binary, each candidate value needs to be 4-bit indication; for FR2, the candidate value set may include 50MHz, 100MHz, 200MHz, 400MHz, etc. If it is represented by binary, each candidate value needs to be indicated by 2 bits. Take the feature parameter SupportedBandwidth as an example:
  • the mainstream terminal will no longer be only a certain type of terminal, but various types of terminals will become mainstream terminals.
  • eMBB terminals, URLLC terminals, IoT terminals, CPE and V2X terminals have all become mainstream terminals. If the characteristics of the terminal still use the current NR design, it will lead to high cost and chip complexity and high terminal energy consumption during large-scale production of various terminals. Therefore, in the next generation technology research or 6G communication technology research, it is necessary to further optimize the design of the characteristics of the terminal.
  • the present application proposes a method for determining the characteristics of a terminal, which can realize the customization of the characteristics of the terminal and the minimization of the characteristics of the terminal, and reduce the cost of chips and terminals while meeting the characteristics requirements of different types of terminals. Realize processing complexity and realize terminal energy saving.
  • FIG. 2 is a schematic flowchart of a method for determining a characteristic of a terminal according to an embodiment of the present application.
  • the method shown in FIG. 2 may be executed by the terminal and the network device, or may be executed by modules or units in the terminal and the network device.
  • the following description takes the execution subject as a terminal and a network device as an example.
  • Step 201 the terminal determines the characteristic set of the terminal.
  • the feature set is related to the type of the terminal.
  • Step 202 the network device determines the characteristic set of the terminal according to the type of the terminal.
  • Step 203 the terminal and the network device communicate according to the characteristics in the terminal's characteristic set.
  • step 201 may be first followed by step 202; or, step 202 may be first followed by step 201, or step 201 and step 202 may be performed simultaneously.
  • the feature set of the terminal here can be understood as the set of features supported by the terminal.
  • the set of characteristics of the terminal may include a first set and a second set.
  • the features in the first set are mandatory features, the first set is a non-empty set, the first set is related to the type of the terminal, and the first set may also be referred to as the minimum feature set of the terminal.
  • the features in the second set belong to a set composed of optional features, or it can also be described that the features in the second set are optional features, and the second set can be an empty set or a non-empty set.
  • the characteristics in the characteristic set can be defined through a protocol.
  • the property set includes a first property, and the first property is defined by a protocol.
  • a first set of characteristics is defined, and for a terminal of a second type, a second set of characteristics is defined.
  • determining the feature set of the terminal can be understood as detecting its current feature set.
  • determining the characteristic set of the terminal may be acquiring the characteristic set corresponding to the type according to the type of the terminal.
  • the network device can acquire the type of the terminal from the terminal. For example, when the terminal is powered on, the terminal reports the type of the terminal to the network device, so that the network device determines the feature set of the terminal.
  • the network device may acquire the type of the terminal from the core network device.
  • the terminal reports the terminal type to the core network
  • the core network device sends the terminal type to the network device
  • the network device determines the terminal type by receiving the terminal type sent by the core network device.
  • the characteristic set of the terminal includes the first characteristic, and the default value or candidate value set of the first characteristic is related to the type of the terminal.
  • the first feature may be a required feature or an optional feature. The relationship between the default value or the set of candidate values of the first characteristic and the type of the terminal will be described in detail below.
  • the on, off or value of a feature in the feature set of the terminal may be predefined by a protocol. This reduces signaling overhead.
  • the enabling, disabling or value of a characteristic in the characteristic set of the terminal may also be determined through signaling interaction between the terminal and the network device. This enables flexible turn-on or turn-off features and reduced terminal energy consumption.
  • the signaling interaction between the terminal and the network device may include the terminal instructing the network device to enable or disable one or some features, the terminal indicating the value of one or some features to the network device, and the network device instructing the terminal to enable or disable a certain feature. Or some characteristics, the network device indicates to the terminal at least one of the values of some or some characteristics. One or some of the features mentioned here can be required or optional.
  • the terminal and the network device may further perform steps 404 and 405, wherein the steps 405 is an optional step.
  • Step 204 the network device sends the first indication information to the terminal.
  • the terminal receives the first indication information sent by the network device.
  • the first indication information indicates whether the second characteristic is turned on or off, or indicates the value of the second characteristic.
  • the first indication information includes a first identifier, and the first identifier indicates the second characteristic.
  • the first identifier may be the identifier of the second characteristic. If the second characteristic includes one or more characteristics, the first identification correspondingly includes at least one identification.
  • the first indication information may further indicate to enable, disable or take a value of the fifth characteristic.
  • the second characteristic is associated with the fifth characteristic
  • the first identifier may be the identifier of the second characteristic
  • the network device may indicate the second characteristic and the fifth characteristic by carrying the identifier of the second characteristic in the first indication information.
  • the association relationship between the second characteristic and the fifth characteristic may be determined according to the type of the terminal.
  • association relationship here may be predefined by a protocol, or may be notified to the terminal by the network device through high-layer signaling or physical-layer signaling.
  • the HARQ feedback characteristic and the data channel repetition characteristic may have an associated relationship.
  • the HARQ feedback feature is turned on, the data channel repetition feature is also turned on.
  • a set identifier may be defined for a property set consisting of the second property and the fifth property, and the first identifier may be the set identifier.
  • the second characteristic and the fifth characteristic corresponding to the set identifier are both on; when the indication corresponding to the set identifier is off, the second characteristic and the fifth characteristic corresponding to the set identifier are both off; If the set identifier can correspond to the values of the second characteristic and the fifth characteristic, the network device may also use the set identifier to indicate the values of the second characteristic and the fifth characteristic. In this way, the network device can indicate that the second characteristic and the fifth characteristic are enabled, disabled or valued by carrying the set identifier in the first indication information.
  • the corresponding relationship between the set identifier and the characteristic may be determined according to the type of the terminal.
  • the corresponding relationship may be predefined by a protocol, or may be notified to the terminal by the network device through high-level signaling or physical layer signaling.
  • the corresponding relationship between the set identifier and the characteristic may be at least one row or at least one column in the table.
  • the network device can indicate to enable or disable the feature a1 to the feature an by indicating the set identifier 1; the network device can indicate to enable or disable the feature b1 to the feature bn by indicating the set identifier 2; the network device can indicate the feature c1 by indicating the set identifier 3. to the value of characteristic cn.
  • an, bn, and cn may be the same or different.
  • Collection ID feature set Collection ID 1 feature a1, feature a2, ..., feature an Collection ID 2 feature b1, feature b2, ..., feature bn Collection ID 3
  • characteristic c1 the value of characteristic c2, ..., the value of characteristic cn
  • the indication overhead can be reduced, the feature can be flexibly turned on or off, and energy saving of the terminal can be realized.
  • Step 205 the terminal sends a first confirmation message to the network device.
  • the network device receives the first confirmation information sent by the terminal.
  • the first confirmation message indicates that the second feature has been enabled or disabled, or indicates whether the first indication information is successfully received.
  • the first confirmation information is physical layer signaling.
  • the first acknowledgement information may be uplink control information (uplink control information, UCI).
  • uplink control information uplink control information, UCI.
  • UCI may be scheduling request (SR) information. If the terminal sends the SR, it indicates that the terminal correctly receives the first indication information. Alternatively, if the value of the data bearer included in the SR information is greater than or equal to (or greater than) XR1, it indicates that the terminal correctly receives the first indication information. Alternatively, if the value of the data bearer included in the SR information is less than (or less than or equal to) XR1, it indicates that the terminal does not correctly receive the first indication information.
  • SR scheduling request
  • the UCI may be acknowledgement (acknowledgement, ACK)/negative acknowledgement (negative acknowledgement, NACK) information. If the terminal sends ACK, it means that the terminal correctly receives the first indication information; if the terminal sends NACK, it means that the terminal does not correctly receive the first indication information.
  • the NACK only method can be adopted, that is, NACK is only fed back when the reception fails, and no feedback is given when the reception is successful.
  • the first confirmation information may be sent together with the feedback of the data.
  • the terminal can receive the data carried by the data channel (such as PDSCH), and when the data on the PDSCH is successfully decoded, the terminal feeds back an ACK, indicating that the data was successfully received, and that the first indication information was successfully received.
  • the terminal feeds back NACK, which indicates that the data reception fails, and indicates that the first indication information fails to be received.
  • the first confirmation information may be sent separately from the data feedback.
  • the terminal can receive the data carried by the data channel (such as PDSCH), and when the data on the PDSCH is successfully decoded, the terminal feeds back ACK, which means that the data reception is successful.
  • the terminal may send an ACK, indicating that the first indication information is successfully received.
  • the terminal may send an ACK, indicating that the first indication information is successfully received.
  • the terminal may send two ACK/NACK messages, one of which indicates the confirmation of the first indication information, and one of which indicates the confirmation of the data.
  • the sequence of the two ACK/NACK messages is not limited, and can be predefined or configured by a network device.
  • the first confirmation information is high-level signaling.
  • the first confirmation information is an uplink sequence or an uplink signal.
  • the first acknowledgment information may be a preamble, an SRS, or other uplink signals.
  • the terminal When the terminal receives the first indication information, it can send an uplink preamble sequence, an SRS, or other uplink signals.
  • the network device when the network device receives the first confirmation information, the network device can determine that the terminal has correctly received the first indication information or that the terminal has enabled or disabled certain features.
  • the transmission resource for the terminal to send the first acknowledgment information may be notified to the terminal by the network device.
  • transmission resources include at least one of time domain resources, frequency domain resources, and code resources (sequences).
  • the code resource (sequence) may be bound with the identity of the terminal.
  • the transmission resources may be common uplink transmission resources, that is, uplink transmission resources commonly used by multiple terminals. If the terminal sends the first acknowledgment information in the common uplink transmission resource, the terminal may send the identity of the terminal when sending the first acknowledgment information.
  • the transmission resources may be uplink transmission resources dedicated to the terminal.
  • the transmission resource for the terminal to send the first acknowledgement information may also be indicated by the DCI.
  • the terminal receives the DCI, and transmits the first acknowledgment information on the transmission resource indicated in the DCI.
  • the network device prefferably enable, disable or set the terminal feature, which can better adapt to the needs of the environment or service, improve the flexibility of feature opening, reduce the power consumption of the terminal, realize energy saving, and improve the communication performance.
  • the terminal and the network device may also perform steps 406 and 407, wherein the steps 407 is an optional step.
  • Step 206 the terminal sends the second indication information to the network device.
  • the second indication information indicates on or off of the third characteristic, or indicates the value of the third characteristic.
  • the terminal indicates through the second indication information that the third characteristic is expected or recommended to be turned on or off, or the value of the third characteristic that is expected or recommended.
  • the second indication information includes a second identifier, and the second identifier indicates the second characteristic.
  • the network device if the network device indicates on, off or a value for a single characteristic.
  • the first indication information may further indicate on, off or a value of the sixth characteristic.
  • Step 207 the network device sends a second confirmation message to the terminal.
  • the second confirmation message indicates that the third feature has been enabled or disabled, or indicates whether the second indication information is successfully received.
  • the second confirmation information is physical layer signaling.
  • the second confirmation information is DCI.
  • the network device When the network device sends the DCI scheduling uplink data, it confirms to receive the second indication information.
  • the network device may indicate in the DCI to enable or disable the third characteristic, or indicate the value of the third characteristic, that is, determine to enable or disable the third characteristic, or determine the value of the third characteristic.
  • M bits in the DCI may be used to indicate whether to enable or disable the third feature, where M is a positive integer.
  • the size of the number of bits in the DCI may depend on the number of candidate values of the third characteristic.
  • the number of bits is equal to log2(N) rounded up, where N is the number of candidate values of the third characteristic.
  • the third feature is enabled or disabled through a bit in the DCI. For example, if the bit is 0, the third feature is turned off, and if it is 1, the third feature is turned on.
  • the second acknowledgment information is ACK/NACK information.
  • the network device sends ACK it means that the network device correctly receives the second indication information; if the network device sends NACK, it means that the network device does not correctly receive the second indication information, or it means that the network device does not allow the terminal to change the third feature, that is, Deny the terminal's request.
  • a NACK only method can be adopted, that is, only NACK is fed back when the reception fails, and no feedback is given when the reception is successful, or NACK is only fed back when the terminal's request is rejected, and no feedback is given when the terminal's request is permitted.
  • the second confirmation information may be sent together with the feedback of the data.
  • the network device can receive the data (such as PUSCH) carried by the data channel.
  • the network device feeds back ACK, which means that the data is successfully received and that the second indication information is received. Success or the network device allows the terminal to make changes to the third characteristic.
  • the network device feeds back NACK, which indicates that the data reception fails, and indicates that the second indication information fails to be received or that the network device does not allow the terminal to change the third feature.
  • the second confirmation information may be sent separately from the data feedback.
  • the network device can receive the data (such as PUSCH) carried by the data channel, and when the data on the PUSCH is successfully decoded, the network device feeds back ACK, indicating that the data reception is successful.
  • the network device may send an ACK, indicating that the second indication information is successfully received or the network device allows the terminal to change the third characteristic.
  • the network device may send an ACK, indicating that the second indication information is successfully received or the network device allows the terminal to change the third characteristic. That is to say, the network device may send two ACK/NACK messages, one of which indicates an acknowledgement of the second indication information and one of which indicates an acknowledgement of the data.
  • the sequence of the two ACK/NACK messages is not limited.
  • the second confirmation information is high-level signaling.
  • the network device When the network device receives the second indication information, it may send RRC signaling or MAC layer signaling to indicate that the terminal has successfully received the second indication information, or to indicate that the terminal's request is approved or rejected.
  • an agreement (agree) message or a complete (complete) message may be sent.
  • a reject message or release message may be sent.
  • the terminal After receiving the second confirmation information, the terminal enables or disables the third characteristic according to the second confirmation information, or determines the value of the third characteristic.
  • the transmission resource for the network device to send the second acknowledgment information may be notified to the terminal by the network device.
  • the terminal recommends or informs the network device to enable, disable or value the terminal feature, which can better adapt to the needs of the environment or service, improve the flexibility of feature opening, reduce the power consumption of the terminal, realize energy saving, and improve communication performance. For example, when the terminal has no data transmission requirements or the data volume of the terminal is small, and the terminal wants to enter the energy-saving mode, the terminal can suggest or inform the network device to turn off the terminal characteristics, and then the terminal can enter the energy-saving mode, reduce the power consumption of the terminal, and realize Terminal energy saving.
  • FIG. 3 is a schematic flowchart of a method for determining a characteristic of a terminal according to another embodiment of the present application.
  • the terminal may determine the characteristic set of the terminal according to the indication of the network device.
  • step 301 the network device determines the characteristic set of the terminal according to the type of the terminal.
  • the network device determines the characteristic set of the terminal according to the type of the terminal. For a detailed description, please refer to step 202 in FIG. 2 .
  • Step 302 the network device sends first indication information to the terminal.
  • the terminal receives the first indication information sent by the network device.
  • the first indication information indicates enabling or disabling of the second characteristic, or indicates the value of the second characteristic, and the second characteristic is a characteristic supported by the terminal.
  • first indication information For a detailed description of the first indication information, reference may be made to the description of the first indication information in step 204, which will not be repeated here.
  • Step 303 After receiving the first indication information, the terminal sends first confirmation information to the network device. Correspondingly, the network device receives the first confirmation information of the terminal. This step is optional.
  • first confirmation information For a detailed description of the first confirmation information, reference may be made to the description of the first confirmation information in step 205, which will not be repeated here.
  • Step 304 the terminal determines the characteristic set of the terminal according to the first indication information.
  • the terminal enables or disables the second characteristic according to the first indication information, or determines the value of the second characteristic according to the first indication information.
  • Step 305 the terminal and the network device communicate according to the characteristic in the characteristic set of the terminal.
  • the terminal determines the feature set of the terminal according to the indication information of the network device, so that the network device can improve the flexibility of the feature set according to the requirements of the environment or business, realize the flexible opening or closing of the feature, and reduce the power consumption of the terminal. Realize terminal energy saving and improve communication performance.
  • FIG. 4 is a schematic flowchart of a method for determining a characteristic of a terminal according to another embodiment of the present application.
  • the network device determines the characteristic set of the terminal according to the instruction of the terminal.
  • Step 401 the terminal determines the characteristic set of the terminal.
  • the terminal determines the characteristic set of the terminal.
  • step 201 in FIG. 2 please refer to step 201 in FIG. 2 .
  • Step 402 the terminal sends second indication information to the network device.
  • the network device receives the second indication information sent by the terminal.
  • the second indication information indicates enabling or disabling of the third characteristic, or indicates the value of the third characteristic, and the third characteristic is a characteristic supported by the terminal.
  • Step 403 After receiving the second indication information, the network device sends the second confirmation information to the terminal. Correspondingly, the terminal receives the second confirmation information sent by the network device. This step is optional.
  • step 207 For a detailed description of the second confirmation information, reference may be made to the description of the second confirmation information in step 207, which will not be repeated here.
  • Step 404 the network device determines the feature set of the terminal according to the second indication information.
  • the network device enables or disables the second characteristic according to the second indication information, or determines a value of the second characteristic according to the second indication information.
  • Step 405 the terminal and the network device communicate according to the characteristics in the terminal's characteristic set.
  • the network device determines the feature set of the terminal according to the instruction information of the terminal, and the terminal can suggest or inform the network device to turn on or off the terminal feature, so that the terminal can improve the flexibility of the feature set according to the needs of the environment or business, etc. It can realize flexible opening or closing of features, reduce terminal power consumption, realize terminal energy saving, and improve communication performance.
  • first characteristic, second characteristic, third characteristic, fifth characteristic or sixth characteristic may include one characteristic, or may include multiple characteristics.
  • the terminal characteristic set has a corresponding relationship with the type of the terminal, which can realize the customization of the characteristics of the terminal and the minimization of the characteristics of the terminal, and meet the characteristics of different types of terminals.
  • the chip cost and terminal implementation processing complexity are reduced, and terminal energy saving is realized.
  • Different terminal types have different at least one of the following attributes: supported service types, requirements for mobility, requirements for transmission delay of service data, wireless channel environment in which they are located, requirements for transmission reliability of service data, requirements for coverage requirements and deployment scenarios.
  • the attributes may also include at least one of the following: time-sensitive requirements, location-sensitive requirements, positioning requirements, other communication requirements, and the like.
  • the service type may be determined according to the size of the service data.
  • the service type may include large-packet data, medium-packet data, small-packet data, and the like.
  • Mobility can include movement, fixation, or the size of the movement speed, such as less than 3km/h, 30km/h, 120km/h, etc., or it can refer to the speed in a certain scenario, such as walking speed, vehicle speed, High-speed rail speed, aircraft speed, etc.; among them, movement can also include irregular movement, movement along a fixed route, ultra-short-distance movement, etc.
  • Transmission delay requirements may include high transmission delay, low transmission delay, and normal transmission delay.
  • the channel environment may include a changeable channel environment, a stable channel environment, a relatively stable channel environment, and the like.
  • Reliability requirements can include high reliability, low reliability, average reliability, and the like.
  • Coverage requirements may include wide coverage, strong coverage, weak coverage, general coverage, and deep coverage.
  • the communication scenarios may include the communication scenarios included in the foregoing description of the communication system, or the communication scenarios may also include uplink communication, downlink communication, uplink and downlink communication, side link communication, transmission link, reception link, and full-duplex communication , access communication, backhaul communication, relay communication, etc., are not restricted.
  • the types of terminals include one or more of the following: eMBB devices, URLLC devices, IoT devices, CPE devices, and V2X devices.
  • eMBB equipment is mainly used to transmit large-packet data, and can also be used to transmit small-packet data. It is generally in a mobile state, and has general requirements for transmission delay and reliability. Both uplink and downlink communications are available. The channel environment is complex and changeable. Indoor communication can also be used for outdoor communication, for example, the eMBB device can be a mobile phone.
  • URLLC devices are mainly used to transmit small-packet data, and can also transmit medium-packet data. Generally, they are in a non-mobile state, or they can move along a fixed route.
  • the requirements for transmission delay and reliability are high, that is, low transmission delay and high reliability are required.
  • URLLC equipment can be factory equipment.
  • IoT devices are mainly used to transmit small data, generally in a non-mobile state, and their locations are known. They have moderate requirements for transmission delay and reliability, more uplink communications, and relatively stable channel environments.
  • IoT devices can be smart water meters, sensors .
  • CPE equipment is mainly used to transmit large packet data. It is generally in a non-mobile state, or can move in ultra-short distances. It has moderate requirements for transmission delay and reliability, both uplink and downlink communication, and the channel environment is relatively stable.
  • CPE equipment It can be terminal equipment, AR, VR, etc. in the smart home.
  • the terminal type corresponding to the terminal device can be determined as eMBB device, URLLC device, IoT devices or CPE devices.
  • eMBB devices can also be described as eMBB terminals
  • URLLC devices can also be described as URLLC terminals
  • IoT devices can also be described as IoT terminals
  • CPE devices can also be described as CPE terminals
  • V2X devices can also be described as V2X terminals. No restrictions.
  • eMBB devices can also be referred to as eMBB
  • URLLC devices can also be referred to as URLLC
  • IoT devices can also be referred to as IoT
  • CPE devices can also be referred to as CPE
  • V2X devices can also be referred to as V2X without limitation.
  • Figure 5 is an example of feature analysis for different types of terminals.
  • the characteristics of the first type of terminal can be: transmission of small data and medium data; the terminal is generally non-mobile, or has a fixed route, such as a factory scene; for delay, reliability requirements are relatively high; uplink and downlink data transmission All; the channel environment is stable.
  • the first type of terminal may be a URLLC terminal.
  • the characteristics of the second type of terminal can be: generally transmit small data, and the data can exist periodically; non-mobile, the location is known, such as smart water meters, etc.; for delay, the reliability requirements are general; uplink and downlink data transmission Yes, there are more uplink data transmissions; the channel environment is relatively stable, and the coverage requirements are high, such as deep coverage requirements. Some special scenes are high-speed moving scenes.
  • the second type of terminal may be an IoT terminal.
  • IoT terminals may include one or more of the following: MTC terminals, NB-IoT terminals, mMTC terminals, sensors, sensors, controllers, and the like.
  • the characteristics of the third type of terminal may be: general transmission of large data; terminal fixed, non-mobile, short-distance communication; delay, general reliability requirements; both uplink and downlink data transmission; relatively stable channel environment.
  • the third type of terminal may be a CPE terminal, a smart home terminal, an AR terminal, or a VR terminal or the like.
  • the characteristics of the fourth type of terminal can be: transmission of large data and occasional small data; users (or terminals) are generally mobile; for delay, reliability requirements are general; both uplink and downlink data transmission;
  • the channel environment is more complex and changeable, such as outdoor, indoor and so on.
  • the fourth type of terminal may be an eMBB terminal.
  • the set of characteristics of the terminal may include a first set and a second set.
  • the features in the first set are mandatory features, the first set is a non-empty set, the first set is related to the type of the terminal, and the first set may be called the minimum feature set of the terminal.
  • the features in the second set belong to a set composed of optional features, or it can also be described that the features in the second set are optional features, and the second set can be an empty set or a non-empty set.
  • the first set includes at least one of the following: air interface communication characteristics, positioning characteristics, side link communication characteristics, perception characteristics, AI characteristics, NTN characteristics, and the like.
  • the air interface communication characteristics may also be replaced by Uu communication characteristics, which may include at least one of the following: initial access operation, mobility measurement feedback, supported waveforms, supported bandwidths, modulation methods, data scheduling, HARQ operations, retransmission methods, terminal Processing capability, MIMO, channel measurement feedback, frame structure parameters, channel coding method, uplink power control operation, resource allocation method, uplink control channel, downlink control channel, carrier aggregation, dual connectivity, bandwidth part (BWP), supplementary The uplink (supplementary uplink, SUL), and other characteristics of the air interface communication characteristics, etc.
  • Uu communication characteristics may include at least one of the following: initial access operation, mobility measurement feedback, supported waveforms, supported bandwidths, modulation methods, data scheduling, HARQ operations, retransmission methods, terminal Processing capability, MIMO, channel measurement feedback, frame structure parameters, channel coding method, uplink power control operation, resource allocation method, uplink control channel, downlink control channel, carrier aggregation, dual connectivity, bandwidth part (BWP), supplementary The uplink (supplementary
  • the positioning characteristics may include at least one of the following: positioning characteristics based on DL AOD, positioning characteristics based on DL-TDOA, bandwidth size of positioning reference signals, number of downlink positioning reference signal resources, and support for sending periodic SRS for positioning, etc.
  • Sidelink communication characteristics may include basic sidelink communication capabilities.
  • Perceptual properties may refer to functions or properties that have a sense or awareness of the channel environment, location, scene, etc.
  • the perception feature can also be unified with the positioning feature, such as the function/feature of the integration of perception and positioning.
  • the perception feature can also be unified with the communication feature, such as the function/feature of the integration of perception and communication.
  • Perceptual network can refer to the communication equipment/communication network that can perceive the existing network environment, and by understanding the environment, investigate the configuration of the communication network in real time, and intelligently adapt to changes in the professional environment.
  • the sensing characteristic may include at least one of the following: sending a sensing reference signal, receiving a sensing reference signal, and analyzing and learning a decision.
  • the perceptual characteristic may be a characteristic of transmitting and/or receiving perceptual reference signals.
  • Communication devices can have the ability to learn from changes and use them in future decisions. The ability to learn and apply is based on the timely perception of the network environment.
  • AI characteristics may refer to the functions or characteristics of artificial intelligence, which can realize algorithms, operations or processing of artificial intelligence.
  • communication devices can use the characteristics of AI to improve communication performance.
  • the AI feature may include at least one of the following: AI-based channel estimation, AI-based channel measurement feedback, AI-based encoding/decoding, AI-based modulation/demodulation, AI-based transmitter, AI-based receiver , AI-based data scheduling, AI-based power control, AI-based resource management, AI-based link management, AI-based network security, AI-based network optimization, AI-based network architecture, AI-based physical layer communication Wait.
  • the NTN feature may refer to a function or feature of communicating in a non-terrestrial network, such as a low-altitude network, a high-altitude network, a satellite network, a UAV network, and the like.
  • the NTN feature can also be unified with the ground communication, such as the integrated sky-earth-air network, or the functions/features of the integration of the sky, the ground, and the air.
  • the devices in the NTN network may include at least one of the following: low-orbit satellites, high-orbit satellites, geostationary satellites, unmanned aerial vehicles, aircraft and other non-ground devices.
  • the network device having the NTN characteristic may refer to having the characteristic of communicating with the non-terrestrial device, wherein the communication may refer to sending a signal and/or receiving a signal.
  • the network device has the ability/communication with satellites, can receive signals from satellites, and/or send signals to satellites, etc.
  • the first sets are respectively defined for terminals of different types.
  • the first set is related to the type of the terminal, or may also be referred to as having a corresponding relationship between the first set and the type of the terminal.
  • the correspondence between the first set and the type of the terminal may be predefined by the protocol, or may be notified to the terminal by the network device through signaling, wherein the signaling may be high-level signaling or physical layer signaling. make.
  • the type of the terminal may include at least one of the following: a first type, a second type, a third type, a fourth type, and the like.
  • the first set may include at least one of the following: characteristic 1, characteristic 2, characteristic 3, characteristic 4, and so on.
  • the first set of terminals of the first type includes characteristic 1; the first set of terminals of the second type includes characteristic 2; the first set of terminals of the third type includes characteristic 3; the first set of terminals of the fourth type includes Feature 4, etc.
  • the first set may include positioning characteristics and side-link communication characteristics.
  • the URLLC terminal can be a robotic arm, a robot, etc., and the robotic arm, robot, etc. will move.
  • the positioning feature can be used to perform location prediction and preparation in advance, so as to meet the precise operation requirements, achieve 0ms delay, and avoid service interruption.
  • this application takes the side-link communication feature as a mandatory feature of the URLLC terminal, which can meet the requirements of low latency and high reliability. Business needs.
  • the first set may further include air interface communication characteristics.
  • the first set includes perception characteristics and non-terrestrial network NTN communication characteristics.
  • the second type of terminal is an IoT terminal as an example for description.
  • the perception feature is a must-selected feature of IoT terminals, so that IoT terminals can perceive the surrounding environment, which helps to reduce power consumption and improve communication performance.
  • taking the NTN feature as a mandatory feature of IoT terminals helps to improve the coverage and communication performance in special scenarios (such as deserts, oceans, etc.).
  • the first set may further include air interface communication characteristics.
  • the first set includes AI features.
  • the description is made by taking the third type of terminal as the CPE as an example.
  • the communication performance can be improved based on AI features, for example, channel state information (CSI) acquisition, channel estimation, coding and decoding, AI receivers, AI transmitters, etc. are performed through AI.
  • CSI channel state information
  • the first set may further include air interface communication characteristics.
  • the type of the terminal is the fourth type
  • the first set includes air interface communication characteristics.
  • the fourth type of terminal may be an eMBB.
  • the initial access operation and mobility measurement feedback can also be described together as initial access and mobility characteristics.
  • the initial access and mobility characteristics may also be two separate characteristics, such as initial access characteristics and mobility characteristics.
  • initial access characteristics and mobility characteristics For the convenience of description, the description methods of initial access and mobility characteristics are adopted below.
  • Initial access and mobility characteristics may include one or more of the following: basic initial access channel and process, synchronization signal block (synchronization signal and physical broadcast channel block, SSB) signaling Noise to interference ratio (signal to interference plus noise ratio, SINR) measurement (SSB based SINR measurement), SSB based radio link management (radio link management, RLM) (SSB based RLM), SSB based radio resource management (radio resource management) management, RRM) (SSB based RRM), CSI-RS based SINR measurement (CSI-RS based SINR measurement), CSI-RS based RRM (CSI-RS based RRM), CSI-RS based RLM (CSI-RS) based RLM), cell handover (handover), and neighbor-cell measurement (neighborhood-cell measurement).
  • SINR Signal to interference plus noise ratio
  • RLM radio link management
  • RRM radio resource management
  • CSI-RS based SINR measurement CSI-RS based SINR measurement
  • CSI-RS based RRM CSI-RS
  • the initial access and mobility characteristics supported by different types of terminals may be different.
  • the terminal can support some or all of the initial access and mobility features, thereby realizing the customization of the minimum feature set of the terminal, reducing the cost of the terminal chip, realizing the energy saving of the terminal, and improving the communication performance.
  • the first set of terminals may include basic initial access channels and operations, SSB-based RLM, CSI-RS-based SINR measurement, and CSI-RS-based RRM.
  • the terminal of the first type may be a URLLC terminal.
  • the first set of the terminal includes RLM, RRM, SINR measurement, etc., which can better adapt to the communication environment under mobility. Changes, timely mobility management, improve communication performance.
  • the first set of terminals may include basic initial access channels and operations.
  • the second type of terminal may be an IoT terminal.
  • the terminal of the second type may be a terminal with a fixed location, for a terminal with a fixed location, the terminal does not need to support features such as cell handover and neighbor cell measurement, which can reduce the complexity of terminal implementation and terminal power consumption.
  • the first set of terminals may include basic initial access channels and operations, and CSI-RS-based SINR measurement.
  • the third type of terminal may be a CPE terminal. Considering that the third type of terminal has a fixed location, generally transmits large data, requires high-speed transmission, and has no beam management, the terminal does not need to support features such as cell handover and neighbor cell measurement, which can reduce the complexity of terminal implementation and terminal power consumption.
  • the first set of terminals may include basic initial access channels and operations, SSB-based RLM, CSI-RS-based RRM, cell handover, and neighbor cell measurement.
  • the terminal of the fourth type can be an eMBB terminal.
  • the first set of the terminal includes RLM, RRM, SINR measurement, cell handover, etc. It can better adapt to changes in the communication environment under mobility, perform mobility management in a timely manner, and improve communication performance.
  • the first set of terminals for downlink data transmission, includes OFDM waveforms, and for uplink data transmission, the first set of terminals includes OFDM waveforms and DFT-S-OFDM waveforms.
  • the waveforms supported by different types of terminals may be different, thereby realizing the customization of the minimum characteristic set of the terminal, reducing the cost of the terminal chip, realizing the energy saving of the terminal, and improving the communication performance.
  • the first set of terminals may include OFDM waveforms.
  • the OFDM waveform can be used for uplink transmission or downlink transmission.
  • the first type of terminal may be a URLLC terminal.
  • the first set of terminals may include low-cost waveforms.
  • Low-cost waveforms can include weighted overlap and add-orthogonal frequency division multiplexing (WOLA-OFDM), filter bank based multicarrier-offset quadrature amplitude modulation (filter bank based multicarrier- offset quadrature amplitude modulation, FBMC-OQAM), generalized frequency division multiplexing (GFDM), cross phase modulation (CPM), and other low-cost waveforms.
  • the second type of terminal may be an IoT terminal.
  • the first set of terminals in order to reduce cost, includes low-cost waveforms, that is, the second type of terminal can only support low-cost waveforms for communication, thereby reducing terminal cost and improving communication performance.
  • the first set of terminals may include OFDM waveforms.
  • the third type of terminal may be a CPE terminal.
  • the first set of terminals includes a downlink OFDM waveform, an uplink OFDM waveform, and an uplink DFT-S-OFDM waveform. That is, the peak-to-average power ratio (PAPR) performance of the terminal of this type is considered, and the communication performance of the terminal of this type is considered.
  • the fourth type of terminal may be an eMBB terminal.
  • the bandwidths supported by different types of terminals may be different, thereby realizing the customization of the minimum characteristic set of the terminal, reducing the cost of the terminal chip, realizing the energy saving of the terminal, and improving the communication performance.
  • the first set of terminals may include at least one of 20MHz, 40MHz, 100MHz, 200MHz, and 400MHz.
  • the terminal of the first type may be a URLLC terminal.
  • the first set of terminals includes ultra-narrow bandwidths.
  • the ultra-narrow bandwidth may be at least one of 1.08MHz, 3MHz, 5MHz, 10MHz, or other ultra-narrow bandwidth values.
  • the second type of terminal may be an IoT terminal.
  • the first set of terminals includes ultra-narrow bandwidths, that is, the terminals of the second type only support ultra-narrow bandwidths for communication, thereby reducing terminal costs and improving communication performance.
  • the first set of terminals may include at least one of 20MHz, 40MHz, 100MHz, 200MHz, 400MHz, and ultra-wide bandwidth.
  • the ultra-wide bandwidth may be at least one of 500MHz, 800MHz, 1GHz, 2GHz, and the like.
  • the third type of terminal may be a CPE terminal.
  • the first set in order to realize high-speed data transmission, includes ultra-wide bandwidth, thereby realizing high-speed transmission and improving communication performance.
  • the first set of terminals includes at least one of 20MHz, 40MHz, 100MHz, 200MHz, and 400MHz.
  • the fourth type of terminal may be an eMBB terminal.
  • modulation schemes are defined for data transmission, and the modulation scheme may also be referred to as a modulation order.
  • Different types of terminals support the same modulation scheme or feature sets of different types of terminals include the same modulation scheme.
  • the modulation mode included in the characteristic set of the terminal or the modulation mode supported by the terminal may refer to the supported modulation mode of the highest order.
  • the modulation modes supported by different types of terminals may be different, thereby realizing the customization of the minimum characteristic set of the terminal, reducing the cost of the terminal chip, realizing the energy saving of the terminal, and improving the communication performance.
  • the first set of terminals may include 64QAM.
  • the terminal of the first type may be a URLLC terminal.
  • the first set of terminals may include at least one of 1/2 binary phase shift keying (BPSK), QPSK, and 16QAM.
  • the second type of terminal may be an IoT terminal.
  • the first set of terminals in order to reduce the cost, includes a low-order modulation mode, that is, the second type of terminal only needs to support 1/2BPSK, QPSK, and 16QAM, thereby reducing terminal cost and improving communication performance.
  • the first set of terminals may include at least one of 256QAM, 1024QAM, and higher-order modulation methods.
  • the third type of terminal may be a CPE terminal.
  • the first set of terminals in order to achieve high-speed data transmission, includes at least one of 256QAM, 1024QAM, and higher-order modulation methods to achieve high-speed transmission and improve communication performance.
  • the first set of terminals includes 64QAM.
  • the fourth type of terminal may be an eMBB terminal.
  • the above-mentioned 1), 2), 3) and 4) can be combined with each other.
  • Different types of terminals have different requirements for data transmission, so a more suitable feature set can be determined and/or adopted, thereby realizing the customization of the minimum feature set of the terminal, reducing the cost of the terminal chip, realizing the energy saving of the terminal, and improving the communication performance.
  • a type of terminal may correspond to a feature set, and the feature set may include one or more of initial access and mobility features, support one or more waveforms, and support one or more bandwidth, and supports one or more modulation methods.
  • the first set of terminals may include basic initial access channels and operations, SSB-based RRM, CSI-RS-based RRM, CSI-RS-based SINR measurement, OFDM waveform, super Narrow bandwidth and/or 20MHz, 16QAM and/or QPSK.
  • the terminal of the first type may be a URLLC terminal.
  • the first set of terminals may include basic initial access channels and operations, SSB-based SINR measurements, low-cost waveforms, ultra-narrow bandwidths, and/or 20MHz, 16QAM, and/or QPSK.
  • the second type of terminal may be an IoT terminal.
  • the first set of terminals may include basic initial access channels and operations, SSB-based SINR measurements, OFDM waveforms, ultra-wide narrow bandwidths and/or 100MHz, 256QAM and/or 1024QAM.
  • the third type of terminal may be a CPE terminal.
  • the first set of terminals may include basic initial access channels and operations, SSB-based RRM, CSI-RS-based RRM, cell handover, neighbor cell measurement, OFDM waveform, DFT- S-OFDM waveform, 20MHz, 40MHz, 100MHz and 64QAM.
  • the fourth type of terminal may be an eMBB terminal.
  • the terminal capability set is designed to be customized, and the terminal capabilities/characteristics are customized according to the UE type or UE, so as to realize the matching of characteristics and terminal types, meet the needs of various devices, reduce communication complexity, reduce chip costs, and reduce power consumption. .
  • Scheduling methods may include one or more of the following: dynamic scheduling, configured grant type 1, configured grant type 2, SPS, slot/sub-slot aggregation, and clos-slot scheduling scheduling), and carry data in message 1 or message 3 of the random access channel (RACH) process.
  • RACH random access channel
  • the scheduling manner may also include a data transmission manner and/or a resource allocation manner.
  • the data transmission manner may include repeated transmission.
  • the resource allocation manner may include intra-slot frequency hopping, inter-slot frequency hopping, frequency hopping disabled, and the like.
  • Dynamic scheduling Data transmission based on dynamic scheduling is data transmission scheduled based on physical layer signaling (such as DCI).
  • DCI physical layer signaling
  • Time slot or sub-slot aggregation Based on data transmission based on time-slot or sub-slot aggregation, one data transmission may occupy one or more time slots, or one data transmission may occupy one or more sub-slots.
  • the number of slots or sub-slots may be indicated by an aggregation factor.
  • the aggregation factor indication may be indicated by higher layer signaling or physical layer signaling.
  • the data of multiple time slots or sub-slots can be the same data of different redundancy versions, and the data transmission in this way can reduce the code rate, repeat the transmission multiple times to obtain diversity gain, and improve the reliability of data transmission.
  • Data transmission based on time slot or sub-slot aggregation can realize rapid multiple data transmission of the terminal, reduce the signaling overhead of DCI, and reduce the transmission delay.
  • the terminal can transmit data in multiple time slots or sub-slots, which can realize fast and efficient multiple data transmission, reduce DCI overhead, and reduce transmission delay, which is suitable for service types with high reliability requirements. terminal.
  • the data of multiple time slots or sub-slots can also be different data.
  • Data transmission in this way can realize fast large packet transmission, reduce DCI overhead, reduce transmission delay, and improve data transmission capacity.
  • the terminal can realize fast large-packet data transmission, reduce the signaling overhead of DCI, and reduce the transmission delay.
  • the terminal can perform data transmission in multiple time slots or sub-slots, which can realize fast and efficient transmission of large data packets, reduce DCI overhead, and reduce transmission delay. terminal.
  • Scheduling across time slots Based on data transmission scheduled across time slots, the time slot where the physical layer signaling (such as DCI) is located is not the same time slot where the data is located. Data transmission based on cross-slot scheduling can reserve subsequent time slots when there are no resources in the current time slot, reduce the delay, and prepare for sending and receiving data in advance.
  • the time slot where the physical layer signaling such as DCI
  • Data is carried in message 1 or message 3 of the random access (RACH) process: when the terminal sends the RACH preamble sequence, it can transmit data on the corresponding time-frequency resources to avoid physical layer signaling (such as DCI) or in the random access process based on the random access response (random access response, RAR) scheduling, transmit data in message 3.
  • RACH random access response
  • Carrying data in message 1 or message 3 of the random access process can realize fast data transmission of the terminal, reduce transmission delay, and improve transmission efficiency.
  • Repeated transmission Can refer to the repeated transmission of data multiple times.
  • Intra-slot frequency hopping It can mean that the frequency domain resources of different symbols in the data transmission are different in the time slot.
  • Frequency hopping between time slots It can mean that the frequency domain resources of data transmission in different time slots are different.
  • the terminal and/or the network device may determine and/or adopt a more suitable scheduling manner according to the type of the terminal. That is, when defining the terminal feature set, the type of the terminal can be considered, so as to realize the customization of the minimum feature set of the terminal, reduce the cost of the terminal chip, realize the energy saving of the terminal, and improve the communication performance.
  • a type of terminal may correspond to a feature set, and the feature set may include one or more scheduling methods.
  • the scheduling manner may be at least one of the above-mentioned scheduling manners, or may also be other scheduling manners.
  • the first set of terminals includes scheduling methods A1, A2, and A3; for a terminal of type 2, the first set of terminals includes scheduling methods B1 and B2; The first set includes scheduling modes X1 and X2.
  • the terminal type 1, terminal type 2, ..., terminal type X may be at least one of the above terminal types, such as eMBB, URLLC, IoT, CPE, V2X, AR/VR, etc., which are not limited.
  • Scheduling method A1, scheduling method A2, A3; scheduling method B1, scheduling method B2; scheduling method X1, scheduling method X2 can be at least one of the above scheduling methods, such as dynamic scheduling, configuration authorization type scheduling, SPS scheduling, time Slot or sub-slot aggregation, cross-slot scheduling, random access carrying data, etc., are not limited.
  • an eMBB terminal must support data transmission based on dynamic scheduling, while data transmission based on configuration grant scheduling and data transmission based on time slot aggregation are optional.
  • the terminal and/or the network device may determine and/or adopt a more suitable scheduling manner according to the type of the terminal.
  • the scheduling methods in the first set of terminals include a scheduling method for configuring grants and a scheduling method for aggregation of time slots or sub-slots.
  • the terminal of the first type may be a URLLC terminal.
  • the first type of terminal is the service transmission of small data or medium data, low latency, and high reliability, it can be transmitted directly through the configuration authorized scheduling method without dynamic scheduling.
  • Time delay The scheduling method of time slot aggregation can perform multiple repeated transmissions, improve reliability, and reduce the time delay under feedback and retransmission.
  • the scheduling manner in the first set of terminals includes dynamic scheduling.
  • the second type of terminal may be an IoT terminal. Considering that the terminal of the second type is small data and regular service transmission, a scheduling method of dynamic scheduling can be adopted.
  • the scheduling methods in the first set of terminals include dynamic scheduling and scheduling methods for aggregation of time slots or sub-slots.
  • the third type of terminal may be a CPE terminal. Considering that the third type of terminal is characterized by static and large data transmission, it can use high power consumption mode and data transmission at all times. Therefore, scheduling methods such as dynamic scheduling, cross-slot scheduling, and time-slot aggregation can be used in multiple The time slot is used for large data transmission to improve the transmission rate.
  • the scheduling manner in the first set of terminals includes dynamic scheduling.
  • the fourth type of terminal may be an eMBB terminal.
  • the corresponding relationship may be predefined by the protocol, or may be notified to the terminal by the network device through signaling, for example, through high-level signaling or Physical layer signaling.
  • Table 6 is an example of the correspondence between types of terminals and scheduling methods.
  • the terminal types 1 to X may be one of the types mentioned above, for example, eMBB terminal, URLLC terminal, IoT terminal, CPE, V2X terminal, AR terminal, VR terminal, etc.
  • the scheduling methods A1-An, B1-Bn, X1-Xn may be at least one of the scheduling methods described above, for example, dynamic scheduling, configuration grant, SPS, slot or sub-slot aggregation, cross-slot scheduling, and Data and the like are carried in message 1 or message 3 of the random access procedure.
  • An, Bn, . . . , Xn are positive integers respectively, and the values may be the same or different.
  • Table 7 is an example of the correspondence between the types of terminals and the scheduling methods.
  • the correspondence between the type of the terminal and the scheduling mode may be at least one row and/or at least one column in the following table.
  • the scheduling method may be a scheduling method in which the terminal receives data, such as a downlink scheduling method, or a scheduling method in which the terminal sends data, such as an uplink scheduling method.
  • the terminal and/or the network device may respectively determine and/or define the scheduling manner for data received by the terminal and data sent by the terminal according to the type of the terminal.
  • the first set of terminals includes a scheduling manner in which the terminal receives data, and/or a scheduling manner in which the terminal sends data.
  • the uplink scheduling method of the first set 1 of terminals is A1', and/or the downlink scheduling method is A1 * ; and/or, the uplink scheduling method of the first set 2 of terminals is A2' , and/or, the downlink scheduling mode is A2 * .
  • the uplink scheduling mode of the first set 1 of the terminals is B1', and/or the downlink scheduling mode is B1 * ; and/or, the uplink scheduling mode of the first set 2 of the terminals is B2' , and/or, the downlink scheduling mode is B2 * .
  • the uplink scheduling method of the first set 1 of terminals is X1', and/or the downlink scheduling method is X1 * ; and/or, the uplink scheduling method of the first set 2 of terminals is X2' , and/or, the downlink scheduling mode is X2 * .
  • the type of the terminal has a corresponding relationship with the scheduling manner in which the terminal receives data.
  • the type of the terminal has a corresponding relationship with the scheduling method of the terminal sending data.
  • the corresponding relationship may be predefined by a protocol, or may be notified to the terminal by the network device through signaling, for example, through higher layer signaling or physical layer signaling.
  • Table 8 is another example of the correspondence between the types of terminals and scheduling methods.
  • the terminal types 1 to X may be one of the types mentioned above, for example, eMBB terminal, URLLC terminal, IoT terminal, CPE, V2X terminal, AR terminal, VR terminal, etc.
  • the uplink scheduling methods A1' ⁇ An', B1' ⁇ Bn', X1' ⁇ Xn', and the downlink scheduling methods A1 * ⁇ An * , B1 * ⁇ Bn * , X1 * ⁇ Xn * may be among the scheduling methods described above At least one of, for example, dynamic scheduling, configuration grant, SPS, slot or sub-slot aggregation, cross-slot scheduling, and carrying data in message 1 or message 3 of the random access procedure.
  • An', Bn', Xn', An*, Bn*, Xn* are positive integers respectively, and the values may be the same or different.
  • the HARQ operation may also be called ACK/NACK feedback or HARQ mode, and may include one or more of the following: no ACK/NACK feedback, codeword-level ACK/NACK feedback, coded block group-level ACK/NACK feedback, Synchronous HARQ, asynchronous HARQ, adaptive HARQ (adaptive HARQ), and non-adaptive HARQ (non-adaptive HARQ).
  • No ACK/NACK feedback That is, after data is received or sent, the terminal does not need to feedback ACK/NACK.
  • the blind retransmission mode can be used to transmit data, so as to reduce the delay, reduce the uplink feedback overhead, and improve the communication performance.
  • Codeword-level ACK/NACK feedback that is, the granularity of the feedback data is the codeword, for example, ACK is fed back when the codeword is transmitted correctly, and NACK is fed back when the codeword is transmitted incorrectly.
  • a codeword can also be called a transmission block (TB).
  • Coding block group level ACK/NACK feedback that is, the granularity of the feedback data is the coding block group. Compared with codeword level feedback, the coding block group level can achieve smaller granularity feedback.
  • the terminal can know whether each CB is correct when decoding. Therefore, one way is to perform ACK/NACK feedback for each CB, so that if a certain TB fails to decode, the terminal only needs to retransmit the erroneous CB instead of retransmitting the entire TB.
  • the feedback based on CB seems to reduce the redundant information of retransmission and can improve the resource utilization, but it needs to feed back a lot of uplink ACK/NACK, which will lead to a very high overhead of uplink signaling and also waste of resources. Because it doesn't make sense to send back a lot of ACKs.
  • a compromise solution based on TB feedback and CB feedback is introduced in NR: multiple CBs in a TB are grouped, and the grouped CBs are called code block groups (CBGs).
  • a codeword can include one or more coding blocks. The corresponding ACK/NACK is fed back for each CBG, and retransmission is performed based on the CBG.
  • a codeword includes encoding block group 1 and encoding block group 2. If encoding block group 1 transmits correct feedback ACK, if encoding block group 1 transmits error feedback NACK, if encoding block group 2 transmits correct feedback ACK, if encoding block group 2 transmits correct feedback ACK Transmission error feedback NACK.
  • the maximum number of CBGs can be 2, 4, 6, 8, etc.
  • the corresponding ACK/NACK is fed back for each CBG, and retransmission is performed based on the CBG.
  • CBG transmission is configurable, and only users configured with CBG-based transmission can perform retransmission based on CBG. Feeding back the corresponding ACK/NACK for each CBG can improve resource utilization, avoid retransmission of redundant information, and avoid excessive uplink feedback signaling and waste of resources.
  • the HARQ protocol is divided into two categories: synchronous HARQ and asynchronous HARQ in the time domain, and two categories: adaptive HARQ and non-adaptive HARQ in the frequency domain.
  • HARQ process For the same HARQ process (HARQ process), one HARQ process can only process one TB in the same transmission time interval.
  • Synchronous HARQ It means that retransmission can only be sent at a fixed time after the previous transmission, and also means that a specific subframe can only use a specific HARQ process.
  • the advantage of synchronous HARQ is that the HARQ process number can be directly derived from the system frame number/subframe number without explicitly sending the HARQ process number.
  • Asynchronous HARQ means that retransmissions can occur at any time, and also means that HARQ processes can be used in any order.
  • the advantage of asynchronous HARQ is that retransmission scheduling is more flexible.
  • Adaptive HARQ The PRB resources used for retransmission and the modulation and coding scheme (MCS) can be changed.
  • MCS modulation and coding scheme
  • Non-adaptive HARQ The retransmission must use the same PRB resources and MCS as the previous transmission (new or previous retransmission).
  • Asynchronous HARQ/synchronous HARQ, adaptive HARQ/non-adaptive HARQ are all for the relationship between the previous transmission (including the new transmission and the previous retransmission) and the retransmission.
  • terminals and/or network equipment can determine and/or adopt more suitable HARQ operations according to the type of terminals, thereby realizing the customization of the minimum feature set of terminals and reducing the cost of terminal chips. Realize terminal energy saving and improve communication performance.
  • a type of terminal may correspond to a feature set, and the feature set may include one or more HARQ modes.
  • the HARQ manner may be at least one of the above-mentioned manners, or may also be other HARQ manners.
  • the first set of terminals includes HARQ modes a1 and a2; for a terminal of type 2, the first set of terminals includes HARQ modes b1 and b2; for a terminal of type X, the first set of terminals of the terminal
  • the set includes HARQ modes x1 and x2.
  • the terminal type 1, terminal type 2, ..., terminal type X may be at least one of the above terminal types, such as eMBB, URLLC, IoT, CPE, V2X, AR/VR, etc., which are not limited.
  • HARQ mode a1, HARQ mode a2, HARQ mode b1, HARQ mode b2, HARQ mode x1, HARQ mode x2 can be at least one of the above HARQ modes, such as no ACK/NACK feedback, codeword-level ACK/NACK feedback, Coding block group-level ACK/NACK feedback, synchronous HARQ, asynchronous HARQ, adaptive HARQ, and non-adaptive HARQ, etc., are not limited.
  • the terminal and/or the network device may determine and/or adopt a more suitable HARQ manner according to the type of the terminal.
  • the first set of terminals includes no feedback of ACK/NACK and/or codeword-level ACK/NACK feedback.
  • the terminal of the first type may be a URLLC terminal.
  • the terminal of the first type can transmit services with small data or medium data, low latency and high reliability, it can directly retransmit multiple times without performing ACK/NACK feedback to reduce the latency.
  • ACK/NACK feedback based on codeword level can also be performed.
  • the first set of terminals includes no feedback of ACK/NACK.
  • the second type of terminal may be an IoT terminal. Considering that the second type of terminal may transmit small data and regular services, it may not feed back ACK/NACK, thereby reducing delay and feedback overhead, realizing terminal energy saving and reducing terminal cost.
  • the first set of terminals includes codeword-level ACK/NACK feedback and CBG-level ACK/NACK feedback.
  • the third type of terminal may be a CPE terminal. Considering that the characteristics of the third type of terminal can be static and large data transmission, it can include the use of codeword-level ACK/NACK feedback or CBG-level ACK/NACK feedback, thereby avoiding redundant and correct CBG repeated transmission and improving transmission efficiency.
  • the first set of terminals includes codeword-level ACK/NACK feedback.
  • the fourth type of terminal may be an eMBB terminal.
  • the correspondence may be predefined by a protocol, or may be notified to the terminal by the base station or the core network through signaling. For example, through higher layer signaling or physical layer signaling.
  • Table 9 is an example of the correspondence between types of terminals and HARQ operations.
  • the terminal types 1 to X may be one of the types mentioned above, for example, eMBB terminal, URLLC terminal, IoT terminal, CPE, V2X terminal, AR terminal, VR terminal, etc.
  • the HARQ operations a1-an, b1-bn, x1-xn may be at least one of the HARQ operations described above, for example, no ACK/NACK feedback, codeword-level ACK/NACK feedback, code-block group-level ACK/NACK feedback , synchronous HARQ, asynchronous HARQ, adaptive HARQ, and non-adaptive HARQ.
  • an, bn, ..., xn are positive integers respectively, and the values can be the same or different.
  • Table 10 is an example of the correspondence between types of terminals and HARQ operations.
  • the correspondence between the type of the terminal and the HARQ operation may be at least one row and/or at least one column in the following table.
  • the HARQ operation may be a HARQ operation in which a terminal receives data, such as a downlink HARQ operation, or a HARQ operation in which the terminal sends data, such as an uplink HARQ operation.
  • the terminal and/or the network device may respectively determine and/or define HARQ operations for data received by the terminal and data sent by the terminal according to the type of the terminal.
  • the first set of terminals includes HARQ operations in which the terminal receives data, and/or HARQ operations in which the terminal sends data.
  • the type of the terminal has a corresponding relationship with the HARQ operation in which the terminal receives data.
  • the type of the terminal has a corresponding relationship with the HARQ operation in which the terminal sends data.
  • the corresponding relationship may be predefined by a protocol, or may be notified to the terminal by the network device through signaling, for example, through higher layer signaling or physical layer signaling.
  • the uplink HARQ operations in the first set of terminals are a1', a2', and/or the downlink HARQ operations are a1 * , a2 * .
  • the uplink HARQ operations in the first set of terminals are b1', b2', and/or the downlink HARQ operations are b1 * , b2 * .
  • the uplink HARQ operations in the first set of terminals are x1', x2', and/or the downlink HARQ operations are x1 * , x2 * .
  • the type of the terminal has a corresponding relationship with the HARQ operation in which the terminal receives data.
  • the type of the terminal has a corresponding relationship with the HARQ operation in which the terminal sends data.
  • the corresponding relationship may be predefined by a protocol, or may be notified to the terminal by the network device through signaling, for example, through higher layer signaling or physical layer signaling.
  • Table 11 is another example of the correspondence between types of terminals and HARQ operations.
  • the terminal types 1 to X may be one of the above-mentioned types, for example, eMBB terminal, URLLC terminal, IoT terminal, CPE, V2X terminal, AR terminal, VR terminal, etc.
  • Uplink HARQ operations a1' ⁇ an', b1' ⁇ bn', x1' ⁇ xn', and downlink HARQ operations a1 * ⁇ an * , b1 * ⁇ bn * , x1 * ⁇ xn * may be in the HARQ operations described above At least one of, eg, no ACK/NACK feedback, codeword-level ACK/NACK feedback, coded block group-level ACK/NACK feedback, synchronous HARQ, asynchronous HARQ, adaptive HARQ, and non-adaptive HARQ.
  • an', bn', xn', an*, bn*, and xn* are positive integers respectively, and the values may be the same or different.
  • the retransmission mode may include one or more of the following: blind retransmission, codeword level retransmission, and coded block group level retransmission.
  • Blind retransmission that is, when sending data, the terminal and/or network device can retransmit or repeat the transmission according to the number of transmissions. For example, there is no need to receive HARQ, and it is directly transmitted multiple times, blind retransmission or blind multiple retransmission when data is sent for the first time.
  • Using blind retransmission to transmit data can reduce delay, reduce uplink feedback overhead, and improve communication performance.
  • Codeword-level retransmission that is, the granularity of data retransmission is codeword. For example, if the codeword is transmitted correctly, no retransmission is required, and if the codeword is transmitted incorrectly, the entire codeword is retransmitted.
  • a codeword can also be referred to as a TB.
  • Coding block group retransmission that is, the granularity of data retransmission is the coding block group. Compared with codeword-level retransmission, coded block group-level retransmission can achieve a smaller granularity of retransmission.
  • CBG transmission is configurable, and only users configured with CBG-based transmission can perform retransmission based on CBG. Retransmission for each CBG can improve resource utilization, avoid retransmission of redundant information, and avoid excessive uplink feedback signaling and waste of resources.
  • Different types of terminals may have different requirements for data transmission, so the terminal and/or network device can determine and/or adopt a more suitable retransmission method according to the type of terminal, thereby realizing the customization of the minimum feature set of the terminal and reducing the number of terminal chips. cost, realize terminal energy saving, and improve communication performance.
  • a type of terminal may correspond to a feature set, and the feature set may include one or more retransmission manners.
  • the retransmission manner may be at least one of the above-mentioned retransmission manners, or may also be other retransmission manners.
  • the HARQ operation and the retransmission mode may be corresponding.
  • the retransmission modes of the first set of terminals are aR1 and aR2.
  • the retransmission modes of the first set of terminals are bR1 and bR2.
  • the retransmission modes of the first set of terminals are xR1 and xR2.
  • the terminal and/or the network device may determine and/or adopt a more suitable retransmission manner according to the type of the terminal.
  • the first set of terminals includes blind retransmission and codeword level retransmission.
  • the terminal of the first type may be a URLLC terminal.
  • the terminal of the first type can transmit services with small data or medium data, low latency and high reliability, it can directly retransmit multiple times without performing ACK/NACK feedback to reduce the latency. Repeated transmission multiple times can improve reliability and reduce the delay caused by first feedback and then retransmission.
  • codeword-level retransmission can also be performed.
  • the first set of terminals includes blind retransmission.
  • the second type of terminal may be an IoT terminal.
  • the terminal of the second type may transmit small data and regular services, ACK/NACK may not be fed back, which reduces processing complexity, reduces terminal cost, and improves transmission efficiency.
  • the first set of terminals includes codeword-level retransmission and CBG-level retransmission.
  • the third type of terminal may be a CPE terminal.
  • codeword-level retransmission and CBG-level retransmission can be used, which can avoid repeated transmission of CBGs with correct redundancy and improve transmission efficiency.
  • the first set of terminals includes codeword-level retransmission.
  • the fourth type of terminal may be an eMBB terminal.
  • the correspondence may be predefined by a protocol, or may be notified to the terminal by the base station or the core network through signaling. For example, through higher layer signaling or physical layer signaling.
  • Table 12 is an example of the correspondence between types of terminals and retransmission modes.
  • the terminal types 1 to X may be one of the types mentioned above, for example, eMBB terminal, URLLC terminal, IoT terminal, CPE, V2X terminal, AR terminal, VR terminal, etc.
  • the HARQ operations aR1-aRn, bR1-bRn, and xR1-xRn may be at least one of the retransmission methods described above, such as blind retransmission, codeword level retransmission, and code block group level retransmission. Among them, aRn, bRn, ..., xRn are positive integers respectively, and the values may be the same or different.
  • Table 13 An example of the correspondence between types of terminals and retransmission methods.
  • the correspondence between the terminal type and the retransmission mode may be at least one row and/or at least one column in the following table.
  • the retransmission mode may be a retransmission mode in which the terminal receives data, such as a downlink retransmission mode, or a retransmission mode in which the terminal sends data, such as an uplink retransmission mode.
  • the terminal and/or the network device may respectively determine/define the retransmission mode for data received by the terminal and data sent by the terminal according to the type of the terminal.
  • the first set of terminals includes a retransmission manner in which the terminal receives data, and/or a retransmission manner in which the terminal sends data.
  • the type of the terminal has a corresponding relationship with the retransmission mode of the data received by the terminal.
  • the type of the terminal has a corresponding relationship with the retransmission mode of the data sent by the terminal.
  • the corresponding relationship may be predefined by a protocol, or may be notified to the terminal by the network device through signaling, for example, through higher layer signaling or physical layer signaling.
  • the uplink retransmission modes in the first set of terminals are aR1', aR2', and/or, the downlink retransmission modes are aR1 * , aR2 * .
  • the uplink retransmission modes in the first set of terminals are bR1', bR2', and/or the downlink retransmission modes are bR1 * , bR2 * .
  • the uplink retransmission modes in the first set of terminals are xR1', xR2', and/or the downlink retransmission modes are xR1 * , xR2 * .
  • the type of the terminal has a corresponding relationship with the retransmission mode of the data received by the terminal.
  • the type of the terminal has a corresponding relationship with the retransmission mode of the data sent by the terminal.
  • the corresponding relationship may be predefined by a protocol, or may be notified to the terminal by the network device through signaling, for example, through higher layer signaling or physical layer signaling.
  • Table 14 is another example of the correspondence between types of terminals and retransmission modes.
  • the terminal types 1 to X may be one of the above-mentioned types, for example, eMBB terminal, URLLC terminal, IoT terminal, CPE, V2X terminal, AR terminal, VR terminal, etc.
  • the uplink retransmission modes aR1' ⁇ aRn', bR1' ⁇ bRn', xR1' ⁇ xRn', and the downlink retransmission modes aR1 * ⁇ aRn * , bR1 * ⁇ bRn * , and xR1 * ⁇ xRn * may be the retransmission methods described above. At least one of transmission methods, such as blind retransmission, codeword level retransmission, and coded block group level retransmission.
  • aRn', bRn', xRn', aRn*, bRn*, and xRn* are respectively positive integers, and the values may be the same or different.
  • the terminal processing capability may include at least one of the following: PUSCH processing capability, PDSCH processing capability, sidelink processing capability, and CSI processing capability.
  • the PUSCH processing capability may be called PUSCH processing time, PUSCH preparation time, or transmission preparation time
  • PDSCH processing capability may be called PDSCH preparation time, PDSCH decoding time, or reception preparation time
  • sidelink processing capability may be called as PDSCH preparation time, PDSCH decoding time, or reception preparation time
  • CSI processing capability may be referred to as CSI calculation delay requirement capability, or, CSI calculation time.
  • the PDSCH processing capability may refer to the time from when the terminal receives the PDCCH to when the terminal receives the PDSCH, wherein the PDCCH carries the DCI, and the DCI is used to schedule the PUSCH.
  • the PDSCH processing capability may refer to the time from when the terminal receives the PDSCH to when the terminal sends the feedback information.
  • the sidelink processing capability may refer to the time from when the terminal receives sidelink control information to when the terminal sends sidelink data.
  • the side link control information is used for scheduling side link data.
  • the CSI processing capability may refer to the time from when the terminal receives the CSI reporting indication to when the terminal feeds back CSI.
  • the CSI reporting indication is used to instruct the terminal to report CSI, which may be triggered by DCI.
  • the PUSCH processing capability may include at least one of the following: PUSCH processing capability 1, PUSCH processing capability 2, PUSCH processing capability 3, and PUSCH processing capability 4.
  • Table 2 is PUSCH processing capability 1
  • Table 3 is PUSCH processing capability 2
  • Table 15 is PUSCH processing capability 3
  • Table 16 is PUSCH processing capability 4.
  • Table 2 Table 3
  • Table 15 and Table 16 ⁇ represents the subcarrier spacing configuration information, and see Table 4 for the value.
  • PUSCH processing capability 3 may refer to a capability with stronger processing capability.
  • Processing capability 3 may also be referred to as ultra-short-latency processing capability, ultra-low-latency processing capability, enhanced processing capability, ultra-low-latency processing timing, or ultra-short-latency processing timing, and the like.
  • the processing time is less than 5 symbols.
  • it can be ns-level processing time and so on.
  • the PUSCH processing capability 4 may refer to a capability with weak processing capability. Processing capability 4 may also be referred to as ultra-long-latency processing capability, ultra-high-latency processing capability, reduced processing capability, ultra-long-latency processing timing or ultra-high-latency processing timing, relaxed processing capability, and low-cost processing capability.
  • the processing time is greater than 20 symbols. For example, it can be a processing time of ms level.
  • the PDSCH processing capability may include at least one of the following: PDSCH processing capability 1 , PDSCH processing capability 2 , PDSCH processing capability 3 , and PDSCH processing capability 4 .
  • Table 17 is PDSCH processing capability 1
  • Table 18 is PDSCH processing capability 2
  • Table 19 is PDSCH processing capability 3
  • Table 20 is PDSCH processing capability 4.
  • Table 17, Table 18, Table 19 and Table 20, ⁇ represents the subcarrier spacing configuration information, and see Table 4 for the value.
  • the PDSCH processing capability 3 may refer to a capability with a stronger processing capability. Processing capability 3 may also be referred to as ultra-short-latency processing capability, ultra-low-latency processing capability, enhanced processing capability, ultra-low-latency processing timing, or ultra-short-latency processing timing, and the like.
  • the processing time is less than 3 symbols. For example, it can be ns-level processing time and so on.
  • the PDSCH processing capability 4 may refer to a capability with weak processing capability. Processing capability 4 may also be referred to as ultra-long-latency processing capability, ultra-high-latency processing capability, reduced processing capability, ultra-long-latency processing timing or ultra-high-latency processing timing, relaxed processing capability, and low-cost processing capability.
  • the processing time is greater than 20 symbols. For example, it can be a processing time of ms level.
  • the PDSCH processing capability of cross-carrier scheduling when the PDCCH and PDSCH have different carrier intervals may include at least one of the following: PDSCH processing capability 1 for cross-carrier scheduling, PDSCH processing capability 2 for cross-carrier scheduling, and PDSCH processing capability 3 for cross-carrier scheduling.
  • Table 21 is PDSCH processing capability 1 for cross-carrier scheduling
  • Table 22 is PDSCH processing capability 2
  • Table 23 is PDSCH processing capability 3.
  • Table 21 Table 22 and Table 23, ⁇ represents the subcarrier spacing configuration information, and see Table 4 for the values.
  • ⁇ PDCCH refers to the subcarrier spacing of PDCCH.
  • the PDSCH processing capability 2 for cross-carrier scheduling may refer to a capability with stronger processing capability.
  • Processing capability 3 may also be referred to as ultra-short-latency processing capability, ultra-low-latency processing capability, enhanced processing capability, ultra-low-latency processing timing, or ultra-short-latency processing timing, and the like.
  • the processing time is less than 10 symbols.
  • it can be ns-level processing time and so on.
  • the PDSCH processing capability 3 for cross-carrier scheduling may refer to a capability with weaker processing capability.
  • Processing capability 4 may also be referred to as ultra-long-latency processing capability, ultra-high-latency processing capability, reduced processing capability, ultra-long-latency processing timing or ultra-high-latency processing timing, relaxed processing capability, and low-cost processing capability.
  • the processing time is greater than 14 symbols.
  • it can be a processing time of ms level.
  • the PSSCH processing capability may include at least one of the following: PSSCH processing capability 1 , PSSCH processing capability 2 , and PSSCH processing capability 3 .
  • table 24 is PSSCH processing capability 1
  • table 25 is PSSCH processing capability 2
  • table 26 is PSSCH processing capability 3.
  • Table 24 is PSSCH processing capability 1
  • table 25 is PSSCH processing capability 2
  • table 26 is PSSCH processing capability 3.
  • Table 25 and Table 26 represents the subcarrier spacing configuration information, and see Table 4 for the values.
  • PSSCH processing capability 2 may refer to a capability with stronger processing capability.
  • Processing capability 3 may also be referred to as ultra-short-latency processing capability, ultra-low-latency processing capability, enhanced processing capability, ultra-low-latency processing timing, or ultra-short-latency processing timing, and the like.
  • the processing time is less than 10 symbols.
  • it can be ns-level processing time and so on.
  • PSSCH processing capability 3 may refer to a capability with weak processing capability.
  • Processing capability 4 may also be referred to as ultra-long-latency processing capability, ultra-high-latency processing capability, reduced processing capability, ultra-long-latency processing timing or ultra-high-latency processing timing, relaxed processing capability, and low-cost processing capability.
  • the processing time is greater than 36 symbols.
  • it can be a processing time of ms level.
  • the CSI processing capability may include at least one of the following: CSI processing capability 1, CSI processing capability 2, CSI processing capability 3, and CSI processing capability 4.
  • table 27 is CSI processing capability 1
  • table 28 is CSI processing capability 2
  • table 29 is CSI processing capability 3
  • table 30 is CSI processing capability 4.
  • Table 27, Table 28, Table 29 and Table 30, ⁇ represents the subcarrier spacing configuration information, and see Table 4 for the values.
  • the CSI processing capability 3 may refer to a capability with stronger processing capability. Processing capability 3 may also be referred to as ultra-short-latency processing capability, ultra-low-latency processing capability, enhanced processing capability, ultra-low-latency processing timing, or ultra-short-latency processing timing, and the like.
  • the processing time is less than 10 symbols. For example, it can be ns-level processing time and so on.
  • the CSI processing capability 4 may refer to a capability with weak processing capability. Processing capability 4 may also be referred to as ultra-long-latency processing capability, ultra-high-latency processing capability, reduced processing capability, ultra-long-latency processing timing or ultra-high-latency processing timing, relaxed processing capability, and low-cost processing capability.
  • the processing time is greater than 36 symbols. For example, it can be a processing time of ms level.
  • the terminal and/or the network device may determine and/or define the terminal processing capability according to the type of the terminal.
  • the first set of terminals may include at least one of the following: PUSCH processing capability 2, PUSCH processing capability 3, PDSCH processing capability 2, PDSCH processing capability 3, PSSCH processing capability 2, CSI processing capability 2 , CSI processing capability 3.
  • the terminal of the first type may be a URLLC terminal. Considering that the terminal of the first type transmits ultra-low latency services, the terminal is required to have stronger processing capabilities.
  • the PUSCH processing capability 3, and/or the PUSCH processing capability 3, and/or the PDSCH processing capability 2 , and/or, PDSCH processing capability 3, and/or, PSSCH processing capability 2, and/or, CSI processing capability 2, and/or, CSI processing capability 3 as a mandatory feature of the first type of terminal, so as to meet the requirements of low Delay requirements and improve communication performance.
  • the first set of terminals may include at least one of the following: PUSCH processing capability 4, PDSCH processing capability 4, PSSCH processing capability 3, and CSI processing capability 4.
  • the second type of terminal may be an IoT terminal. Considering the low-cost requirement of the second type of terminal, the terminal is required to have a weaker processing capability, therefore, the PUSCH processing capability 4, and/or the PDSCH processing capability 4, and/or the PSSCH processing capability 3, and/or the Or, the CSI processing capability 4 is a mandatory feature of the second type of terminal, so as to meet the requirement of low cost and improve the communication performance.
  • the first set of terminals may include processing capability 1 .
  • the fourth type of terminal may be an eMBB terminal.
  • the above-mentioned 5), 6), 7) and 8) can be combined with each other.
  • data transmission needs are different, so a more suitable set of characteristics can be determined and/or adopted.
  • a type of terminal may correspond to a feature set, and the feature set may include one or more modulation modes, one or more HARQ operation modes, one or more retransmission modes, and a one or more terminal processing capabilities.
  • the first set of terminals may include time slot aggregation, dynamic scheduling, configuration grant, processing capability 2, and processing capability 3.
  • the first type of terminal may be a URLLC terminal.
  • the first set of terminals may include PDSCH repeated transmission, and configure the grant.
  • the second type of terminal may be an IoT terminal.
  • the first set of terminals may include time slot aggregation, dynamic scheduling, codeword-level ACK/NACK feedback, codeword-level retransmission, CBG-level ACK/NACK feedback, CBG-level retransmission, processing power 1.
  • the third type of terminal may be a CPE terminal.
  • the first set of terminals may include intra-slot frequency hopping, dynamic scheduling, codeword-level ACK/NACK feedback, codeword-level retransmission, and processing capability 1.
  • the customization of the terminal capability set can be realized, and the terminal and/or the network device can customize the terminal capabilities/characteristics according to the type of the terminal or the terminal, so as to realize the matching between the characteristics and the type of the terminal, meet the requirements of various devices, and reduce the complexity of communication. degree, reduce chip cost and reduce power consumption.
  • MIMO characteristics may include one or more of the following: basic PDSCH reception, PDSCH beam swithing, MIMO multi-layer transmission, transmission configuration indication , TCI) state (multi-TCI state), DMRS, beam correlation, channel state information (CSI) measurement feedback (CSI measurement and feedback), and AI-based CSI (AI based CSI), etc.
  • Basic PDSCH transmission capabilities include data resource unit mapping (data RE mapping), single layer data transmission (single layer transmission), and single TCI state.
  • the TCI state is used to indicate quasi co-located (QCL) information of the antenna ports.
  • Quasi-co-location information may be information for determining large-scale characteristic parameters of the channel. There is a quasi-co-location relationship between the two antenna ports, which means that the large-scale channel characteristic parameters of one antenna port can be inferred by the (conveyed) channel large-scale characteristic parameters of the other antenna port.
  • Large-scale characteristic parameters can include average gain, average delay, delay spread, Doppler shift, Doppler spread, spatial parameters One or more of (spatial parameters, or spatial Rx parameters).
  • the spatial parameters may include one or more of the following: angle of arrival (AOA), dominant angle of arrival (dominant AoA), average angle of arrival (average AoA), and angle of departure (AOD) , Channel Correlation Matrix, Power Angle Spread Spectrum of Arrival Angle, Average AoD, Power Angle Spread Spectrum of Departure Angle, Transmit Channel Correlation, Receive Channel Correlation, Transmit Beamforming, Receive Beamforming, Spatial Channel Correlation properties, spatial filters, spatial filtering parameters, spatial receiving parameters, weight information, etc.
  • AOA angle of arrival
  • D average angle of arrival
  • AOD angle of departure
  • DMRS includes one or more of the following: basic DMRS under scheduling type A (basic DMRS for scheduling type A), basic DMRS under scheduling type B (basic DMRS for scheduling type B), 1-symbol front-end (front- loaded) DMRS and additional DMRS of 2 symbols (1+2DMRS), preload DMRS of 2 symbols and additional DMRS of 2 symbols (2+2DMRS), preload DMRS of 1 symbol and 3 symbols additional DMRS (1+3 DMRS).
  • the scheduling type A may refer to a scheduling method at the slot level, and may also be referred to as the data channel mapping type A.
  • Scheduling type B may refer to a sub-slot or symbol-level scheduling manner, and may also be referred to as data channel mapping type B.
  • the additional DMRS may refer to a DMRS other than the basic DMRS.
  • the basic DMRS can also be called the pre-DMRS, which can refer to the DMRS with the occupied symbols in the front of the DMRS transmitted in a time unit, for example, can be placed at the beginning of the data or at a relatively front position; the additional DMRS can refer to the DMRS in the Among the DMRSs transmitted in one time unit, the occupied symbols are later in the DMRS.
  • the basic DMRS and the additional DMRS may be carried in different symbol positions of the same scheduling unit, and the same scheduling unit includes at least any one of a subframe, a time slot, or a mini-slot, which is not particularly limited in this embodiment of the present application .
  • the additional DMRS may be used to improve the accuracy of channel estimation, and may be suitable for high-speed moving scenarios where the channel changes on different symbols.
  • additional DMRSs are introduced.
  • Beam-related features include one or more of the following: periodic beam reporting (period beam reporting), aperiod beam reporting (aperiod beam reporting), semi-static beam reporting (semi-period beam reporting), based on SSB or CSI- Beam measurement of RS.
  • AI-based CSI refers to AI-based CSI measurement feedback, AI-based channel state information acquisition, and the like.
  • the MIMO characteristics supported by different types of terminals may be different.
  • the terminal can support part or all of the MIMO features, thereby realizing the customization of the minimum feature set of the terminal, reducing the cost of the terminal chip, realizing the energy saving of the terminal, and improving the communication performance.
  • the first set of terminals includes basic PDSCH transmission capabilities.
  • the first type of terminal may be a URLLC terminal.
  • single-symbol DMRS can be supported, which reduces chip cost, reduces processing complexity, realizes terminal energy saving, and improves communication performance.
  • the first set of terminals may include at least one of basic PDSCH transmission capability, 1+2 DMRS, and 1+3 DMRS.
  • the second terminal type may be an IoT terminal.
  • the first set of terminals includes single-stream data transmission without supporting MIMO multi-layer transmission, thereby reducing terminal cost and improving communication performance.
  • 1+3 DMRS can be supported to improve channel estimation performance and communication performance.
  • the first set of terminals may include at least one of MIMO multi-layer transmission, AI-based CSI, and the like.
  • the third type of terminal may be a CPE terminal.
  • the first set of terminals in order to realize high-speed data transmission, includes MIMO multi-layer transmission, so as to realize high-speed transmission and improve communication performance.
  • the first set of terminals may include AI-based CSI, which improves the accuracy of channel estimation, reduces the delay of channel acquisition, reduces feedback overhead, and improves communication performance.
  • the first set of terminals includes basic PDSCH transmission capability, MIMO multi-layer transmission, multi-TCI state 1+2 DMRS, periodic beam reporting, and the like.
  • the fourth type of terminal may be an eMBB terminal.
  • the CSI measurement feedback characteristics may include one or more of the following: time division duplexing (TDD) CSI measurement, frequency division duplexing (FDD) CSI measurement, CSI-RS configuration, CSI measurement feedback configuration, Feedback amount, codebook, no CSI measurement feedback, etc.
  • TDD time division duplexing
  • FDD frequency division duplexing
  • CSI-RS configuration
  • CSI measurement feedback configuration Feedback amount, codebook, no CSI measurement feedback, etc.
  • the network device can obtain the channel state information by receiving the SRS sent by the terminal.
  • TDD CSI measurement includes one or more of the following: periodic SRS transmission, semi-persistent SRS transmission, and aperiodic SRS transmission.
  • the network device needs to send the CSI-RS, the terminal determines the channel state information by receiving the CSI-RS, and sends the channel state information to the network device.
  • the network device may determine the channel state information according to the CSI sent by the terminal.
  • the CSI measurement feedback may include one or more of the following: periodic CSI measurement feedback, semi-persistent CSI measurement feedback, and aperiodic CSI measurement feedback.
  • the CSI measurement feedback may include one or more of the following: sub-band CSI measurement feedback and full-band CSI measurement feedback.
  • Subband CSI measurement feedback includes subband precoding matrix indicator (PMI) and subband channel quality indicator (CQI); full-band CSI measurement feedback includes full-band PMI and full-band CQI.
  • PMI subband precoding matrix indicator
  • CQI subband channel quality indicator
  • full-band CSI measurement feedback includes full-band PMI and full-band CQI.
  • the CSI-RS configuration may include one or more of the following: time-frequency domain resource density, number of antenna ports, periodicity, semi-persistence, aperiodicity, CSI-RS resources for measuring channels, CSI for measuring interference - RS resources, CSI-RS resources for tracking beam tracking.
  • the CSI feedback amount may include one or more of the following: rank (RI), PMI, CQI, reference signal received power (RSRP), beam index (Beam index), CRI (CSI-RS resource identifier), AI-based feedback, etc. .
  • the codebook may include one or more of the following: a type 1 single-panel codebook, a type 1 multi-panel codebook, a type 2 codebook, and a beam.
  • Type 1 single-panel codebook is the codebook for beam selection;
  • type 1 multi-panel codebook is based on the type 1 single-panel codebook, and feeds back the phase information between panels;
  • type 2 codebook is the codebook for beam combining;
  • the beam is Port-merged codebook.
  • the CSI measurement feedback characteristics supported by different types of terminals may be different, thereby realizing the customization of the minimum characteristic set of the terminal, reducing the cost of the terminal chip, realizing the energy saving of the terminal, and improving the communication performance.
  • a type of terminal may correspond to a characteristic set, and the characteristic set may include one or more of CSI measurement feedback characteristics.
  • the CSI measurement feedback characteristic may be at least one of the above-mentioned characteristics, or may also be other CSI measurement feedback characteristics.
  • the CSI measurement feedback characteristics included in the first set of terminals are AC1, AC2; for type 2 terminals, the CSI measurement feedback characteristics included in the first set are BC1, BC2; for type X terminals
  • the CSI measurement feedback characteristics included in the first set of terminals are XC1 and XC2.
  • the first set of terminals includes at least one of no CSI measurement feedback and periodic CSI measurement feedback.
  • the first type of terminal may be a URLLC terminal.
  • the movement route of the terminal is known or predictable, so the channel environment is relatively stable, and CSI measurement feedback may not be performed, thereby reducing power consumption and cost; or some terminals can also perform periodic measurement, Measure once for a period of time, the route is known or predictable, and the power consumption is reduced while obtaining channel information.
  • the first set of terminals includes at least one item of no CSI measurement feedback and aperiodic CSI measurement feedback.
  • the second type of terminal may be an IoT terminal. Considering the static scene where the terminal of the second type is located, such as a smart water meter, etc., CSI measurement feedback may not be performed. For the high-speed scenario where the second type of terminal is located, aperiodic CSI measurement feedback can be performed to trigger feedback and reduce power consumption.
  • the first set of terminals includes periodic CSI measurement feedback.
  • the third type of terminal may be a CPE terminal.
  • periodic measurement can be performed, once a period of time, to obtain channel information and reduce power consumption.
  • the first set of terminals includes periodic CSI measurement feedback and aperiodic CSI measurement feedback.
  • the fourth type of terminal may be an eMBB terminal.
  • the correspondence may be predefined by the protocol, or may be notified to the terminal by the network device through signaling, for example, through high-level signaling. or physical layer signaling.
  • Table 31 is an example of the correspondence between the type of the terminal and the CSI measurement feedback manner.
  • the correspondence between the type of the terminal and the CSI measurement feedback manner may be at least one row and/or at least one column in the following table.
  • the terminal types 1 to X may be one of the types mentioned above, for example, eMBB terminal, URLLC terminal, IoT terminal, CPE, V2X terminal, AR terminal, VR terminal, etc.
  • the CSI measurement feedback modes AC1 ⁇ ACn, BC1 ⁇ BCn, and XC1 ⁇ XCn may be at least one of the CSI measurement feedback modes introduced above. Among them, ACn, BCn, ..., XCn are positive integers respectively, and the values may be the same or different.
  • Table 32 is an example of the correspondence between types of terminals and scheduling methods. The corresponding relationship may be at least one row and/or at least one column in the following table.
  • type of terminal CSI measurement feedback method first type Periodic CSI measurement feedback, number of antenna ports 4, 8 Type II Aperiodic CSI measurement feedback fourth type Periodic CSI measurement feedback, the number of antenna ports is 16, 32
  • the above-mentioned properties 1) to 10) can be combined with each other.
  • data transmission needs/requirements are different, so a more suitable set of characteristics can be determined and/or adopted.
  • the first set of terminals includes at least one of the following characteristics: processing capability #3, CP-OFDM waveform, type B mapping, data transmission scheduling based on configuration grant, time slot aggregation, hybrid automatic
  • the number of retransmission requests HARQ processes is 2, radio link management and/or radio resource management based on synchronization signal blocks, aperiodic channel state information measurement reporting, beam tracking, and beam management.
  • the first type of terminal may be a URLLC terminal.
  • the first set of terminals includes at least one of the following characteristics: low cost waveform, data channel repeat transmission, type B mapping, data transmission scheduling based on configuration grant, time slot aggregation, and HARQ process
  • the number is 1.
  • the second type of terminal may be an IoT terminal.
  • characteristic sets can be defined for different types of terminals respectively, which can realize customization of terminal characteristics and minimization of terminal characteristics, while satisfying the characteristics of different types of terminals.
  • the chip cost and terminal implementation processing complexity are reduced, and terminal energy saving is realized.
  • the default value and/or the set of candidate values for the characteristics of the terminal may be related to the type of the terminal.
  • An embodiment of the present application provides a communication method for determining a default value of a characteristic and/or a set of candidate values of a characteristic.
  • the embodiments in this application may be independent or combined with each other, which is not limited in this application.
  • the terminal and/or the network device may determine the default value of the characteristic according to the correspondence between the type of the terminal and the default value of the characteristic. And/or, the terminal and/or the network device may determine the set of candidate values of the characteristic according to the correspondence between the type of the terminal and the set of candidate values of the characteristic.
  • the following takes the characteristics in the second set (that is, the optional characteristics of the terminal) as an example to describe the relationship between the default value or the set of candidate values of the characteristics of the terminal and the type of the terminal. It should be noted that the definitions of the default values and/or candidate value sets of the features in the first set (ie, the mandatory features of the terminal) are similar, and the description of the second set can be referred to, and details are not repeated here.
  • the terminal may report whether one or some features are supported, or report the supported values.
  • the terminal may report whether one or some features are supported, or report the supported values.
  • a default value or a set of candidate values of the feature may be defined for different types of terminals. That is, the terminal and/or the network device may determine the default value of the characteristic according to the type of the terminal, and/or determine the set of candidate values of the characteristic according to the type of the terminal. Optionally, the terminal and/or the network device may determine the candidate value set of the characteristic according to the type of the terminal, and determine the number of bits and the meaning of the bits indicated by the characteristic according to the candidate value set, and then determine the value of the characteristic (parameter value).
  • reporting overhead can be reduced, multiple chips can be matched, chip costs can be reduced, terminal features can be enabled on demand, and spectral efficiency can be improved.
  • the correspondence between the type of the terminal and the default value of the characteristic, and/or the correspondence between the type of the terminal and the set of candidate values of the characteristic may be predefined by a protocol or configured through signaling.
  • the signaling may be higher layer signaling, or physical layer signaling.
  • the set of candidate values of the supported modulation order may be predefined by the protocol, or may be configured by the network device to the terminal through signaling, which is not limited in this application.
  • the signaling may be higher layer signaling or physical layer signaling.
  • the set of candidate values of modulation order is ⁇ MA1, MA2, MA3, . . . , MAn ⁇ .
  • the set of candidate values of modulation order is ⁇ MB1, MB2, MB3, . . . , MBn ⁇ .
  • the set of candidate values of modulation order is ⁇ MX1, MX2, MX3, ..., MXn ⁇ .
  • MA1, MA2, MA3, ..., MAn, MB1, MB2, MB3, ..., MBn, MX1, MX2, MX3, ..., MXn can be one or more of the following: bpsk-halfpi, bpsk, qam16, qam64, qam256, qam1024, or other values.
  • the corresponding relationship may be predefined by the protocol, or may be configured by the network device to the terminal through signaling, which is not limited in this application.
  • the signaling may be higher layer signaling or physical layer signaling.
  • the default value of the parameter value may be the first value in the set of candidate values.
  • the set of candidate values of the modulation order is ⁇ bpsk-halfpi, bpsk, qam16 ⁇ . If represented in binary, each value can be indicated with 2 bits. That is, the number of bits for the indication of the modulation order of the terminal of the first type is 2.
  • the bit meaning of the indication of the modulation order of the terminal of the first type may refer to: bit 00 represents bpsk-halfpi, bit 01 represents bpsk, and bit 10 represents qam16.
  • the first type of terminal may be a URLLC terminal.
  • the default value of the modulation order of the terminal of the first type is bpsk-halfpi.
  • the first type of terminal may be a URLLC terminal.
  • the set of candidate values of the modulation order is ⁇ bpsk-halfpi, bpsk, qam16 ⁇ . If represented in binary, each value can be indicated by 2 bits. That is, the number of bits for the indication of the modulation order of the terminal of the second type is 2.
  • the bit meaning of the indication of the modulation order for the second type of terminal may refer to: bit 00 represents bpsk-halfpi, bit 01 represents bpsk, and bit 10 represents qam16.
  • the second type of terminal may be an IoT terminal.
  • the default value of the modulation order of the terminal of the second type is bpsk-halfpi.
  • the second type of terminal may be an IoT terminal.
  • the set of candidate values of the modulation order is ⁇ qam16, qam64, qam256, qam1024 ⁇ . If represented in binary, each value can be indicated by 2 bits. That is, the number of bits for the indication of the modulation order of the terminal of the third type is 2.
  • the bit meaning of the indication of the modulation order for the third type of terminal may refer to: bit 00 represents qam16, bit 01 represents qam64, bit 10 represents qam256, and bit 11 represents qam1024.
  • the third type of terminal may be a CPE terminal.
  • the default value of the modulation order of the terminal of the third type is qam16.
  • the third type of terminal may be a CPE terminal.
  • the set of candidate values of the modulation order is ⁇ bpsk-halfpi, bpsk, qam16, qam64, qam256 ⁇ .
  • each value can be indicated by 3 bits. That is, the number of bits for the indication of the modulation order of the terminal of the fourth type is 3.
  • the bit meaning of the indication of the modulation order of the terminal of the fourth type may refer to: bit 000 represents bpsk-halfpi, bit 001 represents bpsk, bit 010 represents qam16, bit 011 represents qam64, and bit 100 represents qam256.
  • the fourth type of terminal may be an eMBB terminal.
  • the default value of the modulation order of the terminal of the fourth type is bpsk-halfpi.
  • the fourth type of terminal may be an eMBB terminal.
  • the terminal and/or the network device may determine the set of candidate values indicated by the modulation order according to the type of the terminal, and determine the number of bits and the meaning of the bits indicated by the modulation order according to the set of candidate values, and then determine the value of the modulation order. (parameter value).
  • designing a set of candidate values indicated by the modulation order corresponding to the terminal type can reduce reporting overhead, match multiple chips, reduce chip costs, enable terminals to save energy on demand, and improve spectral efficiency.
  • the set of candidate values of the maximum number of CSI-RS resources supported for RLM may be predefined by the protocol, or may be configured by the network device to the terminal through signaling, which is not limited in this application.
  • the signaling may be higher layer signaling or physical layer signaling.
  • the maximum number of candidate value sets are ⁇ MCA1, MCA2, MCA3, ..., MCAn ⁇
  • the maximum number of candidate value sets are ⁇ MCB1, MCB2, MCB3, . . . , MCBn ⁇ .
  • the maximum number of candidate value sets are ⁇ MCX1, MCX2, MCX3, . . . , MCXn ⁇ .
  • MCA1, MCA2, MCA3, ..., MCAn, MCB1, MCB2, MCB3, ..., MCBn, MCX1, MCX2, MCX3, ..., MCXn can be one or more of the following: n2, n4, n6, n8, n12.
  • the maximum numbers corresponding to n2, n4, n6, n8, and n12 are 2, 4, 6, 8, 12, or other values, respectively.
  • the corresponding relationship may be predefined by the protocol, or may be configured by the network device to the terminal through signaling, which is not limited in this application.
  • the signaling may be higher layer signaling or physical layer signaling.
  • the default value of the parameter value may be the first value in the set of candidate values.
  • the maximum number of candidate value sets are ⁇ n2, n4 ⁇ . If represented in binary, each value can be indicated by 1 bit.
  • the terminal of the first type may be a URLLC terminal. Considering that the terminal movement route of the first type is known or predictable, the channel environment is relatively stable, and the number of resources for RLM can be relatively small, which can reduce power consumption, cost, and reporting overhead. That is, the number of bits indicating the number of resources for performing RLM for the terminal of the first type is 1.
  • the bit meaning of the indication of the number of resources for performing RLM for the terminal of the first type may refer to: bit 0 represents 2, and bit 1 represents 4.
  • the default value of the indication of the number of resources for performing RLM of the terminal of the first type is 2.
  • the first type of terminal may be a URLLC terminal.
  • the maximum number of candidate value sets are ⁇ n6, n8 ⁇ . If represented in binary, each value can be indicated by 1 bit.
  • the second type of terminal may be an IoT terminal.
  • the channel environment changes rapidly, and the number of resources for RLM can be relatively large, which can reduce power consumption, cost, and reporting overhead. That is, the number of bits indicating the number of resources for performing RLM for the second type terminal is 1.
  • the bit meaning of the indication of the number of resources for performing RLM for the terminal of the second type may refer to: bit 0 represents 6, and bit 1 represents 8.
  • the default value of the indication of the number of resources for performing RLM of the terminal of the second type is 6.
  • the second type of terminal may be an IoT terminal.
  • the maximum number of candidate value sets are ⁇ n4, n6 ⁇ . If represented in binary, each value can be indicated by 1 bit.
  • the third type of terminal may be a CPE terminal. Since the third type of terminal has no mobility and transmits large data, the number of RLM resources can be relatively moderate, and it can be measured once for a period of time to obtain channel information while minimizing power consumption, reducing costs, and reducing reporting overhead. That is, the number of bits indicating the number of resources for performing RLM for the terminal of the third type is 1.
  • the bit meaning of the indication of the number of resources for performing RLM for the terminal of the third type may refer to: bit 0 represents 4, and bit 1 represents 6.
  • the default value of the indication of the number of resources for performing RLM of the terminal of the third type is 4.
  • the third type of terminal may be a CPE terminal.
  • the maximum number of candidate value sets are ⁇ n2, n4, n6, n8, n12 ⁇ .
  • each value can be indicated by 3 bits.
  • the fourth type of terminal may be an eMBB terminal. That is, the number of bits indicating the number of resources for performing RLM for the terminal of the third type is three.
  • the bit meaning of the indication of the number of RLM resources for the fourth type of terminal may refer to: bit 000 represents 2, bit 001 represents 4, bit 010 represents 6, bit 011 represents 8, bit 100 represents 12, and so on.
  • the default value of the indication of the number of resources for performing RLM of the terminal of the fourth type is 2.
  • the fourth type of terminal may be an eMBB terminal.
  • the terminal and/or the network device may determine the set of candidate values for indicating the number of resources for RLM according to the type of the terminal, and determine the number of bits and the meaning of the bits for indicating the number of resources for RLM according to the set of candidate values, and then determine The value of the number of resources to perform RLM (parameter value).
  • design a set of candidate values for indicating the number of RLM resources corresponding to the terminal type which can reduce reporting overhead, match multiple chips, reduce chip costs, enable terminals to save energy on demand, and improve spectrum. efficiency.
  • the set of candidate values for the maximum number of CSI-RS resources supported for RRM may be predefined by the protocol, or may be configured by the network device to the terminal through signaling, which is not limited in this application.
  • the signaling may be higher layer signaling or physical layer signaling.
  • the maximum number of candidate value sets are ⁇ MMA1, MMA2, MMA3, ..., MMAn ⁇
  • the maximum number of candidate value sets are ⁇ MMB1, MMB2, MMB3, . . . , MMBn ⁇ .
  • the maximum number of candidate value sets are ⁇ MMX1, MMX2, MMX3, . . . , MMXn ⁇ .
  • the value of MMA1, MMA2, MMA3, ..., MMan, MMB1, MMB2, MMB3, ..., MMBn, MMX1, MMX2, MMX3, ..., MMXn can be one or more of the following: n4, n8, n16 , n32, n64, n96.
  • the maximum numbers corresponding to n4, n8, n16, n32, n64, and n96 are 4, 6, 8, 16, 32, 64, 96, or other values, respectively.
  • the default value of the maximum number of supported CSI-RS resources for RRM and the type of the terminal may be predefined by the protocol, or may be configured by the network device to the terminal through signaling, which is not limited in this application.
  • the signaling may be higher layer signaling or physical layer signaling.
  • the default value of the parameter value may be the first value in the set of candidate values.
  • the maximum number of candidate value sets are ⁇ n4, n8 ⁇ . If represented in binary, each value can be indicated by 1 bit.
  • the terminal of the first type may be a URLLC terminal.
  • the channel environment is relatively stable, and the number of resources for RRM measurement can be relatively small, which can reduce power consumption, cost, and reporting overhead. That is, the number of bits for the indication of the number of resources for performing RRM for the terminal of the first type is 1.
  • the bit meaning of the indication of the number of resources for performing RRM for the terminal of the first type may refer to: bit 0 represents 4, and bit 1 represents 8.
  • the default value of the indication of the number of resources for performing RRM of the terminal of the first type is 4.
  • the first type of terminal may be a URLLC terminal.
  • the maximum number of candidate value sets are ⁇ n64, n96 ⁇ . If represented in binary, each value can be indicated by 1 bit.
  • the second type of terminal may be an IoT terminal.
  • the channel environment changes rapidly, and the number of resources for RRM measurement can be relatively large, which can reduce power consumption, cost, and reporting overhead. That is, the number of bits for the indication of the number of resources for performing RRM for the terminal of the second type is 1.
  • the bit meaning of the indication of the number of resources for performing RRM for the terminal of the second type may refer to: bit 0 represents 64, and bit 1 represents 96.
  • the default value of the indication of the number of resources for performing RRM of the terminal of the second type is 64.
  • the second type of terminal may be an IoT terminal.
  • the maximum number of candidate value sets are ⁇ n16, n32 ⁇ . If represented in binary, each value can be indicated by 1 bit.
  • the third type of terminal may be a CPE terminal. Considering that the third type of terminal has no mobility and transmits large data, the number of resources for RRM measurement can be relatively moderate, and the measurement is performed once for a period of time to obtain channel information while minimizing power consumption, reducing costs, and reducing reporting overhead. That is, the number of bits indicating the number of resources for performing RRM for the terminal of the third type is 1.
  • the bit meaning of the indication of the number of resources for performing RRM for the terminal of the third type may refer to: bit 0 represents 16, and bit 1 represents 32.
  • the default value of the indication of the number of resources for performing RRM of the terminal of the third type is 16.
  • the third type of terminal may be a CPE terminal.
  • the maximum number of candidate value sets is ⁇ n4, n8, n16, n32, n64, n96 ⁇ .
  • each value can be indicated by 3 bits.
  • the fourth type of terminal may be an eMBB terminal. That is, the number of bits indicating the number of resources for performing RRM for the terminal of the fourth type is 3.
  • the bit meaning of the indication of the number of RRM resources for the fourth type of terminal may refer to: bit 000 represents 4, bit 001 represents 8, bit 010 represents 16, bit 011 represents 32, bit 100 represents 64, and bit 101 stands for 96 et al.
  • the default value of the indication of the number of resources for performing RRM of the terminal of the fourth type is 4.
  • the fourth type of terminal may be an eMBB terminal.
  • the terminal and/or the network device may determine a set of candidate values for indicating the number of resources for RRM according to the type of the terminal, and determine the number of bits and the meaning of bits for indicating the number of resources for RRM according to the set of candidate values, and then determine The value of the number of resources for RRM (parameter value).
  • design a set of candidate values for indicating the number of RRM resources corresponding to the terminal type which can reduce reporting overhead, match multiple chips, reduce chip costs, enable terminals to save energy on demand, and improve spectrum. efficiency.
  • the set of candidate values for the number of MIMO layers supported for downlink transmission may be predefined by the protocol, or may be configured by the network device to the terminal through signaling, which is not limited in this application.
  • the signaling may be higher layer signaling or physical layer signaling.
  • the set of candidate values for the number of MIMO layers in downlink transmission is ⁇ MLA1, MLA2, MLA3, . . . , MLAn ⁇ .
  • the set of candidate values for the number of MIMO layers in downlink transmission is ⁇ MLB1, MLB2, MLB3, . . . , MLBn ⁇ .
  • the set of candidate values for the number of MIMO layers for downlink transmission is ⁇ MLX1, MML2, MLX3, . . . , MLXn ⁇ .
  • MLA1, MLA2, MLA3, ..., MLAn, MLB1, MLB2, MLB3, ..., MLBn, MLX1, MLX2, MLX3, ..., MLXn can be one or more of the following: twoLayers, fourLayers, eightLayers.
  • twoLayers, fourLayers, and eightLayers correspond to the maximum number of layers, respectively, 2 layers, 4 layers, 8 layers, or other values.
  • the corresponding relationship may be predefined by the protocol, or may be configured by the network device to the terminal through signaling, which is not limited in this application.
  • the signaling may be higher layer signaling or physical layer signaling.
  • the default value of the parameter value may be the first value in the set of candidate values.
  • the set of candidate values for the number of MIMO layers for downlink transmission is ⁇ oneLayer, twoLayers ⁇ . If represented in binary, each value can be indicated by 1 bit.
  • the terminal of the first type may be a URLLC terminal.
  • the first type of terminal transmits small data, low latency, and highly reliable services, data transmission with a lower number of layers can be used. That is, the number of bits for the indication of the number of supported downlink MIMO layers for the terminal of the first type is 1.
  • the bit meaning of the indication of the number of downlink MIMO layers supported by the terminal of the first type may refer to: bit 0 represents layer 1, and bit 1 represents layer 2.
  • the default value of the indication of the number of downlink MIMO layers supported by the terminal of the first type is 1.
  • the first type of terminal may be a URLLC terminal.
  • the set of candidate values for the number of MIMO layers for downlink transmission is ⁇ oneLayer, twoLayers ⁇ . If represented in binary, each value can be indicated by 1 bit.
  • the second type of terminal may be an IoT terminal. Considering that the second type of terminal transmits small data, data transmission with a lower number of layers can be adopted. That is, the number of bits for the indication of the number of supported downlink MIMO layers for the terminal of the second type is 1.
  • the bit meaning of the indication of the number of downlink MIMO layers supported by the terminal of the second type may refer to: bit 0 represents layer 1, and bit 1 represents layer 2.
  • the default value of the indication of the number of downlink MIMO layers supported by the terminal of the second type is 1 layer.
  • the second type of terminal may be an IoT terminal.
  • the set of candidate values for the number of MIMO layers for downlink transmission is ⁇ fourLayers, eightLayers ⁇ . If represented in binary, each value can be indicated by 1 bit.
  • the third type of terminal may be a CPE terminal. Considering that the terminal of the third type is stationary and transmits large data, data transmission with a higher number of layers can be adopted, thereby realizing high-speed transmission and reducing reporting overhead. That is, the number of bits for the indication of the number of supported downlink MIMO layers for the terminal of the third type is 1.
  • the bit meaning of the indication of the number of downlink MIMO layers supported by the terminal of the third type may refer to: bit 0 represents 4 layers, and bit 1 represents 8 layers.
  • the default value of the indication of the number of downlink MIMO layers supported by the terminal of the third type is 4 layers.
  • the third type of terminal may be a CPE terminal.
  • the set of candidate values for the number of MIMO layers for downlink transmission is ⁇ twoLayers, fourLayers, eightLayers ⁇ . If represented in binary, each value can be indicated by 2 bits.
  • the fourth type of terminal may be an eMBB terminal. That is, the number of bits for the indication of the number of downlink MIMO layers supported by the terminal of the fourth type is 2.
  • the bit meaning of the indication of the number of downlink MIMO layers supported by the terminal of the fourth type may refer to: bit 00 represents 2 layers, bit 01 represents 4 layers, bit 10 represents 8 layers, and so on.
  • the default value of the indication of the number of downlink MIMO layers supported by the terminal of the fourth type is 2 layers.
  • the fourth type of terminal may be an eMBB terminal.
  • the terminal and/or the network device may determine, according to the type of the terminal, a set of candidate values for the indication of the number of supported downlink MIMO layers, and determine the number of bits and bit meanings of the indication of the number of supported downlink MIMO layers according to the set of candidate values, Further, the value of the number of supported downlink MIMO layers (parameter value) is determined.
  • design a set of candidate values for the indication of the number of supported downlink MIMO layers corresponding to the type of terminals which can reduce reporting overhead, match multiple chips, reduce chip costs, enable terminal energy saving on demand, and improve Spectral efficiency.
  • the set of candidate values for the number of MIMO layers supported for uplink transmission may be predefined by the protocol, or may be configured by the network device to the terminal through signaling, which is not limited in this application.
  • the signaling may be higher layer signaling or physical layer signaling.
  • the set of candidate values for the number of MIMO layers in uplink transmission is ⁇ MUA1, MUA2, ..., MUAn ⁇
  • the set of candidate values for the number of MIMO layers for uplink transmission is ⁇ MUB1, MUB2, . . . , MUBn ⁇ .
  • the set of candidate values for the number of MIMO layers for uplink transmission is ⁇ MUX1, MUL2, . . . , MUXn ⁇ .
  • MUA1, MUA2, ..., MUAn, MUB1, MUB2, ..., MUBn, MUX1, MUX2, ..., MUXn can be one or more of the following: oneLayer, twoLayers, fourLayers, eightLayers.
  • oneLayer, twoLayers, fourLayers, and eightLayers respectively correspond to the maximum number of layers 1, 2, 4, 8, or other values.
  • the corresponding relationship may be predefined by the protocol, or may be configured by the network device to the terminal through signaling, which is not limited in this application.
  • the signaling may be higher layer signaling or physical layer signaling.
  • the default value of the parameter value may be the first value in the set of candidate values.
  • the set of candidate values for the number of MIMO layers for uplink transmission is ⁇ oneLayer, twoLayers ⁇ . If represented in binary, each value can be indicated by 1 bit.
  • the terminal of the first type may be a URLLC terminal. Considering that the first type of terminal transmits small data, low latency, and highly reliable services, data transmission with a lower number of layers can be used. That is, the number of bits for the indication of the number of supported uplink MIMO layers for the terminal of the first type is 1.
  • the bit meaning of the indication of the number of uplink MIMO layers supported by the terminal of the first type may refer to: bit 0 represents layer 1, and bit 1 represents layer 2.
  • the default value of the indication of the number of uplink MIMO layers supported by the terminal of the first type is 1.
  • the first type of terminal may be a URLLC terminal.
  • the set of candidate values for the number of MIMO layers for uplink transmission is ⁇ oneLayer, twoLayers ⁇ . If represented in binary, each value can be indicated by 1 bit.
  • the second type of terminal may be an IoT terminal. Considering that the second type of terminal transmits small data, data transmission with a lower number of layers can be adopted. That is, the number of bits for the indication of the number of supported uplink MIMO layers for the terminal of the second type is 1.
  • the bit meaning of the indication of the number of uplink MIMO layers supported by the terminal of the second type may refer to: bit 0 represents layer 1, and bit 1 represents layer 2.
  • the default value of the indication of the number of uplink MIMO layers supported by the terminal of the second type is 1 layer.
  • the second type of terminal may be an IoT terminal.
  • the set of candidate values for the number of MIMO layers for uplink transmission is ⁇ fourLayers, eightLayers ⁇ . If represented in binary, each value can be indicated by 1 bit.
  • the third type of terminal may be a CPE terminal. Considering that the terminal of the third type is stationary and transmits large data, data transmission with a higher number of layers can be adopted, thereby realizing high-speed transmission and reducing reporting overhead. That is, the number of bits indicating the number of supported uplink MIMO layers for the terminal of the third type is 1.
  • the bit meaning of the indication of the number of uplink MIMO layers supported by the terminal of the third type may refer to: bit 0 represents 4 layers, and bit 1 represents 8 layers.
  • the default value of the indication of the number of uplink MIMO layers supported by the terminal of the third type is 4 layers.
  • the third type of terminal may be a CPE terminal.
  • the set of candidate values for the number of MIMO layers for uplink transmission is ⁇ oneLayer, twoLayers, fourLayers, eightLayers ⁇ . If represented in binary, each value can be indicated by 2 bits.
  • the fourth type of terminal may be an eMBB terminal. That is, the number of bits for the indication of the number of uplink MIMO layers supported by the terminal of the fourth type is 2.
  • the bit meaning of the indication for the number of uplink MIMO layers supported by the terminal of the fourth type may refer to: bit 00 represents layer 1, bit 01 represents layer 2, bit 10 represents layer 4, bit 11 represents layer 4, etc.
  • the default value of the indication of the number of downlink MIMO layers supported by the terminal of the fourth type is 1 layer.
  • the fourth type of terminal may be an eMBB terminal.
  • the terminal and/or the network device may determine, according to the type of the terminal, a set of candidate values for the indication of the number of supported uplink MIMO layers, and determine the number of bits and bit meanings of the indication of the number of supported uplink MIMO layers according to the set of candidate values, Further, the value of the number of supported uplink MIMO layers (parameter value) is determined.
  • the set of candidate values of the supported bandwidth may be predefined by the protocol, or may be configured by the network device to the terminal through signaling, which is not limited in this application.
  • the signaling may be higher layer signaling or physical layer signaling.
  • the set of candidate values for bandwidth are ⁇ 5MHz, 10MHz, 15MHz, 20MHz, 25MHz, 30MHz, 40MHz, 50MHz, 60MHz, 80MHz, 100MHz ⁇ . If represented in binary, each value can be indicated by 4 bits.
  • the set of candidate values for bandwidth is ⁇ 50MHz, 100MHz, 200MHz, 400MHz ⁇ . If represented in binary, each value can be indicated by 2 bits.
  • the set of candidate values for bandwidth is ⁇ SBA1, SBA2, ..., SBAn ⁇
  • the set of candidate values of bandwidth is ⁇ SBB1, SBB2, . . . , SBBn ⁇ .
  • the set of candidate values of bandwidth is ⁇ SBX1, SBL2, . . . , SBXn ⁇ .
  • SBA1, SBA2, ..., SBAn, SBB1, SBB2, ..., SBBn, SBX1, SBX2, ..., SBXn can be one or more of the following: mhz5, mhz10, mhz15, mhz20, mhz25, mhz30, mhz40, mhz50, mhz60, mhz80, mhz100, mhz200, mhz400.
  • mhz5, mhz10, mhz15, mhz20, mhz25, mhz30, mhz40, mhz50, mhz60, mhz80, mhz100, mhz200, mhz400 correspond to 5MHz, 10MHz, 15MHz, 20MHz, 25MHz, 30MHz, 40MHz, 50MHz, 60MHz, 80MHz, 100MHz, 20MHz , 400MHz, or other values.
  • the corresponding relationship may be predefined by the protocol, or may be configured by the network device to the terminal through signaling, which is not limited in this application.
  • the signaling may be higher layer signaling or physical layer signaling.
  • the default value of the parameter value may be the first value in the set of candidate values.
  • the set of candidate values for bandwidth may be ⁇ 5MHz, 10MHz, 20MHz, 25MHz, 40MHz, 50MHz, 60MHz, 80MHz ⁇ . If represented in binary, each value can be indicated by 3 bits.
  • the first type of terminal may be a URLLC terminal. That is, the number of bits for the indication of the supported bandwidth of the terminal of the first type is 3.
  • the bit meaning of the indication for the supported bandwidth of the terminal of the first type may refer to: bit 000 represents 5 MHz, bit 001 represents 10 MHz, and so on.
  • the default value of the indication of the supported bandwidth of the terminal of the first type is 5 MHz.
  • the first type of terminal may be a URLLC terminal.
  • URLLC small packets are transmitted with low latency and high reliability. Data transmission with a smaller bandwidth may be employed. Reduce power consumption, reduce costs, and reduce reporting overhead.
  • the set of candidate values for bandwidth may be ⁇ 1.8MHz, 5MHz, 10MHz, 20MHz ⁇ . If represented in binary, each value can be indicated by 2 bits.
  • the second type of terminal may be an IoT terminal. That is, the number of bits for the indication of the supported bandwidth of the terminal of the second type is 2.
  • the bit meaning of the indication of the supported bandwidth of the terminal of the second type may refer to: bit 00 represents 1.8MHz, bit 01 represents 5MHz, bit 10 represents 10MHz, bit 11 represents 20MHz, and so on.
  • the default value of the indication of the supported bandwidth of the terminal of the second type is 1.8 MHz.
  • the second type of terminal may be an IoT terminal.
  • the second type of terminal transmits small data
  • data transmission with a lower number of layers can be adopted to reduce power consumption, cost, and reporting overhead.
  • the set of candidate values for bandwidth may be ⁇ 20MHz, 40MHz, 60MHz, 100MHz ⁇ . If represented in binary, each value can be indicated by 2 bits.
  • the third type of terminal may be a CPE terminal. That is, the number of bits for the indication of the supported bandwidth of the terminal of the third type is 2.
  • the bit meaning of the indication for the supported bandwidth of the terminal of the third type may refer to: bit 00 represents 20MHz, bit 01 represents 40MHz, bit 10 represents 60MHz, bit 11 represents 100MHz, and so on.
  • the default value of the indication of the supported bandwidth of the terminal of the third type is 20 MHz.
  • the third type of terminal may be a CPE terminal.
  • the third type of terminal has a fixed location and transmits large data
  • data transmission with a higher number of layers can be used to achieve high-speed transmission and reduce reporting overhead.
  • the set of candidate values for bandwidth is ⁇ 5MHz, 10MHz, 15MHz, 20MHz, 25MHz, 30MHz, 40MHz, 50MHz, 60MHz, 80MHz, 100MHz ⁇ and so on.
  • each value can be indicated by 4 bits.
  • the fourth type of terminal may be an eMBB terminal. That is, the number of bits for the indication of the supported bandwidth of the terminal of the fourth type is 4.
  • the bit meaning of the indication of the supported bandwidth of the terminal of the fourth type may refer to: bit 0000 represents 5MHz, bit 0001 represents 10MHz, bit 0010 represents 15MHz, bit 0011 represents 20MHz, and so on.
  • the default value of the indication of the supported bandwidth of the terminal of the fourth type is 5 MHz.
  • the fourth type of terminal may be an eMBB terminal.
  • the terminal and/or the network device may determine the set of candidate values for the indication of the supported bandwidth according to the type of the terminal, and determine the number of bits and the meaning of the bits of the indication of the supported bandwidth according to the set of candidate values, and then determine the number of bits of the indication of the supported bandwidth. value (parameter value).
  • designing a set of candidate values for the indication of the supported bandwidth corresponding to the terminal type can reduce reporting overhead, match multiple chips, reduce chip costs, enable terminals to save energy on demand, and improve spectrum efficiency.
  • the present application proposes a method for determining the characteristics of a terminal, which can realize the customization of the characteristics of the terminal and the minimization of the characteristics of the terminal, and reduce the chip cost and the processing complexity of the terminal implementation while meeting the characteristic requirements of different types of terminals. , to achieve terminal energy saving.
  • the terminal determines a first set, where the first set includes air interface communication characteristics, and the air interface communication characteristics include at least one of the following characteristics: ultra-low latency processing timing, cyclic prefix-orthogonal frequency division multiplexing CP-OFDM Waveform, data transmission based on configuration grant, time slot aggregation, HARQ process number 2, synchronous signal block based radio link management and/or radio resource management, aperiodic channel state information measurement reporting, beam tracking , and beam management; and/or, the positioning characteristics include at least one of the following characteristics: positioning characteristics based on downlink departure angle DL AOD, positioning characteristics based on downlink time difference of arrival DL-TDOA, bandwidth size of positioning reference signals, downlink positioning characteristics Number of positioning reference signal resources, and support for sending periodic sounding reference signal SRS for positioning.
  • the type of the terminal is the first type.
  • the first type of terminal may be a URLLC terminal.
  • the terminal determines a first set, the first set further includes air interface communication characteristics, and the air interface communication characteristics include at least one of the following characteristics: low-cost waveform, data channel repetition, data transmission based on configuration grant, time slot aggregation , and the number of HARQ processes is 1.
  • the type of the terminal is the second type.
  • the second type of terminal is an IoT terminal.
  • the terminal and/or the network device may determine the set of candidate values of the characteristic according to the type of the terminal, and determine the value of the characteristic according to the set of candidate values of the characteristic.
  • the value of the characteristic may include the number of bits of the value and the meaning of the bits.
  • the parameters 1) to 5) are only taken as examples above, and the solutions of the embodiments of the present application may also be applied to other parameters.
  • it can also be the characteristic parameter of the terminal in the protocol 38.331.
  • RF radio frequency
  • inter-RAT inter-radio access technology
  • a default value and/or a candidate value set of one characteristic is defined for eMBB, and it is applicable to a variety of different terminals at the same time, which may cause the values of some characteristics to be unsuitable for terminals of other terminal types, resulting in Reporting costs are high.
  • default values or candidate value sets of characteristics can be defined for different types of terminals, so as to meet the characteristics requirements of different types of terminals, reduce chip cost and signaling overhead, and achieve terminal energy saving.
  • the network device and the terminal include corresponding hardware structures and/or software modules for performing each function.
  • the units and method steps of each example described in conjunction with the embodiments disclosed in the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software-driven hardware depends on the specific application scenarios and design constraints of the technical solution.
  • FIG. 6 and FIG. 7 are schematic structural diagrams of possible communication apparatuses provided by embodiments of the present application. These communication apparatuses can be used to implement the functions of the terminal or the network device in the above method embodiments, and thus can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be the terminals 120a-120j shown in FIG. 1, the base station equipment 110a-110b shown in FIG. 1, or a module applied to a terminal or a network device (such as chips).
  • the communication apparatus 600 includes a processing unit 610 and a transceiver unit 620 .
  • the communication apparatus 600 is configured to implement the functions of the terminal or the network device in the method embodiment shown in FIG. 2 , FIG. 3 or FIG. 4 .
  • the processing unit 610 is used for the terminal to determine the characteristic set of the terminal;
  • the transceiver unit 620 is configured to communicate with the network device according to the characteristic in the characteristic set of the terminal.
  • the transceiver unit 620 is further configured to receive the first indication information sent by the network device.
  • the transceiver unit 620 is further configured to send the first confirmation information to the network device.
  • the transceiver unit 620 is further configured to send the second indication information to the network device.
  • the transceiver unit 620 is further configured to receive the second confirmation information sent by the network device.
  • the processing unit 610 is configured to determine the characteristic set of the terminal according to the type of the terminal.
  • the transceiver unit 620 is configured to communicate with the terminal according to the characteristic in the characteristic set of the terminal.
  • the transceiver unit 620 is further configured to send the first indication information to the terminal.
  • the transceiver unit 620 is further configured to receive the first confirmation information sent by the terminal.
  • the transceiver unit 620 is further configured to receive the second indication information sent by the terminal.
  • the transceiver unit 620 is further configured to send the second confirmation information to the terminal.
  • the transceiver unit 620 is configured to receive the first indication information sent by the network device
  • the processing unit 610 is used for the terminal to determine the characteristic set of the terminal according to the first indication information
  • the transceiver unit 620 is further configured to communicate with the network device according to the characteristic in the characteristic set of the terminal.
  • the transceiver unit 620 is further configured to send the first confirmation information to the network device.
  • the processing unit 610 is configured to determine the characteristic set of the terminal according to the type of the terminal.
  • the transceiver unit 620 is configured to send the first indication information to the terminal; and communicate with the terminal according to the characteristic in the characteristic set of the terminal.
  • the transceiver unit 620 is further configured to receive the first confirmation information sent by the terminal.
  • the processing unit 610 is configured to determine the characteristic set of the terminal
  • the transceiver unit 620 is configured to send the second indication information to the network device; and communicate with the network device according to the characteristics in the characteristic set of the terminal.
  • the transceiver unit 620 is further configured to receive the second confirmation information sent by the network device.
  • the transceiver unit 620 is configured to receive the second indication information sent by the terminal;
  • the processing unit 610 is configured to determine the characteristic set of the terminal according to the second indication information
  • the transceiver unit 620 is configured to communicate with the terminal according to the characteristic in the characteristic set of the terminal.
  • the transceiver unit 620 is further configured to send the second confirmation information to the receiving terminal.
  • processing unit 610 and the transceiver unit 620 can be obtained directly by referring to the relevant descriptions in the method embodiments shown in FIG. 2 to FIG. 4 , and details are not repeated here.
  • the communication apparatus 700 includes a processor 710 and an interface circuit 720 .
  • the processor 710 and the interface circuit 720 are coupled to each other.
  • the interface circuit 720 can be a transceiver or an input-output interface.
  • the communication apparatus 700 may further include a memory 730 for storing instructions executed by the processor 710 or input data required by the processor 710 to execute the instructions or data generated after the processor 710 executes the instructions.
  • the processor 710 is used to implement the functions of the above-mentioned processing unit 610
  • the interface circuit 720 is used to implement the functions of the above-mentioned transceiver unit 620 .
  • the terminal device chip When the above communication device is a chip applied to a terminal device, the terminal device chip implements the functions of the terminal device in the above method embodiments.
  • the terminal device chip receives information from other modules (such as a radio frequency module or an antenna) in the terminal device, and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules (such as a radio frequency module or an antenna) in the terminal device antenna) to send information, the information is sent by the terminal equipment to the network equipment.
  • modules such as a radio frequency module or an antenna
  • the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiments.
  • the network device chip receives information from other modules (such as a radio frequency module or an antenna) in the network device, and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as a radio frequency module or an antenna). antenna) to send information, the information is sent by the network equipment to the terminal equipment.
  • modules such as a radio frequency module or an antenna
  • the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions may be composed of corresponding software modules, and software modules may be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in a network device or in an end device.
  • the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs or instructions.
  • the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable apparatus.
  • the computer program or instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits by wire or wireless to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server, data center, or the like that integrates one or more available media.
  • the usable media may be magnetic media, such as floppy disks, hard disks, magnetic tapes; optical media, such as digital video discs; and semiconductor media, such as solid-state drives.
  • “at least one” means one or more, and “plurality” means two or more.
  • “And/or”, which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are a kind of "or” relationship; in the formula of this application, the character "/” indicates that the related objects are a kind of "division" Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了确定终端的特性的方法和通信装置,终端或网络设备确定的终端的特性集合中的必选特性集合与终端的类型相关,这样对于不同类型的终端,可以分别定义必选特性集合,从而实现终端的特性的定制化,有助于实现终端的特性的最小化,在满足不同类型的终端的特性需求的同时,降低芯片成本和终端实现处理复杂度,实现终端节能。

Description

确定终端的特性的方法和通信装置
本申请要求于2020年12月31日提交中国专利局、申请号为202011628056.3、申请名称为“确定终端的特性的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地涉及确定终端的特性的方法和通信装置。
背景技术
现有新无线(new radio,NR)针对终端的特性的设计,会导致各类终端规模化生产时成本和芯片复杂度较高、终端能耗较大。因此,在下一代技术研究或者第六代(6th Generation,6G)通信技术研究中需要进一步优化终端的特性的设计。
发明内容
本申请提供了确定终端的特性的方法和通信装置,能够实现终端的特性的定制化,从而简化终端芯片的设计、降低终端芯片的成本,降低芯片和终端实现复杂度,从而降低终端的能耗。
第一方面,本申请提供了一种确定终端的特性的方法。
首先,终端(也可以是终端中的模块或单元)确定特性集合,特性集合可以包括必选特性集合和可选特性集合,其中,必选特性集合与终端的类型相关。必选特性集合为非空集合。可选特性集合可以为空集或非空集合。
其次,终端可以根据确定的特性集合中的特性与网络设备进行通信。
在本申请提供的确定终端特性的方法中,必选特性集合与终端的类型相关,这样,对于不同类型的终端,可以分别定义必选特性集合。这样能够实现终端的特性的定制化,有助于实现终端的特性的最小化,在满足不同类型的终端的特性需求的同时,降低芯片成本和终端实现处理复杂度,实现终端节能。
在一些实现方式中,终端的特性集合中包括第一特性,第一特性可以是必选特性,也可以是可选特性。第一特性的默认值和/或第一特性的候选值集合与终端的类型相关。也就是说,可以针对不同类型的终端分别定义特性的默认值或候选值集合。
现有技术中是仅针对增强移动宽带(enhance mobile broadband,eMBB)定义1种特性的默认值和/或候选值集合,同时适用于多种不同类型的终端,可能会导致某些特性的取值不适用于其他终端类型的终端,导致信令开销较大。而在本申请中,针对不同类型的终端可以分别定义特性的默认值或候选值集合,在满足不同类型的终端的特性需求的同时,降低芯片成本和信令开销,实现终端节能,提高通信效率。
在一些实现方式中,特性集合中的第二特性需要通过与信令交互来确定,在此情况下, 终端还可以接收来自网络设备的第一指示信息,第一指示信息指示开启或关闭第二特性,或指示第二特性的取值,并根据第一指示信息开启或关闭第二特性,或确定第二特性的取值。这样,可以实现灵活开启或关闭特性。可选地,在接收到第一指示信息后,终端还可以向网络设备发送第一确认信息,第一确认信息指示第二特性已开启或已关闭、或指示已正确接收第一指示信息。这样,可以保证终端和网络设备对终端的特性集合的理解一致,增强通信的鲁棒性和可靠性,提高通信性能。
在一些实现方式中,特性集合中的第三特性需要通过与信令交互来确定,在此情况下,终端向网络设备发送第二指示信息,第二指示信息指示开启或关闭第三特性,或指示第三特性的取值。由终端建议或告知网络设备终端特性的开启、关闭或取值,可以更好的适应环境或业务的需求,提高特性开启的灵活性,降低终端功耗,实现节能,提高通信性能。可选地,终端还可以接收网络设备发送的第二确认信息,第二确认信息指示第三特性开启或关闭、或指示第三特性的取值、或指示已正确接收第二指示信息。这样,可以保证终端和网络设备对终端的特性集合的理解一致,增强通信的鲁棒性和可靠性,提高通信性能。
在一些实现方式中,不同的终端的类型的如下至少一个属性不同:支持的业务类型、对移动性的需求、对业务数据的传输时延需求、所处的无线信道环境、对业务数据的传输可靠性需求、对覆盖的需求、以及部署场景。
在本申请提供的确定终端特性的方法中,考虑不同的终端类型的属性不同,比如业务类型,移动性,时延需求,可靠性需求,覆盖需求等等,进而确定不同的终端特性。该方法可以针对不同的属性设计不同的终端特性,满足各属性的通信需求,提高通信性能,进而实现终端节能。
在一些实现方式中,终端的类型为以下中的一种:eMBB终端、超可靠低时延通信(ultra reliable and low latency communication,URLLC)终端、物联网(internet of thing,IoT)终端、客户前置设备(customer premise equipment,CPE)、增强现实(augmented reality,AR)终端、虚拟现实(virtual reality,VR)终端、机器类型通信(machine type communication,MTC)终端、和车联网(vehicle to everything,V2X)终端。
在本申请提供的确定终端特性的方法中,考虑不同的终端类型,比如eMBB终端,URLLC终端,IoT终端,V2X终端等等,进而确定不同的终端特性。该方法可以针对不同的终端类型设计不同的终端特性,满足各终端类型的通信需求,提高通信性能,进而实现终端节能。
在一些实现方式中,若所述终端的类型为第一类型,必选特性集合包括定位特性和旁链路通信特性;和/或,若所述终端的类型为第二类型,必选特性集合包括感知特性和非陆地网络(non-terrestrial networks,NTN)通信特性;和/或;若所述终端的类型为第三类型,必选特性集合包括人工智能(artificial intelligence,AI)特性。
在一些实现方式中,若所述终端的类型为所述第一类型,必选特性集合还包括空口通信特性,所述空口通信特性包括以下特性中的至少一个:超低时延处理定时、循环前缀-正交频分复用(cyclic prefix-orthogonal frequency division multiplexing,CP-OFDM)波形、基于配置授权的数据传输、时隙聚合、混合自动重传请求(hybrid automatic repeat request,HARQ)进程数为2、基于同步信号块的无线链路管理和/或无线资源管理、非周期信道状态信息测量上报、波束跟踪、以及波束管理;和/或,所述定位特性包括以下特性中的至 少一个:基于下行(downlink,DL)离开角(angle of departure,AOD)的定位特性、基于下行到达时间差(downlink-time difference of arrival,DL-TDOA)的定位特性、定位参考信号的带宽大小、下行定位参考信号资源数目、以及支持发送用于定位的周期性探测参考信号(sounding reference signal,SRS);和/或,若所述终端的类型为所述第二类型,必选特性集合还包括空口通信特性,所述空口通信特性包括以下特性中的至少一个:低成本波形、数据信道重复、基于配置授权的数据传输、时隙聚合、以及HARQ进程数为1。
第二方面,本申请提供了一种确定终端的特性的方法。该方法是与第一方面对应的网络设备侧的方法,其有益效果可以参考第一方面对有益效果的描述。
首先,网络设备(也可以是网络设备中的模块或单元)根据终端的类型,确定所述终端的特性集合,特性集合可以包括必选特性集合和可选特性集合,其中,必选特性集合与终端的类型相关。必选特性集合为非空集合。可选特性集合可以为空集或非空集合。
其次,网络设备根据所述特性集合中的特性与所述终端进行通信。
在一些实现方式中,终端的特性集合中包括第一特性,第一特性可以是必选特性,也可以是可选特性。第一特性的默认值和/或第一特性的候选值集合与终端的类型相关。也就是说,可以针对不同类型的终端分别定义特性的默认值或候选值集合。
在一些实现方式中,特性集合中的第二特性需要通过与信令交互来确定,在此情况下,网络设备还可以向终端发送第一指示信息,第一指示信息指示开启或关闭第二特性,或指示第二特性的取值。可选地,网络设备还可以接收终端发送的第一确认信息,第一确认信息指示第二特性已开启或已关闭、或指示已正确接收第一指示信息。
在一些实现方式中,特性集合中的第三特性需要通过与信令交互来确定,在此情况下,网络设备还可以接收终端发送的第二指示信息,第二指示信息指示开启或关闭第三特性,或指示第三特性的取值。可选地,网络设备还可以向终端发送第二确认信息,第二确认信息指示第三特性开启或关闭、或指示第三特性的取值、或指示已正确接收第二指示信息。
在一些实现方式中,不同的终端的类型的如下至少一个属性不同:支持的业务类型、对移动性的需求、对业务数据的传输时延需求、所处的无线信道环境、对业务数据的传输可靠性需求、对覆盖的需求、以及部署场景。
在一些实现方式中,终端的类型为以下中的一种:eMBB终端、URLLC终端、IoT终端、CPE、AR终端、VR终端、MTC终端、和V2X终端。
在一些实现方式中,若所述终端的类型为第一类型,必选特性集合包括定位特性和旁链路通信特性;和/或,若所述终端的类型为第二类型,必选特性集合包括感知特性和非陆地网络NTN通信特性;和/或;若所述终端的类型为第三类型,必选特性集合包括人工智能AI特性。
在一些实现方式中,若所述终端的类型为所述第一类型,必选特性集合还包括空口通信特性,所述空口通信特性包括以下特性中的至少一个:超低时延处理定时、循环前缀-正交频分复用CP-OFDM波形、基于配置授权的数据传输、时隙聚合、混合自动重传请求HARQ进程数为2、基于同步信号块的无线链路管理和/或无线资源管理、非周期信道状态信息测量上报、波束跟踪、以及波束管理;和/或,所述定位特性包括以下特性中的至少一个:基于下行离开角的定位特性、基于下行到达时间差的定位特性、定位参考信号的带宽大小、下行定位参考信号资源数目、以及支持发送用于定位的周期性探测参考信号;和 /或,若所述终端的类型为所述第二类型,必选特性集合还包括空口通信特性,所述空口通信特性包括以下特性中的至少一个:低成本波形、数据信道重复、基于配置授权的数据传输、时隙聚合、以及HARQ进程数为1。
第三方面,本申请提供了一种通信装置,该装置包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的模块;或者,包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的模块。
第四方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该装置为终端设备。当该装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于终端设备中的芯片。当该装置为配置于终端设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第五方面,本申请提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该装置为网络设备。当该装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于网络设备中的芯片。当该装置为配置于网络设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第六方面,本申请提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路输出信号,使得所述处理器执行上述第一方面或第二方面中任一方面中的任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第七方面,本申请提供了一种通信装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面或第二方面中任一方面中的任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第七方面中的装置可以是芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第八方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现上述第一方面或第二方面中任一方面中的任意可能的实现方式中的方法。
第九方面,本申请提供了一种计算机程序产品,包含指令,当该指令被运行时,实现第一方面或第二方面中任一方面中的任意可能的实现方式中的方法。
第十方面,本申请提供了一种通信系统,该通信系统包括终端和网络设备。
附图说明
图1是本申请的实施例应用的通信系统的架构示意图。
图2是本申请的实施例的确定终端的特性的方法的示意性流程图。
图3是本申请的另一实施例的确定终端的特性的方法的示意性流程图。
图4是本申请的另一实施例的确定终端的特性的方法的示意性流程图。
图5是不同类型的终端的特征分析的示例。
图6是本申请的实施例提供的可能的通信装置的结构示意图。
图7是本申请的实施例提供的可能的通信装置的另一结构示意图。
具体实施方式
为了便于理解,下面给出与本申请相关的概念的说明。
1、eMBB
eMBB业务是指在现有移动宽带业务场景的基础上,对于网速、用户体验等性能的进一步提升,这也是最贴近我们日常生活的应用场景。比如,当用户观看4K高清视频,峰值能够达到10Gbps。例如,eMBB业务可以是三维(three-dimensional,3D)/超高清视频等大流量移动宽带的业务。
2、URLLC
URLLC业务可以包括以下各类场景下的业务:工业应用和控制、交通安全和控制、远程制造、远程培训、远程手术、无人驾驶、安防行业等。
3、MTC
MTC业务可以指低成本、覆盖增强的业务,也称为机器与机器(machine-to-machine,M2M)业务,或海量物联网通信(massive machine-type communications,mMTC)业务。
4、IoT
IoT业务可以是具有覆盖广、连接多、速率低、成本低、功耗低、架构优等特点的业务。比如,IoT业务可以应用于智能水表,智能停车、宠物智能跟踪、智能自行车、智能烟雾检测器、智能马桶、智能售货机等场景。
IoT终端可以是传感器、控制器等,比如温度传感器、湿度传感器、火警警报器、感知器、探测器等。IoT终端也可以是MTC终端、窄带IoT(narrow band IoT,NB-IoT)终端或mMTC终端。
5、CPE
CPE可以理解为是移动通信网络和WiFi网络的中继设备,可以将在移动通信网络中接收到的信息通过WiFi信号发送给终端,或者将在WiFi网络中接收到的信息通过移动通信网络的空中接口发给基站。CPE有两个无线通信接口,一个是移动通信网络空中接口用于与移动通信网络中的基站进行通信,另一个是WiFi无线通信接口用于与终端进行通信。这里的移动通信网络可以是任意一种移动通信网络,例如,可以是第四代(4th Generation,4G)移动通信网络、第五代(5th generation,5G)移动通信网络、6G移动通信网络或未来的移动通信网络。CPE可以同时支持多个终端接入。CPE可大量应用于农村、城镇、医院、办公室、工厂、小区等应用场景,能节省铺设有线网络的费用,替代有线宽带。
6、车联网
车联网(vehicle to everything,V2X)是未来智能交通运输系统的关键技术。V2X可以使得车与车、车与基站、基站与基站之间能够通信。从而获得实时路况、道路信息、行人信息等一系列交通信息,从而提高驾驶安全性、减少拥堵、提高交通效率,同时还可以提供车载娱乐信息等。
7、终端的特性
在本申请中,特性也可以替换为能力、功能、特征、特性能力等,即终端的特性也可以描述为终端的能力、终端的功能、终端的特征、终端的特性能力等。下文统一采用特性的描述方式。
终端的特性可以包括必选特性和可选特性。
特性集合是由一个或多个终端的特性构成的集合。
8、必选特性
必选特性是终端的基本特性,是终端必须要支持的特性。在本申请中,由必选特性构成的特性集合也可以描述为最小特性集合、必选特性集合等。
在NR标准中,研究的主要场景为eMBB场景,因此针对eMBB定义了终端的必选特性。
示例性地,现有技术中规定如下特性是必选特性。
1)支持的HARQ进程的个数为16。
2)信道带宽
现有技术中,终端需要支持表1中各个载波、频段的各种信道带宽。
比如,如表1所示,n1频段内终端需要支持20MHz带宽;n2频段内终端需要支持 20MHz;n3频段内终端需要支持30MHz带宽;以此类推。
表1
Figure PCTCN2021138707-appb-000001
3)波形
现有技术中,针对下行传输,终端需要支持正交频分复用(orthogonal frequency division multiplexing,OFDM)波形。针对上行传输,终端需要支持OFDM波形和离散傅里叶变换扩频OFDM(discrete Fourier transform-spread OFDM,DFT-S-OFDM)波形。
4)调制方式
现有技术中,对于频率范围1(frequency range 1,FR1)的数据传输,终端需要支持64正交幅度调制(quadrature amplitude modulation,QAM)。
5)物理下行共享信道(physical downlink shared channel,PDSCH)
现有技术中,终端需要支持虚拟资源块到物理资源块的交织映射(interleaving for VRB-to-PRB mapping)。
6)小区切换
7)邻小区测量
9、可选特性
可选特性是终端可以支持也可以不支持的能力。
示例性地,现有技术中规定如下特性是可选特性。
1)定位特性
定位特性包括基本的定位参考信号(position reference signal,PRS)的处理能力。
比如,终端发送PRS,基站根据PRS确定终端的位置。
比如,终端接收PRS,终端根据PRS以及基站的位置,确定终端的位置。
2)旁链路通信特性
旁链路通信特性包括基本的旁链路通信的能力,例如,接收和发送旁链路信息。旁链路信息可以包括如下至少一项:旁链路控制信道(sidelink control channel,SCCH)、旁链路共享信道(sidelink shared channel,SSCH)、以及旁链路反馈信道(sidelink feedback channel,SFCH)。
3)终端物理上行共享信道(physical uplink shared channel,PUSCH)处理能力2
终端PUSCH处理能力可以简称为PUSCH准备时间(PUSCH preparation time)。
终端PUSCH处理能力可以是指从终端接收到物理下行控制信道(physical downlink control channel,PDCCH)到终端传输PUSCH的时间,其中PDCCH携带下行控制信息(downlink control information,DCI),DCI用于调度PUSCH。
其中,PUSCH处理能力包括能力1和能力2。
示例性地,表2是PUSCH处理能力1,表3是PUSCH处理能力2,表4是帧结构参数。表2和表3中的μ表示子载波间隔配置信息,取值见表4。
表2
μ PUSCH准备时间N 2[符号]
0 10
1 12
2 23
3 36
表3
μ PUSCH准备时间N 2[符号]
0 5
1 5.5
2 对于频率范围1(frequency range 1),为11
表4
μ Δf=2 μ·15[kHz] 循环前缀(cyclic prefix)
0 15 正常(normal)
1 30 正常
2 60 正常,扩展(extended)
3 120 正常
4 240 正常
4)PDSCH重复
一次调度可以进行多次重复的数据传输。多次数据传输可以占用多个时隙。重复的次数可以是预定义的,也可以是通过高层信令指示的,或者,也可以通过物理层信令指示的。多个重复的数据可以是不同冗余版本的相同数据,通过该方式的数据传输可以降低码率, 多次重复传输获取分集增益,提高数据传输的可靠性,提升覆盖。
5)下行半静态调度(semi-persistent scheduling,SPS)
可以通过一个DCI调度多次传输,可以预定义多次传输的次数,或者通过DCI来终止SPS的传输。基于SPS下的数据传输,可以实现快速的大包数据传输,降低DCI的信令开销,降低传输时延。
6)配置授权,也可以称为免调度授权(grant free)
配置授权类型1(configured grant type 1):基于无线资源控制(radio resource control,RRC)信令配置的调度信息进行数据传输,可以没有DCI指示。
配置授权类型2(configured grant type 2):基于RRC信令配置的调度信息进行数据传输,需要用DCI激活去激活。
基于配置授权类型下的数据传输,可以实现终端快速数据传输,不需要DCI的调度,降低传输时延。
10、终端的特性的默认值和候选值集合
对于终端的特性,如果该特性无需终端与其他设备(例如,其他终端、基站等)进行交互来确认,可以确定为默认值。该默认值可以通过协议预定义。例如,协议直接定义某个特性的取值。又例如,协议定义某个特性的默认值选取候选值集合中的哪个。候选值集合包括某个终端的特性的可能取值。
终端可以上报是否支持某个特性和/或上报支持的取值。对于某个特性,若终端上报支持的某个或多个取值,则网络设备可以根据终端上报的情况确定该特性的取值;若终端不上报,则网络设备默认为某个取值,该取值即为默认值。
11、终端的类型
在本申请中,不同的终端的类型的如下至少一个属性不同:支持的业务类型、对移动性的需求、对业务数据的传输时延需求、所处的无线信道环境、对业务数据的传输可靠性需求、对覆盖的需求、以及部署场景。
或者,终端的类型为以下中的至少一种:eMBB终端、URLLC终端、IoT终端、CPE、AR终端、VR终端、MTC终端、和V2X终端。
可选地,终端的类型也可以是指终端的业务类型。
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请的实施例应用的通信系统1000的架构示意图。如图1所示,该通信系统包括无线接入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(如图1中的110a和110b),还可以包括至少一个终端(如图1中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。
无线接入网设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、 发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。无线接入网设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文中将无线接入网设备简称为网络设备,网络设备和基站两个术语可以互换。
图1中终端可以位于网络设备的小区覆盖范围内。其中,终端可以通过上行链路(uplink,UL)或下行链路(downlink,DL)与网络设备进行空口通信,在UL方向上,终端可以向网络设备发送数据;在DL方向上,网络设备可以向终端发送控制信息,也可以向终端发送数据,即终端可以接收网络设备发送的控制信息和/或数据。
在本申请的实施例中,终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、V2X通信、MTC、IoT、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
本申请的实施例对网络设备和终端的应用场景不做限定。例如,网络设备和/或终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。
网络设备和终端的角色可以是相对的,例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端功能的通信装置。
在本申请的实施例中,网络设备和终端之间、网络设备和网络设备之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信。本申请的实施例即适用于低频场景(sub 6G),也适用于高频场景(6G以上)、太赫兹、光通信等。例如,网络设备和终端之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对通信所使用的频谱资源不做限定。
在本申请的实施例中,网络设备的功能也可以由网络设备中的模块(如芯片)来执行,也可以由包含有网络设备功能的控制子系统来执行。这里的包含有网络设备功能的控制子 系统可以是智能电网、工业控制、智能交通、智慧城市等上述终端的应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
可以理解的是,本申请的实施例中,PDSCH、PDCCH和PUSCH只是作为下行数据信道、下行控制信道和上行数据信道一种举例,在不同的系统和不同的场景中,数据信道和控制信道可能有不同的名称,本申请的实施例对此并不做限定。
本申请实施例中,通信的时域的衡量单位可以称为时间单元或时间调度单位。时间调度单位或者时间单元可以是无线帧,子帧,时隙(slot),微时隙(mini-slot)或者子时隙等。时间调度单位或时间单元也可以是一个或者多个符号等等,其中符号是一种时域上的基本单元。本申请中以时隙为例进行说明。其中,时隙可以是指时间单元,可以用上述时间单元的举例代替,本申请对此不做限定。
本申请实施例中,通信的频域的衡量单位可以称为频域资源单元或频域调度单位。其中,频域资源单元可以是基本资源单元(resource element,RE),资源块(resource block),资源块组(resource block group)等。其中,一个资源块可以包括一个或多个资源单元。一个资源块组可以包括一个或多个资源块。比如,用于进行数据传输的频域资源单元可以包括若干个基本资源单元,一个RE可以对应于一个子载波,一个物理资源块(physical resource block,PRB)中有X1个基本资源单元,X1为大于等于1的整数。示例性地,X1为12。本申请中以资源块为例进行说明。其中,资源块可以是指频域资源单元,可以用上述频域资源单元的举例代替,本申请对此不做限定。
本申请实施例中的,高层信令可以指RRC信令,媒体接入控制(medium access control,MAC)信令,无线链路控制(radio link control,RLC)信令等中的至少一种。本申请中以RRC信令为例进行说明。其中,RRC信令可以是指高层信令,可以用上述高层信令中的举例代替,本申请对此不做限定。
本申请实施例中的,物理层信令可以是下行控制信息(DCI)、接收控制信息(receive control information,RCI)、上行控制信息(UCI)和发送控制信息(transmit control information,TxCI)中的至少一个。本申请中以DCI为例进行说明。其中,DCI可以是指物理层信令,可以用上述物理层信令中的举例代替,本申请对此不做限定。
在NR标准中终端的必选特性是针对eMBB终端定义的,而对于其他类型的终端(比如,URLLC终端、IoT终端等),在研究终端的特性的时候,是在eMBB终端的基础上继续叠加的,而且大多数的特性是可选特性,会导致各类型的终端规模化生产时成本和芯片复杂度较高、终端能耗较大,举例分析如下。
1、对于必选特性
对于其他类型的终端,eMBB终端的一些必选特性是可以不需要支持的。如果其他类型的终端必须支持eMBB终端的全部必选特性,会导致芯片成本较高,终端功耗较大,芯片复杂度较高,不利用其他类型的终端的大规模商用。
比如,对于HARQ进程数为16,需要终端支持较强的存储能力。因此,如果其他类型的终端必须支持16个HARQ进程,会导致芯片的成本较高,能耗较大,能力较弱。针对某些只有小包数据传输的终端,比如IoT终端,无法满足低成本的需求。
比如,对于信道带宽,针对IoT终端等,无需支持20MHz的带宽,可以仅支持5M 或更小的带宽即可。按照目前的设计会导致成本较高。
比如,对于64QAM,针对小包数据传输的业务,无需支持64QAM,可以仅支持16QAM、正交相移键控(quadrature phase shift keying,QPSK)即可。按照目前的设计会导致成本较高,功耗较大。
2、对于可选特性
对于其他类型的终端,很多特别重要的特性定义为了可选特性,会导致终端不能满足业务特性需求,降低了传输性能,不利于工业界大规模商用。
比如,针对IoT终端,为了满足深覆盖的需求,数据重复传输是很重要的特性,在其为可选特性的情况下,会导致覆盖受限,性能受限。
比如,针对URLLC终端,为了满足低时延可靠性的通信需求,终端PUSCH处理能力2和配置授权是很关键的特性,在为可选特性的情况下,会导致处理时间较长,时延较大,无法满足低时延的需求。
3、在现有技术中,不同类型的终端对应的特性的候选值集合或默认值是固定、相同的。采用统一设计可能会导致特性取值的上报的开销较大,降低通信性能。
比如,调制阶数特性的候选值集合可以包括bpsk-halfpi、bpsk、qam16、qam64、以及qam256。如果用二进制表示,每个候选值则需要用3个比特指示。以特性参数ModulationOrder为例:
ModulationOrder::=ENUMERATED{bpsk-halfpi,bpsk,qpsk,qam16,qam64,qam256}
比如,终端支持的用于无线链路测量(radio link measurement,RLM)的信道状态信息参考信号(channel state information-reference signal,CSI-RS)资源的最大个数的候选值集合可以包括2、4、6、8。如果用二进制表示,每个候选值则需要用2个比特指示。以特性参数maxNumberResource-CSI-RS-RLM为例:
maxNumberResource-CSI-RS-RLM ENUMERATED{n2,n4,n6,n8}OPTIONAL
比如,终端支持的用于无线资源管理(radio resource management,RRM)的CSI-RS资源的最大个数的候选值集合可以包括4、8、16、32、64、96等。如果用二进制表示,每个候选值则需要用3个比特指示。以特性参数maxNumberCSI-RS-RRM-RS-SINR为例:
maxNumberCSI-RS-RRM-RS-SINR ENUMERATED{n4,n8,n16,n32,n64,n96}OPTIONAL
比如,终端支持的下行传输的多输入多输出(multiple input multiple output,MIMO)层数的候选值集合可以包括2、4、8等。如果用二进制表示,每个候选值则需要用2个比特指示。以特性参数MIMO-LayersDL为例:
MIMO-LayersDL::=ENUMERATED{twoLayers,fourLayers,eightLayers}
比如,终端支持的上行传输的MIMO层数的候选值集合可以包括1、2、4等。如果用二进制表示,每个候选值则需要用2个比特指示。以特性参数MIMO-LayersUL为例:
MIMO-LayersUL::=ENUMERATED{oneLayer,twoLayers,fourLayers}
比如,终端支持的带宽,针对FR1,候选值集合可以包括5MHz、10MHz、15MHz、20MHz、25MHz、30MHz、40MHz、50MHz、60MHz、80MHz、100MHz等,如果用二进制表示,每个候选值则需要用4个比特指示;针对FR2,候选值集合可以包括50MHz、100MHz、200MHz、400MHz等,如果用二进制表示,每个候选值则需要用2个比特指示。 以特性参数SupportedBandwidth为例:
Figure PCTCN2021138707-appb-000002
随着工业界和产业界的发展,主流终端将不再仅是某个类型的终端,而是多种类型的终端都成为主流终端。例如,eMBB终端、URLLC终端、IoT终端、CPE和V2X终端等均成为主流终端。若终端的特性仍采用现NR的设计,会导致各类终端规模化生产时成本和芯片复杂度较高、终端能耗较大。因此,在下一代技术研究或者6G通信技术研究中需要进一步优化终端的特性的设计。
针对上述问题,本申请提出了一种确定终端的特性的方法,能够实现终端的特性的定制化和终端的特性的最小化,在满足不同类型的终端的特性需求的同时,降低芯片成本和终端实现处理复杂度,实现终端节能。
图2是本申请的实施例的确定终端的特性的方法的示意性流程图。图2所示的方法可以由终端和网络设备执行,也可以由终端和网络设备中的模块或单元执行。下面以执行主体为终端和网络设备为例进行描述。
步骤201,终端确定终端的特性集合。
其中,该特性集合与终端的类型相关。
特性集合与终端的类型的关系将在下文详细描述。
步骤202,网络设备根据终端的类型确定终端的特性集合。
步骤203,终端和网络设备根据终端的特性集合中的特性进行通信。
其中,本申请对于步骤201和步骤202的顺序不做限定。比如,可以先步骤201,再步骤202;或者,先步骤202,再步骤201,或者,步骤201和步骤202同时进行。
这里的终端的特性集合可以理解为终端所支持的特性的集合。
终端的特性集合可以包括第一集合和第二集合。第一集合中的特性为必选特性,第一集合为非空集合,第一集合与终端的类型相关,第一集合也可以称为终端的最小特性集合。第二集合中的特性属于由可选特性构成的集合,或者也可以描述为第二集合中的特性为可选特性,第二集合可以为空集或非空集合。
在本申请中,针对不同类型的终端,可以通过协议定义特性集合中的特性。比如,特性集合包括第一特性,第一特性是通过协议定义的。例如,对于第一类型的终端,定义第一特性集合,对于第二类型的终端,定义第二特性集合。在此情况下,对于终端来说,确定终端的特性集合可以理解为检测自己当前的特性集合。对于网络设备来说,确定终端的特性集合可以是根据终端的类型获取与该类型相对应的特性集合。
此外,网络设备可以从终端获取终端的类型。例如,在终端开机时,终端向网络设备上报终端的类型,以便网络设备确定终端的特性集合。
可选地,当网络设备为接入网设备时,网络设备可以从核心网设备获取终端的类型。比如,终端向核心网上报终端的类型,核心网设备向网络设备发送终端的类型,网络设备通过接收到的核心网设备发送的终端的类型确定终端的类型。
在本申请中,终端的特性集合中包括第一特性,第一特性的默认值或候选值集合与终端的类型相关。第一特性可以是必选特性,也可以是可选特性。第一特性的默认值或候选值集合与终端的类型的关系将在下文详细描述。
在一些实现方式中,对于终端的特性集合中的特性的开启、关闭或取值可以是协议预定义的。这样可以减少信令开销。
在另一些实施例中,对于终端的特性集合中的特性的开启、关闭或取值还可以是通过终端和网络设备之间的信令交互确定的。这样可以实现灵活开启或关闭特性以及降低终端能耗。
终端和网络设备的信令交互可以包括终端向网络设备指示开启或关闭某个或某些特性、终端向网络设备指示某个或某些特性的取值、网络设备向终端指示开启或关闭某个或某些特性、网络设备向终端指示某个或某些特性的取值中的至少一个。这里提到的某个或某些特性可以是必选特性,也可以是可选特性。
若终端的特性集合包括第二特性,且由网络设备向终端指示第二特性的开启或关闭、或指示第二特性的取值,终端和网络设备还可以执行步骤404和步骤405,其中,步骤405为可选步骤。
步骤204,网络设备向终端发送第一指示信息。相应地,终端接收网络设备发送的第一指示信息。
其中,第一指示信息指示第二特性的开启或关闭、或指示第二特性的取值。
可选地,第一指示信息包括第一标识,第一标识指示第二特性。
在一些实现方式中,若网络设备针对单个特性指示开启、关闭或取值,第一标识可以为第二特性的标识。若第二特性包括一个或多个特性,第一标识相应的包括至少一个标识。
在另一些实现方式中,第一指示信息还可以指示第五特性的开启、关闭或取值。
作为一个示例,第二特性与第五特性具有关联关系,第一标识可以为第二特性的标识,网络设备可以通过在第一指示信息携带第二特性的标识,实现指示第二特性和第五特性的开启、关闭或取值。也就是说,可以将第二特性与第五特性绑定,当第二特性开启时第五特性也开启,或者当第二特性开启时第五特性关闭,或者当第二特性关闭时第五特性开启,或者当第二特性关闭时第五特性也关闭。
作为一种可能的实现方式,第二特性和第五特性的关联关系可以根据终端的类型确定。
可选地,此处的关联关系可以是协议预定义的,也可以是网络设备通过高层信令,或物理层信令等告知终端的。
例如,HARQ反馈特性与数据信道重复特性可以具有关联关系。当HARQ反馈特性开启时,数据信道重复特性也开启。
作为另一个示例,可以为由第二特性与第五特性构成的特性集合定义集合标识,第一标识可以为该集合标识。当集合标识对应的指示为开启时,该集合标识对应的第二特性和第五特性均开启;当集合标识对应的指示为关闭时,该集合标识对应的第二特性和第五特性均关闭;若集合标识可以对应第二特性和第五特性的取值时,网络设备也可以通过集合标识指示第二特性和第五特性的取值。这样,网络设备可以通过在第一指示信息携带集合标识,实现指示第二特性和第五特性的开启、关闭或取值。
作为一种可能的实现方式,集合标识与特性的对应关系可以根据终端的类型确定。
可选地,集合标识与特性之间具有对应关系,所述对应关系可以是协议预定义的,也可以是网络设备通过高层信令或物理层信令等告知终端的。
例如,如表5所示,集合标识与特性之间对应关系可以是表格中的至少一行或者至少一列。网络设备可以通过指示集合标识1,指示开启或关闭特性a1到特性an;网络设备可以通过指示集合标识2,指示开启或关闭特性b1到特性bn;网络设备可以通过指示集合标识3,指示特性c1到特性cn的取值。其中,an、bn、cn可以相同也可以不同。
表5
集合标识 特性集合
集合标识1 特性a1,特性a2,…,特性an
集合标识2 特性b1,特性b2,…,特性bn
集合标识3 特性c1的取值,特性c2的取值,…,特性cn的取值
通过上述联合指示的方式,可以降低指示开销,灵活开启或关闭特性,实现终端节能。
步骤205,终端向网络设备发送第一确认消息。相应地,网络设备接收终端发送的第一确认信息。
其中,第一确认消息指示第二特性已开启或已关闭、或者指示第一指示信息是否接收成功。
1、第一确认信息为物理层信令。
作为一个示例,第一确认信息可以为上行控制信息(uplink control information,UCI)。
例如,UCI可以是调度请求(scheduling request,SR)信息。如果终端发送SR,则表明终端正确接收第一指示信息。或者,如果SR信息中包括的数据承载取值大于或等于(或者大于)XR1,则表明终端正确接收第一指示信息。或者,如果,SR信息中包括的数据承载取值小于(或者小于或等于)XR1,则表明终端没有正确接收第一指示信息。
又例如,UCI可以是肯定应答(acknowledgement,ACK)/否定应答(negative acknowledgement,NACK)信息。如果终端发送ACK,则表明终端正确接收第一指示信息;如果终端发送NACK,则表明终端未正确接收第一指示信息。或者,可以采用NACK only的方式,即仅接收失败时反馈NACK,接收成功则不反馈。
可选地,第一确认信息可以与数据的反馈一起发送。比如当DCI调度数据信道时,终端可以接收数据信道携带的数据(比如PDSCH),当PDSCH上的数据译码成功时,终端反馈ACK,即表明数据接收成功,并且表明第一指示信息接收成功。当PDSCH上的数据译码失败时,终端反馈NACK,即表明数据接收失败,以及表明第一指示信息接收失败。
可选地,第一确认信息可以与数据的反馈分开发送。比如当DCI调度数据信道时,终端可以接收数据信道携带的数据(比如PDSCH),当PDSCH上的数据译码成功时,终端反馈ACK,即表明数据接收成功。针对第一指示信息,终端可以发送ACK,表明第一指示信息接收成功。当PDSCH上的数据译码失败时,终端反馈NACK,即表明数据接收失败。针对第一指示信息,终端可以发送ACK,表明第一指示信息接收成功。也就是说,终端可以发送两个ACK/NACK信息,其中一个表明第一指示信息的确认,一个表明数据的确认。两个ACK/NACK信息先后顺序不限,可以预定义,也可以网络设备配置。
2、第一确认信息为高层信令。
3、第一确认信息为上行序列或上行信号。
例如,第一确认信息可以为前导序列(preamble)、SRS、或者其他上行信号。当终端接收到第一指示信息,可以发送上行序列前导序列、SRS、或者其他上行信号。
对于网络设备,当网络设备接收到第一确认信息,网络设备可以确定终端已正确接收第一指示信息或终端已开启或关闭某些特性。
在一些实现方式中,终端发送第一确认信息的传输资源可以是网络设备告知终端的。在本申请中,传输资源包括时域资源、频域资源、码资源(序列)中的至少一项。可选地,码资源(序列)可以与终端的标识绑定。
可选地,传输资源可以是公共上行传输资源,即多个终端共同使用的上行传输资源。若终端在公共上行传输资源中发送第一确认信息,则终端可以在发送第一确认信息时发送终端的标识。
可选地,传输资源可以是终端专用的上行传输资源。
在一些实现方式中,终端发送第一确认信息的传输资源也可以是DCI指示的。示例性地,终端接收到DCI,并在DCI中指示的传输资源上传输第一确认信息。
由网络设备建议或指示终端特性的开启、关闭或取值,可以更好的适应环境或业务的需求,提高特性开启的灵活性,降低终端功耗,实现节能,提高通信性能。
若终端的特性集合包括第三特性,且由终端向网络设备指示第三特性的开启或关闭、或指示第三特性的取值,终端和网络设备还可以执行步骤406和步骤407,其中,步骤407为可选步骤。
步骤206,终端向网络设备发送第二指示信息。
其中,第二指示信息指示第三特性的开启或关闭、或指示第三特性的取值。
终端通过第二指示信息表明期望或建议开启或关闭第三特性、或表明期望或建议的第三特性的取值。
可选地,第二指示信息包括第二标识,第二标识指示第二特性。
在一些实现方式中,若网络设备针对单个特性指示开启、关闭或取值。
在另一些实现方式中,第一指示信息还可以指示第六特性的开启、关闭或取值。
第二指示信息的实现方式可以参考第一指示信息的描述,在此不再赘述。
步骤207,网络设备向终端发送第二确认消息。
其中,第二确认消息指示第三特性已开启或已关闭、或者指示第二指示信息是否接收成功。
1、第二确认信息为物理层信令。
1)第二确认信息为DCI。
当网络设备发送DCI调度上行数据即确认接收第二指示信息。
可选地,网络设备可以在DCI中指示开启或关闭第三特性、或指示第三特性的取值,即确定开启或关闭第三特性、或确定第三特性的取值。
可选地,可以通过DCI中的M个比特(bit)指示开启或关闭第三特性,M为正整数。
可选地,DCI中比特数的大小可以取决于第三特性的候选值的个数。例如,比特数等于log2(N)向上取整,其中,N为第三特性的候选值的个数。
可选地,通过DCI中一个bit开启或关闭第三特性。例如,该bit为0表示关闭第三 特性,为1表示开启第三特性。
2)第二确认信息为ACK/NACK信息。
如果网络设备发送ACK,则表明网络设备正确接收第二指示信息;如果网络设备发送NACK,则表明网络设备没有正确接收第二指示信息,或者表明网络设备不准许终端进行第三特性的变更,即拒绝终端的请求。或者,可以采用NACK only的方式,即仅接收失败时反馈NACK,接收成功不反馈,或者,仅拒绝终端的请求时反馈NACK,准许终端的请求时不反馈。
可选地,第二确认信息可以与数据的反馈一起发送。比如当终端发送数据信道时,网络设备可以接收数据信道携带的数据(比如PUSCH),当PUSCH上的数据译码成功时,网络设备反馈ACK,即表明数据接收成功,并且表明第二指示信息接收成功或者网络设备准许终端进行第三特性的变更。当PUSCH上的数据译码失败时,网络设备反馈NACK,即表明数据接收失败,以及表明第二指示信息接收失败或者网络设备不准许终端进行第三特性的变更。
可选地,第二确认信息可以与数据的反馈分开发送。比如当终端发送数据信道时,网络设备可以接收数据信道携带的数据(比如PUSCH),当PUSCH上的数据译码成功时,网络设备反馈ACK,即表明数据接收成功。针对第二指示信息,网络设备可以发送ACK,表明第二指示信息接收成功或者网络设备准许终端进行第三特性的变更。当PUSCH上的数据译码失败时,网络设备反馈NACK,即表明数据接收失败。针对第二指示信息,网络设备可以发送ACK,表明第二指示信息接收成功或者网络设备准许终端进行第三特性的变更。也就是说,网络设备可以发送两个ACK/NACK信息,其中一个表明第二指示信息的确认,一个表明数据的确认。两个ACK/NACK信息先后顺序不限。
2、第二确认信息为高层信令。
当网络设备收到第二指示信息,可以发送RRC信令或MAC层信令指示终端第二指示信息接收成功、或指示准许或拒绝终端的请求。
例如,准许终端的请求时,可以发送同意(agree)信息,或者,完成(complete)信息。
又例如,拒绝终端的请求时,可以发送拒绝(reject)信息,或者,释放(release)信息。
终端接收到第二确认信息后,根据第二确认信息开启或关闭第三特性、或者确定第三特性的取值。
在一些实现方式中,网络设备发送第二确认信息的传输资源可以是网络设备告知终端的。
由终端建议或告知网络设备终端特性的开启、关闭或取值,可以更好的适应环境或业务的需求,提高特性开启的灵活性,降低终端功耗,实现节能,提高通信性能。比如,当终端没有数据传输需求或终端的数据量较小时,终端希望进入节能模式时,此时终端可以建议或告知网络设备终端特性的关闭,进而终端可以进入节能模式,降低终端功耗,实现终端节能。
图3是本申请的另一实施例的确定终端的特性的方法的示意性流程图。
与图2所示的方法不同的是,图3所示的方法中,终端可以根据网络设备的指示确定 终端的特性集合。
步骤301,网络设备根据终端的类型确定终端的特性集合。详细描述可以参见图2中的步骤202。
步骤302,网络设备向终端发送第一指示信息。相应地,终端接收网络设备发送的第一指示信息。
其中,第一指示信息指示第二特性的开启或关闭、或指示第二特性的取值,第二特性为终端支持的特性。
第一指示信息的详细描述可以参考步骤204中第一指示信息的描述,在此不再赘述。
步骤303,在接收到第一指示信息后,终端向网络设备发送第一确认信息。相应地,网络设备接收终端的第一确认信息。该步骤为可选步骤。
第一确认信息的详细描述可以参考步骤205中第一确认信息的描述,在此不再赘述。
步骤304,终端根据第一指示信息,确定终端的特性集合。
例如,终端根据第一指示信息开启或关闭第二特性、或根据第一指示信息确定第二特性的取值。
步骤305,终端和网络设备根据终端的特性集合中的特性进行通信。
本方案中,终端根据网络设备的指示信息确定终端的特性集合,可以实现网络设备根据环境或业务等的需求,提高特性集合的灵活性,可以实现特性的灵活开启或关闭,降低终端功耗,实现终端节能,提高通信性能。
图4是本申请的另一实施例的确定终端的特性的方法的示意性流程图。
与图2和图3所示的方法不同的是,图4所示的方法中,网络设备根据终端的指示确定终端的特性集合。
步骤401,终端确定终端的特性集合。详细描述可以参见图2中的步骤201。
步骤402,终端向网络设备发送第二指示信息。相应地,网络设备接收终端发送的第二指示信息。
其中,第二指示信息指示第三特性的开启或关闭、或指示第三特性的取值,第三特性为终端支持的特性。
第二指示信息的详细描述可以参考步骤206中第二指示信息的描述,在此不再赘述。
步骤403,在接收到第二指示信息后,网络设备向终端发送第二确认信息。相应地,终端接收网络设备发送的第二确认信息。该步骤为可选步骤。
第二确认信息的详细描述可以参考步骤207中第二确认信息的描述,在此不再赘述。
步骤404,网络设备根据第二指示信息,确定终端的特性集合。
例如,网络设备根据第二指示信息开启或关闭第二特性、或根据第二指示信息确定第二特性的取值。
步骤405,终端和网络设备根据终端的特性集合中的特性进行通信。
本方案中,网络设备根据终端的指示信息确定终端的特性集合,可以实现终端建议或告知网络设备终端特性的开启或关闭,可以使得终端根据环境或业务等的需求,提高特性集合的灵活性,可以实现特性的灵活开启或关闭,降低终端功耗,实现终端节能,提高通信性能。
需要说明的是,上述第一特性、第二特性、第三特性、第五特性或第六特性可以包括 一个特性,也可以包括多个特性。
在本申请提出的一种确定终端的特性的方法中,终端特性集合与终端的类型具有对应关系,能够实现终端的特性的定制化和终端的特性的最小化,在满足不同类型的终端的特性需求的同时,降低芯片成本和终端实现处理复杂度,实现终端节能。
下面对本申请的实施例中特性集合与终端的类型的关系进行详细描述。
首先,对几种常见类型的终端的特点进行说明。
不同的终端的类型的如下至少一个属性不同:支持的业务类型、对移动性的需求、对业务数据的传输时延需求、所处的无线信道环境、对业务数据的传输可靠性需求、对覆盖的需求、以及部署场景。
其中,属性还可以包括如下至少一个:时间敏感性需求、位置敏感性需求、定位需求、其他通信需求等。
可选地,业务类型可以根据业务数据的大小确定,例如,业务类型可以包括大包数据、中包数据、小包数据等。移动性可以包括移动、固定,也可以是指运动速度的大小,比如小于3km/h,30km/h,120km/h等等,也可以是指某种场景下的速度,比如步行速度,车速,高铁速度,飞机速度等;其中,移动也可以包括不规律移动、沿固定路线移动、超短距离移动等。传输时延需求可以包括高传输时延、低传输时延和传输时延一般等。信道环境可以包括信道环境多变、信道环境稳定、信道环境相对稳定等。可靠性需求可以包括高可靠性、低可靠性、可靠性一般等。覆盖需求可以包括广覆盖、强覆盖、弱覆盖、一般覆盖、深覆盖等。通信场景可以包括前述对通信系统进行描述时所包括的通信场景,或者通信场景也可以包括上行通信、下行通信、上下行通信、旁链路通信、发送链路、接收链路、全双工通信、接入通信、回传通信、中继通信等,不予限制。
示例性地,终端的类型包括如下一项或多项:eMBB设备、URLLC设备、IoT设备、CPE设备、V2X设备。其中,eMBB设备主要用于传输大包数据,也可以用于传输小包数据,一般处于移动状态,对于传输时延和可靠性的需求一般,上下行通信均有,信道环境比较复杂多变,可以室内通信,也可以室外通信,例如,eMBB设备可以为手机。URLLC设备主要用于传输小包数据,也可以传输中包数据,一般属于非移动状态,或者可以沿固定路线移动,对于传输时延和可靠性的需求较高,即要求低传输时延和高可靠性,上下行通信均有,信道环境稳定,例如,URLLC设备可以为工厂设备。IoT设备主要用于传输小数据,一般处于非移动状态,且位置已知,对于传输时延和可靠性需求中等,上行通信较多,信道环境相对稳定,例如,IoT设备可以是智能水表、传感器。CPE设备主要用于传输大包数据,一般处于非移动状态,或者可以进行超短距离移动,对于传输时延和可靠性的需求中等,上下行通信均有,信道环境相对稳定,例如,CPE设备可以是智慧家庭中的终端设备、AR、VR等。当确定终端设备的终端类型时,可以根据终端设备的业务类型、移动性、传输时延需求、可靠性需求、信道环境和通信场景,将终端设备对应的终端类型确定为eMBB设备、URLLC设备、IoT设备或CPE设备。
需要说明的是,eMBB设备也可以描述为eMBB终端,URLLC设备也可以描述为URLLC终端,IoT设备也可以描述为IoT终端,CPE设备也可以描述为CPE终端,V2X设备也可以描述为V2X终端,不予限制。
需要说明的是,eMBB设备也可以简称为eMBB,URLLC设备也可以简称为URLLC, IoT设备也可以简称为IoT,CPE设备也可以简称为CPE,V2X设备也可以简称为V2X,不予限制。
图5是不同类型的终端的特征分析的示例。
1、第一类型的终端的特征可以是:传输小数据和中数据;终端一般是非移动的,或者有固定路线的,比如工厂场景;对于时延,可靠性的要求比较高;上下行数据传输均有;信道环境稳定。
例如,第一类型的终端可以为URLLC终端。
2、第二类型的终端的特点可以是:一般传输小数据,数据可以是周期性存在;非移动,位置已知,比如智能水表等;对于时延,可靠性的要求一般;上下行数据传输均有,上行数据传输偏多;信道环境相对稳定,对于覆盖要求较高,比如深覆盖需求等。有些特殊的场景,是高速移动场景。
例如,第二类型的终端可以为IoT终端。IoT终端可以包括如下一种或多种:MTC终端、NB-IoT终端、mMTC终端、感知器、传感器、以及控制器等。
3、第三类型的终端的特点可以是:一般传输大数据;终端固定,非移动,短距离通信;时延,可靠性要求一般;上下行数据传输均有;信道环境相对稳定。
例如,第三类型的终端可以为CPE终端、智慧家庭终端、AR终端、或VR终端等。
4、第四类型的终端的特点可以是:传输大数据,也会偶尔有小数据;用户(或终端)一般是移动的;对于时延,可靠性的要求一般;上下行数据传输均有;信道环境比较复杂多变,比如室外、室内等等。
例如,第四类型的终端可以为eMBB终端。
在本申请中,针对在不同类型的终端,分别定义特性集合。
终端的特性集合可以包括第一集合和第二集合。
第一集合中的特性为必选特性,第一集合为非空集合,第一集合与终端的类型相关,第一集合可以称为终端的最小特性集合。
第二集合中的特性属于由可选特性构成的集合,或者也可以描述为第二集合中的特性为可选特性,第二集合可以为空集或非空集合。
第一集合包括以下至少一项:空口通信特性、定位特性、旁链路通信特性、感知特性、AI特性、和NTN特性等。
其中:
空口通信特性也可以替换为Uu通信特性,可以包括以下至少一项:初始接入操作、移动性测量反馈、支持的波形、支持的带宽、调制方式、数据调度、HARQ操作、重传方式、终端处理能力、MIMO、信道测量反馈、帧结构参数、信道编码方式、上行功控操作、资源分配方式、上行控制信道、下行控制信道、载波聚合、双连接、部分带宽(bandwidth part,BWP)、补充的上行链路(supplementary uplink,SUL)、以及空口通信特性中的其他特性等。
定位特性可以包括以下至少一项:基于DL AOD的定位特性、基于DL-TDOA的定位特性、定位参考信号的带宽大小、下行定位参考信号资源数目、以及支持发送用于定位的周期性SRS等。
旁链路通信特性可以包括基本的旁链路通信的能力。
感知特性可以是指具有对信道环境,位置,场景等的感觉或意识的功能或特性。感知特性也可以与定位特性统一,比如感知定位一体化的功能/特性等。感知特性也可以与通信特性统一,比如感知通信一体化的功能/特性等。感知网络可以是指通信设备/通信网络能够感知现存的网络环境,通过对所处环境的理解,实时调查通信网络的配置,智能地适应专业环境的变化。
比如,感知特性可以包括以下至少一项:发送感知参考信号,接收感知参考信号,分析学习决策。
比如,感知特性可以是具有发送和/或接收感知参考信号的特性。通信设备可以具备从变化中学习的能力,且能把它们用到未来的决策中。学习和应用的能力建立在及时感知所在网络环境的基础之上。
AI特性可以是指具有人工智能的功能或特性,可以实现人工智能的算法,运算或处理等。在通信中,通信设备可以利用AI的特性提升通信性能。
比如,AI特性可以包括如下至少一项:基于AI的信道估计,基于AI的信道测量反馈,基于AI的编/解码,基于AI的调制/解调制,基于AI的发射机,基于AI的接收机,基于AI的数据调度,基于AI的功率控制,基于AI的资源管理,基于AI的链路管理,基于AI的网络安全,基于AI的网络优化,基于AI的网络架构,基于AI的物理层通信等。
NTN特性可以是指具有在非地面网络,比如低空网络,高空网络,卫星网络,无人机网络等的网络中进行通信的功能或特性。NTN特性也可以与地面通信统一,比如天地空一体化网络,或者天地空一体化的功能/特性等。NTN网络中的设备可以包括如下至少一项:低轨卫星,高轨卫星,同步卫星,无人机,飞机等非地面设备。比如,网络设备具有NTN特性可以是指具有与非地面设备进行通信的特性,其中,通信可以是指发送信号,和/或,接收信号。比如具有与卫星通信的能力/通信,可以接收卫星的信号,和/或,向卫星发送信号等。
在本申请中,针对在不同类型的终端,分别定义第一集合。
可选地,第一集合与终端的类型相关,或者,也可以称为第一集合与终端的类型具有对应关系。
可选地,第一集合与终端的类型的对应关系,可以是协议预定义的,也可以是网络设备通过信令告知终端的,其中,信令可以是高层信令,也可以是物理层信令。
其中,终端的类型可以包括如下至少一种:第一类型,第二类型,第三类型,第四类型等。
第一集合可以包括如下至少一种:特性1,特性2,特性3,特性4等。
比如第一类型的终端的第一集合包括特性1;第二类型的终端的第一集合包括特性2;第三类型的终端的第一集合包括特性3;第四类型的终端的第一集合包括特性4等。以下进行举例说明:
1)若终端的类型为第一类型,第一集合可以包括定位特性和旁链路通信特性。
以第一类型的终端为URLLC终端为例进行说明。针对URLLC场景,首先,URLLC终端可以是机械手臂、机器人等,机械手臂、机器人等会移动,为了机械手臂等的波束(beam)对准、以及降低波束切换或小区切换带来的时延,本申请将定位特性作为URLLC终端的必选特性,通过定位特性可以进行位置预测、提前准备,这样可以满足精准操作需 求、实现0ms时延、以及避免业务中断。其次,考虑到URLLC场景中URLLC终端(例如,工厂内的设备)之间需要通信,因此,本申请将旁链路通信特性作为URLLC终端的必选特性,这样可以满足低时延、高可靠的业务需求。
可选地,第一集合还可以包括空口通信特性。
2)若终端的类型为第二类型,第一集合包括感知特性和非地面网络NTN通信特性。
以第二类型的终端为IoT终端为例进行说明。首先,将感知特性作为IoT终端的必选特性,使得IoT终端可以感知周围的环境,有助于降低功耗、提高通信性能。其次,将NTN特性作为IoT终端的必选特性,有助于提高特殊场景(比如沙漠、海洋等)下的覆盖率,提高通信性能。
可选地,第一集合还可以包括空口通信特性。
3)若终端的类型为第三类型,第一集合包括AI特性。
以第三类型的终端为CPE为例进行说明。针对能力较强的CPE,可以基于AI特性提高通信性能,例如,通过AI进行信道状态信息(channel state information,CSI)获取、信道估计、编码解码、AI接收机、AI发射机等。
可选地,第一集合还可以包括空口通信特性。
4)若终端的类型为第四类型,第一集合包括空口通信特性。例如,第四类型的终端可以为eMBB。
下面对空口通信特性中的部分特性进行详细描述。如下特性的实施例可以相互独立,也可以相互结合,本申请对此不做限定。
1)初始接入操作和移动性测量反馈
初始接入操作和移动性测量反馈也可以合在一起描述为初始接入和移动性(initial access and mobility)特性。初始接入和移动性特性,也可以为分开的两个特性,比如初始接入特性和移动性特性。为了描述方便,下文采用初始接入和移动性特性的描述方式。
初始接入和移动性特性可以包括如下一项或多项:基本的初始接入信道和操作(basic initial access channel and process)、基于同步信号块(synchronization signal and physical broadcast channel block,SSB)的信号噪声干扰比(signal to interference plus noise ratio,SINR)测量(SSB based SINR measurement)、基于SSB的无线链路管理(radio link management,RLM)(SSB based RLM)、基于SSB的无线资源管理(radio resource management,RRM)(SSB based RRM)、基于CSI-RS的SINR测量(CSI-RS based SINR measurement)、基于CSI-RS的RRM(CSI-RS based RRM)、基于CSI-RS的RLM(CSI-RS based RLM)、小区切换(handover)、和邻区测量(neighborhood-cell measurement)等。
考虑到不同类型的终端的特性不同,不同类型的终端支持的初始接入和移动性特性可以不同。终端可以支持初始接入和移动性特性的部分或全部,进而实现终端的最小特性集合定制化,降低终端芯片成本,实现终端节能,提高通信性能。
比如,针对第一类型的终端,终端的第一集合中可以包括基本的初始接入信道和操作、基于SSB的RLM、基于CSI-RS的SINR测量、和基于CSI-RS的RRM。比如,第一类型的终端可以为URLLC终端。考虑到终端可以是位置固定的,也可以是路线固定的,有规律的移动性的,因此该终端的第一集合包括RLM,RRM,SINR测量等,可以更好的适应移动性下通信环境的变化,及时进行移动性管理,提高通信性能。
比如,针对第二类型的终端,终端的第一集合中可以包括基本的初始接入信道和操作。比如第二类型的终端可以是IoT终端。考虑到第二类型的终端可以是位置固定的终端,对于位置固定终端,终端可以不用支持小区切换、邻小区测量等特性,可以降低终端实现的复杂度和终端功耗。
比如,针对第三类型的终端,终端的第一集合中可以包括基本的初始接入信道和操作、和基于CSI-RS的SINR测量。比如,第三类型的终端可以是CPE终端。考虑到第三类型的终端位置固定、一般传输大数据、需高速率传输、没有波束管理,因此终端可以不用支持小区切换、邻小区测量等特性,可以降低终端实现的复杂度和终端功耗。
比如,针对第四类型的终端,终端的第一集合中可以包括基本的初始接入信道和操作、基于SSB的RLM、基于CSI-RS的RRM、小区切换、和邻区测量。比如,第四类型的终端可以为eMBB终端,考虑到该终端可以是位置固定的,也可以是具有移动性的,因此该终端的第一集合包括RLM,RRM,SINR测量,小区切换等,可以更好的适应移动性下通信环境的变化,及时进行移动性管理,提高通信性能。
2)支持的波形
在NR系统中,针对下行数据传输,终端的第一集合中包括OFDM波形,针对上行数据传输,终端的第一集合中包括OFDM波形和DFT-S-OFDM波形。
在本申请中,考虑到不同类型的终端的特性不同,不同类型的终端支持的波形可以不同,进而实现终端的最小特性集合定制化,降低终端芯片成本,实现终端节能,提高通信性能。
比如,针对第一类型的终端,终端的第一集合中可以包括OFDM波形。该OFDM波形可以用于上行传输,也可以用于下行传输。比如,第一类型的终端可以是URLLC终端。
比如,针对第二类型的终端,终端的第一集合中可以包括低成本的波形。低成本波形可以包括加权叠加和相加正交频分复用(weighted overlap and add‐orthogonal frequency division multiplexing,WOLA-OFDM)、滤波器组多载波-偏移正交幅度调制(filter bank based multicarrier-offset quadrature amplitude modulation,FBMC-OQAM)、广义频分复用(generalized frequency division multiplexing,GFDM)、交叉相位调制(cross phase modulation,CPM)、和其他的低成本波形。比如第二类型的终端可以是IoT终端。针对第二类型的终端,为了降低成本,终端的第一集合中包括低成本的波形,即第二类型的终端可以仅支持低成本波形进行通信,从而降低终端成本,提高通信性能。
比如,针对第三类型的终端,终端的第一集合中可以包括OFDM波形。比如,第三类型的终端可以是CPE终端。
比如,针对第四类型的终端,终端的第一集合中包括下行OFDM波形、上行OFDM波形、和上行DFT-S-OFDM波形。即考虑该类型的终端的峰值平均功率比(peak to average power ratio,PAPR)性能,又考虑该类型的终端的通信性能。比如,第四类型的终端可以是eMBB终端。
3)支持的带宽
在NR系统中,针对数据传输定义了各种带宽,针对不同的频段,不同类型的终端支持的带宽相同。
在本申请中,考虑到不同类型的终端的特性不同,不同类型的终端支持的带宽可以不 同,进而实现终端的最小特性集合定制化,降低终端芯片成本,实现终端节能,提高通信性能。
比如,针对第一类型的终端,终端的第一集合中可以包括20MHz、40MHz、100MHz、200MHz、和400MHz中的至少一个。比如,第一类型的终端可以为URLLC终端。
比如,针对第二类型的终端,终端的第一集合中包括超窄带宽。超窄带宽可以是1.08MHz、3MHz、5MHz、10MHz或其他超窄带宽取值中的至少一个。比如第二类型的终端可以为IoT终端。针对第二类型的终端,为了降低成本,终端的第一集合中包括超窄带宽,即第二类型的终端仅支持超窄带宽进行通信,从而降低终端成本,提高通信性能。
比如,针对第三类型的终端,终端的第一集合中可以包括20MHz、40MHz、100MHz、200MHz、400MHz、和超宽带宽中的至少一个。其中超宽带宽可以是500MHz、800MHz、1GHz、2GHz等中的至少一个。比如,第三类型的终端可以为CPE终端。针对第三类型的终端,为了实现高速的数据传输,第一集合中包括超宽带宽,从而实现高速传输,提高通信性能。
比如,针对第四类型的终端,终端的第一集合中包括20MHz、40MHz、100MHz、200MHz、和400MHz中的至少一个。比如,第四类型的终端可以为eMBB终端。
4)调制方式
在NR系统中,针对数据传输定义了各种调制方式,调制方式也可以称为调制阶数,不同类型的终端支持的调制方式相同或不同类型的终端的特性集合包括的调制方式相同。
终端的特性集合中包括的调制方式或终端支持的调制方式可以是指支持的最高阶数的调制方式。
在本申请中,考虑到不同类型的终端的特性不同,不同类型的终端支持的调制方式可以不同,进而实现终端的最小特性集合定制化,降低终端芯片成本,实现终端节能,提高通信性能。
比如,针对第一类型的终端,终端的第一集合中可以包括64QAM。比如,第一类型的终端可以为URLLC终端。
比如,针对第二类型的终端,终端的第一集合中可以包括1/2二进制移相键控(binary phase shift keying,BPSK)、QPSK、和16QAM中的至少一个。比如,第二类型的终端可以为IoT终端。针对第二类型的终端,为了降低成本,终端的第一集合中包括低阶的调制方式,即第二类型的终端支持1/2BPSK、QPSK、16QAM即可,从而降低终端成本,提高通信性能。
比如,针对第三类型的终端,终端的第一集合中可以包括256QAM、1024QAM、和更高阶的调制方式等中的至少一项。比如,第三类型的终端可以为CPE终端。针对第三类型的终端,为了实现高速的数据传输,终端的第一集合中包括256QAM、1024QAM和更高阶的调制方式等中的至少一项,实现高速传输,提高通信性能。
比如,针对第四类型的终端,终端的第一集合中包括64QAM。比如,第四类型的终端可以为eMBB终端。
对于上述的1)、2)、3)和4),可以相互结合。针对不同类型的终端,对数据的传输需要不同,因此可以确定和/或采用更适合的特性集合,进而实现终端的最小特性集合定制化,降低终端芯片成本,实现终端节能,提高通信性能。
示例性地,一种类型的终端,可以对应一个特性集合,该特性集合中可以包括初始接入和移动性特性中的一种或多种、支持一种或多种波形、支持一种或多种带宽、以及支持一种或多种调制方式。
比如,针对第一类型的终端,终端的第一集合中可以包括基本的初始接入信道和操作、基于SSB的RRM、基于CSI-RS的RRM、基于CSI-RS的SINR测量、OFDM波形、超窄带宽和/或20MHz、16QAM和/或QPSK。比如,第一类型的终端可以为URLLC终端。
比如,针对第二类型的终端,终端的第一集合中可以包括基本的初始接入信道和操作、基于SSB的SINR测量、低成本波形、超窄带宽和/或20MHz、16QAM和/或QPSK。比如,第二类型的终端可以为IoT终端。
比如,针对第三类型的终端,终端的第一集合中可以包括基本的初始接入信道和操作、基于SSB的SINR测量、OFDM波形、超宽窄带宽和/或100MHz、256QAM和/或1024QAM。比如,第三类型的终端可以为CPE终端。
比如,针对第四类型的终端,终端的第一集合中可以包括基本的初始接入信道和操作、基于SSB的RRM、基于CSI-RS的RRM、小区切换、邻区测量、OFDM波形、DFT-S-OFDM波形、20MHz、40MHz、100MHz和64QAM。比如,第四类型的终端可以为eMBB终端。
上述实施例中,设计终端能力集合定制化,根据UE类型或UE定制化终端能力/特性,实现特性与终端的类型匹配,满足各类设备需求,降低通信复杂度,降低芯片成本,降低功耗。
5)调度方式
调度方式可以包括如下一种或多种:动态调度、configured grant type 1、configured grant type 2、SPS、时隙或子时隙聚合(slot/sub-slot aggregation)、跨时隙调度(closs-slot scheduling)、和在随机接入(random access channel,RACH)过程的消息1或者消息3中携带数据。
调度方式还可以包括数据传输方式和/或资源分配方式。比如,数据传输方式可以包括重复传输。比如资源分配方式可以包括时隙内跳频、时隙间跳频、不使能跳频等。
其中:
动态调度:基于动态调度的数据传输是基于物理层信令(比如DCI)调度的数据传输。
时隙或子时隙聚合:基于时隙或子时隙聚合的数据传输,一次数据传输可以占用一个或多个时隙,或者一次数据传输可以占用一个或多个子时隙。时隙或子时隙的数目可以通过聚合因子指示。聚合因子指示可以是通过高层信令或物理层信令指示。
多个时隙或子时隙的数据可以是不同冗余版本的相同数据,通过该方式的数据传输可以降低码率,多次重复传输获取分集增益,提高数据传输的可靠性。基于时隙或子时隙聚合的数据传输,可以实现终端快速的多次数据传输,降低DCI的信令开销,降低传输时延。例如,通过一个DCI,终端可以进行多个时隙或子时隙的数据传输,可以实现快速高效的多次数据的传输,降低DCI开销,降低传输时延,适用于可靠性要求高的业务类型的终端。
多个时隙或子时隙的数据也可以是不同的数据,通过该方式的数据传输可以实现快速大包传输,降低DCI开销,降低传输时延,提高数据传输的容量。基于时隙或子时隙聚合下的数据传输,可以实现终端快速的大包数据传输,降低DCI的信令开销,降低传输时延。例如,通过一个DCI,终端可以进行多个时隙或子时隙的数据传输,可以实现快速高效的 大数据包的传输,降低DCI开销,降低传输时延,适用于大包数据的业务类型的终端。
跨时隙调度:基于跨时隙调度的数据传输,物理层信令(比如DCI)所在的时隙与数据所在的时隙并不是同一时隙。基于跨时隙调度的数据传输可以在当前时隙中没有资源时预留后续时隙,降低时延,提前做好收发数据的准备。
在随机接入(RACH)过程的消息1或者消息3中携带数据:终端发送RACH的前导码(preamble)序列时,可以在对应的时频资源上传输数据,避免物理层信令(比如DCI)的调度;或者在随机接入过程中基于随机接入响应(random access response,RAR)的调度,在消息3中传输数据。在随机接入过程的消息1或消息3中携带数据,可以实现终端的数据的快速发送,降低传输时延,提高传输效率。
重复传输:可以是指数据多次重复传输。
时隙内跳频:可以是指数据传输在时隙内不同符号的频域资源不同。
时隙间跳频:可以是指数据传输在不同时隙内的频域资源不同。
不同类型的终端对数据的传输需要可能不同,因此终端和/或网络设备可以根据终端的类型确定和/或采用更适合的调度方式。即定义终端特性集合时可以考虑终端的类型,进而实现终端的最小特性集合定制化,降低终端芯片成本,实现终端节能,提高通信性能。
示例性地,一种类型的终端,可以对应一个特性集合,该特性集合中可以包括一种或多种调度方式。其中,调度方式可以是上文提到的至少一种,或者,也可以是其他的调度方式。
例如,针对类型1的终端,终端的第一集合包括调度方式为A1、A2和A3;针对类型2的终端,终端的第一集合包括调度方式为B1和B2;针对类型X的终端,终端的第一集合包括调度方式为X1和X2。其中,终端类型1、终端类型2、…、终端类型X可以是上述终端的类型中的至少一种,比如eMBB,URLLC,IoT,CPE,V2X,AR/VR等,不予限制。调度方式A1、调度方式A2、A3;调度方式B1、调度方式B2;调度方式X1、调度方式X2均可以是上述调度方式中的至少一种,比如动态调度,配置授权类型调度,SPS调度,时隙或子时隙聚合,跨时隙调度,随机接入携带数据等,不予限制。
在现有技术中,eMBB终端必须支持的是基于动态调度的数据传输,而基于配置授权调度的数据传输和基于时隙聚合的数据传输是可选的。
在本申请中,终端和/或网络设备可以根据终端的类型确定和/或采用更适合的调度方式。
比如,针对第一类型的终端,终端的第一集合中的调度方式包括配置授权的调度方式、和时隙或子时隙聚合的调度方式。比如,第一类型的终端可以为URLLC终端。考虑到第一类型的终端是小数据或中数据、低时延、高可靠的业务传输,因此可以不进行动态调度,直接通过配置授权的调度方式进行传输,来包即可随时传,可以降低时延;采用时隙聚合的调度方式可以进行多次重复传输,提高可靠性,同时降低反馈再重传下的时延。
比如针对第二类型的终端,终端的第一集合中的调度方式包括动态调度。比如,第二类型的终端可以为IoT终端。考虑到第二类型的终端是小数据、有规律的业务传输,因此可以采用动态调度的调度方式。
比如针对第三类型的终端,终端的第一集合中的调度方式包括动态调度、和时隙或子时隙聚合的调度方式。比如第三类型的终端可以是CPE终端。考虑到第三类型的终端的 特点是静止、大数据传输,因此可以采用高功耗模式,时刻都有数据传输,因此可以采用动态调度、跨时隙调度、时隙聚合等调度方式在多个时隙进行大数据传输,提升传输速率。
比如,针对第四类型的终端,终端的第一集合中的调度方式包括动态调度。比如第四类型的终端可以为eMBB终端。
在本申请中,可选的,终端的类型与调度方式之间具有对应关系,该对应关系可以是协议预定义的,也可以是网络设备通过信令告知终端的,例如,通过高层信令或物理层信令。
表6为终端的类型与调度方式之间的对应关系的一个示例。
表6
终端的类型 调度方式
类型1 调度方式A1、A2、…、An
类型2 调度方式B1、B2、…、Bn
类型X 调度方式X1、X2、…、Xn
其中,终端的类型1~类型X分别可以是上文提到的类型中的一种,例如,eMBB终端、URLLC终端、IoT终端、CPE、V2X终端、AR终端、VR终端等。调度方式A1~An、B1~Bn、X1~Xn可以是如上介绍的调度方式中的至少一种,例如,动态调度、配置授权、SPS、时隙或子时隙聚合、跨时隙调度、和在随机接入过程的消息1或者消息3中携带数据等。其中,An、Bn,…,Xn分别为正整数,取值可以相同或者不同。
表7为终端的类型与调度方式之间的对应关系的一个示例。终端的类型与调度方式之间的对应关系可以是如下表格中的至少一行,和/或,至少一列。
表7
Figure PCTCN2021138707-appb-000003
在本申请中,调度方式可以是终端接收数据的调度方式,比如下行调度方式,也可以是终端发送数据的调度方式,比如上行调度方式。
在一些实现方式中,终端和/或网络设备可以根据终端的类型,针对终端接收数据和终端发送数据分别确定和/或定义调度方式。这样,终端的第一集合中包括终端接收数据的调度方式,和/或,终端发送数据的调度方式。
例如,针对类型1的终端,终端的第一集合1的上行调度方式为A1’,和/或,下行调度方式为A1 *;和/或,终端的第一集合2的上行调度方式为A2’,和/或,下行调度方式为A2 *
例如,针对类型2的终端,终端的第一集合1的上行调度方式为B1’,和/或,下行调度方式为B1 *;和/或,终端的第一集合2的上行调度方式为B2’,和/或,下行调度方式为B2 *
例如,针对类型X的终端,终端的第一集合1的上行调度方式为X1’,和/或,下行调度方式为X1 *;和/或,终端的第一集合2的上行调度方式为X2’,和/或,下行调度方式为X2 *
可选地,终端的类型与终端接收数据的调度方式具有对应关系。终端的类型与终端发送数据的调度方式具有对应关系。该对应关系可以是协议预定义的,也可以是网络设备通过信令告知终端的,例如,通过高层信令或物理层信令。
表8为终端的类型与调度方式之间的对应关系的另一个示例。
表8
Figure PCTCN2021138707-appb-000004
其中,终端的类型1~类型X分别可以是上文提到的类型中的一种,例如,eMBB终端、URLLC终端、IoT终端、CPE、V2X终端、AR终端、VR终端等。上行调度方式A1’~An’、B1’~Bn’、X1’~Xn’,以及下行调度方式A1 *~An *、B1 *~Bn *、X1 *~Xn *可以是如上介绍的调度方式中的至少一种,例如,动态调度、配置授权、SPS、时隙或子时隙聚合、跨时隙调度、和在随机接入过程的消息1或者消息3中携带数据等。其中,An’、Bn’、Xn’、An*、Bn*、Xn*分别为正整数,取值可以相同或者不同。
6)HARQ操作
HARQ操作也可以称为ACK/NACK反馈,也可以称为HARQ方式,可以包括如下一种或多种:不反馈ACK/NACK、码字级ACK/NACK反馈、编码块组级ACK/NACK反馈、同步HARQ、异步HARQ、自适应HARQ(adaptive HARQ)、和非自适应HARQ(non-adaptive HARQ)。
其中:
不反馈ACK/NACK:即数据接收或发送后,终端不需要反馈ACK/NACK。本方式下,可以采用盲重传的方式传输数据,降低时延,降低上行反馈开销,提高通信性能。
码字级ACK/NACK反馈:即反馈数据的粒度是码字,比如码字传输正确反馈ACK,码字传输错误反馈NACK。一个码字也可以称为一个传输块(transmission block,TB)。
编码块组级ACK/NACK反馈:即反馈数据的粒度是编码块组。相比于码字级反馈,编码块组级可以实现更小粒度的反馈。
由于一个TB被分为多个编码块(code block,CB),终端译码时可以知道每个CB是否正确。因此,一种方式就是对每个CB进行ACK/NACK反馈,这样如果某个TB译 码失败,终端只需对传输错误的CB进行重传,不用重传整个TB。基于CB的反馈看起来减少了重传的冗余信息,可以提高资源利用率,但是需要反馈很多的上行ACK/NACK,这样会导致上行信令的开销非常大,同样也会造成资源的浪费,因为反馈很多ACK是没有意义的。在NR中引入了一种基于TB反馈和基于CB反馈的折中方案:将TB中的多个CB分组,分组后的CB称为编码块组(code block group,CBG)。一个码字可以包括一个或多个编码块。针对每一个CBG反馈对应的ACK/NACK,并且基于CBG进行重传。比如一个码字包括编码块组1和编码块组2,如果编码块组1传输正确反馈ACK,如果编码块组1传输错误反馈NACK,如果编码块组2传输正确反馈ACK,如果编码块组2传输错误反馈NACK。CBG的最大个数可以是2、4、6、8等。针对每一个CBG反馈对应的ACK/NACK,并且基于CBG进行重传。CBG传输是可配置的,只有配置了基于CBG传输的用户才可以基于CBG进行重传。针对每一个CBG反馈对应的ACK/NACK,可以提高资源利用率,避免重传冗余信息,又可以避免上行反馈信令过大,造成资源的浪费。
HARQ协议在时域上分为同步HARQ和异步HARQ两类;在频域上分为自适应HARQ和非自适应HARQ两类。针对同一HARQ进程(HARQ process),一个HARQ进程在同一传输时间间隔只能处理一个TB。
同步HARQ:意味着重传只能在前一次传输之后的固定时刻发送,也意味着某个特定的子帧,只能使用某个特定的HARQ process进程。同步HARQ的好处在于HARQ进程号可以直接从系统帧号/子帧号中推导出来,而无需显式地发送HARQ进程号。
异步HARQ:意味着重传可以发生在任一时刻,也意味着能以任意顺序使用HARQ进程。异步HARQ的好处在于重传调度更加灵活。
自适应HARQ:可以改变重传所使用的PRB资源以及调制与编码策略(modulation and coding scheme,MCS)。
非自适应HARQ:重传必须与前一次传输(新传或前一次重传)使用相同的PRB资源和MCS。
异步HARQ/同步HARQ、自适应HARQ/非自适应HARQ都是针对前一次传输(包括新传和前一次重传)与重传之间的关系的。
不同类型的终端对数据的传输需要可能不同,因此终端和/或网络设备可以根据终端的类型确定和/或采用更适合的HARQ操作,进而实现终端的最小特性集合定制化,降低终端芯片成本,实现终端节能,提高通信性能。
示例性地,一种类型的终端,可以对应一个特性集合,该特性集合中可以包括一种或多种HARQ方式。其中,HARQ方式可以是上文提到的至少一种,或者,也可以是其他的HARQ方式。
例如,针对类型1的终端,终端的第一集合包括HARQ方式为a1、a2;针对类型2的终端,终端的第一集合包括HARQ方式为b1和b2;针对类型X的终端,终端的第一集合包括HARQ方式为x1和x2。其中,终端类型1、终端类型2、…、终端类型X可以是上述终端的类型中的至少一种,比如eMBB,URLLC,IoT,CPE,V2X,AR/VR等,不予限制。HARQ方式a1、HARQ方式a2、HARQ方式b1、HARQ方式b2、HARQ方式x1、HARQ方式x2均可以是上述HARQ方式中的至少一种,比如不反馈ACK/NACK、码字级ACK/NACK反馈、编码块组级ACK/NACK反馈、同步HARQ、异步HARQ、自 适应HARQ、和非自适应HARQ等,不予限制。
在本申请中,终端和/或网络设备可以根据终端的类型确定和/或采用更适合的HARQ方式。
比如,针对第一类型的终端,终端的第一集合中包括不反馈ACK/NACK和/或码字级ACK/NACK反馈。比如,第一类型的终端可以为URLLC终端。考虑到第一类型的终端可以是小数据或中数据、低时延、高可靠的业务传输,因此可以不进行ACK/NACK反馈,直接多次重传,降低时延。针对传输小数据的场景,也可以进行基于码字级ACK/NACK反馈。
比如,针对第二类型的终端,终端的第一集合中包括不反馈ACK/NACK。比如,第二类型的终端可以是IoT终端。考虑到第二类型的终端可以是小数据、有规律的业务传输,因此可以不反馈ACK/NACK,降低时延和反馈开销,实现终端节能,降低终端成本。
比如,针对第三类型的终端,终端的第一集合中包括码字级ACK/NACK反馈和CBG级ACK/NACK反馈。比如,第三类型的终端可以是CPE终端。考虑到第三类型的终端的特点可以是静止、大数据传输,因此可以包括采用码字级ACK/NACK反馈或CBG级ACK/NACK反馈,从而避免冗余正确的CBG重复传输,提高传输效率。
比如,针对第四类型的终端,终端的第一集合中包括码字级ACK/NACK反馈。比如,第四类型的终端可以是eMBB终端。
在本申请中,可选地,终端的类型与HARQ操作之间具有对应关系,所述对应关系可以是协议预定义的,也可以是基站或者核心网通过信令告知终端的。比如通过高层信令或物理层信令。
表9为终端的类型与HARQ操作之间的对应关系的一个示例。
表9
终端的类型 HARQ操作
类型1 HARQ操作a1,a2,…,an
类型2 HARQ操作b1,b2,…,bn
类型X HARQ操作x1,x2,…,xn
其中,终端的类型1~类型X分别可以是上文提到的类型中的一种,例如,eMBB终端、URLLC终端、IoT终端、CPE、V2X终端、AR终端、VR终端等。HARQ操作a1~an、b1~bn、x1~xn可以是如上介绍的HARQ操作中的至少一种,例如,不反馈ACK/NACK、码字级ACK/NACK反馈、编码块组级ACK/NACK反馈、同步HARQ、异步HARQ、自适应HARQ、和非自适应HARQ。其中,an、bn,…,xn分别为正整数,取值可以相同或者不同。
表10为终端的类型与HARQ操作之间的对应关系的一个示例。终端的类型与HARQ操作之间的对应关系可以是如下表格中的至少一行,和/或,至少一列。
表10
Figure PCTCN2021138707-appb-000005
Figure PCTCN2021138707-appb-000006
在本申请中,HARQ操作可以是终端接收数据的HARQ操作,比如下行HARQ操作,也可以是终端发送数据的HARQ操作,比如上行HARQ操作。
在一些实现方式中,终端和/或网络设备可以根据终端的类型,针对终端接收数据和终端发送数据分别确定和/或定义HARQ操作。这样,终端的第一集合中包括终端接收数据的HARQ操作,和/或,终端发送数据的HARQ操作。
可选地,终端的类型与终端接收数据的HARQ操作具有对应关系。终端的类型与终端发送数据的HARQ操作具有对应关系。该对应关系可以是协议预定义的,也可以是网络设备通过信令告知终端的,例如,通过高层信令或物理层信令。
比如,针对类型1的终端,终端的第一集合中的上行HARQ操作为a1’,a2’,和/或,下行HARQ操作为a1 *,a2 *
比如,针对类型2的终端,终端的第一集合中的上行HARQ操作为b1’,b2’,和/或,下行HARQ操作为b1 *,b2 *
比如,针对类型X的终端,终端的第一集合中的上行HARQ操作为x1’,x2’,和/或,下行HARQ操作为x1 *,x2 *
可选地,终端的类型与终端接收数据的HARQ操作具有对应关系。终端的类型与终端发送数据的HARQ操作具有对应关系。该对应关系可以是协议预定义的,也可以是网络设备通过信令告知终端的,例如,通过高层信令或物理层信令。
表11为终端的类型与HARQ操作之间的对应关系的另一个示例。
表11
Figure PCTCN2021138707-appb-000007
其中,终端的类型1~类型X分别可以是上文提到的类型中的一种,例如,eMBB终端、URLLC终端、IoT终端、CPE、V2X终端、AR终端、VR终端等。上行HARQ操作a1’~an’、b1’~bn’、x1’~xn’,以及下行HARQ操作a1 *~an *、b1 *~bn *、x1 *~xn *可以是如上介绍的HARQ操作中的至少一种,例如,不反馈ACK/NACK、码字级ACK/NACK反馈、编码块组级ACK/NACK反馈、同步HARQ、异步HARQ、自适应HARQ、和非自适应HARQ。其中,an’、bn’、xn’、an*、bn*、xn*分别为正整数,取值可以相同或者不同。
7)重传方式
重传方式方式可以包括如下一种或多种:盲重传、码字级重传、和编码块组级重传。
其中:
盲重传:即发送数据时,终端和/或网络设备可以根据传输次数进行重传或重复发送。比如,不需要接收HARQ,直接第一次发送数据时就传输多次、盲重传或者盲多次重传。采用盲重传的方式传输数据,可以降低时延、降低上行反馈开销、以及提高通信性能。
码字级重传:即数据重传的粒度是码字。比如码字传输正确则不需要重传,码字传输错误则重传整个码字。一个码字也可以称为一个TB。
编码块组重传:即数据重传的粒度是编码块组。相比于码字级重传,编码块组级重传可以实现更小粒度的重传。CBG传输是可配置的,只有配置了基于CBG传输的用户才可以基于CBG进行重传。针对每一个CBG进行重传,可以提高资源利用率,避免重传冗余信息,又可以避免上行反馈信令过大,造成资源的浪费。
不同类型的终端对数据的传输需要可能不同,因此可以终端和/或网络设备可以根据终端的类型确定和/或采用更适合的重传方式,进而实现终端的最小特性集合定制化,降低终端芯片成本,实现终端节能,提高通信性能。
示例性地,一种类型的终端,可以对应一个特性集合,该特性集合中可以包括一种或多种重传方式。其中,重传方式可以是上文提到的至少一种,或者,也可以是其他的重传方式。HARQ操作与重传方式可以是对应的。
比如,针对类型1的终端,终端的第一集合的重传方式为aR1,aR2。
比如,针对类型2的终端,终端的第一集合的重传方式为bR1,bR2。
比如,针对类型X的终端,终端的第一集合的重传方式为xR1,xR2。
在本申请中,终端和/或网络设备可以根据终端的类型确定和/或采用更适合的重传方式。
比如,针对第一类型的终端,终端的第一集合中包括盲重传和码字级重传。比如,第一类型的终端可以为URLLC终端。考虑到第一类型的终端可以是小数据或中数据、低时延、高可靠的业务传输,因此可以不进行ACK/NACK反馈,直接多次重传,降低时延。采用多次重复传输,可以提高可靠性,同时降低先反馈再重传导致的时延。针对传输小数据的场景,也可以进行码字级重传。
比如,针对第二类型的终端,终端的第一集合中包括盲重传。比如,第二类型的终端可以为IoT终端。考虑到第二类型的终端可以是小数据、有规律的业务传输,因此可以不反馈ACK/NACK,降低处理复杂度,降低终端成本,提高传输效率。
比如,针对第三类型的终端,终端的第一集合中包括码字级重传和CBG级重传。比如,第三类型的终端可以是CPE终端。考虑到第三类型的终端的特点是静止、大数据传输,因此可以采用码字级重传和CBG级重传的方式,可以避免冗余正确的CBG重复传输,提高传输效率。
比如,针对第四类型的终端,终端的第一集合中包括码字级重传。比如,第四类型的终端可以是eMBB终端。
在本申请中,可选地,终端的类型与重传方式之间具有对应关系,所述对应关系可以是协议预定义的,也可以是基站或者核心网通过信令告知终端的。比如通过高层信令或物 理层信令。
表12为终端的类型与重传方式之间的对应关系的一个示例。
表12
终端的类型 重传方式
类型1 重传方式aR1,aR2,…,aRn
类型2 重传方式bR1,bR2,…,bRn
类型X 重传方式xR1,xR2,…,xRn
其中,终端的类型1~类型X分别可以是上文提到的类型中的一种,例如,eMBB终端、URLLC终端、IoT终端、CPE、V2X终端、AR终端、VR终端等。HARQ操作aR1~aRn、bR1~bRn、xR1~xRn可以是如上介绍的重传方式中的至少一种,例如,盲重传、码字级重传、和编码块组级重传。其中,aRn、bRn,…,xRn分别为正整数,取值可以相同或者不同。
表13终端的类型与重传方式之间的对应关系的一个示例。终端的类型与重传方式之间的对应关系可以是如下表格中的至少一行,和/或,至少一列。
表13
Figure PCTCN2021138707-appb-000008
在本申请中,重传方式可以是终端接收数据的重传方式,比如下行重传方式,也可以是终端发送数据的重传方式,比如上行重传方式。
在一些实现方式中,终端和/或网络设备可以根据终端的类型,针对终端接收数据和终端发送数据分别确定/定义重传方式。这样,终端的第一集合中包括终端接收数据的重传方式,和/或,终端发送数据的重传方式。
可选地,终端的类型与终端接收数据的重传方式具有对应关系。终端的类型与终端发送数据的重传方式具有对应关系。该对应关系可以是协议预定义的,也可以是网络设备通过信令告知终端的,例如,通过高层信令或物理层信令。
比如,针对类型1的终端,终端的第一集合中的上行重传方式为aR1’,aR2’,和/或,下行重传方式为aR1 *,aR2 *
比如,针对类型2的终端,终端的第一集合中的上行重传方式为bR1’,bR2’,和/或,下行重传方式为bR1 *,bR2 *
比如,针对类型X的终端,终端的第一集合中的上行重传方式为xR1’,xR2’,和/或,下行重传方式为xR1 *,xR2 *
可选地,终端的类型与终端接收数据的重传方式具有对应关系。终端的类型与终端发送数据的重传方式具有对应关系。该对应关系可以是协议预定义的,也可以是网络设备通过信令告知终端的,例如,通过高层信令或物理层信令。
表14为终端的类型与重传方式之间的对应关系的另一个示例。
表14
Figure PCTCN2021138707-appb-000009
其中,终端的类型1~类型X分别可以是上文提到的类型中的一种,例如,eMBB终端、URLLC终端、IoT终端、CPE、V2X终端、AR终端、VR终端等。上行重传方式aR1’~aRn’、bR1’~bRn’、xR1’~xRn’,以及下行重传方式aR1 *~aRn *、bR1 *~bRn *、xR1 *~xRn *可以是如上介绍的重传方式中的至少一种,例如,盲重传、码字级重传、和编码块组级重传。其中,aRn’、bRn’、xRn’、aRn*、bRn*、xRn*分别为正整数,取值可以相同或者不同。
8)终端处理能力
终端处理能力可以是包括如下至少一项:PUSCH处理能力,PDSCH处理能力,旁链路处理能力,CSI处理能力。其中,PUSCH处理能力可以称为PUSCH处理时间,PUSCH准备时间,或者,发送准备时间;PDSCH处理能力可以称为PDSCH准备时间,PDSCH解码时间,或者,接收准备时间;旁链路处理能力可以称为物理旁链路共享信道(physical sidelink shared channel,PSSCH)准备时间,或者,发送旁链路准备时间,或者,接收旁链路准备时间;CSI处理能力可以称为CSI计算时延需求能力,或者,CSI计算时间。
比如,PDSCH处理能力可以是指从终端接收到PDCCH到终端接收PDSCH的时间,其中PDCCH携带DCI,DCI用于调度PUSCH。
比如,PDSCH处理能力可以是指从终端接收到PDSCH到终端发送反馈信息的时间。
比如,旁链路处理能力可以是指从终端接收到旁链路控制信息到终端发送旁链路数据的时间。其中,旁链路控制信息用于调度旁链路数据。
比如,CSI处理能力可以是指从终端接收到CSI上报指示到终端反馈CSI的时间。其中,CSI上报指示用于指示终端上报CSI,可以是通过DCI触发。
PUSCH处理能力可以包括如下至少一种:PUSCH处理能力1、PUSCH处理能力2、PUSCH处理能力3和PUSCH处理能力4。
其中,PUSCH处理能力1和PUSCH处理能力2可以参见上文的相关描述,在此不再赘述。
示例性地,表2是PUSCH处理能力1,表3是PUSCH处理能力2,表15是PUSCH处理能力3,表16是PUSCH处理能力4。表2,表3,表15和表16中的μ表示子载波间隔配置信息,取值见表4。
PUSCH处理能力3可以是指处理能力更强的能力。处理能力3也可以称为超短时延处理能力、超低时延处理能力、增强处理能力、超低时延处理定时或超短时延处理定时等。比如处理时间小于5个符号。比如可以是ns级的处理时间等。
表15
μ PUSCH准备时间N 2[符号]
0 3
1 4
2 9
3 18
PUSCH处理能力4可以是指处理能力较弱的能力。处理能力4也可以称为超长时延处理能力、超高时延处理能力、减弱处理能力、超长时延处理定时或超高时延处理定时、放松处理能力、低成本处理能力。比如处理时间大于20个符号。比如可以是ms级的处理时间等。
表16
μ PUSCH准备时间N 2[符号]
0 12
1 14
2 25
3 38
PDSCH处理能力可以包括如下至少一种:PDSCH处理能力1,PDSCH处理能力2,PDSCH处理能力3,PDSCH处理能力4。
示例性地,表17是PDSCH处理能力1,表18是PDSCH处理能力2,表19是PDSCH处理能力3,表20是PDSCH处理能力4。表17,表18,表19和表20中的μ表示子载波间隔配置信息,取值见表4。
表17
Figure PCTCN2021138707-appb-000010
表18
Figure PCTCN2021138707-appb-000011
PDSCH处理能力3可以是指处理能力更强的能力。处理能力3也可以称为超短时延 处理能力、超低时延处理能力、增强处理能力、超低时延处理定时或超短时延处理定时等。比如处理时间小于3个符号。比如可以是ns级的处理时间等。
表19
Figure PCTCN2021138707-appb-000012
PDSCH处理能力4可以是指处理能力较弱的能力。处理能力4也可以称为超长时延处理能力、超高时延处理能力、减弱处理能力、超长时延处理定时或超高时延处理定时、放松处理能力、低成本处理能力。比如处理时间大于20个符号。比如可以是ms级的处理时间等。
表20
Figure PCTCN2021138707-appb-000013
PDCCH和PDSCH不同载波间隔时的跨载波调度的PDSCH处理能力可以包括如下至少一种:跨载波调度的PDSCH处理能力1,跨载波调度的PDSCH处理能力2,跨载波调度的PDSCH处理能力3。
示例性地,表21是跨载波调度的PDSCH处理能力1,表22是PDSCH处理能力2,表23是PDSCH处理能力3。表21,表22和表23中的μ表示子载波间隔配置信息,取值见表4。其中,μPDCCH是指PDCCH的子载波间隔。
表21
μPDCCH Npdsch[符号]
0 4
1 5
2 10
3 14
跨载波调度的PDSCH处理能力2可以是指处理能力更强的能力。处理能力3也可以称为超短时延处理能力、超低时延处理能力、增强处理能力、超低时延处理定时或超短时延处理定时等。比如处理时间小于10个符号。比如可以是ns级的处理时间等。
表22
μPDCCH Npdsch[符号]
0 3
1 4
2 8
3 12
跨载波调度的PDSCH处理能力3可以是指处理能力较弱的能力。处理能力4也可以称为超长时延处理能力、超高时延处理能力、减弱处理能力、超长时延处理定时或超高时延处理定时、放松处理能力、低成本处理能力。比如处理时间大于14个符号。比如可以是ms级的处理时间等。
表23
μPDCCH Npdsch[符号]
0 6
1 8
2 12
3 16
PSSCH处理能力可以包括如下至少一种:PSSCH处理能力1,PSSCH处理能力2,PSSCH处理能力3。
示例性地,表24是PSSCH处理能力1,表25是PSSCH处理能力2,表26是PSSCH处理能力3。表24,表25和表26中的μ表示子载波间隔配置信息,取值见表4。
表24
μ PSSCH准备时间N 2[符号]
0 10
1 12
2 23
3 36
PSSCH处理能力2可以是指处理能力更强的能力。处理能力3也可以称为超短时延处理能力、超低时延处理能力、增强处理能力、超低时延处理定时或超短时延处理定时等。比如处理时间小于10个符号。比如可以是ns级的处理时间等。
表25
μ PSSCH准备时间N 2[符号]
0 8
1 10
2 20
3 34
PSSCH处理能力3可以是指处理能力较弱的能力。处理能力4也可以称为超长时延处理能力、超高时延处理能力、减弱处理能力、超长时延处理定时或超高时延处理定时、放松处理能力、低成本处理能力。比如处理时间大于36个符号。比如可以是ms级的处理时间等。
表26
μ PSSCH准备时间N 2[符号]
0 12
1 14
2 25
3 38
CSI处理能力可以包括如下至少一种:CSI处理能力1,CSI处理能力2,CSI处理能力3,CSI处理能力4。
示例性地,表27是CSI处理能力1,表28是CSI处理能力2,表29是CSI处理能力3,表30是CSI处理能力4。表27,表28,表29和表30中的μ表示子载波间隔配置信息,取值见表4。
表27
Figure PCTCN2021138707-appb-000014
表28
Figure PCTCN2021138707-appb-000015
CSI处理能力3可以是指处理能力更强的能力。处理能力3也可以称为超短时延处理能力、超低时延处理能力、增强处理能力、超低时延处理定时或超短时延处理定时等。比如处理时间小于10个符号。比如可以是ns级的处理时间等。
表29
Figure PCTCN2021138707-appb-000016
CSI处理能力4可以是指处理能力较弱的能力。处理能力4也可以称为超长时延处理能力、超高时延处理能力、减弱处理能力、超长时延处理定时或超高时延处理定时、放松处理能力、低成本处理能力。比如处理时间大于36个符号。比如可以是ms级的处理时间等。
表30
Figure PCTCN2021138707-appb-000017
Figure PCTCN2021138707-appb-000018
在本申请中,终端和/或网络设备可以根据终端的类型确定和/或定义终端处理能力。
例如,针对第一类型的终端,终端的第一集合可以包括如下至少一项:PUSCH处理能力2,PUSCH处理能力3,PDSCH处理能力2,PDSCH处理能力3,PSSCH处理能力2,CSI处理能力2,CSI处理能力3。比如,第一类型的终端可以为URLLC终端。考虑到第一类型的终端传输超低时延的业务,要求终端具备更强的处理能力,因此,可以将PUSCH处理能力3,和/或,PUSCH处理能力3,和/或,PDSCH处理能力2,和/或,PDSCH处理能力3,和/或,PSSCH处理能力2,和/或,CSI处理能力2,和/或,CSI处理能力3作为第一类型的终端的必选特性,从而满足低延时的需求,提高通信性能。
例如,针对第二类型的终端,终端的第一集合可以包括如下至少一项:PUSCH处理能力4,PDSCH处理能力4,PSSCH处理能力3,CSI处理能力4。比如,第二类型的终端可以为IoT终端。考虑到第二类型的终端的低成本需求,要求终端具备更弱的处理能力,因此,可以将PUSCH处理能力4,和/或,PDSCH处理能力4,和/或,PSSCH处理能力3,和/或,CSI处理能力4作为第二类型的终端的必选特性,从而满足低成本的需求,提高通信性能。
例如,针对第四类型的终端,终端的第一集合中可以包括处理能力1。比如,第四类型的终端可以是eMBB终端。
对于上述的5)、6)、7)和8),可以相互结合。针对不同类型的终端,对数据的传输需要不同,因此可以确定和/或采用更适合的特性集合。
示例性地,一种类型的终端,可以对应一个特性集合,该特性集合中可以包括一种或多种调制方式、一种或多种HARQ操作方式、一种或多种重传方式、以及一种或多种终端处理能力。
比如,针对第一类型的终端,终端的第一集合中可以包括时隙聚合、动态调度、配置授权、处理能力2、处理能力3。比如,第一类型的终端可以是URLLC终端。
比如,针对第二类型的终端,终端的第一集合中可以包括PDSCH重复传输,配置授权。比如,第二类型的终端可以是IoT终端。
比如,针对第三类型的终端,终端的第一集合中可以包括时隙聚合、动态调度、码字级ACK/NACK反馈、码字级重传、CBG级ACK/NACK反馈、CBG级重传、处理能力1。比如,第三类型的终端可以是CPE终端。
例如,针对第四类型的终端,终端的第一集合中可以包括时隙内跳频、动态调度、码字级ACK/NACK反馈、码字级重传、和处理能力1。
上述实施例中,可以实现终端能力集合定制化,终端和/或网络设备可以根据终端的类型或终端定制化终端能力/特性,实现特性与终端的类型匹配,满足各类设备需求,降低通信复杂度,降低芯片成本,降低功耗。
9)MIMO
MIMO特性可以包括如下一项或多项:基本PDSCH传输能力(basic PDSCH reception)、PDSCH波束切换(PDSCH beam swithing)、MIMO多层传输(MIMO multi-layer  transmission)、多传输配置指示(transmission configuration indication,TCI)状态(multi-TCI state)、DMRS、波束相关、信道状态信息(CSI)测量反馈(CSI measurement and feedback)、和基于AI的CSI(AI based CSI)等。
其中:
基本PDSCH传输能力包括数据资源单元映射(data RE mapping)、单层数据传输(single layer transmission)、单TCI状态。
其中,TCI状态用于指示天线端口的准共址(quasi co-located,QCL)信息。准共址信息可以是用于确定信道的大尺度特性参数的信息。两个天线端口之间具有准共址关系,指的是,一个天线端口的信道大尺度特性参数可以通过另一个天线端口得到的(conveyed)信道大尺度特性参数而推知(infer)。大尺度特性参数可以包括平均增益(average gain),平均时延(average delay),时延扩展(delay spread),多普勒频移(Doppler shift),多普勒扩展(Doppler spread),空间参数(spatial parameter,或spatial Rx parameters)中的一项或多项。
其中,空间参数可以包括如下中的一项或多项:到达角(angle of arrival,AOA)、主到达角(dominant AoA)、平均到达角(average AoA)、出发角(angle of departure,AOD)、信道相关矩阵、到达角的功率角度扩展谱、平均出发角(average AoD)、出发角的功率角度扩展谱、发射信道相关性、接收信道相关性、发射波束成型、接收波束成型、空间信道相关性、空间滤波器、空间滤波参数、空间接收参数、权值信息等。
DMRS包括如下一项或多项:调度类型A下的基本DMRS(basic DMRS for scheduling type A)、调度类型B下的基本DMRS(basic DMRS for scheduling type B)、1个符号的前置(front-loaded)DMRS以及2个符号的附加(additional)DMRS(1+2DMRS)、2个符号的前载DMRS以及2个符号的附加DMRS(2+2DMRS)、1个符号的前载DMRS以及3个符号的附加DMRS(1+3 DMRS)。
其中,调度类型A可以是指时隙级的调度方式,也可以称为数据信道映射类型A。调度类型B可以是指子时隙或符号级的调度方式,也可以称为数据信道映射类型B。
附加DMRS可以是指在基本DMRS之外的DMRS。
基本DMRS也可以称为前置DMRS,可以是指在一个时间单元传输的DMRS中,占用的符号靠前的DMRS,比如可以放在数据的开始或者相对靠前的位置;附加DMRS可以是指在一个时间单元传输的DMRS中,占用的符号靠后的DMRS。其中,基本DMRS与附加DMRS可以承载在同一调度单元的不同符号位置上,该同一调度单元至少包括子帧、时隙、或者微时隙中的任意一种,本申请实施例对此不作特别限定。
可选地,附加DMRS可以是为了提高信道估计的准确性,可以适用于高速移动的场景,不同符号上信道发生变化,为了提高信道估计的准确性,引入了附加DMRS。
波束相关的特性包括如下一项或多项:周期性波束上报(period beam report)、非周期性波束上报(aperiod beam report)、半静态波束上报(semi-period beam reporting)、基于SSB或CSI-RS的波束测量。
基于AI的CSI是指基于AI的CSI测量反馈、基于AI的信道状态信息获取等。
考虑到不同类型的终端的特性不同,不同类型的终端支持的MIMO特性可以不同。终端可以支持MIMO特性的部分或全部,进而实现终端的最小特性集合定制化,降低终 端芯片成本,实现终端节能,提高通信性能。
比如,针对第一类型的终端,终端的第一集合中包括基本PDSCH传输能力。比如,第一类型的终端可以是URLLC终端。针对第一类型中移动速度较低的终端,可以支持单符号DMRS,降低芯片成本,降低处理复杂度,实现终端节能,提高通信性能。
比如,针对第二类型的终端,终端的第一集合中可以包括基本PDSCH传输能力、1+2 DMRS、1+3 DMRS中的至少一个。比如,第二终端类型可以是IoT终端。考虑到第二类型的终端是传输小数据,为了降低成本,终端的第一集合中包括单流数据传输,而无需支持MIMO多层传输,降低终端成本,提高通信性能。针对第二类型中高速移动的终端,可以支持1+3 DMRS,提高信道估计性能,提高通信性能。
比如,针对第三类型的终端,终端的第一集合中可以包括MIMO多层传输、基于AI的CSI等中的至少一项。比如,第三类型的终端可以是CPE终端。针对第三类型的终端,为了实现高速的数据传输,终端的第一集合中包括MIMO多层传输,实现高速传输,提高通信性能。另外,针对第三类型中能力较强的终端,终端的第一集合中可以包括基于AI的CSI,提高信道估计的准确性,降低信道获取的时延,降低反馈开销,提高通信性能。
比如,针对第四类型的终端,终端的第一集合中包括基本PDSCH传输能力、MIMO多层传输、多TCI状态1+2DMRS、周期性波束上报等。比如,第四类型的终端可以是eMBB终端。
10)CSI测量反馈
CSI测量反馈特性可以包括如下一项或多项:时分双工(time division duplexing,TDD)CSI测量、频分双工(frequence division duplexing,FDD)CSI测量、CSI-RS配置、CSI测量反馈配置、反馈量、码本、不进行CSI测量反馈等。
其中:
针对TDD下,网络设备可以通过接收终端发送的SRS获得信道状态信息。TDD CSI测量包括如下一项或多项:周期性SRS发送、半持续性SRS发送、非周期SRS发送。
针对FDD下,网络设备需要发送CSI-RS,终端通过接收CSI-RS确定信道状态信息,并将信道状态信息发送给网络设备。网络设备可以根据终端发送的CSI确定信道状态信息。
时间粒度上,CSI测量反馈可以包括如下一项或多项:周期性CSI测量反馈、半持续性CSI测量反馈、非周期性CSI测量反馈。
频域粒度上,CSI测量反馈可以包括如下一项或多项:子带CSI测量反馈和全带CSI测量反馈。子带CSI测量反馈包括子带预编码矩阵指示(precoding matrix indicator,PMI)和子带信道质量指示(channel quality indicator,CQI);全带CSI测量反馈包括全带PMI和全带CQI。
CSI-RS配置可以包括如下一项或多项:时频域资源密度、天线端口数、周期性、半持续性、非周期性、用于测量信道的CSI-RS资源、用于测量干扰的CSI-RS资源、用于tracking波束跟踪的CSI-RS资源。
CSI反馈量可以包括如下一项或多项:秩(RI)、PMI、CQI、参考信号接收功率(RSRP)、波束标识(Beam index)、CRI(CSI-RS资源标识)、基于AI的反馈等。
码本可以包括如下一项或多项:类型1单面板码本、类型1多面板码本、类型2码本、 波束。类型1单面板码本为波束选择的码本;类型1多面板码本为在类型1单面板码本的基础上,反馈面板间相位信息;类型2码本为波束合并的码本;波束为端口合并的码本。
考虑到不同类型的终端的特性不同,不同类型的终端支持的CSI测量反馈特性可以不同,进而实现终端的最小特性集合定制化,降低终端芯片成本,实现终端节能,提高通信性能。
示例性地,一种类型的终端,可以对应一个特性集合,该特性集合中可以包括CSI测量反馈特性中的一种或多种。其中,CSI测量反馈特性可以是如上介绍的至少一种,或者,也可以是其他的CSI测量反馈特性。
比如,对于类型1的终端,终端的第一集合中包括的CSI测量反馈特性为AC1,AC2;对于类型2的终端的第一集合中包括的CSI测量反馈特性为BC1,BC2;对于类型X的终端,终端的第一集合中包括的CSI测量反馈特性为XC1,XC2。比如,针对第一类型的终端,终端的第一集合中包括不进行CSI测量反馈、周期性CSI测量反馈中的至少一项。比如,第一类型的终端可以是URLLC终端。针对第一类型终端应用于工厂的场景,终端移动路线可知或者可预测,所以信道环境相对稳定,可以不进行CSI测量反馈,从而降低功耗,降低成本;或者有些终端也可以进行周期性测量,一段时间测量一次,路线已知或可预测,获得信道信息的同时降低功耗。
比如,针对第二类型的终端,终端的第一集合中包括不进行CSI测量反馈、非周期性CSI测量反馈中的至少一项。比如,第二类型的终端可以是IoT终端。考虑到第二类型的终端所处的静止场景,比如智能水表等,可以不进行CSI测量反馈。针对第二类型的终端所处的高速场景,可以进行非周期CSI测量反馈,触发反馈,降低功耗。
比如,针对第三类型的终端,终端的第一集合中包括周期性CSI测量反馈。比如,第三类型的终端可以是CPE终端。针对终端静止、传输大数据的场景,由于终端没有移动性,因此可以进行周期性测量,一段时间测量一次,获得信道信息的同时降低功耗。
比如,针对第四类型的终端,终端的第一集合中包括周期性CSI测量反馈、非周期性CSI测量反馈。比如,第四类型的终端可以是eMBB终端。
在本申请中,可选地,终端的类型与CSI测量反馈方式之间具有对应关系,该对应关系可以是协议预定义的,也可以是网络设备通过信令告知终端的,例如,通过高层信令或物理层信令。
表31为终端的类型与CSI测量反馈方式之间的对应关系的一个示例。终端的类型与CSI测量反馈方式之间的对应关系可以是如下表格中的至少一行,和/或,至少一列。
表31
终端的类型 CSI测量反馈方式
类型1 CSI测量反馈方式AC1,AC2,…,ACn
类型2 CSI测量反馈方式BC1,BC2,…,BCn
类型X CSI测量反馈方式XC1,XC2,…,XCn
其中,终端的类型1~类型X分别可以是上文提到的类型中的一种,例如,eMBB终端、URLLC终端、IoT终端、CPE、V2X终端、AR终端、VR终端等。CSI测量反馈方式AC1~ACn、BC1~BCn、XC1~XCn可以是如上介绍的CSI测量反馈方式中的至少一种。 其中,ACn、BCn,…,XCn分别为正整数,取值可以相同或者不同。
表32为终端的类型与调度方式之间的对应关系的一个示例。对应关系可以是如下表格中的至少一行,和/或,至少一列。
表32
终端的类型 CSI测量反馈方式
第一类型 周期性CSI测量反馈,天线端口数4、8
第二类型 非周期性CSI测量反馈
第四类型 周期性CSI测量反馈,天线端口数16、32
对于上述的特性1)至10),可以相互结合。针对不同类型的终端,对数据的传输需要/需求不同,因此可以确定和/或采用更适合的特性集合。
例如,对于第一类型的终端,终端的第一集合包括以下特性中的至少一个:处理能力#3、CP-OFDM波形、类型B映射、基于配置授权的数据传输调度、时隙聚合、混合自动重传请求HARQ进程数为2、基于同步信号块的无线链路管理和/或无线资源管理、非周期信道状态信息测量上报、波束跟踪、以及波束管理。比如,第一类型的终端可以是URLLC终端。
例如,对于第二类型的终端,终端的第一集合包括以下特性中的至少一个:低成本波形、数据信道重复传输、类型B映射、基于配置授权的数据传输调度、时隙聚合、以及HARQ进程数为1。比如,第二类型的终端可以是IoT终端。
在本申请中,考虑到不同类型的终端的特性不同,可以针对不同类型的终端分别定义特性集合,能够实现终端的特性的定制化和终端的特性的最小化,在满足不同类型的终端的特性需求的同时,降低芯片成本和终端实现处理复杂度,实现终端节能。
在本申请中,终端的特性的默认值和/或候选值集合可以与终端的类型相关。
本申请实施例提供了一种确定特性的默认值和/或特性的候选值集合的通信方法。本申请中的实施例可以独立,也可以相互结合,本申请对此不做限定。
可选地,终端的特性的默认值与终端的类型之间具有对应关系。
可选地,终端的特性的候选值集合与终端的类型之间具有对应关系。
可选地,终端和/或网络设备可以根据终端的类型与特性的默认值的对应关系确定特性的默认值。和/或,终端和/或网络设备可以根据终端的类型与特性的候选值集合的对应关系确定特性的候选值集合。
下面以第二集合(即终端的可选特性)中的特性为例,对终端的特性的默认值或候选值集合与终端的类型的关系进行描述。需要说明的是,第一集合(即终端的必选特性)中的特性的默认值和/或候选值集合的定义类似,可以参考第第二集合的描述,不再赘述。
针对可选特性的上报,终端可以上报是否支持某个或某些特性,或者,上报支持的取值。现有技术中,针对各类型的终端,特性的默认值以及特性的候选值集合仅有一种,对于各类型的终端都是适用的。
在本申请中,对于可选特性的上报,针对不同类型的终端可以分别定义特性的默认值或候选值集合。即终端和/或网络设备可以根据终端的类型确定特性的默认值,和/或,根据终端的类型确定特性的候选值集合。可选地,终端和/或网络设备可以根据终端的类型确定特性的候选值集合,并根据候选值集合确定特性指示的比特数以及比特含义,进而确 定特性的取值(参数取值)。
这样可以降低上报开销,匹配多种芯片,降低芯片成本,按需使能终端的特性,提高频谱效率。
在一些实现方式中,可以通过协议预定义或者通过信令配置终端的类型与特性的默认值的对应关系,和/或,终端的类型与特性的候选值集合的对应关系。该信令可以是高层信令,或者,物理层信令。下面结合举例,对本申请的技术方案进行描述。
1)支持的调制阶数
以特性参数Modulation Order为例。
可选地,支持的调制阶数的候选值集合与终端的类型之间具有对应关系。该对应关系可以是协议预定义的,也可以是网络设备通过信令配置给终端的,本申请对此不做限定。该信令可以是高层信令或者物理层信令。
比如,对于类型1的终端,调制阶数的候选值集合为{MA1,MA2,MA3,…,MAn}。
比如,对于类型2的终端,调制阶数的候选值集合为{MB1,MB2,MB3,…,MBn}。
比如,对于类型X的终端,调制阶数的候选值集合为{MX1,MX2,MX3,…,MXn}。
其中,MA1,MA2,MA3,…,MAn,MB1,MB2,MB3,…,MBn,MX1,MX2,MX3,…,MXn可以为如下中的一项或多项:bpsk-halfpi,bpsk,qam16,qam64,qam256,qam1024,或者其他取值。
可选地,支持的调制阶数的默认值与终端的类型之间具有对应关系。该对应关系可以是协议预定义的,也可以是网络设备通过信令配置给终端的,本申请对此不做限定。该信令可以是高层信令或者物理层信令。
可选地,参数取值的默认值可以是候选值集合中的第一个取值。
对于上述的第一类型-第四类型:
比如,针对第一类型的终端,调制阶数的候选值集合为{bpsk-halfpi,bpsk,qam16}。如果用二进制表示,则每个取值可以用2比特指示。即针对第一类型的终端的调制阶数的指示的比特数为2。比如,针对第一类型的终端的调制阶数的指示的比特含义可以是指:比特00代表bpsk-halfpi,比特01代表bpsk,比特10代表qam16。比如,第一类型的终端可以是URLLC终端。
比如,第一类型的终端的调制阶数的默认值为bpsk-halfpi。比如,第一类型的终端可以是URLLC终端。
比如,针对第二类型的终端,调制阶数的候选值集合为{bpsk-halfpi,bpsk,qam16}。如果用二进制表示,则每个取值可以用2个比特指示。即针对第二类型的终端的调制阶数的指示的比特数为2。比如,针对第二类型的终端的调制阶数的指示的比特含义可以是指:比特00代表bpsk-halfpi,比特01代表bpsk,比特10代表qam16。比如,第二类型的终端可以是IoT终端。
比如,第二类型的终端的调制阶数的默认值为bpsk-halfpi。比如,第二类型的终端可以是IoT终端。
比如,针对第三类型的终端,调制阶数的候选值集合为{qam16,qam64,qam256,qam1024}。如果用二进制表示,则每个取值可以用2个比特指示。即针对第三类型的终端的调制阶数的指示的比特数为2。比如,针对第三类型的终端的调制阶数的指示的比特含 义可以是指:比特00代表qam16,比特01代表qam64,比特10代表qam256,比特11代表qam1024。比如,第三类型的终端可以是CPE终端。
比如,第三类型的终端的调制阶数的默认值为qam16。比如,第三类型的终端可以是CPE终端。
比如,针对第四类型的终端,调制阶数的候选值集合为{bpsk-halfpi,bpsk,qam16,qam64,qam256}。如果用二进制表示,则每个取值可以用3个比特指示。即针对第四类型的终端的调制阶数的指示的比特数为3。比如,针对第四类型的终端的调制阶数的指示的比特含义可以是指:比特000代表bpsk-halfpi,比特001代表bpsk,比特010代表qam16,比特011代表qam64,比特100代表qam256。比如,第四类型的终端可以是eMBB终端。
比如,第四类型的终端的调制阶数的默认值为bpsk-halfpi。比如,第四类型的终端可以是eMBB终端。
可选地,终端和/或网络设备可以根据终端的类型确定调制阶数指示的候选值集合,并根据候选值集合确定调制阶数指示的比特数以及比特含义,进而确定调制阶数的取值(参数取值)。
考虑不同终端的类型的通信特征,设计终端的类型对应的调制阶数指示的候选值集合,可以降低上报开销,匹配多种芯片,降低芯片成本,按需使能终端节能,提高频谱效率。
2)终端支持的用于RLM的CSI-RS资源的最大个数
以特性参数maxNumberResource-CSI-RS-RLM为例。
可选地,支持的用于RLM的CSI-RS资源的最大个数的候选值集合与终端的类型之间具有对应关系。该对应关系可以是协议预定义的,也可以是网络设备通过信令配置给终端的,本申请对此不做限定。该信令可以是高层信令或者物理层信令。
比如,对于类型1的终端,最大个数的候选值集合为{MCA1,MCA2,MCA3,…,MCAn}
比如,对于类型2的终端,最大个数的候选值集合为{MCB1,MCB2,MCB3,…,MCBn}。
比如,对于类型X的终端,最大个数的候选值集合为{MCX1,MCX2,MCX3,…,MCXn}。
其中,MCA1,MCA2,MCA3,…,MCAn,MCB1,MCB2,MCB3,…,MCBn,MCX1,MCX2,MCX3,…,MCXn可以为如下中的一项或多项:n2,n4,n6,n8,n12。n2,n4,n6,n8,n12对应的最大个数分别为2,4,6,8,12,或者其他取值。
可选地,支持的用于RLM的CSI-RS资源的最大个数的默认值与终端的类型之间具有对应关系。该对应关系可以是协议预定义的,也可以是网络设备通过信令配置给终端的,本申请对此不做限定。该信令可以是高层信令或者物理层信令。
可选地,参数取值的默认值可以是候选值集合中的第一个取值。
对于上述的第一类型-第四类型:比如,针对第一类型的终端,最大个数的候选值集合为{n2,n4}。如果用二进制表示,则每个取值可以用1比特指示。比如第一类型的终端可以是URLLC终端。考虑到第一类型的终端移动路线可知或者可预测,所以信道环境相对稳定,进行RLM的资源数可以比较少,这样能够降低功耗,降低成本,降低上报开销。 即针对第一类型的终端的进行RLM的资源数的指示的比特数为1。比如,针对第一类型的终端的进行RLM的资源数的指示的比特含义可以是指:比特0代表2,比特1代表4。
比如,第一类型的终端的进行RLM的资源数的指示的默认值为2。比如,第一类型的终端可以是URLLC终端。
比如,针对第二类型的终端,最大个数的候选值集合为{n6,n8}。如果用二进制表示,则每个取值可以用1个比特指示。比如第二类型的终端可以是IoT终端。针对高速移动场景下,信道环境变化较快,进行RLM的资源数可以比较多,这样能够降低功耗,降低成本,降低上报开销。即针对第二类型的终端的进行RLM的资源数的指示的比特数为1。比如,针对第二类型的终端的进行RLM的资源数的指示的比特含义可以是指:比特0代表6,比特1代表8。
比如,第二类型的终端的进行RLM的资源数的指示的默认值为6。比如,第二类型的终端可以是IoT终端。
比如,针对第三类型的终端,最大个数的候选值集合为{n4,n6}。如果用二进制表示,则每个取值可以用1个比特指示。比如,第三类型的终端可以是CPE终端。由于第三类型的终端没有移动性、传输大数据,RLM的资源数可以比较适中,一段时间测量一次,获得信道信息的同时,最小功耗,降低成本,降低上报开销。即针对第三类型的终端的进行RLM的资源数的指示的比特数为1。比如,针对第三类型的终端的进行RLM的资源数的指示的比特含义可以是指:比特0代表4,比特1代表6。
比如,第三类型的终端的进行RLM的资源数的指示的默认值为4。比如,第三类型的终端可以是CPE终端。
比如,针对第四类型的终端,最大个数的候选值集合为{n2,n4,n6,n8,n12}。如果用二进制表示,则,每个取值可以用3个比特指示。比如,第四类型的终端可以是eMBB终端。即针对第三类型的终端的进行RLM的资源数的指示的比特数为3。比如,针对第四类型的终端的进行RLM的资源数的指示的比特含义可以是指:比特000代表2,比特001代表4,比特010代表6,比特011代表8,比特100代表12等。
比如,第四类型的终端的进行RLM的资源数的指示的默认值为2。比如,第四类型的终端可以是eMBB终端。
可选地,终端和/或网络设备可以根据终端的类型确定进行RLM的资源数的指示的候选值集合,并根据候选值集合确定进行RLM的资源数的指示的比特数以及比特含义,进而确定进行RLM的资源数的取值(参数取值)。
考虑不同终端的类型的通信特征,设计终端的类型对应的进行RLM的资源数的指示的候选值集合,可以降低上报开销,匹配多种芯片,降低芯片成本,按需使能终端节能,提高频谱效率。
3)终端支持的用于RRM的CSI-RS资源的最大个数
以特性参数maxNumberCSI-RS-RRM-RS-SINR为例。
可选地,支持的用于RRM的CSI-RS资源的最大个数的候选值集合与终端的类型之间具有对应关系。该对应关系可以是协议预定义的,也可以是网络设备通过信令配置给终端的,本申请对此不做限定。该信令可以是高层信令或者物理层信令。
比如,对于类型1的终端,最大个数的候选值集合为{MMA1,MMA2,MMA3,…, MMAn}
比如,对于类型2的终端,最大个数的候选值集合为{MMB1,MMB2,MMB3,…,MMBn}。
比如,对于类型X的终端,最大个数的候选值集合为{MMX1,MMX2,MMX3,…,MMXn}。
其中,MMA1,MMA2,MMA3,…,MMAn,MMB1,MMB2,MMB3,…,MMBn,MMX1,MMX2,MMX3,…,MMXn的取值可以为如下中的一项或多项:n4,n8,n16,n32,n64,n96。n4,n8,n16,n32,n64,n96对应的最大个数分别为4,6,8,16,32,64,96,或者其他取值。
可选地,支持的用于RRM的CSI-RS资源的最大个数的默认值与终端的类型之间具有对应关系。该对应关系可以是协议预定义的,也可以是网络设备通过信令配置给终端的,本申请对此不做限定。该信令可以是高层信令或者物理层信令。
可选地,参数取值的默认值可以是候选值集合中的第一个取值。
对于上述的第一类型-第四类型:
比如,针对第一类型的终端,最大个数的候选值集合为{n4,n8}。如果用二进制表示,则每个取值可以用1比特指示。比如第一类型的终端可以是URLLC终端。考虑到第一类型的终端移动路线可知或者可预测,所以信道环境相对稳定,进行RRM的测量的资源数可以比较少,这样能够降低功耗,降低成本,降低上报开销。即针对第一类型的终端的进行RRM的资源数的指示的比特数为1。比如,针对第一类型的终端的进行RRM的资源数的指示的比特含义可以是指:比特0代表4,比特1代表8。
比如,第一类型的终端的进行RRM的资源数的指示的默认值为4。比如,第一类型的终端可以是URLLC终端。
比如,针对第二类型的终端,最大个数的候选值集合为{n64,n96}。如果用二进制表示,则每个取值可以用1个比特指示。比如第二类型的终端可以是IoT终端。针对高速移动场景下,信道环境变化较快,进行RRM的测量的资源数可以比较多,这样能够降低功耗,降低成本,降低上报开销。即针对第二类型的终端的进行RRM的资源数的指示的比特数为1。比如,针对第二类型的终端的进行RRM的资源数的指示的比特含义可以是指:比特0代表64,比特1代表96。
比如,第二类型的终端的进行RRM的资源数的指示的默认值为64。比如,第二类型的终端可以是IoT终端。
比如,针对第三类型的终端,最大个数的候选值集合为{n16,n32}。如果用二进制表示,则每个取值可以用1个比特指示。比如,第三类型的终端可以是CPE终端。考虑到第三类型的终端没有移动性、传输大数据,RRM的测量的资源数可以比较适中,一段时间测量一次,获得信道信息的同时,最小功耗,降低成本,降低上报开销。即针对第三类型的终端的进行RRM的资源数的指示的比特数为1。比如,针对第三类型的终端的进行RRM的资源数的指示的比特含义可以是指:比特0代表16,比特1代表32。
比如,第三类型的终端的进行RRM的资源数的指示的默认值为16。比如,第三类型的终端可以是CPE终端。
比如,针对第四类型的终端,最大个数的候选值集合为{n4,n8,n16,n32,n64,n96}。 如果用二进制表示,则每个取值可以用3个比特指示。比如,第四类型的终端可以是eMBB终端。即针对第四类型的终端的进行RRM的资源数的指示的比特数为3。比如,针对第四类型的终端的进行RRM的资源数的指示的比特含义可以是指:比特000代表4,比特001代表8,比特010代表16,比特011代表32,比特100代表64,比特101代表96等。
比如,第四类型的终端的进行RRM的资源数的指示的默认值为4。比如,第四类型的终端可以是eMBB终端。
可选地,终端和/或网络设备可以根据终端的类型确定进行RRM的资源数的指示的候选值集合,并根据候选值集合确定进行RRM的资源数的指示的比特数以及比特含义,进而确定进行RRM的资源数的取值(参数取值)。
考虑不同终端的类型的通信特征,设计终端的类型对应的进行RRM的资源数的指示的候选值集合,可以降低上报开销,匹配多种芯片,降低芯片成本,按需使能终端节能,提高频谱效率。
4)终端支持的下行传输的MIMO层数
以特性参数MIMO-LayersDL为例。
可选地,支持的下行传输的MIMO层数的候选值集合与终端的类型之间具有对应关系。该对应关系可以是协议预定义的,也可以是网络设备通过信令配置给终端的,本申请对此不做限定。该信令可以是高层信令或者物理层信令。
比如,对于类型1的终端,下行传输的MIMO层数的候选值集合为{MLA1,MLA2,MLA3,…,MLAn}。
比如,对于类型2的终端,下行传输的MIMO层数的候选值集合为{MLB1,MLB2,MLB3,…,MLBn}。
比如,对于类型X的终端,下行传输的MIMO层数的候选值集合为{MLX1,MML2,MLX3,…,MLXn}。
其中,MLA1,MLA2,MLA3,…,MLAn,MLB1,MLB2,MLB3,…,MLBn,MLX1,MLX2,MLX3,…,MLXn可以为如下中的一项或多项:twoLayers,fourLayers,eightLayers。twoLayers,fourLayers,eightLayers分别对应最大层数为2层,4层,8层,或者也可以是其他取值。
可选地,支持的下行传输的MIMO层数的默认值与终端的类型之间具有对应关系。该对应关系可以是协议预定义的,也可以是网络设备通过信令配置给终端的,本申请对此不做限定。该信令可以是高层信令或者物理层信令。
可选地,参数取值的默认值可以是候选值集合中的第一个取值。
对于上述的第一类型-第四类型:比如,针对第一类型的终端,下行传输的MIMO层数的候选值集合为{oneLayer,twoLayers}。如果用二进制表示,则每个取值可以用1比特指示。比如第一类型的终端可以是URLLC终端。考虑到第一类型的终端传输小数据、低时延、高可靠的业务,因此可以采用层数较低的数据传输。即针对第一类型的终端的支持的下行MIMO层数的指示的比特数为1。比如,针对第一类型的终端的支持的下行MIMO层数的指示的比特含义可以是指:比特0代表1层,比特1代表2层。
比如,第一类型的终端的支持的下行MIMO层数的指示的默认值为1。比如,第一类型的终端可以是URLLC终端。
比如,针对第二类型的终端,下行传输的MIMO层数的候选值集合为{oneLayer,twoLayers}。如果用二进制表示,则每个取值可以用1个比特指示。比如第二类型的终端可以是IoT终端。考虑到第二类型的终端传输小数据,因此可以采用层数较低的数据传输。即针对第二类型的终端的支持的下行MIMO层数的指示的比特数为1。比如,针对第二类型的终端的支持的下行MIMO层数的指示的比特含义可以是指:比特0代表1层,比特1代表2层。
比如,第二类型的终端的支持的下行MIMO层数的指示的默认值为1层。比如,第二类型的终端可以是IoT终端。
比如,针对第三类型的终端,下行传输的MIMO层数的候选值集合为{fourLayers,eightLayers}。如果用二进制表示,则每个取值可以用1个比特指示。比如,第三类型的终端可以是CPE终端。考虑到第三类型的终端静止且传输大数据,因此可以采用层数较高的数据传输,从而实现高速传输,降低上报开销。即针对第三类型的终端的支持的下行MIMO层数的指示的比特数为1。比如,针对第三类型的终端的支持的下行MIMO层数的指示的比特含义可以是指:比特0代表4层,比特1代表8层。
比如,第三类型的终端的支持的下行MIMO层数的指示的默认值为4层。比如,第三类型的终端可以是CPE终端。
比如,针对第四类型的终端,下行传输的MIMO层数的候选值集合为{twoLayers,fourLayers,eightLayers}。如果用二进制表示,则每个取值可以用2个比特指示。比如,第四类型的终端可以是eMBB终端。即针对第四类型的终端的支持的下行MIMO层数的指示的比特数为2。比如,针对第四类型的终端的支持的下行MIMO层数的指示的比特含义可以是指:比特00代表2层,比特01代表4层,比特10代表8层等。
比如,第四类型的终端的支持的下行MIMO层数的指示的默认值为2层。比如,第四类型的终端可以是eMBB终端。
可选地,终端和/或网络设备可以根据终端的类型确定支持的下行MIMO层数的指示的候选值集合,并根据候选值集合确定支持的下行MIMO层数的指示的比特数以及比特含义,进而确定支持的下行MIMO层数的取值(参数取值)。
考虑不同终端的类型的通信特征,设计终端的类型对应的支持的下行MIMO层数的指示的候选值集合,可以降低上报开销,匹配多种芯片,降低芯片成本,按需使能终端节能,提高频谱效率。
5)终端支持的上行传输的MIMO层数
以特性参数MIMO-LayersUL为例。
可选地,支持的上行传输的MIMO层数的候选值集合与终端的类型之间具有对应关系。该对应关系可以是协议预定义的,也可以是网络设备通过信令配置给终端的,本申请对此不做限定。该信令可以是高层信令或者物理层信令。
比如,对于类型1的终端,上行传输的MIMO层数的候选值集合为{MUA1,MUA2,…,MUAn}
比如,对于类型2的终端,上行传输的MIMO层数的候选值集合为{MUB1,MUB2,…,MUBn}。
比如,对于类型X的终端,上行传输的MIMO层数的候选值集合为{MUX1,MUL2,…, MUXn}。
其中,MUA1,MUA2,…,MUAn,MUB1,MUB2,…,MUBn,MUX1,MUX2,…,MUXn可以为如下中的一项或多项:oneLayer,twoLayers,fourLayers,eightLayers。oneLayer,twoLayers,fourLayers,eightLayers分别对应最大层数为1层,2层,4层,8层,或者也可以是其他取值。
可选地,支持的上行传输的MIMO层数的默认值与终端的类型之间具有对应关系。该对应关系可以是协议预定义的,也可以是网络设备通过信令配置给终端的,本申请对此不做限定。该信令可以是高层信令或者物理层信令。
可选地,参数取值的默认值可以是候选值集合中的第一个取值。
对于上述的第一类型-第四类型:
比如,针对第一类型的终端,上行传输的MIMO层数的候选值集合为{oneLayer,twoLayers}。如果用二进制表示,则每个取值可以用1比特指示。比如第一类型的终端可以是URLLC终端。考虑到第一类型的终端传输小数据、低时延、高可靠的业务,因此可以采用层数较低的数据传输。即针对第一类型的终端的支持的上行MIMO层数的指示的比特数为1。比如,针对第一类型的终端的支持的上行MIMO层数的指示的比特含义可以是指:比特0代表1层,比特1代表2层。
比如,第一类型的终端的支持的上行MIMO层数的指示的默认值为1。比如,第一类型的终端可以是URLLC终端。
比如,针对第二类型的终端,上行传输的MIMO层数的候选值集合为{oneLayer,twoLayers}。如果用二进制表示,则每个取值可以用1个比特指示。比如第二类型的终端可以是IoT终端。考虑到第二类型的终端传输小数据,因此可以采用层数较低的数据传输。即针对第二类型的终端的支持的上行MIMO层数的指示的比特数为1。比如,针对第二类型的终端的支持的上行MIMO层数的指示的比特含义可以是指:比特0代表1层,比特1代表2层。
比如,第二类型的终端的支持的上行MIMO层数的指示的默认值为1层。比如,第二类型的终端可以是IoT终端。
比如,针对第三类型的终端,上行传输的MIMO层数的候选值集合为{fourLayers,eightLayers}。如果用二进制表示,则每个取值可以用1个比特指示。比如,第三类型的终端可以是CPE终端。考虑到于第三类型的终端静止且传输大数据,因此可以采用层数较高的数据传输,从而实现高速传输,降低上报开销。即针对第三类型的终端的支持的上行MIMO层数的指示的比特数为1。比如,针对第三类型的终端的支持的上行MIMO层数的指示的比特含义可以是指:比特0代表4层,比特1代表8层。
比如,第三类型的终端的支持的上行MIMO层数的指示的默认值为4层。比如,第三类型的终端可以是CPE终端。
比如,针对第四类型的终端,上行传输的MIMO层数的候选值集合为{oneLayer,twoLayers,fourLayers,eightLayers}。如果用二进制表示,则每个取值可以用2个比特指示。
比如,第四类型的终端可以是eMBB终端。即针对第四类型的终端的支持的上行MIMO层数的指示的比特数为2。比如,针对第四类型的终端的支持的上行MIMO层数的 指示的比特含义可以是指:比特00代表1层,比特01代表2层,比特10代表4层,比特11代表4层等。
比如,第四类型的终端的支持的下行MIMO层数的指示的默认值为1层。比如,第四类型的终端可以是eMBB终端。
可选地,终端和/或网络设备可以根据终端的类型确定支持的上行MIMO层数的指示的候选值集合,并根据候选值集合确定支持的上行MIMO层数的指示的比特数以及比特含义,进而确定支持的上行MIMO层数的取值(参数取值)。
有益效果:考虑不同终端的类型的通信特征,设计终端的类型对应的支持的上行MIMO层数的指示的候选值集合,可以降低上报开销,匹配多种芯片,降低芯片成本,按需使能终端节能,提高频谱效率。
6)终端支持的带宽
以特性参数SupportedBandwidth为例。
可选地,支持的带宽的候选值集合与终端的类型之间具有对应关系。该对应关系可以是协议预定义的,也可以是网络设备通过信令配置给终端的,本申请对此不做限定。该信令可以是高层信令或者物理层信令。
针对FR1,带宽的候选值集合为{5MHz,10MHz,15MHz,20MHz,25MHz,30MHz,40MHz,50MHz,60MHz,80MHz,100MHz}。如果用二进制表示,则每个取值可以用4个比特指示。
针对FR2,带宽的候选值集合为{50MHz,100MHz,200MHz,400MHz}。如果用二进制表示,则每个取值可以用2个比特指示。
比如,对于类型1的终端,带宽的候选值集合为{SBA1,SBA2,…,SBAn}
比如,对于类型2的终端,带宽的候选值集合为{SBB1,SBB2,…,SBBn}。
比如,对于类型X的终端,带宽的候选值集合为{SBX1,SBL2,…,SBXn}。
其中,SBA1,SBA2,…,SBAn,SBB1,SBB2,…,SBBn,SBX1,SBX2,…,SBXn可以为如下中的一项或多项:mhz5,mhz10,mhz15,mhz20,mhz25,mhz30,mhz40,mhz50,mhz60,mhz80,mhz100,mhz200,mhz400。mhz5,mhz10,mhz15,mhz20,mhz25,mhz30,mhz40,mhz50,mhz60,mhz80,mhz100,mhz200,mhz400分别对应5MHz,10MHz,15MHz,20MHz,25MHz,30MHz,40MHz,50MHz,60MHz,80MHz,100MHz,200MHz,400MHz,或者也可以是其他取值。
可选地,支持的带宽的默认值与终端的类型之间具有对应关系。该对应关系可以是协议预定义的,也可以是网络设备通过信令配置给终端的,本申请对此不做限定。该信令可以是高层信令或者物理层信令。
可选地,参数取值的默认值可以是候选值集合中的第一个取值。
对于上述的第一类型-第四类型:
比如,针对第一类型的终端,针对FR1,带宽的候选值集合可以为{5MHz,10MHz,20MHz,25MHz,40MHz,50MHz,60MHz,80MHz}。如果用二进制表示,则每个取值可以用3比特指示。比如,第一类型的终端可以是URLLC终端。即针对第一类型的终端的支持的带宽的指示的比特数为3。比如,针对第一类型的终端的支持的带宽的指示的比特含义可以是指:比特000代表5MHz,比特001代表10MHz,以此类推。
比如,第一类型的终端的支持的带宽的指示的默认值为5MHz。比如,第一类型的终端可以是URLLC终端。
URLLC小包低时延高可靠业务传输。可以采用带宽较小的数据传输。降低功耗,降低成本,降低上报开销。
比如,针对第二类型的终端,针对FR1,带宽的候选值集合可以为{1.8MHz,5MHz,10MHz,20MHz}。如果用二进制表示,则每个取值可以用2个比特指示。比如,第二类型的终端可以是IoT终端。即针对第二类型的终端的支持的带宽的指示的比特数为2。比如,针对第二类型的终端的支持的带宽的指示的比特含义可以是指:比特00代表1.8MHz,比特01代表5MHz,比特10代表10MHz,比特11代表20MHz,以此类推。
比如,第二类型的终端的支持的带宽的指示的默认值为1.8MHz。比如,第二类型的终端可以是IoT终端。
考虑到第二类型的终端传输小数据,因此可以采用层数较低的数据传输,降低功耗,降低成本,降低上报开销。
比如,针对第三类型的终端,针对FR1,带宽的候选值集合可以为{20MHz,40MHz,60MHz,100MHz}。如果用二进制表示,则每个取值可以用2个比特指示。比如,第三类型的终端可以是CPE终端。即针对第三类型的终端的支持的带宽的指示的比特数为2。比如,针对第三类型的终端的支持的带宽的指示的比特含义可以是指:比特00代表20MHz,比特01代表40MHz,比特10代表60MHz,比特11代表100MHz,以此类推。
比如,第三类型的终端的支持的带宽的指示的默认值为20MHz。比如,第三类型的终端可以是CPE终端。
考虑到第三类型的终端位置固定且传输大数据,因此可以采用层数较高的数据传输,实现高速传输,降低上报开销。
比如,针对第四类型的终端,针对FR1,带宽的候选值集合为{5MHz,10MHz,15MHz,20MHz,25MHz,30MHz,40MHz,50MHz,60MHz,80MHz,100MHz}等。如果用二进制表示,则每个取值可以用4个比特指示。比如,第四类型的终端可以是eMBB终端。即针对第四类型的终端的支持的带宽的指示的比特数为4。比如,针对第四类型的终端的支持的带宽的指示的比特含义可以是指:比特0000代表5MHz,比特0001代表10MHz,比特0010代表15MHz,比特0011代表20MHz,以此类推等。
比如,第四类型的终端的支持的带宽的指示的默认值为5MHz。比如,第四类型的终端可以是eMBB终端。
可选地,终端和/或网络设备可以根据终端的类型确定支持的带宽的指示的候选值集合,并根据候选值集合确定支持的带宽的指示的比特数以及比特含义,进而确定支持的带宽的取值(参数取值)。
考虑不同终端的类型的通信特征,设计终端的类型对应的支持的带宽的指示的候选值集合,可以降低上报开销,匹配多种芯片,降低芯片成本,按需使能终端节能,提高频谱效率。
本申请提出了一种确定终端的特性的方法,能够实现终端的特性的定制化和终端的特性的最小化,在满足不同类型的终端的特性需求的同时,降低芯片成本和终端实现处理复杂度,实现终端节能。
比如,终端确定第一集合,所述第一集合包括空口通信特性,所述空口通信特性包括以下特性中的至少一个:超低时延处理定时、循环前缀-正交频分复用CP-OFDM波形、基于配置授权的数据传输、时隙聚合、混合自动重传请求HARQ进程数为2、基于同步信号块的无线链路管理和/或无线资源管理、非周期信道状态信息测量上报、波束跟踪、以及波束管理;和/或,所述定位特性包括以下特性中的至少一个:基于下行离开角DL AOD的定位特性、基于下行到达时间差DL-TDOA的定位特性、定位参考信号的带宽大小、下行定位参考信号资源数目、以及支持发送用于定位的周期性探测参考信号SRS。比如,所述终端的类型为第一类型。比如,第一类型的终端可以是URLLC终端。
比如,终端确定第一集合,所述第一集合还包括空口通信特性,所述空口通信特性包括以下特性中的至少一个:低成本波形、数据信道重复、基于配置授权的数据传输、时隙聚合、以及HARQ进程数为1。比如,所述终端的类型为第二类型。比如,第二类型的终端为IoT终端。
在本申请中,终端和/或网络设备可以根据终端的类型确定特性的候选值集合,并根据特性的候选值集合确定特性的取值。特性的取值可以包括取值的比特数以及比特的含义。
需要说明的是,上文仅以1)至5)的参数为例,本申请实施例的方案还可以应用于其他参数。示例性地,还可以是协议38.331中的终端的特性参数。例如,载波聚合参数、频率频带参数、MIMO参数、下行特征集合、上行特征集合、物理层参数、RLC参数,RRC参数、MAC参数、服务数据适配协议(service data adaptation protocol,SDAP)参数、旁链路参数、自组织网络(self-orgonized networked,SON)参数、非授权unlicense参数、定位参数、感知参数、AI参数、射频(radio frequence,RF)参数、节能参数、新无线双链接(new radio dual connectivity,NRDC)参数、测量移动参数、跨无线接入技术(inter-radio access technology,inter-RAT)通信参数、和高速参数等等。
现有技术中是仅针对eMBB定义1种特性的默认值和/或候选值集合,同时适用于多种不同的终端,可能会导致某些特性的取值不适用于其他终端类型的终端,导致上报开销较大。而在本申请中,针对不同类型的终端可以分别定义特性的默认值或候选值集合,在满足不同类型的终端的特性需求的同时,降低芯片成本和信令开销,实现终端节能。
可以理解的是,为了实现上述实施例中功能,网络设备和终端包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图6和图7为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端120a-120j,也可以是如图1所示的基站设备110a-110b,还可以是应用于终端或网络设备的模块(如芯片)。
如图6所示,通信装置600包括处理单元610和收发单元620。通信装置600用于实现上述图2、图3或图4中所示的方法实施例中终端或网络设备的功能。
当通信装置600用于实现图2所示的方法实施例中终端的功能时:
处理单元610用于终端确定终端的特性集合;
收发单元620用于根据终端的特性集合中的特性与网络设备进行通信。
可选地,收发单元620还用于接收网络设备发送的第一指示信息。
可选地,收发单元620还用于向网络设备发送第一确认信息。
可选地,收发单元620还用于向网络设备发送第二指示信息。
可选地,收发单元620还用于接收网络设备发送的第二确认信息。
当通信装置600用于实现图2所示的方法实施例中网络设备的功能时:
处理单元610用于根据终端的类型确定终端的特性集合。
收发单元620用于根据终端的特性集合中的特性与终端进行通信。
可选地,收发单元620还用于向终端发送第一指示信息。
可选地,收发单元620还用于接收终端发送的第一确认信息。
可选地,收发单元620还用于接收终端发送的第二指示信息。
可选地,收发单元620还用于向终端发送第二确认信息。
当通信装置600用于实现图3所示的方法实施例中终端的功能时:
收发单元620用于接收网络设备发送的第一指示信息;
处理单元610用于终端根据第一指示信息,确定终端的特性集合;
收发单元620还用于根据终端的特性集合中的特性与网络设备进行通信。
可选地,收发单元620还用于向网络设备发送第一确认信息。
当通信装置600用于实现图3所示的方法实施例中网络设备的功能时:
处理单元610用于根据终端的类型确定终端的特性集合。
收发单元620用于向终端发送第一指示信息;根据终端的特性集合中的特性与终端进行通信。
可选地,收发单元620还用于接收终端发送的第一确认信息。
当通信装置600用于实现图4所示的方法实施例中终端的功能时:
处理单元610用于确定终端的特性集合;
收发单元620用于向网络设备发送第二指示信息;根据终端的特性集合中的特性与网络设备进行通信。
可选地,收发单元620还用于接收网络设备发送的第二确认信息。
当通信装置600用于实现图4所示的方法实施例中网络设备的功能时:
收发单元620用于接收终端发送的第二指示信息;
处理单元610用于根据第二指示信息确定终端的特性集合;
收发单元620用于根据终端的特性集合中的特性与终端进行通信。
可选地,收发单元620还用于向接收终端发送第二确认信息。
有关上述处理单元610和收发单元620更详细的描述可以直接参考图2至图4所示的方法实施例中相关描述直接得到,这里不加赘述。
如图7所示,通信装置700包括处理器710和接口电路720。处理器710和接口电路720之间相互耦合。可以理解的是,接口电路720可以为收发器或输入输出接口。可选地,通信装置700还可以包括存储器730,用于存储处理器710执行的指令或存储处理器710 运行指令所需要的输入数据或存储处理器710运行指令后产生的数据。
当通信装置700用于实现图2至图4所示的方法时,处理器710用于实现上述处理单元610的功能,接口电路720用于实现上述收发单元620的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (23)

  1. 一种确定终端的特性的方法,其特征在于,所述方法包括:
    确定所述终端的特性集合,所述特性集合包括第一集合和第二集合,所述第一集合为所述终端的最小特性集合,所述第一集合与所述终端的类型相关,所述第一集合为非空集合,所述第二集合中的特性属于可选特性集合;
    根据所述特性集合中的特性与网络设备进行通信。
  2. 根据权利要求1所述的方法,其特征在于,所述特性集合包括第一特性,所述第一特性的默认值和/或所述第一特性的候选值集合与所述终端的类型相关。
  3. 根据权利要求1或2所述的方法,其特征在于,所述特性集合包括第二特性,所述方法还包括:
    接收来自所述网络设备的第一指示信息,所述第一指示信息指示开启或关闭所述第二特性,或指示所述第二特性的取值。
  4. 根据权利要求3所述的方法,其特征在于,所述第一指示信息包括第一标识,所述第一标识指示所述第二特性。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述特性集合包括第三特性,所述方法还包括:
    向所述网络设备发送第二指示信息,所述第二指示信息指示开启或关闭所述第三特性,或指示所述第三特性的取值。
  6. 根据权利要求5所述的方法,其特征在于,所述第二指示信息包括第二标识,所述第二标识指示所述第三特性。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,
    不同的终端的类型的如下至少一个属性不同:支持的业务类型、对移动性的需求、对业务数据的传输时延需求、所处的无线信道环境、对业务数据的传输可靠性需求、对覆盖的需求、以及部署场景;
    或所述终端的类型为以下中的一种:增强移动宽带业务eMBB终端、超可靠低时延通信URLLC终端、物联网IoT终端、客户场所设备CPE、增强现实AR终端、虚拟现实VR终端、机器类通信MTC终端、和车联网V2X终端。
  8. 根据权利要求7所述的方法,其特征在于,
    若所述终端的类型为第一类型,所述第一集合包括定位特性和旁链路通信特性;和/或,
    若所述终端的类型为第二类型,所述第一集合包括感知特性和非陆地网络NTN通信特性;和/或;
    若所述终端的类型为第三类型,所述第一集合包括人工智能AI特性。
  9. 根据权利要求8所述的方法,其特征在于,
    若所述终端的类型为所述第一类型,所述第一集合还包括空口通信特性,所述空口通信特性包括以下特性中的至少一个:超低时延处理定时、循环前缀-正交频分复用CP-OFDM波形、基于配置授权的数据传输、时隙聚合、混合自动重传请求HARQ进程数 为2、基于同步信号块的无线链路管理和/或无线资源管理、非周期信道状态信息测量上报、波束跟踪、以及波束管理;和/或,所述定位特性包括以下特性中的至少一个:基于下行离开角DL AOD的定位特性、基于下行到达时间差DL-TDOA的定位特性、定位参考信号的带宽大小、下行定位参考信号资源数目、以及支持发送用于定位的周期性探测参考信号SRS;和/或,
    若所述终端的类型为所述第二类型,所述第一集合还包括空口通信特性,所述空口通信特性包括以下特性中的至少一个:低成本波形、数据信道重复、基于配置授权的数据传输、时隙聚合、以及HARQ进程数为1。
  10. 一种确定终端的特性的方法,其特征在于,所述方法包括:
    根据所述终端的类型,确定所述终端的特性集合,所述特性集合包括第一集合和第二集合,所述第一集合为所述终端的最小特性集合,所述第一集合为非空集合,所述第二集合中的特性属于可选特性集合;
    根据所述特性集合中的特性与所述终端进行通信。
  11. 根据权利要求10所述的方法,其特征在于,所述特性集合包括第一特性,所述第一特性的默认值和/或所述第一特性的候选值集合与所述终端的类型相关。
  12. 根据权利要求10或11所述的方法,其特征在于,所述特性集合包括第二特性,所述方法还包括:
    向所述终端发送第一指示信息,所述第一指示信息指示开启或关闭所述第二特性,或指示所述第二特性的取值。
  13. 根据权利要求12所述的方法,其特征在于,所述第一指示信息包括第一标识,所述第一标识指示所述第二特性。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述特性集合包括第三特性,所述方法还包括:
    接收来自所述终端的第二指示信息,所述第二指示信息指示开启或关闭所述第三特性,或指示所述第三特性的取值。
  15. 根据权利要求14所述的方法,其特征在于,所述第二指示信息包括第二标识,所述第二标识指示所述第三特性。
  16. 根据权利要求10至15中任一项所述的方法,其特征在于,
    不同的终端的类型的如下至少一个属性不同:支持的业务类型、对移动性的需求、对业务数据的传输时延需求、所处的无线信道环境、对业务数据的传输可靠性需求、对覆盖的需求、以及部署场景;
    或所述终端的类型为以下中的一种:增强移动宽带业务eMBB终端、超可靠低时延通信URLLC终端、物联网IoT终端、客户场所设备CPE、增强现实AR终端、虚拟现实VR终端、机器类通信MTC终端、和车联网V2X终端。
  17. 根据权利要求16所述的方法,其特征在于,
    若所述终端的类型为第一类型,所述第一集合包括定位特性和旁链路通信特性;和/或,
    若所述终端的类型为第二类型,所述第一集合包括感知特性和非陆地网络NTN通信特性;和/或;
    若所述终端的类型为第三类型,所述第一集合包括人工智能AI特性。
  18. 根据权利要求17所述的方法,其特征在于,
    若所述终端的类型为所述第一类型,所述第一集合还包括空口通信特性,所述空口通信特性包括以下特性中的至少一个:超低时延处理定时、循环前缀-正交频分复用CP-OFDM波形、基于配置授权的数据传输、时隙聚合、混合自动重传请求HARQ进程数为2、基于同步信号块的无线链路管理和/或无线资源管理、非周期信道状态信息测量上报、波束跟踪、以及波束管理;和/或,所述定位特性包括以下特性中的至少一个:基于下行离开角DL AOD的定位特性、基于下行到达时间差DL-TDOA的定位特性、定位参考信号的带宽大小、下行定位参考信号资源数目、以及支持发送用于定位的周期性探测参考信号SRS;和/或,
    若所述终端的类型为所述第二类型,所述第一集合还包括空口通信特性,所述空口通信特性包括以下特性中的至少一个:低成本波形、数据信道重复、基于配置授权的数据传输、时隙聚合、以及HARQ进程数为1。
  19. 一种通信装置,其特征在于,包括用于执行如权利要求1至9中的任一项所述方法的模块或单元,或者用于执行如权利要求10至18中的任一项所述方法的模块或单元。
  20. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至9中任一项所述的方法,或者用于实现如权利要求10至18中任一项所述的方法。
  21. 一种芯片,其特征在于,包括处理器,所述处理器和存储器耦合,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序以实现如权利要求1至9中任一项所述的方法,或者实现如权利要求10至18中任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至9中任一项所述的方法,或者实现如权利要求10至18中任一项所述的方法。
  23. 一种计算机程序产品,其特征在于,包括计算机程序,当所述计算机程序被运行时,实现如权利要求1至9中任一项所述的方法,或者实现如权利要求10至18中任一项所述的方法。
PCT/CN2021/138707 2020-12-31 2021-12-16 确定终端的特性的方法和通信装置 WO2022143195A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21913936.7A EP4258808A4 (en) 2020-12-31 2021-12-16 METHOD FOR DETERMINING THE CHARACTERISTICS OF A TERMINAL DEVICE AND COMMUNICATIONS DEVICE
US18/343,911 US20230345376A1 (en) 2020-12-31 2023-06-29 Method for determining feature of terminal and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011628056.3A CN114698154A (zh) 2020-12-31 2020-12-31 确定终端的特性的方法和通信装置
CN202011628056.3 2020-12-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/343,911 Continuation US20230345376A1 (en) 2020-12-31 2023-06-29 Method for determining feature of terminal and communication apparatus

Publications (1)

Publication Number Publication Date
WO2022143195A1 true WO2022143195A1 (zh) 2022-07-07

Family

ID=82135277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138707 WO2022143195A1 (zh) 2020-12-31 2021-12-16 确定终端的特性的方法和通信装置

Country Status (4)

Country Link
US (1) US20230345376A1 (zh)
EP (1) EP4258808A4 (zh)
CN (1) CN114698154A (zh)
WO (1) WO2022143195A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024016191A1 (zh) * 2022-07-19 2024-01-25 北京小米移动软件有限公司 一种限制信息确定方法/装置/设备及存储介质
WO2024021034A1 (en) * 2022-07-29 2024-02-01 Qualcomm Incorporated Throughput-based beam reporting techniques

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238629A (zh) * 2010-05-07 2011-11-09 华为技术有限公司 机器类型通讯的接入控制方法和设备及通信系统
CN105722012A (zh) * 2016-02-02 2016-06-29 腾讯科技(深圳)有限公司 一种连接通信设备的方法、终端设备及服务器系统
US20180241502A1 (en) * 2015-09-25 2018-08-23 Sony Corporation Wireless telecommunications

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201704734D0 (en) * 2017-03-24 2017-05-10 Samsung Electronics Co Ltd Improvements in and relating to telecommunications networks
WO2020029191A1 (zh) * 2018-08-09 2020-02-13 Oppo广东移动通信有限公司 能力上报的方法和设备
CN112153632B (zh) * 2019-06-27 2022-12-13 华为技术有限公司 一种能力上报的方法及通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238629A (zh) * 2010-05-07 2011-11-09 华为技术有限公司 机器类型通讯的接入控制方法和设备及通信系统
US20180241502A1 (en) * 2015-09-25 2018-08-23 Sony Corporation Wireless telecommunications
CN105722012A (zh) * 2016-02-02 2016-06-29 腾讯科技(深圳)有限公司 一种连接通信设备的方法、终端设备及服务器系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Link budget of NR NTN", 3GPP TSG RAN WG1 MEETING #98; R1-1908017, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 16 August 2019 (2019-08-16), Prague, Czech Republic; 20190826 - 20190830, XP051764640 *
See also references of EP4258808A4
THALES, DISH NETWORK, CNES, CTTC, TELEKOM R&D SDN. BHD. STMICROELECTRONICS, HNS, AVANTI, ESA, FRAUNHOFER IIS: "Deployment scenarios of Non-Terrestrial Networks", 3GPP TSG RAN MEETING 76; RP-170930_NR-NTN DEPLOYMENT SCENARIOS V0.0.3, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 27 May 2017 (2017-05-27), West Palm Beach, USA; 20170605 - 20170609, XP051665334 *

Also Published As

Publication number Publication date
EP4258808A1 (en) 2023-10-11
EP4258808A4 (en) 2024-05-15
CN114698154A (zh) 2022-07-01
US20230345376A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
US11612008B2 (en) Method and apparatus for performing radio link monitoring in a wireless communication system
US11337186B2 (en) Method and apparatus for control information searching and data information transmission in a communication system
CN113841348A (zh) 无线通信系统中发送控制信息的方法及设备
CN109565862B (zh) 无线蜂窝通信系统中的信道发送方法和设备
CN108476521B (zh) 用于在无线通信系统中发送或接收控制信息的方法和设备
CN111989963B (zh) 用于在无线通信系统中发送或接收同步信号的方法和装置
CN113796038A (zh) 无线通信系统中发送/接收信道状态信息的方法和装置
CN110521265B (zh) 上行数据传输方法、装置及存储介质
KR20180018301A (ko) 무선 셀룰라 통신 시스템에서 채널 전송 방법 및 장치
WO2021027518A1 (zh) 处理数据的方法和通信装置
US11184120B2 (en) Method and device for operating plurality of transmission time intervals in wireless communication system
KR20190129491A (ko) 무선 셀룰라 통신 시스템에서 제어 정보 송수신 방법 및 장치
US20230345376A1 (en) Method for determining feature of terminal and communication apparatus
US11765714B2 (en) Method and device for supporting latency services via a logical channel in a mobile communication system
US11864188B2 (en) Method and apparatus for scheduling and transmitting data in wireless cellular communication system
WO2018202193A1 (zh) 一种数据传输方法、装置和系统
CN111788788A (zh) 针对反馈信令的功率控制
CN112956267A (zh) 用于无线通信系统中的无线电资源分配的方法和装置
EP4054104A1 (en) Method and device for repeatedly transmitting uplink control channel in wireless cellular communication system
KR20200017710A (ko) 무선 셀룰라 통신 시스템에서 상향링크 제어 채널의 참조 신호 설정 방법 및 장치
WO2020057375A1 (zh) 一种资源配置方法及通信装置
CN116584064A (zh) 向多个trp的可靠csi反馈
KR20180049771A (ko) 이동통신시스템에서 다양한 서비스 지원을 위한 방법 및 장치
CN117136516A (zh) 无线通信系统中用于上行链路发送的方法和装置
US11991671B2 (en) Feedback designs for multi-user multiple input-multiple output sidelink communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913936

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021913936

Country of ref document: EP

Effective date: 20230705

NENP Non-entry into the national phase

Ref country code: DE