WO2022139496A1 - 무선 통신 시스템에서 스몰 데이터 전송을 지원하기 위한 방법 및 장치 - Google Patents

무선 통신 시스템에서 스몰 데이터 전송을 지원하기 위한 방법 및 장치 Download PDF

Info

Publication number
WO2022139496A1
WO2022139496A1 PCT/KR2021/019671 KR2021019671W WO2022139496A1 WO 2022139496 A1 WO2022139496 A1 WO 2022139496A1 KR 2021019671 W KR2021019671 W KR 2021019671W WO 2022139496 A1 WO2022139496 A1 WO 2022139496A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
message
gnb
base station
message including
Prior art date
Application number
PCT/KR2021/019671
Other languages
English (en)
French (fr)
Inventor
옥진우
배범식
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210138421A external-priority patent/KR20220091341A/ko
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to EP21911562.3A priority Critical patent/EP4250851A4/en
Priority to US18/269,146 priority patent/US20240049328A1/en
Priority to CN202180087512.4A priority patent/CN116762468A/zh
Publication of WO2022139496A1 publication Critical patent/WO2022139496A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present disclosure relates to a wireless communication system, and more particularly, to a method and an apparatus for supporting small data transmission.
  • the 5G communication system or the pre-5G communication system is called a system after the 4G network (Beyond 4G Network) communication system or the LTE system after (Post LTE).
  • the 5G communication system is being considered for implementation in a very high frequency (mmWave) band (eg, such as a 60 gigabyte (60 GHz) band).
  • mmWave very high frequency
  • FD-MIMO Full Dimensional MIMO
  • array antenna analog beam-forming, and large scale antenna technologies are being discussed.
  • cloud radio access network cloud radio access network: cloud RAN
  • ultra-dense network ultra-dense network
  • D2D Device to Device communication
  • wireless backhaul moving network, cooperative communication, Coordinated Multi-Points (CoMP), and interference cancellation Technology development is underway.
  • CoMP Coordinated Multi-Points
  • ACM advanced coding modulation
  • FQAM Hybrid FSK and QAM Modulation
  • SWSC Small Cell Superposition Coding
  • advanced access technologies such as Filter Bank Multi Carrier (FBMC), NOMA (non orthogonal multiple access), and sparse code multiple access (SCMA) are being developed.
  • FBMC Filter Bank Multi Carrier
  • NOMA non orthogonal multiple access
  • SCMA sparse code multiple access
  • IoT Internet of Things
  • IoE Internet of Everything
  • M2M Machine Type Communication
  • MTC Machine Type Communication
  • IoT an intelligent IT (Internet Technology) service that collects and analyzes data generated from connected objects and creates new values in human life can be provided.
  • IoT is a field of smart home, smart building, smart city, smart car or connected car, smart grid, health care, smart home appliance, advanced medical service, etc. can be applied to
  • 5G communication system technologies such as sensor network, machine to machine (M2M), and MTC (Machine Type Communication) are implemented by 5G communication technologies such as beamforming, MIMO, and array antenna.
  • M2M machine to machine
  • MTC Machine Type Communication
  • cloud radio access network cloud RAN
  • the terminal in the inactive mode must be switched to the connected mode in order to transmit and receive data with the base station. Therefore, even when the terminal in the inactive mode transmits/receives data of a relatively small size, there is a problem that unnecessary delay occurs as the signaling procedure for wireless access state transition proceeds because it has to switch to the connected mode each time prior to this.
  • a method of a base station of a wireless communication system from a terminal in an inactive mode (INACTIVE) to a DU (distributed unit) of the base station, including uplink data Receiving a radio resource control (RRC) message;
  • RRC radio resource control
  • a first message including at least one of indicator information related to transmission of the uplink data and identifier information of a data radio bearer (DRB) corresponding to the uplink data is transmitted in the DU to a centralized unit (CU-CP) of the base station -control plane); and transmitting the uplink data to a user plane function (UPF) based on the first message.
  • RRC radio resource control
  • a transceiver in a base station of a wireless communication system, a transceiver; and a radio resource control (RRC) message including uplink data from a terminal in an inactive mode (INACTIVE) to a distributed unit (DU) of the base station, and indicator information related to transmission of the uplink data and the uplink
  • RRC radio resource control
  • a first message including at least one of identifier information of a data radio bearer (DRB) corresponding to data is transmitted from the DU to a centralized unit-control plane (CU-CP) of the base station, and based on the first message
  • CU-CP centralized unit-control plane
  • the terminal in the inactive mode can transmit and receive data of a relatively small size with the integrated base station or the separate base station without switching to the connected mode. Accordingly, unnecessary delay that may occur when transmitting and receiving data of a small size can be eliminated.
  • FIG. 1 is a diagram illustrating an example of a structure of a next-generation mobile communication system.
  • FIG. 2 is a diagram illustrating a radio protocol structure of a next-generation mobile communication system.
  • FIG. 3 is a diagram illustrating a wireless connection state transition in a next-generation mobile communication system according to an embodiment of the present disclosure.
  • FIG. 4 is a sequence diagram illustrating a process when a terminal accessing a separate base station is switched to an inactive radio access state in a next-generation mobile communication system according to an embodiment of the present disclosure.
  • FIG. 5 is a method for transmitting small data (Small Data, SD) transmitted by an inactive mode terminal to a user plane according to the first embodiment of the present disclosure, and the structure and tunnel of a split base station for supporting the same;
  • FIG. It is a drawing showing the configuration.
  • FIG. 6 is a sequence diagram illustrating an operation between a terminal and a split base station or inside a split base station according to the first embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating a message and an IE (Information Element) according to the first embodiment of the present disclosure.
  • SD small-sized data
  • 9A is a sequence diagram illustrating an operation between a terminal and a split base station or inside a split base station according to a second embodiment of the present disclosure.
  • 9B is a sequence diagram illustrating an operation between a terminal and a split base station or inside a split base station according to a second embodiment of the present disclosure
  • 10A is a diagram illustrating a message and an information element (IE) according to a second embodiment of the present disclosure.
  • IE information element
  • 10B is a diagram illustrating a message and an information element (IE) according to a second embodiment of the present disclosure.
  • IE information element
  • 10C is a diagram illustrating a message and an information element (IE) according to a second embodiment of the present disclosure.
  • IE information element
  • 10D is a diagram illustrating a message and an IE (Information Element) according to a second embodiment of the present disclosure.
  • FIG. 11 is a diagram illustrating a method of transmitting small data (SD) transmitted by an inactive mode terminal to a user plane and a structure of a separate base station for supporting the same according to a third embodiment of the present disclosure; it is one drawing
  • FIG. 12 is a sequence diagram illustrating an operation between a terminal and a split base station or inside a split base station according to a third embodiment of the present disclosure.
  • FIG. 13 is a diagram illustrating the structure of a terminal according to an embodiment of the present invention.
  • FIG. 14 is a diagram illustrating a structure of a base station according to an embodiment of the present invention.
  • each block of the flowchart diagrams and combinations of the flowchart diagrams may be performed by computer program instructions.
  • These computer program instructions may be embodied in a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment, such that the instructions performed by the processor of the computer or other programmable data processing equipment are not described in the flowchart block(s). It creates a means to perform functions.
  • These computer program instructions may also be stored in a computer-usable or computer-readable memory that may direct a computer or other programmable data processing equipment to implement a function in a particular manner, and thus the computer-usable or computer-readable memory.
  • the instructions stored in the flow chart block(s) produce an article of manufacture containing instruction means for performing the function described in the flowchart block(s).
  • the computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operational steps are performed on the computer or other programmable data processing equipment to create a computer-executed process to create a computer or other programmable data processing equipment. It is also possible that instructions for performing the processing equipment provide steps for performing the functions described in the flowchart block(s).
  • each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s). It should also be noted that in some alternative implementations it is also possible for the functions recited in blocks to occur out of order. For example, two blocks shown one after another may be performed substantially simultaneously, or the blocks may sometimes be performed in the reverse order according to a corresponding function.
  • a term for identifying an access node used in the following description a term referring to network entities, a term referring to messages, a term referring to an interface between network objects, a term referring to various identification information and the like are exemplified for convenience of description. Therefore, it is not limited to the terms used in the present disclosure, and other terms referring to objects having equivalent technical meanings may be used.
  • the 3GPP will mainly focus on the communication standard set by the standard, but the main gist of the present disclosure is to greatly extend the scope of the present invention to other communication systems having a similar technical background. It can be applied with some modifications within the scope not departing from, and this will be possible at the judgment of a person skilled in the art of the present disclosure.
  • FIG. 1 is a diagram illustrating an example of a structure of a next-generation mobile communication system. That is, FIG. 1 is a diagram illustrating an example of a structure of a next-generation mobile communication system to which embodiments of the present disclosure can be applied.
  • the RAN (Radio Access Network) Nodes (1-100, 1-200) specified in this structure are mobile communication cores such as Evolved Packet Core (EPC) or 5G Core Network (5GC) (1-400). It may refer to a mobile communication base station such as an LTE evolved Node B (eNodeB) or an NR gNB (next generation Node B, gNodeB) connected to a core network (CN).
  • RAN Nodes (1-100, 1-200) can be divided into CU (Centralized Unit) and DU (Distributed Unit), and the CU is again divided into CU-CP (Control Plane) and CU-UP (User Plane).
  • CU Centralized Unit
  • DU Distributed Unit
  • CU-CP Control Plane
  • CU-UP User Plane
  • one RAN Node may be configured with one or more CU-CPs, one or more CU-UPs, and one or more DUs, respectively.
  • CU-CP, CU-UP, and DU constituting one RAN Node may be configured together.
  • one RAN Node may consist of a CU in which CU-CP and CU-UP are implemented together and a DU.
  • CU-CP and DU may be implemented together in one RAN Node, and CU-UP may be configured separately.
  • one RAN Node may be configured in the form of an integrated base station in which CU-CP, CU-UP, and DU are implemented together.
  • One RAN Node may be configured in any other combination other than the above-described examples.
  • the CU and the DU may support each base station function by dividing it.
  • the CU may support the RRC/PDCP layer
  • the DU may support the RLC/MAC/PHY/RF layer.
  • the CU and the DU may be connected through an interface between internal functions of the base station, such as a W1 or F1 interface.
  • a CU may be divided into a CU-CP and a CU-UP.
  • an RRC/PDCP (for RRC) layer may be supported
  • a PDCP (for user data transmission) layer may be supported
  • CU-CP and CU-UP are E1 interface It can be connected through an interface between internal functions of the base station, such as
  • the base stations are made in an integrated structure or a separate structure to enable connection between the integrated structure base stations, between the separate type base stations, and between the integrated structure base station and the separate structure base station.
  • RAN Nodes may be connected through an interface between base stations, such as an X2 or Xn interface.
  • the RAN Node and the Core network may be connected through an interface between the base station and the Core network, such as S1 or NG Interface.
  • the terminal 1-300 connects to the RAN Node while maintaining the inactive (RRC_INACTIVE) radio connection state regardless of the integrated base station or the separate base station to transmit small data. It can be applied to the case of transmission.
  • FIG. 2 is a diagram illustrating a radio protocol structure of a next-generation mobile communication system. That is, FIG. 2 is a diagram illustrating a radio protocol structure of a next-generation mobile communication system to which embodiments of the present disclosure can be applied.
  • the radio protocol of the next-generation mobile communication system is NR Service Data Adaptation Protocol (SDAP) (2-01, 2-45) and NR in the terminal and the NR base station (eg, NR gNB), respectively.
  • SDAP NR Service Data Adaptation Protocol
  • NR SDAP (2-01, 2-45) may include some of the following functions.
  • the UE uses the header of the SDAP layer device for each PDCP layer device or for each bearer or for each logical channel as a radio resource control (RRC) message, or the SDAP layer You can set whether to use the device's function or not.
  • RRC radio resource control
  • the terminal the non-access layer (Non-Access Stratum, NAS) QoS (Quality of Service) reflection setting 1-bit indicator (NAS reflective QoS) of the SDAP header, and the access layer (Access Stratum, AS) QoS As a reflection configuration 1-bit indicator (AS reflective QoS)
  • the SDAP header may include QoS flow ID information indicating QoS.
  • the QoS information may be used as data processing priority, scheduling information, etc. to support a smooth service.
  • the main function of NR PDCP (2-05, 2-40) may include some of the following functions.
  • the reordering function of the NR PDCP device may refer to a function of reordering PDCP PDUs received from a lower layer in order based on a PDCP sequence number (SN).
  • the reordering function of the NR PDCP device may include a function of transferring data to a higher layer in the reordered order.
  • the order reordering function of the NR PDCP device may include a function of directly transmitting without considering the order.
  • the reordering function of the NR PDCP device may include a function of reordering the order to record the lost PDCP PDUs, and may include a function of reporting a status on the lost PDCP PDUs to the transmitting side, and the loss It may include a function of requesting retransmission of PDCP PDUs.
  • NR RLC The main function of NR RLC (2-10, 2-35) may include some of the following functions.
  • in-sequence delivery of the NR RLC device may refer to a function of sequentially delivering RLC SDUs received from a lower layer to a higher layer.
  • the in-sequence delivery function of the NR RLC device may include a function of reassembling it and delivering it.
  • the in-sequence delivery function of the NR RLC device may include a function of rearranging received RLC PDUs based on an RLC sequence number (SN) or a PDCP sequence number (SN).
  • the sequential delivery function of the NR RLC device may include a function of reordering the order to record the lost RLC PDUs.
  • the sequential delivery function of the NR RLC device may include a function of sending a status report on the lost RLC PDUs to the transmitting side, and may include a function of requesting retransmission of the lost RLC PDUs.
  • In-sequence delivery of the NR RLC device may include a function of sequentially delivering only RLC SDUs before the lost RLC SDU to a higher layer when there is a lost RLC SDU.
  • the in-sequence delivery function of the NR RLC device may include a function of sequentially delivering all RLC SDUs received before the timer starts to a higher layer if a predetermined timer expires even if there are lost RLC SDUs. have.
  • In-sequence delivery of the NR RLC device may include a function of sequentially delivering all received RLC SDUs to a higher layer if a predetermined timer expires even if there are lost RLC SDUs.
  • the NR RLC device may process RLC PDUs in the order in which they are received and deliver them to the NR PDCP device regardless of the sequence number (Out-of sequence delivery).
  • the NR RLC device When the NR RLC device receives a segment, it may receive segments stored in the buffer or to be received later, reconstruct it into one complete RLC PDU, and then deliver it to the NR PDCP device.
  • the NR RLC layer may not include a concatenation function.
  • the junction function may be performed in the NR MAC layer, or the junction function may be replaced by a multiplexing function of the NR MAC layer.
  • out-of-sequence delivery of the NR RLC device may refer to a function of directly delivering RLC SDUs received from a lower layer to a higher layer regardless of order.
  • the out-of-sequence delivery function of the NR RLC device may include a function of reassembling and delivering when one original RLC SDU is divided into several RLC SDUs and received.
  • the out-of-sequence delivery function of the NR RLC device may include a function of storing the RLC SN or PDCP SN of the received RLC PDUs, sorting the order, and recording the lost RLC PDUs.
  • the NR MACs 2-15 and 2-30 may be connected to several NR RLC layer devices configured in one terminal, and the main function of the NR MAC may include some of the following functions.
  • the NR PHY layer (2-20, 2-25) channel-codes and modulates upper layer data, creates an OFDM symbol and transmits it over a radio channel, or demodulates and channel-decodes an OFDM symbol received through the radio channel to an upper layer. You can perform a forwarding action.
  • FIG. 3 is a diagram illustrating a wireless connection state transition in a next-generation mobile communication system according to an embodiment of the present disclosure.
  • the next-generation mobile communication system has three radio access states (Radio Resource Control (RRC) states).
  • the connected mode (RRC_CONNECTED, 3-05) may mean a wireless connection state in which the terminal can transmit and receive data.
  • the standby mode (RRC_IDLE, 3-30) may mean a wireless connection state in which the terminal monitors whether paging is transmitted to itself.
  • the connected mode (3-05) and the standby mode are radio access states that are also applied to the existing LTE system, and the detailed technology is the same as that of the existing LTE system.
  • a newly defined inactive (RRC_INACTIVE) radio connection state 3-15 is defined.
  • the RRC_INACTIVE radio access state 3 - 15 newly defined in the next-generation mobile communication system may correspond to an inactive radio access state, an INACTIVE mode, an inactive mode, and the like.
  • the UE context is maintained in the base station and the terminal, and RAN-based paging may be supported.
  • the characteristics of the inactive mode wireless access state are listed below.
  • the UE AS context is stored in at least one gNB and the UE;
  • - RAN-based notification area is managed by NR RAN;
  • - NR RAN knows the RAN-based notification area which the UE belongs to
  • the INACTIVE radio access state may be transitioned to the connected mode 3-05 or the standby mode 3-30 using a specific procedure. Depending on the resume process, it can be switched from the INACTIVE mode (3-15) to the connected mode (3-05), and from the connected mode (3-05) to the INACTIVE mode (3-15) using the Release procedure including the suspend setting information. can be converted to (3-10).
  • the INACTIVE mode (3-15) can be switched to the standby mode (3-30) (3-20).
  • Switching between the connected mode (3-05) and the standby mode (3-30) may be performed according to the existing LTE technology. That is, through an establishment or release procedure, a switch between the connected mode (3-05) and the standby mode (3-30) may be made (3-25).
  • the method proposed in the present disclosure may be applied when the terminal transmits small data (SD) while maintaining the inactive state (without switching to the connected mode).
  • the small data may mean, for example, data of a small size such as a user's heart rate in a message transmission of a relatively small capacity or a wearable communication device. Or, for example, it may be defined as data having a size that can be included in one transport block (TB).
  • transport block TB
  • the present disclosure describes a method for transmitting and receiving small data for convenience of understanding, the scope of the present disclosure is not limited by the general meaning of the term. For example, in the case of data having a size that can be transmitted and received according to a method described later in a state in which the terminal maintains an inactive state without switching to a connected mode, the embodiment proposed in the present disclosure may be applied.
  • FIG. 4 is a sequence diagram illustrating a process when a terminal accessing a separate base station is switched to an inactive radio access state in a next-generation mobile communication system according to an embodiment of the present disclosure.
  • the BEARER CONTEXT MODIFICATION REQUEST message includes a suspend indication to CU -UP (4-200) can be transmitted (4-02).
  • the CP-UP (4-200) may transmit a BEARER CONTEXT MODIFICATION RESPONSE in response to this (4-03).
  • the BEARER CONTEXT for the corresponding terminal may be maintained without being removed.
  • the CU-CP 4-100 may transmit a UE CONTEXT RELEASE COMMAND message to the DU 4-300 of the base station to remove the UE context for the corresponding terminal (4-04).
  • the DU (4-300) transmits an RRCRelease message to the UE (4-400) (4-05) so that the UE (4-400) can transition to the INACTIVE mode and at the same time the CU-CP ( 4-100) by sending a UE CONTEXT RELEASE COMPLETE message to inform that the UE context has been removed (4-06).
  • the UE may transition to the INACTIVE mode.
  • the detached base station removes the UE context of the corresponding terminal that existed between the DU and the CU and maintains the bearer context of the corresponding terminal that exists between the CU-UP and the CU-CP, and can recognize that the corresponding terminal has transitioned to the INACTIVE mode. have.
  • the method proposed in the present disclosure may be applied to a terminal and a base station that have been transitioned to the INACTIVE mode through the above-described process.
  • FIG. 5 is a method for transmitting small data (Small Data, SD) transmitted by an inactive mode terminal to a user plane according to the first embodiment of the present disclosure, and the structure and tunnel of a split base station for supporting the same;
  • FIG. It is a drawing showing the configuration.
  • the UE 5-01 may simultaneously transmit an RRC message (eg, RRCResumeRequest message) and uplink data (UL data) to the gNB-DU 5-02 in order to transmit small data to the user plane in the inactive mode.
  • RRC message eg, RRCResumeRequest message
  • UL data uplink data
  • the UL data may be transmitted while being included in the RRCResumeRequest message, or may be transmitted through separate signaling.
  • gNB-DU (5-02) transmits (5-200) RRCResumeRequest to gNB-CU-CP (5-03) among the received messages, and transmits UL data to gNB-CU-UP (5-04) ( 5-300) so that it can be transmitted to the UPF (user plane function) (5-05).
  • RRC message eg, RRCResumeRequest message
  • UL data uplink data
  • UL data may be transmitted while being included in the RRCResumeRequest message, or may be transmitted through separate signaling.
  • the tunnel 5-10 for the gNB-DU 5-02 to transmit data to the gNB-CU-UP 5-04 may not exist, and thus the gNB-DU 5-02 It may be impossible to transmit the RRCResumeRequest message to the gNB-CU-CP (5-04) (5-200) and to transmit UL data to the gNB-CU-UP (5-04) (5-300) at the same time (5-300).
  • the gNB-DU 5-02 first forwards the RRCResumeRequest message to the gNB-CU-CP while storing (or storing) the UL data in a buffer, and receives small data from the corresponding UE. informs the arrival of , and a tunnel 5-10 and user context for data transmission between the gNB-CU-UP (5-04) and the gNB-DU (5-02) can be established. After tunnel establishment, the gNB-DU 5-02 transmits the stored UL data to the gNB-CU-UP 5-04, which may be transmitted to the UPF 5-05. If there is downlink data to be delivered to the terminal 5-01, the gNB-CU-UP 5-04 may deliver the DL data to the gNB-DU 5-02 through the created tunnel (5- 400).
  • FIG. 6 is a sequence diagram illustrating an operation between a terminal and a split base station or inside a split base station according to the first embodiment of the present disclosure.
  • the UE 6-100 transmits an RRC message (eg, an RRCResumeRequest message) and UL data to the gNB-DU 6-200 at the same time to transmit small data while maintaining the inactive mode.
  • RRC message eg, an RRCResumeRequest message
  • UL data may be transmitted while being included in the RRCResumeRequest message, or may be transmitted through separate signaling.
  • the gNB-DU 6-200 transmits the RRC message received from the UE 6-100 to the gNB-CU 6-300, 400 (eg, INITIAL UL RRC).
  • MESSAGE TRANSFER message may include the RRCResumeRequest message and deliver it to the gNB-CU-CP 6-300.
  • an indicator indicating that the current operation is for Small Data Transmission (SDT) (eg, SDT Session) and a terminal for transmitting UL data
  • DRBs used data radio bearers
  • the gNB-DU 6-200 may store (or store) the UL data received together with the RRCResumeRequest in a buffer without transmitting it immediately.
  • the gNB-CU-CP 6-300 After receiving the INITIAL UL RRC MESSAGE TRANSFER message in step 6-03, the gNB-CU-CP 6-300 sends a message to the gNB-DU 6-200 for creating a tunnel for UL data transmission (eg For example, a UE CONTEXT SETUP REQUEST message) may be transmitted. Through this, it is possible to prepare for processing the UL data transmitted by the UE.
  • the gNB-CU-CP (6-300) sets only the corresponding DRB when it acquires the DRB ID used for SDT through the received INITIAL UL RRC MESSAGE TRANSFER, and can set all DRBs when there is no obtained DRB ID. have.
  • DRB configuration information may be included in the UE CONTEXT SETUP REQUEST message and transmitted.
  • the DRB configuration information may include an uplink endpoint address of a tunnel through which the gNB-CU-UP 6-400 can receive uplink data. Accordingly, the gNB-DU 6-200 receiving the message may transmit UL data through the created tunnel. UL data transmitted from the gNB-DU 6-200 may be transmitted to the UPF 6-500 via the gNB-CU-UP 6-400.
  • the gNB-DU 6-200 may transmit the UL data stored by the gNB-DU 6-200 to the tunnel obtained through the process of step 6-03.
  • the gNB-DU 6-200 transmits a response message to the UE CONTEXT SETUP REQUEST message (eg, a UE CONTEXT SETUP RESPONSE message) to the gNB-CU-CP 6-300.
  • the UE CONTEXT SETUP RESPONSE message may include an endpoint address (downlink endpoint) of a tunnel through which the gNB-DU 6-200 can receive DL data. Accordingly, the gNB-CU-CP 6-300 having received the UE CONTEXT SETUP RESPONSE message can confirm this.
  • the uplink endpoint for UL data transmission is transmitted to the gNB-DU 6-200 through a REQUEST message, and the downlink endpoint responds to this to the gNB through a RESPONSE message.
  • the gNB-CU-CP 6-300 is a message for informing the gNB-CU-UP 6-400 of the tunnel information for DL data transmission acquired through the above-described step 6-04. (eg, a BEARER CONTEXT MODIFICATION REQUEST message) may be transmitted.
  • the message may include, for example, downlink endpoint information.
  • the gNB-CU-UP (6-400) transmits a response message to the BEARER CONTEXT MODIFICATION REQUEST message (eg, a BEARER CONTEXT MODIFICATION RESPONSE message) to the gNB-CU-CP 6-300 in step 6-07.
  • BEARER CONTEXT MODIFICATION REQUEST message eg, a BEARER CONTEXT MODIFICATION RESPONSE message
  • an uplink and a downlink tunnel are created between the gNB-DU 6-200 and the gNB-CU-UP 6-400, and UL data and DL All data can be transmitted.
  • the UL data may be transmitted by acquiring (confirming) the UL endpoint address by the gNB-DU 6-200 receiving the UE CONTEXT SETUP REQUEST (6-03), and the DL data may be transmitted by the gNB-CU-UP (6-400) may be transmitted after obtaining (confirming) the DL endpoint address through the BEARER CONTEXT MODIFICATION REQUEST message from the gNB-CU-CP (6-300).
  • the UPF 6-500 receives the UL data from the gNB-CU-UP 6-400 and then, if there is DL data directed to the terminal 6-100 that has transmitted the data, DL data may be transmitted to the gNB-CU-UP (6-400).
  • the UPF 6-500 receives the UL data from the gNB-CU-UP 6-400 and then, if there is DL data directed to the terminal 6-100 that has transmitted the data, after a certain time DL data may be transmitted to the gNB-CU-UP (6-400). This is because the gNB-CU-UP (6-400) can transmit DL data to the gNB-DU (6-200) only after acquiring the DL endpoint address.
  • How long after the UPF 6-500 receives the UL data and transmits the DL data may be determined using a timer or the like, which may depend on an implementation method. If there is no DL data to be transmitted to the terminal 6-100, steps 6-08 may be omitted.
  • a message for removing the UE context (eg, UE CONTEXT RELEASE COMMAND message) may be transmitted to the gNB-DU 6-200.
  • the gNB-DU 6-200 may transmit an RRC message (eg, an RRCRelease message) included in the message to the UE 6-100 in steps 6-10. .
  • the gNB-DU 6-200 may transmit the DL data received in step 6-08 described above to the UE 6-100 together with the RRCRelease message.
  • the DL data may be transmitted while being included in the RRCRelease message, or may be transmitted through separate signaling.
  • the gNB-DU (6-200) may transmit a message (eg, a UE CONTEXT RELEASE COMPLETE message) for notifying the gNB-CU-CP (6-300) that the UE context has been removed in step 6-11, gNB -CU-CP (6-300) can confirm that the UE context has been removed based on the message.
  • a message eg, a UE CONTEXT RELEASE COMPLETE message
  • FIG. 7 is a diagram illustrating a message and an information element (IE) according to a first embodiment of the present disclosure.
  • the RRC message transmitted by the UE indicates the SDT.
  • Information or IE eg, DRB ID for SDT
  • IE eg SDT Session
  • the SDT Session in the INITIAL UL RRC MESSAGE TRANSFER received by the gNB-CU-CP is set to true, it recognizes that it is an RRC message for SDT and sets up the UE context related to the DRB corresponding to the DRB ID for SDT. can do.
  • the above-mentioned information does not necessarily have to be all included in one message, and only some of the information may be included or other information may be further included.
  • each piece of information may be transmitted through a separate message.
  • SD small-sized data
  • the UE 8-01 may simultaneously transmit an RRC message (eg, RRCResumeRequest message) and UL data to the gNB-DU 8-02 to transmit small data to the user plane in the inactive mode (8-100).
  • RRC message eg, RRCResumeRequest message
  • UL data may be transmitted while being included in the RRCResumeRequest message, or may be transmitted through separate signaling.
  • the gNB-DU (8-02) transfers the entire received message (RRCResumeRequest+UL data) to the gNB-CU-CP (8-03) (8-200), and the gNB-CU-CP (8-03) UL data may be transmitted to the gNB-CU-UP (8-04) (8-300) and finally transmitted to the UPF (8-05).
  • the gNB-CU-UP 8-04 delivers the DL data to the gNB-CU-CP 8-03 (8 -400) can be delivered to the gNB-DU (8-02). Therefore, in the method described in FIG. 8, unlike the method shown in FIG. 5, a separate method for transferring UL data or DL data between the gNB-CU-UP 8-04 and the gNB-DU 8-02 It may not be necessary to establish a tunnel.
  • 9A and 9B are sequence diagrams illustrating an operation between a terminal and a split base station or inside a split base station according to a second embodiment of the present disclosure.
  • the UE 9-100 transmits an RRC message (eg, RRCResumeRequest message) and UL data to the gNB-DU 9-200 at the same time to transmit small data while maintaining the inactive mode.
  • RRC message eg, RRCResumeRequest message
  • UL data may be transmitted while being included in the RRCResumeRequest message, or may be transmitted through separate signaling.
  • the gNB-DU 9-200 transmits the RRC message received from the terminal 9-100 to the gNB-CUs 9-300 and 9-400 (eg, INITIAL The RRCResumeRequest message may be included in the RRC Container in the UL RRC MESSAGE TRANSFER message), and the UL data may be included in the UL SD-Container and delivered to the gNB-CU-CP 9-300.
  • an indicator indicating that the current operation is for Small Data Transmission (SDT) (eg, SDT Session) and a terminal for transmitting UL data
  • SDT Small Data Transmission
  • DRB used data radio bearer
  • the gNB-CU-CP (9-300) After receiving the INITIAL UL RRC MESSAGE TRANSFER message, the gNB-CU-CP (9-300) transmits the UL data contained in the UL SD-Container in the message to the gNB-CU-UP (9-400) to the UPF. should be able to be transmitted. Accordingly, in the second embodiment of the present disclosure, two methods are provided for this purpose.
  • the gNB-CU-CP (9-300) may newly define a message for delivering UL data to the gNB-CU-UP (9-400).
  • the newly defined message is referred to as a UL SMALL DATA TRANSFER message as an example.
  • the gNB-CU-CP (9-300) includes the UL data received in step 9-02 in the UL SD-Container in the UL SMALL DATA TRANSFER message to gNB-CU-UP ( 9-400).
  • the DRB ID received in step 9-02 may also be included in the UL SMALL DATA TRANSFER message and transmitted. This is because the gNB-CU-UP (9-400) needs to know through which PDCP to process data.
  • the gNB-CU-UP 9-400 may process data through a PDCP matching the corresponding DRB by obtaining DRB information in which UL data is transmitted, and transmit it to the UPF 9-500.
  • IE information element
  • the newly defined IE is referred to as an UL SD-Container IE as an example.
  • the gNB-CU-CP (9-300) includes the UL data received through step 9-02 in the UL SD-Container in the BEARER CONTEXT MODIFICATION REQUEST message to gNB-CU-UP ( 9-400).
  • the gNB-CU-UP (9-400) needs to know which PDCP to process data through, so the DRB ID is also included in the BEARER CONTEXT MODIFICATION REQUEST message. it may have to be
  • the gNB-CU-UP (9-400) may transmit the received UL data to the UPF (9-500) in step 9-04.
  • the UPF (9-500) receives UL data from the gNB-CU-UP (9-400) and when there is data to be transmitted to the corresponding terminal (9-100), the gNB-CU-UP DL data may be transmitted to (9-400). If there is no DL data to be transmitted to the terminal 9-100, a procedure to be described later may be omitted.
  • the gNB-CU-UP (9-400) When the gNB-CU-UP (9-400) receives the DL data, it delivers it to the gNB-CU-CP (9-300) so that the gNB-CU-CP (9-300) transmits the DL data to the gNB-DU (9 -200) should be able to be transmitted. Accordingly, in the second embodiment of the present disclosure, two methods are provided for this purpose.
  • a message for the gNB-CU-UP (9-400) to transmit DL data to the gNB-CU-CP (9-300) may be newly defined.
  • the newly defined message is referred to as a SMALL DATA TRANSMISSION NOTIFY message as an example.
  • gNB-CU-UP 9-400 in step 9-06a, when there is DL data received from UPF (9-500) through step 9-05 above, DL SD- in the SMALL DATA TRANSMISSION NOTIFY message DL data may be included in the container and transmitted to the gNB-CU-CP (9-300).
  • the gNB-DU 9-200 receiving the DL data may include and transmit the DRB ID so that the gNB-DU 9-200 can determine the RLC matching the DL data.
  • the corresponding message may not be transmitted.
  • the timing of transmitting the corresponding message may be determined by using a timer or the like, which may depend on an implementation method.
  • IE can be newly defined.
  • the newly defined IE is referred to as a DL SD-Container as an example.
  • DL SD- in the BEARER CONTEXT MODIFICATION RESPONSE message DL data may be included in the container and transmitted to the gNB-CU-CP (9-300).
  • the DRB ID in the BEARER CONTEXT MODIFICATION RESPONSE message so that the gNB-DU 9-200 receiving the DL data can determine the RLC that matches the DL data. can be included and delivered together.
  • the timing of transmitting the corresponding message may be determined by using a timer or the like, which may depend on an implementation method.
  • this RESPONSE message may be transmitted in response to the BEARER CONTEXT MODIFICATION REQUEST message even when DL data does not exist.
  • the RRC message to be transmitted may be transmitted to the gNB-DU 9-200 by including the RRCRelease message in the RRC Container in the message (eg, DL RRC MESSAGE TRANSFER message) for transmitting the RRC message to the gNB-DU 9-200.
  • the gNB-CU-CP (9-300) includes the data in the DL SD-Container in the DL RRC MESSAGE TRANSFER message and also DL data It can be delivered to the gNB-DU (9-200) by including the DRB ID corresponding to .
  • the gNB-DU 9-200 may transmit the RRCRelease message in the received DL RRC MESSAGE TRANSFER to the UE 9-100 in step 9-08. If the DL data received in step 9-07 is present, the RRCRelease message and the DL data may be delivered to the UE together. In this case, DL data may be transmitted through the DRB corresponding to the received DRB ID. For example, the DL data may be transmitted while being included in the RRCRelease message, or may be transmitted through separate signaling.
  • 10A to 10D are diagrams illustrating a message and an information element (IE) according to a second embodiment of the present disclosure.
  • IE information element
  • the RRC message transmitted by the UE is small-sized data.
  • Indicator information for indicating that it is for transmission small data transmission, SDT
  • information for indicating the DRB ID used to transmit IE eg SDT Session
  • UL data eg For example, at least one of DRB ID for SDT (10-120) may be included.
  • UL data may be further included in the message 10-100 through the UL SD-Container 10-130 IE and delivered to the gNB-CU-CP.
  • a message (eg, UL SMALL DATA TRANSFER message) (10-200) defined newly according to method 1-1 described above is transmitted to the gNB-CU.
  • -UP can be used to transmit.
  • a new It in order to transmit UL data in the existing message (eg, BEARER CONTEXT MODIFICATION REQUEST message) (10-400) transmitted from the gNB-CU-CP to the gNB-CU-UP, a new It can be transmitted by adding defined information or IE.
  • the message type 10-210 in the UL SMALL DATA TRANSFER message 10-200 that the gNB-CU-CP transmits to the gNB-CU-UP, the message type 10-210, and the gNB-CU of the terminal that transmitted the UL data
  • At least one of -CP E1AP ID (10-220) and gNB-CU-UP E1AP ID (10-230) may be included.
  • at least one of the same DRB ID information (eg, DRB ID for SDT) (10-240) and UL SD-Container (10-250) IE received from the gNB-DU may be further included.
  • the same DRB ID information as received from the gNB-DU (eg, DRB ID for SDT) (10-410) and at least one of the UL SD-Container (10-420) IE may be further included.
  • the gNB-CU-UP After the gNB-CU-UP transmits the UL data to the UPF (or after receiving the DL data from the UPF if DL data exists), the gNB-CU-UP informs the gNB-CU-CP of this.
  • a newly defined message eg, a SMALL DATA TRANSMISSION NOTIFY message
  • the existing message transmitted from the gNB-CU-UP to the gNB-CU-CP for example, a BEARER CONTEXT MODIFICATION RESPONSE message
  • the SMALL DATA TRANSMISSION NOTIFY message (10-300) transmitted by the gNB-CU-UP to the gNB-CU-CP includes a message type (10-310) and a gNB-CU of a terminal to receive DL data.
  • a message type (10-310) and a gNB-CU of a terminal to receive DL data At least one of -CP E1AP ID (10-320) and gNB-CU-UP E1AP ID (10-330) may be included.
  • at least one of a DL SD-Container 10-350 for containing DL data received from the UPF and information for indicating a DRB ID (eg, DRB ID for SDT) 10-340 may be further included.
  • the DL SD-Container (10-520) and the DRB for containing DL data At least one of information for indicating ID (eg, DRB ID for SDT) 10-510 may be further included.
  • the gNB-CU-CP transmits it to the gNB-DU in the DL RRC MESSAGE TRANSFER message (10-600) DRB ID for SDT (10-610) and DL SD-Container ( 10-620) IE may be further included.
  • FIG. 11 is a diagram illustrating a method of transmitting small data (SD) transmitted by an inactive mode terminal to a user plane and a structure of a separate base station for supporting the same according to a third embodiment of the present disclosure; it is one drawing
  • SD small data
  • the UE 11-01 may simultaneously transmit an RRC message (eg, RRCResumeRequest message) and UL data to the gNB-DU 11-02 to transmit small data to the user plane in the inactive mode (11-100).
  • RRC message eg, RRCResumeRequest message
  • UL data may be transmitted while being included in the RRCResumeRequest message, or may be transmitted through separate signaling.
  • the gNB-DU 11-02 transfers the entire received message (RRCResumeRequest + UL data) to the gNB-CU-CP 11-03, and (11-200) gNB-CU-CP (11-03) transmits UL data to gNB-CU-UP (11-04) (11-300) and finally transmits to UPF (11-05) have.
  • DL data downlink data
  • the gNB-CU-UP 11-04 may transmit DL data to the gNB-DU 11-02 (11-400) and transmit it to the UE 11-01.
  • FIG. 12 is a sequence diagram illustrating an operation between a terminal and a split base station or inside a split base station according to a third embodiment of the present disclosure.
  • the UE 12-100 transmits an RRC message (eg, RRCResumeRequest message) and UL data to the gNB-DU 12-200 at the same time to transmit small data while maintaining the inactive mode.
  • RRC message eg, RRCResumeRequest message
  • UL data may be transmitted by being included in the RRCResumeRequest message, or may be transmitted through separate signaling.
  • the gNB-DU (12-200) transmits the RRC message received from the terminal (12-100) to the gNB-CU (12-300, 12-400) in step 12-02 (eg, INITIAL
  • the RRCResumeRequest message may be included in the RRC Container in the UL RRC MESSAGE TRANSFER message), and the UL data may be included in the UL SD-Container and delivered to the gNB-CU-CP 12-300.
  • an indicator indicating that the current operation is for Small Data Transmission (SDT) (eg, SDT Session) and a terminal for transmitting UL data
  • SDT Small Data Transmission
  • DRB used data radio bearer
  • the gNB-CU-CP (12-300) After receiving the INITIAL UL RRC MESSAGE TRANSFER message, the gNB-CU-CP (12-300) transmits the UL data contained in the UL SD-Container in the message to the gNB-CU-UP (12-400) to the UPF. should be able to be transmitted. Therefore, as in Method 1-1) of the second embodiment described above, a message for the gNB-CU-CP 12-300 to transmit UL data to the gNB-CU-UP 12-400 (eg, UL SMALL DATA TRANSFER message) can be newly defined.
  • a message for the gNB-CU-CP 12-300 to transmit UL data to the gNB-CU-UP 12-400 eg, UL SMALL DATA TRANSFER message
  • the gNB-CU-CP (12-300) includes the UL data received through the above-described step 12-02 in the step 12-03 in the UL SD-Container in the UL SMALL DATA TRANSFER message or the BEARER CONTEXT MODIFICATION REQUEST message. and can be transmitted to the gNB-CU-UP (12-400).
  • the DRB ID received in step 12-02 may also be included in the message and transmitted. This is because the gNB-CU-UP (12-400) needs to know through which PDCP to process data.
  • the gNB-CU-UP 12-400 may process data through a PDCP matching the corresponding DRB by obtaining DRB information in which UL data is transmitted, and transmit it to the UPF 12-500.
  • the gNB-CU-UP 12-400 may transmit the received UL data to the UPF 12-500 in step 12-04.
  • the gNB-CU-CP 12-300 may transmit a UE CONTEXT SETUP REQUEST message to the gNB-DU 12-200 after receiving the INITIAL UL RRC MESSAGE TRANSFER message in step 12-05.
  • the gNB-DU 12-200 may transmit a response message to the UE CONTEXT SETUP REQUEST message (eg, a UE CONTEXT SETUP RESPONSE message) to the gNB-CU-CP 12-300 in step 12-06. .
  • the corresponding UE CONTEXT SETUP RESPONSE message may include an endpoint address (downlink endpoint) of a tunnel through which the gNB-DU 12-200 can receive DL data. Accordingly, the gNB-CU-CP 12-300 having received the UE CONTEXT SETUP RESPONSE message can confirm this.
  • the gNB-CU-CP (12-300) is a message for informing the gNB-CU-UP (12-400) of the tunnel information for DL data transmission acquired through the aforementioned step 12-04. (eg, a BEARER CONTEXT MODIFICATION REQUEST message) may be transmitted.
  • the message may include, for example, downlink endpoint information.
  • the gNB-CU-UP (12-400) transmits a response message to the BEARER CONTEXT MODIFICATION REQUEST message (eg, a BEARER CONTEXT MODIFICATION RESPONSE message) to the gNB-CU-CP (12-300) in step 12-08.
  • BEARER CONTEXT MODIFICATION REQUEST message eg, a BEARER CONTEXT MODIFICATION RESPONSE message
  • a downlink tunnel is created between the gNB-DU 12-200 and the gNB-CU-UP 12-400, and DL data can be transmitted through the tunnel.
  • the UL data may be transmitted to the gNB-CU-UP by the gNB-CU-CP (12-300) and finally transmitted to the UPF (12-500), and the DL data may be transmitted to the gNB-CU-UP (12).
  • -400) may be transmitted after obtaining (confirming) the DL endpoint address through the BEARER CONTEXT MODIFICATION REQUEST message from the gNB-CU-CP (12-300).
  • DL data may be transmitted to the gNB-CU-UP (12-400).
  • DL data may be transmitted to the gNB-CU-UP (12-400).
  • a predetermined time DL data may be transmitted to the gNB-CU-UP (12-400). This is because the gNB-CU-UP (12-400) must obtain a DL endpoint address to deliver DL data to the gNB-DU (12-200). How long after the UPF 12-500 receives the UL data and transmits the DL data may be determined by using a timer or the like, which may depend on an implementation method.
  • the gNB-CU-CP 12-300 removes the UE context from the gNB-DU 12-200 in step 12-10.
  • a message (eg, a UE CONTEXT RELEASE COMMAND message) may be transmitted.
  • the gNB-DU 12-200 may transmit an RRC message (eg, an RRCRelease message) included in the message to the UE 12-100 in step 12-11. .
  • the gNB-DU 12-200 may transmit the DL data received in step 12-08 described above together with the RRCRelease message to the terminal 12-100.
  • the DL data may be transmitted while being included in the RRCRelease message, or may be transmitted through separate signaling.
  • the gNB-DU (12-200) may transmit a message (eg, UE CONTEXT RELEASE COMPLETE message) for notifying the gNB-CU-CP (12-300) that the UE context has been removed in step 12-12, gNB -CU-CP (12-300) can confirm that the UE context has been removed based on the message.
  • a message eg, UE CONTEXT RELEASE COMPLETE message
  • FIG. 13 is a diagram illustrating the structure of a terminal according to an embodiment of the present invention.
  • the terminal may include a radio transceiver 13-10, a controller 13-20, and a storage 13-30.
  • the controller may be defined as a circuit or an application specific integrated circuit or at least one processor.
  • the radio transceiver 13-10 may transmit/receive signals to and from other network entities.
  • the radio transceiver 13-10 may receive, for example, a signal from a base station, and may transmit a signal including an RRC ResumeRequest message or small-sized UL data (SDT UL data) to the base station.
  • RRC ResumeRequest message or small-sized UL data (SDT UL data)
  • the controller 13-20 may control the overall operation of the terminal according to the embodiment proposed in the present invention.
  • the controller 13-20 may control a signal flow between blocks to perform an operation according to the above-described flowchart.
  • the controller 13-20 transmits an RRC ResumeRequest message to the gNB-DU according to an embodiment of the present invention, and determines a radio connection state based on the received RRC Release message. You can control the action.
  • the storage unit 13-30 may store at least one of information transmitted and received through the transceiver 13-10 and information generated through the control unit 13-20.
  • the storage unit 13-30 may store wireless connection state information and DL data.
  • FIG. 14 is a diagram illustrating a structure of a base station according to an embodiment of the present invention.
  • the base station may include a radio transceiver 14-10, another base station/Core network transceiver 14-20, a controller 14-30, and a storage 14-40.
  • the controller may be defined as a circuit or an application specific integrated circuit or at least one processor.
  • the base station shown in FIG. 14 may be a RAN node including both a gNB-CU and a gNB-DU.
  • the RAN node is an LTE eNB (evolved Node B, eNodeB) connected to a mobile communication core network (Core Network, CN) such as Evolved Packet Core (EPC) or 5G Core Network (5GC), NR gNB (next generation Node B, gNodeB) It may mean a mobile communication base station, such as.
  • the RAN node may be divided into a Centralized Unit (CU) and a Distributed Unit (DU), and the CU may be further divided into a CU-CP (Control Plane) and a CU-UP (User Plane).
  • CU Centralized Unit
  • DU Distributed Unit
  • CU-CP Control Plane
  • CU-UP User Plane
  • one RAN Node may be configured with one or more CU-CPs, one or more CU-UPs, and one or more DUs, respectively.
  • CU-CP, CU-UP, and DU constituting one RAN Node may be configured together.
  • one RAN Node may consist of a CU in which CU-CP and CU-UP are implemented together and a DU.
  • CU-CP and DU may be implemented together in one RAN Node, and CU-UP may be configured separately.
  • one RAN Node may be configured in the form of an integrated base station in which CU-CP, CU-UP, and DU are implemented together.
  • One RAN Node may be configured in any other combination other than the above-described examples.
  • the CU and the DU may support each base station function by dividing it.
  • the CU may support the RRC/PDCP layer
  • the DU may support the RLC/MAC/PHY/RF layer.
  • the CU and the DU may be connected through an interface between internal functions of the base station, such as a W1 or F1 interface.
  • a CU may be divided into a CU-CP and a CU-UP.
  • an RRC/PDCP (for RRC) layer may be supported
  • a PDCP (for user data transmission) layer may be supported
  • CU-CP and CU-UP are E1 interface It can be connected through an interface between internal functions of the base station, such as
  • the base stations are made in an integrated structure or a separate structure to enable connection between the integrated structure base stations, between the separate type base stations, and between the integrated structure base station and the separate structure base station.
  • RAN Nodes may be connected through an interface between base stations, such as an X2 or Xn interface.
  • the RAN Node and the Core network may be connected through an interface between the base station and the Core network, such as S1 or NG Interface.
  • the radio transceiver 14-10 may transmit/receive signals to and from other network entities.
  • the radio transceiver 14-10 may transmit and receive a signal from the terminal or transmit a signal including a message such as RRC Release for controlling the operation of the terminal.
  • the other base station/Core network transceiver 14-20 may transmit/receive signals to and from other network entities. For example, SDT UL/DL data exchanged with the UPF may be transmitted and received.
  • the controller 14-30 may control the overall operation of the base station according to the embodiment proposed in the present invention.
  • the controller 14-30 may control a signal flow between blocks to perform an operation according to the above-described flowchart.
  • the storage unit 14-40 includes at least one of information transmitted and received through the radio transceiver 14-10 and the other base station/Core network transceiver 14-20 and information generated through the control unit 14-30. can be saved.
  • the storage unit 14-40 may store UL data directed to the UPF.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시는 4G 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G 통신 시스템을 IoT 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스 (예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다. 무선 통신 시스템의 기지국의 방법이 제공된다. 상기 방법은 비활성 모드 (INACTIVE)의 단말로부터 상기 기지국의 DU (distributed unit)로, 상향링크 데이터를 포함하는 RRC (radio resource control) 메시지를 수신하는 단계, 상기 상향링크 데이터의 전송과 관련된 지시자 정보 및 상기 상향링크 데이터와 상응하는 DRB (data radio bearer)의 식별자 정보 중 적어도 하나를 포함하는 제 1 메시지를, 상기 DU에서 상기 기지국의 CU-CP (centralized unit-control plane)로 전달하는 단계, 및 상기 제 1 메시지에 기반하여, 상기 상향링크 데이터를 UPF (user plane function)로 전송하는 단계를 포함하는 것을 특징으로 한다.

Description

무선 통신 시스템에서 스몰 데이터 전송을 지원하기 위한 방법 및 장치
본 개시는 무선 통신 시스템에 대한 것으로, 보다 구체적으로 스몰 데이터 전송 (Small Data Transmission)을 지원하기 위한 방법 및 장치에 대한 것이다.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 이후의 시스템이라 불리어지고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다. 또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다. 이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non orthogonal multiple access), 및SCMA(sparse code multiple access) 등이 개발되고 있다.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술인 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.
최근 5G 통신 시스템의 발전에 따라 상대적으로 작은 크기의 데이터 (small data)를 보다 효율적으로 송수신할 수 있는 방법이 필요하다. 특히 5G 통신 시스템의 분리형 기지국과 단말간의 small data 송수신에 있어서 불필요한 지연을 최소화 할 수 있는 방법의 필요성이 대두된다.
일반적인 데이터 송수신 방법에 따르면 비활성 모드의 단말은 기지국과 데이터를 송수신하기 위하여 연결 모드로 전환되어야 한다. 따라서 비활성 모드의 단말이 상대적으로 작은 크기의 데이터를 송수신할 때도 이에 앞서 매번 연결 모드로 전환해야 하므로 무선 접속 상태 천이를 위한 시그널링 절차가 진행됨에 따라 불필요한 지연이 발생한다는 문제점이 있다.
상술한 문제점을 해결하기 위한 본 개시의 일 실시예에 따르면, 무선 통신 시스템의 기지국의 방법에 있어서, 비활성 모드 (INACTIVE)의 단말로부터 상기 기지국의 DU (distributed unit)로, 상향링크 데이터를 포함하는 RRC (radio resource control) 메시지를 수신하는 단계; 상기 상향링크 데이터의 전송과 관련된 지시자 정보 및 상기 상향링크 데이터와 상응하는 DRB (data radio bearer)의 식별자 정보 중 적어도 하나를 포함하는 제 1 메시지를, 상기 DU에서 상기 기지국의 CU-CP (centralized unit-control plane)로 전달하는 단계; 및 상기 제 1 메시지에 기반하여, 상기 상향링크 데이터를 UPF (user plane function)로 전송하는 단계를 포함하는 것을 포함하는 것을 특징으로 한다.
또한, 상술한 문제점을 해결하기 위한 본 개시의 다른 실시예에 따르면, 무선 통신 시스템의 기지국에 있어서, 송수신부; 및 비활성 모드 (INACTIVE)의 단말로부터 상기 기지국의 DU (distributed unit)로, 상향링크 데이터를 포함하는 RRC (radio resource control) 메시지를 수신하고, 상기 상향링크 데이터의 전송과 관련된 지시자 정보 및 상기 상향링크 데이터와 상응하는 DRB (data radio bearer)의 식별자 정보 중 적어도 하나를 포함하는 제 1 메시지를, 상기 DU에서 상기 기지국의 CU-CP (centralized unit-control plane)로 전달하고, 상기 제 1 메시지에 기반하여, 상기 상향링크 데이터를 UPF (user plane function)로 전송하도록 상기 송수신부를 제어하는 제어부를 포함하는 것을 특징으로 한다.
본 발명의 일 실시예에 따르면, 비활성 모드의 단말이 연결 모드로의 전환 없이 상대적으로 작은 크기의 데이터를 일체형 기지국 또는 분리형 기지국과 송수신할 수 있다. 이에, 작은 크기의 데이터를 송수신할 때 발생할 수 있는 불필요한 지연을 해소할 수 있다.
도 1은 차세대 이동통신 시스템 구조의 예시를 도시한 도면이다.
도 2는 차세대 이동통신 시스템의 무선 프로토콜 구조를 도시한 도면이다.
도 3은 본 개시의 일 실시예에 따른 차세대 이동통신 시스템에서 무선 접속 상태 천이를 도시한 도면이다.
도 4는 본 개시의 일 실시예에 따른 차세대 이동통신 시스템에서 분리형 기지국에 접속한 단말이 비활성 무선 접속 상태로 전환될 때의 과정을 도시한 시퀀스도이다.
도 5는 본 개시의 제 1 실시예에 따라 비활성 모드 단말이 전송한 작은 크기의 데이터(Small Data, SD)를 유저 평면(User Plane)으로 전송하는 방법 및 이를 지원하기 위한 분리형 기지국의 구조와 터널 구성을 도시한 도면이다.
도 6은 본 개시의 제 1 실시예에 따른 단말과 분리형 기지국 사이, 또는 분리형 기지국 내부의 동작을 도시한 시퀀스도이다.
도 7은 본 개시의 제 1 실시예에 따른 메시지와 IE (Information Element)를 나타내는 도면이다.
도 8은 본 개시의 제 2 실시예에 따라 비활성 모드 단말이 전송한 작은 크기의 데이터(Small Data, SD)를 유저 평면(User Plane)으로 전송하는 방법 및 이를 지원하기 위한 분리형 기지국의 구조를 도시한 도면이다.
도 9a는 본 개시의 제 2 실시예에 따른 단말과 분리형 기지국 사이, 또는 분리형 기지국 내부의 동작을 도시한 시퀀스도이다.
도 9b는 본 개시의 제 2 실시예에 따른 단말과 분리형 기지국 사이, 또는 분리형 기지국 내부의 동작을 도시한 시퀀스도이다
도 10a는 본 개시의 제 2 실시예에 따른 메시지와 IE (Information Element)를 도시한 도면이다.
도 10b는 본 개시의 제 2 실시예에 따른 메시지와 IE (Information Element)를 도시한 도면이다.
도 10c는 본 개시의 제 2 실시예에 따른 메시지와 IE (Information Element)를 도시한 도면이다.
도 10d는 본 개시의 제 2 실시예에 따른 메시지와 IE (Information Element)를 도시한 도면이다.
도 11은 본 개시의 제 3 실시예에 따라 비활성 모드 단말이 전송한 작은 크기의 데이터(Small Data, SD)를 유저 평면(User Plane)으로 전송하는 방법 및 이를 지원하기 위한 분리형 기지국의 구조를 도시한 도면이다.
도 12는 본 개시의 제 3 실시예에 따른 단말과 분리형 기지국 사이, 또는 분리형 기지국 내부의 동작을 도시한 시퀀스도이다.
도 13은 본 발명의 일 실시예에 따른 단말의 구조를 도시한 도면이다.
도 14는 본 발명의 일 실시예에 따른 기지국의 구조를 도시한 도면이다.
이하, 본 발명의 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다.
실시예를 설명함에 있어서 본 개시가 속하는 기술 분야에 익히 알려져 있고 본 개시와 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 개시의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.
마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.
본 개시의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시는 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
이때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
이하 설명에서 사용되는 접속 노드(node)를 식별하기 위한 용어, 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 망 객체들 간 인터페이스를 지칭하는 용어, 다양한 식별 정보들을 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 개시에서 사용하는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 대상을 지칭하는 다른 용어가 사용될 수 있다.
이하 설명의 편의를 위하여, 본 개시에서는 5G 또는 NR, LTE 시스템에 대한 규격에서 정의하는 용어와 명칭들을 사용한다. 하지만, 본 개시가 이러한 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다.
즉, 본 개시의 실시예들을 구체적으로 설명함에 있어서, 3GPP가 규격을 정한 통신 규격을 주된 대상으로 할 것이지만, 본 개시의 주요한 요지는 유사한 기술적 배경을 가지는 여타의 통신 시스템에도 본 발명의 범위를 크게 벗어나지 아니하는 범위에서 약간의 변형으로 적용 가능하며, 이는 본 개시의 기술 분야에서 숙련된 기술적 지식을 가진 자의 판단으로 가능할 것이다.
도 1은 차세대 이동통신 시스템 구조의 예시를 도시하는 도면이다. 즉, 도 1은 본 개시의 실시예들이 적용될 수 있는 차세대 이동통신 시스템 구조의 예시를 도시한 도면이다.
도 1을 참조하면, 이 구조에 명시된 RAN (Radio Access Network) Node (1-100, 1-200)는 EPC (Evolved Packet Core) 또는 5GC (5G Core Network)(1-400) 등의 이동통신 Core 망(Core Network, CN)과 연결된 LTE eNB (evolved Node B, eNodeB), NR gNB (next generation Node B, gNodeB) 등의 이동통신 기지국을 의미할 수 있다. 또한 RAN Node (1-100, 1-200)는 CU (Centralized Unit)와 DU (Distributed Unit)로 분리될 수 있으며, CU는 다시 CU-CP (Control Plane)와 CU-UP (User Plane)로 분리될 수 있다.
일 실시예에 따르면, 하나의 RAN Node는 각각 하나 이상의 CU-CP 및 하나 이상의 CU-UP와 하나 이상의 DU로 구성될 수 있다. 또한, 하나의 RAN Node를 구성하는 CU-CP, CU-UP 및 DU는 함께 구성될 수 있다. 예를 들어, 하나의 RAN Node는 CU-CP와 CU-UP가 함께 구현된 CU와, DU로 구성될 수 있다. 또 다른 예를 들어, 하나의 RAN Node에는 CU-CP와 DU가 함께 구현되고, CU-UP는 별도로 구성될 수 있다. 또 다른 예를 들어, 하나의 RAN Node는 CU-CP, CU-UP 및 DU가 함께 구현된 일체형 기지국 형태로 구성될 수 있다. 상술된 예시 이외의 임의의 다른 조합으로 하나의 RAN Node가 구성될 수 있다.
일 실시예에 따르면, CU와 DU는 각각의 기지국 function을 나누어서 지원할 수 있다. 예를 들어, CU는 RRC/PDCP layer를 지원하고, DU는 RLC/MAC/PHY/RF layer를 지원할 수 있다. 그리고, CU와 DU 사이는 W1 또는 F1 interface와 같은 기지국 내부 function간 interface를 통해 연결할 수 있다.
일 실시예에 따르면, CU는 CU-CP와 CU-UP로 나누어질 수 있다. 예를 들어, CU-CP에서는 RRC/PDCP(RRC 용) layer가 지원될 수 있고, CU-UP에서는 PDCP(사용자 data 전송 용) layer가 지원될 수 있고, CU-CP와 CU-UP는 E1 interface와 같은 기지국 내부 function간 interface를 통해 연결될 수 있다.
일 실시예에 따르면, 기지국들은 일체형 또는 분리형 구조로 만들어져 일체형 구조 기지국 간, 분리형 기지국 간, 일체형 구조 기지국과 분리형 구조 기지국 간 연결이 가능할 수 있다. RAN Node 간에는 X2 또는 Xn interface와 같은 기지국 간 interface를 통해 연결될 수 있다. 그리고, RAN Node와 Core 망은, S1 또는 NG Interface와 같이 기지국-Core망 간 interface를 통해 연결될 수 있다. 본 개시에서 제안하는 방법은, 단말(1-300)이 일체형 기지국 또는 분리형 기지국에 관계 없이, 비활성(RRC_INACTIVE) 무선 접속 상태를 유지한 상태에서 RAN Node와 연결하여 작은 크기의 데이터(small data)를 전송하는 경우에 적용될 수 있다.
도 2는 차세대 이동통신 시스템의 무선 프로토콜 구조를 도시하는 도면이다. 즉, 도 2는 본 개시의 실시예들이 적용될 수 있는 차세대 이동통신 시스템의 무선 프로토콜 구조를 나타낸 도면이다.
도 2를 참조하면, 차세대 이동통신 시스템의 무선 프로토콜은 단말과 NR 기지국(예: NR gNB)에서 각각 NR 서비스 데이터 적응 프로토콜(Service Data Adaptation Protocol, SDAP)(2-01, 2-45), NR PDCP (2-05, 2-40), NR RLC (2-10, 2-35), NR MAC (2-15, 2-30), NR PHY (2-20, 2-25)로 구성될 수 있다.
NR SDAP (2-01, 2-45)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 사용자 데이터의 전달 기능(transfer of user plane data)
- 상향링크와 하향링크에 대해서 QoS flow와 데이터 베어러의 맵핑 기능(mapping between a QoS flow and a DRB for both DL and UL)
- 상향링크와 하향링크에 대해서 QoS flow ID를 마킹 기능(marking QoS flow ID in both DL and UL packets)
- 상향링크 SDAP PDU들에 대해서 reflective QoS flow를 데이터 베어러에 맵핑시키는 기능 (reflective QoS flow to DRB mapping for the UL SDAP PDUs).
SDAP 계층 장치에 대해 단말은 무선 자원 제어(Radio Resource Control, RRC) 메시지로 각 PDCP 계층 장치 별로 또는 베어러 별로 또는 로지컬(logical) 채널 별로 SDAP 계층 장치의 헤더(header)를 사용할 지 여부, 또는 SDAP 계층 장치의 기능을 사용할 지 여부를 설정 받을 수 있다. SDAP 헤더가 설정된 경우, 단말은, SDAP 헤더의 비접속 계층(Non-Access Stratum, NAS) QoS (Quality of Service) 반영 설정 1비트 지시자(NAS reflective QoS)와, 접속 계층(Access Stratum, AS) QoS 반영 설정 1비트 지시자(AS reflective QoS)로, 단말이 상향링크와 하향링크의 QoS 플로우(flow)와 데이터 베어러에 대한 맵핑 정보를 갱신 또는 재설정할 수 있도록 지시할 수 있다. SDAP 헤더는 QoS를 나타내는 QoS flow ID 정보를 포함할 수 있다. QoS 정보는 원활한 서비스를 지원하기 위한 데이터 처리 우선 순위, 스케줄링 정보 등으로 사용될 수 있다.
NR PDCP (2-05, 2-40)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 헤더 압축 및 압축 해제 기능(Header compression and decompression: ROHC only)
- 사용자 데이터 전송 기능(Transfer of user data)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)
- 비순차적 전달 기능(Out-of-sequence delivery of upper layer PDUs)
- 순서 재정렬 기능(PDCP PDU reordering for reception)
- 중복 탐지 기능(Duplicate detection of lower layer SDUs)
- 재전송 기능(Retransmission of PDCP SDUs)
- 암호화 및 복호화 기능(Ciphering and deciphering)
- 타이머 기반 SDU 삭제 기능(Timer-based SDU discard in uplink.)
상술한 내용에서, NR PDCP 장치의 순서 재정렬 기능(reordering)은 하위 계층에서 수신한 PDCP PDU들을 PDCP SN (sequence number)을 기반으로 순서대로 재정렬하는 기능을 의미할 수 있다. NR PDCP 장치의 순서 재정렬 기능(reordering)은 재정렬된 순서대로 데이터를 상위 계층에 전달하는 기능을 포함할 수 있다. 또는 NR PDCP 장치의 순서 재정렬 기능은, 순서를 고려하지 않고 바로 전달하는 기능을 포함할 수 있다. 그리고, NR PDCP 장치의 순서 재정렬 기능은 순서를 재정렬하여 유실된 PDCP PDU들을 기록하는 기능을 포함할 수 있으며, 유실된 PDCP PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 PDCP PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있다.
NR RLC (2-10, 2-35)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 데이터 전송 기능(Transfer of upper layer PDUs)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)
- 비순차적 전달 기능(Out-of-sequence delivery of upper layer PDUs)
- ARQ 기능(Error Correction through ARQ)
- 접합, 분할, 재조립 기능(Concatenation, segmentation and reassembly of RLC SDUs)
- 재분할 기능(Re-segmentation of RLC data PDUs)
- 순서 재정렬 기능(Reordering of RLC data PDUs)
- 중복 탐지 기능(Duplicate detection)
- 오류 탐지 기능(Protocol error detection)
- RLC SDU 삭제 기능(RLC SDU discard)
- RLC 재수립 기능(RLC re-establishment)
상술한 내용에서, NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 의미할 수 있다. 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은 이를 재조립하여 전달하는 기능을 포함할 수 있다.
NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은, 수신한 RLC PDU들을 RLC SN (sequence number) 또는 PDCP SN (sequence number)을 기준으로 재정렬하는 기능을 포함할 수 있다. 또한, NR RLC 장치의 순차적 전달 기능은 순서를 재정렬하여 유실된 RLC PDU들을 기록하는 기능을 포함할 수 있다. 또한, NR RLC 장치의 순차적 전달 기능은 유실된 RLC PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있다.
NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은, 유실된 RLC SDU가 있을 경우, 유실된 RLC SDU 이전까지의 RLC SDU들만을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다.
NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은, 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 타이머가 시작되기 전에 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다.
NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은, 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 현재까지 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다.
NR RLC 장치는, 일련번호(Sequence number)의 순서와 상관없이(Out-of sequence delivery) RLC PDU들을 수신하는 순서대로 처리하여 NR PDCP 장치로 전달할 수 있다.
NR RLC 장치가 세그먼트(segment)를 수신할 경우에는, 버퍼에 저장되어 있거나 추후에 수신될 세그먼트들을 수신하여, 온전한 하나의 RLC PDU로 재구성한 후, 이를 NR PDCP 장치로 전달할 수 있다.
NR RLC 계층은 접합(Concatenation) 기능을 포함하지 않을 수 있다. 또는, NR MAC 계층에서 접합 기능이 수행되거나, NR MAC 계층의 다중화(multiplexing) 기능으로 접합 기능이 대체될 수 있다.
상술한 내용에서, NR RLC 장치의 비순차적 전달 기능(Out-of-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서와 상관없이 바로 상위 계층으로 전달하는 기능을 의미할 수 있다. NR RLC 장치의 비순차적 전달 기능(Out-of-sequence delivery)은, 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, 이를 재조립하여 전달하는 기능을 포함할 수 있다. NR RLC 장치의 비순차적 전달 기능(Out-of-sequence delivery)은, 수신한 RLC PDU들의 RLC SN 또는 PDCP SN을 저장하고 순서를 정렬하여 유실된 RLC PDU들을 기록해두는 기능을 포함할 수 있다.
NR MAC (2-15, 2-30)은 한 단말에 구성된 여러 NR RLC 계층 장치들과 연결될 수 있으며, NR MAC의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 맵핑 기능(Mapping between logical channels and transport channels)
- 다중화 및 역다중화 기능(Multiplexing/demultiplexing of MAC SDUs)
- 스케줄링 정보 보고 기능(Scheduling information reporting)
- HARQ 기능(Error correction through HARQ)
- 로지컬 채널 간 우선 순위 조절 기능(Priority handling between logical channels of one UE)
- 단말간 우선 순위 조절 기능(Priority handling between UEs by means of dynamic scheduling)
- MBMS 서비스 확인 기능(MBMS service identification)
- 전송 포맷 선택 기능(Transport format selection)
- 패딩 기능(Padding)
NR PHY 계층(2-20, 2-25)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 수행할 수 있다.
도 3은 본 개시의 일 실시예에 따른 차세대 이동통신 시스템에서 무선 접속 상태 천이를 도시한 도면이다.
차세대 이동통신 시스템에서는 3가지의 무선 접속 상태(Radio Resource Control(RRC) state)를 가진다. 연결 모드(RRC_CONNECTED, 3-05)는 단말이 데이터를 송수신할 수 있는 무선 접속 상태를 의미할 수 있다. 대기 모드(RRC_IDLE, 3-30)는 단말이 자신에게 페이징이 전송되는지를 모니터링하는 무선 접속 상태를 의미할 수 있다. 연결 모드(3-05)와 대기 모드는 기존 LTE 시스템에도 적용되는 무선 접속 상태로, 상세 기술은 기존 LTE 시스템의 것과 동일하다. 차세대 이동통신 시스템에서는 신규로 비활성(RRC_INACTIVE) 무선 접속 상태(3-15)가 정의되었다. 본 개시에서, 차세대 이동통신 시스템에서 새롭게 정의된 RRC_INACTIVE 무선 접속 상태(3-15)는 비활성 무선 접속 상태, INACTIVE 모드, 비활성 모드 등에 대응될 수 있다.
비활성 모드(3-15) 무선 접속 상태에서는 UE context가 기지국과 단말에 유지되며, RAN 기반 페이징이 지원될 수 있다. 상기 비활성 모드 무선 접속 상태의 특징을 나열하면 하기와 같다.
- Cell re-selection mobility;
- CN - NR RAN connection (both C/U-planes) has been established for UE;
- The UE AS context is stored in at least one gNB and the UE;
- Paging is initiated by NR RAN;
- RAN-based notification area is managed by NR RAN;
- NR RAN knows the RAN-based notification area which the UE belongs to;
일 실시예에 따르면, INACTIVE 무선 접속 상태는 특정 절차를 이용하여, 연결 모드(3-05) 혹은 대기 모드(3-30)로 천이될 수 있다. Resume 과정에 따라 INACTIVE 모드(3-15)에서 연결 모드(3-05)로 전환될 수 있으며, suspend 설정 정보를 포함한 Release 절차를 이용하여 연결 모드(3-05)에서 INACTIVE 모드(3-15)로 전환될 수 있다(3-10). 상술한 절차(3-10)에서 하나 이상의 RRC 메시지가 단말과 기지국 간 송수신될 수 있으며, 상술한 절차(3-10)는 하나 이상의 단계로 구성될 수 있다. 또한 Resume 후 Release 절차를 통해, INACTIVE 모드(3-15)에서 대기 모드(3-30)로 전환 될 수 있다(3-20).
연결 모드(3-05)과 대기 모드(3-30) 간 전환은 기존의 LTE 기술을 따라 수행될 수 있다. 즉, establishment 혹은 release 절차를 통해, 연결 모드(3-05)과 대기 모드(3-30) 간 전환이 이루어질 수 있다(3-25).
INACTIVE 무선 접속 상태의 단말이 일반 데이터를 송수신 하기 위해서는 상기의 과정(3-10)을 거쳐 연결 모드(3-05)로 전환되어야 한다. 본 개시에서 제안하는 방법은 단말이 비활성 상태를 유지한 채(연결 모드로의 전환 없이) 작은 크기의 데이터(small data, SD)를 전송하는 경우에 적용될 수 있다. 상기 small data는 예를 들어 상대적으로 작은 용량의 메시지 전송 또는 웨어러블 (wearable) 통신 장치에 있어서 사용자의 심박수와 같은 작은 크기의 데이터를 의미할 수 있다. 또는 일례로, 하나의 transport block (TB) 에 포함될 수 있는 크기의 데이터로 정의될 수도 있다. 본 개시에서는 이해의 편의를 위하여 small data를 송수신하기 위한 방법에 대하여 서술하지만 용어의 일반적인 의미에 의해 본 개시의 범위가 한정되는 것은 아니다. 예를 들어 단말이 연결 모드로 전환하지 않고 비활성 상태를 유지한 상태로 후술하는 방법에 따라 송수신될 수 있는 크기의 데이터인 경우라면 본 개시에서 제안하는 실시예가 적용될 수 있을 것이다.
도 4는 본 개시의 일 실시예에 따른 차세대 이동통신 시스템에서 분리형 기지국에 접속한 단말이 비활성 무선 접속 상태로 전환될 때의 과정을 도시한 시퀀스도이다.
분리형 기지국의 CU-CP (4-100)가 해당 기지국에 접속한 특정 단말(4-400)을 INACTIVE 상태로 전환하기로 결정하면(4-01) BEARER CONTEXT MODIFICATION REQUEST 메시지에 suspend indication을 포함시켜 CU-UP (4-200)에게 전송할 수 있다(4-02). CP-UP (4-200)는 이에 대한 응답으로 BEARER CONTEXT MODIFICATION RESPONSE를 전송할 수 있다(4-03). 이 때 CU-CP (4-100)와 CU-UP (4-200) 사이에 해당 단말에 대한 BEARER CONTEXT는 제거되지 않고 유지될 수 있다. 또 CU-CP (4-100)는 기지국의 DU (4-300)에게 UE CONTEXT RELEASE COMMAND 메시지를 전송하여 해당 단말에 대한 UE context를 제거하도록 할 수 있다(4-04). 상기 메시지를 수신한 DU (4-300)는 UE (4-400)에게 RRCRelease 메시지를 전송하여 (4-05) UE (4-400)가 INACTIVE 모드로 천이될 수 있도록 함과 동시에 CU-CP (4-100)에게 UE CONTEXT RELEASE COMPLETE 메시지를 전송하여 UE context가 제거되었음을 알릴 수 있다(4-06).
상술된 과정을 거치면 단말은 INACTIVE 모드로 천이될 수 있다. 분리형 기지국은 DU와 CU 사이에 존재하던 해당 단말의 UE context는 제거하고 CU-UP와 CU-CP 사이에 존재하던 해당 단말의 bearer context는 유지한 상태로 해당 단말이 INACTIVE 모드로 천이되었음을 인지할 수 있다. 본 개시에서 제안하는 방법은 상술한 과정을 거쳐 INACTIVE 모드로 천이된 단말과 기지국에 적용될 수 있다.
<제 1 실시예>
도 5는 본 개시의 제 1 실시예에 따라 비활성 모드 단말이 전송한 작은 크기의 데이터(Small Data, SD)를 유저 평면(User Plane)으로 전송하는 방법 및 이를 지원하기 위한 분리형 기지국의 구조와 터널 구성을 도시한 도면이다.
단말(5-01)은 비활성 모드에서 small data를 유저 평면으로 전송하기 위해 RRC 메시지 (예를 들면 RRCResumeRequest 메시지)와 상향 링크 데이터 (UL data)를 동시에 gNB-DU (5-02)에게 전송할 수 있다(5-100). 예를 들어 상기 UL data는 상기 RRCResumeRequest 메시지에 포함되어 전송될 수도 있고, 별도의 시그널링을 통해 전송될 수도 있다. gNB-DU (5-02)는 수신한 메시지 중 RRCResumeRequest는 gNB-CU-CP (5-03)에게 전달(5-200)하고, UL data는 gNB-CU-UP (5-04)에게 전송(5-300)하여 UPF (user plane function) (5-05)로 전달될 수 있게 해야 한다. 도 4에서 상술한 바와 같이 특정 단말(5-01)이 비활성 모드에 있을 때 gNB-DU (5-02)와 gNB-CU (5-03, 5-04) 사이의 UE context는 제거된 상태일 수 있다. 이 경우 gNB-DU (5-02)가 gNB-CU-UP (5-04)에게 데이터를 전송하기 위한 터널(5-10)이 존재하지 않을 수 있고, 따라서 gNB-DU (5-02)가 RRCResumeRequest 메시지를 gNB-CU-CP (5-04)에게 전송함과(5-200) 동시에 gNB-CU-UP (5-04)에게 UL data를 보내는 것이(5-300) 불가능할 수 있다.
본 개시의 제 1 실시예에 따르면, gNB-DU(5-02)는 UL Data는 버퍼에 보관 (또는 저장)해 둔 상태로 RRCResumeRequest 메시지를 gNB-CU-CP에게 먼저 전달하여 해당 UE로부터 small data가 도착했음을 알리고 gNB-CU-UP (5-04) 와 gNB-DU (5-02)사이에 데이터 전송을 위한 터널(5-10)과 user context가 setup될 수 있도록 할 수 있다. 터널 설정이 끝난 이후, gNB-DU (5-02)는 보관하고 있던 UL data를 gNB-CU-UP (5-04)에게 전송하며 이는 UPF (5-05)로 전달될 수 있다. 만약 단말 (5-01)에게 전달할 하향 링크 데이터가 존재하는 경우 생성된 터널을 통해 gNB-CU-UP (5-04)가 gNB-DU (5-02)에게 DL data를 전달할 수 있다(5-400).
도 6은 본 개시의 제 1 실시예에 따른 단말과 분리형 기지국 사이, 또는 분리형 기지국 내부의 동작을 도시한 시퀀스도이다.
단말(6-100)은 6-01 단계에서, 비활성 모드를 유지한 상태에서 small data를 전송하기 위해 RRC 메시지 (예를 들면 RRCResumeRequest 메시지)와 UL data를 동시에 gNB-DU(6-200)에게 전송할 수 있다(6-01). 예를 들어 상기 UL data는 상기 RRCResumeRequest 메시지에 포함되어 전송될 수도 있고, 별도의 시그널링을 통해 전송될 수도 있다.
gNB-DU (6-200)는 6-02 단계에서, 단말(6-100)로부터 수신한 RRC 메시지를 gNB-CU (6-300, 400)에게 전달하기 위한 메시지 (예를 들면, INITIAL UL RRC MESSAGE TRANSFER 메시지) 안에 상기 RRCResumeRequest 메시지를 포함하여 gNB-CU-CP (6-300)에게 전달할 수 있다. 이 때 상기 INITIAL UL RRC MESSAGE TRANSFER 메시지 안에는 현재 동작이 작은 크기의 데이터 전송(Small Data Transmission, SDT)을 위한 것임을 알리는 지시자 (indicator) (예를 들면, SDT Session) 및 단말이 UL data를 전송하는 데 사용한 DRB (Data Radio Bearer)의 ID 중 적어도 하나가 포함될 수 있다. 한편, gNB-DU (6-200)는 RRCResumeRequest와 함께 수신한 UL data는 바로 전송하지 않고 버퍼에 보관 (또는 저장)할 수 있다.
gNB-CU-CP (6-300)는 6-03 단계에서, 상기 INITIAL UL RRC MESSAGE TRANSFER 메시지를 받은 이후 gNB-DU (6-200)에게 UL data 전송을 위한 터널을 생성하기 위한 메시지 (예를 들면 UE CONTEXT SETUP REQUEST 메시지)를 전송할 수 있다. 이를 통해 단말이 전송한 UL data를 처리할 준비를 할 수 있다. gNB-CU-CP (6-300)는 수신된 INITIAL UL RRC MESSAGE TRANSFER을 통해 SDT에 사용된 DRB ID를 획득한 경우에는 해당 DRB만 설정하고, 획득한 DRB ID가 없는 경우에는 모든 DRB를 설정할 수 있다. 이를 위해 상기 UE CONTEXT SETUP REQUEST 메시지에 DRB 설정 정보가 포함되어 전송될 수 있다. 상기 DRB 설정 정보에는 gNB-CU-UP (6-400)가 상향 링크 데이터를 수신할 수 있는 터널의 endpoint 주소 (uplink endpoint)가 포함될 수 있다. 따라서 상기 메시지를 수신한 gNB-DU (6-200)는 생성된 터널을 통해 UL data를 전송할 수 있다. 상기 gNB-DU (6-200)로부터 전송된 UL data는 gNB-CU-UP (6-400)을 거쳐 UPF (6-500)로 전달될 수 있다.
gNB-DU (6-200)은 6-05 단계에서, gNB-DU (6-200)가 보관하고 있던 UL data를, 상술한 6-03 단계의 과정을 통해 획득한 터널로 전송할 수 있다.
또한, gNB-DU (6-200)는 6-04 단계에서, 상기 UE CONTEXT SETUP REQUEST 메시지에 대한 응답 메시지 (예를 들면 UE CONTEXT SETUP RESPONSE 메시지)를 gNB-CU-CP (6-300)에게 전송할 수 있다. 해당 UE CONTEXT SETUP RESPONSE 메시지에는 gNB-DU (6-200)가 DL data를 수신할 수 있는 터널의 endpoint 주소 (downlink endpoint)가 포함될 수 있다. 따라서 상기 UE CONTEXT SETUP RESPONSE 메시지를 수신한 gNB-CU-CP (6-300)은 이를 확인할 수 있다.
즉 본 개시의 일 실시예에 따르면, UL data 전송을 위한 uplink endpoint는 요청 (REQUEST) 메시지를 통해 gNB-DU (6-200)에게 전달되며, downlink endpoint는 이에 대한 응답 (RESPONSE) 메시지를 통해 gNB-CU-CP (6-300)에게 전달될 수 있다.
gNB-CU-CP (6-300)는 6-06 단계에서, 상술한 6-04 단계를 통해 획득한 DL data 전송을 위한 터널 정보를 gNB-CU-UP (6-400)에게 알려주기 위한 메시지 (예를 들면 BEARER CONTEXT MODIFICATION REQUEST 메시지)를 전송할 수 있다. 상기 메시지는 예를 들어 downlink endpoint 정보를 포함할 수 있다.
gNB-CU-UP (6-400)은 6-07 단계에서, 상기 BEARER CONTEXT MODIFICATION REQUEST 메시지에 대한 응답 메시지 (예를 들어 BEARER CONTEXT MODIFICATION RESPONSE 메시지)를 gNB-CU-CP (6-300)에게 전송할 수 있다.
상술한 6-03 내지 6-06 단계를 거쳐 gNB-DU (6-200)와 gNB-CU-UP (6-400)사이에 상향링크 및 하향링크 터널이 생성되며 해당 터널을 통해 UL data와 DL data가 모두 전송될 수 있다. 상술한 바와 같이 UL data는 gNB-DU (6-200)가 UE CONTEXT SETUP REQUEST를 수신함으로써(6-03) UL endpoint 주소를 획득(확인)하여 전송될 수 있고, DL data는 gNB-CU-UP (6-400)가 gNB-CU-CP (6-300)로부터 BEARER CONTEXT MODIFICATION REQUEST 메시지를 통해 DL endpoint 주소를 획득(확인)한 이후에 전송될 수 있다.
UPF (6-500)는 6-08 단계에서, gNB-CU-UP (6-400)로부터 UL data를 수신한 이후 해당 데이터를 전송한 단말 (6-100)로 향하는 DL data가 존재하는 경우에는 DL data를 gNB-CU-UP (6-400) 에게 전송할 수 있다. 또는, UPF (6-500)는 gNB-CU-UP (6-400)로부터 UL data를 수신한 이후 해당 데이터를 전송한 단말 (6-100)로 향하는 DL data가 존재하는 경우에는 일정 시간 이후에 DL data를 gNB-CU-UP (6-400) 에게 전송할 수 있다. 이는 gNB-CU-UP (6-400)가 DL endpoint 주소를 획득해야 DL data를 gNB-DU (6-200)에게 전달할 수 있기 때문이다. UPF (6-500)가 UL data를 수신하고 얼마의 시간 이후에 DL data를 전송할 지는 타이머 등을 활용하여 결정될 수 있으며 이는 구현 방법에 따를 수 있다. 만약 단말 (6-100)에게 전송할 DL data가 존재하지 않는 경우에는 6-08 단계는 생략될 수 있다.
일 실시예에 따르면, 단말 (6-100)로 향하는 DL data가 존재하지 않는 경우 또는 6-08 단계 이후 추가적인 DL data가 존재하지 않는 경우에는 gNB-CU-CP (6-300)는 6-09 단계에서, gNB-DU (6-200)에게 UE context를 제거하기 위한 메시지 (예를 들면 UE CONTEXT RELEASE COMMAND 메시지)를 전송할 수 있다.
상기 UE CONTEXT RELEASE COMMAND 메시지를 수신한 gNB-DU (6-200)는 6-10 단계에서, 상기 메시지 안에 포함되어 있는 RRC 메시지 (예를 들면 RRCRelease 메시지)를 단말 (6-100)에 전송할 수 있다. 이 때 gNB-DU (6-200)는 상술한 6-08 단계에서 수신한 DL data를RRCRelease 메시지와 함께 단말 (6-100)에게 전달할 수 있다. 예를 들어 상기 DL data는 상기 RRCRelease 메시지에 포함되어 전송될 수도 있고, 별도의 시그널링을 통해 전송될 수도 있다.
gNB-DU (6-200)는 6-11 단계에서, gNB-CU-CP (6-300)에게 UE context를 제거했음을 알리기 위한 메시지 (예를 들면 UE CONTEXT RELEASE COMPLETE 메시지)를 전송할 수 있으며, gNB-CU-CP (6-300)는 상기 메시지에 기반하여 UE context를 제거했음을 확인할 수 있다.
도 7은 본 개시의 제 1 실시예에 따른 메시지와 IE (Information Element)를 도시한 도면이다.
gNB-DU가 단말로부터 수신한 RRC 메시지를 gNB-CU-CP에게 전달하기 위해 전송하는 메시지 (예를 들면 INITIAL UL RRC MESSAGE TRANSFER 메시지) (7-100) 내에는 단말이 전송한 RRC 메시지가 SDT를 위함임을 나타내기 위한 정보 또는 IE (예를 들면 SDT Session) (7-110) 및 UL data를 전송하는 데 사용한 DRB ID를 나타내기 위한 정보 또는 IE (예를 들면 DRB ID for SDT) (7-120) 중 적어도 하나가 포함될 수 있다. 일 실시예에 따르면, gNB-CU-CP가 수신한 INITIAL UL RRC MESSAGE TRANSFER 내의 SDT Session이 true로 설정되어 있으면 SDT를 위한 RRC 메시지임을 인지하고 DRB ID for SDT에 해당하는 DRB에 관련된 UE context를 setup할 수 있다. 한편 상술한 정보들은 반드시 한 메시지에 모두 포함되어야 하는 것은 아니며, 일부만이 포함될 수도 있고 다른 정보가 더 포함될 수도 있다. 또한 각 정보는 별도의 메시지를 통해 전송될 수도 있다.
<제 2 실시예>
도 8은 본 개시의 제 2 실시예에 따라 비활성 모드 단말이 전송한 작은 크기의 데이터(Small Data, SD)를 유저 평면(User Plane)으로 전송하는 방법 및 이를 지원하기 위한 분리형 기지국의 구조를 도시한 도면이다.
단말(8-01)은 비활성 모드에서 small data를 유저 평면으로 전송하기 위해 RRC 메시지 (예를 들면 RRCResumeRequest 메시지)와 UL data를 동시에 gNB-DU (8-02)에게 전송할 수 있다(8-100). 예를 들어 상기 UL data는 상기 RRCResumeRequest 메시지에 포함되어 전송될 수도 있고, 별도의 시그널링을 통해 전송될 수도 있다. gNB-DU (8-02)는 수신한 메시지 전체(RRCResumeRequest+UL data)를 gNB-CU-CP (8-03)에게 전달하고(8-200) gNB-CU-CP (8-03)가 이 중 UL data를 gNB-CU-UP (8-04)에게 전달해(8-300) 최종적으로 UPF (8-05)로 전송될 수 있다. 단말(8-01)에게 전달할 하향 링크 데이터(DL data)가 존재하는 경우에도 gNB-CU-UP(8-04)가 상기 DL data를 gNB-CU-CP(8-03)에게 전달하여(8-400) gNB-DU(8-02)에게 전달될 수 있다. 따라서 도 8에서 기술하는 방법에서는 상술한 도 5에 나타낸 방법과는 달리 gNB-CU-UP(8-04)와 gNB-DU(8-02) 사이에 UL data나 DL data를 전달하기 위한 별도의 터널을 설정할 필요가 없을 수 있다.
도 9a 및 9b는 본 개시의 제 2 실시예에 따른 단말과 분리형 기지국 사이, 또는 분리형 기지국 내부의 동작을 도시한 시퀀스도이다.
단말(9-100)은 9-01 단계에서, 비활성 모드를 유지한 상태에서 small data를 전송하기 위해 RRC 메시지 (예를 들면 RRCResumeRequest 메시지)와 UL data를 동시에 gNB-DU (9-200)에게 전송할 수 있다. 예를 들어 상기 UL data는 상기 RRCResumeRequest 메시지에 포함되어 전송될 수도 있고, 별도의 시그널링을 통해 전송될 수도 있다.
gNB-DU (9-200)는 9-02 단계에서, 단말(9-100)로부터 수신한 RRC 메시지를 gNB-CU (9-300, 9-400) 에게 전달하기 위한 메시지 (예를 들면, INITIAL UL RRC MESSAGE TRANSFER 메시지) 내의 RRC Container에 상기 RRCResumeRequest 메시지를 포함하고, UL data는 UL SD-Container에 포함하여 gNB-CU-CP (9-300)에게 전달할 수 있다. 이 때 상기 INITIAL UL RRC MESSAGE TRANSFER 메시지 안에는 현재 동작이 작은 크기의 데이터 전송(Small Data Transmission, SDT)을 위한 것임을 알리는 지시자 (indicator) (예를 들면, SDT Session) 및 단말이 UL data를 전송하는 데 사용한 DRB (Data Radio Bearer)의 ID 중 적어도 하나가 함께 포함될 수 있다.
gNB-CU-CP (9-300)는 상기 INITIAL UL RRC MESSAGE TRANSFER 메시지를 수신한 이후 해당 메시지 내의 UL SD-Container에 담겨 있는 UL data를 gNB-CU-UP (9-400)에게 전송해 UPF로 전달될 수 있도록 해야 한다. 따라서 본 개시의 제 2 실시예에서는 이를 위한 두 가지 방법을 제시한다.
방법 1-1)
첫 번째로 gNB-CU-CP (9-300)가 UL data를 gNB-CU-UP (9-400)로 전달하기 위한 메시지를 새롭게 정의할 수 있다. 본 개시에서는 상기 새롭게 정의되는 메시지를 일례로 UL SMALL DATA TRANSFER 메시지로 지칭한다.
gNB-CU-CP (9-300)는 9-03a 단계에서, 상술한 9-02 단계를 통해 수신한 UL data를 상기 UL SMALL DATA TRANSFER 메시지 내의 UL SD-Container에 포함시켜 gNB-CU-UP (9-400)에게 전송할 수 있다. 일 실시예에 따르면, 이 때, 9-02 단계에서 수신한 DRB ID 역시 UL SMALL DATA TRANSFER 메시지에 포함시켜 전송시킬 수 있다. 이는 gNB-CU-UP (9-400)가 어떤 PDCP를 통해 데이터를 처리해야 할지 알아야 하기 때문이다. gNB-CU-UP (9-400)는 UL data가 전송된 DRB 정보를 획득함으로써 해당 DRB와 매치되는 PDCP를 통해 데이터를 처리하여 UPF (9-500)에게 전송할 수 있다.
방법 1-2)
두 번째로는 gNB-CU-CP (9-300)에서 gNB-CU-UP (9-400)로 전송되는 기존의 메시지 (예를 들면 BEARER CONTEXT MODIFICATION REQUEST 메시지) 내에 포함되어, UL data를 전달하기 위한 정보 또는 IE (information element)를 새롭게 정의할 수 있다. 본 개시에서는 상기 새롭게 정의되는 IE를 일례로 UL SD-Container IE 로 지칭한다.
gNB-CU-CP (9-300)는 9-03b 단계에서, 상술한 9-02 단계를 통해 수신한 UL data를 상기 BEARER CONTEXT MODIFICATION REQUEST 메시지 내의 UL SD-Container에 포함시켜 gNB-CU-UP (9-400)에게 전송할 수 있다. 일 실시예에 따르면, 방법 1-1에서 서술한 바와 마찬가지로 gNB-CU-UP (9-400)가 어떤 PDCP를 통해 데이터를 처리해야 할지 알아야 하기 때문에 상기 BEARER CONTEXT MODIFICATION REQUEST 메시지 내에는 DRB ID 역시 포함되어야 할 수 있다.
gNB-CU-UP (9-400)는 9-04 단계에서, 수신한 UL data를 UPF (9-500)에게 전송할 수 있다.
UPF (9-500)는 9-05 단계에서, gNB-CU-UP (9-400)로부터 UL data를 수신한 이후 해당 단말 (9-100)에게 전송할 데이터가 존재하는 경우에는 gNB-CU-UP (9-400)에게 DL data를 전송할 수 있다. 만약 단말 (9-100)에게 전송할 DL data가 존재하지 않는 경우에는 후술하는 절차는 생략될 수 있다.
gNB-CU-UP (9-400)가 상기 DL data를 수신하면 이를 gNB-CU-CP (9-300)에게 전달하여 gNB-CU-CP (9-300)가 DL data를 gNB-DU (9-200)에게 전송될 수 있도록 해야 한다. 따라서 본 개시의 제 2 실시예에서는 이를 위한 두 가지 방법을 제시한다.
방법 2-1)
첫 번째로 gNB-CU-UP (9-400)가 DL data를 gNB-CU-CP (9-300)로 전달하기 위한 메시지를 새롭게 정의할 수 있다. 본 개시에서는 상기 새롭게 정의되는 메시지를 일례로 SMALL DATA TRANSMISSION NOTIFY 메시지로 지칭한다.
gNB-CU-UP (9-400)은 9-06a 단계에서, 상술한 9-05 단계를 통해 UPF (9-500)로부터 받은 DL data가 존재하는 경우, 상기 SMALL DATA TRANSMISSION NOTIFY 메시지 내의 DL SD-Container에 DL data를 포함시켜 gNB-CU-CP (9-300)으로 전송할 수 있다. 일 실시예에 따르면 DL data를 전달받는 gNB-DU (9-200)가 상기 DL data와 매치되는 RLC를 판단할 수 있도록 DRB ID를 함께 포함시켜 전달할 수 있다. 한편, 단말 (9-100)으로 전달할 DL data가 존재하지 않을 때는 해당 메시지를 전송하지 않을 수 있다. 해당 메시지를 전송하는 시점은 타이머 등을 활용하여 결정될 수 있으며 이는 구현 방법에 따를 수 있다.
방법 2-2)
두 번째로는 gNB-CU-UP (9-400)에서 gNB-CU-CP (9-300)로 전송되는 기존의 메시지 (예를 들면 BEARER CONTEXT MODIFICATION RESPONSE 메시지) 내에 포함되어, DL data를 전달하기 위한 정보 또는 IE를 새롭게 정의할 수 있다. 본 개시에서는 상기 새롭게 정의되는 IE를 일례로 DL SD-Container로 지칭한다.
gNB-CU-UP (9-400)은 9-06b 단계에서, 상술한 9-05 단계를 통해 UPF (9-500)로부터 받은 DL data가 존재하는 경우, 상기 BEARER CONTEXT MODIFICATION RESPONSE 메시지 내의 DL SD-Container에 DL data를 포함시켜 gNB-CU-CP (9-300)으로 전송할 수 있다. 일 실시예에 따르면, 방법 2-1에서 서술한 바와 마찬가지로 따르면 DL data를 전달받는 gNB-DU (9-200)가 상기 DL data와 매치되는 RLC를 판단할 수 있도록 BEARER CONTEXT MODIFICATION RESPONSE 메시지 내에 DRB ID를 함께 포함시켜 전달할 수 있다. 해당 메시지를 전송하는 시점은 타이머 등을 활용하여 결정될 수 있으며, 이는 구현 방법에 따를 수 있다. 한편 방법 2-1과 달리 이 RESPONSE 메시지는 DL data가 존재하지 않는 경우에도 상기 BEARER CONTEXT MODIFICATION REQUEST 메시지에 대한 응답으로 전송될 수 있다.
상술한 9-06a 또는 9-06b 단계를 통해 SMALL DATA TRANSMISSION NOTIFY 메시지 또는 BEARER CONTEXT MODIFICATION RESPONSE 메시지를 수신한 gNB-CU-CP (9-300)는 9-07 단계에서, 단말 (9-100)에게 전송할 RRC 메시지를 gNB-DU (9-200)에게 전달하기 위한 메시지 (예를 들면, DL RRC MESSAGE TRANSFER 메시지) 내의 RRC Container에 RRCRelease 메시지를 포함시켜 gNB-DU (9-200)에게 전송할 수 있다. 이 때 9-06a나 9-06b 단계에서 수신한 DL data가 존재하는 경우, gNB-CU-CP (9-300)는 해당 데이터를 DL RRC MESSAGE TRANSFER 메시지 내 DL SD-Container 안에 포함시키고 또한 DL data에 대응하는 DRB ID를 함께 포함시켜 gNB-DU (9-200)에게 전달할 수 있다.
상기 DL RRC MESSAGE TRANSFER 메시지를 수신한 gNB-DU (9-200)는 9-08 단계에서, 수신한 DL RRC MESSAGE TRANSFER 내의 RRCRelease 메시지를 단말 (9-100)에게 전송할 수 있다. 만약 상술한 9-07 단계에서 수신한 DL data가 존재하는 경우, RRCRelease 메시지와 DL data를 함께 단말에게 전달할 수 있다. 이 때 DL data는 함께 수신한 DRB ID에 해당하는 DRB를 통해 전송할 수 있다. 예를 들어 상기 DL data는 상기 RRCRelease 메시지에 포함되어 전송될 수도 있고, 별도의 시그널링을 통해 전송될 수도 있다.
도 10a 내지 도 10d는 본 개시의 제 2 실시예에 따른 메시지와 IE (Information Element)를 도시한 도면이다.
gNB-DU가 단말로부터 수신한 RRC 메시지를 gNB-CU-CP에게 전달하기 위한 메시지 (예를 들면, INITIAL UL RRC MESSAGE TRANSFER) (10-100) 내에는 단말이 전송한 RRC 메시지가 작은 크기의 데이터 전송 (small data transmission, SDT)를 위함임을 나타내기 위한 지시자 (indicator) 정보 또는 IE (예를 들면 SDT Session) (10-110) 및 UL data를 전송하는 데 사용한 DRB ID를 나타내기 위한 정보 (예를 들면 DRB ID for SDT) (10-120) 중 적어도 하나가 포함될 수 있다. 또한 상기 메시지 (10-100)에 UL SD-Container(10-130) IE 등을 통해 UL data가 더 포함되어 gNB-CU-CP에게 전달될 수 있다.
gNB-DU로부터 수신한 UL data를 gNB-CU-UP에게 전달하기 위하여, 상술한 방법 1-1 에 따르면 새롭게 정의되는 메시지 (예를 들어 UL SMALL DATA TRANSFER 메시지) (10-200)를 gNB-CU-UP로 전송할 수 있다. 또는, 상술한 방법 1-2에 따르면 gNB-CU-CP에서 gNB-CU-UP로 전송되는 기존의 메시지 (예를 들면 BEARER CONTEXT MODIFICATION REQUEST 메시지) (10-400) 내에 UL data를 전달하기 위해 새롭게 정의되는 정보 또는 IE를 추가하여 전송할 수 있다.
방법 1-1에 따르면, gNB-CU-CP가 gNB-CU-UP로 전송하는 UL SMALL DATA TRANSFER 메시지(10-200)에는 메시지 타입(10-210), UL data를 전송한 단말의 gNB-CU-CP E1AP ID (10-220), 및 gNB-CU-UP E1AP ID (10-230) 중 적어도 하나가 포함될 수 있다. 또 gNB-DU로부터 수신한 것과 같은 DRB ID 정보 (예를 들면 DRB ID for SDT) (10-240)와 UL SD-Container (10-250) IE 중 적어도 하나가 더 포함될 수 있다.
또는 방법 1-2에 따르면, gNB-CU-CP가 gNB-CU-UP로 전송하는 BEARER CONTEXT MODIFICATION REQUEST 메시지(10-400) 내에는 gNB-DU로부터 수신한 것과 같은 DRB ID 정보 (예를 들면 DRB ID for SDT) (10-410)와 UL SD-Container (10-420) IE 중 적어도 하나가 더 포함될 수 있다.
gNB-CU-UP가 상기 UL data를 UPF로 전송한 이후 (또는 DL data가 존재하는 경우에는 UPF로부터 DL data를 수신한 이후) gNB-CU-UP가 이를 gNB-CU-CP에게 알리기 위해 상술한 방법 2-1에 따르면 새롭게 정의되는 메시지 (예를 들어 SMALL DATA TRANSMISSION NOTIFY 메시지) (10-300)를 전송할 수 있다. 또는, 상술한 방법 2-2에 따르면 gNB-CU-UP에서 gNB-CU-CP로 전송되는 기존의 메시지 예를 들면 BEARER CONTEXT MODIFICATION RESPONSE 메시지) (10-500) 내에 DL data를 전달하기 위해 새롭게 정의되는 정보 또는 새로운 IE를 추가하여 전송할 수 있다.
방법 2-1에 따르면, gNB-CU-UP가 gNB-CU-CP로 전송하는 SMALL DATA TRANSMISSION NOTIFY 메시지(10-300)에는 메시지 타입(10-310), DL data를 수신할 단말의 gNB-CU-CP E1AP ID (10-320), 및 gNB-CU-UP E1AP ID (10-330) 중 적어도 하나가 포함될 수 있다. 또 UPF로부터 수신한 DL data를 담기 위한 DL SD-Container (10-350)와 DRB ID를 나타내기 위한 정보 (예를 들면 DRB ID for SDT) (10-340) 중 적어도 하나가 더 포함될 수 있다.
또는 방법 2-2에 따르면, gNB-CU-UP가 gNB-CU-CP로 전송하는 BEARER CONTEXT MODIFICATION RESPONSE 메시지(10-500) 내에는 DL data를 담기 위한 DL SD-Container (10-520)와 DRB ID를 나타내기 위한 정보 (예를 들면 DRB ID for SDT) (10-510) 중 적어도 하나가 더 포함될 수 있다.
단말로 전송할 DL data가 존재하는 경우, gNB-CU-CP가 이를 gNB-DU에게 전달하기 위해 DL RRC MESSAGE TRANSFER 메시지(10-600) 내에 DRB ID for SDT (10-610) 및 DL SD-Container (10-620) IE 중 적어도 하나가 더 포함될 수 있다.
<제 3 실시예>
도 11은 본 개시의 제 3 실시예에 따라 비활성 모드 단말이 전송한 작은 크기의 데이터(Small Data, SD)를 유저 평면(User Plane)으로 전송하는 방법 및 이를 지원하기 위한 분리형 기지국의 구조를 도시한 도면이다. 본 방법은 UPF가 단말에게 전달할 DL data가 존재할 때 적용될 수 있다.
단말(11-01)은 비활성 모드에서 small data를 유저 평면으로 전송하기 위해 RRC 메시지 (예를 들면 RRCResumeRequest 메시지)와 UL data를 동시에 gNB-DU (11-02)에게 전송할 수 있다(11-100). 예를 들어 상기 UL data는 상기 RRCResumeRequest 메시지에 포함되어 전송될 수도 있고, 별도의 시그널링을 통해 전송될 수도 있다. 상기 UL data의 경우에는, 제 2 실시예에서 서술한 바와 마찬가지로, gNB-DU (11-02)는 수신한 메시지 전체(RRCResumeRequest+UL data)를 gNB-CU-CP (11-03)에게 전달하고(11-200) gNB-CU-CP (11-03)가 이 중 UL data를 gNB-CU-UP (11-04)에게 전달해(11-300) 최종적으로 UPF (11-05)로 전송될 수 있다. 단말 (11-01)에게 전달할 하향 링크 데이터(DL data)가 존재하는 경우에는 제 1 실시예에서 서술한 바와 마찬가지로 gNB-CU-UP (11-04)와 gNB-DU 사이에 DL data 전송을 위한 터널과 user context가 setup될 수 있도록 할 수 있다. 터널을 설정하여 gNB-CU-UP (11-04)는 DL data를 gNB-DU (11-02)에게 전달하고(11-400) 단말 (11-01)에게 전송할 수 있다.
도 12는 본 개시의 제 3 실시예에 따른 단말과 분리형 기지국 사이, 또는 분리형 기지국 내부의 동작을 도시한 시퀀스도이다.
단말(12-100)은 12-01 단계에서, 비활성 모드를 유지한 상태에서 small data를 전송하기 위해 RRC 메시지 (예를 들면 RRCResumeRequest 메시지)와 UL data를 동시에 gNB-DU (12-200)에게 전송할 수 있다. 예를 들어 상기 UL data는 상기 RRCResumeRequest 메시지에 포함되어 전송될 수도 있고, 별도의 시그널링을 통해 전송될 수도 있다.
gNB-DU (12-200)는 12-02 단계에서, 단말(12-100)로부터 수신한 RRC 메시지를 gNB-CU (12-300, 12-400) 에게 전달하기 위한 메시지 (예를 들면, INITIAL UL RRC MESSAGE TRANSFER 메시지) 내의 RRC Container에 상기 RRCResumeRequest 메시지를 포함하고, UL data는 UL SD-Container에 포함하여 gNB-CU-CP (12-300)에게 전달할 수 있다. 이 때 상기 INITIAL UL RRC MESSAGE TRANSFER 메시지 안에는 현재 동작이 작은 크기의 데이터 전송(Small Data Transmission, SDT)을 위한 것임을 알리는 지시자 (indicator) (예를 들면, SDT Session) 및 단말이 UL data를 전송하는 데 사용한 DRB (Data Radio Bearer)의 ID 중 적어도 하나가 함께 포함될 수 있다.
gNB-CU-CP (12-300)는 상기 INITIAL UL RRC MESSAGE TRANSFER 메시지를 수신한 이후 해당 메시지 내의 UL SD-Container에 담겨 있는 UL data를 gNB-CU-UP (12-400)에게 전송해 UPF로 전달될 수 있도록 해야 한다. 따라서 상술한 제 2 실시예의 방법 1-1)과 같이 gNB-CU-CP (12-300)가 UL data를 gNB-CU-UP (12-400)로 전달하기 위한 메시지 (예를 들어 UL SMALL DATA TRANSFER 메시지)를 새롭게 정의할 수 있다. 또는, 방법 1-2)와 같이 gNB-CU-CP (12-300)에서 gNB-CU-UP (12-400)로 전송되는 기존의 메시지 (예를 들면 BEARER CONTEXT MODIFICATION REQUEST 메시지) 내에 포함되어, UL data를 전달하기 위한 정보 또는 IE (information element)를 새롭게 정의할 수 있다.
gNB-CU-CP (12-300)는 12-03 단계에서, 상술한 12-02 단계를 통해 수신한 UL data를 상기 UL SMALL DATA TRANSFER 메시지 또는 상기 BEARER CONTEXT MODIFICATION REQUEST 메시지 내의 UL SD-Container에 포함시켜 gNB-CU-UP (12-400)에게 전송할 수 있다. 일 실시예에 따르면, 이 때, 12-02 단계에서 수신한 DRB ID 역시 상기 메시지에 포함시켜 전송시킬 수 있다. 이는 gNB-CU-UP (12-400)가 어떤 PDCP를 통해 데이터를 처리해야 할지 알아야 하기 때문이다. gNB-CU-UP (12-400)는 UL data가 전송된 DRB 정보를 획득함으로써 해당 DRB와 매치되는 PDCP를 통해 데이터를 처리하여 UPF (12-500)에게 전송할 수 있다.
gNB-CU-UP (12-400)는 12-04 단계에서, 수신한 UL data를 UPF (12-500)에게 전송할 수 있다.
gNB-CU-CP (12-300)는 12-05 단계에서, 상기 INITIAL UL RRC MESSAGE TRANSFER 메시지를 받은 이후 gNB-DU (12-200)에게 UE CONTEXT SETUP REQUEST 메시지를 전송할 수 있다.
gNB-DU (12-200)는 12-06 단계에서, 상기 UE CONTEXT SETUP REQUEST 메시지에 대한 응답 메시지 (예를 들면 UE CONTEXT SETUP RESPONSE 메시지)를 gNB-CU-CP (12-300)에게 전송할 수 있다. 해당 UE CONTEXT SETUP RESPONSE 메시지에는 gNB-DU (12-200)가 DL data를 수신할 수 있는 터널의 endpoint 주소 (downlink endpoint)가 포함될 수 있다. 따라서 상기 UE CONTEXT SETUP RESPONSE 메시지를 수신한 gNB-CU-CP (12-300)은 이를 확인할 수 있다.
gNB-CU-CP (12-300)는 12-007 단계에서, 상술한 12-04 단계를 통해 획득한 DL data 전송을 위한 터널 정보를 gNB-CU-UP (12-400)에게 알려주기 위한 메시지 (예를 들면 BEARER CONTEXT MODIFICATION REQUEST 메시지)를 전송할 수 있다. 상기 메시지는 예를 들어 downlink endpoint 정보를 포함할 수 있다.
gNB-CU-UP (12-400)은 12-08 단계에서, 상기 BEARER CONTEXT MODIFICATION REQUEST 메시지에 대한 응답 메시지 (예를 들어 BEARER CONTEXT MODIFICATION RESPONSE 메시지)를 gNB-CU-CP (12-300)에게 전송할 수 있다.
상술한 12-05 내지 12-08 단계를 거쳐 gNB-DU (12-200)와 gNB-CU-UP (12-400)사이에 하향링크 터널이 생성되며 해당 터널을 통해 DL data가 전송될 수 있다. 상술한 바와 같이 UL data는 gNB-CU-CP (12-300)가 gNB-CU-UP로 전달하여 최종적으로 UPF (12-500)으로 전송될 수 있으며, DL data는 gNB-CU-UP (12-400)가 gNB-CU-CP (12-300)로부터 BEARER CONTEXT MODIFICATION REQUEST 메시지를 통해 DL endpoint 주소를 획득(확인)한 이후에 전송될 수 있다.
UPF (12-500)는 12-09 단계에서, gNB-CU-UP (12-400)로부터 UL data를 수신한 이후 해당 데이터를 전송한 단말 (12-100)로 향하는 DL data가 존재하는 경우에는 DL data를 gNB-CU-UP (12-400) 에게 전송할 수 있다. 또는, UPF (12-500)는 gNB-CU-UP (12-400)로부터 UL data를 수신한 이후 해당 데이터를 전송한 단말 (12-100)로 향하는 DL data가 존재하는 경우에는 일정 시간 이후에 DL data를 gNB-CU-UP (12-400) 에게 전송할 수 있다. 이는 gNB-CU-UP (12-400)가 DL endpoint 주소를 획득해야 DL data를 gNB-DU (12-200)에게 전달할 수 있기 때문이다. UPF (12-500)가 UL data를 수신하고 얼마의 시간 이후에 DL data를 전송할 지는 타이머 등을 활용하여 결정될 수 있으며 이는 구현 방법에 따를 수 있다.
일 실시예에 따르면, 12-09 단계 이후 추가적인 DL data가 존재하지 않는 경우에는 gNB-CU-CP (12-300)는 12-10 단계에서, gNB-DU (12-200)에게 UE context를 제거하기 위한 메시지 (예를 들면 UE CONTEXT RELEASE COMMAND 메시지)를 전송할 수 있다.
상기 UE CONTEXT RELEASE COMMAND 메시지를 수신한 gNB-DU (12-200)는 12-11 단계에서, 상기 메시지 안에 포함되어 있는 RRC 메시지 (예를 들면 RRCRelease 메시지)를 단말 (12-100)에 전송할 수 있다. 이 때 gNB-DU (12-200)는 상술한 12-08 단계에서 수신한 DL data를 RRCRelease 메시지와 함께 단말 (12-100)에게 전달할 수 있다. 예를 들어 상기 DL data는 상기 RRCRelease 메시지에 포함되어 전송될 수도 있고, 별도의 시그널링을 통해 전송될 수도 있다.
gNB-DU (12-200)는 12-12 단계에서, gNB-CU-CP (12-300)에게 UE context를 제거했음을 알리기 위한 메시지 (예를 들면 UE CONTEXT RELEASE COMPLETE 메시지)를 전송할 수 있으며, gNB-CU-CP (12-300)는 상기 메시지에 기반하여 UE context를 제거했음을 확인할 수 있다.
도 13은 본 발명의 일 실시예에 따른 단말의 구조를 도시한 도면이다.
도 13을 참고하면, 단말은 Radio 송수신부(13-10), 제어부(13-20), 저장부(13-30)을 포함할 수 있다. 본 발명에서 제어부는, 회로 또는 어플리케이션 특정 통합 회로 또는 적어도 하나의 프로세서라고 정의될 수 있다.
Radio 송수신부(13-10)는 다른 네트워크 엔티티와 신호를 송수신할 수 있다. Radio 송수신부(13-10)는 예를 들어, 기지국으로부터 신호를 수신할 수 있으며, 기지국으로 RRC ResumeRequest 메시지나 작은 크기의 UL data (SDT UL data)를 포함하는 신호를 전송할 수 있다.
제어부(13-20)는 본 발명에서 제안하는 실시예에 따른 단말의 전반적인 동작을 제어할 수 있다. 예를 들어, 제어부(13-20)는 상기에서 기술한 순서도에 따른 동작을 수행하도록 각 블록 간 신호 흐름을 제어할 수 있다. 구체적으로, 제어부(13-20)는 본 발명의 실시 예에 따라 RRC ResumeRequest 메시지를 gNB-DU에 전송하고, 수신된 RRC Release 메시지에 기반하여, 무선 접속 상태를 결정하는 등의 본 발명에서 제안하는 동작을 제어할 수 있다.
저장부(13-30)는 상기 송수신부(13-10)를 통해 송수신되는 정보 및 제어부(13-20)을 통해 생성되는 정보 중 적어도 하나를 저장할 수 있다. 예를 들어, 저장부(13-30)는 무선 접속 상태 정보와 DL data를 저장할 수 있다.
도 14는 본 발명의 일 실시예에 따른 기지국의 구조를 도시한 도면이다.
도 14를 참고하면, 기지국은 Radio 송수신부(14-10), 타기지국/Core망 송수신부(14-20), 제어부(14-30), 저장부(14-40)을 포함할 수 있다. 본 발명에서 제어부는, 회로 또는 어플리케이션 특정 통합 회로 또는 적어도 하나의 프로세서라고 정의될 수 있다.
상기 도 14에 도시된 기지국은 gNB-CU와 gNB-DU를 모두 포함하는 RAN node일 수 있다. RAN node는 EPC (Evolved Packet Core) 또는 5GC (5G Core Network) 등의 이동통신 Core 망(Core Network, CN)과 연결된 LTE eNB (evolved Node B, eNodeB), NR gNB (next generation Node B, gNodeB) 등의 이동통신 기지국을 의미할 수 있다. 또한 RAN node는 CU (Centralized Unit)와 DU (Distributed Unit)로 분리될 수 있으며, CU는 다시 CU-CP (Control Plane)와 CU-UP (User Plane)로 분리될 수 있다.
일 실시예에 따르면, 하나의 RAN Node는 각각 하나 이상의 CU-CP 및 하나 이상의 CU-UP와 하나 이상의 DU로 구성될 수 있다. 또한, 하나의 RAN Node를 구성하는 CU-CP, CU-UP 및 DU는 함께 구성될 수 있다. 예를 들어, 하나의 RAN Node는 CU-CP와 CU-UP가 함께 구현된 CU와, DU로 구성될 수 있다. 또 다른 예를 들어, 하나의 RAN Node에는 CU-CP와 DU가 함께 구현되고, CU-UP는 별도로 구성될 수 있다. 또 다른 예를 들어, 하나의 RAN Node는 CU-CP, CU-UP 및 DU가 함께 구현된 일체형 기지국 형태로 구성될 수 있다. 상술된 예시 이외의 임의의 다른 조합으로 하나의 RAN Node가 구성될 수 있다.
일 실시예에 따르면, CU와 DU는 각각의 기지국 function을 나누어서 지원할 수 있다. 예를 들어, CU는 RRC/PDCP layer를 지원하고, DU는 RLC/MAC/PHY/RF layer를 지원할 수 있다. 그리고, CU와 DU 사이는 W1 또는 F1 interface와 같은 기지국 내부 function간 interface를 통해 연결할 수 있다.
일 실시예에 따르면, CU는 CU-CP와 CU-UP로 나누어질 수 있다. 예를 들어, CU-CP에서는 RRC/PDCP(RRC 용) layer가 지원될 수 있고, CU-UP에서는 PDCP(사용자 data 전송 용) layer가 지원될 수 있고, CU-CP와 CU-UP는 E1 interface와 같은 기지국 내부 function간 interface를 통해 연결될 수 있다.
일 실시예에 따르면, 기지국들은 일체형 또는 분리형 구조로 만들어져 일체형 구조 기지국 간, 분리형 기지국 간, 일체형 구조 기지국과 분리형 구조 기지국 간 연결이 가능할 수 있다. RAN Node 간에는 X2 또는 Xn interface와 같은 기지국 간 interface를 통해 연결될 수 있다. 그리고, RAN Node와 Core 망은, S1 또는 NG Interface와 같이 기지국-Core망 간 interface를 통해 연결될 수 있다.
Radio 송수신부(14-10)는 다른 네트워크 엔티티와 신호를 송수신할 수 있다. Radio 송수신부(14-10)는 예를 들어, 단말로부터 신호를 송수신하거나, 단말의 동작을 제어하는 RRC Release와 같은 메시지를 포함하는 신호를 전송할 수 있다.
타기지국/Core망 송수신부(14-20)은 다른 네트워크 엔티티와 신호를 송수신할 수 있다. 예로, UPF와 주고 받는 SDT UL/DL data를 전송하고 수신할 수 있다.
제어부(14-30)는 본 발명에서 제안하는 실시예에 따른 기지국의 전반적인 동작을 제어할 수 있다. 예를 들어, 제어부(14-30)는 상기에서 기술한 순서도에 따른 동작을 수행하도록 각 블록 간 신호 흐름을 제어할 수 있다.
저장부(14-40)는 상기 Radio 송수신부 (14-10)와 타기지국/Core망 송수신부(14-20)을 통해 송수신되는 정보 및 제어부(14-30)을 통해 생성되는 정보 중 적어도 하나를 저장할 수 있다. 예를 들어, 저장부(14-40)는 UPF로 향하는 UL data를 저장할 수 있다.
상술한 본 개시의 구체적인 실시 예들에서, 본 개시에 포함되는 구성 요소는 제시된 구체적인 실시 예에 따라 단수 또는 복수로 표현되었다. 그러나, 단수 또는 복수의 표현은 설명의 편의를 위해 제시한 상황에 적합하게 선택된 것으로서, 본 개시가 단수 또는 복수의 구성 요소에 제한되는 것은 아니며, 복수로 표현된 구성 요소라 하더라도 단수로 구성되거나, 단수로 표현된 구성 요소라 하더라도 복수로 구성될 수 있다.
한편, 본 명세서와 도면에 개시된 실시 예들은 본 개시의 기술 내용을 쉽게 설명하고 본 개시의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 개시의 범위를 한정하고자 하는 것은 아니다. 즉, 본 개시의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 개시의 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다. 또한, 각각의 실시 예는 필요에 따라 서로 조합되어 운용할 수 있다. 예를 들어, 본 개시의 일 실시 예와 다른 일 실시예의 일부분들이 서로 조합될 수 있다. 또한, 실시 예들은 다른 시스템, 예를 들어, LTE 시스템, 5G 또는 NR 시스템 등에도 상술한 실시예의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능할 것이다.

Claims (15)

  1. 무선 통신 시스템의 기지국의 방법에 있어서,
    비활성 모드 (INACTIVE)의 단말로부터 상기 기지국의 DU (distributed unit)로, 상향링크 데이터를 포함하는 RRC (radio resource control) 메시지를 수신하는 단계;
    상기 상향링크 데이터의 전송과 관련된 지시자 정보 및 상기 상향링크 데이터와 상응하는 DRB (data radio bearer)의 식별자 정보 중 적어도 하나를 포함하는 제 1 메시지를, 상기 DU에서 상기 기지국의 CU-CP (centralized unit-control plane)로 전달하는 단계; 및
    상기 제 1 메시지에 기반하여, 상기 상향링크 데이터를 UPF (user plane function)로 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서,
    상기 상향링크 데이터를 상기 UPF로 전송하는 단계는,
    상기 제 1 메시지에 기반하여, 상기 기지국의 CU-UP (centralized unit-user plane)에 대한 상향링크 전송과 관련된 주소 정보를 포함하는 제 2 메시지를, 상기 CU-CP에서 상기 DU로 전달하는 단계;
    상기 CU-UP에 대한 상향링크 전송과 관련된 주소 정보에 기반하여, 상기 상향링크 데이터를 상기 DU에서 상기 CU-UP로 전달하는 단계; 및
    상기 상향링크 데이터를 상기 CU-UP에서 상기 UPF로 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
  3. 제 2 항에 있어서,
    상기 제 2 메시지에 대한 응답으로, 상기 DU에 대한 하향링크 전송과 관련된 주소 정보를 포함하는 제 3 메시지를, 상기 DU에서 상기 CU-CP로 전달하는 단계;
    상기 제 3 메시지에 기반하여, 상기 DU에 대한 하향링크 전송과 관련된 주소 정보를 포함하는 제 4 메시지를, 상기 CU-CP에서 상기 CU-UP로 전달하는 단계;
    상기 UPF로부터 상기 CU-UP로, 상기 단말에 대한 하향링크 데이터를 수신하는 단계;
    상기 DU에 대한 하향링크 전송과 관련된 주소 정보에 기반하여, 상기 하향링크 데이터를 상기 CU-UP에서 상기 DU로 전달하는 단계; 및
    상기 하향링크 데이터를 포함하는 RRC 메시지를, 상기 DU에서 상기 단말로 전송하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  4. 제 1 항에 있어서,
    상기 제 1 메시지는,
    상기 상향링크 데이터를 더 포함하고,
    상기 상향링크 데이터를 상기 UPF로 전송하는 단계는,
    상기 제 1 메시지에 기반하여, 상기 상향링크 데이터 및 상기 DRB의 식별자 정보를 포함하는 제 5 메시지를 상기 CU-CP에서 상기 CU-UP로 전달하는 단계; 및
    상기 제 5 메시지에 기반하여, 상기 상향링크 데이터를 상기 CU-UP에서 상기 UPF로 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
  5. 제 4 항에 있어서,
    상기 UPF로부터 상기 CU-UP로, 상기 단말에 대한 하향링크 데이터를 수신하는 단계;
    상기 하향링크 데이터 및 상기 DRB의 식별자 정보를 포함하는 제 6 메시지를, 상기 CU-UP에서 상기 CU-CP로 전달하는 단계;
    상기 제 6 메시지에 기반하여, 상기 하향링크 데이터 및 상기 DRB의 식별자 정보를 포함하는 제 7 메시지를, 상기 CU-CP에서 상기 DU로 전달하는 단계; 및
    상기 DRB의 식별자 정보에 기반하여, 상기 하향링크 데이터를 포함하는 RRC 메시지를, 상기 DU에서 상기 단말로 전송하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  6. 제 4 항에 있어서,
    상기 DU에 대한 하향링크 전송과 관련된 주소 정보를 포함하는 제 8 메시지를, 상기 DU에서 상기 CU-CP로 전달하는 단계;
    상기 제 8 메시지에 기반하여, 상기 DU에 대한 하향링크 전송과 관련된 주소 정보를 포함하는 제 9 메시지를, 상기 CU-CP에서 상기 CU-UP로 전달하는 단계;
    상기 UPF로부터 상기 CU-UP로, 상기 단말에 대한 하향링크 데이터를 수신하는 단계;
    상기 DU에 대한 하향링크 전송과 관련된 주소 정보에 기반하여, 상기 하향링크 데이터를 상기 CU-UP에서 상기 DU로 전달하는 단계; 및
    상기 하향링크 데이터를 포함하는 RRC 메시지를, 상기 DU에서 상기 단말로 전송하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  7. 제 1 항에 있어서,
    상기 상향링크 데이터의 크기는 한 개의 transport block (TB)에 포함 가능한 것을 특징으로 하는 방법.
  8. 무선 통신 시스템의 기지국에 있어서,
    송수신부; 및
    비활성 모드 (INACTIVE)의 단말로부터 상기 기지국의 DU (distributed unit)로, 상향링크 데이터를 포함하는 RRC (radio resource control) 메시지를 수신하고, 상기 상향링크 데이터의 전송과 관련된 지시자 정보 및 상기 상향링크 데이터와 상응하는 DRB (data radio bearer)의 식별자 정보 중 적어도 하나를 포함하는 제 1 메시지를, 상기 DU에서 상기 기지국의 CU-CP (centralized unit-control plane)로 전달하고, 상기 제 1 메시지에 기반하여, 상기 상향링크 데이터를 UPF (user plane function)로 전송하도록 상기 송수신부를 제어하는 제어부를 포함하는 것을 특징으로 하는 기지국.
  9. 제 8 항에 있어서,
    상기 제어부는,
    상기 제 1 메시지에 기반하여, 상기 기지국의 CU-UP (centralized unit-user plane)에 대한 상향링크 전송과 관련된 주소 정보를 포함하는 제 2 메시지를, 상기 CU-CP에서 상기 DU로 전달하고, 상기 CU-UP에 대한 상향링크 전송과 관련된 주소 정보에 기반하여, 상기 상향링크 데이터를 상기 DU에서 상기 CU-UP로 전달하고, 상기 상향링크 데이터를 상기 CU-UP에서 상기 UPF로 전송하도록 상기 송수신부를 제어하는 것을 특징으로 하는 기지국.
  10. 제 9 항에 있어서,
    상기 제어부는,
    상기 제 2 메시지에 대한 응답으로, 상기 DU에 대한 하향링크 전송과 관련된 주소 정보를 포함하는 제 3 메시지를, 상기 DU에서 상기 CU-CP로 전달하고, 상기 제 3 메시지에 기반하여, 상기 DU에 대한 하향링크 전송과 관련된 주소 정보를 포함하는 제 4 메시지를, 상기 CU-CP에서 상기 CU-UP로 전달하고, 상기 UPF로부터 상기 CU-UP로, 상기 단말에 대한 하향링크 데이터를 수신하고, 상기 DU에 대한 하향링크 전송과 관련된 주소 정보에 기반하여, 상기 하향링크 데이터를 상기 CU-UP에서 상기 DU로 전달하고, 상기 하향링크 데이터를 포함하는 RRC 메시지를, 상기 DU에서 상기 단말로 전송하도록 상기 송수신부를 제어하는 것을 특징으로 하는 기지국.
  11. 제 8 항에 있어서,
    상기 제 1 메시지는,
    상기 상향링크 데이터를 더 포함하고,
    상기 제어부는,
    상기 제 1 메시지에 기반하여, 상기 상향링크 데이터 및 상기 DRB의 식별자 정보를 포함하는 제 5 메시지를, 상기 CU-CP에서 상기 CU-UP로 전달하고, 상기 제 5 메시지에 기반하여, 상기 상향링크 데이터를 상기 CU-UP에서 상기 UPF로 전송하도록 상기 송수신부를 제어하는 것을 특징으로 하는 기지국.
  12. 제 11 항에 있어서,
    상기 제어부는,
    상기 UPF로부터 상기 CU-UP로, 상기 단말에 대한 하향링크 데이터를 수신하고, 상기 하향링크 데이터 및 상기 DRB의 식별자 정보를 포함하는 제 6 메시지를, 상기 CU-UP에서 상기 CU-CP로 전달하고, 상기 제 6 메시지에 기반하여, 상기 하향링크 데이터 및 상기 DRB의 식별자 정보를 포함하는 제 7 메시지를, 상기 CU-CP에서 상기 DU로 전달하고, 상기 DRB의 식별자 정보에 기반하여, 상기 하향링크 데이터를 포함하는 RRC 메시지를, 상기 DU에서 상기 단말로 전송하도록 상기 송수신부를 제어하는 것을 특징으로 하는 기지국.
  13. 제 11 항에 있어서,
    상기 제어부는,
    상기 DU에 대한 하향링크 전송과 관련된 주소 정보를 포함하는 제 8 메시지를, 상기 DU에서 상기 CU-CP로 전달하고, 상기 제 8 메시지에 기반하여, 상기 DU에 대한 하향링크 전송과 관련된 주소 정보를 포함하는 제 9 메시지를, 상기 CU-CP에서 상기 CU-UP로 전달하도록 상기 송수신부를 제어하는 것을 특징으로 하는 기지국.
  14. 제 13 항에 있어서,
    상기 제어부는,
    상기 UPF로부터 상기 CU-UP로, 상기 단말에 대한 하향링크 데이터를 수신하고, 상기 DU에 대한 하향링크 전송과 관련된 주소 정보에 기반하여, 상기 하향링크 데이터를 상기 CU-UP에서 상기 DU로 전달하고, 상기 하향링크 데이터를 포함하는 RRC 메시지를, 상기 DU에서 상기 단말로 전송하도록 상기 송수신부를 제어하는 것을 특징으로 하는 기지국.
  15. 제 8 항에 있어서,
    상기 상향링크 데이터의 크기는 한 개의 transport block (TB)에 포함 가능한 것을 특징으로 하는 기지국.
PCT/KR2021/019671 2020-12-23 2021-12-23 무선 통신 시스템에서 스몰 데이터 전송을 지원하기 위한 방법 및 장치 WO2022139496A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21911562.3A EP4250851A4 (en) 2020-12-23 2021-12-23 METHOD AND APPARATUS FOR SUPPORTING SMALL DATA TRANSMISSION IN A WIRELESS COMMUNICATIONS SYSTEM
US18/269,146 US20240049328A1 (en) 2020-12-23 2021-12-23 Method and apparatus for supporting small data transmission in wireless communication system
CN202180087512.4A CN116762468A (zh) 2020-12-23 2021-12-23 支持无线通信系统中的小数据传输的方法和装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200181759 2020-12-23
KR10-2020-0181759 2020-12-23
KR1020210138421A KR20220091341A (ko) 2020-12-23 2021-10-18 무선 통신 시스템에서 스몰 데이터 전송을 지원하기 위한 방법 및 장치
KR10-2021-0138421 2021-10-18

Publications (1)

Publication Number Publication Date
WO2022139496A1 true WO2022139496A1 (ko) 2022-06-30

Family

ID=82159632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019671 WO2022139496A1 (ko) 2020-12-23 2021-12-23 무선 통신 시스템에서 스몰 데이터 전송을 지원하기 위한 방법 및 장치

Country Status (3)

Country Link
US (1) US20240049328A1 (ko)
EP (1) EP4250851A4 (ko)
WO (1) WO2022139496A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190090298A1 (en) * 2017-09-18 2019-03-21 Qualcomm Incorporated User plane based small data service

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220132600A1 (en) * 2019-02-12 2022-04-28 Lg Electronics Inc. Early data transmission in cu-du split

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190090298A1 (en) * 2017-09-18 2019-03-21 Qualcomm Incorporated User plane based small data service

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CATT: "Considerations on general aspects and subsequent SDT", 3GPP DRAFT; R2-2009367, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20201102 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051942328 *
ERICSSON: "Summary of email discussion [Post111-e][926][SmallData] Context Fetch", 3GPP DRAFT; R2-2009967, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic meeting; 20201102 - 20201113, 22 October 2020 (2020-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051941488 *
INTEL CORPORATION: "RACH selection and User plane aspects with and without anchor relocation", 3GPP DRAFT; R2-2008994, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic meeting; 20201102 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051942042 *
QUALCOMM INCORPORATED: "Control plane aspects on NR small data transmission", 3GPP DRAFT; R2-2010008, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20201102 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051942751 *
See also references of EP4250851A4 *

Also Published As

Publication number Publication date
US20240049328A1 (en) 2024-02-08
EP4250851A4 (en) 2024-05-22
EP4250851A1 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
WO2019194641A1 (en) Method and apparatus for operating protocol layer of terminal in inactive mode in next-generation mobile communication system
WO2018203702A1 (en) Method and apparatus for coordination of rrc configurations between interworking nodes in dual connectivity
WO2019160327A1 (ko) 이동통신 시스템에서 셀 재선택을 수행하는 방법 및 장치
WO2019035645A2 (en) METHOD AND SYSTEM FOR MANAGING PACKET DUPLICATION AND RECOVERING RB IN A WIRELESS COMMUNICATION SYSTEM
WO2019066326A1 (ko) V2x 시스템 및 이동 통신 시스템에 적용하는 방법 및 장치
WO2018174638A1 (ko) 무선 통신 시스템에서 단말의 위치에 따라서 세션의 상태를 관리하는 방법 및 장치
US8718016B2 (en) Mobile communication system, base station, and handover execution method
WO2019035670A1 (en) METHOD AND APPARATUS FOR TRANSMITTING AND RECEIVING DOUBLE PACKETS IN A NEXT GENERATION MOBILE COMMUNICATION SYSTEM
WO2020166959A1 (en) Method and apparatus for applying dynamic scheduling to reduce power consumption in next generation communication system
WO2016089082A1 (ko) 통신 시스템에서 분리된 tcp 연결을 설정하는 방법 및 장치와 이를 위한 핸드 오버 지원 방법 및 장치
WO2021125712A1 (ko) 차세대 이동통신 시스템에서 rrc 메시지의 분할 전송과 관련된 타이머 관리 방법 및 장치
EP3747213A1 (en) Method and apparatus for operating protocol layer of terminal in inactive mode in next-generation mobile communication system
WO2021251741A1 (ko) 무선 통신 시스템에서 스케줄링 방법 및 장치
WO2020036429A1 (en) Method and apparatus for managing pdu session connection
WO2018131990A1 (en) Method and apparatus for processing data in a wireless communication system
WO2021230713A1 (ko) 차세대 이동 통신 시스템에서 conditional pscell change 과정을 수행하는 방법 및 장치
WO2020197315A1 (ko) 차세대 이동 통신 시스템에서 데이터 송수신 중단이 없는 핸드오버 방법 및 장치
WO2020197277A1 (ko) Mcg rlf 시 하향링크 srb 메시지를 처리하는 방법 및 장치
WO2020091417A1 (ko) 이동통신 시스템에서 페이징 메시지를 통해 사용자 데이터를 전송하는 방법 및 장치
WO2022139496A1 (ko) 무선 통신 시스템에서 스몰 데이터 전송을 지원하기 위한 방법 및 장치
WO2021096184A1 (ko) 차세대 이동 통신 시스템에서 하향링크 무선자원제어 메시지를 분할하는 방법 및 장치
WO2021206506A1 (ko) 백홀 및 액세스 홀 결합 시스템에서 du에게 ip 주소를 할당하는 방법 및 장치
WO2021206405A1 (ko) 차세대 이동 통신 시스템에서 하향링크 rrc 분할 메시지를 처리하는 방법 및 장치
WO2021157991A1 (ko) 차세대 이동통신 시스템에서 단말 동작 및 장치
WO2021215739A1 (ko) 무선 통신 시스템에서 단말 능력 보고를 위한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911562

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18269146

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180087512.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021911562

Country of ref document: EP

Effective date: 20230622

NENP Non-entry into the national phase

Ref country code: DE