WO2022138025A1 - Phase synchronization circuit and control system - Google Patents

Phase synchronization circuit and control system Download PDF

Info

Publication number
WO2022138025A1
WO2022138025A1 PCT/JP2021/044028 JP2021044028W WO2022138025A1 WO 2022138025 A1 WO2022138025 A1 WO 2022138025A1 JP 2021044028 W JP2021044028 W JP 2021044028W WO 2022138025 A1 WO2022138025 A1 WO 2022138025A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
signal
vibration system
vibration
unit
Prior art date
Application number
PCT/JP2021/044028
Other languages
French (fr)
Japanese (ja)
Inventor
憲二 山岡
Original Assignee
I-Pex株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I-Pex株式会社 filed Critical I-Pex株式会社
Priority to DE112021006656.0T priority Critical patent/DE112021006656T5/en
Priority to CN202180085308.9A priority patent/CN116601540A/en
Publication of WO2022138025A1 publication Critical patent/WO2022138025A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/081Details of the phase-locked loop provided with an additional controlled phase shifter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners

Definitions

  • the present invention relates to a phase-locked loop and a control system.
  • Patent Document 1 discloses a movable reflecting element that two-dimensionally scans the light reflected by the mirror.
  • This movable reflection element includes a fixed frame, an outer actuator, a movable frame, an inner actuator, and a reflection mirror.
  • the outer actuator connecting the fixed frame and the movable frame swings the movable frame with respect to the fixed frame.
  • the inner actuator connecting the movable frame and the reflection mirror swings the reflection mirror at a resonance frequency and a rotation axis different from those of the outer actuator.
  • Two vibration systems consisting of an outer actuator and an inner actuator enable two-dimensional scanning of light by a reflecting mirror.
  • the outer actuator and the inner actuator may be connected to separate phase-locked loops (PLL).
  • PLL phase-locked loops
  • both vibration systems vibrate in a state of being locked to their own resonance frequencies.
  • the resonance frequency of each vibration system changes depending on the surrounding environment such as temperature and atmospheric pressure. Due to this change in resonance frequency, there is a problem that, in some cases, the outer actuator and the inner actuator may move unintentionally in synchronization with each other, and the mirror vibration state cannot be stabilized.
  • the present invention has been made under the above circumstances, and an object of the present invention is to provide a phase-locked loop and a control system capable of preventing tuning of a vibration system having an inherent resonance frequency.
  • the phase-locked loop according to the first aspect of the present invention is A phase-locked loop that synchronizes the phase of the output signal with the phase of the input signal.
  • a phase comparison unit that inputs the input signal and the output signal and outputs a signal indicating the phase difference between the input signal and the output signal.
  • a filter unit that smoothes the signal indicating the phase difference output from the phase comparison unit, and a filter unit.
  • a voltage control oscillator that outputs a signal whose frequency increases according to the magnitude of the signal smoothed by the filter unit as the output signal.
  • a phase shift unit that shifts the phase of either the input signal or the output signal input to the phase comparison unit by an adjustable shift amount.
  • An amplification unit that amplifies and outputs the output signal at an adjustable amplification factor, To prepare for.
  • the phase shift unit shifts the phase of the input signal with respect to the output signal. It may be that.
  • phase shift unit shifts the phase of the output signal with respect to the input signal. It may be that.
  • the amplification factor of the amplification unit is adjusted so that the amplitude level of the input signal falls within a certain range. It may be that.
  • the control system is The first phase-locked loop as the phase-locked loop according to the first aspect of the present invention, A first vibration system that vibrates an output signal output from the first phase-locked loop as a drive signal and outputs a detection signal of the vibration state as an input signal input to the first phase-locked loop.
  • the detection signal of the first vibration system is monitored and the synchronized vibration between the first vibration system and another vibration system is detected, the shift amount of the phase shift portion in the first phase synchronization circuit is changed. With the monitoring unit to let To prepare for.
  • the second vibration system as the other vibration system that vibrates according to the input drive signal and outputs the detection signal of the vibration state, and A second phase-locked loop that synchronizes the phase of the drive signal output to the second vibration system with the phase of the detection signal output from the second vibration system. Equipped with The monitoring unit The detection signal output from the second vibration system is monitored, and the synchronized vibration between the first vibration system and the second vibration system is detected. It may be that.
  • the monitoring unit When the synchronized vibration between the first vibration system and the other vibration system is detected, the shift amount of the phase shift unit is changed so that the frequency locked by the first phase-locked loop becomes low. , It may be that.
  • phase shift unit that shifts the phase of either the input signal or the output signal by an adjustable shift amount, it is possible to prevent tuning of a vibration system having a unique resonance frequency. Can be done.
  • Embodiment 1 of the present invention controls the first vibration system 20A and the second vibration system 20B.
  • the control system 1 includes a first phase-locked loop 10A and a second phase-locked loop 10B as the phase-locked loop according to the present embodiment.
  • the first phase-locked loop 10A controls the first vibration system 20A
  • the second phase-locked loop 10B controls the second vibration system 20B.
  • the first vibration system 20A and the second vibration system 20B each have an oscillator that inputs a drive signal and vibrates according to the input drive signal. In these oscillators, the vibration state is detected, and a detection signal indicating the detected vibration state is output. The first vibration system 20A and the second vibration system 20B output this detection signal to the outside. The detailed configuration of the first vibration system 20A and the second vibration system 20B will be described later.
  • the first phase-locked loop 10A outputs a drive signal as an output signal to the first vibration system 20A, and inputs a detection signal output from the first vibration system 20A as an input signal.
  • the first phase synchronization circuit 10A receives the drive signal to the first vibration system 20A based on the phase difference between the drive signal to the first vibration system 20A and the detection signal from the first vibration system 20A. By synchronizing the phase with the phase of the detection signal from the first vibration system 20A, the vibration state of the first vibration system 20A is controlled.
  • the second phase-locked loop 10B outputs a drive signal as an output signal to the second vibration system 20B, and inputs a detection signal output from the second vibration system 20B as an input signal.
  • the second phase synchronization circuit 10B receives the drive signal to the second vibration system 20B based on the phase difference between the drive signal to the second vibration system 20B and the detection signal from the second vibration system 20B. By synchronizing the phase with the phase of the detection signal from the second vibration system 20B, the vibration state of the first vibration system 20A is controlled.
  • the first phase-locked loop 10A synchronizes the phase of the drive signal input to the first vibration system 20A, that is, the output signal with the phase of the detection signal of the first vibration system 20A, that is, the input signal. ..
  • the first phase-locked loop 10A includes a charge amplifier 11, a phase shift unit 12, a phase comparison unit 13, a loop filter 14 as a filter unit, and a voltage controlled oscillator unit (VCO; Voltage).
  • VCO voltage controlled oscillator
  • -Controlled oscillator 15 an amplifier 16 with a volume, and an adjusting unit 30 are provided.
  • the charge amplifier 11 is an amplifier circuit that amplifies and outputs the detection signal output from the first vibration system 20A at a set amplification factor.
  • the amplification factor of the charge amplifier 11 may be variable.
  • the phase shift unit 12 inputs a signal output from the charge amplifier 11, that is, an amplified detection signal output from the first vibration system 20A.
  • the phase shift unit 12 shifts the phase of the input detection signal by an adjustable phase shift amount ⁇ .
  • the phase-shifted signal is input to the phase comparison unit 13.
  • the phase shift unit 12 when a signal shown by a solid line is input from the charge amplifier 11, the phase shift unit 12 outputs a signal indicated by a dotted line in which the phase of this signal is shifted by a phase shift amount ⁇ .
  • This phase shift amount ⁇ is variable by an external input.
  • FIG. 2 shows a case where ⁇ is a positive value, the phase shift amount ⁇ can also take a negative value.
  • CL is the median value of the signal.
  • the phase comparison unit 13 inputs the signal output from the phase shift unit 12, and feeds back the signal output from the voltage control oscillation unit 15 to input.
  • the phase comparison unit 13 outputs a signal indicating the time difference between the rising and falling edges of the two signals, that is, the phase difference.
  • the output signal is a pulse signal including a ripple component.
  • the loop filter 14 smoothes the pulse signal including the ripple output from the phase comparison unit 13.
  • a lag lead filter is used as the loop filter 14.
  • the lag lead filter is a low-pass filter composed of two resistance elements and one capacitive element. The characteristics of this lag lead filter determine the transfer characteristics for loop control.
  • a lag filter may be used instead of the lag lead filter.
  • the lag filter is a low-pass filter composed of one resistance element and one capacitive element.
  • the voltage control oscillator 15 outputs a periodic signal whose frequency increases according to the magnitude of the signal smoothed by the loop filter 14. This periodic signal becomes the drive signal of the first vibration system 20A before being amplified.
  • the voltage control oscillator 15 includes an integral element inside. The value of the input signal is integrated by this integration element, and a detection signal having a higher frequency is output according to the integration result. The detected signal is input to the amplifier 16 with a volume, and is also fed back to the phase comparison unit 13 for input.
  • the volume-equipped amplifier 16 as an amplification unit amplifies and outputs the drive signal output from the voltage control oscillation unit 15 at an adjustable amplification factor.
  • the output drive signal is input to the first vibration system 20A as a drive signal of the first vibration system 20A.
  • the phase comparison unit 13, the loop filter 14, and the voltage control oscillation unit 15 synchronize the drive signal of the first vibration system 20A with the detection signal of the first vibration system 20A. Is controlled by.
  • the adjusting unit 30 adjusts the amplification factor of the amplifier 16 with a volume and the phase shift amount ⁇ of the phase shift unit 12. For example, the adjusting unit 30 adjusts the amplification factor of the amplifier 16 with a volume so that the amplitude level of the detection signal of the first vibration system 20A falls within a certain range.
  • a certain range is a range of vibration levels at which the first vibration system 20A exerts its function, the lower limit value is T2, and the upper limit value is T1 (see FIG. 3). If the vibration level is smaller than T2, it becomes difficult to exert the function of the first vibration system 20, and if the vibration level is larger than T1, it can be determined that the tuning vibration has occurred. For example, when the first vibration system 20A scans the laser beam, the vibration level is defined by the scanning range.
  • the adjusting unit 30 gradually increases the amplification factor of the amplifier 16 with a volume from 0, the first phase-locked loop 10A oscillates, and the first vibration system 20A vibrates at the oscillation frequency.
  • the phase shift amount ⁇ of the phase shift unit 12 is 0, the oscillation frequency of the first phase-locked loop 10A matches the resonance frequency of the first vibration system 20A. Such a state is called a so-called "resonance lock state”.
  • the first vibration occurs when the first vibration system 20A vibrates at the resonance frequency and is in the resonance lock state.
  • a phase difference of about 90 degrees occurs between the detection signal of the system 20A and the drive signal.
  • the phase difference is about 90 degrees, the first vibration system 20A vibrates at the resonance frequency.
  • the reason why it is set to about 90 degrees is that the phase difference between the detection signal and the drive signal is not always 90 degrees due to the circuit characteristics of the loop filter 14 and the like.
  • the vibration frequency of the first vibration system 20A changes by changing the phase shift amount ⁇ of the phase shift unit 12. As shown in FIG. 3, by increasing or decreasing the phase shift amount ⁇ , it is possible to shift the vibration frequency of the first vibration system 20A from the resonance frequency fr by ⁇ f.
  • the adjustment unit 30 adjusts the phase shift amount ⁇ of the phase shift unit 12. change.
  • the vibration frequency of the first vibration system 20A can be changed, so that the tuning vibration between the first vibration system 20A and the second vibration system 20B can be converged.
  • the configuration of the second phase-locked loop 10B is the same as the configuration of the first phase-locked loop 10A except that the phase shift unit 12 is not provided. That is, the second phase-locked loop 10B includes a charge amplifier 11, a phase comparison unit 13, a loop filter 14, a voltage control oscillation unit 15, a volume-equipped amplifier 16, and an adjustment unit 30.
  • the second phase-locked loop 10B synchronizes the phase of the output signal, that is, the drive signal of the second vibration system 20B, with the phase of the input signal, that is, the phase of the detection signal of the second vibration system 20B. Under the control of the second phase-locked loop 10B, the second vibration system 20B vibrates at its resonance frequency.
  • the monitoring unit 40 monitors the detection signals output from the first vibration system 20A and the second vibration system 20B.
  • the signal to be monitored is a signal amplified by the charge amplifier 11.
  • T1 threshold value
  • the monitoring unit 40 states that synchronized vibration has occurred between the first vibration system 20A and the second vibration system 20B. judge.
  • the phase shift unit 12 shifts the phase to the adjustment unit 30 of the first phase synchronization circuit 10A. Change the quantity ⁇ .
  • the vibration frequency when locked by the first phase synchronization circuit 10A is lowered.
  • the phase shift amount ⁇ of the phase shift unit 12 is changed.
  • the monitoring unit 40 monitors the detection signals output from the first vibration system 20A and the second vibration system 20B, and when the frequency of the detection signals exceeds a predetermined range, the first vibration system 20A is used. It may be determined that the tuning vibration has occurred in the vibration system 20A and the second vibration system 20B. This frequency is calculated from the time series data of the detection signal.
  • the vibration amplitude in the first vibration system 20A decreases depending on the phase shift amount ⁇ of the phase shift unit 12.
  • the monitoring unit 40 causes the adjusting unit 30 of the first phase-locked loop 10A to increase the gain of the amplifier 16 with a volume so that the amplitude of the drive signal input to the first vibration system 20A becomes large.
  • the value that the phase shift amount ⁇ can take can be, for example, ⁇ 30 degrees or more and 30 degrees or less. This is because if it exceeds this range, the vibration amplitude in the first vibration system 20A is significantly reduced.
  • the first vibration system 20A and the second vibration system 20B include a fixed frame 50, a movable frame 51, a reflection mirror 52, a first actuator 53, and a second actuator 54. , Consists of.
  • the fixed frame 50 is a rectangular frame-shaped member, and is fixed to a fixed member (not shown).
  • the movable frame 51 is a rectangular frame-shaped member arranged in the frame of the fixed frame 50.
  • the reflection mirror 52 is arranged in the frame of the movable frame 51.
  • the reflection mirror 52 is a compact and lightweight reflector manufactured by MEMS (Micro Electro Mechanical Systems) technology, that is, a so-called MEMS mirror.
  • the first actuator 53 is a pair of members provided between the fixed frame 50 and the movable frame 51 on both sides of the movable frame 51 in the X-axis direction. Piezoelectric elements are formed on each of the pair of first actuators 53. Further, the first actuator 53 is provided with a drive electrode 53a for applying a voltage signal to the piezoelectric element. When a drive signal, which is a voltage signal that fluctuates periodically, is applied between the drive electrode 53a and the lower electrode layer provided below the piezoelectric element, the piezoelectric element expands and contracts according to the voltage signal, and the first The actuator 53 bends around the X axis.
  • a drive signal which is a voltage signal that fluctuates periodically
  • the first actuator 53 connects the fixed frame 50 and the point N of the movable frame 51.
  • the movable frame 51 and the second actuator 54 and the reflection mirror 52 connected to the inside thereof swing around the X axis with respect to the fixed frame 50.
  • the first actuator 53 is provided with a detection electrode 53b.
  • the voltage signal generated between the detection electrode 53b and the lower electrode layer is output as a signal indicating the vibration state of the vibrator.
  • the second actuator 54 is a pair of members between the movable frame 51 and the reflection mirror 52, which are provided on both sides of the reflection mirror 52 in the Y-axis direction.
  • a piezoelectric element is formed in each of the pair of second actuators 54.
  • the second actuator 54 is provided with a drive electrode 54a for applying a voltage signal to the piezoelectric element.
  • a drive signal which is a voltage signal that fluctuates periodically, is applied between the drive electrode 54a and the lower electrode layer provided below the piezoelectric element, the piezoelectric element expands and contracts according to the voltage signal, and the second actuator expands and contracts. 54 bends around the Y axis.
  • the second actuator 54 connects the movable frame 51 and the point M of the reflection mirror 52, and when the second actuator 54 bends and vibrates around the Y axis, the reflection mirror 52 moves the Y axis with respect to the movable frame 51. Swing around.
  • the second actuator 54 is provided with a detection electrode 54b. The voltage signal generated between the detection electrode 54b and the lower electrode layer is output as a signal indicating the vibration state of the vibrator.
  • the vibration system vibrated by the second actuator 54 corresponds to the first vibration system 20A. That is, the drive signal output from the first phase-locked loop 10A is input to the drive electrode 54a of the second actuator 54, and the detection signal output from the detection electrode 54b of the second actuator 54 is the first. Is input to the phase-locked loop 10A of.
  • the vibration system vibrated by the first actuator 53 corresponds to the second vibration system 20B. That is, the drive signal output from the second phase-locked loop 10B is input to the drive electrode 53a of the first actuator 53, and the detection signal output from the detection electrode 53b of the first actuator 53 is the second. Is input to the phase-locked loop 10B of.
  • the reflection mirror 52 swings in the biaxial direction by the first vibration system 20A and the second vibration system 20B. By irradiating the swinging reflection mirror 52 with the laser beam, the reflected laser beam can be scanned two-dimensionally.
  • the control system 1 that scans the laser beam two-dimensionally is used for a laser printer, an optical scanner, a projector, and the like.
  • the vibration frequency of the first vibration system 20A that is, the resonance frequency is, for example, 20 kHz to 30 kHz
  • the resonance frequency of the second vibration system 20B is, for example, about 100 Hz.
  • the first vibration system 20A horizontally scans the laser beam
  • the second vibration system 20B vertically scans the laser beam. This makes it possible to project, for example, a two-dimensional image with a laser beam.
  • the resonance frequencies of the first vibration system 20A and the second vibration system 20B can be adjusted by changing the shape, thickness or material of the first vibration system 20A and the second vibration system 20B.
  • the monitoring unit 40 determines the tuning based on the detection signals output from the first vibration system 20A and the second vibration system 20B, and when the tuning is performed, the phase of the first phase-locked loop 10A.
  • the phase shift amount ⁇ of the shift unit 12 is changed. As a result, the vibration frequency of the first vibration system 20A is changed, and the tuning vibration between the first vibration system 20A and the second vibration system 20B is suppressed.
  • the configuration of the first vibration system 20A and the second vibration system 20B described above is an example, and is not limited thereto.
  • the fixed frame 50 and the movable frame 51 may have a circular shape or other shape instead of a rectangular frame shape.
  • the reflection mirror 52 may also have a rectangular shape or other shape instead of a circular shape.
  • the first and second actuators 53 and 54 various shapes such as a meander shape can be applied.
  • FIG. 5 shows a flowchart showing the processing of the adjusting unit.
  • the monitoring unit 40 causes the adjusting unit 30 of the first phase-locked loop 10A and the second phase-locked loop 10B to increase the amplification factor of the volume-equipped amplifier 16 from 0 (step S1). ).
  • the first phase-locked loop 10A and the second phase-locked loop 10B oscillate, and the first vibration system 20A and the second vibration system 20B start to vibrate.
  • the phase difference between the detection signal and the drive signal reaches about 90 degrees, both the first vibration system 20A and the second vibration system 20B vibrate at the resonance frequency.
  • the phase difference between the detection signal and the drive signal when vibrating at the resonance frequency is 90 degrees.
  • step S2 determines whether or not to end the process.
  • the end determination is determined by the instruction signal input to the monitoring unit 40.
  • the process proceeds to step S3 without ending (step S2: No).
  • the monitoring unit 40 monitors the detection signals of the first vibration system 20A and the second vibration system 20B, and the amplitude level of the detection signals of the first vibration system 20A and the second vibration system 20B is the threshold value T1. It is determined whether or not the value exceeds (see FIG. 3) (step S3).
  • the threshold value T1 is a threshold value for determining the occurrence of synchronized vibration in the first vibration system 20A and the second vibration system 20B. As described above, in this process, the threshold value of the frequency may be determined instead of the amplitude level.
  • the monitoring unit 40 causes the adjustment unit 30 of the first phase-locked loop 10A to change the phase shift amount ⁇ of the phase shift unit 12 (step S4). ).
  • step S4 After the end of step S4 or when the amplitude of the detection signal is equal to or less than the threshold value T1 (step S3; No), the monitoring unit 40 indicates that the amplitude level of the detection signal of the first vibration system 20A is less than the threshold value T2 (see FIG. 3). It is determined whether or not there is (step S5).
  • the threshold value T2 is the minimum value required for the vibration level of the detection signal of the first vibration system 20A. If the amplitude level of the detection signal of the first vibration system 20A is less than the threshold value T2 (step S5; Yes), the monitoring unit 40 uses the adjusting unit 30 of the first phase-locked loop 10A to the amplifier 16 with a volume. The amplification factor is increased (step S6).
  • the monitoring unit 40 determines the end of processing (step S2). If it does not end (step S2; No), the monitoring unit 40 performs processing in the flow of steps S3 ⁇ S4 ⁇ S5, step S3 ⁇ S5, or step S3 ⁇ S5 ⁇ S6. Such a series of processes are repeated, and the monitoring unit 40 suppresses the synchronized vibration between the first vibration system 20A and the second vibration system 20B, while suppressing the first vibration system 20A and the second vibration system 20B. Control is performed so that the amplitude level of the detection signal of is within a certain range.
  • step S2 When the process is terminated (step S2; Yes), the monitoring unit 40 reduces the amplification factor of the amplifier 16 with a volume to 0 (step S7), and the vibration of the first vibration system 20A and the second vibration system 20B. End control.
  • Embodiment 2 of the present invention will be described.
  • the first phase-locked loop 10A, the second phase-locked loop 10B, the monitoring unit 40, the first vibration system 20A, and the first vibration system 20A are used.
  • the point that the vibration system 20B of 2 is provided is the same as the configuration of the control system 1 according to the first embodiment.
  • the phase shift unit 12 shifts the phase of the detected signal output and amplified from the first vibration system 20A.
  • the phase shift unit 12 is connected to the signal output from the voltage control oscillation unit 15, that is, the first vibration system 20A before being amplified. Shifts the phase of the input drive signal. A signal whose phase is shifted by the phase shift amount ⁇ is input to the phase comparison unit 13.
  • the phase of the drive signal of the first vibration system 20A that is, the output signal is shifted with respect to the phase of the detection signal, that is, the input signal. Even in this way, it is possible to change the vibration frequency of the first vibration system 20A and suppress the synchronized vibration between the first vibration system 20A and the second vibration system 20B.
  • the processing of the monitoring unit 40 is the same as the processing shown in FIG.
  • the monitoring unit 40 keeps the amplitude level of the detection signals of the first vibration system 20A and the second vibration system 20B within a certain range while suppressing the synchronized vibration between the first vibration system 20A and the second vibration system 20B. Control to fit.
  • Embodiment 3 of the present invention will be described.
  • the control system 1 according to the present embodiment is different from the control system 1 according to the above embodiment in that the adjustment unit 30 is not provided.
  • the phase shift unit 12 has a function corresponding to the adjustment unit 30, and the volume-equipped amplifier 16 has a function corresponding to the adjustment unit 30.
  • the monitoring unit 40 monitors the detection signals of the vibration states of the first vibration system 20A and the second vibration system 20B, and detects the synchronized vibration between the first vibration system 20A and the second vibration system 20B.
  • the phase shift unit 12 is made to change the phase shift amount ⁇ .
  • the monitoring unit 40 monitors the detection signals of the first vibration system 20A and the second vibration system 20B
  • the volume-equipped amplitude amplifier 16 monitors the detection signals of the first vibration system 20A and the second vibration system 20B. Adjust the amplitude level.
  • the phase shift unit 12 causes the phase shift unit 12 to change the phase shift amount ⁇ . Therefore, the control system 1 according to the present embodiment can adjust the amplification factor of the amplification unit of the amplifier 16 with a volume and the phase shift amount ⁇ of the phase shift unit 12 as in the control system 1 according to the above embodiment. Is.
  • the control system 1 controls the vibration state of the second vibration system 20B by the second phase-locked loop 10B.
  • the second vibration system 20B is driven non-resonantly by inputting a periodic signal clearly deviating from the resonance frequency.
  • the time of non-resonance it is not possible to drive efficiently with a small signal level as in the case of resonance, so it is necessary to input a large signal level, but there is an advantage that it can be driven with a fixed frequency without considering the influence of resonance due to temperature or the like.
  • the non-resonant drive circuit includes a charge amplifier 11 and an amplifier 16 with a volume. By changing their amplification factors, the vibration of the second vibration system 20B is controlled. The signal level of the drive signal is adjusted by an amplifier 16 with a volume or the like.
  • the number of scanning lines in the vertical direction is determined by the standard, so it is necessary to fix the period in the vertical direction.
  • the drive in the vertical direction is a resonance lock by a phase-locked loop, the period will fluctuate due to the influence of temperature and the like, so it is desirable to control the vibration in the vertical direction by non-resonant drive.
  • the drive signal it is desirable to use a stable periodic signal synchronized with the crystal clock, for example, a signal generated by a microcomputer operating on the crystal clock.
  • the phase of either the detection signal or the drive signal of the first vibration system 20A input to the phase comparison unit 13 can be adjusted by a shift amount. It is provided with a phase shift unit 12 for shifting with. As a result, the vibration frequency of the first vibration system 20A can be changed, so that tuning of the vibration system having a unique resonance frequency can be prevented.
  • the phase shift unit 12 may shift the phase of the drive signal to the first vibration system 20A with respect to the detection signal, or the second embodiment. As described above, the phase shift unit 12 may shift the phase of the detection signal of the first vibration system 20A with respect to the drive signal.
  • the monitoring unit 40 has a volume so that the amplitude level of the detection signal output from the first vibration system 20A and the second vibration system 20B is within a certain range in the adjustment unit 30.
  • the amplification factor of the attached amplifier 16 was adjusted. By doing so, it is possible to prevent a decrease in the amplitude of the first vibration system 20A due to the phase shift amount ⁇ given by the phase shift unit 12.
  • control system 1 monitors the detection signals of the vibration states of the first vibration system 20A and the second vibration system 20B, and the first vibration system 20A and the second vibration system 20B When the tuning vibration of the above is detected, the monitoring unit 40 for changing the phase shift amount ⁇ of the phase shift unit 12 of the first phase synchronization circuit 10A is provided. By doing so, the phase shift amount ⁇ can be made variable, and the synchronized vibration between the first vibration system 20A and the second vibration system 20B can be reliably prevented.
  • phase shift amount ⁇ in the phase shift unit 12 may be fixed. If the phase shift amount ⁇ that prevents the synchronized vibration between the first vibration system 20A and the second vibration system 20B is known in advance, even if the phase shift amount ⁇ in the phase shift unit 12 is fixed, the first vibration It is possible to prevent the tuning vibration between the system 20A and the second vibration system 20B.
  • the phase shift amount ⁇ is variable. It is desirable that the phase shift unit 12 is provided.
  • the frequency locked by the first phase-locked loop 10A is low.
  • the phase shift amount ⁇ of the phase shift unit 12 is changed so as to be.
  • the amplitude level of the first vibration system 20A of the amplifier 16 with a volume is increased, the resonance frequency of the first vibration system 20A also increases. Therefore, if the phase shift amount ⁇ is adjusted in the direction in which the vibration frequency of the first vibration system 20A becomes lower, the synchronized vibration between the first vibration system 20A and the second vibration system 20B is surely prevented. be able to.
  • the adjusting unit 30 individually adjusts the amplification factor of the amplifier 16 with a volume and the phase shift amount ⁇ of the phase shift unit 12.
  • the resonance frequency of the first vibration system 20A changes according to the amplification factor of the amplifier 16 with a volume. Specifically, as the amplification factor of the amplifier 16 with volume increases, the resonance frequency of the first vibration system 20A changes toward higher. Utilizing such a relationship, the adjusting unit 30 may be able to adjust the amplification factor of the amplifier 16 with a volume and the phase shift amount ⁇ of the phase shift unit 12 at one time via one parameter. ..
  • the vibration states of the first vibration system 20A and the second vibration system 20B are controlled.
  • the second vibration system 20B does not have to be controlled by the second phase-locked loop 10B. Even in this case, the phase shift unit 12 of the first phase-locked loop 10A can suppress the synchronized vibration between the first vibration system 20A and the second vibration system 20B.
  • the detection signal is obtained for the first phase synchronization circuit 10A that controls the first vibration system 20A having a high vibration frequency.
  • the phase of the drive signal is to be shifted. This is because it is easier to suppress the entrainment in this way.
  • the phase shift unit 12 may be provided in the second phase-locked loop 10B that controls the second vibration system 20B having a low vibration frequency.
  • the present invention is not limited to this. It can also be applied to a system having three or more vibration systems having a unique resonance frequency.
  • the present invention can be applied to suppress tuning vibrations in a system that swings a reflective mirror around the X, Y, and Z axes.
  • the phase-locked loop that controls at least two of the three vibration systems includes the phase shift unit 12. This also applies when the number of vibration systems is four or more.
  • the control system controls the MEMS mirror as a reflection mirror that scans the laser beam two-dimensionally.
  • the reflection mirror may be a larger polygon mirror, a galvano mirror, or the like. It can also be applied to a control system that controls a reflection mirror that scans ultrasonic waves two-dimensionally.
  • this control system 1 can be applied as long as it includes a plurality of vibration systems, each of which has a unique resonance frequency.
  • the present invention can be applied to any vibration system that vibrates by a drive signal.
  • the present invention can be applied even when controlling a plurality of independent vibration systems arranged in the vicinity of each other, although they do not have a common component.
  • it is suitable for a system having a plurality of vibration systems having the same resonance frequency.
  • the amplification factor of the charge amplifier 11 may be adjustable.
  • the monitoring unit 40 monitors both the detection signal of the first vibration system 20A and the detection signal of the second vibration system 20B, but only monitors one of the detection signals. But it may be.
  • the present invention can be applied to control the vibration state of a vibration system having a unique resonance frequency.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Gyroscopes (AREA)
  • Vibration Prevention Devices (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

In a first phase synchronization circuit (10A), a phase comparison unit (13) receives, as inputs, a detection signal and a driving signal of a first vibration system (20A), and outputs a signal indicating a phase difference between the inputted detection signal and the inputted driving signal. A loop filter (14) smoothes the signal that indicates the phase difference and that has been outputted from the phase comparison unit (13). A voltage control oscillation unit (15) outputs, as an output signal, a signal having a frequency increased in accordance with the magnitude of a signal smoothed by the loop filter (14). A phase shift unit (12) shifts the phase of the detection signal by an adjustable phase shift amount θ. A volume amplifier (16) amplifies the driving signal outputted from the voltage control oscillation unit (15) by an adjustable amplification rate, and outputs the amplified driving signal.

Description

位相同期回路及び制御システムPhase-locked loop and control system
 本発明は、位相同期回路及び制御システムに関する。 The present invention relates to a phase-locked loop and a control system.
 特許文献1には、ミラーで反射した光を二次元走査する可動反射素子が開示されている。この可動反射素子は、固定枠、外側アクチュエータ、可動枠、内側アクチュエータ及び反射ミラーを備える。固定枠と可動枠とを連結する外側アクチュエータは、固定枠に対して可動枠を揺動させる。また、可動枠と反射ミラーとを連結する内側アクチュエータは、外側アクチュエータとは異なる共振周波数及び回転軸で反射ミラーを揺動させる。外側アクチュエータ及び内側アクチュエータで構成される2つの振動系により、反射ミラーによる光の二次元走査が可能となる。 Patent Document 1 discloses a movable reflecting element that two-dimensionally scans the light reflected by the mirror. This movable reflection element includes a fixed frame, an outer actuator, a movable frame, an inner actuator, and a reflection mirror. The outer actuator connecting the fixed frame and the movable frame swings the movable frame with respect to the fixed frame. Further, the inner actuator connecting the movable frame and the reflection mirror swings the reflection mirror at a resonance frequency and a rotation axis different from those of the outer actuator. Two vibration systems consisting of an outer actuator and an inner actuator enable two-dimensional scanning of light by a reflecting mirror.
特開2005-148459号公報Japanese Unexamined Patent Publication No. 2005-148459
 外側アクチュエータ及び内側アクチュエータは、それぞれ別々の位相同期回路(PLL;Phase Locked Loop)に接続されることがある。これにより、両振動系は、それぞれ固有の共振周波数にロックされた状態で振動する。しかし、各振動系の共振周波数は、温度、気圧等の周辺環境により変化する。この共振周波数の変化により、場合によっては、外側アクチュエータと内側アクチュエータとが同調して意図しない動きをして、ミラー振動状態を安定させることができないという問題があった。 The outer actuator and the inner actuator may be connected to separate phase-locked loops (PLL). As a result, both vibration systems vibrate in a state of being locked to their own resonance frequencies. However, the resonance frequency of each vibration system changes depending on the surrounding environment such as temperature and atmospheric pressure. Due to this change in resonance frequency, there is a problem that, in some cases, the outer actuator and the inner actuator may move unintentionally in synchronization with each other, and the mirror vibration state cannot be stabilized.
 本発明は、上記実情の下になされたものであり、固有の共振周波数を有する振動系の同調を防ぐことができる位相同期回路及び制御システムを提供することを目的とする。 The present invention has been made under the above circumstances, and an object of the present invention is to provide a phase-locked loop and a control system capable of preventing tuning of a vibration system having an inherent resonance frequency.
 上記目的を達成するために、本発明の第1の観点に係る位相同期回路は、
 出力信号の位相を入力信号の位相に同期させる位相同期回路であって、
 前記入力信号及び前記出力信号を入力し、入力した前記入力信号と前記出力信号との位相差を示す信号を出力する位相比較部と、
 前記位相比較部から出力された前記位相差を示す信号を平滑化するフィルタ部と、
 前記フィルタ部で平滑化された信号の大きさに応じて周波数が高くなる信号を、前記出力信号として出力する電圧制御発振部と、
 前記位相比較部に入力される前記入力信号と前記出力信号とのいずれか一方の位相を、調整可能なシフト量でシフトさせる位相シフト部と、
 前記出力信号を調整可能な増幅率で増幅して出力する増幅部と、
 を備える。
In order to achieve the above object, the phase-locked loop according to the first aspect of the present invention is
A phase-locked loop that synchronizes the phase of the output signal with the phase of the input signal.
A phase comparison unit that inputs the input signal and the output signal and outputs a signal indicating the phase difference between the input signal and the output signal.
A filter unit that smoothes the signal indicating the phase difference output from the phase comparison unit, and a filter unit.
A voltage control oscillator that outputs a signal whose frequency increases according to the magnitude of the signal smoothed by the filter unit as the output signal.
A phase shift unit that shifts the phase of either the input signal or the output signal input to the phase comparison unit by an adjustable shift amount.
An amplification unit that amplifies and outputs the output signal at an adjustable amplification factor,
To prepare for.
 この場合、前記位相シフト部は、前記入力信号の位相を、前記出力信号に対してシフトさせる、
 こととしてもよい。
In this case, the phase shift unit shifts the phase of the input signal with respect to the output signal.
It may be that.
 また、前記位相シフト部は、前記出力信号の位相を、前記入力信号に対してシフトさせる、
 こととしてもよい。
Further, the phase shift unit shifts the phase of the output signal with respect to the input signal.
It may be that.
 前記入力信号の振幅レベルが一定の範囲に収まるように、前記増幅部の増幅率が調整される、
 こととしてもよい。
The amplification factor of the amplification unit is adjusted so that the amplitude level of the input signal falls within a certain range.
It may be that.
 本発明の第2の観点に係る制御システムは、
 本発明の第1の観点に係る位相同期回路としての第1の位相同期回路と、
 前記第1の位相同期回路から出力される出力信号を駆動信号として振動し、その振動状態の検出信号を前記第1の位相同期回路に入力される入力信号として出力する第1の振動系と、
 前記第1の振動系の検出信号を監視し、前記第1の振動系と他の振動系との同調振動を検出した場合に、前記第1の位相同期回路における位相シフト部のシフト量を変更させる監視部と、
 を備える。
The control system according to the second aspect of the present invention is
The first phase-locked loop as the phase-locked loop according to the first aspect of the present invention,
A first vibration system that vibrates an output signal output from the first phase-locked loop as a drive signal and outputs a detection signal of the vibration state as an input signal input to the first phase-locked loop.
When the detection signal of the first vibration system is monitored and the synchronized vibration between the first vibration system and another vibration system is detected, the shift amount of the phase shift portion in the first phase synchronization circuit is changed. With the monitoring unit to let
To prepare for.
 この場合、入力された駆動信号に従って振動し、その振動状態の検出信号を出力する前記他の振動系としての第2の振動系と、
 前記第2の振動系へ出力する駆動信号の位相を前記第2の振動系から出力される検出信号の位相に同期させる第2の位相同期回路と、
 を備え、
 前記監視部は、
 前記第2の振動系から出力される検出信号を監視し、前記第1の振動系と前記第2の振動系との同調振動を検出する、
 こととしてもよい。
In this case, the second vibration system as the other vibration system that vibrates according to the input drive signal and outputs the detection signal of the vibration state, and
A second phase-locked loop that synchronizes the phase of the drive signal output to the second vibration system with the phase of the detection signal output from the second vibration system.
Equipped with
The monitoring unit
The detection signal output from the second vibration system is monitored, and the synchronized vibration between the first vibration system and the second vibration system is detected.
It may be that.
 前記監視部は、
 前記第1の振動系と前記他の振動系との同調振動を検出した場合に、前記第1の位相同期回路でロックされる周波数が低くなるように、前記位相シフト部のシフト量を変更する、
 こととしてもよい。
The monitoring unit
When the synchronized vibration between the first vibration system and the other vibration system is detected, the shift amount of the phase shift unit is changed so that the frequency locked by the first phase-locked loop becomes low. ,
It may be that.
 本発明によれば、入力信号と出力信号とのいずれか一方の位相を、調整可能なシフト量でシフトさせる位相シフト部を備えているので、固有の共振周波数を有する振動系の同調を防ぐことができる。 According to the present invention, since it is provided with a phase shift unit that shifts the phase of either the input signal or the output signal by an adjustable shift amount, it is possible to prevent tuning of a vibration system having a unique resonance frequency. Can be done.
本発明の実施の形態1に係る制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the control system which concerns on Embodiment 1 of this invention. 検出信号と駆動信号の位相差を示す信号波形図である。It is a signal waveform diagram which shows the phase difference of a detection signal and a drive signal. 第1の振動系における位相差と振動周波数の関係を示すグラフである。It is a graph which shows the relationship between the phase difference and the vibration frequency in the 1st vibration system. 第1の振動系の構成を示す斜視図である。It is a perspective view which shows the structure of the 1st vibration system. 図1の調整部の処理の流れを示すフローチャートである。It is a flowchart which shows the processing flow of the adjustment part of FIG. 本発明の実施の形態2に係る制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the control system which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the control system which concerns on Embodiment 3 of this invention.
 以下、本発明の実施の形態について図面を参照して詳細に説明する。各図面においては、同一又は同等の部分に同一の符号を付す。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In each drawing, the same or equivalent parts are designated by the same reference numerals.
実施の形態1.
 まず、本発明の実施の形態1について説明する。図1に示すように、本実施の形態に係る制御システム1は、第1の振動系20Aと、第2の振動系20Bと、を制御対象とする。この制御システム1は、本実施の形態に係る位相同期回路としての第1の位相同期回路10Aと、第2の位相同期回路10Bと、を備えている。第1の位相同期回路10Aは、第1の振動系20Aを制御し、第2の位相同期回路10Bは、第2の振動系20Bを制御する。
Embodiment 1.
First, Embodiment 1 of the present invention will be described. As shown in FIG. 1, the control system 1 according to the present embodiment controls the first vibration system 20A and the second vibration system 20B. The control system 1 includes a first phase-locked loop 10A and a second phase-locked loop 10B as the phase-locked loop according to the present embodiment. The first phase-locked loop 10A controls the first vibration system 20A, and the second phase-locked loop 10B controls the second vibration system 20B.
 第1の振動系20A及び第2の振動系20Bは、それぞれ駆動信号を入力し、入力された駆動信号に従って振動する振動子を有している。これらの振動子では、その振動状態が検出され、検出された振動状態を示す検出信号が出力される。第1の振動系20A及び第2の振動系20Bは、この検出信号を外部に出力する。第1の振動系20A及び第2の振動系20Bの詳細な構成については後述する。 The first vibration system 20A and the second vibration system 20B each have an oscillator that inputs a drive signal and vibrates according to the input drive signal. In these oscillators, the vibration state is detected, and a detection signal indicating the detected vibration state is output. The first vibration system 20A and the second vibration system 20B output this detection signal to the outside. The detailed configuration of the first vibration system 20A and the second vibration system 20B will be described later.
 第1の位相同期回路10Aは、第1の振動系20Aに駆動信号を出力信号として出力するとともに、第1の振動系20Aから出力された検出信号を入力信号として入力する。第1の位相同期回路10Aは、第1の振動系20Aへの駆動信号と、第1の振動系20Aからの検出信号との位相差に基づいて、第1の振動系20Aへの駆動信号の位相を、第1の振動系20Aからの検出信号の位相に同期させることにより、第1の振動系20Aの振動状態を制御する。 The first phase-locked loop 10A outputs a drive signal as an output signal to the first vibration system 20A, and inputs a detection signal output from the first vibration system 20A as an input signal. The first phase synchronization circuit 10A receives the drive signal to the first vibration system 20A based on the phase difference between the drive signal to the first vibration system 20A and the detection signal from the first vibration system 20A. By synchronizing the phase with the phase of the detection signal from the first vibration system 20A, the vibration state of the first vibration system 20A is controlled.
 第2の位相同期回路10Bは、第2の振動系20Bに駆動信号を出力信号として出力するとともに、第2の振動系20Bから出力された検出信号を入力信号として入力する。第2の位相同期回路10Bは、第2の振動系20Bへの駆動信号と、第2の振動系20Bからの検出信号との位相差に基づいて、第2の振動系20Bへの駆動信号の位相を、第2の振動系20Bからの検出信号の位相に同期させることにより、第1の振動系20Aの振動状態を制御する。 The second phase-locked loop 10B outputs a drive signal as an output signal to the second vibration system 20B, and inputs a detection signal output from the second vibration system 20B as an input signal. The second phase synchronization circuit 10B receives the drive signal to the second vibration system 20B based on the phase difference between the drive signal to the second vibration system 20B and the detection signal from the second vibration system 20B. By synchronizing the phase with the phase of the detection signal from the second vibration system 20B, the vibration state of the first vibration system 20A is controlled.
[第1の位相同期回路]
 第1の位相同期回路10Aは、上述のように、第1の振動系20Aに入力する駆動信号、すなわち出力信号の位相を第1の振動系20Aの検出信号、すなわち入力信号の位相に同期させる。本実施の形態では、第1の位相同期回路10Aは、チャージアンプ11と、位相シフト部12と、位相比較部13と、フィルタ部としてのループ・フィルタ14と、電圧制御発振部(VCO;Voltage-controlled oscillator)15と、ボリューム付きアンプ16と、調整部30と、を備える。
[First phase-locked loop]
As described above, the first phase-locked loop 10A synchronizes the phase of the drive signal input to the first vibration system 20A, that is, the output signal with the phase of the detection signal of the first vibration system 20A, that is, the input signal. .. In the present embodiment, the first phase-locked loop 10A includes a charge amplifier 11, a phase shift unit 12, a phase comparison unit 13, a loop filter 14 as a filter unit, and a voltage controlled oscillator unit (VCO; Voltage). -Controlled oscillator) 15, an amplifier 16 with a volume, and an adjusting unit 30 are provided.
 チャージアンプ11は、第1の振動系20Aから出力された検出信号を設定された増幅率で増幅して出力する増幅回路である。チャージアンプ11の増幅率は可変であってもよい。 The charge amplifier 11 is an amplifier circuit that amplifies and outputs the detection signal output from the first vibration system 20A at a set amplification factor. The amplification factor of the charge amplifier 11 may be variable.
 位相シフト部12は、チャージアンプ11から出力される信号、すなわち第1の振動系20Aから出力され増幅された検出信号を入力する。位相シフト部12は、入力した検出信号の位相を、調整可能な位相シフト量θでシフトさせる。位相がシフトした信号は、位相比較部13に入力される。図2に示すように、チャージアンプ11から実線で示す信号が入力された場合、位相シフト部12は、この信号の位相が位相シフト量θずれた点線で示す信号を出力する。この位相シフト量θは、外部入力により可変である。図2では、θが正の値である場合が示されているが、位相シフト量θは負の値をとることも可能である。なお、CLは、信号の中央値である。 The phase shift unit 12 inputs a signal output from the charge amplifier 11, that is, an amplified detection signal output from the first vibration system 20A. The phase shift unit 12 shifts the phase of the input detection signal by an adjustable phase shift amount θ. The phase-shifted signal is input to the phase comparison unit 13. As shown in FIG. 2, when a signal shown by a solid line is input from the charge amplifier 11, the phase shift unit 12 outputs a signal indicated by a dotted line in which the phase of this signal is shifted by a phase shift amount θ. This phase shift amount θ is variable by an external input. Although FIG. 2 shows a case where θ is a positive value, the phase shift amount θ can also take a negative value. CL is the median value of the signal.
 図1に戻り、位相比較部13は、位相シフト部12から出力された信号を入力するとともに、電圧制御発振部15から出力された信号をフィードバックして入力する。位相比較部13は、2つの信号の立ち上がり又は立ち下がりの時間差、すなわち位相差を示す信号を出力する。出力される信号は、リプル成分を含むパルス信号となる。 Returning to FIG. 1, the phase comparison unit 13 inputs the signal output from the phase shift unit 12, and feeds back the signal output from the voltage control oscillation unit 15 to input. The phase comparison unit 13 outputs a signal indicating the time difference between the rising and falling edges of the two signals, that is, the phase difference. The output signal is a pulse signal including a ripple component.
 ループ・フィルタ14は、位相比較部13から出力されたリプルを含むパルス信号を平滑化する。ループ・フィルタ14としては、例えばラグリードフィルタが用いられる。ラグリードフィルタは、2つの抵抗素子と1つの容量素子で構成されたローパスフィルタである。このラグリードフィルタの特性により、ループ制御を行うための伝達特性が決定される。なお、ループ・フィルタ14として、ラグリードフィルタの代わりに、ラグフィルタを用いるようにしてもよい。ラグフィルタとは、1つの抵抗素子と1つの容量素子で構成されたローパスフィルタである。 The loop filter 14 smoothes the pulse signal including the ripple output from the phase comparison unit 13. As the loop filter 14, for example, a lag lead filter is used. The lag lead filter is a low-pass filter composed of two resistance elements and one capacitive element. The characteristics of this lag lead filter determine the transfer characteristics for loop control. As the loop filter 14, a lag filter may be used instead of the lag lead filter. The lag filter is a low-pass filter composed of one resistance element and one capacitive element.
 電圧制御発振部15は、ループ・フィルタ14で平滑化された信号の大きさに応じて周波数が高くなる周期信号を出力する。この周期信号が、増幅される前の第1の振動系20Aの駆動信号となる。電圧制御発振部15は、内部に積分要素を含んでいる。この積分要素により、入力される信号の値が積分され、その積分結果に応じて、周波数が高くなる検出信号が出力される。検出された信号は、ボリューム付きアンプ16に入力されるとともに、位相比較部13にフィードバックされ入力される。 The voltage control oscillator 15 outputs a periodic signal whose frequency increases according to the magnitude of the signal smoothed by the loop filter 14. This periodic signal becomes the drive signal of the first vibration system 20A before being amplified. The voltage control oscillator 15 includes an integral element inside. The value of the input signal is integrated by this integration element, and a detection signal having a higher frequency is output according to the integration result. The detected signal is input to the amplifier 16 with a volume, and is also fed back to the phase comparison unit 13 for input.
 増幅部としてのボリューム付きアンプ16は、電圧制御発振部15から出力された駆動信号を調整可能な増幅率で増幅して出力する。出力された駆動信号が、第1の振動系20Aの駆動信号として第1の振動系20Aに入力される。 The volume-equipped amplifier 16 as an amplification unit amplifies and outputs the drive signal output from the voltage control oscillation unit 15 at an adjustable amplification factor. The output drive signal is input to the first vibration system 20A as a drive signal of the first vibration system 20A.
 第1の位相同期回路10Aでは、位相比較部13、ループ・フィルタ14及び電圧制御発振部15により、第1の振動系20Aの駆動信号が、第1の振動系20Aの検出信号に同期するように制御される。 In the first phase-locked loop 10A, the phase comparison unit 13, the loop filter 14, and the voltage control oscillation unit 15 synchronize the drive signal of the first vibration system 20A with the detection signal of the first vibration system 20A. Is controlled by.
 調整部30は、ボリューム付きアンプ16の増幅率と位相シフト部12の位相シフト量θとを調整する。例えば、調整部30は、第1の振動系20Aの検出信号の振幅レベルが一定の範囲に収まるように 、ボリューム付きアンプ16の増幅率を調整する。一定の範囲は、第1の振動系20Aがその機能を発揮する振動レベルの範囲であり、下限値をT2とし、上限値をT1とする(図3参照)。振動レベルがT2より小さければ、第1の振動系20の機能を発揮するのが困難になり、振動レベルがT1より大きければ、同調振動が発生したと判定することができる。例えば、第1の振動系20Aがレーザ光の走査を行う場合には、振動レベルは、その走査範囲によって規定される。 The adjusting unit 30 adjusts the amplification factor of the amplifier 16 with a volume and the phase shift amount θ of the phase shift unit 12. For example, the adjusting unit 30 adjusts the amplification factor of the amplifier 16 with a volume so that the amplitude level of the detection signal of the first vibration system 20A falls within a certain range. A certain range is a range of vibration levels at which the first vibration system 20A exerts its function, the lower limit value is T2, and the upper limit value is T1 (see FIG. 3). If the vibration level is smaller than T2, it becomes difficult to exert the function of the first vibration system 20, and if the vibration level is larger than T1, it can be determined that the tuning vibration has occurred. For example, when the first vibration system 20A scans the laser beam, the vibration level is defined by the scanning range.
 調整部30が、ボリューム付きアンプ16の増幅率を0から次第に大きくしていくと、第1の位相同期回路10Aが発振し、第1の振動系20Aが、その発振周波数で振動する。位相シフト部12の位相シフト量θが0である場合、第1の位相同期回路10Aの発振周波数は、第1の振動系20Aの共振周波数に一致する。このような状態を、いわゆる「共振ロック状態」という。 When the adjusting unit 30 gradually increases the amplification factor of the amplifier 16 with a volume from 0, the first phase-locked loop 10A oscillates, and the first vibration system 20A vibrates at the oscillation frequency. When the phase shift amount θ of the phase shift unit 12 is 0, the oscillation frequency of the first phase-locked loop 10A matches the resonance frequency of the first vibration system 20A. Such a state is called a so-called "resonance lock state".
 なお、第1の位相同期回路10Aの電圧制御発振部15には積分要素が含まれているため、第1の振動系20Aが共振周波数で振動し共振ロック状態にあるときに、第1の振動系20Aの検出信号と駆動信号との間には、約90度の位相差が生じる。逆に言えば、位相差が約90度であるときに、第1の振動系20Aは、共振周波数で振動する。ここで、約90度としているのは、ループ・フィルタ14等の回路特性により、検出信号と駆動信号との位相差が90度になるとは限らないためである。 Since the voltage control oscillation unit 15 of the first phase-locked loop 10A includes an integrating element, the first vibration occurs when the first vibration system 20A vibrates at the resonance frequency and is in the resonance lock state. A phase difference of about 90 degrees occurs between the detection signal of the system 20A and the drive signal. Conversely, when the phase difference is about 90 degrees, the first vibration system 20A vibrates at the resonance frequency. Here, the reason why it is set to about 90 degrees is that the phase difference between the detection signal and the drive signal is not always 90 degrees due to the circuit characteristics of the loop filter 14 and the like.
 第1の振動系20Aの振動周波数は、位相シフト部12の位相シフト量θを変化させることにより、変化する。図3に示すように、位相シフト量θを上下させることにより、第1の振動系20Aの振動周波数を共振周波数frからΔfだけシフトさせることが可能となる。 The vibration frequency of the first vibration system 20A changes by changing the phase shift amount θ of the phase shift unit 12. As shown in FIG. 3, by increasing or decreasing the phase shift amount θ, it is possible to shift the vibration frequency of the first vibration system 20A from the resonance frequency fr by Δf.
 この制御システム1では、第1の振動系20Aと第2の振動系20Bとが同調振動して、意図しない大きな振動が発生した場合、調整部30により、位相シフト部12の位相シフト量θを変更する。これにより、第1の振動系20Aの振動周波数を変更することができるので、第1の振動系20Aと第2の振動系20Bとの間の同調振動を収束させることができる。 In this control system 1, when the first vibration system 20A and the second vibration system 20B vibrate in synchronization with each other and an unintended large vibration occurs, the adjustment unit 30 adjusts the phase shift amount θ of the phase shift unit 12. change. As a result, the vibration frequency of the first vibration system 20A can be changed, so that the tuning vibration between the first vibration system 20A and the second vibration system 20B can be converged.
[第2の位相同期回路]
 第2の位相同期回路10Bの構成は、位相シフト部12を有しない他は、第1の位相同期回路10Aの構成と同じである。すなわち、第2の位相同期回路10Bは、チャージアンプ11と、位相比較部13と、ループ・フィルタ14と、電圧制御発振部15と、ボリューム付きアンプ16と、調整部30と、を備える。第2の位相同期回路10Bは、出力信号、すなわち第2の振動系20Bの駆動信号の位相を入力信号、すなわち第2の振動系20Bの検出信号の位相に同期させる。第2の位相同期回路10Bの制御により、第2の振動系20Bは、その共振周波数で振動する。
[Second phase-locked loop]
The configuration of the second phase-locked loop 10B is the same as the configuration of the first phase-locked loop 10A except that the phase shift unit 12 is not provided. That is, the second phase-locked loop 10B includes a charge amplifier 11, a phase comparison unit 13, a loop filter 14, a voltage control oscillation unit 15, a volume-equipped amplifier 16, and an adjustment unit 30. The second phase-locked loop 10B synchronizes the phase of the output signal, that is, the drive signal of the second vibration system 20B, with the phase of the input signal, that is, the phase of the detection signal of the second vibration system 20B. Under the control of the second phase-locked loop 10B, the second vibration system 20B vibrates at its resonance frequency.
[監視部]
 監視部40は、第1の振動系20A及び第2の振動系20Bから出力される検出信号を監視する。監視対象となる信号は、チャージアンプ11で増幅された信号となる。これらの検出信号の振幅レベルが閾値T1(図3参照)より大きくなった場合に、監視部40は、第1の振動系20Aと第2の振動系20Bとの間に同調振動が発生したと判定する。監視部40は、第1の振動系20Aと第2の振動系20Bとの同調振動を検出したと判定した場合に、第1の位相同期回路10Aの調整部30に位相シフト部12の位相シフト量θを変更させる。例えば、監視部40は、第1の振動系20Aと第2の振動系20Bとの同調振動を検出した場合に、第1の位相同期回路10Aでロックされたときの振動周波数が低くなるように、位相シフト部12の位相シフト量θを変更する。
[Monitoring unit]
The monitoring unit 40 monitors the detection signals output from the first vibration system 20A and the second vibration system 20B. The signal to be monitored is a signal amplified by the charge amplifier 11. When the amplitude level of these detected signals becomes larger than the threshold value T1 (see FIG. 3), the monitoring unit 40 states that synchronized vibration has occurred between the first vibration system 20A and the second vibration system 20B. judge. When the monitoring unit 40 determines that the synchronized vibration between the first vibration system 20A and the second vibration system 20B has been detected, the phase shift unit 12 shifts the phase to the adjustment unit 30 of the first phase synchronization circuit 10A. Change the quantity θ. For example, when the monitoring unit 40 detects the synchronized vibration between the first vibration system 20A and the second vibration system 20B, the vibration frequency when locked by the first phase synchronization circuit 10A is lowered. , The phase shift amount θ of the phase shift unit 12 is changed.
 なお、監視部40は、第1の振動系20A及び第2の振動系20Bから出力される検出信号を監視し、その検出信号の周波数が予め定められた範囲を超えたときに、第1の振動系20A及び第2の振動系20Bに同調振動が発生したと判定するようにしてもよい。この周波数は、検出信号の時系列データから割り出される。 The monitoring unit 40 monitors the detection signals output from the first vibration system 20A and the second vibration system 20B, and when the frequency of the detection signals exceeds a predetermined range, the first vibration system 20A is used. It may be determined that the tuning vibration has occurred in the vibration system 20A and the second vibration system 20B. This frequency is calculated from the time series data of the detection signal.
 なお、図3に示すように、位相シフト部12の位相シフト量θによっては、第1の振動系20Aにおける振動振幅が低下する。この場合、監視部40は、第1の振動系20Aに入力する駆動信号の振幅が大きくなるように、第1の位相同期回路10Aの調整部30に、ボリューム付きアンプ16のゲインを大きくさせる。ここで、位相シフト量θが取り得る値は、例えば、-30度以上30度以下であるとすることができる。この範囲を超えれば、第1の振動系20Aにおける振動振幅が著しく低下するためである。 As shown in FIG. 3, the vibration amplitude in the first vibration system 20A decreases depending on the phase shift amount θ of the phase shift unit 12. In this case, the monitoring unit 40 causes the adjusting unit 30 of the first phase-locked loop 10A to increase the gain of the amplifier 16 with a volume so that the amplitude of the drive signal input to the first vibration system 20A becomes large. Here, the value that the phase shift amount θ can take can be, for example, −30 degrees or more and 30 degrees or less. This is because if it exceeds this range, the vibration amplitude in the first vibration system 20A is significantly reduced.
[第1の振動系及び第2の振動系]
 続いて、第1の振動系20A及び第2の振動系20Bの構成について説明する。図4に示すように、第1の振動系20A及び第2の振動系20Bは、固定枠50と、可動枠51と、反射ミラー52と、第1のアクチュエータ53と、第2のアクチュエータ54と、で構成される。
[First vibration system and second vibration system]
Subsequently, the configurations of the first vibration system 20A and the second vibration system 20B will be described. As shown in FIG. 4, the first vibration system 20A and the second vibration system 20B include a fixed frame 50, a movable frame 51, a reflection mirror 52, a first actuator 53, and a second actuator 54. , Consists of.
 固定枠50は、矩形枠状の部材であり、不図示の固定部材に固定されている。可動枠51は、固定枠50の枠内に配置された、矩形枠状の部材である。反射ミラー52は、可動枠51の枠内に配置されている。反射ミラー52は、MEMS(Micro Electro Mechanical Systems)技術により製造された小型軽量の反射鏡、いわゆるMEMSミラーである。 The fixed frame 50 is a rectangular frame-shaped member, and is fixed to a fixed member (not shown). The movable frame 51 is a rectangular frame-shaped member arranged in the frame of the fixed frame 50. The reflection mirror 52 is arranged in the frame of the movable frame 51. The reflection mirror 52 is a compact and lightweight reflector manufactured by MEMS (Micro Electro Mechanical Systems) technology, that is, a so-called MEMS mirror.
 第1のアクチュエータ53は、固定枠50と可動枠51との間であって、X軸方向における可動枠51の両側に設けられた一対の部材である。一対の第1のアクチュエータ53上には、それぞれ圧電素子が形成されている。また、第1のアクチュエータ53には、この圧電素子に電圧信号を印加する駆動電極53aが設けられている。駆動電極53aと、圧電素子の下側に設けられた下部電極層との間に周期的に変動する電圧信号である駆動信号を印加すると、その電圧信号に従って圧電素子が伸縮して、第1のアクチュエータ53がX軸周りに撓む。 The first actuator 53 is a pair of members provided between the fixed frame 50 and the movable frame 51 on both sides of the movable frame 51 in the X-axis direction. Piezoelectric elements are formed on each of the pair of first actuators 53. Further, the first actuator 53 is provided with a drive electrode 53a for applying a voltage signal to the piezoelectric element. When a drive signal, which is a voltage signal that fluctuates periodically, is applied between the drive electrode 53a and the lower electrode layer provided below the piezoelectric element, the piezoelectric element expands and contracts according to the voltage signal, and the first The actuator 53 bends around the X axis.
 このように、一対の第1のアクチュエータ53それぞれには、同一の信号源から生成された電圧信号が加えられる。一対の第1のアクチュエータ53は、それぞれ互いに逆向き、すなわち2回転対称に配置されているため、一方の駆動信号は、他方の駆動信号に対して位相反転した信号となる。 In this way, a voltage signal generated from the same signal source is applied to each of the pair of first actuators 53. Since the pair of first actuators 53 are arranged in opposite directions to each other, that is, two-rotationally symmetric, one drive signal is a signal whose phase is inverted with respect to the other drive signal.
 第1のアクチュエータ53は、固定枠50と可動枠51の点Nとを接続している。第1のアクチュエータ53がX軸周りに撓んで振動すると、可動枠51及びその内側に連結されている第2のアクチュエータ54及び反射ミラー52が、固定枠50に対してX軸周りに揺動する振動子になる。第1のアクチュエータ53には、検出電極53bが設けられている。検出電極53bと下部電極層との間に生じた電圧信号が、上記振動子の振動状態を示す信号として出力される。 The first actuator 53 connects the fixed frame 50 and the point N of the movable frame 51. When the first actuator 53 bends and vibrates around the X axis, the movable frame 51 and the second actuator 54 and the reflection mirror 52 connected to the inside thereof swing around the X axis with respect to the fixed frame 50. Become an oscillator. The first actuator 53 is provided with a detection electrode 53b. The voltage signal generated between the detection electrode 53b and the lower electrode layer is output as a signal indicating the vibration state of the vibrator.
 一方、第2のアクチュエータ54は、可動枠51と、反射ミラー52との間であって、Y軸方向における反射ミラー52の両側に設けられた一対の部材である。一対の第2のアクチュエータ54には、それぞれ圧電素子が形成されている。また、第2のアクチュエータ54には、この圧電素子に電圧信号を印加する駆動電極54aが設けられている。駆動電極54aと圧電素子の下側に設けられた下部電極層との間に周期的に変動する電圧信号である駆動信号を印加すると、その電圧信号に従って圧電素子が伸縮して、第2のアクチュエータ54がY軸周りに撓む。 On the other hand, the second actuator 54 is a pair of members between the movable frame 51 and the reflection mirror 52, which are provided on both sides of the reflection mirror 52 in the Y-axis direction. A piezoelectric element is formed in each of the pair of second actuators 54. Further, the second actuator 54 is provided with a drive electrode 54a for applying a voltage signal to the piezoelectric element. When a drive signal, which is a voltage signal that fluctuates periodically, is applied between the drive electrode 54a and the lower electrode layer provided below the piezoelectric element, the piezoelectric element expands and contracts according to the voltage signal, and the second actuator expands and contracts. 54 bends around the Y axis.
 このように、一対の第2のアクチュエータ54それぞれには、同一の入力信号から生成された電圧信号が加えられる。一対の第2のアクチュエータ54は、それぞれ互いに逆向き、すなわち2回転対称に配置されているため、一方の駆動信号は、他方の駆動信号に対して位相反転した信号となる。 In this way, a voltage signal generated from the same input signal is applied to each of the pair of second actuators 54. Since the pair of second actuators 54 are arranged in opposite directions to each other, that is, two-rotationally symmetric, one drive signal is a signal whose phase is inverted with respect to the other drive signal.
 第2のアクチュエータ54は、可動枠51と反射ミラー52の点Mとを接続しており、第2のアクチュエータ54がY軸周りに撓み振動すると、反射ミラー52が可動枠51に対してY軸周りに揺動する。第2のアクチュエータ54には、検出電極54bが設けられている。検出電極54bと下部電極層との間に生じた電圧信号が、上記振動子の振動状態を示す信号として出力される。 The second actuator 54 connects the movable frame 51 and the point M of the reflection mirror 52, and when the second actuator 54 bends and vibrates around the Y axis, the reflection mirror 52 moves the Y axis with respect to the movable frame 51. Swing around. The second actuator 54 is provided with a detection electrode 54b. The voltage signal generated between the detection electrode 54b and the lower electrode layer is output as a signal indicating the vibration state of the vibrator.
 本実施の形態では、第2のアクチュエータ54によって振動する振動系が第1の振動系20Aに対応する。すなわち、第2のアクチュエータ54の駆動電極54aには、第1の位相同期回路10Aから出力された駆動信号が入力され、第2のアクチュエータ54の検出電極54bから出力された検出信号は、第1の位相同期回路10Aに入力される。 In the present embodiment, the vibration system vibrated by the second actuator 54 corresponds to the first vibration system 20A. That is, the drive signal output from the first phase-locked loop 10A is input to the drive electrode 54a of the second actuator 54, and the detection signal output from the detection electrode 54b of the second actuator 54 is the first. Is input to the phase-locked loop 10A of.
 また、本実施の形態では、この第1のアクチュエータ53によって振動する振動系が第2の振動系20Bに対応する。すなわち、第1のアクチュエータ53の駆動電極53aには、第2の位相同期回路10Bから出力された駆動信号が入力され、第1のアクチュエータ53の検出電極53bから出力された検出信号は、第2の位相同期回路10Bに入力される。 Further, in the present embodiment, the vibration system vibrated by the first actuator 53 corresponds to the second vibration system 20B. That is, the drive signal output from the second phase-locked loop 10B is input to the drive electrode 53a of the first actuator 53, and the detection signal output from the detection electrode 53b of the first actuator 53 is the second. Is input to the phase-locked loop 10B of.
 第1の振動系20A及び第2の振動系20Bにより、反射ミラー52は、二軸方向に揺動する。揺動する反射ミラー52にレーザ光を照射すれば、反射するレーザ光を2次元走査することが可能となる。レーザ光を2次元走査する制御システム1は、レーザプリンタ、光スキャナ、プロジェクタ等に用いられる。 The reflection mirror 52 swings in the biaxial direction by the first vibration system 20A and the second vibration system 20B. By irradiating the swinging reflection mirror 52 with the laser beam, the reflected laser beam can be scanned two-dimensionally. The control system 1 that scans the laser beam two-dimensionally is used for a laser printer, an optical scanner, a projector, and the like.
 第1の振動系20Aの振動周波数、すなわち共振周波数は、例えば20kHz~30kHzであり、第2の振動系20Bの共振周波数は、例えば、100Hz程度である。また、第1の振動系20Aはレーザ光を水平走査し、第2の振動系20Bは、レーザ光を垂直走査するようになる。これにより、レーザ光により例えば2次元画像を投影することが可能となる。第1の振動系20A、第2の振動系20Bの共振周波数は、第1の振動系20A、第2の振動系20Bの形状、厚み又は材質を変更することにより、調整可能である。 The vibration frequency of the first vibration system 20A, that is, the resonance frequency is, for example, 20 kHz to 30 kHz, and the resonance frequency of the second vibration system 20B is, for example, about 100 Hz. Further, the first vibration system 20A horizontally scans the laser beam, and the second vibration system 20B vertically scans the laser beam. This makes it possible to project, for example, a two-dimensional image with a laser beam. The resonance frequencies of the first vibration system 20A and the second vibration system 20B can be adjusted by changing the shape, thickness or material of the first vibration system 20A and the second vibration system 20B.
 第1の振動系20Aと第2の振動系20Bとの間に同調振動が発生すると、第1の振動系20A及び第2の振動系20Bの振動状態が乱れ、反射するレーザ光の2次元走査が困難になる。監視部40は、第1の振動系20Aと第2の振動系20Bから出力される検出信号に基づいて、上記同調を判定し、同調している場合に、第1の位相同期回路10Aの位相シフト部12の位相シフト量θを変更する。これにより、第1の振動系20Aの振動周波数を変化させ、第1の振動系20Aと第2の振動系20Bとの間の同調振動を抑制する。 When a tuned vibration occurs between the first vibration system 20A and the second vibration system 20B, the vibration states of the first vibration system 20A and the second vibration system 20B are disturbed, and two-dimensional scanning of the reflected laser beam is performed. Becomes difficult. The monitoring unit 40 determines the tuning based on the detection signals output from the first vibration system 20A and the second vibration system 20B, and when the tuning is performed, the phase of the first phase-locked loop 10A. The phase shift amount θ of the shift unit 12 is changed. As a result, the vibration frequency of the first vibration system 20A is changed, and the tuning vibration between the first vibration system 20A and the second vibration system 20B is suppressed.
 なお、上述した第1の振動系20A及び第2の振動系20Bの構成は、一例であり、これに限定されない。例えば、固定枠50及び可動枠51は、矩形枠状でなく、円形その他の形状であってもよい。反射ミラー52も円形でなく矩形状その他の形状であってもよい。第1、第2のアクチュエータ53,54もメアンダ状など様々な形状のものを適用することができる。 The configuration of the first vibration system 20A and the second vibration system 20B described above is an example, and is not limited thereto. For example, the fixed frame 50 and the movable frame 51 may have a circular shape or other shape instead of a rectangular frame shape. The reflection mirror 52 may also have a rectangular shape or other shape instead of a circular shape. As the first and second actuators 53 and 54, various shapes such as a meander shape can be applied.
 次に、本実施の形態に係る制御システム1の動作について説明する。本実施の形態では、制御システム1の動作は、監視部40によって制御される。図5には、調整部の処理を示すフローチャートが示されている。 Next, the operation of the control system 1 according to the present embodiment will be described. In the present embodiment, the operation of the control system 1 is controlled by the monitoring unit 40. FIG. 5 shows a flowchart showing the processing of the adjusting unit.
 図5に示すように、まず、監視部40は、第1の位相同期回路10A及び第2の位相同期回路10Bの調整部30に、ボリューム付きアンプ16の増幅率を0からアップさせる(ステップS1)。これにより、第1の位相同期回路10A及び第2の位相同期回路10Bが発振し、第1の振動系20A及び第2の振動系20Bが振動し始める。検出信号と駆動信号との位相差が約90度となった時点で、第1の振動系20A及び第2の振動系20Bはともに共振周波数で振動する。ここでは、共振周波数で振動する際の検出信号と駆動信号との位相差を、90度とする。 As shown in FIG. 5, first, the monitoring unit 40 causes the adjusting unit 30 of the first phase-locked loop 10A and the second phase-locked loop 10B to increase the amplification factor of the volume-equipped amplifier 16 from 0 (step S1). ). As a result, the first phase-locked loop 10A and the second phase-locked loop 10B oscillate, and the first vibration system 20A and the second vibration system 20B start to vibrate. When the phase difference between the detection signal and the drive signal reaches about 90 degrees, both the first vibration system 20A and the second vibration system 20B vibrate at the resonance frequency. Here, the phase difference between the detection signal and the drive signal when vibrating at the resonance frequency is 90 degrees.
 次に、監視部40は、処理を終了するか否か判定する(ステップS2)。終了判定は、監視部40に入力される指示信号によって判定される。ここでは、終了せず(ステップS2:No)、ステップS3に進む。 Next, the monitoring unit 40 determines whether or not to end the process (step S2). The end determination is determined by the instruction signal input to the monitoring unit 40. Here, the process proceeds to step S3 without ending (step S2: No).
 次に、監視部40は、第1の振動系20A及び第2の振動系20Bの検出信号を監視し、第1の振動系20A及び第2の振動系20Bの検出信号の振幅レベルが閾値T1(図3参照)を上回ったか否かを判定する(ステップS3)。閾値T1は、第1の振動系20A及び第2の振動系20Bにおける同調振動の発生を判定するための閾値である。なお、この処理において、振幅レベルでなく、周波数の閾値判定を行うようにしてもよいことは前述した通りである。 Next, the monitoring unit 40 monitors the detection signals of the first vibration system 20A and the second vibration system 20B, and the amplitude level of the detection signals of the first vibration system 20A and the second vibration system 20B is the threshold value T1. It is determined whether or not the value exceeds (see FIG. 3) (step S3). The threshold value T1 is a threshold value for determining the occurrence of synchronized vibration in the first vibration system 20A and the second vibration system 20B. As described above, in this process, the threshold value of the frequency may be determined instead of the amplitude level.
 検出信号の振幅が閾値T1を上回れば(ステップS3;Yes)、監視部40は、第1の位相同期回路10Aの調整部30に、位相シフト部12の位相シフト量θを変更させる(ステップS4)。 If the amplitude of the detection signal exceeds the threshold value T1 (step S3; Yes), the monitoring unit 40 causes the adjustment unit 30 of the first phase-locked loop 10A to change the phase shift amount θ of the phase shift unit 12 (step S4). ).
 ステップS4終了後又は検出信号の振幅が閾値T1以下の場合(ステップS3;No)、監視部40は、第1の振動系20Aの検出信号の振幅レベルが、閾値T2(図3参照)未満であるか否かを判定する(ステップS5)。閾値T2は、第1の振動系20Aの検出信号の振動レベルに求められる最低値である。第1の振動系20Aの検出信号の振幅レベルが、閾値T2未満であれば(ステップS5;Yes)、監視部40は、第1の位相同期回路10Aの調整部30に、ボリューム付きアンプ16の増幅率をアップさせる(ステップS6)。 After the end of step S4 or when the amplitude of the detection signal is equal to or less than the threshold value T1 (step S3; No), the monitoring unit 40 indicates that the amplitude level of the detection signal of the first vibration system 20A is less than the threshold value T2 (see FIG. 3). It is determined whether or not there is (step S5). The threshold value T2 is the minimum value required for the vibration level of the detection signal of the first vibration system 20A. If the amplitude level of the detection signal of the first vibration system 20A is less than the threshold value T2 (step S5; Yes), the monitoring unit 40 uses the adjusting unit 30 of the first phase-locked loop 10A to the amplifier 16 with a volume. The amplification factor is increased (step S6).
 第1の振動系20Aの検出信号の振幅レベルが、閾値T2以上である場合(ステップS5;No)又はステップS6終了後、監視部40は、処理終了判断を行う(ステップS2)。終了しない場合(ステップS2;No)、監視部40は、ステップS3→S4→S5、ステップS3→S5、又はステップS3→S5→S6の流れで処理を行う。このような一連の処理が繰り返され、監視部40は、第1の振動系20Aと第2の振動系20Bとの同調振動を抑制しつつ、第1の振動系20A及び第2の振動系20Bの検出信号の振幅レベルが一定範囲に収まるような制御を行う。 When the amplitude level of the detection signal of the first vibration system 20A is equal to or higher than the threshold value T2 (step S5; No) or after the end of step S6, the monitoring unit 40 determines the end of processing (step S2). If it does not end (step S2; No), the monitoring unit 40 performs processing in the flow of steps S3 → S4 → S5, step S3 → S5, or step S3 → S5 → S6. Such a series of processes are repeated, and the monitoring unit 40 suppresses the synchronized vibration between the first vibration system 20A and the second vibration system 20B, while suppressing the first vibration system 20A and the second vibration system 20B. Control is performed so that the amplitude level of the detection signal of is within a certain range.
 処理を終了する場合(ステップS2;Yes)、監視部40は、ボリューム付きアンプ16の増幅率を0に下げていき(ステップS7)、第1の振動系20A及び第2の振動系20Bの振動制御を終了する。 When the process is terminated (step S2; Yes), the monitoring unit 40 reduces the amplification factor of the amplifier 16 with a volume to 0 (step S7), and the vibration of the first vibration system 20A and the second vibration system 20B. End control.
実施の形態2.
 次に、本発明の実施の形態2について説明する。図6に示すように、本実施の形態に係る制御システム1は、第1の位相同期回路10Aと、第2の位相同期回路10Bと、監視部40と、第1の振動系20Aと、第2の振動系20Bと、を備える点は、上記実施の形態1に係る制御システム1の構成と同じである。
Embodiment 2.
Next, Embodiment 2 of the present invention will be described. As shown in FIG. 6, in the control system 1 according to the present embodiment, the first phase-locked loop 10A, the second phase-locked loop 10B, the monitoring unit 40, the first vibration system 20A, and the first vibration system 20A are used. The point that the vibration system 20B of 2 is provided is the same as the configuration of the control system 1 according to the first embodiment.
 上記実施の形態1に係る第1の位相同期回路10Aでは、位相シフト部12は、第1の振動系20Aから出力され増幅された検出信号の位相をシフトした。これに対して、本実施の形態に係る第1の位相同期回路10Aでは、位相シフト部12は、電圧制御発振部15から出力された信号、すなわち増幅される前の第1の振動系20Aに入力される駆動信号の位相をシフトさせる。位相シフト量θだけ位相がシフトした信号は、位相比較部13に入力される。 In the first phase-locked loop 10A according to the first embodiment, the phase shift unit 12 shifts the phase of the detected signal output and amplified from the first vibration system 20A. On the other hand, in the first phase-locked loop 10A according to the present embodiment, the phase shift unit 12 is connected to the signal output from the voltage control oscillation unit 15, that is, the first vibration system 20A before being amplified. Shifts the phase of the input drive signal. A signal whose phase is shifted by the phase shift amount θ is input to the phase comparison unit 13.
 このように、本実施の形態では、第1の振動系20Aの駆動信号、すなわち出力信号の位相を、検出信号、すなわち入力信号の位相に対してシフトさせる。このようにしても、第1の振動系20Aの振動周波数を変化させ、第1の振動系20Aと第2の振動系20Bとの間の同調振動を抑制することが可能である。 As described above, in the present embodiment, the phase of the drive signal of the first vibration system 20A, that is, the output signal is shifted with respect to the phase of the detection signal, that is, the input signal. Even in this way, it is possible to change the vibration frequency of the first vibration system 20A and suppress the synchronized vibration between the first vibration system 20A and the second vibration system 20B.
 本実施の形態では、監視部40の処理は、図5に示す処理と同じである。監視部40は、第1の振動系20Aと第2の振動系20Bとの同調振動を抑制しつつ、第1の振動系20A及び第2の振動系20Bの検出信号の振幅レベルが一定範囲に収まるような制御を行う。 In the present embodiment, the processing of the monitoring unit 40 is the same as the processing shown in FIG. The monitoring unit 40 keeps the amplitude level of the detection signals of the first vibration system 20A and the second vibration system 20B within a certain range while suppressing the synchronized vibration between the first vibration system 20A and the second vibration system 20B. Control to fit.
実施の形態3.
 次に、本発明の実施の形態3について説明する。図7に示すように、本実施の形態に係る制御システム1は、調整部30を備えていない点が、上記実施の形態に係る制御システム1と異なる。本実施の形態では、位相シフト部12が、調整部30に相当する機能を有しており、ボリューム付きアンプ16が、調整部30に相当する機能を有している。監視部40は、第1の振動系20A及び第2の振動系20Bの振動状態の検出信号を監視し、第1の振動系20Aと第2の振動系20Bとの同調振動を検出した場合に、位相シフト部12に位相シフト量θを変更させる。また、監視部40は、第1の振動系20A及び第2の振動系20Bの検出信号を監視して、ボリューム付きアンプ16に第1の振動系20A及び第2の振動系20Bの検出信号の振幅レベルを調整させる。また、監視部40は、同調振動を検出すると、位相シフト部12に位相シフト量θを変更させる。したがって、本実施の形態に係る制御システム1は、上記実施の形態に係る制御システム1と同様に、ボリューム付きアンプ16の増幅部の増幅率と位相シフト部12の位相シフト量θとを調整可能である。
Embodiment 3.
Next, Embodiment 3 of the present invention will be described. As shown in FIG. 7, the control system 1 according to the present embodiment is different from the control system 1 according to the above embodiment in that the adjustment unit 30 is not provided. In the present embodiment, the phase shift unit 12 has a function corresponding to the adjustment unit 30, and the volume-equipped amplifier 16 has a function corresponding to the adjustment unit 30. The monitoring unit 40 monitors the detection signals of the vibration states of the first vibration system 20A and the second vibration system 20B, and detects the synchronized vibration between the first vibration system 20A and the second vibration system 20B. , The phase shift unit 12 is made to change the phase shift amount θ. Further, the monitoring unit 40 monitors the detection signals of the first vibration system 20A and the second vibration system 20B, and the volume-equipped amplitude amplifier 16 monitors the detection signals of the first vibration system 20A and the second vibration system 20B. Adjust the amplitude level. Further, when the monitoring unit 40 detects the tuning vibration, the phase shift unit 12 causes the phase shift unit 12 to change the phase shift amount θ. Therefore, the control system 1 according to the present embodiment can adjust the amplification factor of the amplification unit of the amplifier 16 with a volume and the phase shift amount θ of the phase shift unit 12 as in the control system 1 according to the above embodiment. Is.
 なお、上記実施の形態1~3に係る制御システム1は、第2の振動系20Bの振動状態を、第2の位相同期回路10Bで制御した。しかしながら、これには限られない。第2の位相同期回路10Bを備える必要はない。位相同期しない場合、第2の振動系20Bは、共振周波数から明らかに外れた周期信号を入力して非共振で駆動される。非共振時には、共振時のように小さい信号レベルで効率よく駆動できないため、大きな信号レベルを入力する必要があるものの、温度等による共振の影響を考えず、周波数固定で駆動できるというメリットがある。 The control system 1 according to the above-described first to third embodiments controls the vibration state of the second vibration system 20B by the second phase-locked loop 10B. However, it is not limited to this. It is not necessary to include the second phase-locked loop 10B. When the phase is not synchronized, the second vibration system 20B is driven non-resonantly by inputting a periodic signal clearly deviating from the resonance frequency. At the time of non-resonance, it is not possible to drive efficiently with a small signal level as in the case of resonance, so it is necessary to input a large signal level, but there is an advantage that it can be driven with a fixed frequency without considering the influence of resonance due to temperature or the like.
 非共振の駆動回路は、チャージアンプ11及びボリューム付きアンプ16を備える。それらの増幅率を変更することにより、第2の振動系20Bの振動制御が行われる。駆動信号の信号レベルは、ボリューム付きアンプ16等で調整される。 The non-resonant drive circuit includes a charge amplifier 11 and an amplifier 16 with a volume. By changing their amplification factors, the vibration of the second vibration system 20B is controlled. The signal level of the drive signal is adjusted by an amplifier 16 with a volume or the like.
 例えば、プロジェクタでは、二次元走査において、垂直方向の走査線数が規格で決まっているため、垂直方向の周期は固定とする必要がある。垂直方向の駆動が位相同期回路による共振ロックであると温度等の影響で周期がぶれてしまうため、垂直方向の振動の制御は、非共振駆動で行うのが望ましい。なお、駆動信号には、水晶クロックに同期する安定した周期信号、例えば、水晶クロックで動作するマイコンで生成される信号を用いるのが望ましい。 For example, in a projector, in two-dimensional scanning, the number of scanning lines in the vertical direction is determined by the standard, so it is necessary to fix the period in the vertical direction. If the drive in the vertical direction is a resonance lock by a phase-locked loop, the period will fluctuate due to the influence of temperature and the like, so it is desirable to control the vibration in the vertical direction by non-resonant drive. As the drive signal, it is desirable to use a stable periodic signal synchronized with the crystal clock, for example, a signal generated by a microcomputer operating on the crystal clock.
 以上詳細に説明したように、上記実施の形態によれば、位相比較部13に入力される第1の振動系20Aの検出信号と駆動信号とのいずれか一方の位相を、調整可能なシフト量でシフトさせる位相シフト部12を備えている。これにより、第1の振動系20Aの振動周波数を変更することができるので、固有の共振周波数を有する振動系の同調を防ぐことができる。 As described in detail above, according to the above embodiment, the phase of either the detection signal or the drive signal of the first vibration system 20A input to the phase comparison unit 13 can be adjusted by a shift amount. It is provided with a phase shift unit 12 for shifting with. As a result, the vibration frequency of the first vibration system 20A can be changed, so that tuning of the vibration system having a unique resonance frequency can be prevented.
 ここでは、上記実施の形態1のように、位相シフト部12は、第1の振動系20Aへの駆動信号の位相を、検出信号に対してシフトさせることとしてもよいし、上記実施の形態2のように、位相シフト部12は、第1の振動系20Aの検出信号の位相を、駆動信号に対してシフトさせることとしてもよい。 Here, as in the first embodiment, the phase shift unit 12 may shift the phase of the drive signal to the first vibration system 20A with respect to the detection signal, or the second embodiment. As described above, the phase shift unit 12 may shift the phase of the detection signal of the first vibration system 20A with respect to the drive signal.
 上記実施の形態によれば、監視部40は、調整部30に、第1の振動系20A及び第2の振動系20Bから出力される検出信号の振幅レベルが一定の範囲に収まるように、ボリューム付きアンプ16の増幅率を調整させた。このようにすれば、位相シフト部12により与えられた位相シフト量θによる第1の振動系20Aの振幅の低下を防止することができる。 According to the above embodiment, the monitoring unit 40 has a volume so that the amplitude level of the detection signal output from the first vibration system 20A and the second vibration system 20B is within a certain range in the adjustment unit 30. The amplification factor of the attached amplifier 16 was adjusted. By doing so, it is possible to prevent a decrease in the amplitude of the first vibration system 20A due to the phase shift amount θ given by the phase shift unit 12.
 また、上記実施の形態に係る制御システム1は、第1の振動系20A及び第2の振動系20Bの振動状態の検出信号を監視し、第1の振動系20Aと第2の振動系20Bとの同調振動を検出した場合に、第1の位相同期回路10Aの位相シフト部12の位相シフト量θを変更させる監視部40を備えることとした。このようにすれば、位相シフト量θを可変として、第1の振動系20Aと第2の振動系20Bとの同調振動を確実に防止することができる。 Further, the control system 1 according to the above embodiment monitors the detection signals of the vibration states of the first vibration system 20A and the second vibration system 20B, and the first vibration system 20A and the second vibration system 20B When the tuning vibration of the above is detected, the monitoring unit 40 for changing the phase shift amount θ of the phase shift unit 12 of the first phase synchronization circuit 10A is provided. By doing so, the phase shift amount θ can be made variable, and the synchronized vibration between the first vibration system 20A and the second vibration system 20B can be reliably prevented.
 また、位相シフト部12における位相シフト量θが固定であってもよい。予め第1の振動系20Aと第2の振動系20Bとの同調振動を防止する位相シフト量θが既知であれば、位相シフト部12における位相シフト量θを固定しても、第1の振動系20Aと第2の振動系20Bとの間の同調振動を防止することができる。 Further, the phase shift amount θ in the phase shift unit 12 may be fixed. If the phase shift amount θ that prevents the synchronized vibration between the first vibration system 20A and the second vibration system 20B is known in advance, even if the phase shift amount θ in the phase shift unit 12 is fixed, the first vibration It is possible to prevent the tuning vibration between the system 20A and the second vibration system 20B.
 しかしながら、温度・湿度等の周辺環境、第1の振動系20A、第2の振動系20Bの質量等の振動条件によって、共振周波数が変化することが一般的であるため、位相シフト量θが可変である位相シフト部12が設けられているのが望ましい。 However, since the resonance frequency generally changes depending on the surrounding environment such as temperature and humidity, and the vibration conditions such as the mass of the first vibration system 20A and the second vibration system 20B, the phase shift amount θ is variable. It is desirable that the phase shift unit 12 is provided.
 また、上記実施の形態では、監視部40は、第1の振動系20Aと第2の振動系20Bとの同調振動を検出した場合に、第1の位相同期回路10Aでロックされる周波数が低くなるように、位相シフト部12の位相シフト量θを変更する。一般に、ボリューム付きアンプ16の第1の振動系20Aの振幅レベルを上げて行けば、第1の振動系20Aの共振周波数も高くなる。したがって、第1の振動系20Aの振動周波数が低くなる方向に位相シフト量θを調整するようにすれば、第1の振動系20Aと第2の振動系20Bとの同調振動を確実に防止することができる。 Further, in the above embodiment, when the monitoring unit 40 detects the synchronized vibration between the first vibration system 20A and the second vibration system 20B, the frequency locked by the first phase-locked loop 10A is low. The phase shift amount θ of the phase shift unit 12 is changed so as to be. Generally, if the amplitude level of the first vibration system 20A of the amplifier 16 with a volume is increased, the resonance frequency of the first vibration system 20A also increases. Therefore, if the phase shift amount θ is adjusted in the direction in which the vibration frequency of the first vibration system 20A becomes lower, the synchronized vibration between the first vibration system 20A and the second vibration system 20B is surely prevented. be able to.
 なお、上記実施の形態では、調整部30が、ボリューム付きアンプ16の増幅率と、位相シフト部12の位相シフト量θを個別に調整するものとした。しかしながら、これには限られない。第1の振動系20Aの共振周波数は、ボリューム付きアンプ16の増幅率に従って変化する。具体的には、ボリューム付きアンプ16の増幅率が大きくなればなるほど、第1の振動系20Aの共振周波数は、高くなる方に変化する。このような関係を利用して、調整部30が、ボリューム付きアンプ16の増幅率と、位相シフト部12の位相シフト量θとを1つのパラメータを介して、一度に調整できるようにしてもよい。 In the above embodiment, the adjusting unit 30 individually adjusts the amplification factor of the amplifier 16 with a volume and the phase shift amount θ of the phase shift unit 12. However, it is not limited to this. The resonance frequency of the first vibration system 20A changes according to the amplification factor of the amplifier 16 with a volume. Specifically, as the amplification factor of the amplifier 16 with volume increases, the resonance frequency of the first vibration system 20A changes toward higher. Utilizing such a relationship, the adjusting unit 30 may be able to adjust the amplification factor of the amplifier 16 with a volume and the phase shift amount θ of the phase shift unit 12 at one time via one parameter. ..
 なお、上記実施の形態では、第1の振動系20A及び第2の振動系20Bの振動状態を制御するものとした。しかしながら、本発明はこれには限られない。第2の振動系20Bは、第2の位相同期回路10Bで制御されなくてもよい。この場合であっても、第1の位相同期回路10Aの位相シフト部12により、第1の振動系20Aと第2の振動系20Bとの同調振動を抑制することが可能となる。 In the above embodiment, the vibration states of the first vibration system 20A and the second vibration system 20B are controlled. However, the present invention is not limited to this. The second vibration system 20B does not have to be controlled by the second phase-locked loop 10B. Even in this case, the phase shift unit 12 of the first phase-locked loop 10A can suppress the synchronized vibration between the first vibration system 20A and the second vibration system 20B.
 また、上記実施の形態では、第1の振動系20A及び第2の振動系20Bのうち、振動周波数が高い第1の振動系20Aを制御する第1の位相同期回路10Aの方について、検出信号及び駆動信号の位相をシフトさせるものとした。このようにした方が、同調を抑制し易いためである。しかしながら、本発明はこれには限られない。振動周波数の低い第2の振動系20Bを制御する第2の位相同期回路10Bに位相シフト部12を設けるようにしてもよい。 Further, in the above embodiment, among the first vibration system 20A and the second vibration system 20B, the detection signal is obtained for the first phase synchronization circuit 10A that controls the first vibration system 20A having a high vibration frequency. And the phase of the drive signal is to be shifted. This is because it is easier to suppress the entrainment in this way. However, the present invention is not limited to this. The phase shift unit 12 may be provided in the second phase-locked loop 10B that controls the second vibration system 20B having a low vibration frequency.
 また、上記実施の形態では、それぞれ固有の共振周波数を有する2つの振動系、すなわち第1の振動系20A及び第2の振動系20Bの振動制御を行う場合について説明した。しかしながら、本発明はこれには限られない。固有の共振周波数を有する3つ以上の振動系を備えるシステムにも適用することができる。例えば、X、Y、Z軸回りに反射ミラーを揺動させるシステムについて同調振動を抑制するのに、本発明を適用することができる。 Further, in the above embodiment, a case where vibration control of two vibration systems having their own unique resonance frequencies, that is, the first vibration system 20A and the second vibration system 20B, has been described. However, the present invention is not limited to this. It can also be applied to a system having three or more vibration systems having a unique resonance frequency. For example, the present invention can be applied to suppress tuning vibrations in a system that swings a reflective mirror around the X, Y, and Z axes.
 3つの振動系の同調振動を抑制する場合、3つの振動系のうち、少なくとも2つの振動系を制御する位相同期回路が位相シフト部12を備えていればよい。このことは、振動系の数が4つ以上の場合も同様である。 When suppressing the synchronized vibration of the three vibration systems, it is sufficient that the phase-locked loop that controls at least two of the three vibration systems includes the phase shift unit 12. This also applies when the number of vibration systems is four or more.
 なお、上記実施の形態では、レーザ光を二次元走査する反射ミラーとしてのMEMSミラーを制御する制御システムであった。しかしながら、本発明はこれには限られない。反射ミラーは、より大型のポリゴンミラー又はガルバノミラー等であってもよい。また、超音波を2次元走査する反射ミラーを制御する制御システムにも適用することができる。この他、それぞれが固有の共振周波数を有する複数の振動系を備えるものであれば、この制御システム1を適用することができる。 In the above embodiment, the control system controls the MEMS mirror as a reflection mirror that scans the laser beam two-dimensionally. However, the present invention is not limited to this. The reflection mirror may be a larger polygon mirror, a galvano mirror, or the like. It can also be applied to a control system that controls a reflection mirror that scans ultrasonic waves two-dimensionally. In addition, this control system 1 can be applied as long as it includes a plurality of vibration systems, each of which has a unique resonance frequency.
 また、制御対象となるものは、反射ミラー等に限られない。駆動信号により振動する振動系であれば、本発明を適用することができる。例えば、それぞれが共通の構成要素を有しないが、近傍に配置される独立した複数の振動系を制御する場合にも本発明を適用することができる。特に、共振周波数が同一である複数の振動系を有するシステムには好適である。 Also, what is controlled is not limited to reflection mirrors and the like. The present invention can be applied to any vibration system that vibrates by a drive signal. For example, the present invention can be applied even when controlling a plurality of independent vibration systems arranged in the vicinity of each other, although they do not have a common component. In particular, it is suitable for a system having a plurality of vibration systems having the same resonance frequency.
 上記実施の形態に係る制御システム1では、チャージアンプ11の増幅率を調整可能としてもよい。 In the control system 1 according to the above embodiment, the amplification factor of the charge amplifier 11 may be adjustable.
 なお、上記実施の形態では、監視部40は、第1の振動系20Aの検出信号と第2の振動系20Bの検出信号との両方を監視したが、いずれか一方の検出信号を監視するだけでもよい。 In the above embodiment, the monitoring unit 40 monitors both the detection signal of the first vibration system 20A and the detection signal of the second vibration system 20B, but only monitors one of the detection signals. But it may be.
 この発明は、この発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、この発明の範囲を限定するものではない。すなわち、この発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。 The present invention allows various embodiments and modifications without departing from the broad spirit and scope of the present invention. Further, the above-described embodiment is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is shown not by the embodiment but by the claims. Then, various modifications made within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
 なお、本願については、2020年12月25日に出願された日本国特許出願2020-217385号を基礎とする優先権を主張し、本明細書中に日本国特許出願2020-217385号の明細書、請求の範囲、図面全体を参照として取り込むものとする。 It should be noted that the present application claims priority based on Japanese Patent Application No. 2020-217385 filed on December 25, 2020, and the specification of Japanese Patent Application No. 2020-217385 is described in this specification. , Claims, the entire drawing shall be taken as a reference.
 本発明は、固有の共振周波数を有する振動系の振動状態を制御するのに適用することができる。 The present invention can be applied to control the vibration state of a vibration system having a unique resonance frequency.
 1 制御システム、10A 第1の位相同期回路、10B 第2の位相同期回路、11 チャージアンプ、12 位相シフト部、13 位相比較部、14 ループ・フィルタ、15 電圧制御発振部(VCO)、16 ボリューム付きアンプ、20A 第1の振動系、20B 第2の振動系、30 調整部、40 監視部、50 固定枠、51 可動枠、52 反射ミラー、53 第1のアクチュエータ、53a 駆動電極、53b 検出電極、54 第2のアクチュエータ、54a 駆動電極、54b 検出電極 1 Control system, 10A 1st phase synchronization circuit, 10B 2nd phase synchronization circuit, 11 charge amplifier, 12 phase shift section, 13 phase comparison section, 14 loop filter, 15 voltage control oscillator section (VCO), 16 volume With amplifier, 20A first vibration system, 20B second vibration system, 30 adjustment unit, 40 monitoring unit, 50 fixed frame, 51 movable frame, 52 reflection mirror, 53 first actuator, 53a drive electrode, 53b detection electrode , 54 second actuator, 54a drive electrode, 54b detection electrode

Claims (7)

  1.  出力信号の位相を入力信号の位相に同期させる位相同期回路であって、
     前記入力信号及び前記出力信号を入力し、入力した前記入力信号と前記出力信号との位相差を示す信号を出力する位相比較部と、
     前記位相比較部から出力された前記位相差を示す信号を平滑化するフィルタ部と、
     前記フィルタ部で平滑化された信号の大きさに応じて周波数が高くなる信号を、前記出力信号として出力する電圧制御発振部と、
     前記位相比較部に入力される前記入力信号と前記出力信号とのいずれか一方の位相を、調整可能なシフト量でシフトさせる位相シフト部と、
     前記出力信号を調整可能な増幅率で増幅して出力する増幅部と、
     を備える位相同期回路。
    A phase-locked loop that synchronizes the phase of the output signal with the phase of the input signal.
    A phase comparison unit that inputs the input signal and the output signal and outputs a signal indicating the phase difference between the input signal and the output signal.
    A filter unit that smoothes the signal indicating the phase difference output from the phase comparison unit, and a filter unit.
    A voltage control oscillator that outputs a signal whose frequency increases according to the magnitude of the signal smoothed by the filter unit as the output signal.
    A phase shift unit that shifts the phase of either the input signal or the output signal input to the phase comparison unit by an adjustable shift amount.
    An amplification unit that amplifies and outputs the output signal at an adjustable amplification factor,
    A phase-locked loop.
  2.  前記位相シフト部は、前記入力信号の位相を、前記出力信号に対してシフトさせる、
     請求項1に記載の位相同期回路。
    The phase shift unit shifts the phase of the input signal with respect to the output signal.
    The phase-locked loop according to claim 1.
  3.  前記位相シフト部は、前記出力信号の位相を、前記入力信号に対してシフトさせる、
     請求項1に記載の位相同期回路。
    The phase shift unit shifts the phase of the output signal with respect to the input signal.
    The phase-locked loop according to claim 1.
  4.  前記入力信号の振幅レベルが一定の範囲に収まるように、前記増幅部の増幅率が調整される、
     請求項1から3のいずれか一項に記載の位相同期回路。
    The amplification factor of the amplification unit is adjusted so that the amplitude level of the input signal falls within a certain range.
    The phase-locked loop according to any one of claims 1 to 3.
  5.  請求項1から4のいずれか一項に記載の位相同期回路としての第1の位相同期回路と、
     前記第1の位相同期回路から出力される出力信号を駆動信号として振動し、その振動状態の検出信号を前記第1の位相同期回路に入力される入力信号として出力する第1の振動系と、
     前記第1の振動系の検出信号を監視し、前記第1の振動系と他の振動系との同調振動を検出した場合に、前記第1の位相同期回路における位相シフト部のシフト量を変更させる監視部と、
     を備える制御システム。
    The first phase-locked loop as the phase-locked loop according to any one of claims 1 to 4.
    A first vibration system that vibrates an output signal output from the first phase-locked loop as a drive signal and outputs a detection signal of the vibration state as an input signal input to the first phase-locked loop.
    When the detection signal of the first vibration system is monitored and the synchronized vibration between the first vibration system and another vibration system is detected, the shift amount of the phase shift portion in the first phase synchronization circuit is changed. With the monitoring unit to let
    Control system with.
  6.  入力された駆動信号に従って振動し、その振動状態の検出信号を出力する前記他の振動系としての第2の振動系と、
     前記第2の振動系へ出力する駆動信号の位相を前記第2の振動系から出力される検出信号の位相に同期させる第2の位相同期回路と、
     を備え、
     前記監視部は、
     前記第2の振動系から出力される検出信号を監視し、前記第1の振動系と前記第2の振動系との同調振動を検出する、
     請求項5に記載の制御システム。
    A second vibration system as the other vibration system that vibrates according to the input drive signal and outputs a detection signal of the vibration state, and
    A second phase-locked loop that synchronizes the phase of the drive signal output to the second vibration system with the phase of the detection signal output from the second vibration system.
    Equipped with
    The monitoring unit
    The detection signal output from the second vibration system is monitored, and the synchronized vibration between the first vibration system and the second vibration system is detected.
    The control system according to claim 5.
  7.  前記監視部は、
     前記第1の振動系と前記他の振動系との同調振動を検出した場合に、前記第1の位相同期回路でロックされる周波数が低くなるように、前記位相シフト部のシフト量を変更する、
     請求項5又は6に記載の制御システム。
    The monitoring unit
    When the synchronized vibration between the first vibration system and the other vibration system is detected, the shift amount of the phase shift unit is changed so that the frequency locked by the first phase-locked loop becomes low. ,
    The control system according to claim 5 or 6.
PCT/JP2021/044028 2020-12-25 2021-12-01 Phase synchronization circuit and control system WO2022138025A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112021006656.0T DE112021006656T5 (en) 2020-12-25 2021-12-01 PHASE SYNCHRONIZATION CIRCUIT AND CONTROL SYSTEM
CN202180085308.9A CN116601540A (en) 2020-12-25 2021-12-01 Phase synchronization circuit and control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020217385A JP2022102572A (en) 2020-12-25 2020-12-25 Phase synchronization circuit and control system
JP2020-217385 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022138025A1 true WO2022138025A1 (en) 2022-06-30

Family

ID=82159055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044028 WO2022138025A1 (en) 2020-12-25 2021-12-01 Phase synchronization circuit and control system

Country Status (5)

Country Link
JP (1) JP2022102572A (en)
CN (1) CN116601540A (en)
DE (1) DE112021006656T5 (en)
TW (1) TW202225776A (en)
WO (1) WO2022138025A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09250930A (en) * 1996-03-15 1997-09-22 Aisin Seiki Co Ltd Angular velocity detecting device
JP2007158535A (en) * 2005-12-01 2007-06-21 Sharp Corp Phase locked loop circuit
JP2011118194A (en) * 2009-12-04 2011-06-16 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2012013529A (en) * 2010-06-30 2012-01-19 Sony Corp Oscillation device and angular velocity detection device
JP2018185286A (en) * 2017-02-08 2018-11-22 株式会社村田製作所 Resonator amplitude control system and resonator amplitude control method
US20190324263A1 (en) * 2018-04-23 2019-10-24 Microsoft Technology Licensing, Llc Phase control device and method for multi-resonance system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09250930A (en) * 1996-03-15 1997-09-22 Aisin Seiki Co Ltd Angular velocity detecting device
JP2007158535A (en) * 2005-12-01 2007-06-21 Sharp Corp Phase locked loop circuit
JP2011118194A (en) * 2009-12-04 2011-06-16 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2012013529A (en) * 2010-06-30 2012-01-19 Sony Corp Oscillation device and angular velocity detection device
JP2018185286A (en) * 2017-02-08 2018-11-22 株式会社村田製作所 Resonator amplitude control system and resonator amplitude control method
US20190324263A1 (en) * 2018-04-23 2019-10-24 Microsoft Technology Licensing, Llc Phase control device and method for multi-resonance system

Also Published As

Publication number Publication date
DE112021006656T5 (en) 2023-10-05
CN116601540A (en) 2023-08-15
TW202225776A (en) 2022-07-01
JP2022102572A (en) 2022-07-07

Similar Documents

Publication Publication Date Title
JP6012276B2 (en) Deflection device for a scanner performing Lissajous scanning
US20120307211A1 (en) Deflection device for a projection apparatus, projection apparatus for projecting an image and method for controlling a deflection apparatus for a projection apparatus
US4859846A (en) Dual-mode resonant scanning system
JP6098349B2 (en) Oscillation device, scanning scanner device, information terminal, phase shift amount adjusting device, and phase shift amount adjusting method
US8143561B2 (en) MEMS scan controller generating clock frequency and control method thereof
US8847693B2 (en) Method and system for using a MEMS structure as a timing source
US8325407B2 (en) Oscillating device, optical scanning device using the same, image display apparatus, and control method of the oscillating device
JP2024509314A (en) Microscanner with projection system and coupled oscillator for projecting Lissajous figures
CN110389442B (en) Mirror driving device, optical scanning control device, and mirror driving method
JP5213284B2 (en) Resonator and oscillator using the same
JP2008134601A (en) Image forming apparatus
JP2019133133A (en) Scanning reflector system
JP2009192640A (en) Oscillator device and optical deflector
WO2022138025A1 (en) Phase synchronization circuit and control system
US5047630A (en) Modified dual-mode resonant scanning system
JP2009058616A (en) Oscillating body apparatus, light deflector and image forming apparatus using the same
JP2013003526A (en) Optical scanning device
JP2010048928A (en) Oscillating body device and light deflector using the same
JP6380571B2 (en) Oscillation device, scanning scanner device, information terminal, phase shift amount adjusting device, and phase shift amount adjusting method
JP7161094B2 (en) SCANNING DRIVE DEVICE, OPTICAL SCANNING CONTROL DEVICE, AND DRIVING WAVEFORM GENERATION METHOD
JP2013160953A (en) Oscillating device, optical scanner using the same, image display device and control method of oscillating device
KR101458837B1 (en) Oscillation Control Method for Dual Mass Gyroscope
JP2004309476A (en) Oscillation type micro gyro sensor
KR20090007041A (en) Reverse vibration dual mass elements typed micro gyroscope and control method thereof
JP2009042579A (en) Optical deflector and method of suppressing jitter of rocking body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910177

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180085308.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112021006656

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910177

Country of ref document: EP

Kind code of ref document: A1