WO2022133761A1 - 一种弯管钻井液流变性的现场测量方法 - Google Patents

一种弯管钻井液流变性的现场测量方法 Download PDF

Info

Publication number
WO2022133761A1
WO2022133761A1 PCT/CN2020/138476 CN2020138476W WO2022133761A1 WO 2022133761 A1 WO2022133761 A1 WO 2022133761A1 CN 2020138476 W CN2020138476 W CN 2020138476W WO 2022133761 A1 WO2022133761 A1 WO 2022133761A1
Authority
WO
WIPO (PCT)
Prior art keywords
drilling fluid
site
model
friction coefficient
formula
Prior art date
Application number
PCT/CN2020/138476
Other languages
English (en)
French (fr)
Inventor
谢登攀
曾琦军
Original Assignee
四川维泰科创石油设备制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川维泰科创石油设备制造有限公司 filed Critical 四川维泰科创石油设备制造有限公司
Priority to PCT/CN2020/138476 priority Critical patent/WO2022133761A1/zh
Priority to US17/709,467 priority patent/US20220228961A1/en
Publication of WO2022133761A1 publication Critical patent/WO2022133761A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/14Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by using rotary bodies, e.g. vane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2823Raw oil, drilling fluid or polyphasic mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/16Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by measuring damping effect upon oscillatory body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N2011/0006Calibrating, controlling or cleaning viscometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N2011/0026Investigating specific flow properties of non-Newtonian fluids
    • G01N2011/0033Yield stress; Residual stress at zero shear rate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N2011/0026Investigating specific flow properties of non-Newtonian fluids
    • G01N2011/004Stress relaxation time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N2011/006Determining flow properties indirectly by measuring other parameters of the system

Definitions

  • the invention relates to the field of petroleum downhole construction, in particular to a method for on-site measurement of the rheological properties of drilling fluid in bent pipes.
  • Accurate mud properties are critical to optimizing drilling operations, especially the effect of mud density and rheological properties on optimal management of wellbore pressure. Accurate measurement of mud density and rheology plays a more important role in narrow-window drilling operations, especially in the field of advanced drilling techniques, including MPD (Managed Pressure Drilling) and DGD dual-mud system drilling.
  • MPD Managed Pressure Drilling
  • DGD Dual-mud system drilling.
  • the detection methods of drilling fluid rheology mainly include rotation method and tube flow method.
  • the current tube flow method drilling fluid online rheological detection device uses a straight tube for measurement. Due to its large size, the field space is greatly changed, resulting in great restrictions on field applications. At the same time, the size requirements lead to measurement accuracy. poor.
  • the technical problem to be solved by the present invention is to provide an on-site measurement method for the rheological property of drilling fluid in a bent pipe, so as to improve the accuracy of the rheological measurement of the drilling fluid.
  • Step 1 Obtain the relationship constant between the friction coefficients of the pipeline by offline checking
  • Step 2 calculate the Reynolds number Re ei of the on-site elbow pipe according to the on-site elbow friction coefficient f ci ;
  • Step 3 according to the relationship constant between the friction coefficients of the pipeline and the Reynolds number Re ei of the on-site curved pipe, calculate the actual shear stress ⁇ w i of the on-site curved pipe drilling fluid, where i is the number of times the on-site drilling fluid flows through the on-site curved pipe, is a positive integer not less than 2;
  • Step, 4 according to the actual shear stress ⁇ w i of the drilling fluid and the well fluid shear rate ⁇ to establish a plurality of field models;
  • Step 5 Determine the best on-site model according to the correlation between the actual shear stress ⁇ wi and the predicted shear stress in the multiple on-site models;
  • Step 6 Perform on-site measurement of drilling fluid rheology according to the best on-site model.
  • the relationship constant between the friction coefficients of the pipelines can be obtained by off-line checking, and the relationship constants between the friction coefficients of the pipelines of different specifications and types of drilling fluids can be obtained, avoiding the on-site measurement of the rheological properties of the drilling fluids. Due to the inaccuracy of rheological measurement caused by different drilling fluids, the accuracy of rheological measurement of drilling fluid is improved. At the same time, the optimal field model is determined according to the correlation between the actual shear stress ⁇ wi and the predicted shear stress in multiple field models to ensure the accuracy of the field drilling fluid measurement.
  • the present invention can also be improved as follows.
  • step 1 includes:
  • Step 11 Calculate the bending friction coefficient f ck of the drilling fluid in the offline pipe bend and the straight pipe friction coefficient f sk in the offline straight pipe, where k is the number of times the drilling fluid flows in the offline pipe, which is not less than a positive integer of 2;
  • Step 12 establish a plurality of prediction models according to the actual friction coefficient ratio y k , wherein,
  • Step 13 Determine the best prediction model according to the correlation between the actual friction coefficient ratio yk and the predicted friction coefficient ratios of the multiple prediction models;
  • Step 14 Obtain the relationship constant between the friction coefficients of the pipeline according to the best prediction model.
  • the beneficial effect of adopting the above-mentioned further scheme is: by combining drilling fluid in the pipeline of the off-line bent pipe and straight pipe, by measuring and calculating the actual friction coefficient in the off-line pipeline, and establishing multiple prediction models, finally, according to the actual friction coefficient ratio
  • the correlation between y i and the ratios of the predicted friction coefficients of a plurality of the prediction models respectively determines the best prediction model, which ensures the accuracy of the prediction model selection; the constant parameter of the relationship between the pipeline friction coefficients in the selected prediction model is used.
  • multiple prediction models and correlation analysis were carried out to ensure the accuracy of the constant parameters of the relationship between the friction coefficients of different types of drilling fluids, and to avoid a single friction coefficient of the pipeline. Relational constant parameters applied to inaccuracy in field measurements of drilling fluids.
  • the present invention can also be improved as follows.
  • d tc1 is the inner diameter of the off-line elbow, the unit is m;
  • ⁇ 1 is the density of off-line drilling fluid, the unit is kg/m 3 ;
  • v ck is the flow rate of the kth drilling fluid in the off-line elbow, in m/s;
  • ⁇ P ck / ⁇ L ck is the measured average pressure difference of off-line pipeline (kPa/m); ⁇ P ck is the total pressure difference (kPa) of the length of ⁇ L ck ;
  • d ts1 is the inner diameter of the off-line straight pipe, the unit is m;
  • ⁇ 1 is the density of drilling fluid, the unit is kg/m 3 ;
  • v sk is the flow rate of the kth drilling fluid in the straight pipe, in m/s;
  • ⁇ P sk / ⁇ L sk is the measured average pressure difference (kPa/m); ⁇ P sk is the total pressure difference (kPa) of the length of ⁇ L sk .
  • the beneficial effect of adopting the above-mentioned further scheme is: by measuring the average pressure difference between the straight pipe and the curved pipe, and then calculating the bending friction coefficient f ck of the drilling fluid in the curved pipe and the straight pipe friction coefficient f sk in the straight pipe , to ensure the accuracy of friction coefficient calculation.
  • the present invention can also be improved as follows.
  • the prediction model includes at least three, which are:
  • the first prediction model is:
  • the second prediction model is:
  • the third prediction model is:
  • a, b, c are the relationship constants between the friction coefficients of the pipeline
  • D nk is the fluid Dean number of the kth drilling fluid in the off-line elbow, which satisfies the requirements of formula (6);
  • ⁇ 1 is the offline drilling fluid viscosity, Pa.s;
  • v ck is the flow rate of the kth drilling fluid in the off-line elbow, the unit is m/s.
  • the beneficial effect of adopting the above-mentioned further scheme is that a plurality of prediction models related to the fluid Dean number are set to ensure the accuracy of calculation.
  • the present invention can also be improved as follows.
  • step 13 The specific operations of the step 13 are:
  • n is the number of samples
  • the beneficial effect of adopting the above-mentioned further scheme is that the final model for offline correction is selected through the correlation between the actual friction coefficient ratio y i and the predicted friction coefficient ratio of each prediction model, which can ensure the accuracy of offline model selection.
  • the present invention can also be improved as follows.
  • d tc2 is the inner diameter of the on-site elbow, the unit is m;
  • ⁇ 2 is the density of drilling fluid on site, the unit is kg/m3;
  • vci is the flow rate of the i-th drilling fluid in the field bend, in m/s;
  • ⁇ P ci / ⁇ L ci is the average pressure difference (kPa/m) of the measured on-site elbow pipe; ⁇ P ci is the total pressure difference (kPa) of the length of ⁇ L ci .
  • the beneficial effect of adopting the above-mentioned further scheme is that the friction coefficient fci of the field elbow can be accurately calculated by the above-mentioned method.
  • the present invention can also be improved as follows.
  • the calculation of the Reynolds number Re ei of the on-site elbow pipe in the step 2 includes:
  • the beneficial effects of adopting the above-mentioned further scheme are: calculating the Reynolds number Re ei of the on-site elbow pipe through the above method, and using different offline models to correspond to different calculation methods to ensure the accuracy of the calculation of the on-site elbow pipe Reynolds number Re ei .
  • the present invention can also be improved as follows.
  • vci is the flow rate of the i-th drilling fluid in the field bend, in m/s;
  • ⁇ 2 is the density of drilling fluid on site, the unit is kg/m3;
  • the beneficial effect of adopting the above-mentioned further scheme is: adopting the above-mentioned method for calculation to ensure the accuracy of the calculation.
  • the present invention can also be improved as follows.
  • the field model includes at least three, which are:
  • YP is the yield strength of drilling fluid on site, the unit is Pa;
  • PV is the plastic viscosity of the drilling fluid on site, in Pa s;
  • n is the on-site drilling fluid fluidity index, dimensionless
  • K is the on-site drilling fluid consistency coefficient, in Pa ⁇ s ⁇ n;
  • ⁇ 0 is the dynamic shear force of the drilling fluid on site, and the unit is Pa.
  • the beneficial effect of adopting the above-mentioned further scheme is that the rheological parameters are selected through three different field models, so as to ensure that the optimal field model can be found for different drilling fluids.
  • the present invention can also be improved as follows.
  • step 5 The specific operations of step 5 are:
  • n is the number of samples
  • ⁇ w i is the actual shear stress
  • the beneficial effect of adopting the above-mentioned further scheme is that the final model measured in the field is selected by the correlation between the actual shear stress ⁇ wi and the ratio of the predicted friction coefficient of each field model, which can ensure the accuracy of the field model selection.
  • Fig. 1 is the control flow chart of embodiment one of the field measurement method of the present invention
  • FIG. 2 is a control flow chart of Embodiment 1 of the offline checking method in the present invention.
  • FIG. 1 for a control flow chart of Embodiment 1 of the on-site measurement method of the present invention.
  • a method for on-site measurement of the rheological properties of drilling fluid in a bent pipe comprising the following steps:
  • Step 1 Obtain the relationship constant between the friction coefficients of the pipeline by offline checking
  • Step 2 calculate the Reynolds number Re ei of the on-site elbow pipe according to the on-site elbow friction coefficient f ci ;
  • Step 3 Calculate the actual shear stress ⁇ w i of the drilling fluid in the bending pipe according to the relationship constant between the friction coefficients of the pipe and the Reynolds number Re ei of the bending pipe in the field, where i is the number of times the drilling fluid flows through the bending pipe in the field, and is not. a positive integer less than 2;
  • Step, 4 establish a plurality of field models according to the actual shear stress ⁇ wi of the drilling fluid and the shear rate ⁇ of the well fluid;
  • Step 5 Determine the best field model according to the correlation between the actual shear stress ⁇ wi and the predicted shear stress in the multiple field models
  • step 6 the field measurement of drilling fluid rheology is carried out according to the best field model.
  • the relationship constant between the friction coefficients of the pipelines can be obtained by off-line checking, and the relationship constants between the friction coefficients of the pipelines of different specifications and types of drilling fluids can be obtained, which avoids the need to measure the drilling fluid flow on site.
  • the rheological measurement is inaccurate due to different drilling fluids, which improves the accuracy of the rheological measurement of drilling fluids.
  • the optimal field model is determined according to the correlation between the actual shear stress ⁇ wi and the predicted shear stress in multiple field models to ensure the accuracy of the field drilling fluid measurement.
  • step 7 will be executed, that is, according to the friction of the elbow, outside the fixed use time range, Return to step 1 to repeat the entire method.
  • the above-mentioned fixed use time range refers to the normal use time of the on-site measurement equipment once.
  • control flow chart of Embodiment 1 of the offline calibration method is shown in FIG. 2 .
  • step 1 includes:
  • Step 11 Calculate the bending friction coefficient f ck of the drilling fluid in the offline pipe bend and the straight pipe friction coefficient f sk in the offline straight pipe, where k is the number of times the drilling fluid flows in the offline pipe, which is not less than a positive integer of 2;
  • Step 12 establish a plurality of prediction models according to the actual friction coefficient ratio y k , wherein,
  • Step 13 Determine the best prediction model according to the correlation between the actual friction coefficient ratio yk and the predicted friction coefficient ratios of the multiple prediction models respectively;
  • step 14 the relationship constant between the friction coefficients of the pipeline is obtained according to the best prediction model.
  • f ck in step 11 satisfies the requirement of formula (1)
  • d tc1 is the inner diameter of the off-line elbow, the unit is m;
  • ⁇ 1 is the density of off-line drilling fluid, the unit is kg/m 3 ;
  • v ck is the flow rate of the kth drilling fluid in the off-line elbow, in m/s;
  • ⁇ P ck / ⁇ L ck is the measured average pressure difference of off-line pipeline (kPa/m); ⁇ P ck is the total pressure difference (kPa) of the length of ⁇ L ck ;
  • d ts1 is the inner diameter of the off-line straight pipe, the unit is m;
  • ⁇ 1 is the density of drilling fluid, the unit is kg/m 3 ;
  • v sk is the flow rate of the kth drilling fluid in the straight pipe, in m/s;
  • ⁇ P sk / ⁇ L sk is the measured average pressure difference (kPa/m); ⁇ P sk is the total pressure difference (kPa) of the length of ⁇ L sk .
  • V 1 is the total volume of off-line elbows, the unit is m 3 ;
  • len 1 is the length of the off-line elbow, in m.
  • the prediction models include at least three, which are:
  • the first prediction model is:
  • the second prediction model is:
  • the third prediction model is:
  • a, b, c are the relationship constants between the friction coefficients of the pipeline
  • D nk is the fluid Dean number of the kth drilling fluid in the off-line elbow, which satisfies the requirements of formula (6);
  • ⁇ 1 is the offline drilling fluid viscosity, Pa.s;
  • v ck is the flow rate of the kth drilling fluid in the off-line elbow, the unit is m/s.
  • step 13 The specific operations of step 13 are:
  • n is the number of samples
  • fci in step 2 satisfies the requirement of formula (10),
  • d tc2 is the inner diameter of the on-site elbow, the unit is m;
  • ⁇ 2 is the density of drilling fluid on site, the unit is kg/m3;
  • vci is the flow velocity of the i-th drilling fluid in the field elbow, in m/s;
  • ⁇ P ci / ⁇ L ci is the average pressure difference of the measured field elbow pipe (kPa/m); ⁇ P ci is the total pressure difference of the length of ⁇ L ci (kPa);
  • V 2 is the total volume of the on-site elbow, the unit is m3;
  • len 2 is the length of the on-site elbow, in m.
  • the calculation of the Reynolds number Re ei of the on-site elbow pipe in step 2 includes:
  • step 3 the shear stress ⁇ w i of the bent pipe drilling fluid satisfies the requirements of formula (15),
  • vci is the flow rate of the i-th drilling fluid in the field bend, in m/s;
  • ⁇ 2 is the density of drilling fluid on site, the unit is kg/m3;
  • the field model includes at least three, which are:
  • YP is the yield strength of drilling fluid on site, the unit is Pa;
  • PV is the plastic viscosity of the drilling fluid on site, in Pa s;
  • n is the on-site drilling fluid fluidity index, dimensionless
  • K is the on-site drilling fluid consistency coefficient, in Pa ⁇ s ⁇ n;
  • ⁇ 0 is the dynamic shear force of the drilling fluid on site, and the unit is Pa.
  • step 5 the specific operations of step 5 are:
  • n is the number of samples
  • ⁇ w i is the actual shear stress
  • the off-line elbow adopts a spiral tube
  • the offline first drilling fluid density ⁇ 1 1003kg/m 3 .
  • the number of times k of the offline first drilling fluid flows in the pipeline is 24 times.
  • the average pressure difference ⁇ P ck / ⁇ L ck of off-line bent pipe and the average pressure difference ⁇ P sk / ⁇ L sk of off-line straight pipe are also shown in the table below.
  • the average value of the drilling fluid viscosity ⁇ 1 of the offline first drilling fluid is 0.00711 Pa.s.
  • the fluid Dean number D nk of the first off-line drilling fluid in the elbow for a total of 24 times calculated according to formula (6) is shown in the following table.
  • the first prediction model is:
  • the second prediction model is:
  • the third prediction model is:
  • the correlation R 11 2 between the actual friction coefficient ratio y k and the predicted friction coefficient ratio of the first prediction model, the actual friction coefficient ratio y k and the first prediction model are calculated.
  • the measured parameters of the drilling fluid in the elbow are shown in the table below. Increase the flow rate of the drilling fluid in the elbow from low to high to keep the flow state of the drilling fluid as laminar flow.
  • Equation 15 the shear stress ⁇ w i of the drilling fluid in the bent on-site pipe is calculated to meet the requirements of Equation 15.
  • the specific parameters of ⁇ wi are shown in the following table.
  • Ni calculates the intermediate parameter Ni according to formula (17).
  • the binomial fitting method is used for processing, and the specific parameters are shown in the following table.
  • on-site first drilling fluid shear stress ⁇ w i and the on-site first drilling fluid shear rate ⁇ i there are at least three on-site models, which are:
  • PV 0.00354
  • YP 0.95267.
  • n 0.7991
  • K 0.0151
  • ⁇ 0 0.581.
  • the third field model has the best correlation and is more in line with the actual situation. Select the third field model as the final model, and use this model to calculate other viscosity data.
  • the viscosity data calculated by the first on-site model is directly selected as shown in the table below, and the deviation is obviously increased.
  • the parameters calculated by the optimal field model are determined by the correlation between the actual shear stress ⁇ wi and the predicted shear stress in multiple field models, and the reading error and temperature effect based on Fann35 are determined. , the results show that the matching is better and more accurate.
  • the offline second drilling fluid density ⁇ 1 1953 kg/m 3 .
  • the average pressure difference ⁇ P ck / ⁇ L ck of off-line bent pipe and the average pressure difference ⁇ P sk / ⁇ L sk of off-line straight pipe are also shown in the table below.
  • the average value of the drilling fluid viscosity of the offline second drilling fluid ⁇ 1 0.02639 Pa.s.
  • the first prediction model is:
  • the second prediction model is:
  • the third prediction model is:
  • the correlation R 11 2 between the actual friction coefficient ratio y k and the predicted friction coefficient ratio of the first prediction model, the actual friction coefficient ratio y k and the first prediction model are calculated.
  • the measured parameters of the drilling fluid in the bent pipe are shown in the table below. Increase the flow rate of the drilling fluid in the bent pipe from low to high to keep the drilling flow state as laminar flow.
  • Equation 15 the shear stress ⁇ w i of the drilling fluid in the bent on-site pipe is calculated to meet the requirements of Equation 15.
  • the specific parameters of ⁇ wi are shown in the following table.
  • the intermediate parameter Ni is calculated according to formula ( 17 ), and the specific parameters are shown in the following table.
  • the shear rate ⁇ i of the second drilling fluid on site is calculated according to formula (16), and the specific parameters are shown in the table below.
  • on-site second drilling fluid shear stress ⁇ w i and the on-site second drilling fluid shear rate ⁇ i there are at least three on-site models, which are:
  • PV 0.026
  • YP 0.241.
  • the first and third field models correlate best, using the first and third field models as the final model, respectively, to calculate other viscosity data.
  • the viscosity data calculated by the second on-site model is directly selected as shown in the table below, and the deviation increases significantly.
  • the parameters calculated by the optimal field model are determined by the correlation between the actual shear stress ⁇ w i and the predicted shear stress in the multiple field models, which are consistent with the Fann35-based model. Reading error and temperature effect, the results show that the matching is better and more accurate.
  • the third embodiment is exemplified below.
  • the offline second drilling fluid density ⁇ 1 1227 kg/m 3 .
  • the number of times k 13 times the offline third drilling fluid flows through the pipeline.
  • the average pressure difference ⁇ P ck / ⁇ L ck of off-line bent pipe and the average pressure difference ⁇ P sk / ⁇ L sk of off-line straight pipe are also shown in the table below.
  • the average value of the drilling fluid viscosity ⁇ 1 of the offline third drilling fluid is 0.01455 Pa.s.
  • the first prediction model is:
  • the second prediction model is:
  • the third prediction model is:
  • the correlation R 11 2 between the actual friction coefficient ratio y k and the predicted friction coefficient ratio of the first prediction model, the actual friction coefficient ratio y k and the first prediction model are calculated.
  • the measured parameters of the drilling fluid in the bent pipe are shown in the table below. Increase the flow rate of the drilling fluid in the bent pipe from low to high to keep the drilling flow state as laminar flow.
  • the intermediate parameter Ni is calculated according to formula ( 17 ), and the specific parameters are shown in the following table.
  • on-site third drilling fluid shear stress ⁇ w i and the on-site third drilling fluid shear rate ⁇ i there are at least three on-site models, which are:
  • the second and third field models correlate best, using the second and third field models as the final models, respectively, to calculate other viscosity data.
  • the viscosity data calculated by the first on-site model is directly selected as shown in the table below, and the deviation increases significantly.
  • the parameters calculated by the optimal field model are determined by the correlation between the actual shear stress ⁇ w i and the predicted shear stress in the multiple field models, which are consistent with the Fann35-based model. Reading error and temperature effect, the results show that the matching is better and more accurate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Earth Drilling (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

一种弯管钻井液流变性的现场测量方法,包括以下步骤:步骤1,通过离线校核的方式获取管道摩擦系数间的关系常量;步骤2,根据f ci计算R ei;步骤3,根据关系常量和R ei计算现场弯管钻井液实际剪切应力τw i和剪切速率γ i;步骤4,根据τw i和γ i建立多个现场模型;步骤5,根据τw i分别与多个现场模型中的预测剪切应力的相关性确定最佳现场模型;步骤6,根据最佳现场模型进行钻井液流变性的现场测量。通过离线校核获取管道摩擦系数间的关系常量,可以获取不同规格类型钻井液的管道摩擦系数间的关系常量,避免了由于钻井液不同造成流变性测量的不准确,提高了钻井液流变性测量的准确性。

Description

一种弯管钻井液流变性的现场测量方法 技术领域
本发明涉及石油井下施工领域,具体涉及一种弯管钻井液流变性的现场测量方法。
背景技术
准确的泥浆性能对于优化钻井作业是至关重要的,尤其是泥浆的密度和流变性能对最优化管理井筒压力的影响。精确测量泥浆密度和流变性在窄窗口钻井作业中有更重要的作用,尤其在高级钻井技术领域,包括MPD(控压钻井)和DGD双泥浆体系钻井。
目前钻井液流变性的检测方法主要有旋转法和管流法。其中,当前管流法钻井液在线流变性检测装置使用直管进行测量,由于其尺寸较大,对现场空间的改动较大,导致现场应用会受到很大的限制,同时,尺寸要求导致测量精度较差。
发明内容
本发明所要解决的技术问题是提供一种弯管钻井液流变性的现场测量方法,提高钻井液流变性测量的准确性。
本发明解决上述技术问题的技术方案如下:一种弯管钻井液流变性的现场测量方法,包括以下步骤:
步骤1,通过离线校核的方式获取管道摩擦系数间的关系常量;
步骤2,根据现场弯管摩擦系数f ci计算现场弯管管道雷诺数R ei
步骤3,根据所述管道摩擦系数间的关系常量和现场弯管管道雷诺数R ei计算现场弯管钻井液实际剪切应力τw i,其中i为现场钻井液在现场弯管的流经次数,为不小于2的正整数;
步骤,4,根据所述钻井液实际剪切应力τw i和井液剪切速率γ建立多个 现场模型;
步骤5,根据实际剪切应力τw i分别与多个所述现场模型中的预测剪切应力的相关性确定最佳现场模型;
步骤6,根据所述最佳现场模型进行钻井液流变性的现场测量。
本发明的工作原理及有益效果是:通过离线校核的方式获取管道摩擦系数间的关系常量,可以获取不同规格类型钻井液的管道摩擦系数间的关系常量,避免了在现场测量钻井液流变性由于钻井液不同造成流变性测量的不准确,提高了钻井液流变性测量的准确性。同时,根据实际剪切应力τw i分别与多个现场模型中的预测剪切应力的相关性确定最佳现场模型,确保现场钻井液测量的准确性。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,所述步骤1包括:
步骤11,计算钻井液在离线弯管中的弯管摩擦系数f ck和在离线直管中的直管摩擦系数f sk,其中,k为钻井液在离线管道中的流经次数,为不小于2的正整数;
步骤12,根据实际摩擦系数比值y k建立多个预测模型,其中,
y k=f ck/f sk
步骤13,根据实际摩擦系数比值y k分别与多个所述预测模型的预测摩擦系数比值之间相关性确定最佳预测模型;
步骤14,根据所述最佳预测模型获取管道摩擦系数间的关系常量。
采用上述进一步方案的有益效果是:通过钻井液在离线的弯管和直管的管道组合,通过测量和计算离线管道中的实际摩擦系数,并建立多个预测模型,最后,根据实际摩擦系数比值y i分别与多个所述预测模型的预测摩擦系数比值之间相关性确定最佳预测模型,确保了预测模型选择的准确性;将选择的预测模型中的管道摩擦系数间的关系常量参数用于后续钻井液现场流变性测量中,通过多个预测模型并进行了相关性分析,确保不同类型的钻井 液的管道摩擦系数间的关系常量参数的准确性,避免了单一的管道摩擦系数间的关系常量参数应用于钻井液现场测量中的不准确性。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,所述步骤11的f ck满足公式(1)的要求,
Figure PCTCN2020138476-appb-000001
其中,d tc1为离线弯管的内径,单位为m;
ρ 1为离线钻井液密度,单位为kg/m 3
v ck为第k次钻井液在离线弯管中的流速,单位为m/s;
ΔP ck/ΔL ck是测出的离线管道平均压差(kPa/m);ΔP ck为长度为ΔL ck段的总压差(kPa);
所述步骤1的f sk满足公式(2)的要求,
Figure PCTCN2020138476-appb-000002
其中,d ts1为离线直管的内径,单位为m;
ρ 1为钻井液密度,单位为kg/m 3
v sk为第k次钻井液在直管中的流速,单位为m/s;
ΔP sk/ΔL sk是测出的管道平均压差(kPa/m);ΔP sk为长度为ΔL sk段的总压差(kPa)。
采用上述进一步方案的有益效果是:通过上述测量直管和弯管的管道平均压差,然后计算钻井液在弯管中的弯管摩擦系数f ck和在直管中的直管摩擦系数f sk,确保了摩擦系数计算的准确性。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,
所述预测模型至少包括三个,分别为:
第一预测模型为:
Figure PCTCN2020138476-appb-000003
第二预测模型为:
Figure PCTCN2020138476-appb-000004
第三预测模型为:
Figure PCTCN2020138476-appb-000005
其中,
Figure PCTCN2020138476-appb-000006
为第一预测模型的预测摩擦系数;
Figure PCTCN2020138476-appb-000007
为第二预测模型的预测摩擦系数;
Figure PCTCN2020138476-appb-000008
为第三预测模型的预测摩擦系数;
a,b,c为管道摩擦系数间的关系常量;
其中,D nk为第k次钻井液在离线弯管中的流体迪恩数,满足公式(6)要求;
Figure PCTCN2020138476-appb-000009
其中,
μ 1为离线钻井液粘度,Pa.s;
v ck为第k次钻井液在离线弯管中的流速,单位为m/s。
采用上述进一步方案的有益效果是:设置多个与流体迪恩数的预测模型,确保计算的准确性。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,
所述步骤13的具体操作为:
实际摩擦系数比值y k与第一预测模型的预测摩擦系数比值之间相关性R 11 2满足公式(7)要求
Figure PCTCN2020138476-appb-000010
实际摩擦系数比值y k与第二预测模型的预测摩擦系数比值之间相关性 R 12 2满足公式(8)要求
Figure PCTCN2020138476-appb-000011
实际摩擦系数比值y k与第三预测模型的预测摩擦系数比值之间相关性R 13 2满足公式(9)要求
Figure PCTCN2020138476-appb-000012
比较R 11 2、R 12 2和R 13 2之间的大小,选择相关性最好的预测模型最为最佳预测模型;
其中,
m为样本数;
y k为实际摩擦系数比值;
Figure PCTCN2020138476-appb-000013
为实际摩擦系数比值的平均值。
采用上述进一步方案的有益效果是:通过实际摩擦系数比值y i与各个预测模型的预测摩擦系数比值之间相关性来选择离线校正的最终模型,可以确保离线模型选择的准确性。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,
所述步骤2的f ci满足公式(10)的要求,
Figure PCTCN2020138476-appb-000014
其中,d tc2为现场弯管的内径,单位为m;
ρ 2为现场钻井液密度,单位为kg/m3;
v ci为第i次钻井液在现场弯管中的流速,单位为m/s;
ΔP ci/ΔL ci是测出的现场弯管管道平均压差(kPa/m);ΔP ci为长度为ΔL ci段的总压差(kPa)。
采用上述进一步方案的有益效果是:通过上述方法可以准确计算出现场弯管摩擦系数f ci
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,
所述步骤2中现场弯管管道雷诺数R ei的计算包括:
当离线模型为第一模型时,现场弯管管道雷诺数R ei满足公式(12)的要求,
Figure PCTCN2020138476-appb-000015
当离线模型为第二模型时,现场弯管管道雷诺数R ei满足公式(13)的要求,
Figure PCTCN2020138476-appb-000016
当离线模型为第三模型时,现场弯管管道雷诺数R ei满足公式(14)的要求,
Figure PCTCN2020138476-appb-000017
采用上述进一步方案的有益效果是:通过上述方法计算现场弯管管道雷诺数R ei,通过不同的离线模型对应不同的计算方式,确保现场弯管管道雷诺数R ei计算的准确性。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,
所述步骤3中弯管钻井液剪切应力τw i满足公式(15)要求,
Figure PCTCN2020138476-appb-000018
其中,
v ci为第i次钻井液在现场弯管中的流速,单位为m/s;
ρ 2为现场钻井液密度,单位为kg/m3;
所述钻井液剪切速率γ i满足公式(16)要求,
Figure PCTCN2020138476-appb-000019
其中,N满足公式(17)的要求
Figure PCTCN2020138476-appb-000020
采用上述进一步方案的有益效果是:采用上述方法计算确保计算的准确性。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,
所述现场模型至少包括三个,分别为:
第一现场模型为:
Figure PCTCN2020138476-appb-000021
第二现场模型为:
Figure PCTCN2020138476-appb-000022
第三现场模型为:
Figure PCTCN2020138476-appb-000023
其中,
YP为现场钻井液屈服强度,单位为Pa;
PV为现场钻井液塑性粘度,单位为Pa·s;
n为现场钻井液流性指数,无量纲;
K为现场钻井液稠度系数,单位为Pa·s^n;
τ 0为现场钻井液动切力,单位为Pa。
采用上述进一步方案的有益效果是:通过三种不同的现场模型来选择流变性参数,确保不同的钻井液都能够找到最优的现场模型。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,
所述步骤5的具体操作为:
实际剪切应力τw i与第一现场模型的预测剪切应力之间相关性R 21 2满足公式(21)要求
Figure PCTCN2020138476-appb-000024
实际剪切应力τw i与第二现场模型的预测剪切应力之间相关性R 22 2满足公式(22)要求
Figure PCTCN2020138476-appb-000025
实际剪切应力τw i与第三现场模型的预测剪切应力之间相关性R 23 2满足公式(23)要求
Figure PCTCN2020138476-appb-000026
比较R 21 2、R 22 2和R 23 2之间的大小,选择相关性最好的现场模型最为最终模型;
其中,
m为样本数;
τw i为实际剪切应力;
Figure PCTCN2020138476-appb-000027
为实际剪切应力的平均值。
采用上述进一步方案的有益效果是:通过实际剪切应力τw i与各个现场模型的预测摩擦系数比值之间相关性来选择现场测量的最终模型,可以确保现场模型选择的准确性。
附图说明
图1是本发明现场测量方法的实施例一控制流程图;
图2是本发明中离线校核方法的实施例一控制流程图。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
本发明现场测量方法的实施例一控制流程图参见图1。
一种弯管钻井液流变性的现场测量方法,包括以下步骤:
步骤1,通过离线校核的方式获取管道摩擦系数间的关系常量;
步骤2,根据现场弯管摩擦系数f ci计算现场弯管管道雷诺数R ei
步骤3,根据管道摩擦系数间的关系常量和现场弯管管道雷诺数R ei计算现场弯管钻井液实际剪切应力τw i,其中i为现场钻井液在现场弯管的流经次数,为不小于2的正整数;
步骤,4,根据钻井液实际剪切应力τw i和井液剪切速率γ建立多个现场模型;
步骤5,根据实际剪切应力τw i分别与多个现场模型中的预测剪切应力的相关性确定最佳现场模型;
步骤6,根据最佳现场模型进行钻井液流变性的现场测量。
本实施例的工作原理及有益效果是:通过离线校核的方式获取管道摩擦系数间的关系常量,可以获取不同规格类型钻井液的管道摩擦系数间的关系常量,避免了在现场测量钻井液流变性由于钻井液不同造成流变性测量的不准确,提高了钻井液流变性测量的准确性。同时,根据实际剪切应力τw i分别与多个现场模型中的预测剪切应力的相关性确定最佳现场模型,确保现场 钻井液测量的准确性。
在本实施例中,在最佳现场模型进行钻井液流变性的现场测量过程中,如果弯管的摩擦情况发生变化,会执行步骤7,即根据弯管摩擦情况,在固定使用时间范围外,返回步骤1进行重复整个方法。其中,上述固定使用时间范围是指现场测量设备一次的正常使用时间。
在本实施例中,离线校核方法的实施例一控制流程图参见图2,
即步骤1包括:
步骤11,计算钻井液在离线弯管中的弯管摩擦系数f ck和在离线直管中的直管摩擦系数f sk,其中,k为钻井液在离线管道中的流经次数,为不小于2的正整数;
步骤12,根据实际摩擦系数比值y k建立多个预测模型,其中,
y k=f ck/f sk
步骤13,根据实际摩擦系数比值y k分别与多个预测模型的预测摩擦系数比值之间相关性确定最佳预测模型;
步骤14,根据最佳预测模型获取管道摩擦系数间的关系常量。
其中,通过钻井液在离线的弯管和直管的管道组合,通过测量和计算离线管道中的实际摩擦系数,并建立多个预测模型,最后,根据实际摩擦系数比值y i分别与多个预测模型的预测摩擦系数比值之间相关性确定最佳预测模型,确保了预测模型选择的准确性;将选择的预测模型中的管道摩擦系数间的关系常量参数用于后续钻井液现场流变性测量中,通过多个预测模型并进行了相关性分析,确保不同类型的钻井液的管道摩擦系数间的关系常量参数的准确性,避免了单一的管道摩擦系数间的关系常量参数应用于钻井液现场测量中的不准确性。
具体的,步骤11的f ck满足公式(1)的要求,
Figure PCTCN2020138476-appb-000028
其中,d tc1为离线弯管的内径,单位为m;
ρ 1为离线钻井液密度,单位为kg/m 3
v ck为第k次钻井液在离线弯管中的流速,单位为m/s;
ΔP ck/ΔL ck是测出的离线管道平均压差(kPa/m);ΔP ck为长度为ΔL ck段的总压差(kPa);
步骤1的f sk满足公式(2)的要求,
Figure PCTCN2020138476-appb-000029
其中,d ts1为离线直管的内径,单位为m;
ρ 1为钻井液密度,单位为kg/m 3
v sk为第k次钻井液在直管中的流速,单位为m/s;
ΔP sk/ΔL sk是测出的管道平均压差(kPa/m);ΔP sk为长度为ΔL sk段的总压差(kPa)。
其中,
Figure PCTCN2020138476-appb-000030
其中,V 1为离线弯管总体积,单位为m 3
len 1为离线弯管的长度,单位为m。
在本实施例中,预测模型至少包括三个,分别为:
第一预测模型为:
Figure PCTCN2020138476-appb-000031
第二预测模型为:
Figure PCTCN2020138476-appb-000032
第三预测模型为:
Figure PCTCN2020138476-appb-000033
其中,
Figure PCTCN2020138476-appb-000034
为第一预测模型的预测摩擦系数;
Figure PCTCN2020138476-appb-000035
为第二预测模型的预测摩擦系数;
Figure PCTCN2020138476-appb-000036
为第三预测模型的预测摩擦系数;
a,b,c为管道摩擦系数间的关系常量;
其中,D nk为第k次钻井液在离线弯管中的流体迪恩数,满足公式(6)要求;
Figure PCTCN2020138476-appb-000037
其中,
μ 1为离线钻井液粘度,Pa.s;
v ck为第k次钻井液在离线弯管中的流速,单位为m/s。
步骤13的具体操作为:
实际摩擦系数比值y k与第一预测模型的预测摩擦系数比值之间相关性R 11 2满足公式(7)要求
Figure PCTCN2020138476-appb-000038
实际摩擦系数比值y k与第二预测模型的预测摩擦系数比值之间相关性R 12 2满足公式(8)要求
Figure PCTCN2020138476-appb-000039
实际摩擦系数比值y k与第三预测模型的预测摩擦系数比值之间相关性R 13 2满足公式(9)要求
Figure PCTCN2020138476-appb-000040
比较R 11 2、R 12 2和R 13 2之间的大小,选择相关性最好的预测模型最为最佳预测模型;
其中,
m为样本数;
y k为实际摩擦系数比值;
Figure PCTCN2020138476-appb-000041
为实际摩擦系数比值的平均值。
在本实施例中,步骤2的f ci满足公式(10)的要求,
Figure PCTCN2020138476-appb-000042
其中,d tc2为现场弯管的内径,单位为m;
ρ 2为现场钻井液密度,单位为kg/m3;
v ci为第i次钻井液在现场弯管中的流速,单位为m/s;
ΔP ci/ΔL ci是测出的现场弯管管道平均压差(kPa/m);ΔP ci为长度为ΔL ci段的总压差(kPa);
其中d tc2满足如公式(11)的要求:
Figure PCTCN2020138476-appb-000043
其中,V 2为现场弯管总体积,单位为m3;
len 2为现场弯管的长度,单位为m。
具体的,步骤2中现场弯管管道雷诺数R ei的计算包括:
当离线模型为第一模型时,现场弯管管道雷诺数R ei满足公式(12)的要求,
Figure PCTCN2020138476-appb-000044
当离线模型为第二模型时,现场弯管管道雷诺数R ei满足公式(13)的要求,
Figure PCTCN2020138476-appb-000045
当离线模型为第三模型时,现场弯管管道雷诺数R ei满足公式(14)的要求,
Figure PCTCN2020138476-appb-000046
具体的,步骤3中弯管钻井液剪切应力τw i满足公式(15)要求,
Figure PCTCN2020138476-appb-000047
其中,
v ci为第i次钻井液在现场弯管中的流速,单位为m/s;
ρ 2为现场钻井液密度,单位为kg/m3;
井液剪切速率γ i满足公式(16)要求,
Figure PCTCN2020138476-appb-000048
其中,N满足公式(17)的要求
Figure PCTCN2020138476-appb-000049
在本实施例中,现场模型至少包括三个,分别为:
第一现场模型为:
Figure PCTCN2020138476-appb-000050
第二现场模型为:
Figure PCTCN2020138476-appb-000051
第三现场模型为:
Figure PCTCN2020138476-appb-000052
其中,
YP为现场钻井液屈服强度,单位为Pa;
PV为现场钻井液塑性粘度,单位为Pa·s;
n为现场钻井液流性指数,无量纲;
K为现场钻井液稠度系数,单位为Pa·s^n;
τ 0为现场钻井液动切力,单位为Pa。
具体的,步骤5的具体操作为:
实际剪切应力τw i与第一现场模型的预测剪切应力之间相关性R 21 2满足公式(21)要求
Figure PCTCN2020138476-appb-000053
实际剪切应力τw i与第二现场模型的预测剪切应力之间相关性R 22 2满足公式(22)要求
Figure PCTCN2020138476-appb-000054
实际剪切应力τw i与第三现场模型的预测剪切应力之间相关性R 23 2满足公式(23)要求
Figure PCTCN2020138476-appb-000055
比较R 21 2、R 22 2和R 23 2之间的大小,选择相关性最好的现场模型最为最终模型;
其中,
m为样本数;
τw i为实际剪切应力;
Figure PCTCN2020138476-appb-000056
为实际剪切应力的平均值。
下面就本发明具体实施例的应用举例说明。
在离线校核的实施例一中,在本实施例中,离线弯管采用的是螺旋管,离线弯管总体积V 1=1.04l,离线弯管的长度len 1=5.57476m,离线直管的内 径d ts1=0.01056m,离线第一钻井液密度ρ 1=1003kg/m 3
通过如下公式计算出离线弯管的内径d tc1=0.01051m,
Figure PCTCN2020138476-appb-000057
在本具体实施例中,离线第一钻井液在管道中的流经次数k=24次。
离线第一钻井液第k次钻井液在直管中的流速v sk和在弯管中的流速v ck参见下表。
其中,离线弯管管道平均压差ΔP ck/ΔL ck和离线直管管道平均压差ΔP sk/ΔL sk也参见下表。
通过公式(1)计算和公式(2)出离线第一钻井液在离线弯管中流经24次的弯管摩擦系数f ck和离线直管摩擦系数f sk也参见下表。
Figure PCTCN2020138476-appb-000058
Figure PCTCN2020138476-appb-000059
对应的实际摩擦系数比值y k参见下表,其中,y k=f ck/f sk
在本实施例中,离线第一钻井液的钻井液粘度平均值μ 1=0.00711Pa.s。
根据公式(6)计算出的共计24次离线第一钻井液在弯管中的流体迪恩数D nk参见下表。
Figure PCTCN2020138476-appb-000060
Figure PCTCN2020138476-appb-000061
Figure PCTCN2020138476-appb-000062
通过实际摩擦系数比值y k和流体迪恩数D nk拟合出三个预测模型如下:第一预测模型为:
Figure PCTCN2020138476-appb-000063
其中a=0.035966,b=0.5,c=0.855298。
第二预测模型为:
Figure PCTCN2020138476-appb-000064
其中,a=0.052896,b=1.421332。
第三预测模型为:
Figure PCTCN2020138476-appb-000065
其中,a=0.016495,b=3.709336。
其中,三个预测模型对应的预测摩擦系数参见下表。
Figure PCTCN2020138476-appb-000066
Figure PCTCN2020138476-appb-000067
然后分别根据公式(7)、(8)和(9),计算出实际摩擦系数比值y k与第一预测模型的预测摩擦系数比值之间相关性R 11 2、实际摩擦系数比值y k与第二预测模型的预测摩擦系数比值之间相关性R 12 2以及实际摩擦系数比值y k与第三预测模型的预测摩擦系数比值之间相关性R 13 2
计算结果为:R 11 2=0.976421,R 12 2=0.972209,R 13 2=0.971412。
综上,本实施例离线第一钻井液中第一预测模型最为最佳预测模型,其中,最佳预测模型中的管道摩擦系数间的关系常量a=0.035966,b=0.5,c=0.855298,用于钻井液现场流变性测量用。
下面就该钻井液在现场弯管钻井液流变性的现场测量过程进行说明。
在现场测量的实施例一中,现场第一钻井液密度ρ 2=1003kg/m 3
现场弯管为螺旋管,其尺寸为:现场弯管总体积V 2=1.04l,现场弯管的长度len 2=5.57476m,
通过如下公式计算出现场弯管的内径d tc2=0.01051m,
Figure PCTCN2020138476-appb-000068
在本具体实施例中,离线第一钻井液在现场管道中的流经次数i=24次。
现场第一钻井液第i次钻井液在现场弯管中的流速v ci和现场弯管管道平均压差ΔP ci/ΔL ci参见下表。
测量出的现场弯管钻井液参数如下表,从低到高增加钻井液在弯管中的流速,保持钻井液流态为层流。
次数 流量(lpm) 温度(℃) ΔP ci/ΔL ci ρ 2 v ci
1 0.8882 32.5 0.590 1003.9 0.1705
2 1.2356 32.5 0.727 1002.7 0.2372
3 1.3858 32.5 0.777 1002.5 0.2660
4 1.4388 32.5 0.830 1003.4 0.2762
5 1.5973 32.5 0.873 1004.1 0.3066
6 1.7200 32.5 0.927 1003.3 0.3302
7 1.8269 32.5 0.979 1004.2 0.3507
8 1.9638 32.5 1.023 1002.7 0.3770
9 2.0876 32.5 1.064 1002.9 0.4007
10 2.3133 32.5 1.169 1002.6 0.4441
11 2.5336 32.5 1.242 1002.8 0.4864
12 2.6463 32.5 1.295 1002.7 0.5080
13 2.8562 32.5 1.350 1002.8 0.5483
14 3.0025 32.5 1.408 1003.2 0.5764
15 3.1087 32.5 1.468 1002.9 0.5968
16 3.2385 32.5 1.525 1003.5 0.6217
17 3.3183 32.5 1.589 1002.9 0.6370
18 3.4960 32.5 1.627 1002.6 0.6711
19 3.6600 32.5 1.694 1003.7 0.7026
20 3.7989 32.5 1.785 1003.3 0.7293
21 4.0419 32.5 1.845 1002.6 0.7759
22 4.0901 32.5 1.904 1002.9 0.7852
23 4.2535 32.5 1.977 1003.3 0.8165
24 4.6207 32.5 2.089 1003.0 0.8870
通过公式(11)计算出现场第一钻井液在现场弯管中流经24次的弯管摩擦系数f ci也参见下表。
Figure PCTCN2020138476-appb-000069
然后,根据选择的最佳离线模型进行现场弯管管道雷诺数R ei的计算,在本实施例中,第一预测模型最为最佳预测模型为:
Figure PCTCN2020138476-appb-000070
其中,管道摩擦系数间的关系常量分别为:其中a=0.035966,b=0.5,c=0.855298。
现场弯管管道雷诺数R ei满足公式(12)的要求。
Figure PCTCN2020138476-appb-000071
计算出现场弯管管道雷诺数R ei参见下表。
然后根据现场弯管管道雷诺数R ei计算出弯现场管钻井液剪切应力τw i满足公式15要求,τw i的具体参数参见下表。
Figure PCTCN2020138476-appb-000072
N i根据公式(17)计算中间参数N i,本实例选用二项式拟合法进行处理,具体参数参见下表。
Figure PCTCN2020138476-appb-000073
根据公式(16)计算现场第一钻井液剪切速率γ i,具体参数参见下表。
Figure PCTCN2020138476-appb-000074
次数 f ci R ei τw i N i γ i
1 0.11 158.92 1.47 0.47 166.99
2 0.07 263.11 1.72 0.50 225.78
3 0.06 316.51 1.79 0.51 250.91
4 0.06 320.14 1.91 0.51 259.74
5 0.05 384.57 1.96 0.53 286.06
6 0.05 425.27 2.06 0.53 306.33
7 0.04 459.71 2.15 0.54 323.95
8 0.04 516.12 2.21 0.55 346.44
9 0.04 569.37 2.26 0.55 366.69
10 0.03 649.48 2.44 0.56 403.50
11 0.03 751.29 2.53 0.57 439.27
12 0.03 793.06 2.61 0.58 457.51
13 0.02 908.07 2.66 0.58 491.39
14 0.02 975.29 2.73 0.59 514.94
15 0.02 1008.00 2.84 0.59 532.01
16 0.02 1064.98 2.91 0.60 552.83
17 0.02 1073.93 3.03 0.60 565.62
18 0.02 1186.55 3.05 0.61 594.03
19 0.02 1267.02 3.13 0.61 620.20
20 0.02 1301.98 3.28 0.61 642.33
21 0.02 1458.08 3.31 0.62 680.96
22 0.02 1444.81 3.42 0.62 688.62
23 0.02 1521.06 3.52 0.63 714.54
24 0.01 1750.53 3.61 0.63 772.62
根据现场第一钻井液剪切应力τw i和现场第一钻井液剪切速率γ i拟合出现场模型至少包括三个,分别为:
第一现场模型为:
Figure PCTCN2020138476-appb-000075
其中,PV=0.00354,YP=0.95267。
第二现场模型为:
Figure PCTCN2020138476-appb-000076
其中,K=0.0622,n=0.6105
第三现场模型为:
Figure PCTCN2020138476-appb-000077
其中,n=0.7991,K=0.0151,τ 0=0.581。
再分别计算:
现场第一钻井液剪切应力τw i与第一现场模型的预测剪切应力之间相关性R 21 2
现场第一钻井液剪切应力τw i与第二现场模型的预测剪切应力之间相关性R 22 2
现场第一钻井液剪切应力τw i与第三现场模型的预测剪切应力之间相关性R 23 2
具体公式分别为(21)、(22)、(23),如下:
Figure PCTCN2020138476-appb-000078
Figure PCTCN2020138476-appb-000079
Figure PCTCN2020138476-appb-000080
相关性计算结果为:R 21 2=0.9950,R 22 2=0.9951,R 23 2=0.9964。第三现场模型的相关性最好,更加符合实际情况,选择第三现场模型为最终模型,用该模型计算其他粘度数据。
使用第三现场模型的现场测量结果与范式6速标准旋转粘度仪(Fann35)测量结果进行比较,基于Fann35的读数误差和温度影响,结果显示匹配较好。
Figure PCTCN2020138476-appb-000081
如果不进行现场模型优选,直接选择第一现场模型计算的粘度数据如下表,偏差明显加大,其中,θ6对应的粘度差值百分比为0.9/1=90%,θ3对应的粘度差值百分比为1.4/0.5=280%,YP的差值百分比为:0.5804/1.533=38%。而采用本发明的优选的第三模型计算出来的θ6对应的粘度差值百分比为0.3/1=30%,θ3对应的粘度差值百分比为0.7/0.5=140%,YP的差值百分比为:0.3792/1.533=25%。
综上,通过实际剪切应力τw i分别与多个现场模型中的预测剪切应力的相关性确定最佳现场模型(第三现场模型)计算出来的参数,与基于Fann35的读数误差和温度影响,结果显示匹配较好,更为准确。
Figure PCTCN2020138476-appb-000082
下面就另一个实施例举例说明。
在离线校核的实施例二中,离线弯管总体积V 1=1.04l,离线弯管的长度len 1=5.57476m,离线直管的内径d ts1=0.01056m,离线第二钻井液密度ρ 1=1953kg/m 3
通过如下公式计算出离线弯管的内径d tc1=0.01051m,
Figure PCTCN2020138476-appb-000083
在本具体实施例中,离线第二钻井液在管道中的流经次数k=17次。
离线第二钻井液第k次钻井液在直管中的流速v sk和在弯管中的流速v ck参见下表。
其中,离线弯管管道平均压差ΔP ck/ΔL ck和离线直管管道平均压差ΔP sk/ΔL sk也参见下表。
通过公式(1)计算和公式(2)出离线第二钻井液在离线弯管中流经17次的弯管摩擦系数f ck和离线直管摩擦系数f sk也参见下表。
Figure PCTCN2020138476-appb-000084
Figure PCTCN2020138476-appb-000085
对应的实际摩擦系数比值y k参见下表,其中,y k=f ck/f sk
在本实施例中,离线第二钻井液的钻井液粘度平均值μ 1=0.02639Pa.s。
根据公式(6)计算出的共计17次离线第二钻井液在弯管中的流体迪恩数D nk参见下表。
Figure PCTCN2020138476-appb-000086
Figure PCTCN2020138476-appb-000087
Figure PCTCN2020138476-appb-000088
通过实际摩擦系数比值y k和流体迪恩数D nk拟合出三个预测模型如下:第一预测模型为:
Figure PCTCN2020138476-appb-000089
其中a=0.0576,b=0.5,c=0.745。
第二预测模型为:
Figure PCTCN2020138476-appb-000090
其中,a=0.0644,b=1.4654。
第三预测模型为:
Figure PCTCN2020138476-appb-000091
其中,a=0.0231,b=3.8241。
其中,三个预测模型对应的预测摩擦系数参见下表。
Figure PCTCN2020138476-appb-000092
Figure PCTCN2020138476-appb-000093
然后分别根据公式(7)、(8)和(9),计算出实际摩擦系数比值y k与第一预测模型的预测摩擦系数比值之间相关性R 11 2、实际摩擦系数比值y k与第二预测模型的预测摩擦系数比值之间相关性R 12 2以及实际摩擦系数比值y k与第三预测模型的预测摩擦系数比值之间相关性R 13 2
计算结果为:R 11 2=0.9833,R 12 2=0.9843,R 13 2=0.9828。
综上,本实施例离线第二钻井液中第二预测模型最为最佳预测模型,其中,最佳预测模型中的管道摩擦系数间的关系常量a=0.0644,b=1.4654,用于钻井液现场流变性测量用。
下面就该钻井液在现场弯管钻井液流变性的现场测量过程进行说明。
在现场测量的实施例二中,现场第二钻井液密度ρ 2=1300kg/m 3
现场弯管的尺寸为:现场弯管总体积V 2=1.04l,现场弯管的长度len 2=5.57476m,
通过如下公式计算出现场弯管的内径d tc2=0.01051m,
Figure PCTCN2020138476-appb-000094
在本具体实施例中,离线第二钻井液在现场管道中的流经次数i=17次。
现场第二钻井液第i次钻井液在现场弯管中的流速v ci和现场弯管管道 平均压差ΔP ci/ΔL ci参见下表。
测量出的现场弯管钻井液参数如下表,从低到高增加钻井液在弯管中的流速,保持钻进流态为层流。
Figure PCTCN2020138476-appb-000095
通过公式(11)计算出现场第二钻井液在现场弯管中流经17次的弯管摩擦系数f ci也参见下表。
Figure PCTCN2020138476-appb-000096
然后,根据选择的最佳离线模型进行现场弯管管道雷诺数R ei的计算,在本实施例中,第二预测模型为最佳预测模型为:
Figure PCTCN2020138476-appb-000097
其中,管道摩擦系数间的关系常量分别为:其中a=0.0644,b=1.4654。
现场弯管管道雷诺数R ei满足公式(12)的要求。
Figure PCTCN2020138476-appb-000098
计算出现场弯管管道雷诺数R ei参见下表。
然后根据现场弯管管道雷诺数R ei计算出弯现场管钻井液剪切应力τw i满足公式15要求,τw i的具体参数参见下表。
Figure PCTCN2020138476-appb-000099
N i根据公式(17)计算中间参数N i,具体参数参见下表。
Figure PCTCN2020138476-appb-000100
根据公式(16)计算现场第二钻井液剪切速率γ i,具体参数参见下表。
Figure PCTCN2020138476-appb-000101
Figure PCTCN2020138476-appb-000102
Figure PCTCN2020138476-appb-000103
根据现场第二钻井液剪切应力τw i和现场第二钻井液剪切速率γ i拟合出现场模型至少包括三个,分别为:
第一现场模型为:
Figure PCTCN2020138476-appb-000104
其中,PV=0.026,YP=0.241。
第二现场模型为:
Figure PCTCN2020138476-appb-000105
其中,K=0.0278,n=0.9917。
第三现场模型为:
Figure PCTCN2020138476-appb-000106
其中,n=0.9991,K=0.0262,τ 0=0.2146。
再分别计算:
现场第二钻井液剪切应力τw i与第一现场模型的预测剪切应力之间相关性R 21 2
现场第二钻井液剪切应力τw i与第二现场模型的预测剪切应力之间相关性R 22 2
现场第二钻井液剪切应力τw i与第三现场模型的预测剪切应力之间相关性R 23 2
具体公式分别为(21)、(22)、(23),如下:
Figure PCTCN2020138476-appb-000107
Figure PCTCN2020138476-appb-000108
Figure PCTCN2020138476-appb-000109
相关性计算结果为:R 21 2=0.998873,R 22 2=0.996445,R 23 2=0.998873。第一和第三现场模型的相关性最好,分别使用第一和第三现场模型为最终模型,计算其他粘度数据。
使用第一现场模型的现场测量结果与范式6速标准粘度仪测量结果进行比较,如下表,结果显示匹配较好。
Figure PCTCN2020138476-appb-000110
使用第三现场模型的现场测量结果与范式6速标准粘度仪测量结果进行比较,如下表,结果显示匹配较好。
Figure PCTCN2020138476-appb-000111
如果不进行现场模型优选,直接选择第二现场模型计算的粘度数据如下表,偏差明显加大,其中,θ100对应的粘度差值百分比为2.13/11=19%,θ6对应的粘度差值百分比为0.46/1=46%。而采用本发明的优选的第三模型计算出来的θ100对应的粘度差值百分比为1.9/11=17%,θ6对应的粘度差值百分比为0.06/1=6%。采用本发明的优选的第一模型计算出来的θ100对应的粘度差值百分比为1.83/11=17%,θ6对应的粘度差值百分比为0.01/1=1%。
测量仪器 测量温度/℃ θ600 θ300 θ200 θ100 θ6 θ3
Fann35(对比) 29 50 27 19 11 1 0.5
系统测量装置 29 52.43 26.37 17.64 8.87 0.54 0.27
综上,通过实际剪切应力τw i分别与多个现场模型中的预测剪切应力的相关性确定最佳现场模型(第一现场模型和第三现场模型)计算出来的参数,与基于Fann35的读数误差和温度影响,结果显示匹配较好,更为准确。
下面就第三个实施例举例说明。
在离线校核的实施例三中,离线弯管总体积V 1=1.04l,离线弯管的长度len 1=5.57476m,离线直管的内径d ts1=0.01056m,离线第二钻井液密度ρ 1=1227kg/m 3
通过如下公式计算出离线弯管的内径d tc1=0.01051m,
Figure PCTCN2020138476-appb-000112
在本具体实施例中,离线第三钻井液在管道中的流经次数k=13次。
离线第三钻井液第k次钻井液在直管中的流速v sk和在弯管中的流速v ck参见下表。
其中,离线弯管管道平均压差ΔP ck/ΔL ck和离线直管管道平均压差ΔP sk/ΔL sk也参见下表。
通过公式(1)计算和公式(2)出离线第三钻井液在离线弯管中流经13次的弯管摩擦系数f ck和离线直管摩擦系数f sk也参见下表。
Figure PCTCN2020138476-appb-000113
Figure PCTCN2020138476-appb-000114
对应的实际摩擦系数比值y k参见下表,其中,y k=f ck/f sk
在本实施例中,离线第三钻井液的钻井液粘度平均值μ 1=0.01455Pa.s。
根据公式(6)计算出的共计13次离线第三钻井液在弯管中的流体迪恩数D nk参见下表。
Figure PCTCN2020138476-appb-000115
Figure PCTCN2020138476-appb-000116
通过实际摩擦系数比值y k和流体迪恩数D nk拟合出三个预测模型如下:
第一预测模型为:
Figure PCTCN2020138476-appb-000117
其中a=0.0645,b=0.5,c=0.5424。
第二预测模型为:
Figure PCTCN2020138476-appb-000118
其中,a=0.0045,b=1.9298。
第三预测模型为:
Figure PCTCN2020138476-appb-000119
其中,a=0.0025,b=6.2539。
其中,三个预测模型对应的预测摩擦系数参见下表。
Figure PCTCN2020138476-appb-000120
然后分别根据公式(7)、(8)和(9),计算出实际摩擦系数比值y k与第一预测模型的预测摩擦系数比值之间相关性R 11 2、实际摩擦系数比值y k与第二预测模型的预测摩擦系数比值之间相关性R 12 2以及实际摩擦系数比值y k与第三预测模型的预测摩擦系数比值之间相关性R 13 2
计算结果为:R 11 2=0.9923,R 12 2=0.9948,R 13 2=0.9949。
综上,本实施例离线第三钻井液中第三预测模型最为最佳预测模型,其中,最佳预测模型中的管道摩擦系数间的关系常量a=0.0025,b=6.2539,用于钻井液现场流变性测量用。
下面就该钻井液在现场弯管钻井液流变性的现场测量过程进行说明。
在现场测量的实施例三中,现场第三钻井液密度ρ 3=1227kg/m 3
现场弯管的尺寸为:现场弯管总体积V 2=1.04l,现场弯管的长度len 2=5.57476m,
通过如下公式计算出现场弯管的内径d tc2=0.01051m,
Figure PCTCN2020138476-appb-000121
在本具体实施例中,离线第三钻井液在现场管道中的流经次数i=13次。
现场第二钻井液第i次钻井液在现场弯管中的流速v ci和现场弯管管道平均压差ΔP ci/ΔL ci参见下表。
测量出的现场弯管钻井液参数如下表,从低到高增加钻井液在弯管中的流速,保持钻进流态为层流。
Figure PCTCN2020138476-appb-000122
通过公式(11)计算出现场第二钻井液在现场弯管中流经13次的弯管摩擦系数f ci也参见下表。
Figure PCTCN2020138476-appb-000123
然后,根据选择的最佳离线模型进行现场弯管管道雷诺数R ei的计算, 在本实施例中,选择第三预测模型为最佳预测模型为:
Figure PCTCN2020138476-appb-000124
其中,管道摩擦系数间的关系常量分别为:其中a=0.0025,b=6.2539。
现场弯管管道雷诺数R ei满足公式(12)的要求。
Figure PCTCN2020138476-appb-000125
计算出现场弯管管道雷诺数R ei参见下表。
然后根据现场弯管管道雷诺数R ei计算出弯现场管钻井液剪切应力τw i满足公式15要求,τw i的具体参数参见下表。
Figure PCTCN2020138476-appb-000126
N i根据公式(17)计算中间参数N i,具体参数参见下表。
Figure PCTCN2020138476-appb-000127
根据公式(16)计算现场第三钻井液剪切速率γ i,具体参数参见下表。
Figure PCTCN2020138476-appb-000128
Figure PCTCN2020138476-appb-000129
Figure PCTCN2020138476-appb-000130
根据现场第三钻井液剪切应力τw i和现场第三钻井液剪切速率γ i拟合出现场模型至少包括三个,分别为:
第一现场模型为:
Figure PCTCN2020138476-appb-000131
其中,PV=0.0088,YP=2.98。
第二现场模型为:
Figure PCTCN2020138476-appb-000132
其中,K=0.6715,n=0.1126。
第三现场模型为:
Figure PCTCN2020138476-appb-000133
其中,n=0.6716,K=0.1126,τ 0=0.001。
再分别计算:
现场第二钻井液剪切应力τw i与第一现场模型的预测剪切应力之间相关性R 21 2
现场第二钻井液剪切应力τw i与第二现场模型的预测剪切应力之间相关性R 22 2
现场第二钻井液剪切应力τw i与第三现场模型的预测剪切应力之间相关性R 23 2
具体公式分别为(21)、(22)、(23),如下:
Figure PCTCN2020138476-appb-000134
Figure PCTCN2020138476-appb-000135
Figure PCTCN2020138476-appb-000136
相关性计算结果为:R 21 2=0.996314,R 22 2=0.997775,R 23 2=0.997775。第二和第三现场模型的相关性最好,分别使用第二和第三现场模型为最终模型,计算其他粘度数据。
使用第二现场模型的现场测量结果与范式6速标准粘度仪测量结果进行比较,如下表,结果显示匹配较好。
Figure PCTCN2020138476-appb-000137
使用第三现场模型的现场测量结果与范式6速标准粘度仪测量结果进行比较,如下表,结果显示匹配较好。
Figure PCTCN2020138476-appb-000138
如果不进行现场模型优选,直接选择第一现场模型计算的粘度数据如下表,偏差明显加大,其中,θ100对应的粘度差值百分比为2.2/6.5=35%,θ6对应的粘度差值百分比为5/1=500%,θ3对应的粘度差值百分比为5.1/0.8=639%。而采用本发明的优选的第二模型和第三模型计算出来的θ100对应的粘度差值百分比为0.4/6.5=7%,θ6对应的粘度差值百分比为0.1/5=5%,θ3对应的粘度差值百分比为-0.1/0.8=-17%。
测量仪器 测量温度/℃ θ600 θ300 θ200 θ100 θ6 θ3
Fann35(对比) 29 22 14 10 6.5 1 0.8
系统测量装置 29 23.4 14.6 11.7 8.7 6.0 5.9
综上,通过实际剪切应力τw i分别与多个现场模型中的预测剪切应力的相关性确定最佳现场模型(第二现场模型和第三现场模型)计算出来的参数,与基于Fann35的读数误差和温度影响,结果显示匹配较好,更为准确。
以上仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种弯管钻井液流变性的现场测量方法,其特征在于,包括以下步骤:
    步骤1,通过离线校核的方式获取管道摩擦系数间的关系常量;
    步骤2,根据所述管道摩擦系数间的关系常量和现场弯管摩擦系数f ci计算现场弯管管道雷诺数R ei,其中,i为现场钻井液在现场弯管的流经次数,为不小于2的正整数;
    步骤3,根据所述现场弯管管道雷诺数R ei计算现场弯管钻井液实际剪切应力τw i,并根据际剪切应力τw i计算井液剪切速率γ i
    步骤,4,根据所述钻井液实际剪切应力τw i和井液剪切速率γ i建立多个现场模型;
    步骤5,根据实际剪切应力τw i分别与多个所述现场模型中的预测剪切应力的相关性确定最佳现场模型;
    步骤6,根据所述最佳现场模型进行钻井液流变性的现场测量。
  2. 根据权利要求1所述的一种弯管钻井液流变性的现场测量方法,其特征在于,所述步骤1包括:
    步骤11,计算钻井液在离线弯管中的弯管摩擦系数f ck和在离线直管中的直管摩擦系数f sk,其中,k为钻井液在离线管道中的流经次数,为不小于2的正整数;
    步骤12,根据实际摩擦系数比值y k建立多个预测模型,其中,
    y k=f ck/f sk
    步骤13,根据实际摩擦系数比值y k分别与多个所述预测模型的预测摩擦系数比值之间相关性确定最佳预测模型;
    步骤14,根据所述最佳预测模型获取管道摩擦系数间的关系常量。
  3. 根据权利要求2所述的一种弯管钻井液流变性的现场测量方法,其 特征在于,
    所述步骤11的f ck满足公式(1)的要求,
    Figure PCTCN2020138476-appb-100001
    其中,d tc1为离线弯管的内径,单位为m;
    ρ 1为离线钻井液密度,单位为kg/m 3
    v ck为第k次钻井液在离线弯管中的流速,单位为m/s;
    ΔP ck/ΔL ck是测出的离线管道平均压差(kPa/m);ΔP ck为长度为ΔL ck段的总压差(kPa);
    所述步骤1的f sk满足公式(2)的要求,
    Figure PCTCN2020138476-appb-100002
    其中,d ts1为离线直管的内径,单位为m;
    ρ 1为钻井液密度,单位为kg/m 3
    v sk为第k次钻井液在直管中的流速,单位为m/s;
    ΔP sk/ΔL sk是测出的管道平均压差(kPa/m);ΔP sk为长度为ΔL sk段的总压差(kPa)。
  4. 根据权利要求2所述的一种弯管钻井液流变性的现场测量方法,其特征在于,所述预测模型至少包括三个,分别为:
    第一预测模型为:
    Figure PCTCN2020138476-appb-100003
    第二预测模型为:
    Figure PCTCN2020138476-appb-100004
    第三预测模型为:
    Figure PCTCN2020138476-appb-100005
    其中,
    Figure PCTCN2020138476-appb-100006
    为第一预测模型的预测摩擦系数;
    Figure PCTCN2020138476-appb-100007
    为第二预测模型的预测摩擦系数;
    Figure PCTCN2020138476-appb-100008
    为第三预测模型的预测摩擦系数;
    a,b,c为管道摩擦系数间的关系常量;
    其中,D nk为第k次钻井液在离线弯管中的流体迪恩数,满足公式(6)要求;
    Figure PCTCN2020138476-appb-100009
    其中,
    μ 1为离线钻井液粘度,Pa.s;
    v ck为第k次钻井液在离线弯管中的流速,单位为m/s。
  5. 根据权利要求4所述的一种弯管钻井液流变性的现场测量方法,其特征在于,所述步骤13的具体操作为:
    实际摩擦系数比值y k与第一预测模型的预测摩擦系数比值之间相关性R 11 2满足公式(7)要求
    Figure PCTCN2020138476-appb-100010
    实际摩擦系数比值y k与第二预测模型的预测摩擦系数比值之间相关性R 12 2满足公式(8)要求
    Figure PCTCN2020138476-appb-100011
    实际摩擦系数比值y k与第三预测模型的预测摩擦系数比值之间相关性R 13 2满足公式(9)要求
    Figure PCTCN2020138476-appb-100012
    比较R 11 2、R 12 2和R 13 2之间的大小,选择相关性最好的预测模型最为最佳 预测模型;
    其中,
    m为样本数;
    y k为实际摩擦系数比值;
    Figure PCTCN2020138476-appb-100013
    为实际摩擦系数比值的平均值。
  6. 根据权利要求5所述的一种弯管钻井液流变性的现场测量方法,其特征在于,所述步骤2的f ci满足公式(10)的要求,
    Figure PCTCN2020138476-appb-100014
    其中,d tc2为现场弯管的内径,单位为m;
    ρ 2为现场钻井液密度,单位为kg/m3;
    v ci为第i次钻井液在现场弯管中的流速,单位为m/s;
    ΔP ci/ΔL ci是测出的现场弯管管道平均压差(kPa/m);ΔP ci为长度为ΔL ci段的总压差(kPa)。
  7. 根据权利要求6所述的一种弯管钻井液流变性的现场测量方法,其特征在于,所述步骤2中现场弯管管道雷诺数R ei的计算包括:
    当离线模型为第一模型时,现场弯管管道雷诺数R ei满足公式(12)的要求,
    Figure PCTCN2020138476-appb-100015
    当离线模型为第二模型时,现场弯管管道雷诺数R ei满足公式(13)的要求,
    Figure PCTCN2020138476-appb-100016
    当离线模型为第三模型时,现场弯管管道雷诺数R ei满足公式(14)的 要求,
    Figure PCTCN2020138476-appb-100017
  8. 根据权利要求7所述的一种弯管钻井液流变性的现场测量方法,其特征在于,所述步骤3中弯管钻井液剪切应力τw i满足公式(15)要求,
    Figure PCTCN2020138476-appb-100018
    其中,
    v ci为第i次钻井液在现场弯管中的流速,单位为m/s;
    ρ 2为现场钻井液密度,单位为kg/m3;
    所述井液剪切速率γ i满足公式(16)要求,
    Figure PCTCN2020138476-appb-100019
    其中,N满足公式(17)的要求
    Figure PCTCN2020138476-appb-100020
  9. 根据权利要求8所述的一种弯管钻井液流变性的现场测量方法,其特征在于,所述现场模型至少包括三个,分别为:
    第一现场模型为:
    Figure PCTCN2020138476-appb-100021
    第二现场模型为:
    Figure PCTCN2020138476-appb-100022
    第三现场模型为:
    Figure PCTCN2020138476-appb-100023
    其中,
    YP为现场钻井液屈服强度,单位为Pa;
    PV为现场钻井液塑性粘度,单位为Pa·s;
    n为现场钻井液流性指数,无量纲;
    K为现场钻井液稠度系数,单位为Pa·s^n;
    τ 0为现场钻井液动切力,单位为Pa。
  10. 根据权利要求9所述的一种弯管钻井液流变性的现场测量方法,其特征在于,所述步骤5的具体操作为:
    实际剪切应力τw i与第一现场模型的预测剪切应力之间相关性R 21 2满足公式(21)要求
    Figure PCTCN2020138476-appb-100024
    实际剪切应力τw i与第二现场模型的预测剪切应力之间相关性R 22 2满足公式(22)要求
    Figure PCTCN2020138476-appb-100025
    实际剪切应力τw i与第三现场模型的预测剪切应力之间相关性R 23 2满足公式(23)要求
    Figure PCTCN2020138476-appb-100026
    比较R 21 2、R 22 2和R 23 2之间的大小,选择相关性最好的现场模型最为最终模型;
    其中,
    m为样本数;
    τw i为实际剪切应力;
    Figure PCTCN2020138476-appb-100027
    为实际剪切应力的平均值。
PCT/CN2020/138476 2020-12-23 2020-12-23 一种弯管钻井液流变性的现场测量方法 WO2022133761A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/138476 WO2022133761A1 (zh) 2020-12-23 2020-12-23 一种弯管钻井液流变性的现场测量方法
US17/709,467 US20220228961A1 (en) 2020-12-23 2022-03-31 Method for measuring rheological property of drilling fluid by using curved pipe on site

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/138476 WO2022133761A1 (zh) 2020-12-23 2020-12-23 一种弯管钻井液流变性的现场测量方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/709,467 Continuation US20220228961A1 (en) 2020-12-23 2022-03-31 Method for measuring rheological property of drilling fluid by using curved pipe on site

Publications (1)

Publication Number Publication Date
WO2022133761A1 true WO2022133761A1 (zh) 2022-06-30

Family

ID=82157061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138476 WO2022133761A1 (zh) 2020-12-23 2020-12-23 一种弯管钻井液流变性的现场测量方法

Country Status (2)

Country Link
US (1) US20220228961A1 (zh)
WO (1) WO2022133761A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2316011A2 (en) * 2008-06-20 2011-05-04 Ross Colquhoun Test apparatus
CN102374960A (zh) * 2010-08-10 2012-03-14 中国石油化工集团公司 一种变径管式钻井液流变性测量方法
CN102434119A (zh) * 2011-09-20 2012-05-02 中国石油化工股份有限公司 一种卡森模式钻井液流变参数的控制方法
CN103076263A (zh) * 2011-10-25 2013-05-01 中国石油化工股份有限公司 异型管式钻井液流变性测量方法
WO2018237331A1 (en) * 2017-06-23 2018-12-27 Texas Tech University System SYSTEM AND METHOD FOR DETERMINING VISCOELASTIC PROPERTIES OF A SUBSTANCE FLOWING WITHIN A CHANNEL

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2316011A2 (en) * 2008-06-20 2011-05-04 Ross Colquhoun Test apparatus
CN102374960A (zh) * 2010-08-10 2012-03-14 中国石油化工集团公司 一种变径管式钻井液流变性测量方法
CN102434119A (zh) * 2011-09-20 2012-05-02 中国石油化工股份有限公司 一种卡森模式钻井液流变参数的控制方法
CN103076263A (zh) * 2011-10-25 2013-05-01 中国石油化工股份有限公司 异型管式钻井液流变性测量方法
WO2018237331A1 (en) * 2017-06-23 2018-12-27 Texas Tech University System SYSTEM AND METHOD FOR DETERMINING VISCOELASTIC PROPERTIES OF A SUBSTANCE FLOWING WITHIN A CHANNEL

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUL SERCAN, ERGE ONEY, VAN OORT ERIC: "Frictional pressure losses of Non-Newtonian fluids in helical pipes: Applications for automated rheology measurements", JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, ELSEVIER, AMSTERDAM, NL, vol. 73, 1 January 2020 (2020-01-01), AMSTERDAM, NL , pages 103042, XP055945519, ISSN: 1875-5100, DOI: 10.1016/j.jngse.2019.103042 *
SERCAN GUL; ONEY ERGE; ERIC VAN OORT: "Helical Pipe Viscometer System for Automated Mud Rheology Measurements", IADC/SPE INTERNATIONAL DRILLING CONFERENCE AND EXHIBITION, MARCH 3–5, 2020, GALVESTON, TEXAS, USA, vol. SPE-199572-MS, 31 March 2020 (2020-03-31) - 5 March 2020 (2020-03-05), XP009537771, ISBN: 978-1-61399-687-4, DOI: 10.2118/199572-MS *

Also Published As

Publication number Publication date
US20220228961A1 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
RU2392588C2 (ru) Способ и система многопутевого ультразвукового измерения параметров потока частично развитых профилей потока
WO2013165314A1 (en) A flow meter system
NO20101645L (no) Fremgangsmate for maling av flerfasestromning
CN110765415B (zh) 一种低渗碳酸盐岩气藏边远井产能评价方法
RU2623389C1 (ru) Способ определения обводненности нефтеводяной смеси, добываемой из нефтяной скважины
Farshad et al. Surface-roughness design values for modern pipes
Guo et al. A general model for predicting apparent viscosity of crude oil or emulsion in laminar pipeline at high pressures
Gul et al. A data driven approach to predict frictional pressure losses in polymer-based fluids
CA3042881A1 (en) Improvements in or relating to the monitoring of fluid flow
WO2022133761A1 (zh) 一种弯管钻井液流变性的现场测量方法
CN107939367B (zh) 一种压裂水马力确定方法
Provenzano et al. Assessing a local losses evaluation procedure for low-pressure lay-flat drip laterals
CN115096383B (zh) 基于等效密度测算多相流中气相流量的方法
CN114662264B (zh) 一种弯管钻井液流变性测量的离线校核方法及系统
CN116295733A (zh) 一种预测液体用大口径皮托管校准系数的方法
CN114662264A (zh) 一种弯管钻井液流变性测量的离线校核方法及系统
Fyrippi et al. Flowmetering of non-Newtonian liquids
AU2021284169B2 (en) Flow rate optimizer
CN105203189A (zh) 液体流量计在线检测装置自校准方法
US20210072060A1 (en) Real-time measurement of two-phase mass flow rate and enthalpy using pressure differential devices
CN105091967B (zh) 一种利用管道本身或管道内障碍物的流量测量方法
US11085259B2 (en) Systems and processes for improved drag reduction estimation and measurement
CN113791115A (zh) 一种板式换热器传热性能测试方法及装置
CN114001802A (zh) 油品流量计的检定方法、装置、计算机设备和存储介质
US20230194404A1 (en) Determining fluid properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966341

Country of ref document: EP

Kind code of ref document: A1