WO2022133592A1 - Stabilized tcr constructs and methods of use - Google Patents
Stabilized tcr constructs and methods of use Download PDFInfo
- Publication number
- WO2022133592A1 WO2022133592A1 PCT/CA2021/051855 CA2021051855W WO2022133592A1 WO 2022133592 A1 WO2022133592 A1 WO 2022133592A1 CA 2021051855 W CA2021051855 W CA 2021051855W WO 2022133592 A1 WO2022133592 A1 WO 2022133592A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tcr
- trac
- amino acid
- disulfide bond
- trbc
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 43
- 108020001507 fusion proteins Proteins 0.000 claims abstract description 381
- 102000037865 fusion proteins Human genes 0.000 claims abstract description 379
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 267
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 252
- 229920001184 polypeptide Polymers 0.000 claims abstract description 251
- 230000035772 mutation Effects 0.000 claims abstract description 193
- 230000000087 stabilizing effect Effects 0.000 claims abstract description 122
- 235000001014 amino acid Nutrition 0.000 claims description 573
- 238000006467 substitution reaction Methods 0.000 claims description 472
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 claims description 327
- 150000001413 amino acids Chemical class 0.000 claims description 322
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 288
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 claims description 94
- 230000014509 gene expression Effects 0.000 claims description 92
- 230000001965 increasing effect Effects 0.000 claims description 46
- 108091033319 polynucleotide Proteins 0.000 claims description 39
- 102000040430 polynucleotide Human genes 0.000 claims description 39
- 239000002157 polynucleotide Substances 0.000 claims description 39
- 230000015572 biosynthetic process Effects 0.000 claims description 27
- 238000012217 deletion Methods 0.000 claims description 27
- 230000037430 deletion Effects 0.000 claims description 27
- 108060003951 Immunoglobulin Proteins 0.000 claims description 21
- 102000018358 immunoglobulin Human genes 0.000 claims description 21
- 239000000427 antigen Substances 0.000 claims description 20
- 108091007433 antigens Proteins 0.000 claims description 20
- 102000036639 antigens Human genes 0.000 claims description 20
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 11
- 239000008194 pharmaceutical composition Substances 0.000 claims description 11
- 238000012258 culturing Methods 0.000 claims description 8
- 239000003085 diluting agent Substances 0.000 claims description 8
- 201000010099 disease Diseases 0.000 claims description 8
- 238000002844 melting Methods 0.000 claims description 7
- 230000008018 melting Effects 0.000 claims description 7
- 239000003937 drug carrier Substances 0.000 claims description 5
- 208000035475 disorder Diseases 0.000 claims description 3
- 238000002560 therapeutic procedure Methods 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 2
- 102100029452 T cell receptor alpha chain constant Human genes 0.000 description 385
- 101710153660 Nuclear receptor corepressor 2 Proteins 0.000 description 384
- 229940024606 amino acid Drugs 0.000 description 260
- 210000004027 cell Anatomy 0.000 description 121
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 107
- 108090000623 proteins and genes Proteins 0.000 description 66
- 102000004169 proteins and genes Human genes 0.000 description 66
- 235000018102 proteins Nutrition 0.000 description 54
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 42
- 230000004048 modification Effects 0.000 description 35
- 238000012986 modification Methods 0.000 description 35
- 239000013598 vector Substances 0.000 description 34
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 26
- 108020004414 DNA Proteins 0.000 description 25
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 25
- 125000000393 L-methionino group Chemical group [H]OC(=O)[C@@]([H])(N([H])[*])C([H])([H])C(SC([H])([H])[H])([H])[H] 0.000 description 25
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 25
- 108091008874 T cell receptors Proteins 0.000 description 25
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 25
- 238000011534 incubation Methods 0.000 description 22
- 239000000203 mixture Substances 0.000 description 22
- 230000004927 fusion Effects 0.000 description 21
- 238000000113 differential scanning calorimetry Methods 0.000 description 20
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 19
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 19
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 18
- 102100037272 T cell receptor beta constant 1 Human genes 0.000 description 17
- 101710087279 T cell receptor beta constant 1 Proteins 0.000 description 17
- 102100037298 T cell receptor beta constant 2 Human genes 0.000 description 17
- 101710087287 T cell receptor beta constant 2 Proteins 0.000 description 17
- FUESBOMYALLFNI-VKHMYHEASA-N Gly-Asn Chemical compound NCC(=O)N[C@H](C(O)=O)CC(N)=O FUESBOMYALLFNI-VKHMYHEASA-N 0.000 description 16
- 239000013604 expression vector Substances 0.000 description 16
- 235000018417 cysteine Nutrition 0.000 description 14
- 230000003247 decreasing effect Effects 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 13
- 210000004602 germ cell Anatomy 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 13
- 108010076504 Protein Sorting Signals Proteins 0.000 description 12
- 239000002953 phosphate buffered saline Substances 0.000 description 11
- 239000000872 buffer Substances 0.000 description 10
- 210000004899 c-terminal region Anatomy 0.000 description 10
- 230000013595 glycosylation Effects 0.000 description 10
- 238000006206 glycosylation reaction Methods 0.000 description 10
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 10
- 239000008186 active pharmaceutical agent Substances 0.000 description 9
- 238000013461 design Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 230000006872 improvement Effects 0.000 description 9
- 238000000126 in silico method Methods 0.000 description 9
- 238000000746 purification Methods 0.000 description 9
- 102000005962 receptors Human genes 0.000 description 9
- 108020003175 receptors Proteins 0.000 description 9
- 230000002829 reductive effect Effects 0.000 description 9
- 241000894007 species Species 0.000 description 9
- 239000006228 supernatant Substances 0.000 description 9
- 238000000684 flow cytometry Methods 0.000 description 8
- 238000001890 transfection Methods 0.000 description 8
- 238000007792 addition Methods 0.000 description 7
- 230000002776 aggregation Effects 0.000 description 7
- 238000004220 aggregation Methods 0.000 description 7
- 238000012512 characterization method Methods 0.000 description 7
- 230000002209 hydrophobic effect Effects 0.000 description 7
- 238000001542 size-exclusion chromatography Methods 0.000 description 7
- 230000010512 thermal transition Effects 0.000 description 7
- 101000772143 Homo sapiens T cell receptor alpha variable 17 Proteins 0.000 description 6
- 206010028980 Neoplasm Diseases 0.000 description 6
- 102100029306 T cell receptor alpha variable 17 Human genes 0.000 description 6
- 210000001744 T-lymphocyte Anatomy 0.000 description 6
- 201000011510 cancer Diseases 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 6
- 239000003623 enhancer Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 230000001225 therapeutic effect Effects 0.000 description 6
- 102100035360 Cerebellar degeneration-related antigen 1 Human genes 0.000 description 5
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 5
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 5
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 5
- 125000000539 amino acid group Chemical group 0.000 description 5
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 230000022534 cell killing Effects 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 210000004962 mammalian cell Anatomy 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 238000012856 packing Methods 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 108010032595 Antibody Binding Sites Proteins 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 102000004127 Cytokines Human genes 0.000 description 4
- 108090000695 Cytokines Proteins 0.000 description 4
- 239000012591 Dulbecco’s Phosphate Buffered Saline Substances 0.000 description 4
- 101000658406 Homo sapiens T cell receptor beta variable 28 Proteins 0.000 description 4
- 208000029462 Immunodeficiency disease Diseases 0.000 description 4
- -1 N297A Chemical compound 0.000 description 4
- 239000012980 RPMI-1640 medium Substances 0.000 description 4
- 102100034880 T cell receptor beta variable 28 Human genes 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 4
- 210000003292 kidney cell Anatomy 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229920001542 oligosaccharide Polymers 0.000 description 4
- 150000002482 oligosaccharides Chemical class 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000001757 thermogravimetry curve Methods 0.000 description 4
- 239000003643 water by type Substances 0.000 description 4
- 108010088751 Albumins Proteins 0.000 description 3
- 102000009027 Albumins Human genes 0.000 description 3
- 108010087819 Fc receptors Proteins 0.000 description 3
- 102000009109 Fc receptors Human genes 0.000 description 3
- 108010070675 Glutathione transferase Proteins 0.000 description 3
- 102000005720 Glutathione transferase Human genes 0.000 description 3
- 101000582254 Homo sapiens Nuclear receptor corepressor 2 Proteins 0.000 description 3
- 101000658398 Homo sapiens T cell receptor beta variable 19 Proteins 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 102100034884 T cell receptor beta variable 19 Human genes 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 238000002784 cytotoxicity assay Methods 0.000 description 3
- 231100000263 cytotoxicity test Toxicity 0.000 description 3
- 239000012636 effector Substances 0.000 description 3
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 239000013628 high molecular weight specie Substances 0.000 description 3
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 150000007523 nucleic acids Chemical group 0.000 description 3
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 3
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Natural products CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- VDABVNMGKGUPEY-UHFFFAOYSA-N 6-carboxyfluorescein succinimidyl ester Chemical compound C=1C(O)=CC=C2C=1OC1=CC(O)=CC=C1C2(C1=C2)OC(=O)C1=CC=C2C(=O)ON1C(=O)CCC1=O VDABVNMGKGUPEY-UHFFFAOYSA-N 0.000 description 2
- YXHLJMWYDTXDHS-IRFLANFNSA-N 7-aminoactinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=C(N)C=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 YXHLJMWYDTXDHS-IRFLANFNSA-N 0.000 description 2
- 108700012813 7-aminoactinomycin D Proteins 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- 108010077805 Bacterial Proteins Proteins 0.000 description 2
- 208000035143 Bacterial infection Diseases 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 208000035473 Communicable disease Diseases 0.000 description 2
- 241000699802 Cricetulus griseus Species 0.000 description 2
- 102000006471 Fucosyltransferases Human genes 0.000 description 2
- 108010019236 Fucosyltransferases Proteins 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 2
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 2
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 2
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 2
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- NIJJYAXOARWZEE-UHFFFAOYSA-N Valproic acid Chemical compound CCCC(C(O)=O)CCC NIJJYAXOARWZEE-UHFFFAOYSA-N 0.000 description 2
- 208000036142 Viral infection Diseases 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 230000006229 amino acid addition Effects 0.000 description 2
- 239000003708 ampul Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 208000022362 bacterial infectious disease Diseases 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 238000002983 circular dichroism Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- PQYUGUXEJHLOIL-UHFFFAOYSA-N diethoxysilyl triethyl silicate Chemical compound C(C)O[SiH](O[Si](OCC)(OCC)OCC)OCC PQYUGUXEJHLOIL-UHFFFAOYSA-N 0.000 description 2
- 238000002022 differential scanning fluorescence spectroscopy Methods 0.000 description 2
- 125000002228 disulfide group Chemical group 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 239000000710 homodimer Substances 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 208000026278 immune system disease Diseases 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 229940102223 injectable solution Drugs 0.000 description 2
- 229940102213 injectable suspension Drugs 0.000 description 2
- 210000005229 liver cell Anatomy 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 239000000346 nonvolatile oil Substances 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 210000001672 ovary Anatomy 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- AQIXEPGDORPWBJ-UHFFFAOYSA-N pentan-3-ol Chemical compound CCC(O)CC AQIXEPGDORPWBJ-UHFFFAOYSA-N 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 238000013207 serial dilution Methods 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 238000004704 ultra performance liquid chromatography Methods 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- UHEPSJJJMTWUCP-DHDYTCSHSA-N (2r,3r,4r,5r)-2-[(1s,2s,3r,4s,6r)-4,6-diamino-3-[(2s,3r,4r,5s,6r)-3-amino-4,5-dihydroxy-6-[(1r)-1-hydroxyethyl]oxan-2-yl]oxy-2-hydroxycyclohexyl]oxy-5-methyl-4-(methylamino)oxane-3,5-diol;sulfuric acid Chemical compound OS(O)(=O)=O.OS(O)(=O)=O.O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H]([C@@H](C)O)O2)N)[C@@H](N)C[C@H]1N UHEPSJJJMTWUCP-DHDYTCSHSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- IVLXQGJVBGMLRR-UHFFFAOYSA-N 2-aminoacetic acid;hydron;chloride Chemical compound Cl.NCC(O)=O IVLXQGJVBGMLRR-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 241000122170 Aliivibrio salmonicida Species 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 108050001427 Avidin/streptavidin Proteins 0.000 description 1
- 108010016529 Bacillus amyloliquefaciens ribonuclease Proteins 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 101710183938 Barstar Proteins 0.000 description 1
- 241000283724 Bison bonasus Species 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 102100025570 Cancer/testis antigen 1 Human genes 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 241000282552 Chlorocebus aethiops Species 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 102100024746 Dihydrofolate reductase Human genes 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101000856237 Homo sapiens Cancer/testis antigen 1 Proteins 0.000 description 1
- 101000634853 Homo sapiens T cell receptor alpha chain constant Proteins 0.000 description 1
- 101000772135 Homo sapiens T cell receptor alpha variable 14/delta variable 4 Proteins 0.000 description 1
- 101000772141 Homo sapiens T cell receptor alpha variable 19 Proteins 0.000 description 1
- 101000794367 Homo sapiens T cell receptor alpha variable 8-4 Proteins 0.000 description 1
- 101000794368 Homo sapiens T cell receptor alpha variable 9-2 Proteins 0.000 description 1
- 101000658400 Homo sapiens T cell receptor beta variable 27 Proteins 0.000 description 1
- 101000658408 Homo sapiens T cell receptor beta variable 30 Proteins 0.000 description 1
- 101000606204 Homo sapiens T cell receptor beta variable 5-1 Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical class C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108700001097 Insect Genes Proteins 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- OVRNDRQMDRJTHS-RTRLPJTCSA-N N-acetyl-D-glucosamine Chemical compound CC(=O)N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-RTRLPJTCSA-N 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 241000235648 Pichia Species 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 239000012505 Superdex™ Substances 0.000 description 1
- 102100029304 T cell receptor alpha variable 14/delta variable 4 Human genes 0.000 description 1
- 102100029307 T cell receptor alpha variable 19 Human genes 0.000 description 1
- 102100030185 T cell receptor alpha variable 8-4 Human genes 0.000 description 1
- 102100030184 T cell receptor alpha variable 9-2 Human genes 0.000 description 1
- 102100034877 T cell receptor beta variable 27 Human genes 0.000 description 1
- 102100034890 T cell receptor beta variable 30 Human genes 0.000 description 1
- 102100039739 T cell receptor beta variable 5-1 Human genes 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 244000000188 Vaccinium ovalifolium Species 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 210000000612 antigen-presenting cell Anatomy 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 125000000613 asparagine group Chemical group N[C@@H](CC(N)=O)C(=O)* 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 238000012575 bio-layer interferometry Methods 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- HUTDDBSSHVOYJR-UHFFFAOYSA-H bis[(2-oxo-1,3,2$l^{5},4$l^{2}-dioxaphosphaplumbetan-2-yl)oxy]lead Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O HUTDDBSSHVOYJR-UHFFFAOYSA-H 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000011098 chromatofocusing Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 235000008504 concentrate Nutrition 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 150000001945 cysteines Chemical class 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000004807 desolvation Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 108020001096 dihydrofolate reductase Proteins 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 150000008267 fucoses Chemical class 0.000 description 1
- 230000033581 fucosylation Effects 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 108010072094 gp100(280-288) melanoma antigen peptide Proteins 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 239000007902 hard capsule Substances 0.000 description 1
- 239000000833 heterodimer Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 230000002998 immunogenetic effect Effects 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 108091008042 inhibitory receptors Proteins 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 229960004194 lidocaine Drugs 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 229960005015 local anesthetics Drugs 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 210000005265 lung cell Anatomy 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Chemical class 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229920012128 methyl methacrylate acrylonitrile butadiene styrene Polymers 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- LXCFILQKKLGQFO-UHFFFAOYSA-N p-hydroxybenzoic acid methyl ester Natural products COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 239000012146 running buffer Substances 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007901 soft capsule Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- SFVFIFLLYFPGHH-UHFFFAOYSA-M stearalkonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 SFVFIFLLYFPGHH-UHFFFAOYSA-M 0.000 description 1
- 239000008227 sterile water for injection Substances 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 239000012137 tryptone Substances 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 238000013060 ultrafiltration and diafiltration Methods 0.000 description 1
- 229960000604 valproic acid Drugs 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/7051—T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2809—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/55—Fab or Fab'
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
- C07K2317/622—Single chain antibody (scFv)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2318/00—Antibody mimetics or scaffolds
- C07K2318/20—Antigen-binding scaffold molecules wherein the scaffold is not an immunoglobulin variable region or antibody mimetics
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/30—Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
Definitions
- the present disclosure relates to the field of soluble T-cell receptors for use as therapeutics and, in particular, to stabilized TCR constructs and TCR fusion proteins.
- T-cell receptors are proteins found on the surface of T-cells. TCRs modulate the immune response through binding with Class I and Class II major histocompatibility complexes (MHC) present on the surface of cells. An MHC presenting a peptide sequence which activates a T-cell via the TCR triggers an immune response. In the case of cancer, a mutated or overexpressed peptide sequence can be presented on the surface of the cancerous cell. TCRs can differentiate between peptides with a single amino acid mutation and thus provide an opportunity to specifically target these mutant peptide-MHC complexes.
- MHC major histocompatibility complexes
- TCRs belong to the immunoglobulin super-family (IgSF) of proteins and share certain structural similarities with antibodies. Similar to the Fab section of an antibody, a TCR includes two unique chains, each containing one variable domain and one constant domain, with highly variable loops (CDRs) in the variable domain providing the binding selectivity of the TCR.
- IgSF immunoglobulin super-family
- TCRs are membrane-bound proteins that contain a transmembrane domain.
- soluble TCRs are inherently unstable proteins with low expression and stability. Modifications to improve the stability of soluble TCRs have been described.
- International Patent Publication No. WO 2004/074322 describes a stabilized soluble TCR that comprises a disulfide bond between constant domain residues which is not present in the native TCR.
- International Patent Publication No. WO 2016/070814 describes a high-stability soluble TCR comprising an artificial interchain disulfide bond linking the constant domains of the TCRa and P chains, and International Patent Publication No.
- WO 2016/184258 describes a stabilized soluble heterodimeric TCR containing an artificial interchain disulfide bond between the variable region of the a chain and the constant region of the P chain. Point mutations that improve stability of soluble TCRs have also been described (see, Shusta, et al., 2000, Nature BiotechnoL, 18:754-759, and Gunnarsen, et al., 2013, Scientific Reports, 3: 1162).
- sc- TCR single-chain TCR
- the sc- TCR was shown to have improved stability.
- sc-TCR fusion proteins are also described which include covalently linked TCR V ⁇ and V ⁇ chains fused to an immunoglobin light chain constant region.
- U.S. Patent Nos. 6,534,633 and 8,105,830 describe an sc-TCR covalently linked through a peptide linker sequence to at least one single-chain antibody (sc- Ab).
- the disclosure relates to a TCR construct comprising a TCR alpha chain polypeptide and a TCR beta chain polypeptide, the TCR alpha chain polypeptide comprising a variable alpha ( V ⁇ ) domain and a constant alpha ( C ⁇ ) domain and the TCR beta chain polypeptide comprising a variable beta ( V ⁇ ) domain and a constant beta (C ⁇ ) domain, where the C ⁇ domain and C ⁇ domain comprise stabilizing mutations, the stabilizing mutations comprising a first interchain disulfide bond between the C ⁇ domain and the C ⁇ domain and one or more additional stabilizing mutations, the one or more additional stabilizing mutations selected from: a) an interchain disulfide bond formed between: i) a cysteine residue comprised by an amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide, wherein the amino acid extension is 1 to about 10 amino acids in length, and i
- the present disclosure relates to a TCR construct comprising a TCR alpha chain polypeptide and a TCR beta chain polypeptide, the TCR alpha chain polypeptide comprising a variable alpha (V ⁇ ) domain and a constant alpha (C ⁇ ) domain and the TCR beta chain polypeptide comprising a variable beta (V ⁇ ) domain and a constant beta (C ⁇ ) domain, where the C ⁇ domain and/or C ⁇ domain comprise one or more stabilizing mutations selected from: a) an interchain disulfide bond formed between: i) a cysteine residue comprised by an amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide, wherein the amino acid extension is 1 to about 10 amino acids in length, and ii) a cysteine residue at position TRAC 128 in the C ⁇ domain of the TCR alpha chain polypeptide; b) an interchain disulfide bond between cysteine residue substitutions at positions TRAC 84.2 and TRBC
- the present disclosure relates to a TCR construct comprising a TCR alpha chain polypeptide and a TCR beta chain polypeptide, the TCR alpha chain polypeptide comprising a variable alpha (V ⁇ ) domain and a constant alpha (C ⁇ ) domain and the TCR beta chain polypeptide comprising a variable beta (V ⁇ ) domain and a constant beta (C ⁇ ) domain, where the C ⁇ domain and C ⁇ domain together comprise two or more stabilizing mutations selected from: a) an interchain disulfide bond formed between: i) a cysteine residue comprised by an amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide, wherein the amino acid extension is 1 to about 10 amino acids in length, and ii) a cysteine residue at position TRAC 128 in the C ⁇ domain of the TCR alpha chain polypeptide; b) an interchain disulfide bond between cysteine residue substitutions at positions TRAC 84 and TRBC 79
- the present disclosure relates to a TCR construct comprising a TCR alpha chain polypeptide and a TCR beta chain polypeptide, the TCR alpha chain polypeptide comprising a variable alpha (V ⁇ ) domain and a constant alpha (C ⁇ ) domain and the TCR beta chain polypeptide comprising a variable beta (V ⁇ ) domain and a constant beta (C ⁇ ) domain, the TCR construct comprising a combination of amino acid mutations as set forth for any one of the variants shown in Table 2, wherein the numbering of amino acids is IMGT numbering.
- the present disclosure relates to a TCR construct comprising a TCR alpha chain polypeptide and a TCR beta chain polypeptide, the TCR alpha chain polypeptide comprising a variable alpha (V ⁇ ) domain and a constant alpha (C ⁇ ) domain and the TCR beta chain polypeptide comprising a variable beta (V ⁇ ) domain and a constant beta (C ⁇ ) domain, the TCR construct comprising a combination of amino acid mutations as set forth for any one of the variants shown in Table 3, wherein the numbering of amino acids is IMGT numbering.
- the present disclosure relates to a TCR fusion protein comprising one or more TCR constructs described herein and a scaffold, wherein at least one of the TCR constructs is fused to the scaffold.
- the present disclosure relates to a pharmaceutical composition
- a pharmaceutical composition comprising a TCR construct or TCR fusion protein as described herein and a pharmaceutically acceptable carrier or diluent.
- the present disclosure relates to a polynucleotide or set of polynucleotides encoding a TCR construct or TCR fusion protein as described herein.
- the present disclosure relates to a method of preparing a TCR construct or TCR fusion protein as described herein comprising transfecting a cell with a polynucleotide or set of polynucleotides encoding the TCR construct or TCR fusion protein, and culturing the cell under conditions suitable for expression of the TCR construct or TCR fusion protein.
- the present disclosure relates to a method of treating a disease or disorder in a subject in need thereof, the method comprising administering to the subject an effective amount of a TCR construct or a TCR fusion protein as described herein.
- the present disclosure relates to the use of a TCR construct or a TCR fusion protein as described herein in therapy.
- Fig. 1 presents a schematic representation of exemplary TCR fusion proteins and controls as described herein and in the Examples.
- A control one-armed antibody (OA-scFv);
- B control antibody comprising two scFv arms (Dual scFv);
- C TCR-scFv;
- D One-armed alpha fusion;
- E One-armed alpha fusion-DS;
- F Dual alpha fusion-DS;
- G Dual-fusion;
- H One-armed beta fusion;
- I One-armed beta fusion-DS;
- J Dual beta fusion-DS;
- K Bispecific alpha fusion;
- L Bispecific beta fusion;
- M Chimera Bispecific;
- N Bispecific tandem beta-fusion;
- O 2x1 Bispecific beta-fusion;
- P 3x1 Bispecific beta-fusion;
- Q 4x1 Bispecific C-terminal beta-fusion;
- R 4x1 Bispecific light chain beta-fusion;
- S One-armed alpha fusion
- Fig. 2 presents differential scanning calorimetry (DSC) thermograms for TCR fusion proteins comprising exemplary stabilizing mutations as described herein (v21230: IC Disulfide; v22712: TRBC/6.VAL->LEU + IC Disulfide, and v28881: TRBC/6.VAL->ILE + IC Disulfide).
- DSC differential scanning calorimetry
- FIG. 3 presents a comparison of the UPLC-SEC traces for an exemplary TCR fusion protein described herein (variant v21230, containing the IC Disulfide) after expression at (A) 37°C, and (B) 32°C.
- the monodispersed species elute at 2.6 min.
- the high molecular weight species (aggregates) elute prior to the monodispersed species.
- the peaks at 2.8 and 3.25 min correspond to the mis-paired anti-CD3 scFv homodimer and unpaired anti-CD3 scFv, respectively.
- Fig. 4 presents differential scanning calorimetry (DSC) thermograms showing the change in Tm for an exemplary TCR fusion protein comprising the TRAC-Hinge Disulfide described herein (v22752: IC Disulfide + TRAC-Hinge Disulfide) compared to a TCR fusion protein comprising the IC Disulfide alone (v21230).
- DSC differential scanning calorimetry
- FIG. 5 shows binding of exemplary TCR fusion proteins to target cell surface peptide- MHC complex by flow cytometry,
- A variant v21230 (control comprising the IC Disulfide), and variants v22705, v22707 and v22709;
- B variant v21230 (control comprising the IC Disulfide), and variants v22712, v22716, v22720 and v22722;
- C variant v21230 (control comprising the IC Disulfide), and variants v22729, v22730, v22748 and v22752, and
- D variant v21230 (control comprising the IC Disulfide), and variants v22772, v22837, v22840 and v22842.
- Fig. 6 presents the EC 50 values measured for binding of exemplary TCR fusion proteins to target cell surface peptide-MHC complex (assessed by flow cytometry).
- the dashed line corresponds to the EC 50 of control variant v21230 which contains the IC Disulfide.
- Fig. 7 presents the results of assessment of the avidity effects using a low affinity TCR component in exemplary TCR fusion proteins having different formats.
- Variants v30972 bispecific tandem beta-fusion
- v30964 bispecific beta-fusion
- v30975 one-armed beta fusion
- v30968 (2x1 bispecific beta-fusion) comprise a low affinity anti-gplOO TCR component.
- Variants v29011 (one-armed beta fusion) and v31327 (bispecific beta-fusion) comprise a higher affinity anti-gplOO TCR component.
- Variant v30968 comprises 2 copies of the TCR component, all other variants comprise one copy of the TCR component.
- variant v32548 which is in a “4x1 tandem” format comprising anti-NY-ESOl TCRs
- variant v32549 which is in a “4x1 LC” format comprising anti-NY-ESOl TCRs.
- Fig. 9 presents the amino acid sequences of the TCR alpha chain constant region (TRAC; SEQ ID NO: 1) and the TCR beta chain constant regions (TRBC1; SEQ ID NO:2 and TRBC2; SEQ ID NO:3), together with the standard IMGT numbering. Differences between the sequences of TRBC1 and TRBC2 are shown in bold italic font.
- Fig. 10 shows the cytotoxic effects of TCR fusion proteins having different formats as measured by a T2 T-cell dependent cytotoxicity assay.
- the TCR fusion proteins comprised a stabilized affinity matured 1G4-33A anti-NY-ESOl TCR and an anti-CD3 Fab or scFv.
- Variant v31185 is a control one-armed TCR construct that lacks the anti-CD3 component.
- Fig. 11 presents a table of TCR fusion protein variants (Table 2) comprising exemplary combinations of stabilizing mutations.
- Fig. 12 presents a table of TCR fusion protein variants (Table 3) comprising exemplary combinations of stabilizing mutations.
- the present disclosure relates to stabilized TCR constructs.
- the TCR constructs comprise a TCR alpha chain polypeptide having a variable alpha (V ⁇ ) domain and a constant alpha (C ⁇ ) domain and a TCR beta chain polypeptide having a variable beta ( V ⁇ ) domain and a constant beta (C ⁇ ) domain and are stabilized by the introduction of stabilizing mutations into the C ⁇ domain and/or the C ⁇ domain.
- the stabilizing mutations may include one or more non-naturally occurring interchain disulfide bonds, one or more non-naturally occurring intrachain disulfide bonds, one or more point mutations, one or more loop truncation mutations, or combinations thereof.
- the stabilizing mutations include the introduction a non-naturally occurring disulfide bond between the C ⁇ domain and the C ⁇ domain (an interchain disulfide bond), together with one or more additional stabilizing mutations.
- the additional stabilizing mutations may include additional non-naturally occurring interchain disulfide bonds, non- naturally occurring intrachain disulfide bonds, point mutations, loop truncation mutations, or combinations thereof.
- TCR fusion proteins comprising one or more TCR constructs as described herein fused to a scaffold, such as an immunoglobulin (Ig) Fc region.
- the Ig Fc region may be, for example, an IgG or IgA Fc region.
- TCR constructs and TCR fusion proteins may find use, for example, as therapeutic or diagnostic agents.
- the term “about” refers to an approximately +/-10% variation from a given value. It is to be understood that such a variation is always included in any given value provided herein, whether or not it is specifically referred to.
- compositions, use or method denotes that additional elements and/or method steps may be present, but that these additions do not materially affect the manner in which the recited composition, method or use functions.
- Consisting of when used herein in connection with a composition, use or method, excludes the presence of additional elements and/or method steps.
- a composition, use or method described herein as comprising certain elements and/or steps may also, in certain embodiments consist essentially of those elements and/or steps, and in other embodiments consist of those elements and/or steps, whether or not these embodiments are specifically referred to.
- TCR construct or TCR fusion protein described herein are “fused,” it is meant that the components are linked by peptide bonds, either directly or via a peptide linker.
- the terms “derived from” and “based on” when used with reference to a recombinant amino acid sequence mean that the recombinant amino acid sequence is substantially identical to the sequence of the corresponding wild-type amino acid sequence.
- an Ig Fc amino acid sequence that is derived from (or based on) a wild-type Ig Fc sequence is substantially identical (for example, shares at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence identity) with the wild-type Ig Fc sequence.
- TCR construct can be implemented with respect to any fusion protein, method, use or composition disclosed herein.
- the TCR constructs of the present disclosure are based on an a ⁇ TCR heterodimer and comprise a TCR alpha chain polypeptide having a variable alpha (V ⁇ ) domain and a constant alpha (C ⁇ ) domain and a TCR beta chain polypeptide having a variable beta (V ⁇ ) domain and a constant beta (C ⁇ ) domain.
- the TCR constructs are stabilized by the introduction of stabilizing mutations into the C ⁇ domain and/or the C ⁇ domain.
- Human wild-type aPTCRs comprise a C ⁇ domain (T-cell receptor alpha constant (TRAC)) and a C ⁇ domain (either T-cell receptor beta constant 1 (TRBC1) or T-cell receptor beta constant 2 (TRBC2)).
- TRBC1 and TRBC2 differ in only 3 residues: position TRBC/1.4 is Asn in TRBC1 and Lys in TRBC2; position TRBC/1.3 is Lys in TRBC1 and Asn in TRBC2, and position TRBC/29 is Phe in TRBC1 and Tyr in TRBC2.
- the amino acid sequences of the human TRAC (SEQ ID NO:1), TRBC1 (SEQ ID NO:2) and TRBC2 (SEQ ID NO:3) are shown in Fig. 9.
- C ⁇ domain refers to the amino acid sequence of a TRAC C ⁇ domain and excludes any transmembrane sequence.
- the C ⁇ domain comprised by the TCR constructs described herein may optionally comprise the naturally-occurring cysteine residue at position TRAC/128.
- the C ⁇ domain comprised by the TCR construct has the amino acid sequence of the human TRAC C ⁇ domain as set forth in SEQ ID NO:1 (i.e. ending at position TRAC/127).
- the C ⁇ domain comprised by the TCR construct has the amino acid sequence of the human TRAC C ⁇ domain as set forth in SEQ ID NO:4 (i.e. including the cysteine residue at position TRAC/128).
- C ⁇ domain refers to the amino acid sequence of a TRBC C ⁇ domain and excludes any transmembrane sequence.
- the C ⁇ domain comprised by the TCR construct has the amino acid sequence of the human TRBC1 or TRBC2 C ⁇ domain ending at position TRBC/126.
- the C ⁇ domain comprised by the TCR construct has the amino acid sequence of the human TRBC1 C ⁇ domain as set forth in SEQ ID NO:2.
- the C ⁇ domain comprised by the TCR construct has the amino acid sequence of the human TRBC2 C ⁇ domain as set forth in SEQ ID NO:3.
- the C ⁇ domain comprised by the TCR construct has the amino acid sequence of the human TRBC1 C ⁇ domain in which position 85.1 has been mutated from cysteine to alanine, as shown in SEQ ID NO:43.
- the TCR beta chain polypeptide further comprises a cysteine residue at the C-terminus of the C ⁇ domain that forms a non-naturally occurring disulfide bond with a cysteine residue in the C ⁇ domain of the TCR alpha chain polypeptide as described herein.
- the cysteine residue at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide may be a single amino acid addition or the cysteine residue may be part of a short amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide as described herein.
- the cysteine residue may be part of a short amino acid extension, for example between 1 and about 10 amino acids in length, at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide. In some embodiments, the cysteine residue may be part of a short amino acid extension, for example between 1 and about 10 amino acids in length, at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide where the amino acid extension comprises all or a portion, for example 3 or more consecutive amino acids, of the sequence of an IgGl hinge region, such as EPKSCDKTHT [SEQ ID NO: 16], or EPKSCDKTHTCPPCP [SEQ ID NO:21],
- the stabilizing mutations introduced into the C ⁇ domain and/or the C ⁇ domain of the TCR constructs of the present disclosure may include non-naturally occurring interchain disulfide bonds, non-naturally occurring intrachain disulfide bonds, point mutations, loop truncation mutations, and combinations thereof, as described in detail below.
- the stabilizing mutations comprised by the TCR constructs improve the stability of the TCR construct as compared to a TCR construct that does not comprise the stabilizing mutation(s). Improving the stability of the TCR construct in this context may include improving the thermal stability of the TCR construct, improving the colloidal stability of the TCR construct, or both.
- the TCR constructs of the present disclosure show an improvement in thermal stability as compared to a corresponding TCR construct that does not comprise the stabilizing mutation(s).
- Thermal stability of the TCR constructs may be assessed, for example, by measuring the melting temperature (Tm) of the TCR construct. Accordingly, in some embodiments, the TCR constructs have an increased Tm as compared to a corresponding TCR construct that does not comprise the stabilizing mutation(s).
- the TCR constructs of the present disclosure have a Tm that is increased by 0.5°C or more as compared to the Tm of a corresponding TCR construct that does not comprise the stabilizing mutation(s). In some embodiments, the TCR constructs have a Tm that is increased by 1°C or more as compared to the Tm of a corresponding TCR construct that does not comprise the stabilizing mutation(s), for example, by 2°C or more, 3°C or more, 4°C or more, or 5°C or more, as compared to the Tm of a corresponding TCR construct that does not comprise the stabilizing mutation(s).
- the TCR constructs of the present disclosure have a Tm that is increased by between 0.5°C and about 10°C as compared to the Tm of a corresponding TCR construct that does not comprise the stabilizing mutation(s). In some embodiments, the TCR constructs have a Tm that is increased by between 1°C and about 10°C as compared to the Tm of a corresponding TCR construct that does not comprise the stabilizing mutation(s), for example, between 1°C and about 9°C, between 1°C and about 8°C, or between 1°C and about 7°C, as compared to the Tm of a corresponding TCR construct that does not comprise the stabilizing mutation(s).
- the TCR constructs have a Tm that is increased by between 2°C and about 10°C, between 2°C and about 9°C, between 2°C and about 8°C, or between 2°C and about 7°C, as compared to the Tm of a corresponding TCR construct that does not comprise the stabilizing mutation(s).
- the TCR constructs of the present disclosure comprise a non-natural occurring disulfide bond between the C ⁇ domain and the C ⁇ domain (a “first non- naturally occurring interchain disulfide bond”), together with one or more additional stabilizing mutations as described herein and have an increased Tm as compared to a corresponding TCR construct comprising the first non-naturally occurring interchain disulfide bond alone.
- the TCR constructs comprise a first non-naturally occurring interchain disulfide bond and one or more additional stabilizing mutations and have a Tm that is increased by 0.5°C or more as compared to the Tm of a corresponding TCR construct comprising the first non-naturally occurring interchain disulfide bond alone, for example, by 1°C or more, by 2°C or more, 3°C or more, 4°C or more, or 5°C or more, as compared to the Tm of a corresponding TCR construct comprising the first non-naturally occurring interchain disulfide bond alone.
- the TCR constructs comprise a first non-naturally occurring interchain disulfide bond and one or more additional stabilizing mutations and have a Tm that is increased by between 0.5°C and about 10°C as compared to the Tm of a corresponding TCR construct comprising the first non-naturally occurring interchain disulfide bond alone, for example, by between 1°C and about 10°C, by between 1°C and about 9°C, between 1°C and about 8°C, or between 1°C and about 7°C, as compared to the Tm of a corresponding TCR construct comprising the first non-naturally occurring interchain disulfide bond alone.
- the TCR constructs comprising a first non-naturally occurring interchain disulfide bond and one or more additional stabilizing mutations have a Tm that is increased by between 2°C and about 10°C, between 2°C and about 9°C, between 2°C and about 8°C, or between 2°C and about 7°C, as compared to the Tm of a corresponding TCR construct comprising the first non-naturally occurring interchain disulfide bond alone.
- the Tm of the TCR constructs may be measured, for example, by circular dichroism (CD), differential scanning calorimetry (DSC) or differential scanning fluorimetry (DSF) using standard techniques.
- the TCR constructs have an increased Tm as compared to the stipulated corresponding control TCR construct (for example, a corresponding TCR construct that does not comprise the stabilizing mutation(s) or a corresponding TCR construct comprising a first non-naturally occurring interchain disulfide bond alone), where the Tm is measured by DSC.
- the TCR constructs of the present disclosure show an improvement in colloidal stability as compared to a corresponding TCR construct that does not comprise the stabilizing mutation(s).
- Colloidal stability may be assessed, for example, by measuring the amount of high molecular weight (HMW) species (or aggregation) of the TCR construct that occurs during expression of the TCR construct.
- HMW high molecular weight
- the TCR constructs of the present disclosure show decreased amounts of HMW species (aggregation) as compared to a corresponding TCR construct that does not comprise the stabilizing mutation(s) when expressed under the same conditions.
- the TCR constructs comprise a first non-naturally occurring interchain disulfide bond and one or more additional stabilizing mutations and show decreased amounts of HMW species (aggregation) as compared to a corresponding TCR construct comprising the first non-naturally occurring interchain disulfide bond alone when expressed under the same conditions.
- the amount of HMW species present in a preparation of a TCR construct may be assessed by various standard techniques known in the art. For example, the amount of HMW species in a preparation of a TCR construct may be assessed by size-exclusion chromatography (SEC), for example using UPLC-SEC, or dynamic light scattering (DLS).
- SEC size-exclusion chromatography
- UPLC-SEC UPLC-SEC
- DLS dynamic light scattering
- the TCR constructs show decreased amounts of HMW species as compared to the stipulated corresponding control TCR construct, where the amount of HMW species is assessed by UPLC-SEC.
- TCR constructs of the present disclosure have an increased Tm as compared to a corresponding TCR construct comprising the IC Disulfide alone.
- the TCR constructs of the present disclosure comprise a first non-naturally occurring disulfide bond and one or more additional stabilizing mutations as described herein, where the first non-naturally occurring disulfide bond is the IC Disulfide, and have an increased Tm as compared to a corresponding TCR construct comprising the IC Disulfide alone.
- the TCR constructs of the present disclosure have a Tm that is increased by 0.5°C or more as compared to the Tm of a corresponding TCR construct comprising the IC Disulfide alone. In some embodiments, the TCR constructs have a Tm that is increased by 1°C or more as compared to the Tm of a corresponding TCR construct comprising the IC Disulfide alone, for example, by 2°C or more, 3°C or more, 4°C or more, or 5°C or more, as compared to the Tm of a corresponding TCR construct comprising the IC Disulfide alone.
- the TCR constructs of the present disclosure have a Tm that is increased by between 0.5°C and about 10°C as compared to the Tm of a corresponding TCR construct comprising the IC Disulfide alone, for example, by between 1°C and about 10°C, by between 1°C and about 9°C, between 1°C and about 8°C, or between 1°C and about 7°C, as compared to the Tm of a corresponding TCR construct comprising the IC Disulfide alone.
- the TCR constructs have a Tm that is increased by between 2°C and about 10°C, between 2°C and about 9°C, between 2°C and about 8°C, or between 2°C and about 7°C, as compared to the Tm of a corresponding TCR construct comprising the IC Disulfide alone.
- the TCR constructs of the present disclosure show an amount of HMW species that is substantially the same, or decreased, as compared to a corresponding TCR construct comprising the IC Disulfide alone when expressed under the same conditions.
- substantially the same in the context of amount of HMW species it is meant that the amount of HMW species measured for the test TCR construct is + 10% of the amount of HMW species measured for a corresponding TCR construct comprising the IC Disulfide alone when expressed under the same conditions.
- the amount of HMW species is measured by UPLC-SEC.
- the TCR constructs of the present disclosure comprise the IC Disulfide and one or more additional stabilizing mutations and have one or both of the following properties: (i) an increased Tm as compared to a corresponding TCR construct comprising the IC Disulfide alone, and/or (ii) a decreased amount of HMW species as compared to a corresponding TCR construct comprising the IC Disulfide alone when expressed under the same conditions.
- the TCR constructs of the present disclosure comprise a first non-naturally occurring interchain disulfide bond and one or more additional stabilizing mutations and have one or both of the following properties: (i) an increased Tm as compared to a corresponding TCR construct comprising the first non-naturally occurring interchain disulfide bond alone, and/or (ii) a decreased amount of HMW species as compared to a corresponding TCR construct comprising the first non-naturally occurring interchain disulfide bond alone when expressed under the same conditions.
- the stabilizing mutations comprised by the TCR constructs of the present disclosure were identified by an iterative process of structure and computational guided design and experimental screening as described herein.
- In silico modelling using a TCR model based on a Protein Database (PDB) structure was employed to identify mutation designs in the TRAC and TRBC domains that could potentially improve the thermal and/or colloidal stability of the TCR, and these were subsequently tested experimentally.
- PDB Protein Database
- Stabilizing disulfide bonds identified by the above approach include non-naturally occurring interchain disulfide bonds and non-naturally occurring intrachain disulfide bonds.
- a non-naturally occurring interchain disulfide bond is a disulfide bond between a cysteine residue in the C ⁇ domain of the TCR construct and a cysteine residue in the C ⁇ domain of the TCR construct that does not occur in a wild-type TCR.
- cysteine residues of the non-naturally occurring interchain disulfide bond are introduced by substitution of the wild-type residue at a given position with a cysteine residue (a “cysteine residue substitution” or “cysteine substitution) or by addition of a cysteine residue at the C-terminus of the C ⁇ domain or the C ⁇ domain.
- a non-naturally occurring intrachain disulfide bond is a disulfide bond between two cysteine residues in the C ⁇ domain of the TCR construct or between two cysteine residues in the C ⁇ domain of the TCR construct that does not occur in a wild-type TCR.
- One or both of the cysteine residues of the non-naturally occurring intrachain disulfide bond is introduced by substitution of the wild-type residue at a given position with a cysteine residue (a “cysteine residue substitution” or “cysteine substitution) or by addition of a cysteine residue at the C-terminus of the C ⁇ domain or the C ⁇ domain.
- the TCR constructs of the present disclosure include at least one non-naturally occurring interchain disulfide bond.
- non-naturally occurring interchain disulfide bonds that may be comprised by the TCR constructs include a “hinge disulfide bond.”
- a “hinge disulfide bond,” as used herein, refers to a disulfide bond formed between a cysteine residue added at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide and a cysteine residue in the C ⁇ domain of the TCR alpha chain polypeptide.
- the cysteine residue added at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide may be a single amino acid addition or the cysteine residue may be part of a short amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide.
- the amino acid extension is typically 10 amino acids or less in length.
- the cysteine residue added at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide is part of an amino acid extension that is 10 amino acids or less in length, for example, 9 amino acids or less in length, 8 amino acids or less in length, 7 amino acids or less in length, 6 amino acids or less in length, or 5 amino acids or less in length.
- the cysteine residue added at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide is part of an amino acid extension that is between 1 and about 10 amino acids in length. In some embodiments, the cysteine residue added at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide is part of an amino acid extension that is between 1 and about 9 amino acids in length, for example, between 1 and about 8 amino acids in length, between 1 and about 7 amino acids in length, between 1 and about 6 amino acids in length, or between 1 and about 5 amino acids in length.
- the cysteine residue added at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide is part of an amino acid extension that is between 2 and about 10 amino acids in length, for example, between 2 and about 9 amino acids in length, for example, between 2 and about 8 amino acids in length, between 2 and about 7 amino acids in length, between 2 and about 6 amino acids in length, or between 2 and about 5 amino acids in length.
- the amino acid extension comprises a cysteine residue and one or two “linkers” where the linker(s) are composed of amino acids other than cysteine.
- the C ⁇ domain of the TCR beta chain polypeptide comprises an amino acid extension at the C-terminus that has one of the following structures (from N-terminus to C- terminus):
- the linker allows the cysteine residue of the amino acid extension to assume the correct conformation relative to its cognate cysteine residue in the C ⁇ domain of the TCR alpha chain polypeptide such that the desired disulfide bond is formed.
- the linker peptide may have one of a number of amino acid sequences known in the art to function successfully as a linker or spacer in polypeptide and protein sequences.
- the linker peptide may comprise the following amino acid residues: Gly, Ser, Ala or Thr, or a combination thereof.
- useful linkers include, but are not limited to, glycine-serine linkers, such as (GS) n , (GSGGS) n , (GGGGS) n , and (GGGS) n (where n is an integer between 1 and 4), as well as glycine-alanine linkers and alanine-serine linkers having similar configurations.
- the amino acid extension may comprise all or a portion of a hinge region sequence from an immunoglobulin or from a TCR.
- the cysteine residue included in the amino acid extension may occur naturally in the hinge region sequence or it may be introduced by amino acid substitution.
- Non-limiting examples of hinge region sequences include: ESSCDVKLVEKSFET (SEQ ID NO:5) (TCR ⁇ ); DCGFTS (SEQ ID NO:6) (TCRp); DVITMDPKDNCSKDAN (SEQ ID NO:7) (TCRy); DHVKPKETENTKQPSKSCHKPK (SEQ ID NO:8) (TCR5); EPKSCDKTHTCPPCP (SEQ ID NO:9) (IgGl); ERKCCVECPPCP (SEQ ID NO: 10) (IgG2); ELKTPLGDTTHTCPRCP (SEQ ID NO: 11) (IgG3-Hl); EPKSCDTPPPCPRCP (SEQ ID NO: 12) (IgG3-H2, IgG3-H3 and IgG3-H4); ESKYGPPCPSCP (SEQ ID NO: 13
- Immunoglobulin hinge region sequences may be divided into “upper,” “core” and “lower” hinge regions.
- the full hinge region sequence is: EPKSCDKTHTCPPCPAPELLGG (SEQ ID NO: 15).
- the upper hinge region of the IgG hinge is generally defined as extending from Glu216 to Thr225 (EU numbering) (i.e. EPKSCDKTHT (SEQ ID NO: 16))
- the core hinge region is generally defined as extending from Cys226 to Pro230 (EU numbering) (i.e. CPPCP (SEQ ID NO: 17)
- the lower hinge region is generally defined as extending from Ala231 to Pro238 (EU numbering) (i.e. APELLGG (SEQ ID NO: 18)) (see, Burton, 1985, Molec. Immunol., 22: 161-206).
- the amino acid extension comprises all or a portion of an immunoglobulin hinge region sequence. In some embodiments, the amino acid extension comprises all or a portion of an immunoglobulin upper and/or core hinge region sequence. In some embodiments, the amino acid extension comprises all or a portion of an immunoglobulin upper hinge region sequence.
- the amino acid extension comprises all or a portion of an IgGl hinge region sequence. In some embodiments, the amino acid extension comprises all or a portion of an IgGl upper and/or core hinge region sequence. In some embodiments, the amino acid extension comprises all or a portion of an IgGl upper hinge region sequence. In some embodiments, the amino acid extension comprises the sequence: EPKSC [SEQ ID NO: 19], In some embodiments, the amino acid extension comprises the sequence: EPKSCDKTHT [SEQ ID NO: 16],
- the cysteine residue in the C ⁇ domain of the TCR alpha chain polypeptide that forms the hinge disulfide with the cysteine residue added at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide may be a naturally occurring cysteine residue (for example, the naturally occurring cysteine residue at position TRAC 128) or it may be a cysteine substitution at a position proximate to the C-terminus of the TCR alpha chain polypeptide.
- proximate to in this context, it is meant within 10 amino acids of the C-terminus of the TCR alpha chain polypeptide.
- cysteine residue in the C ⁇ domain of the TCR alpha chain polypeptide that forms the hinge disulfide with the cysteine residue added at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide is the naturally occurring cysteine residue at position
- the TCR construct comprises a non-naturally occurring interchain disulfide bond that is formed between: i) a cysteine residue comprised by an amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide, where the amino acid extension is between 1 and about 10 amino acids in length, and ii) the naturally occurring cysteine residue at position TRAC 128 in the C ⁇ domain of the TCR alpha chain polypeptide.
- the TCR construct comprises a non-naturally occurring interchain disulfide bond that is formed between: i) a cysteine residue in an amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide, where the amino acid extension has the sequence: EPKSC [SEQ ID NO: 19] or EPKSCDKTHT [SEQ ID NO: 16], and ii) the naturally occurring cysteine residue at position TRAC 128 in the C ⁇ domain of the TCR alpha chain polypeptide.
- TCR constructs include: i) a disulfide bond between cysteine residue substitutions at positions TRAC 84.2 and TRBC 79; ii) a disulfide bond between cysteine residue substitutions at positions TRAC 122 and TRBC 12; iii) a disulfide bond between cysteine residue substitutions at positions TRAC 124 and TRBC 11; iv) a disulfide bond between cysteine residue substitutions at positions TRAC 125 and TRBC 11; v) a disulfide bond between cysteine residue substitutions at positions TRAC 126 and TRBC 11; vi) a disulfide bond between cysteine residue substitutions at positions TRAC 127 and TRBC 11, and vii) a disulfide bond between cysteine residue substitutions at positions TRAC 128 and TRBC 11.
- non-naturally occurring interchain disulfide bonds comprised by the TCR constructs may include the IC Disulfide (i.e. a disulfide bond between cysteine residue substitutions at position TRAC 84 in the TCR alpha chain polypeptide and position TRBC 79 in the TCR beta chain polypeptide).
- IC Disulfide i.e. a disulfide bond between cysteine residue substitutions at position TRAC 84 in the TCR alpha chain polypeptide and position TRBC 79 in the TCR beta chain polypeptide.
- the TCR construct comprises a non-naturally occurring interchain disulfide bond selected from:
- the TCR construct comprises a non-naturally occurring interchain disulfide bond selected from:
- Intrachain disulfide bonds that may be included in the TCR constructs as stabilizing mutations include disulfide bonds between two cysteine residues in the C ⁇ domain of the TCR construct and disulfide bonds between two cysteine residues in the C ⁇ domain of the TCR construct.
- at least one of the cysteine residues that make up the intrachain disulfide bond is a cysteine substitution of a naturally occurring residue in the C ⁇ domain or the C ⁇ domain.
- the TCR constructs of the present disclosure comprise one or more intrachain disulfide bonds. In some embodiments, the TCR constructs comprise an intrachain disulfide bond between two cysteine residues in the C ⁇ domain of the TCR construct. In some embodiments, the TCR constructs comprise an intrachain disulfide bond between two cysteine residues in the C ⁇ domain of the TCR construct where both cysteine residues involved in the disulfide bond are cysteine substitutions.
- Non-naturally occurring intrachain disulfide bonds that may be included in the TCR constructs in certain embodiments include: i) a disulfide bond between cysteine residue substitutions at positions TRAC 39 and TRAC 85, and ii) a disulfide bond between cysteine residue substitutions at positions TRAC 26 and TRAC 85.1.
- the TCR constructs of the present disclosure comprise an interchain disulfide bond
- the TCR construct may also comprise one or more intrachain disulfide bonds as additional stabilizing mutations.
- a number of stabilizing point and loop truncation mutations were identified by the approach outlined above and described in the Examples.
- the TCR constructs of the present disclosure may include one or more of these stabilizing point mutations and/or loop truncation mutations.
- a “point mutation,” as used herein, refers to a substitution of an amino acid that occurs in the wild-type sequence with a different amino acid.
- the TCR constructs comprise one or more stabilizing point mutations which are amino acid substitutions at one or more of the following positions: TRAC 4, TRAC 26, TRAC 39, TRAC 85, TRAC 105, TRAC 120, TRBC 6, TRBC 36, TRBC 86 and TRBC 45.3.
- the TCR constructs comprise one or more stabilizing point mutations selected from: i) an amino acid substitution at position TRAC 4 from Vai to Ala, Thr, Ile, Leu or Met; ii) an amino acid substitution at position TRAC 26 from Thr to Ala, Vai, Ile, Leu or Met; iii) an amino acid substitution at position TRAC 39 from Vai to Ala, Thr, Ile, Leu or Met; iv) an amino acid substitution at position TRAC 85 from Ala to Ser, Thr, Vai, Ile or Met; v) an amino acid substitution at position TRAC 105 from Ala to Ser, Thr, Glu, Gin, Asp, Asn, His, Lys or Arg; vi) an amino acid substitution at position TRAC 120 from Phe to Tyr or His; vii) an amino acid substitution at position TRBC 6 from Vai to Ala, Thr, Ile, Leu or Met; viii) an amino acid substitution at position TRBC 36 from His to
- the amino acid substitution at position TRAC 4 is from Vai to Ile. In certain embodiments, the amino acid substitution at position TRAC 26 is from Thr to Ile. In certain embodiments, the amino acid substitution at position TRAC 39 is from Vai to Ile. In certain embodiments, the amino acid substitution at position TRAC 85 is from Ala to Vai. In certain embodiments, the amino acid substitution at position TRAC 105 is from Ala to Ser. In certain embodiments, the amino acid substitution at position TRAC 120 is from Phe to Tyr. In certain embodiments, the amino acid substitution at position TRBC 6 is from Vai to Ile or Leu. In certain embodiments, the amino acid substitution at position TRBC 36 is from His to Phe. In certain embodiments, the amino acid substitution at position TRBC 86 is from Ser to Thr. In certain embodiments, the amino acid substitution at position TRBC 45.3 is from Vai to Thr.
- the TCR constructs comprise one or more stabilizing point mutations selected from: i) an amino acid substitution at position TRAC 4 from Vai to Ile; ii) an amino acid substitution at position TRAC 26 from Thr to Ile; iii) an amino acid substitution at position TRAC 39 from Vai to Ile; iv) an amino acid substitution at position TRAC 85 from Ala to Vai; v) an amino acid substitution at position TRAC 105 from Ala to Ser; vi) an amino acid substitution at position TRAC 120 from Phe to Tyr; vii) an amino acid substitution at position TRBC 6 from Vai to Ile or Leu; viii) an amino acid substitution at position TRBC 36 from His to Phe; ix) an amino acid substitution at position TRBC 86 from Ser to Thr, and x) an amino acid substitution at position TRBC 45.3 from Vai to Thr.
- stabilizing point mutations selected from: i) an amino acid substitution at position TRAC 4 from Vai to Ile; ii) an amino acid substitution at position T
- a “loop truncation mutation,” as used herein, refers to a mutation that shortens a naturally occurring loop in the wild-type TCR sequence by deletion of one or more amino acids in the loop, or by replacement of all or a part of the loop with a shorter sequence of amino acids.
- the TCR constructs may comprise a loop truncation mutation that shortens the DE loop in the C ⁇ domain of the TCR construct.
- the DE loop in the C ⁇ domain is 13 amino acids in length and extends from position TRBC 84.1 to position TRBC 85.1.
- the loop truncation mutation shortens the DE loop in the C ⁇ domain of the TCR construct by between 1 and 10 amino acids.
- the loop truncation mutation shortens the DE loop in the C ⁇ domain of the TCR construct by between 1 and 9 amino acids, between 1 and 8 amino acids, between 1 and 7 amino acids, between 1 and 6 amino acids, between 1 and 5 amino acids or between 1 and 4 amino acids.
- the DE loop in the TCR C ⁇ domain differs in amino acid sequence to the DE loop in the human TCR C ⁇ domain and notably is 3 or 4 residues shorter than the human TCR DE loop.
- the TCR constructs comprise a loop truncation mutation that is a deletion of one or more amino acids, for example, between 1 and
- the TCR construct comprises a loop truncation mutation that is a deletion of the amino acids at positions TRBC 84.5 to 85.6.
- the TCR constructs comprise a loop truncation mutation that is a replacement of all or a part of the DE loop in the C ⁇ domain of the TCR construct with a shorter sequence of amino acids such that the DE loop is shortened by between 1 and 8 amino acids, for example, between 1 and 7 amino acids or between 1 and 6 amino acids.
- the TCR constructs comprise a loop truncation mutation that is a replacement of between 5 and 13 consecutive amino acids of the DE loop with a shorter sequence of amino acids. In some embodiments, the TCR constructs comprise a loop truncation mutation that is a replacement of between 5 and 10 consecutive amino acids, for example, between 5 and 9, between 5 and 8, or between 5 and 7 consecutive amino acids, of the DE loop with a shorter sequence of amino acids.
- the shorter amino acid sequence is selected such that it provides a beta-turn motif, either alone or in combination with flanking amino acids at the site of insertion, and thus allows for formation of a beta-turn.
- Amino acid sequences that allow for the formation of a beta-turn can be readily identified using, for example, sequence analyzing software and programs known in the art.
- the shorter amino acid sequence is typically between 2 and 4 amino acids in length.
- the TCR constructs comprise a loop truncation mutation that is a replacement of between 5 and 13 consecutive amino acids, for example, between
- the TCR constructs comprise a loop truncation mutation that is a replacement of between 5 and 13 consecutive amino acids, for example, between 5 and 10 consecutive amino acids, between 5 and 9, between 5 and 8, or between 5 and 7 consecutive amino acids, of the DE loop with a shorter sequence of between 2 and 4 amino acids that allows for formation of a beta-turn.
- the TCR construct comprises a loop truncation mutation that is a replacement of the amino acids at positions TRBC 84.4 to 85.4 with a shorter sequence of between 2 and 4 amino acids that allows for formation of a beta-turn. In some embodiments, the TCR construct comprises a loop truncation mutation that is a replacement of the amino acids at positions TRBC 84.4 to 85.4 with the amino acids Gly-Asn.
- the TCR constructs comprise one or more loop truncation mutations selected from: a deletion of between 1 and 4 consecutive amino acids of the DE loop in the C ⁇ domain of the TCR construct, and a replacement of between 5 and 7 consecutive amino acids of the DE loop in the C ⁇ domain of the TCR construct with an amino acid sequence of between 2 and 4 amino acids that allows for formation of a beta-turn.
- the TCR constructs comprise one or more loop truncation mutations selected from: a deletion of between 1 and 4 consecutive amino acids of the DE loop in the C ⁇ domain of the TCR construct, and a replacement of the amino acids at positions TRBC 84.4 to 85.4 with an amino acid sequence of between 2 and 4 amino acids that allows for formation of a beta-turn.
- the TCR constructs comprise one or more loop truncation mutations selected from: a deletion of the amino acids at positions TRBC 84.5 to 85.6, and a replacement of the amino acids at positions TRBC 84.4 to 85.4 with the amino acids Gly- Asn.
- TCR constructs of the present disclosure may comprise one or a combination of the stabilizing mutations described herein.
- the TCR constructs comprise one or more of the following stabilizing mutations: a) a disulfide bond formed between: i) a cysteine residue comprised by an amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide, where the amino acid extension is between 1 and about 10 amino acids in length, and ii) the naturally occurring cysteine residue at position TRAC 128 in the C ⁇ domain of the TCR alpha chain polypeptide; b) a disulfide bond between cysteine residue substitutions at positions TRAC 84.2 and TRBC 79; c) a disulfide bond between cysteine residue substitutions at positions TRAC 124 and TRBC 11; d) a disulfide bond between cysteine residue substitutions at positions TRAC 125 and TRBC 11; e) a disulfide bond between cysteine residue substitutions at positions TRAC 126 and TRBC 11; f) a disulfide bond between cysteine residue substitution
- the amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide comprises all or a portion of a hinge region sequence from an immunoglobulin or from a TCR. In some embodiments, the amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide has the sequence: EPKSC [SEQ ID NO: 19] or EPKSCDKTHT [SEQ ID NO: 16],
- the amino acid substitution at position TRAC 4 is from Vai to Ile. In some embodiments, the amino acid substitution at position TRAC 26 is from Thr to Ile. In some embodiments, the amino acid substitution at position TRAC 39 is from Vai to Ile. In some embodiments, the amino acid substitution at position TRAC 85 is from Ala to Vai. In some embodiments, the amino acid substitution at position TRAC 105 is from Ala to Ser. In some embodiments, the amino acid substitution at position TRAC 120 is from Phe to Tyr. In some embodiments, the amino acid substitution at position TRBC 6 is from Vai to Leu or Ile. In some embodiments, the amino acid substitution at position TRBC 36 is from His to Phe. In some embodiments, the amino acid substitution at position TRBC 86 is from Ser to Thr. In some embodiments, the amino acid substitution at position TRBC 45.3 is from Vai to Thr.
- the deletion of between 1 and 4 consecutive amino acids of the DE loop in the C ⁇ domain of the TCR construct is a deletion of the amino acids at positions TRBC 84.5 to 85.6.
- the replacement of the amino acids at positions TRBC 84.4 to 85.4 is with the amino acids Gly-Asn.
- the TCR constructs comprise one or more of the following stabilizing mutations: a) a disulfide bond formed between: i) a cysteine residue comprised by an amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide, where the amino acid extension has the sequence: EPKSC [SEQ ID NO: 19] or EPKSCDKTHT [SEQ ID NO: 16], and ii) the naturally occurring cysteine residue at position TRAC 128 in the C ⁇ domain of the TCR alpha chain polypeptide; b) a disulfide bond between cysteine residue substitutions at positions TRAC 84.2 and TRBC 79; c) a disulfide bond between cysteine residue substitutions at positions TRAC 124 and TRBC 11; d) a disulfide bond between cysteine residue substitutions at positions TRAC 125 and TRBC 11; e) a disulfide bond between cysteine residue substitutions at positions TRAC 126 and TRBC
- the TCR constructs of the present disclosure comprise a combination of two or more of the stabilizing mutations described herein.
- Combinations of stabilizing mutations that may be comprised by the TCR constructs include combinations of non- naturally occurring interchain disulfide bonds, combinations of non-naturally occurring intrachain disulfide bonds, combinations of point mutations and loop truncation mutations, and combinations comprising different categories of stabilizing mutations.
- the TCR constructs comprise two or more of the following stabilizing mutations: a) a disulfide bond formed between: i) a cysteine residue comprised by an amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide, where the amino acid extension is between 1 and about 10 amino acids in length, and ii) the naturally occurring cysteine residue at position TRAC 128 in the C ⁇ domain of the TCR alpha chain polypeptide; b) a disulfide bond between cysteine residue substitutions at positions TRAC 84 and TRBC 79; c) a disulfide bond between cysteine residue substitutions at positions TRAC 84.2 and TRBC 79; d) a disulfide bond between cysteine residue substitutions at positions TRAC 122 and TRBC 12; e) a disulfide bond between cysteine residue substitutions at positions TRAC 124 and TRBC 11; f) a disulfide bond between cysteine residue
- the amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide comprises all or a portion of a hinge region sequence from an immunoglobulin or from a TCR. In some embodiments, the amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide has the sequence: EPKSC [SEQ ID NO: 19] or EPKSCDKTHT [SEQ ID NO: 16],
- the amino acid substitution at position TRAC 4 is from Vai to Ile. In some embodiments, the amino acid substitution at position TRAC 26 is from Thr to Ile. In some embodiments, the amino acid substitution at position TRAC 39 is from Vai to Ile. In some embodiments, the amino acid substitution at position TRAC 85 is from Ala to Vai. In some embodiments, the amino acid substitution at position TRAC 105 is from Ala to Ser. In some embodiments, the amino acid substitution at position TRAC 120 is from Phe to Tyr. In some embodiments, the amino acid substitution at position TRBC 6 is from Vai to Leu or Ile. In some embodiments, the amino acid substitution at position TRBC 36 is from His to Phe. In some embodiments, the amino acid substitution at position TRBC 86 is from Ser to Thr. In some embodiments, the amino acid substitution at position TRBC 45.3 is from Vai to Thr.
- the deletion of between 1 and 4 consecutive amino acids of the DE loop in the C ⁇ domain of the TCR construct is a deletion of the amino acids at positions TRBC 84.5 to 85.6.
- the replacement of the amino acids at positions TRBC 84.4 to 85.4 is with the amino acids Gly-Asn.
- the TCR constructs comprise two or more of the following stabilizing mutations: a) a disulfide bond formed between: i) a cysteine residue comprised by an amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide, where the amino acid extension has the sequence: EPKSC [SEQ ID NO: 19] or EPKSCDKTHT [SEQ ID NO: 16], and ii) the naturally occurring cysteine residue at position TRAC 128 in the C ⁇ domain of the TCR alpha chain polypeptide; b) a disulfide bond between cysteine residue substitutions at positions TRAC 84 and TRBC 79; c) a disulfide bond between cysteine residue substitutions at positions TRAC 84.2 and TRBC 79; d) a disulfide bond between cysteine residue substitutions at positions TRAC 122 and TRBC 12; e) a disulfide bond between cysteine residue substitutions at positions TRAC 124 and TR
- the TCR constructs comprise a combination of a first non- naturally occurring interchain disulfide bond and one or more additional stabilizing mutations, where the additional stabilizing mutations may be additional non-naturally occurring interchain disulfide bonds, non-naturally occurring intrachain disulfide bonds, point mutations, loop truncation mutations, or combinations thereof, as described herein.
- the first non-naturally occurring interchain disulfide bond may be a known stabilizing interchain disulfide bond, or it may be one of the stabilizing interchain disulfide bonds described herein.
- known stabilizing interchain disulfide bonds include, but are not limited to, the interchain disulfide bonds listed in Table 1.
- TRAC and TRBC numbering used in this reference is as used in Garboczi et al, 1996, Nature, 384(6605): 134-141
- the first non-naturally occurring interchain disulfide bond comprised by the TCR construct is the IC Disulfide (i.e. a disulfide bond between cysteine residue substitutions at position TRAC 84 in the TCR alpha chain polypeptide and position TRBC 79 in the TCR beta chain polypeptide).
- IC Disulfide i.e. a disulfide bond between cysteine residue substitutions at position TRAC 84 in the TCR alpha chain polypeptide and position TRBC 79 in the TCR beta chain polypeptide.
- the first non-naturally occurring interchain disulfide bond comprised by the TCR construct is selected from: a) a disulfide bond formed between: i) a cysteine residue comprised by an amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide, where the amino acid extension is between 1 and about 10 amino acids in length, and ii) the naturally occurring cysteine residue at position TRAC 128 in the C ⁇ domain of the TCR alpha chain polypeptide; b) a disulfide bond between cysteine residue substitutions at positions TRAC 84.2 and TRBC 79; c) a disulfide bond between cysteine residue substitutions at positions TRAC 122 and TRBC 12; d) a disulfide bond between cysteine residue substitutions at positions TRAC 124 and TRBC 11; e) a disulfide bond between cysteine residue substitutions at positions TRAC 125 and TRBC 11; f) a disulfide bond formed between: i)
- the first non-naturally occurring interchain disulfide bond comprised by the TCR construct is selected from: a) a disulfide bond formed between: i) a cysteine residue in an amino acid extension at the C- terminus of the C ⁇ domain of the TCR beta chain polypeptide, where the amino acid extension has the sequence: EPKSC [SEQ ID NO: 19] or EPKSCDKTHT [SEQ ID NO: 16], and ii) the naturally occurring cysteine residue at position TRAC 128 in the C ⁇ domain of the TCR alpha chain polypeptide; b) a disulfide bond between cysteine residue substitutions at positions TRAC 84.2 and TRBC 79; c) a disulfide bond between cysteine residue substitutions at positions TRAC 122 and TRBC 12; d) a disulfide bond between cysteine residue substitutions at positions TRAC 124 and TRBC 11; e) a disulfide bond between cysteine residue substitutions at positions T
- the first non-naturally occurring interchain disulfide bond comprised by the TCR construct is selected from: a) a disulfide bond formed between: i) a cysteine residue comprised by an amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide, where the amino acid extension is between 1 and about 10 amino acids in length, and ii) the naturally occurring cysteine residue at position TRAC 128 in the C ⁇ domain of the TCR alpha chain polypeptide, and b) a disulfide bond between cysteine residue substitutions at positions TRAC 84.2 and TRBC 79.
- the amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide comprises all or a portion of a hinge region sequence from an immunoglobulin or from a TCR.
- the first non-naturally occurring interchain disulfide bond comprised by the TCR construct is selected from: a) a disulfide bond formed between: i) a cysteine residue in an amino acid extension at the C- terminus of the C ⁇ domain of the TCR beta chain polypeptide, where the amino acid extension has the sequence: EPKSC [SEQ ID NO: 19] or EPKSCDKTHT [SEQ ID NO: 16], and ii) the naturally occurring cysteine residue at position TRAC 128 in the C ⁇ domain of the TCR alpha chain polypeptide, and b) a disulfide bond between cysteine residue substitutions at positions TRAC 84.2 and TRBC 79.
- the first non-naturally occurring interchain disulfide bond comprised by the TCR construct is selected from: a) a disulfide bond formed between: i) a cysteine residue comprised by an amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide, where the amino acid extension is between 1 and about 10 amino acids in length, and ii) the naturally occurring cysteine residue at position TRAC 128 in the C ⁇ domain of the TCR alpha chain polypeptide; b) a disulfide bond between cysteine residue substitutions at positions TRAC 84.2 and TRBC 79, and c) a disulfide bond between cysteine residue substitutions at positions TRAC 84 and TRBC 79 (the IC Disulfide).
- the amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide comprises all or a portion of a hinge region sequence from an immunoglobulin or from a TCR.
- the first non-naturally occurring interchain disulfide bond comprised by the TCR construct is selected from: a) a disulfide bond formed between: i) a cysteine residue in an amino acid extension at the C- terminus of the C ⁇ domain of the TCR beta chain polypeptide, where the amino acid extension has the sequence: EPKSC [SEQ ID NO: 19] or EPKSCDKTHT [SEQ ID NO: 16], and ii) the naturally occurring cysteine residue at position TRAC 128 in the C ⁇ domain of the TCR alpha chain polypeptide; b) a disulfide bond between cysteine residue substitutions at positions TRAC 84.2 and TRBC 79, and c) a disulfide bond between cysteine residue substitutions
- the one or more additional stabilizing mutations combined with the first non-naturally occurring interchain disulfide bond are selected from the following, where the first non-naturally occurring interchain disulfide bond and any additional interchain disulfide bond are different: a) a disulfide bond formed between: i) a cysteine residue comprised by an amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide, where the amino acid extension is between 1 and about 10 amino acids in length, and ii) the naturally occurring cysteine residue at position TRAC 128 in the C ⁇ domain of the TCR alpha chain polypeptide; b) a disulfide bond between cysteine residue substitutions at positions TRAC 84.2 and TRBC 79; c) a disulfide bond between cysteine residue substitutions at positions TRAC 122 and TRBC 12; d) a disulfide bond between cysteine residue substitutions at positions TRAC 124 and TRBC 11; e
- the amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide comprises all or a portion of a hinge region sequence from an immunoglobulin or from a TCR. In some embodiments, the amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide has the sequence: EPKSC [SEQ ID NO: 19] or EPKSCDKTHT [SEQ ID NO: 16],
- the amino acid substitution at position TRAC 4 is from Vai to Ile. In some embodiments, the amino acid substitution at position TRAC 26 is from Thr to Ile. In some embodiments, the amino acid substitution at position TRAC 39 is from Vai to Ile. In some embodiments, the amino acid substitution at position TRAC 85 is from Ala to Vai. In some embodiments, the amino acid substitution at position TRAC 105 is from Ala to Ser. In some embodiments, the amino acid substitution at position TRAC 120 is from Phe to Tyr. In some embodiments, the amino acid substitution at position TRBC 6 is from Vai to Leu or Ile. In some embodiments, the amino acid substitution at position TRBC 36 is from His to Phe. In some embodiments, the amino acid substitution at position TRBC 86 is from Ser to Thr. In some embodiments, the amino acid substitution at position TRBC 45.3 is from Vai to Thr.
- the deletion of between 1 and 4 consecutive amino acids of the DE loop in the C ⁇ domain of the TCR construct is a deletion of the amino acids at positions TRBC 84.5 to 85.6.
- the replacement of the amino acids at positions TRBC 84.4 to 85.4 is with the amino acids Gly-Asn.
- the one or more additional stabilizing mutations combined with the first non-naturally occurring interchain disulfide bond are selected from the following, where the first non-naturally occurring interchain disulfide bond and any additional interchain disulfide bond are different: a) a disulfide bond formed between: i) a cysteine residue in an amino acid extension at the C- terminus of the C ⁇ domain of the TCR beta chain polypeptide, where the amino acid extension has the sequence: EPKSC [SEQ ID NO: 19] or EPKSCDKTHT [SEQ ID NO: 16], and ii) the naturally occurring cysteine residue at position TRAC 128 in the C ⁇ domain of the TCR alpha chain polypeptide; b) a disulfide bond between cysteine residue substitutions at positions TRAC 84.2 and TRBC 79; c) a disulfide bond between cysteine residue substitutions at positions TRAC 122 and TRBC 12; d) a disulfide bond between cysteine
- the one or more additional stabilizing mutations combined with a non-naturally occurring interchain disulfide bond are selected from the following: a) an amino acid substitution at position TRAC 39 from Vai to Ala, Thr, Ile, Leu or Met; b) an amino acid substitution at position TRAC 85 from Ala to Ser, Thr, Vai, Ile or Met; c) an amino acid substitution at position TRBC 6 from Vai to Ala, Thr, Ile, Leu or Met; and d) an amino acid substitution at position TRBC 36 from His to Phe, Tyr or Trp.
- the one or more additional stabilizing mutations combined with a non-naturally occurring interchain disulfide bond are selected from the following: a) an amino acid substitution at position TRAC 39 from Vai to Ile; b) an amino acid substitution at position TRAC 85 from Ala to Vai; c) an amino acid substitution at position TRBC 6 from Vai to Ile, and d) an amino acid substitution at position TRBC 36 from His to Phe.
- the additional stabilizing mutations combined with a non- naturally occurring interchain disulfide bond are the following: a) an amino acid substitution at position TRAC 39 from Vai to Ile; b) an amino acid substitution at position TRAC 85 from Ala to Vai; c) an amino acid substitution at position TRBC 6 from Vai to Ile, and d) an amino acid substitution at position TRBC 36 from His to Phe.
- the TCR constructs comprise a first non-naturally occurring interchain disulfide bond and one or more additional stabilizing mutations, where the first non- naturally occurring disulfide bond is a disulfide bond formed between: i) a cysteine residue comprised by an amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide, where the amino acid extension is between 1 and about 10 amino acids in length, and ii) the naturally occurring cysteine residue at position TRAC 128 in the C ⁇ domain of the TCR alpha chain polypeptide, and the one or more stabilizing mutations comprise an additional non- naturally occurring interchain disulfide bond selected from: a) a disulfide bond between cysteine residue substitutions at positions TRAC 84 and TRBC 79; b) a disulfide bond between cysteine residue substitutions at positions TRAC 84.2 and TRBC 79; c) a disulfide bond between cysteine residue substitutions at positions TRAC
- the amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide comprises all or a portion of a hinge region sequence from an immunoglobulin or from a TCR.
- the first non-naturally occurring interchain disulfide bond comprised by the TCR construct is a disulfide bond formed between: i) a cysteine residue in an amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide, where the amino acid extension has the sequence: EPKSC [SEQ ID NO: 19] or EPKSCDKTHT [SEQ ID NO: 16], and ii) the naturally occurring cysteine residue at position TRAC 128 in the C ⁇ domain of the TCR alpha chain polypeptide.
- the TCR constructs comprise a first non-naturally occurring interchain disulfide bond and one or more additional stabilizing mutations, where the first non- naturally occurring disulfide bond is a disulfide bond between cysteine residue substitutions at positions TRAC 84.2 and TRBC 79, and the one or more stabilizing mutations comprise an additional non-naturally occurring interchain disulfide bond selected from: a) a disulfide bond formed between: i) a cysteine residue comprised by an amino acid extension at the C-terminus of the C ⁇ domain of the TCR beta chain polypeptide, where the amino acid extension is between 1 and about 10 amino acids in length, and ii) the naturally occurring cysteine residue at position TRAC 128 in the C ⁇ domain of the TCR alpha chain polypeptide; b) a disulfide bond between cysteine residue substitutions at positions TRAC 122 and TRBC 12; c) a disulfide bond between cysteine residue substitutions at positions TRAC
- the TCR constructs of the present disclosure comprise a combination of a first non-naturally occurring interchain disulfide bond and one or more additional stabilizing mutations, where the combination is one of the combinations as set forth for any one of the variants listed in Table 2 (Fig. 11). In some embodiments, the TCR constructs of the present disclosure comprise a combination of a first non-naturally occurring interchain disulfide bond and one or more additional stabilizing mutations, where the combination is one of the combinations as set forth for any one of the variants listed in Table 3 (Fig. 12).
- the TCR constructs of the present disclosure comprise a combination of two or more stabilizing mutations where the stabilizing mutations are point mutations and/or loop truncation mutations.
- the TCR constructs comprise two or more stabilizing mutations selected from: i) an amino acid substitution at position TRAC 4 from Vai to Ala, Thr, Ile, Leu or Met; ii) an amino acid substitution at position TRAC 26 from Thr to Ala, Vai, Ile, Leu or Met; iii) an amino acid substitution at position TRAC 39 from Vai to Ala, Thr, Ile, Leu or Met; iv) an amino acid substitution at position TRAC 85 from Ala to Ser, Thr, Vai, Ile or Met; v) an amino acid substitution at position TRAC 105 from Ala to Ser, Thr, Glu, Gin, Asp, Asn, His, Lys or Arg; vi) an amino acid substitution at position TRAC 120 from Phe to Tyr or His
- the TCR constructs comprise two or more stabilizing mutations selected from: i) an amino acid substitution at position TRAC 4 from Vai to Ile; ii) an amino acid substitution at position TRAC 26 from Thr to Ile; iii) an amino acid substitution at position TRAC 39 from Vai to Ile; iv) an amino acid substitution at position TRAC 85 from Ala to Vai; v) an amino acid substitution at position TRAC 105 from Ala to Ser; vi) an amino acid substitution at position TRAC 120 from Phe to Tyr; vii) an amino acid substitution at position TRBC 6 from Vai to Ile or Leu; viii) an amino acid substitution at position TRBC 36 from His to Phe; ix) an amino acid substitution at position TRBC 86 from Ser to Thr; x) an amino acid substitution at position TRBC 45.3 from Vai to Thr; xi) a deletion of the amino acids at positions TRBC 84.5 to 85.6, and xii) a replacement of the amino acids
- TCR fusion proteins comprising one or more TCR constructs as described herein operably linked to a scaffold and/or to one or more additional biologically active moieties.
- operably linked means that the components described are in a relationship permitting each of them to function in their intended manner.
- a TCR construct may be directly or indirectly linked to the scaffold or additional biologically active moiety in the TCR fusion protein.
- indirectly linked it is meant that a given TCR construct is linked to the scaffold or biologically active moiety via another component, for example, a linker or a second TCR construct.
- Various formats are contemplated for TCR fusion proteins as described in more detail below.
- TCR fusion proteins of the present disclosure may comprise one TCR construct or they may comprise multiple TCR constructs.
- the number of TCR constructs that may be comprised by a TCR fusion protein will depend on the nature of the scaffold and/or additional biologically active moieties comprised by the fusion protein.
- a TCR fusion protein of the present disclosure comprises between 1 and 24 TCR constructs.
- a TCR fusion protein may comprise between 1 and 12 TCR constructs, between 1 and 8 TCR constructs, between 1 and 6 TCR constructs, between 1 and 4 TCR constructs or between 1 and 3 TCR constructs.
- the TCR fusion proteins of the present disclosure comprise a scaffold.
- the scaffold may be, for example, a protein (including a peptide or polypeptide), a polymer, a nanoparticle or another chemical entity.
- each TCR construct comprised by the TCR fusion protein is typically linked to either the N- or C-terminus of the protein scaffold, although linkage to a region other than the N- or C-terminus, for example, via the side chain of an amino acid with or without a linker, is also contemplated in certain embodiments.
- a TCR construct may be linked to the scaffold by genetic fusion or chemical conjugation.
- a TCR construct is typically linked to the scaffold by chemical conjugation.
- the TCR fusion protein comprises a protein scaffold.
- protein scaffolds include immunoglobulin (Ig) Fc regions, albumin, albumin analogues and derivatives, toxins, cytokines, chemokines, growth factors and protein pairs such as leucine zipper domains (for example, Fos and Jun) (Kostelny, et al., 1992, J Immunol, 148: 1547-53; Wranik, et al., 2012, J. Biol.
- the TCR fusion proteins described herein comprise a scaffold that is based on an immunoglobulin (Ig) Fc region.
- the term includes native sequence Fc regions and variant Fc regions.
- An “Fc polypeptide” of a dimeric Fc refers to one of the two polypeptides forming the dimeric Fc region, that is a polypeptide comprising C-terminal constant regions of an immunoglobulin heavy chain that is capable of stable self-association.
- numbering of amino acid residues in the Fc region or constant region of an Ig is according to the EU numbering system, also called the EU index, as described in Kabat et al, Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD (1991).
- An Fc region may comprise just a CH3 domain, or both a CH3 and a CH2 domain.
- the CH3 domain comprises two CH3 sequences, each comprised by one of the two Fc polypeptides of the dimeric Fc.
- the CH2 domain comprises two CH2 sequences, each comprised by one of the two Fc polypeptides of the dimeric Fc.
- An Ig Fc region comprised by a TCR fusion protein may be based on an IgG, IgA or IgM Fc region.
- the TCR fusion protein comprises a scaffold based on an IgG Fc.
- the TCR fusion protein comprises a scaffold based on an IgGl Fc.
- the TCR fusion protein comprises a scaffold based on a human IgG Fc.
- the TCR fusion protein comprises a scaffold based on a human IgGl Fc.
- the Ig Fc region comprised by the TCR fusion protein may be a variant Fc region that comprises one or more amino acid modifications in the CH3 domain, the CH2 domain or both.
- the Ig Fc region comprised by the TCR fusion protein may be a variant Fc region that is a heterodimeric Fc comprising two different Fc polypeptides.
- the TCR fusion protein comprises a scaffold based on a variant IgG Fc in which the CH3 domain comprises one or more amino acid modifications (a “modified CH3 domain”). In some embodiments, the TCR fusion protein comprises a scaffold based on a variant IgG Fc in which the CH2 domain comprises one or more amino acid modifications (a “modified CH2 domain”). In some embodiments, the TCR fusion protein comprises a scaffold based on a variant IgG Fc in which the CH3 domain comprises one or more amino acid modifications and the CH2 domain comprises one or more amino acid modifications.
- the TCR fusion protein described herein comprises a heterodimeric Ig Fc comprising a modified CH3 domain.
- the modified CH3 domain comprises one or more asymmetric amino acid modifications.
- an “asymmetric amino acid modification” refers to a modification in which an amino acid at a specific position on the first Fc polypeptide is different to the amino acid at the corresponding position on the second Fc polypeptide.
- These asymmetric amino acid modifications may comprise modification of only one of the two amino acids at the corresponding position on each Fc polypeptide, or they may comprise modifications of both amino acids at the corresponding positions on each of the first and second Fc polypeptides.
- the TCR fusion protein comprises a heterodimeric Fc comprising a modified CH3 domain, where the modified CH3 domain comprises one or more asymmetric amino acid modifications that promote formation of the heterodimeric Fc over formation of a homodimeric Fc.
- Amino acid modifications that may be made to the CH3 domain of an Fc in order to promote formation of a heterodimeric Fc are known in the art and include, for example, those described in International Publication No.
- WO 96/027011 (“knobs into holes”), Gunasekaran et al., 2010, J Biol Chem, 285, 19637-46 (“electrostatic steering”), Davis et al., 2010, Prot Eng Des Sei, 23(4): 195-202 (strand exchange engineered domain (SEED) technology) and Labrijn et al., 2013, Proc Natl Acad Sci USA, 110(13):5145-50 (Fab-arm exchange).
- SEED strand exchange engineered domain
- the TCR fusion protein comprises a scaffold that is a heterodimeric Fc having a modified CH3 domain as described in International Publication No. WO 2012/058768 or International Patent Publication No. WO 2013/063702.
- the TCR fusion protein comprises a scaffold that is a heterodimeric human IgGl Fc having a modified CH3 domain.
- Table 4 below provides the amino acid sequence of the human IgGl Fc sequence, corresponding to amino acids 231 to 447 of the full-length human IgGl heavy chain.
- the CH2 domain is typically defined as comprising amino acids 231-340 of the full-length human IgGl heavy chain and the CH3 domain is typically defined as comprising amino acids 341-447 of the full-length human IgGl heavy chain.
- the TCR fusion protein comprises a heterodimeric Fc having a modified CH3 domain comprising one or more asymmetric amino acid modifications that promote formation of the heterodimeric Fc over formation of a homodimeric Fc, in which the modified CH3 domain comprises a first Fc polypeptide including amino acid substitutions at positions F405 and Y407, and a second Fc polypeptide including amino acid substitutions at positions T366 and T394.
- the amino acid substitution at position F405 of the first Fc polypeptide of the modified CH3 domain is F405A, F405I, F405M, F405S, F405T or F405V.
- the amino acid substitution at position Y407 of the first Fc polypeptide of the modified CH3 domain is Y407I or Y407V.
- the amino acid substitution at position T366 of the second Fc polypeptide of the modified CH3 domain is T366I, T366L or T366M.
- the amino acid substitution at position T394 of the second Fc polypeptide of the modified CH3 domain is T394W.
- the first Fc polypeptide of the modified CH3 domain further includes an amino acid substitution at position L351 which is L351Y.
- the second Fc polypeptide of the modified CH3 domain further includes an amino acid substitution at position K392 selected from K392F, K392L and K392M. In some embodiments, one or both of the first and second Fc polypeptides of the modified CH3 domain further comprises the amino acid substitution T350V.
- the TCR fusion protein comprises a heterodimeric Fc having a modified CH3 domain comprising one or more asymmetric amino acid modifications that promote formation of the heterodimeric Fc over formation of a homodimeric Fc, in which the modified CH3 domain comprises a first Fc polypeptide including the amino acid substitution F405 A, F405I, F405M, F405S, F405T or F405V together with the amino acid substitution Y407I or Y407V, and a second Fc polypeptide including the amino acid substitution T366I, T366L or T366M, together with the amino acid substitution T394W.
- the modified CH3 domain comprises a first Fc polypeptide including the amino acid substitution F405 A, F405I, F405M, F405S, F405T or F405V together with the amino acid substitution Y407I or Y407V, and a second Fc polypeptide including the amino acid substitution T366I, T366
- the first Fc polypeptide of the modified CH3 domain further includes the amino acid substitution L351Y and/or the second Fc polypeptide of the modified CH3 domain further includes the amino acid substitution K392F, K392L or K392M. In some embodiments, one or both of the first and second Fc polypeptides of the modified CH3 domain further comprises the amino acid substitution T350V.
- the TCR fusion protein comprises a heterodimeric Fc comprising a modified CH3 domain having a first Fc polypeptide that comprises amino acid substitutions at positions F405 and Y407, and optionally further comprises an amino acid substitution at position L351, and a second Fc polypeptide that comprises amino acid substitutions at positions T366 and T394, and optionally further comprises an amino acid substitution at position K392, as described above, and the first Fc polypeptide further comprises an amino acid substitution at one or both of positions S400 or Q347 and/or the second Fc polypeptide further comprises an amino acid substitution at one or both of positions K360 orN390, where the amino acid substitution at position S400 is S400E, S400D, S400R or S400K; the amino acid substitution at position Q347 is Q347R, Q347E or Q347K; the amino acid substitution at position K360 is K360D or K360E, and the amino acid substitution at position N390 is N390R, N3
- the TCR fusion protein comprises a heterodimeric Fc comprising a modified CH3 domain comprising the amino acid substitutions of any one of Variant 1, Variant 2, Variant 3, Variant 4 or Variant 5, as shown in Table 4.
- the TCR fusion protein comprises a scaffold based on an IgG Fc having a modified CH2 domain, for example, a CH2 domain comprising amino acid modifications that result in altered binding to one or more Fc receptors (FcRs).
- FcRs Fc receptors
- the amino acid modifications in the CH2 domain result in altered binding to one or more of the FcyRI, FcyRII and FcyRIII subclasses of Fc receptor.
- a number of amino acid modifications to the CH2 domain that selectively alter the affinity of the Fc for different Fey receptors are known in the art. Amino acid modifications that result in increased binding and amino acid modifications that result in decreased binding can each be useful in certain indications. For example, increasing binding affinity of an Fc for FcyRIIIa (an activating receptor) results in increased antibody dependent cell-mediated cytotoxicity (ADCC), which in turn results in increased lysis of the target cell. Decreased binding to FcyRIIb (an inhibitory receptor) likewise may be beneficial in some circumstances. In certain indications, a decrease in, or elimination of, ADCC and complement-mediated cytotoxicity (CDC) may be desirable. In such cases, modified CH2 domains comprising amino acid modifications that result in increased binding to FcyRIIb or amino acid modifications that decrease or eliminate binding of the Fc region to all of the Fey receptors (“knock-out” variants) may be useful.
- ADCC antibody dependent cell-mediated cytotoxicity
- CDC complement-mediated cytotoxicity
- Examples of amino acid modifications to the CH2 domain that alter binding of the Fc by Fey receptors include, but are not limited to, the following: S298A/E333A/K334A and S298A/E333A/K334A/K326A (increased affinity for FcyRIIIa) (Lu, et al., 2011, J Immunol Methods, 365(1-2): 132-41); F243L/R292P/Y300L/V305I/P396L (increased affinity for FcyRIIIa) (Stavenhagen, et al., 2007, Cancer Res, 67(18):8882-90); F243L/R292P/Y300L/L235V/P396L (increased affinity for FcyRIIIa) (Nordstrom JL, et al., 2011, Breast Cancer Res, 13(6):R123); F243L (increased affinity for FcyRIIIa) (Stewart, et
- the TCR fusion protein comprises a scaffold based on an IgG Fc having a modified CH2 domain, in which the modified CH2 domain comprises one or more amino acid modifications that result in decreased or eliminated binding of the Fc region to all Fey receptors (i.e. a “knock-out” variant).
- amino acid modifications to reduce FcyR and/or complement binding to the Fc include those identified in Table 5.
- Additional examples include Fc regions engineered to include the amino acid substitutions L235A/L236A/D265S and the asymmetric amino acid modifications in the CH2 domain described in International Publication No. WO 2014/190441.
- the TCR fusion proteins described herein may comprise a scaffold based on an IgG Fc in which native glycosylation has been modified.
- glycosylation of an Fc may be modified to increase or decrease effector function.
- mutation of the conserved asparagine residue at position 297 to alanine, glutamine, lysine or histidine results in an aglycoslated Fc that lacks all effector function (Bolt etal., 1993 ,Eur. J. Immunol., 23:403-411; Tao & Morrison, 1989, J Immunol., 143:2595-2601).
- glycosylation variants include those with bisected oligosaccharides, for example, variants in which a biantennary oligosaccharide attached to the Fc region of the antibody is bisected by N-acetylglucosamine (GlcNAc).
- GlcNAc N-acetylglucosamine
- Such glycosylation variants may have reduced fucosylation and/or improved ADCC function (see, for example, International Publication No. WO 2003/011878, U.S. Patent No. 6,602,684 and U.S. Patent Application Publication No. US 2005/0123546).
- Useful glycosylation variants also include those having at least one galactose residue in the oligosaccharide attached to the Fc region, which may have improved CDC function (see, for example, International Publication Nos. WO 1997/030087, WO 1998/58964 and WO 1999/22764).
- the TCR fusion proteins of the present disclosure may comprise one or more additional biologically active moieties fused or covalently attached to a TCR construct and/or, when the TCR fusion protein comprises a scaffold, to the scaffold.
- additional biologically active moieties that may be comprised by the TCR fusion protein include, but are not limited to, antigen-binding domains, ligands, receptors, receptor fragments (such as extracellular portions), cytokines and antigens.
- the moieties may be the same or they may be different.
- the TCR fusion proteins of the present disclosure comprise one or more additional biologically active moiety. In some embodiments, the TCR fusion proteins comprise between 1 and 6 additional biologically active moieties. In some embodiments, the TCR fusion proteins comprise between 1 and 4 additional biologically active moieties.
- the TCR fusion proteins may comprise one or more additional biologically active moieties that are antigen-binding domains.
- the TCR fusion proteins may comprise two or more antigen-binding domains, for example, 2, 3, 4, 5 or 6 antigen-binding domains.
- the antigen-binding domains may bind the same antigen, or they may bind different antigens.
- Non-limiting examples of antigen-binding domains that may be included in a TCR fusion protein in some embodiments include Fab fragments, Fv fragments, single-chain Fv fragments (scFv) and single domain antibodies (sdAb).
- the TCR fusion proteins may comprise one or more additional biologically active moieties that are cytokines or biologically active fragments thereof.
- TCR fusion proteins of the present disclosure may have various formats.
- a TCR construct may be fused or covalently attached to a second element of the fusion protein via the TCR alpha chain polypeptide or the TCR beta chain polypeptide, or both.
- a TCR construct may be fused or covalently attached to a scaffold, to an additional biologically active moiety or to another TCR construct via the TCR alpha chain polypeptide or the TCR beta chain polypeptide, or both.
- the TCR construct may be fused or covalently attached to a second element of the fusion protein through the N-terminus or the C-terminus of the relevant TCR polypeptide(s) and may be directly or indirectly (for example, by way of a linker) attached to the second element.
- the TCR fusion protein comprises a TCR construct that is fused or covalently attached to a scaffold or additional biologically active moiety via the TCR beta chain polypeptide. In certain embodiments, the TCR fusion protein comprises a TCR construct that is fused or covalently attached to a scaffold or additional biologically active moiety via the C- terminus of one of the polypeptides of the TCR construct. In certain embodiments, the TCR fusion protein comprises a TCR construct that is fused or covalently attached to a scaffold or additional biologically active moiety via the C-terminus of the TCR beta chain polypeptide of the TCR construct.
- the TCR constructs may be fused or covalently attached to the scaffold in tandem or they may be fused or covalently attached to different parts of the scaffold.
- the TCR fusion protein comprises a scaffold, a TCR construct and an additional biologically active moiety
- the TCR construct and additional biologically active moiety may be fused or covalently attached to the scaffold in tandem or they may be fused or covalently attached to different parts of the scaffold.
- the TCR fusion protein comprises more than two TCR constructs
- some of the TCR constructs may be fused or covalently attached to the scaffold in tandem and others may be fused or covalently attached to different parts of the scaffold, or all may be fused or covalently attached to different parts of the scaffold.
- the TCR fusion proteins of the present disclosure comprise a TCR construct and an additional biologically active moiety.
- the TCR fusion proteins comprise a TCR construct fused directly or indirectly to an antigen-binding domain or a cytokine.
- the TCR fusion proteins of the present disclosure comprise one or more TCR constructs and a scaffold.
- the TCR fusion proteins comprise one or more TCR constructs and an Ig Fc scaffold.
- the TCR fusion proteins comprise one or more TCR constructs, an Ig Fc scaffold and one or more additional biologically active moieties.
- the TCR fusion proteins comprise one or more TCR constructs, an Ig Fc scaffold and one or more antigen-binding domains.
- the TCR fusion proteins comprise between 1 and 12 TCR constructs, an Ig Fc scaffold and between 1 and 6 antigen-binding domains.
- the TCR fusion proteins comprise between 1 and 8 TCR constructs, an Ig Fc scaffold and between 1 and 6 antigen-binding domains. In some embodiments, the TCR fusion proteins comprise between 1 and 6 TCR constructs, an Ig Fc scaffold and between 1 and 4 antigen-binding domains.
- Fig. 1 shows various non-limiting examples of formats for TCR fusion proteins comprising an IgGFc as a scaffold and one or more TCR constructs and non-limiting examples of formats for TCR fusion proteins comprising an IgG Fc as a scaffold, one or more TCR constructs and one or more additional biologically active moieties (illustrated by antigen-binding domains).
- Fig. 1(C) shows a TCR fusion protein comprising a TCR fused to an antigen-binding domain (scFv) (“TCR-scFv”).
- scFv antigen-binding domain
- FIG. 1(D) and 1(E) show a one-armed TCR fusion protein with the TCR alpha polypeptide fused an Fc scaffold (“One-armed alpha fusion” (D) and “One-armed alpha fusion-DS” (E), which includes an interchain disulfide bond).
- Fig. 1(F) shows a TCR fusion protein comprising two TCR constructs each independently fused to a polypeptide of an Fc scaffold via the TCR alpha polypeptide and each including an interchain disulfide bond between the TCR alpha polypeptide and the TCR beta polypeptide (“Dual alpha fusion-DS”).
- FIG. 1(G) shows a TCR fusion protein with each of the TCR alpha polypeptide and TCR beta polypeptide independently fused to an Fc scaffold (“Dual-fusion”).
- Fig. 1(H) and (I) show a one-armed TCR fusion protein with the TCR beta polypeptide fused to an Fc scaffold (“One-armed beta fusion” (H) and “One-armed beta fusion-DS” (I), which includes an interchain disulfide bond between the TCR alpha and beta polypeptides).
- FIG. 1(J) shows a TCR fusion protein comprising two TCR constructs each independently fused to an Fc scaffold via the TCR beta polypeptide and each including an interchain disulfide bond between the TCR alpha polypeptide and the TCR beta polypeptide (“Dual beta fusion-DS”).
- Fig. 1(K) shows a TCR fusion protein comprising a TCR construct fused to one polypeptide of an Fc scaffold via the TCR alpha chain and an scFv fused to the other Fc polypeptide, the TCR includes an interchain disulfide bond between the TCR alpha and beta polypeptides (“Bispecific alpha fusion”).
- FIG. 1(L) shows a TCR fusion protein comprising a TCR construct fused to one polypeptide of an Fc scaffold via the TCR beta polypeptide and an scFv fused to the other Fc polypeptide, the TCR includes an interchain disulfide bond between the TCR alpha and beta polypeptides (“Bispecific beta fusion”).
- Fig. 1(M) shows a TCR fusion protein in which one arm comprises a TRAV domain fused to a CHI domain and a TRBC domain fused to a CL domain and a second arm comprises an scFv, each arm independently fused to a polypeptide of an Fc scaffold (“Chimera Bispecific”).
- Fig 1(N) shows a one-armed TCR fusion protein comprising a Fab fused to one polypeptide of an Fc scaffold and a TCR construct fused to the Fab via the TCR beta polypeptide, the TCR construct including an interchain disulfide bond between the TCR alpha and beta polypeptides (“Bispecific tandem beta-fusion”).
- Fig. 1(N) shows a one-armed TCR fusion protein comprising a Fab fused to one polypeptide of an Fc scaffold and a TCR construct fused to the Fab via the TCR beta polypeptide, the TCR construct including an interchain disulfide bond between the TCR alpha and beta polypeptides (“Bispecific tandem beta-fusion”).
- TCR fusion protein comprising a Fab fused to one polypeptide of an Fc scaffold, a first TCR construct fused to the Fab via the TCR beta polypeptide, and a second TCR construct fused to the other Fc polypeptide via the TCR beta polypeptide, each TCR including an interchain disulfide bond between the TCR alpha and beta polypeptides (“2x1 Bispecific beta-fusion”).
- Fig 1(P) shows a TCR fusion protein comprising a Fab fused to one polypeptide of an Fc scaffold, a first TCR construct fused to the Fab via the TCR beta polypeptide, a second TCR construct fused to the second Fc polypeptide via the TCR beta polypeptide, and a third TCR construct fused to the C -terminus of the second Fc polypeptide via the TCR beta polypeptide, each TCR including an interchain disulfide bond between the TCR alpha and beta polypeptides (“3x1 Bispecific betafusion”).
- Fig 1(Q) shows a TCR fusion protein comprising a Fab fused to one polypeptide of an Fc scaffold, a first TCR construct fused to the Fab via the TCR beta polypeptide, a second TCR construct fused to the second Fc polypeptide via the TCR beta polypeptide, a third TCR construct fused to the second TCR via the TCR beta polypeptide, and a fourth TCR construct fused to the C -terminus of the second Fc polypeptide via the TCR beta polypeptide, each TCR including an interchain disulfide bond between the TCR alpha and beta polypeptides (“4x1 Bispecific C- terminal beta-fusion”).
- FIG. 1(R) shows a TCR fusion protein comprising a Fab fused to one polypeptide of an Fc scaffold, a first TCR construct fused to the Fab via the TCR beta polypeptide, a second TCR construct fused to the second Fc polypeptide via the TCR beta polypeptide, a third TCR construct fused to the second TCR via the TCR beta polypeptide, and a fourth TCR construct fused to the C-terminus of the light chain of the Fab, each TCR including an interchain disulfide bond between the TCR alpha and beta polypeptides (“4x1 Bispecific light chain beta-fusion”).
- FIG. 1(S) shows a TCR fusion protein comprising a TCR fused to the C-terminus of one polypeptide of an Fc scaffold via the TCR alpha polypeptide (“One-armed alpha fusion”).
- Fig 1(T) shows a TCR fusion protein comprising a TCR fused to the C-terminus of one polypeptide of an Fc scaffold via the TCR beta polypeptide (“One-armed beta fusion”).
- TCR fusion proteins shown in Fig. 1 are illustrative only and not limiting. Other conformations are contemplated and encompassed by the present disclosure including TCR fusion proteins as illustrated in Fig. 1 employing other antigen-binding domains or other biologically active moieties to replace those illustrated, as well as TCR constructs including stabilizing mutations as described herein other than or in addition to the illustrated interchain disulfide bond. PREPARATION OF TCR CONSTRUCTSAND TCR FUSION PROTEINS
- TCR constructs and TCR fusion proteins described herein may be produced using standard recombinant methods known in the art.
- a polynucleotide or set of polynucleotides encoding the TCR construct or TCR fusion protein is generated and inserted into one or more vectors for further cloning and/or expression in a host cell.
- Polynucleotide(s) encoding the TCR construct or TCR fusion protein may be produced by standard methods known in the art (see, for example, Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, 1994 & updates, and “Antibodies: A Laboratory Manual.'' 2 nd Edition, Ed. Greenfield, Cold Spring Harbor Laboratory Press, New York, 2014).
- the number of polynucleotides required for expression of the TCR construct or TCR fusion protein will be dependent on the format of the construct or protein, including whether or not the construct comprises a scaffold. When multiple polynucleotides are required, they may be incorporated into one vector (e.g. a multi ci str onic vector) or into more than one vector.
- the polynucleotide or set of polynucleotides encoding the TCR construct or TCR fusion protein is incorporated into an expression vector together with one or more regulatory elements, such as transcriptional elements, which are required for efficient transcription of the polynucleotide.
- regulatory elements include, but are not limited to, promoters, enhancers, terminators, and polyadenylation signals.
- promoters, enhancers, terminators, and polyadenylation signals include, but are not limited to, promoters, enhancers, terminators, and polyadenylation signals.
- the expression vector may optionally further contain heterologous nucleic acid sequences that facilitate expression or purification of the expressed protein. Examples include, but are not limited to, signal peptides and affinity tags such as metal-affinity tags, histidine tags, avi din/ streptavidin encoding sequences, glutathione-S-transferase (GST) encoding sequences and biotin encoding sequences.
- the expression vector may be an extrachromosomal vector or an integrating vector.
- Suitable host cells for cloning or expression of the TCR construct or TCR fusion protein include various prokaryotic or eukaryotic cells as known in the art.
- Prokaryotic host cells include, for example, E. coli, A. salmonicida or B. subtilis cells.
- Eukaryotic host cells include, for example, mammalian cells, plant cells, insect cells and yeast cells (such as Saccharomyces or Pichia cells).
- Eukaryotic microbes such as filamentous fungi or yeast may be suitable expression host cells in certain embodiments.
- Fungi and yeast strains whose glycosylation pathways have been “humanized” resulting in the production of an antibody construct with a partially or fully human glycosylation pattern have been developed (see, for example, Gerngross, 2004, Nat. Biotech. 22: 1409-1414, and Li etal., 2006, Nat. Biotech. 24:210-215) and may be useful in certain embodiments.
- the TCR construct or TCR fusion protein is expressed in eukaryotic host cells.
- the TCR construct or TCR fusion protein is expressed in a mammalian cell line.
- Mammalian cell lines adapted to grow in suspension are particularly useful in this regard. Examples include, but are not limited to, monkey kidney CV1 line transformed by SV40 (COS-7), human embryonic kidney (HEK) line 293 (“293 cells”) (see, for example, Graham et al., 1977, J.
- CHO cells see Urlaub et al., 1980, Proc Natl Acad Sci USA, 77:4216
- myeloma cell lines such as Y0, NS0 and Sp2/0
- Exemplary mammalian host cell lines are reviewed in Yazaki & Wu, Methods in Molecular Biology, Vol. 248, pp. 255-268 (B.K.C. Lo, ed., Humana Press, Totowa, N.J., 2003).
- the TCR construct or TCR fusion protein is expressed in a transient or stable mammalian cell line. In some embodiments, the TCR construct or TCR fusion protein is expressed in HEK293, CHO, HeLa, NS0 or COS cells. In some embodiments, the TCR construct or TCR fusion protein is expressed in HEK293 cells.
- the host cells comprising the expression vector(s) encoding the TCR construct or TCR fusion protein may be cultured using routine methods to produce the TCR construct or TCR fusion protein. In certain embodiments, culturing the host cells comprising the expression vector(s) encoding the TCR construct or TCR fusion protein at a lowered temperature may improve expression and/or decrease the amount of HMW species (aggregation) of the TCR construct or TCR fusion protein. In certain embodiments, the host cells comprising the expression vector(s) encoding the TCR construct or TCR fusion protein may be cultured at a temperature below 37°C.
- the host cells comprising the expression vector(s) encoding the TCR construct or TCR fusion protein may be cultured at a temperature between about 30°C and about 36°C, for example between about 30°C and about 35°C, or between about 30°C and about 34°C. In some embodiments, the host cells comprising the expression vector(s) encoding the TCR construct or TCR fusion protein may be cultured at a temperature of about 32°C.
- the TCR constructs and TCR fusion proteins are purified after expression.
- Proteins may be isolated or purified in a variety of ways known to those skilled in the art (see, for example, Protein Purification: Principles and Practice, 3 rd Ed., Scopes, Springer-Verlag, NY, 1994).
- Standard purification methods include chromatographic techniques, including ion exchange, hydrophobic interaction, affinity, sizing or gel filtration, and reverse-phase, carried out at atmospheric pressure or at high pressure using systems such as FPLC and HPLC.
- Additional purification methods include electrophoretic, immunological, precipitation, dialysis and chromatofocusing techniques. Ultrafiltration and diafiltration techniques, in conjunction with protein concentration, may also be useful.
- TCR constructs and TCR fusion proteins may be purified using glutathione resin if a GST fusion is employed, by Ni +2 affinity chromatography if a His-tag is employed, or by immobilized anti-flag antibody if a flag-tag is used.
- the TCR fusion protein comprises an Ig Fc scaffold and/or an antibody Fab region
- purification may comprise the use of one of a variety of natural proteins that bind the Fc or Fab.
- the bacterial proteins A and G bind to the Fc region.
- the bacterial protein L binds to the Fab region of some antibodies.
- the degree of purification necessary will vary depending on the intended use of the TCR construct or TCR fusion protein. In some instances, no purification may be necessary.
- the TCR constructs and TCR fusion proteins are substantially pure.
- the term “substantially pure” (or “substantially purified”) when used in reference to a TCR construct or TCR fusion protein described herein, means that the TCR construct or TCR fusion protein is substantially or essentially free of components that normally accompany or interact with the protein in the host cell in which it is expressed.
- a substantially pure preparation of a TCR construct or TCR fusion protein is a protein preparation having less than about 10% of contaminating protein.
- contaminating protein in this context, it is meant any protein that is not the TCR construct or TCR fusion protein, but does not include aggregated forms of the TCR construct or TCR fusion protein (i.e. HMW species).
- a substantially pure preparation of a TCR construct or TCR fusion protein is a protein preparation having less than about 8% of contaminating protein, for example, less than about 7%, less than about 6%, or less than about 5%, of contaminating protein.
- the TCR construct or TCR fusion protein preparation comprises minimal amount of HMW species (aggregates). In some embodiments, a TCR construct or TCR fusion protein preparation comprises about 40% or less of HMW species. In some embodiments, a TCR construct or TCR fusion protein preparation comprises about 35% or less of HMW species, for example, about 30% or less, about 25% or less, about 20% or less, or about 15% or less, of HMW species. In certain embodiments, the amount of HMW species is determined by sizeexclusion chromatography (SEC), for example, by UPLC-SEC.
- SEC sizeexclusion chromatography
- Certain embodiments of the present disclosure relate to a method of preparing a TCR construct or TCR fusion protein as described herein comprising culturing a host cell into which one or more polynucleotides, or one or more expression vectors, encoding the TCR construct or TCR fusion protein have been introduced, under conditions suitable for expression of the TCR construct or TCR fusion protein, and optionally recovering the TCR construct or TCR fusion protein from the host cell (or from host cell culture medium).
- the method comprises culturing the host cell comprising the polynucleotide(s) or expression vector(s) encoding the TCR construct or TCR fusion protein at a temperature below 37°C.
- the method comprises culturing the host cell comprising the polynucleotide(s) or expression vector(s) encoding the TCR construct or TCR fusion protein at a temperature between about 30°C and about 36°C, for example between about 30°C and about 35°C, or between about 30°C and about 34°C. In some embodiments, the method comprises culturing the host cell comprising the polynucleotide(s) or expression vector(s) encoding the TCR construct or TCR fusion protein at a temperature of about 32°C. In certain embodiments, the host cell is a human embryonic kidney (HEK) cell, such as a HEK273 cell.
- HEK human embryonic kidney
- Certain embodiments of the present disclosure relate to an isolated polynucleotide or set of polynucleotides encoding a TCR construct or TCR fusion protein described herein.
- a polynucleotide in this context may encode all or a part of a TCR construct or TCR fusion protein.
- nucleic acid refers to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof.
- polynucleotides include a gene, a gene fragment, messenger RNA (mRNA), cDNA, recombinant polynucleotides, isolated DNA, isolated RNA, nucleic acid probes, and primers.
- a polynucleotide that “encodes” a given polypeptide is a polynucleotide that is transcribed (in the case of DNA) or translated (in the case of mRNA) into a polypeptide in vivo when placed under the control of appropriate regulatory sequences.
- the boundaries of the coding sequence are determined by a start codon at the 5' (amino) terminus and a translation stop codon at the 3' (carboxy) terminus.
- a transcription termination sequence may be located 3' to the coding sequence.
- inventions of the present disclosure relate to vectors (such as expression vectors) comprising one or more polynucleotides encoding a TCR construct or TCR fusion protein as described herein.
- the polynucleotide(s) may be comprised by a single vector or by more than one vector.
- the polynucleotides are comprised by a multi ci str onic vector.
- Certain embodiments of the present disclosure relate to host cells comprising polynucleotide(s) encoding a TCR construct or TCR fusion protein or one or more vectors comprising the polynucleotide(s).
- the host cell is eukaryotic, for example, a mammalian cell.
- the host cell is a human cell.
- the host cell is a human embryonic kidney (HEK) cell.
- the TCR constructs and TCR fusion proteins may be provided in the form of compositions comprising the TCR construct or TCR fusion protein and a pharmaceutically acceptable carrier or diluent.
- the compositions may be prepared by known procedures using well- known and readily available ingredients.
- compositions may be formulated for administration to a subject by, for example, oral (including, for example, buccal or sublingual), topical, parenteral, rectal or vaginal routes, or by inhalation or spray.
- parenteral as used herein includes subcutaneous injection, and intradermal, intra-articular, intravenous, intramuscular, intravascular, intrastemal, intrathecal injection or infusion.
- the pharmaceutical composition will typically be formulated in a format suitable for administration to the subject, for example, as a syrup, elixir, tablet, troche, lozenge, hard or soft capsule, pill, suppository, oily or aqueous suspension, dispersible powder or granule, emulsion, injectable or solution.
- Pharmaceutical compositions may be provided as unit dosage formulations.
- the pharmaceutical compositions comprising the TCR constructs or TCR fusion proteins are formulated for parenteral administration.
- the pharmaceutical compositions comprising the TCR constructs or TCR fusion proteins are formulated for parenteral administration in a unit dosage injectable form, for example as lyophilized formulations or aqueous solutions.
- Pharmaceutically acceptable carriers and diluents are generally nontoxic to recipients at the dosages and concentrations employed.
- components that may be included in such carriers and diluents include, but are not limited to, buffers such as phosphate, citrate and other organic acids; antioxidants such as ascorbic acid and methionine; preservatives such as octadecyldimethylbenzyl ammonium chloride, hexamethonium chloride, benzalkonium chloride, benzethonium chloride, phenol, butyl alcohol, benzyl alcohol, alkyl parabens (such as methyl or propyl paraben), catechol, resorcinol, cyclohexanol, 3-pentanol and m-cresol; low molecular weight (less than about 10 residues) polypeptides; proteins such as serum albumin or gelatin; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as
- compositions comprising the TCR constructs or TCR fusion proteins may be in the form of a sterile injectable aqueous or oleaginous solution or suspension.
- a sterile injectable aqueous or oleaginous solution or suspension Such suspensions may be formulated using suitable dispersing or wetting agents and/or suspending agents that are known in the art.
- the sterile injectable solution or suspension may comprise the TCR construct or TCR fusion protein in a non-toxic parentally acceptable carrier or diluent.
- Acceptable carriers and diluents that may be employed include, for example, 1,3 -butanediol, water, Ringer’s solution or isotonic sodium chloride solution.
- sterile, fixed oils may be employed.
- various bland fixed oils may be employed, including synthetic mono- or diglycerides.
- fatty acids such as oleic acid find use in the preparation of injectables.
- Adjuvants such as local anaesthetics, preservatives and/or buffering agents may also be included in the injectable solution or suspension.
- the composition comprising the the TCR construct or TCR fusion protein may be formulated for intravenous administration to a subject.
- compositions for intravenous administration are solutions in sterile isotonic aqueous buffer.
- the composition may also include a solubilizing agent and/or a local anaesthetic such as lignocaine to ease pain at the site of the injection.
- the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water-free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent.
- composition is to be administered by infusion, it may be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water for injection or saline may be provided so that the ingredients may be mixed prior to administration.
- an ampoule of sterile water for injection or saline may be provided so that the ingredients may be mixed prior to administration.
- Other pharmaceutical compositions and methods of preparing pharmaceutical compositions are known in the art and are described, for example, in “Remington: The Science and Practice of Pharmacy” (formerly “Remingtons Pharmaceutical Sciences”),' Gennaro, A., Lippincott, Williams & Wilkins, Philadelphia, PA (2000).
- TCR constructs and TCR fusion proteins described herein may be used to target various types of disease cells or infected cells, or a specific tissue type or organ. Accordingly, certain embodiments of the present disclosure relate to methods for the treatment of a disease or condition comprising administration of a TCR construct or TCR fusion protein to a subject in need thereof.
- the subject is a mammal. In some embodiments, the subject is a human.
- TCR constructs and TCR fusion proteins may be used in methods for the treatment of cancer.
- the TCR constructs and TCR fusion proteins may be used in methods for the treatment of a bacterial or viral infection, or an infectious disease.
- the TCR constructs and TCR fusion proteins may be used in methods for the treatment of an immune disorder.
- the TCR constructs and TCR fusion proteins may be used in methods for the treatment of an immunodeficiency disorder or disease. In certain embodiments, the TCR constructs and TCR fusion proteins may be used in methods for the treatment of an auto-immune disease or condition.
- the methods of treatment described herein comprise administering the TCR construct or TCR fusion protein to a subject in need thereof.
- the TCR construct or TCR fusion protein will be administered to a subject by an appropriate route of administration.
- the route and/or mode of administration will vary depending upon the disease or condition to be treated and the desired results, and can be readily determined by one skilled in the medical arts.
- host cells comprising expression vector(s) encoding the TCR construct or TCR fusion protein may be used therapeutically or prophylactically to deliver the TCR construct or TCR fusion protein to a subject, or polynucleotides or expression vectors encoding the TCR construct or TCR fusion protein may be administered to a cell from a subject ex vivo and the cell then returned to the body of the subject.
- Treatment is achieved by administration of a “therapeutically effective amount” of the TCR construct or TCR fusion protein.
- a “therapeutically effective amount” refers to an amount that is effective, at dosages and for periods of time necessary, to achieve a desired therapeutic result.
- a therapeutically effective amount can vary according to factors such as the disease state, age, sex, and weight of the subject.
- a therapeutically effective amount may also be one in which any toxic or detrimental effects of the TCR construct or TCR fusion protein are outweighed by the therapeutically beneficial effects.
- a suitable dosage of the TCR construct or TCR fusion protein can be determined by a skilled medical practitioner.
- the selected dosage level will depend upon a variety of pharmacokinetic factors including the activity of the particular TCR construct or TCR fusion protein employed, the route of administration, the time of administration, the rate of excretion of the construct or protein, the duration of the treatment, other drugs, compounds and/or materials used in combination with the TCR construct or TCR fusion protein, the age, sex, weight, condition, general health and prior medical history of the subject being treated, and like factors well known in the medical arts.
- the TCR construct or TCR fusion protein may be used in vitro or in vivo to detect antigen-presenting cells carrying the peptide for which the TCR construct or TCR fusion protein specifically binds.
- the TCR construct or TCR fusion protein is typically labelled with an appropriate detectable label.
- TCR fusion proteins and controls in various formats are described in the following Examples. The design and construction of the TCR fusion proteins and controls is outlined below.
- All TCR fusion proteins contained the extracellular V ⁇ and V ⁇ TCR domains together with either the extracellular C ⁇ and C ⁇ TCR domains or IgGl CL and CH domains, and an IgGl Fc. Controls also contained the extracellular TCR domains and an IgGl Fc, unless otherwise indicated. Amino acid residues in the Fc region are numbered according to the EU index. Amino acid residues in the extracellular TCR domains are numbered according to the IMGT numbering system (Lefranc, et aL, 2005, Developmental and Comparative Immunology, 29: 185-203; see Fig. 9).
- the IgGl Fc comprised CH3 domain amino acid substitutions that promote formation of a heterodimeric Fc.
- the IgGl Fc contained by the TCR fusion proteins was a human IgGl heterodimeric Fc comprising the following CH3 domain amino acid substitutions (referred to throughout the Examples as “Het Fc” modifications):
- Chain B (“Het FcB”): T350V/T366L/K392L/T394W.
- both chains of the IgGl Fc also comprised the following CH2 amino acid substitutions which abrogate FcyR binding (referred to throughout the Examples as “FcKO”): L234A/L235A/D265S.
- TCR fusion protein format A schematic depiction of each TCR fusion protein format is shown in Fig 1. In order to produce each of the final TCR fusion proteins in the formats shown in Fig.
- All heavy chain constructs included the HetFc modifications.
- most TCR fusion proteins also comprised a complementary alpha or beta TCR chain containing the corresponding variable and constant domains.
- those TCR fusion proteins comprising an antibody Fab further comprised a single antibody light chain.
- the “hinge” sequence corresponds to the upper region of the human IgGl hinge sequence (EPKSCDKTHT [SEQ ID NO: 16]) except when “hinge” is followed by “CH2,” in which case the lower region of the human IgGl hinge was also included (i.e. the sequence was EPKSCDKTHTCPPCP [SEQ ID NO:21]).
- the TCR ⁇ chain consists of the extracellular V ⁇ and C ⁇ domains. The sequence terminates at TRAC/127. The TCR ⁇ chain consists of the extracellular V ⁇ and C ⁇ domains. The sequence terminates at TRCB/126.
- the wild-type TCR 0 chain constant region includes a cysteine residue (residue 85.1 in exon 1 of TRBCl*01 and TRBC2*01) which is not involved in either inter-chain or intra-chain disulfide bond formation. This position is commonly mutated to an Ala to eliminate potential mispairing. All TCR fusion proteins described in the following Examples incorporate this TRBC/85.1.CYS->ALA mutation.
- TCR fusion proteins include the known TRAC/84.THR - TRBC/79.SER disulfide bond, which has been shown to improve the expression and stability of TCR proteins (Boulter, et al., 2003, PEDS, 16:707-711).
- the TRAC/84.THR - TRBC/79.SER disulfide bond is referred to throughout the Examples as the “IC Disulfide.”
- some of the TCR fusion proteins include the mutations TRAC/1.5.GLN->LYS and TRBC/97.GLN->ASP. These mutations do not alter either the activity or the stability of the TCR.
- Table 1.1 provides a summary of the TCR fusion proteins that were prepared.
- the number of TCR “arms” (peptide-MHC targeting domains) and the number of anti-CD3 “arms” (CD3 targeting domains) comprised by each TCR fusion protein are indicated in the “Format” column. For example, “1 x 0” indicates that the TCR fusion protein comprises one TCR arm and no anti- CD3 arms, “1 x 1” indicates that the TCR fusion protein comprises one TCR arm and one anti- CD3 arm, etc.
- Anti-CD3 arms were in either scFv or Fab format as noted.
- Vectors for the expression of the TCR fusion proteins were constructed as follows. All constructs used the pTT5 vector (Durocher, et al., 2002, Nucl. Acids Res., 30(2):e9) and the following signal sequence: MRPTWAWWLFLVLLLALWAPARG [SEQ ID NO:22] (Barash, et al., 2002, Biochem and Biophys Res. Comm., 294:835-842). [00240] Vectors encoding a TCR ⁇ chain comprised the insert: 5’-EcoRI restriction site -signal peptide - ⁇ chain - TGA stop - BamHl restriction site-3’. [00241] Vectors encoding a TCR ⁇ chain comprised the insert: 5’-EcoRI restriction site -signal peptide - 0 chain - TGA stop - BamHl restriction site-3’.
- Vectors encoding the IgGl heavy chain comprised the insert: 5’-EcoRl restriction site - signal peptide - IgGl CH2 domain and CH3 domain terminating at G446 (EU numbering) - TGA stop - BamHl restriction site-3’.
- Vectors encoding the IgGl light chain comprised the insert: 5’-EcoRI restriction site - signal peptide - IgGl light chain- TGA stop - BamHl restriction site-3’.
- TCR chains fused to the N-terminus of an IgGl Fc were linked to the upper hinge of the IgGl heavy chain at position E216 (EU numbering) and included the CH2 domain and the CH3 domain terminating at position G446 (EU numbering) followed by a TGA stop codon and a BamHl restriction site.
- TCR chains fused to the C-terminus of an IgGl Fc the TCR chain was followed by a short sequence of the upper hinge starting at E216 and terminating at T225 (EU numbering).
- EXAMPLE 2 COMPARISON OF EXPRESSION OF TCR FUSION PROTEINS IN DIFFERENT FORMATS
- TCR fusion proteins in the formats shown in Table 2.1 were produced using a mammalian transient transfection protocol. The formats tested included TCR domains fused in different orientations to determine whether orientation affected production of the fusion proteins. A modified anti-gplOO TCR domain and an anti-CD3 scFv were used in the fusion proteins. All TCR fusion proteins which included both the TRAC and TRBC domains also contained the IC Disulfide (see Example 1). [00248] The relevant TCR ⁇ , TCR ⁇ , IgGl heavy and scFv chains of the TCR fusion proteins were co-expressed in 2.5 mL cultures of Expi293FTM cells (Thermo Fisher, Waltham, MA) as described below.
- Expi293TM cells were cultured at 37°C in Expi293TM Expression Medium (Thermo Fisher, Waltham, MA) on an orbital shaker rotating at 125 rpm in a humidified atmosphere of 8% CO2. A volume of 2.5 mL with a total cell count of 7.5 x 10 7 cells was transfected with a total of 2.5 pg DNA. Prior to transfection, the DNA was diluted in 0.15 mL Opti-MEMTM I Reduced Serum Medium (Thermo Fisher, Waltham, MA) to provide a DNA transfection mix.
- ExpiFectamineTM 293 reagent 8 pL of ExpiFectamineTM 293 reagent (Thermo Fisher, Waltham, MA) were diluted in a volume of 0.15 mL Opti-MEMTM I Reduced Serum Medium and, after incubation for five minutes, the solution was combined with the DNA transfection mix to a total volume of 0.30 mL. After 10 to 20 minutes, the DNA-ExpiFectamineTM293 reagent mixture was added to the cell culture. After incubation at 37°C for 18-22 hours, 15 ⁇ L of ExpiFectamineTM 293 Enhancer 1 and 0.15 mL of ExpiFectamineTM 293 Enhancer 2 (Thermo Fisher, Waltham, MA) were added to each culture. Cells were incubated for five days and supernatants were harvested.
- the protein levels in the supernatants were quantified using an OctetTM RED96 (ForteBio, Fremont, CA) with a Protein A tip. 200 pL of each culture supernatant were transferred into a 96 well plate. Samples were measured 3 times for 120 seconds. After each read, the tip was regenerated for 5 seconds in 100mM glycine, pH 1.5, followed by a 5-second neutralization in PBS. Measurements were compared against a standard curve to obtain the protein concentration for each sample. The results are shown in Table 2.1.
- TCR fusion proteins linked to the Fc through the betachain showed the highest expression titers.
- Expression titers for the TCR fusion proteins overall were lower than those for the scFv constructs.
- Those variants listed in Table 2.1 including a “-B” suffix did not include an Fc domain and, therefore, consisted of just 2 TCRs or 2 scFvs. In all cases, these homodimer variants showed lower expression titers.
- EXAMPLE 3 IDENTIFICATION OF POTENTIAL STABILIZING MUTATIONS IN THE TCR CONSTANT DOMAINS
- a structure and computational guided approach was employed to produce a library of mutation designs in the TRAC and TRBC domains that could potentially improve the thermal and/or colloidal stability of the TCR. These mutations where selected based upon improving surface properties, interface interactions and internal packing as described in more detail below.
- TRBC/1.4 is Lys in TRBC1 and Gin in TRBC2
- TRBC/1.3 is Gin in TRBC1 and Lys in TRBC2
- position TRBC/29 is Tyr in TRBC1 and Phe in TRBC2.
- Hydrophobic patches were identified using the Protein Patches tool in Molecular Operating Environment (Version 2019.01; Chemical Computing Group, Montreal, QC). All nonpolar residues located in the TRAC or TRBC domains in hydrophobic patches having an area greater than 50 A with surface exposed sidechains were flagged.
- Cavity, Interface and Patch mutations were ranked based on improvements in force field metrics. Patch mutations were further ranked based on the reduction of hydrophobic patches.
- Truncation of the TRBC FG loop in Fab/TCR chimeras has previously been reported to improve expression of the chimera (Wu, etal., 2015, MABS, 7:364-376). Different loop truncations of the FG loop were investigated to determine whether these could improve the expression in full TCRs. As the TRBC DE loop is shorter in many non-human TCRs, truncation of the human TRBC DE loop was also investigated, as well as truncation with addition of a Gly-Asn beta turn motif.
- EXAMPLE 4 EXPRESSION AND CHARACTERIZATION OF TCR FUSION PROTEINS COMPRISING POTENTIAL STABILIZING MUTATIONS
- TCR fusion proteins comprising the mutations were constructed in a one-armed (OA) format with the ⁇ chain fused to the Fc as described in Example 1.
- the TCR fusion proteins were expressed and tested in vitro for stability to identify the mutations that provided the greatest improvement in expression, thermal stability and/or colloidal stability.
- a modified anti-gplOO TCR domain was used in the fusion proteins.
- All TCR fusion proteins contained the IC Disulfide (see Example 1).
- HEK293-6E cells at a density of 1.5 - 2.2 x 10 6 cells /ml were cultured at 37°C in FreeStyleTM F17 medium (GIBCO Cat # A13835-01) supplemented with G418 sulfate (Wisent Bioproducts Cat# 400-130-IG), 4 mM glutamine and 0.1% PluronicTM F-68 (GIBCO Cat # 24040- 032).
- a total of 1 ug DNA (50% variant DNA, 5% GFP, 15% AKT, 30% ssDNA) per ml of HEK293-6E cells was transfected at a ratio of 40:30:30 for alpha chain, beta chain-Fc (A), and Fc (B) using PEI-max (Polysciences Cat # 24765-2) at a DNA:PEI ratio of 1 :2.5 and cells were incubated at 37°C for 24 hours. Following incubation, 0.5 mM valproic acid (final concentration) and 0.5% w/v tryptone N1 (final concentration) were added to the cells. The cells were then transferred to 37°C and incubated for 7 days prior to harvesting.
- Culture media was harvested by centrifugation and vacuum filtered using a Stericup® 0.22 pM filter (Millipore Cat # SCGPU05RE). Samples were initially tested for expression in 0.8 mL volume. Samples which showed protein bands on an SDS-PAGE gel were scaled up to 250-500 mL cultures.
- TCR fusion protein was eluted by the addition of 3ml 0. IM glycine-HCl, pH 2.7. The eluted TCR fusion protein was then neutralized using IM Tris-HCl, pH 9. Protein yield was quantitated based on absorbance at 280nm (A280 nm) (in instances where precipitation was present upon sample neutralization, samples were centrifuged briefly prior to A280nm measurements).
- UPLC-SEC Homogeneity of the TCR fusion proteins was assessed by UPLC-SEC.
- UPLC-SEC was performed using a Waters ACQUITY BEH200 SEC column (2.5 mL, 4.6 x 150 mm, stainless steel, 1.7 pm particles) (Waters Ltd, Mississauga, ON) set to 30°C and mounted on a Waters ACQUITY UPLC H-Class Bio system with a Photodiode Array (PDA) detector.
- PDA Photodiode Array
- Run times were 7 min with a total volume per injection of 2.8 mL using a running buffer of Dulbecco’s phosphate- buffered saline (DPBS) or DPBS with 0.02% Tween 20, pH 7.4, at 0.4 ml/min. Elution was monitored by UV absorbance in the range 210-500 nm and chromatograms were extracted at 280 nm. Peak integration was performed using Empower 3 software (Waters Ltd, Mississauga, ON).
- Samples with acceptable homogeneity were buffer exchanged into DPBS and aseptically filtered post protein-A purification. Samples with low homogeneity were subjected to SEC purification as follows. Samples were loaded onto a Superdex® 200 10/30 Increase column (GE Healthcare Life Sciences, Marlborough, MA) on an AktaTM Avant 25 Chromatography System (GE Healthcare Life Sciences, Marlborough, MA) in DBPS with a flow rate of 0.5 mL/min. Fractions of eluted protein were collected based on absorbance at 280nm and the fractions were assessed by non-reducing and reducing High Throughput Protein Express assay using Caliper LabChip® GXII (Perkin Elmer, Waltham, MA).
- TCR fusion protein samples at either 2 pl or 5 pl (concentration range 5- 2000 ng/pl) were added to separate wells in 96 well plates (BioRad, Hercules, CA) along with 7 pl of HT Protein Express Sample Buffer (Perkin Elmer Cat # 760328). TCR fusion protein samples were then denatured at 70°C for 15 mins.
- the LabChip® instrument was operated using the HT Protein Express Chip (Perkin Elmer, Waltham, MA) and the Ab-200 assay setting.
- TCR fusion proteins Thermal stability of the TCR fusion proteins was determined by differential scanning calorimetry (DSC). Each purified TCR fusion protein was diluted to 1 mg/mL in PBS. A total of 950 pL was used for DSC analysis with a NanoDSC (TA Instruments, New Castle, DE). At the start of each DSC run, a buffer blank injection was performed to stabilize the baseline, and a buffer injection was placed before each TCR fusion protein injection for referencing. Each sample was scanned from 25°C to 95°C at a rate of 60°C/hr and 60 psi nitrogen pressure. The resulting thermograms were referenced and analyzed using NanoAnalyze (TA Instruments, New Castle, DE).
- DSC differential scanning calorimetry
- TCR Thermal transition
- CH2 ⁇ 71°C
- CH3 ⁇ 80°C
- the transition of the TCR includes the TRAV-TRBV and TRAC-TRBC interfaces.
- HMW high molecular weight
- TCR fusion proteins v22705, v22707, v22709, v22712, v22716, v22722, v22837, v22840 and v22772 showed both decreased HMW species and increased Tm when compared to the v21230 control.
- TCR fusion protein v28881 also showed decreased HMW species and increased Tm when compared to the v21230 control, however, this protein was expressed at 32°C, so was expected to show decreased HMW species.
- TCR fusion proteins showed reduced HMW species, with the greatest reduction in HMW species being observed for v22709 and v22837 (a reduction from 37.4% to 20.2% and 20.1%, respectively).
- Tm the greatest increase was observed for v22706, v22709 and v28881.
- Both v22706 and v22709 showed an increase in Tm of 3°C (from 53.7°C to 56.7°C), although v22706 did not show decreased HMW species, whereas v28881 showed an increase in Tm of 2.7°C (from 53.7°C to 56.4°C).
- TCR fusion proteins contain identical sequences except for the point mutations described in Table 4.1, the observed improvements in homogeneity and/or Tm can be attributed to these point mutations.
- EXAMPLE 5 EFFECT OF TEMPERATURE AND CELL LINE ON EXPRESSION OF TCR FUSION PROTEIN
- TCR fusion protein v21232 was produced under different expression conditions as described below in order to identify the conditions which resulted in the highest yields and lowest HMW species (aggregation).
- a TCR bispecific beta fusion TCR fusion protein comprising an anti-gplOO TCR and an anti-CD3 scFv (v21232; see Example 2) was expressed in 2.5 mL of Expi293FTM cells (Thermo Fisher, Waltham, MA) or ExpiCHOTM cells (Thermo Fisher, Waltham, MA) with a H1 :H2:L1 DNA ratio of 30:30:40.
- Expi293FTM cells For expression in Expi293FTM cells, cultures were prepared as described in Example 2 except a DNA ratio of 40:40:20 for alpha chain, beta chain-Fc(A), and Fc (B) was employed in the transfection step. After incubation at 37°C for 18-22 hours, 15 pL of ExpiFectamineTM 293 Enhancer 1 and 0.25mL of ExpiFectamineTM 293 Enhancer 2 (Thermo Fisher, Waltham, MA) were added to each culture. Cultures were then transferred to 37°C or 32°C for the remaining time of incubation prior to supernatant harvest.
- ExpiCHOTM cells For expression in ExpiCHOTM cells, cells were cultured at 37°C in ExpiCHOTM expression medium (Thermo Fisher, Waltham, MA) on an orbital shaker rotating at 125 rpm in a humidified atmosphere of 8% CO2. A volume of 2.5 ml of culture with a total cell count of 1.5 x 10 8 cells was transfected with a total of 2 pg DNA with a DNA ratio of 40:40:20 for alpha chain, beta chain-Fc(A), and Fc (B). Prior to transfection, the DNA was diluted in 0.1 mL OptiPROTM SFM (Thermo Fisher, Waltham, MA) to provide a DNA transfection mix.
- OptiPROTM SFM Thermo Fisher, Waltham, MA
- ExpiFectamineTM CHO reagent (Thermo Fisher, Waltham, MA) were diluted in a volume of 92 pL OptiPROTM SFM and, after incubation for one to five minutes, combined with the DNA transfection mix to a total volume of 0.2 mL. After one to five minutes, the DNA-ExpiFectamineTM CHO Reagent mixture was added to the cell culture. After incubation at 37°C for 18-22 hours, 15 pL of ExpiCHOTM Enhancer and 0.6 mL of ExpiCHOTM Feed (Thermo Fisher, Waltham, MA) were added to each culture. Cultures were then transferred to 37°C or 32°C and incubated for seven days. Supernatants were then harvested.
- fusion proteins comprising a disulfide bond that mimics the light chain-upper hinge disulfide bond found in IgGl antibodies were prepared as follows.
- the natural TCR sequence includes a C-terminal disulfide bond located in the linker region between the constant domains and the transmembrane domains.
- a potential stability enhancing modification was designed that introduced a disulfide bond between the natural C- terminal cysteine on the TCR alpha chain (referred to as position TRAC/128.CYS, which is typically omitted from soluble TCR constructs) and the natural cysteine located in the upper hinge region of the Fc (220. CYS (EU numbering)) in the beta-Fc fusion chain.
- the disulfide bond formed between these two cysteines i.e. TRAC/128.CYS and hinge 220. CYS
- TRAC/128.CYS and hinge 220. CYS
- CYS The disulfide bond formed between these two cysteines (i.e. TRAC/128.CYS and hinge 220. CYS) is referred to herein as the “TRAC -Hinge Disulfide.”
- TRAC -Hinge Disulfide was initially tested in two TCR fusion proteins: an anti- gplOO TCR fused to an Fc and an anti-NY-ESOl 1G4-HA (high affinity) TCR fused to an Fc. Both TCR fusion proteins also contained the IC Disulfide.
- the TCR fusion proteins were constructed in a one-armed format with the beta chain fused to the Fc as described in Example 1. All sequences were preceded by the signal peptide: MRPTWAWWLFLVLLLALWAPARG [SEQ ID NO:22], Vector inserts were prepared and cloned into the pTT5 vector for expression as described in Example 1.
- TCR fusion proteins were initially expressed in 0.8 mL of HEK293-6E cells as described in Example 4 and expression was confirmed by SDS-PAGE.
- the fusion protein was subsequently expressed in 250 mL of HEK293-6E cells as described in Example 4 but with a DNA ratio of 40:40:20 for alpha chain, beta chain-Fc(A), and Fc (B).
- the cells were incubated at 32°C and subsequently purified and characterized by UPLC-SEC as described in Example 4.
- TCR fusion proteins Thermal stability of the TCR fusion proteins was determined by differential scanning calorimetry (DSC). Each purified TCR fusion protein was diluted to 0.4 mg/mL in PBS. A total of 400 pL was used for DSC analysis with a MicroCaiTM VP-Capillary DSC (GE Healthcare Life).
- Table 6.1 Expression and Characterization of TCR Fusion Proteins Comprising the TRAC- Hinge Disulfide
- the anti-gplOO TCR fusion protein comprising the TRAC -Hinge Disulfide showed an increase in Tm of >3°C compared to the same fusion protein lacking this additional disulfide bond (compare variants v21230 and v22752).
- the anti- NY-ESO1 1G4-HA TCR fusion protein comprising the TRAC -Hinge Disulfide showed an increase in Tm of ⁇ 2°C compared to the same fusion protein lacking this additional disulfide (compare variants v30930 and v31185).
- the anti-NY-ESOl 1G4-HA TCR fusion protein comprising the TRAC-Hinge Disulfide also showed an increase of 29.4% in correct species compared to the TCR fusion protein lacking the TRAC-Hinge Disulfide.
- EXAMPLE 7 IDENTIFICATION OF ADDITIONAL DISULFIDE BONDS FOR STABILIZATION OF TCR FUSION PROTEINS
- a TCR model as described in Example 3 was used to identify positions to introduce novel disulfide bonds.
- the C ⁇ -C ⁇ and C ⁇ -C ⁇ pairwise distance for every non-cysteine residue located in the TRAC and TRBC domains with every other residue in both the alpha and beta chains was calculated.
- Residue pairs with C ⁇ -C ⁇ distances ⁇ 5 A or C ⁇ -C ⁇ distances ⁇ 7 A that were separated in sequence space by more than five residues were considered positive hits for potential disulfide bonds. All flagged residue pairs were visually inspected to confirm that the two residues were in the correct orientation to generate a disulfide bond.
- Potential disulfide bonds which passed the above criteria were generated as a model in silico.
- Example 7 The effect on stability of the interchain disulfide bonds identified in Example 7 was investigated in TCR fusion proteins in a one-armed format by analyzing the expression, thermal stability and colloidal stability of the TCR fusion proteins.
- Example 7 Each of the top-ranked interchain disulfide bonds identified in Example 7 (see Table 7.1) was introduced into an anti-gplOO TCR fused to an Fc.
- the TCR fusion proteins were constructed in a one-armed format with the beta chain fused to the Fc as described in Example 1. All sequences were preceded by the signal peptide: MRPTWAWWLFLVLLLALWAPARG [SEQ ID NO:22], Vector inserts were prepared and cloned into the pTT5 vector for expression as described in Example 1.
- TCR fusion proteins were initially tested for expression in 0.8 mL of HEK293-6E cells as described in Example 4. Expression was confirmed by SDS-PAGE and variants with observable protein expression bands were subsequently expressed in 250 mL of HEK293-6E cells as described in Example 4 but with a DNA ratio of 40:40:20 for alpha chain, beta chain-Fc(A), and Fc (B). After the initial 18-22 hour incubation, the cells were incubated at either 32°C or 37°C and subsequently purified and characterized by UPLC-SEC as described in Example 4 and DSC as described in Example 6.
- TRAC/84.2_TRBC/79 v22729
- TRAC/122_TRBC/12 v31093
- Both variants had a lower Tm and higher HMW species than v21230 (IC Disulfide).
- EXAMPLE 9 PRODUCTION AND CHARACTERIZATION OF TCR FUSION PROTEINS COMPRISING NEW INTRACHAIN DISULFIDE BONDS
- Example 7 The effect on stability of the intrachain disulfide bonds identified in Example 7 was investigated in TCR fusion proteins in a one-armed format by analyzing the expression, thermal stability and colloidal stability of the TCR fusion proteins.
- Example 7 Each of the top-ranked intrachain disulfide bonds identified in Example 7 (see Table 7.1) was introduced into an anti-gplOO TCR fused to an Fc.
- the TCR fusion proteins were constructed in a one-armed format with the beta chain fused to the Fc as described in Example 1. All variants contained the TRAC/84.2 TRBC/79 disulfide (see Example 8) and the TRAC -Hinge Disulfide. All sequences were preceded by the signal peptide: MRPTWAWWLFLVLLLALWAPARG [SEQ ID NO:22], Vector inserts were prepared and cloned into the pTT5 vector for expression as described in Example 1.
- TCR fusion proteins were initially tested for expression in 0.8 mL of HEK293-6E cells as described in Example 4. Expression was confirmed by SDS-PAGE and variants with observable protein expression bands were subsequently expressed in 250 mL of HEK293-6E cells as described in Example 4 but with a DNA ratio of 40:40:20 for alpha chain, beta chain-Fc(A), and Fc (B). After the initial 18-22 hour incubation, the cells were incubated at 32°C and subsequently purified and characterized by UPLC-SEC as described in Example 4 and DSC as described in Example 6.
- variant v31085 which comprises a combination of a disulfide at positions TRAC/39.VAL TRAC/85.ALA with the TRAC/84.2.THR TRBC/79.LEU interchain disulfide and TRAC -Hinge Disulfide showed an increase in Tm of ⁇ 5°C.
- Variant v31086 which comprises a combination of a disulfide at positions TRAC/26.THR TRAC/85.1.SER with the TRAC/84.2 TRBC/79 disulfide (Example 8) and TRAC -Hinge Disulfide showed an increase in Tm of ⁇ 2°C.
- EXAMPLE 10 BINDING OF STABILIZED TCR FUSION PROTEINS TO TARGET PEPTIDE-MHC COMPLEX
- TCR fusion proteins from Example 4 with a TCR Tm equal or greater than that of the parent TCR fusion protein as well as variants v22729 and v22730 (which include a new disulfide bond, see Example 8) were tested for binding to their target peptide-MHC complex by flow cytometry as follows.
- T2 cells ATCC CRL-1992
- FCS fetal bovine serum
- Penicillin- Streptomycin 1% Penicillin- Streptomycin. Cells were then centrifuged, resuspended and mixed with lOuM gplOO peptide (YLEPGPVTA [SEQ ID NO:24]).
- TCR fusion proteins were prepared using a parallel plate using a 1 :3 serial dilution starting from a 1 :20 dilution of stock (range of stock concentrations 0.54-1.09 mg/ml) and extending for 11 samples (resulting in lowest concentrations of 3-8 pM). The cell plate was then spun down, supernatants were removed and the TCR fusion protein solution added.
- the plate was kept on ice for 30 minutes, followed by a single wash in PBS 1% FCS and resuspension in 1 :200 anti-human IgG Alexa 647 conjugate (Jackson ImmunoResearch Laboratories, Inc., West Grove, PA). The plate was kept on ice for a further 30 minutes, followed by two washes with PBS 1% FCS. lOOul of PBS 1% FCS was then added to the wells and the plate analyzed by flow cytometry using a BD FortessaTM X-20 (BD Biosciences, San Jose, CA).
- EXAMPLE 11 TCR FUSION PROTEINS COMPRISING COMBINATIONS OF STABILIZING MUTATIONS
- Examples 4 and 6-9 describe various mutations were identified that improved the thermal stability and/or colloidal stability of TCR fusion proteins.
- TCR fusion proteins comprising various combinations of these mutations were constructed to determine if the combined mutations could further improve thermal stability and/or colloidal stability of TCR fusion proteins.
- TCR fusion proteins were constructed in a one-armed format with the beta chain fused to the Fc as described in Example 1. All sequences were preceded by the signal peptide: MRPTWAWWLFLVLLLALWAPARG [SEQ ID NO:22], Vector inserts were prepared and cloned into the pTT5 vector for expression as described in Example 1.
- TCR fusion proteins were initially tested for expression in 0.8 mL of HEK293-6E cells as described in Example 4. Expression was confirmed by SDS-PAGE and variants with observable protein expression bands were subsequently expressed in 250 mL of HEK293-6E cells as described in Example 4 but with a DNA ratio of 40:40:20 for alpha chain, beta chain-Fc(A), and Fc (B). After the initial 18-22 hour incubation, the cells were incubated at 32°C for 5 days and subsequently purified and characterized by UPLC-SEC as described in Example 4 and DSC as described in Example 6. Binding of the TCR fusion proteins to the target peptide-MHC complex was confirmed using flow cytometry as described in Example 10.
- TCR fusion proteins were successfully produced comprising various combinations of stabilizing mutations. The only unsuccessful combinations were those comprised by variants v23953, v28893, v28903 and v23398.
- v28914 (TRAC/4 Val->Ile, TRAC/85 Ala->Val, TRBC/6 Val->Leu, TRAC-Hinge Disulfide and IC Disulphide) • v28915 (TRAC/4 Val->Ile, TRAC/85 Ala->Val, TRBC/6 Val->Leu, ATRBC/84.4-85.4 - >Gly-Asn, TRAC -Hinge Disulfide and IC Disulphide)
- TCR fusion proteins lacking the IC Disulfide that showed the greatest increase in thermal stability were: • v31099 (TRAC/39 Val->Ile, TRAC/85 Ala->Val, TRBC/36 His->Phe, TRAC/84.2 Leu-
- Example 11 describes various combinations of mutations capable of improving thermal stability and/or colloidal stability of the TCR fusion proteins in the absence of the IC Disulfide. All the stabilizing combinations identified included the TRAC Hinge Disulfide. As certain formats of TCR fusion protein may not accommodate the TRAC -Hinge Disulfide, combinations of mutations using alternative disulfide bonds were investigated to identify those capable of improving the thermal and/or colloidal stability of TCR fusion proteins.
- TCR fusion proteins were constructed that comprised replacements for the TRAC -Hinge Disulfide that mimicked an IgG4 disulfide together with combinations of stabilizing point mutations.
- the replacement disulfide consisted of TRBC/l l.CYS acting as an equivalent to the IgG4 CHI cysteine and one of TRAC/124, 125, 126, 127 or 128 acting as an equivalent to the light-chain (LC) cysteine.
- variants comprising the intrachain disulfide TRAC/39.VAL TRAC/85.ALA (see Example 9) with combinations of stabilizing point mutations, both with and without the TRAC -Hinge Disulfide (variants v33048 and v33047, respectively). These two variants acted as controls as described in more detail below.
- TCR fusion proteins comprised the TRAC/84.2 TRBC/79 disulfide. The combinations of mutations tested are shown on Table 12.1.
- TCR fusion proteins were constructed in a one-armed format with the beta chain fused to the Fc as described in Example 1. All sequences were preceded by the signal peptide: MRPTWAWWLFLVLLLALWAPARG [SEQ ID NO:22], Vector inserts were prepared and cloned into the pTT5 vector for expression as described in Example 1. [00314] The TCR fusion proteins were initially tested for expression in 0.8 mL of HEK293-6E cells as described in Example 4.
- TCR fusion proteins comprising the tested combinations were compared against variant v33048 which contains the TRAC -Hinge Disulfide.
- the expression yield for the TCR fusion proteins comprising alternative disulfide bonds was generally lower than that for variant v33048.
- the amount of HMW species observed for TCR fusion proteins comprising alternative disulfide bonds was comparable to that for variant v33048, with the amounts observed for variants v33049 and v33055 being the most similar. All other variants comprised under 15% HMW species.
- variants v33048, v33049, v33050, v33051, v33052, v33053, v33054, v33056 and v33057 showed an increase in Tm compared to variant v33047 which lacked an alternative C-terminal disulfide bond. Additionally, several of the variants comprising alternative C-terminal disulfide bonds demonstrated an increase in Tm compared to variant v33048 which comprises the TRAC -Hinge Disulfide (see variants v33050, v33053, v33054, v33056 and v33057 in Table 12.1).
- This Example describes the construction, expression and characterization of CD3- engaging bispecific TCR fusion proteins comprising an anti-CD3 scFv or Fab and one or more TCR.
- the TCR fusion proteins were expressed as heterodimers with one or two TCR components and one anti-CD3 component.
- the anti-CD3 component was either a humanized OKT3 or UCHT-1 as paratope in an scFv or a canonical Fab format (see International Patent Publication Nos. WO 2017/008169 and WO 2010/133828).
- the TCR component was either an anti-gplOO TCR or an anti-NY-ESOl 1G4-HA with substitutions in the CDRs to produce different affinities as shown in Table 13.1 (see Li etal., 2005, Nature Biotechnology, 23(3):349-354 and International Patent Publication No. WO 2011/001152).
- All TCR components comprised the following stabilizing mutations in the TCR constant domain: TRAC/4.VAL->ILE, TRAC/85.ALA->VAL, TRAC/ 105. AL A-> SER TRBC/6.VAL- >LEU, TRBC/36.HIS->PHE, TRBC/86.SER->THR, TRBC/45.3->THR, A TRBC/84.4-85.4 - >GLY-ASN, TRAC/84.2->CYS_TRBC/79.SER->CYS (disulfide) and TRAC-Hinge Disulfide.
- the TCR fusion proteins comprised a human IgGl heterodimeric Fc comprising CH3 domain amino acid substitutions promoting the formation of a heterodimeric Fc as described in Example 1. All bispecific variants included the following CH2 domain amino acid substitutions which knock out FcyR binding: L234A, L235A and D265S.
- TCR fusion protein formats were employed: One-armed beta fusion (“OA”; see Fig. 1H), Bispecific beta-fusion (“Hybrid”; see Fig. IL), 2x1 Bispecific beta-fusion (“2x1”; see Fig. 10) and Bispecific tandem beta-fusion (“1x1 Tandem”; see Fig. IN).
- Table 13.1 CDR Sequences and Affinities of Modified Anti-gplOO and Anti-NY-ESOl TCRs
- TCR fusion proteins were initially tested for expression in 0.8 mL of HEK293-6E cells as described in Example 4. Expression was confirmed by SDS-PAGE and variants with observable protein expression bands were subsequently expressed in 250 mL of HEK293-6E cells as described in Example 4. After the initial 18-22 hour incubation, the cells were incubated at 32°C and purified as described in Example 4. Amounts of HMW species were measured by UPLC-SEC as described in Example 4. Binding of the anti-gplOO TCR fusion proteins to the target peptide- MHC complex was measured by flow cytometry as described in Example 10.
- EXAMPLE 14 EFFECT OF DIFFERENT TCR GERMLINE SEQUENCES ON EXPRESSION OF TCR FUSION PROTEINS
- the top five alpha sequences were identified as TRAV19, TRAV14/DV4, TRAV17, TRAV9-2 and TRAV8-4, and the top five beta sequences were identified as TRBV28, TRBV30, TRBV19, TRBV27 and TRBV5-1.
- the natural germline sequences in the anti-gplOO TCR are TRAV17 and TRBV19.
- TCR fusion proteins comprising each combination were constructed in a one-armed format with the beta chain fused to the Fc as described in Example 1. All TCR fusion proteins contained the IC Disulfide and the TRAC -Hinge Disulfide. All sequences were preceded by the signal peptide: MRPTWAWWLFLVLLLALWAPARG [SEQ ID NO:22], Vector inserts were prepared and cloned into the pTT5 vector for expression as described in Example 1.
- TCR fusion proteins were initially tested for expression in 0.8 mL of HEK293-6E cells as described in Example 4. Expression was confirmed by SDS-PAGE and variants with observable protein expression bands were subsequently expressed in 250 mL of HEK293-6E cells as described in Example 4 but with a DNA ratio of 40:40:20 for alpha chain, beta chain-Fc(A), and Fc (B). After the initial 18-22 hour incubation, the cells were incubated at 32°C and subsequently purified and characterized by UPLC-SEC as described in Example 4 and DSC as described in Example 6.
- Variant v31131 comprises the germline sequences TRAV17 and TRBV19, which are natural to the anti-gplOO TCR and, as such, was expected to express.
- Variant v31129 comprises the germline sequences TRAV17 and TRBV28 and therefore includes the same TRAV sequence as the natural anti-gplOO TCR.
- the amount of HMW species observed for variant v31129 were slightly higher than for v31131, but the thermal stability was similar: 53.5°C vs 53.3°C. TRBV28 therefore appears to be compatible with this set of TCR CDRs and TRAV17.
- Table 14.1 suggest that the set ofCDRs from this anti-gplOO TCR are not compatible with most other germlines and that the natural germline sequences likely provide optimal stability for a given TCR sequence.
- TCR fusion proteins tested are listed in Table 15.1.
- the protein concentration of these selected stabilized TCR fusion proteins was adjusted to 1 mg/mL in PBS buffer.
- 200 ul of each variant solution were sealed in an Eppendorf tube and incubated in an incubator set at 40°C for 14 or 30 days.
- a 40 ul sample of each variant was taken at the following timepoints: 0, 3, 7, 10 and 14 days (for 14-day incubations) or 0, 5, 20 and 30 days (for 30-day incubations). Samples were immediately frozen at -80°C. At the completion of the incubation period all samples were thawed and the amount of BMW species was assessed by UPLC-SEC as described in Example 4.
- This variant comprises the TRAV17 and TRBV28 germline sequences
- the % change in each species was determined by the difference between the first measurement (Day 0) and the final measurement (Day 14 or 30) and averaged over the length of incubation. For example, a reported increase in HMW species of 0.70% is equivalent to an increase of 9.8% after a 14-day incubation.
- the TCR fusion protein containing only the IC Disulfide (v21230) showed the greatest rate of increase of HMW species (aggregation) of all variants tested.
- All TCR fusion proteins comprising combinations of stabilizing mutations showed reduced amounts of HMW species compared to variant v21230, with variants v28897, v31097 and v31099 showing a more than 10-fold decrease in the rate of formation of HMW species compared to v21230.
- EXAMPLE 16 PRODUCTION AND CHARACTERIZATION OF MULTIVALENT TCR FUSION PROTEINS
- TCR fusion proteins were constructed in the following formats:
- the antibody component in each case was an anti-CD3 Fab or scFv.
- the TCR components were wildtype 1G4-WT anti-NY-ESOl TCR (“NY-ESO1-WT”), affinity matured 1G4-33A anti-NY-ESOl TCR (“NY-ESO1-33A”) (Li, etal., 2005, Nat. Biotechnol., 23:349-354) or anti-PRAME TCR as outlined in Table 16.1. All TCR sequences contained the TRAC/84.2 TRBC/79 disulfide, TRAC/39.VAL->CYS_TRAC/85.ALA->CYS (disulfide) and the TRAC -Hinge Disulfide stabilizing mutations.
- TCR fusion proteins were initially tested for expression in 0.8 mL of HEK293-6E cells as described in Example 4. Expression was confirmed by SDS-PAGE and variants with observable protein expression bands were subsequently expressed in 250 mL of HEK293-6E cells as described in Example 4. After the initial 18-22 hour incubation, the cells were incubated at 32°C and purified as described in Example 4. Monodispersity was measured by UPLC-SEC as described in Example 4.
- TCR fusion proteins comprising the WT anti-NY-ESOl TCR, the high affinity anti-NY-ESOl TCR or the anti-PRAME TCR in a 1x1 format expressed successfully.
- TCR fusion proteins comprising up to four anti-NY-ESOl TCRs were expressed in sufficient quantities to be analyzed and subsequently purified as monodispersed samples.
- Exemplary UPLC-SEC traces for two 4x1 TCR fusion proteins, v32548 and v32549, are shown in Fig 8.
- the fusion proteins comprising anti-PRAME TCRs appeared to be generally less stable than the fusion proteins comprising anti-NY-ESOl TCRs.
- TCR fusion proteins from Example 16 that are specific for the NY-ESO1 peptide were tested for cell killing against cells having their target peptide-MHC complex in a T2 T-cell dependent cytotoxicity assay (TDCC).
- the TCR fusion proteins tested are listed in Table 17.1.
- T2 cells (ATCC CRL-1992) were cultured in RPMI1640 + 10% FBS in T75 flasks at 37°C + 5% CO2 for at least two passages before use. Cells were pulsed by resuspension in culture media with 10 pM NY-ESO-1 peptide (SLLMWITQC [SEQ ID NO:23]) and 100 ng/mL 0-2- microglobulin (Sino Biological, Beijing, China) and incubated for 24 hours at 37°C + 5% CO2. A TDCC assay was prepared in RPMI-1640 + 10% FBS + 1% Penicillin/Streptomycin assay media in 96-well U-bottom plates.
- TCR fusion proteins were prepared by serial dilutions of 1 :5 with concentration ranges of 1 pM - 0.05 pM, 60 pL/well.
- the T2 cells were stained with 2 pM carboxyfluorescein succinimidyl ester (CFSE) using the manufacturer’s protocol (ThermoFisher, Waltham, MA).
- CFSE carboxyfluorescein succinimidyl ester
- Post-staining T2 cells were resuspended in RPMI1640 + 10% FBS and mixed with freshly thawed T-cells (BioIVT, Westbury, NY) at 5: 1 ratio. The cell mixture was added at 60 pL/well and the plates were incubated at 37°C + 5% CO2 for 48 hours.
- samples were transferred to 96-well V-bottom plates and washed 2x with FACS buffer (PBS + 2% FBS).
- FACS buffer PBS + 2% FBS.
- Samples were resuspended in 2 pg/mL of 7-aminoactinomycin D (7-AAD) (BioLegend, San Diego, CA) at 50 pL/well. The plate was incubated at room temperature for 15 minutes, followed by two washes with FACS buffer. Samples were resuspended in 50 pL/well FACS buffer and the plates were analyzed by flow cytometry using a BD FortessaTM X-20 (BD Biosciences, San Jose, CA).
- the measured EC50 values are summarized in Table 17.1. See also Fig. 10.
- the TCR fusion proteins contain either the NY-ESO1-WT paratope (affinity: 32000 nM) or the NY-ESO1- 33 A paratope (affinity: 254 nM) as noted in Table 17.1.
- TCR-anti-CD3 bispecific proteins were able to selectively kill target cells displaying the desired MHC-peptide complex.
- Targeted cell killing occurred only with the bispecific molecule - the one-armed TCR molecule that lacked the anti- CD3 paratope (v31185) produced no killing effect at any observed concentration.
- This demonstrates that the multivalent format is required for cell killing. Additionally, there was about a 10-fold increase in cell killing from the IX variant to the 3X variant suggesting an avidity affect with the 3X variant providing the greatest enhancement in cell killing.
Landscapes
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Toxicology (AREA)
- Cell Biology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180086149.4A CN116648256A (en) | 2020-12-21 | 2021-12-21 | Stabilized TCR constructs and methods of use |
EP21908193.2A EP4263593A4 (en) | 2020-12-21 | 2021-12-21 | STABILIZED TCR CONSTRUCTS AND METHOD OF USE |
AU2021408160A AU2021408160A1 (en) | 2020-12-21 | 2021-12-21 | Stabilized tcr constructs and methods of use |
KR1020237020556A KR20230123474A (en) | 2020-12-21 | 2021-12-21 | Stabilized TCR constructs and methods of use |
US18/258,057 US20240409604A9 (en) | 2020-12-21 | 2021-12-21 | Stabilized tcr constructs and methods of use |
CA3167637A CA3167637A1 (en) | 2020-12-21 | 2021-12-21 | Stabilized tcr constructs and methods of use |
JP2023537488A JP2023554119A (en) | 2020-12-21 | 2021-12-21 | Stabilized TCR constructs and methods of use |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063128601P | 2020-12-21 | 2020-12-21 | |
US63/128,601 | 2020-12-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022133592A1 true WO2022133592A1 (en) | 2022-06-30 |
Family
ID=82157307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2021/051855 WO2022133592A1 (en) | 2020-12-21 | 2021-12-21 | Stabilized tcr constructs and methods of use |
Country Status (8)
Country | Link |
---|---|
US (1) | US20240409604A9 (en) |
EP (1) | EP4263593A4 (en) |
JP (1) | JP2023554119A (en) |
KR (1) | KR20230123474A (en) |
CN (1) | CN116648256A (en) |
AU (1) | AU2021408160A1 (en) |
CA (1) | CA3167637A1 (en) |
WO (1) | WO2022133592A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11859009B2 (en) | 2021-05-05 | 2024-01-02 | Immatics Biotechnologies Gmbh | Antigen binding proteins specifically binding PRAME |
US11905328B2 (en) | 2017-07-14 | 2024-02-20 | Immatics Biotechnologies Gmbh | Dual specificity polypeptide molecule |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025087436A1 (en) * | 2023-10-27 | 2025-05-01 | 北京可瑞生物科技有限公司 | T-cell receptor-based multi-specific polypeptide molecule, and composition and use thereof |
CN118108833B (en) * | 2024-03-12 | 2025-05-02 | 缇纱(合肥)生物技术有限公司 | TCR constant region introduced with exogenous disulfide bond, and product and application thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11072660B2 (en) * | 2016-10-03 | 2021-07-27 | Juno Therapeutics, Inc. | HPV-specific binding molecules |
JP7185696B2 (en) * | 2017-09-22 | 2022-12-07 | ウーシー バイオロジクス アイルランド リミテッド | Cross-reference to novel bispecific CD3/CD19 polypeptide complexes |
MA50188A (en) * | 2017-09-22 | 2021-06-02 | Wuxi Biologics Ireland Ltd | NEW BISPECIFIC POLYPEPTIDIC COMPLEXES |
WO2019070541A1 (en) * | 2017-10-03 | 2019-04-11 | Juno Therapeutics, Inc. | Hpv-specific binding molecules |
MX2020010460A (en) * | 2018-04-05 | 2021-01-29 | Juno Therapeutics Inc | T-CELL RECEPTORS, AND ENGINEERED CELLS EXPRESSING THEM. |
EP3775237A1 (en) * | 2018-04-05 | 2021-02-17 | Juno Therapeutics, Inc. | T cells expressing a recombinant receptor, related polynucleotides and methods |
-
2021
- 2021-12-21 EP EP21908193.2A patent/EP4263593A4/en active Pending
- 2021-12-21 CN CN202180086149.4A patent/CN116648256A/en active Pending
- 2021-12-21 CA CA3167637A patent/CA3167637A1/en active Pending
- 2021-12-21 WO PCT/CA2021/051855 patent/WO2022133592A1/en active Application Filing
- 2021-12-21 JP JP2023537488A patent/JP2023554119A/en active Pending
- 2021-12-21 KR KR1020237020556A patent/KR20230123474A/en active Pending
- 2021-12-21 AU AU2021408160A patent/AU2021408160A1/en active Pending
- 2021-12-21 US US18/258,057 patent/US20240409604A9/en active Pending
Non-Patent Citations (4)
Title |
---|
REITER Y ET AL.: "Construction of a functional disulfide-stabilized TCR Fv indicates that antibody and TCR Fv frameworks are very similar in structure", IMMUNITY, vol. 2, no. 3, March 1995 (1995-03-01), pages 281 - 7, XP009004075, DOI: 10.1016/1074-7613(95)90052-7 * |
SADIO F ET AL.: "Stabilization of soluble high-affinity T- cell receptor with de novo disulfide bonds", FEBS LETT, vol. 594, no. 3, 8 October 2019 (2019-10-08), pages 477 - 490, XP071256854, DOI: 10.1002/1873-3468.13616 * |
See also references of EP4263593A4 * |
WAGNER EK ET AL.: "Human cytomegalovirus-specific T- cell receptor engineered for high affinity and soluble expression using mammalian cell display", J BIOL CHEM., vol. 294, no. 15, 22 February 2019 (2019-02-22), pages 5790 - 5804, XP055731582, DOI: 10.1074/jbc.RA118.007187 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11905328B2 (en) | 2017-07-14 | 2024-02-20 | Immatics Biotechnologies Gmbh | Dual specificity polypeptide molecule |
US11859009B2 (en) | 2021-05-05 | 2024-01-02 | Immatics Biotechnologies Gmbh | Antigen binding proteins specifically binding PRAME |
Also Published As
Publication number | Publication date |
---|---|
AU2021408160A1 (en) | 2023-06-29 |
EP4263593A1 (en) | 2023-10-25 |
JP2023554119A (en) | 2023-12-26 |
CN116648256A (en) | 2023-08-25 |
CA3167637A1 (en) | 2022-06-30 |
US20240052009A1 (en) | 2024-02-15 |
EP4263593A4 (en) | 2025-05-07 |
KR20230123474A (en) | 2023-08-23 |
US20240409604A9 (en) | 2024-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7344858B2 (en) | Stabilization of Fc-containing polypeptides | |
US20240052009A1 (en) | Stabilized tcr constructs and methods of use | |
US11851466B2 (en) | Targeted IL-12 heterodimeric Fc-fusion proteins | |
AU2022203820A1 (en) | Bispecific heterodimeric fusion proteins containing IL-15/IL-15Ralpha Fc-fusion proteins and PD-1 antibody fragments | |
CA3148121A1 (en) | Materials and methods for improved single chain variable fragments | |
US20220010015A1 (en) | Antibodies binding to cd3 | |
JP2013537416A (en) | Monomer polypeptide containing mutant Fc region and method of use | |
JP2020202848A (en) | Modified antigen-binding polypeptide constructs and uses thereof | |
IL298610A (en) | Antibodies that bind to cd3- and folr1 | |
KR20220154728A (en) | Materials and methods for binding SIGLEC-3/CD33 | |
CA3149939A1 (en) | Proteins comprising t-cell receptor constant domains | |
WO2023089587A1 (en) | Compositions comprising enhanced multispecific binding agents for an immune response | |
US20240294646A1 (en) | HETERODIMERIC Fc VARIANTS SELECTIVE FOR Fc GAMMA RIIB | |
WO2024038198A1 (en) | Multi-domain binding molecules | |
CN118742566A (en) | Compositions comprising enhanced multispecific binding agents for immune response | |
CN116997362A (en) | Fusion comprising CD8 antigen binding molecules that modulate immune cell function | |
TW201249866A (en) | Antigen binding proteins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21908193 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3167637 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180086149.4 Country of ref document: CN Ref document number: 2023537488 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2021408160 Country of ref document: AU Date of ref document: 20211221 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021908193 Country of ref document: EP Effective date: 20230721 |