WO2022123060A1 - Method for driving bidirectional ac/dc converters for synchronizing ac electrical systems connected to one another by a dc link - Google Patents

Method for driving bidirectional ac/dc converters for synchronizing ac electrical systems connected to one another by a dc link Download PDF

Info

Publication number
WO2022123060A1
WO2022123060A1 PCT/EP2021/085313 EP2021085313W WO2022123060A1 WO 2022123060 A1 WO2022123060 A1 WO 2022123060A1 EP 2021085313 W EP2021085313 W EP 2021085313W WO 2022123060 A1 WO2022123060 A1 WO 2022123060A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
converter
alternating current
converters
frequency
Prior art date
Application number
PCT/EP2021/085313
Other languages
French (fr)
Inventor
Fabien BENAVENT
Original Assignee
Electricite De France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricite De France filed Critical Electricite De France
Publication of WO2022123060A1 publication Critical patent/WO2022123060A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the present invention relates to the field of electrical systems and the stabilization and frequency behavior of alternating current (AC) electrical systems interconnected by direct current lines. These systems comprise, for their connection with the direct current lines, bidirectional alternating current/direct current (AC/DC) conversion stations of the voltage source converter (VSC) type on the alternating current system side.
  • AC/DC bidirectional alternating current/direct current
  • direct current lines are mainly high voltage direct current lines (HVDC for high voltage direct current in English).
  • the invention relates more particularly to alternating current electrical systems (AC for "alternating current” in English) interconnected by links of the high voltage direct current type (HVDC for "high voltage direct current” in English) and comprising alternative/direct AC/DC conversion stations of the voltage source converter type (VSC Voltage Source Converter in English).
  • AC alternating current electrical systems
  • HVDC high voltage direct current type
  • VSC Voltage Source Converter
  • HVDC VSC links are lines with a voltage greater than 1500 volts direct current. Such lines are historically controlled in "grid feeding / grid following" current source mode, i.e. the converter stations are controlled on the alternating current side with an internal current regulation loop and external active and reactive power regulation as well as a phase lock loop (PLL). These converter stations require the presence of production groups regulating the amplitude and frequency of the voltage in each alternating current system so that they can synchronize with it.
  • PLL phase lock loop
  • HVDC links in grid feeding/grid following mode can offer system services (contracted functions such as frequency adjustment and voltage adjustment of alternating current systems) similar to energy storage battery systems ( BESS (Battery Energy Storage System) driven in current source mode such as fast frequency adjustment through the modulation of their active power injection or voltage adjustment through the modulation of their reactive power injection.
  • BESS Battery Energy Storage System
  • HDVC links require a minimum short-circuit ratio (SCR) (this ratio corresponds to a quantification of the proximity of the connected generators and the difficulty of synchronization) in each system in alternating current to operate stably.
  • SCR short-circuit ratio
  • system services related to frequency adjustment that such a link can convey do not offer the same level of performance and therefore the same operating reliability as an alternating current interconnection directly connecting two alternating current electrical systems (systems AC). It is for example not possible to benefit from an inertial response (or inertia), which is instantaneous, or from a direct release of the reserve of the system located on a first side of the HVDC link for the primary adjustment of frequency of the AC system on the second side of the HVDC link.
  • inertial response or inertia
  • the document US2020/335975 A1 relates to a device for adjusting the voltage level of a modular multi-level converter (MMC) to reduce the frequency fluctuation in a power network for which the output level of the MMC converter is adjusted in response to a frequency change in the power network.
  • MMC modular multi-level converter
  • This device does not seek to pass on variations of the direct current voltage of a converter, line side to direct current, on the frequency of the alternating voltage at the output of this converter on the system side to alternating current.
  • the present invention relates in particular to a method for decentralized control of converter stations making it possible to make the various alternating current electrical systems interconnected by direct current links such as HVDC VSC links synchronous in order to to improve the stability and frequency behavior of said alternating current electrical systems.
  • the present invention thus relates more particularly to a method for controlling bidirectional alternating current/direct current converters, substations connecting a first alternating current system provided with at least one first alternating current generator and/or at least a first load, to at least one second alternating current system, comprising at least one second alternating current generator and/or at least one second load, through a direct current line, for which the control of each of said converters is carried out in voltage source mode (in English grid forming), with an algorithm for vector control of the amplitude and the angle of the alternating voltage of each converter, on the alternating current system side, and comprises a control function F of said converters, or control rule, of the active power load sharing type between each substation of the direct current line and its system e to alternating current, said function providing a frequency of said alternating voltage used by said vector control of said converters for calculating said angle of said alternating voltage.
  • the control function allows, unlike the systems of the prior art, voltage and frequency regulation of the systems connected by the direct current line through this direct current line.
  • said control function F is such that the electrical frequency f vsc . of said alternating voltage at the output of a said converter /, on the alternating current system side, is a function of the direct voltage U DCvsc at the output of said converter /, on the side direct current line, so that variations in the direct current voltage at the output of said converter /, on the direct current line side, are reflected in the frequency of the alternating voltage at the output of this converter, on the alternating current system side.
  • the vector control algorithm may comprise an alternating voltage regulation with alternating current loop provided with a function of limiting the alternating current to a limit value. This allows the converter to operate as a voltage source while protecting it in the event of excessive current inrush.
  • the vector control algorithm can be a virtual synchronous machine type algorithm, said control function F modulating the electrical frequency of the bidirectional converters on the alternating current side. This amounts to having the control function superimposed on the vector control to carry out a transfer of power through the direct current line.
  • control function F is a function linking the frequency of the current alternating current f vsc . at the current DC voltage U DCvsc of the form:
  • the adjustment gain can be directly implemented at the level of local computers controlling said converters.
  • Said adjustment gain can also be set at the level of a computer remote from a control center controlling said substations and transmitted to the bidirectional converters of said substations through a computer network connecting said remote computer to local computers controlling said converters according to operating parameters of the systems connected to said substations.
  • control of the power transit in said direct current line can be carried out at the level of the means of production and storage of each of the alternating current systems interconnected via their conventional regulations of active power and of frequency so that the implementation of said method does not require modification of the active power regulation and of the primary frequency adjustment regulation of said production and storage means.
  • the direct current line is advantageously a line of the HDVC (high voltage direct current link) type connecting at least two alternating current electrical systems.
  • the invention further relates to a computer program comprising instructions for implementing the method of the invention when this program is executed by a processor.
  • the invention further relates to a non-transitory recording medium readable by a computer on which is recorded a program for the implementation of the method of the invention when this program is executed by a processor.
  • the invention further relates to a mixed alternating current / direct current electrical network comprising at least one HVDC line (high voltage direct current link) connecting at least two alternating current systems through converter stations provided with bidirectional converters alternating current/direct current, for which the converters of said converter stations are controlled according to the method of the invention.
  • HVDC line high voltage direct current link
  • FIG. 1 shows a simplified diagram of an HDVC link and its converters according to the prior art.
  • FIG. 2 shows a simplified diagram of an HDVC link and its converters according to the invention.
  • FIG. 3 shows a simplified diagram of a case study for the invention.
  • FIG. 4 shows a model of a network with two alternating current systems connected by a serial link
  • FIG. 5 shows a DC line voltage curve
  • FIG. 6 shows an active power sharing curve
  • FIG. 7 shows a frequency curve of a first system
  • FIG. 8 shows an active power sharing curve of the first system
  • FIG. 9 shows a DC line voltage curve
  • FIG. 10 shows a frequency curve of the second system
  • FIG. 11 shows an active power sharing curve of the first system
  • FIG. 12 shows a frequency curve of the second system
  • FIG. 13 shows a frequency curve of the first system
  • FIG. 14 shows an active power sharing curve of the first system
  • FIG. 15 shows a DC line voltage curve
  • FIG. 16 shows a frequency curve of the second system
  • FIG. 17 shows an active power sharing curve of the second system.
  • Figure 1 shows a traditional schematic example of an HDVC link 1 and bidirectional converters 2a, 2b of substations at its ends between alternating current systems S1 and S2.
  • the converters comprise an input transformer 3a, 3b receiving an alternating voltage U1, U2, an alternating current filter 5a, 5b and a choke 6a, 6b, as well as a bidirectional conversion module 4a, 4b.
  • Each converter is controlled by a local computer 7a, 7b.
  • the converters include a DC bus with capacitors 61a, 61b, 62a, 62b which regulate the DC line voltage and act as a power buffer.
  • the computers control the converters in GFE current source mode ("grid feeding” in English) or control one converter in GFE current source mode and the other in GFO voltage source mode (" grid forming” in English).
  • FIG. 2 represents a simplified example of an HDVC link and of converters according to the invention where the computers 71a, 71b drive the converters in GFO voltage source mode with a regulation function as will be described below.
  • FIG. 3 are represented simplified systems AC1 and AC2 each comprising a generator and a load and connected to the ends of a direct current line HDVC 1 .
  • a first system AC1 comprises a generator G1 10a of the rotating machine or energy source type with a converter in GFO voltage source mode, for example of the virtual rotating machine type, a load L1 11 has inductive links X Gi 12a and Xvsci 13a representing connection lines and the VSC1 converter 2a.
  • a second AC2 system comprises a generator unit G2 10a of the rotating machine or energy source type with a converter in GFO voltage source mode, for example of the virtual rotating machine type, a load L2 11a, inductive links X G 2 12b and Xvs ⁇ 13b and the VSC2 2a converter.
  • Each bidirectional converter is controlled by a vector control of the alternating voltage of these converters but, in the context of the invention, the converter is controlled in GFO voltage source mode and a function F, for controlling the converter linking the electrical frequency fvsa of the alternating current of said alternating current system side converter at a voltage Uocvs (here fvsci function of UDCI and fvs > function of UDCS) of said HDVC line side converter is implemented as an overlay of said vector control. Therefore, the electrical frequency of said alternating current on the alternating current system side is related to the variations of the direct current voltage at the level of the direct current side output of the corresponding converter.
  • fvscm, Uocvscm and Kvsa respectively the nominal frequency, the nominal DC voltage and the algorithm adjustment gain for each converter station.
  • a - Event no. 1 modification of the power setpoints of G1 and G2.
  • the active power setpoint of the generator group G1 is increased by a value P cons and the active power of the generator group G2 is reduced by this same value.
  • the setpoint increase of G1 induces an increase in its real or virtual mechanical power via the process of controlling the primary source of the generator set G1 while the setpoint decrease in G2 induces a decrease in its real or virtual mechanical power. virtual through the process of controlling the primary source of the group G2
  • Pref P 0 ⁇ Kàf then allows the global system to stabilize.
  • the event is for example a decoupling of G1 in the event of export from system n°1 to system n°2.
  • the first step is a modification of the active power sharing in the first system.
  • the G1 group is no longer connected to the network and the L1 load remains generally constant, all of this load is instantly taken over by the VSC1 station.
  • the expression for the active power of the station VSC1 on the alternating current side can be reduced by the equation Math. 9 above to the simplified expression below:
  • the second step is a modification of the power transit on the HVDC link.
  • the power variation of the VSC1 station is supplied in the first moments by its reserve of electrostatic energy, the capacitors 61 a, 52a of figure 1 which causes a rapid drop in the voltage UDCI:
  • the third step is stabilization of the complete system at the new operating point.
  • VSC2 station load sharing algorithm corresponding to the present invention will then pass on this drop to its electrical frequency:
  • Case study no. 1 conventional AC systems - each system is supplied by a conventional production group.
  • Case study no. 2 100% power electronic AC systems: each system is powered by a BESS-type source.
  • Case study no. 3 100% power electronic AC systems operating with two different nominal frequencies: each system is powered by a BESS-type source, system no. 1 has a nominal frequency of 50 Hz while system n°2 has a nominal frequency of 60 Hz.
  • the alternating current systems AC1 and AC2 each comprise a generator 211, 212, a first medium voltage alternating current line 221, 222 a medium voltage to high voltage transformer 231, 232, a high voltage line 241, 242 supplying a load 251, 252, a high voltage transformer 261, 262 a high voltage line 271, 272 connecting with a bidirectional AC/DC converter of a converter station 281, 282 and are connected together by the HDVC line 30 between the converter stations.
  • Capacitors 291, 292 are connected to both ends of the HDVC line.
  • the AC lines 221 and 222 are 33 kV lines with a resistance of 0.047 Ohm for 1 km, an inductance of 0.34 mH for 1 km and a capacitance of 0.3 pF for 1 km.
  • the AC lines 241 and 242 are 150 kV lines with a resistance of 0.06 Ohm for 1 km, an inductance of 0.44 mH for 1 km and a capacitance of 0.14 pF for 1 km.
  • the transformers 231 and 232 are 33/150 kV transformers with, at the high voltage level, a resistance of 0.79 Ohm and an inductance of 42.13 mH.
  • the production groups 211 and 212 are identical and have a nominal apparent power of 100 MVA and an inertia constant of 5s.
  • the converter stations are modeled using the import convention.
  • the loads L1 and L2 are modeled in the form of constant powers.
  • the continuous line is a line of ⁇ 150 kV with a resistance of 0.019 Ohm per km and an inductance of 0.1 pH per km.
  • the transformers 261, 262 are 150/110 kV transformers with a high voltage level with a resistance of 0.241 Ohm, an inductance of 76.74 mH.
  • the capacitors 291, 292 are 400 pF capacitors.
  • the coefficient K will be calculated according to the acceptable deviation of the voltage of the HVDC line and an acceptable deviation in frequency in the event of a dimensioning incident.
  • the maximum frequency deviation and the maximum voltage deviation depend on the grid policy and the dimensioning incident. For example, 200 mHz/30 kV is chosen here. This coefficient can be adapted as needed.
  • the simulation performed includes the following events:
  • a new sharing of the active power of the load L1 251 in the system AC1 is first observed. This new sharing translates for the VSC1 281 converter station into an instantaneous reduction in its export. Before the import of the VSC2 282 converter station decreases, the decrease in the export of VSC1 is first of all fully compensated by the equivalent capacitor Cdc1 291 then shared between the capacitors Cdc1 291 and Cdc2 292. The discharge in electrostatic energy of the capacitors Cdc1 and Cdc2 leads to a drop in the DC voltages of the converter stations VSC1 and VSC2 as shown in figure 5.
  • the conversion station load sharing algorithm transfers these DC voltage drops to the frequencies of the converters of the VSC 1281 and VSC 2282 converter stations.
  • the fall in the frequency of the converter of the station VSC2 281 leads to a progressive reduction in the angle of the voltage of the converter of the converter station VSC2 282 compared to the angle of the voltage of the generator G2 212 as well as a progressive increase in the power supplied by generator G2 thanks to the phenomenon of synchronizing power as represented in FIG. 6 representing the powers at the level of VSC2 and of G2.
  • the frequencies of the generators G1 and G2 and of the stations VSC1 and VSC2 are then stabilized by the primary frequency adjustment algorithm of the generators G1 and G2.
  • the active power setpoint step of G1 results in a gradual increase in its frequency up to about 32 seconds via the action of its turbine regulation and its equation of the rotating masses.
  • This frequency modification will lead to a gradual increase in the angle of the voltage of G1 211 with respect to the converter station VSC1 281 and thus respectively increase the active power supplied by G1 and exported by the converter station VSC1 as represented in figure 8.
  • the increase in the HVDC voltage of the VSC2 station will also increase its electrical frequency thanks to its active power sharing algorithm and thus gradually increase the angle of its voltage compared to the angle of the voltage of the generator G2 and thus increase the import of the VSC 2 station while reducing the active power supplied by G2.
  • the active power enabling station VSC1 to supply L1 is initially supplied by capacitor Cdc 1 then shared between Cdc 1 and Cdc 2, which causes a drop in the HVDC voltages of stations VSC1 and VSC2.
  • the load sharing algorithm of the VSC2 station affects its HVDC voltage drop on its frequency and this frequency drop gradually causes a drop in the angle of the voltage of VSC2 with respect to the angle of the voltage of G2 as well as a gradual recovery of the active power of the station VSC2 by G2.
  • the primary frequency adjustment algorithm of G2 alone makes it possible to stabilize the frequencies of the AC2 system as represented in FIG. 12 as well as of the AC1 system as represented in FIG. 13.
  • the AC1 system is then regulated in voltage and frequency only by the VSC1 station since G1 is disconnected from the AC1 system which no longer has a local energy source.
  • the groups G1 and G2 are replaced by battery energy storage systems (BESS for BATTERY ENERGY STORAGE SYSTEM in English) in grid forming mode with an active power sharing algorithm of droop control type following:
  • f n (Hz) the nominal frequency of each battery storage system
  • Pref (MW) the active power setpoint of each battery storage system
  • Kf P (Hz/MW) the adjustment gain of the active power sharing algorithm which has been set at 0.01 Hz/MW.
  • UGI U Glref ;
  • U G2 U G2ref ;
  • the conversion station load sharing algorithm transfers these DC voltage drops to the frequencies of the VSC 1 and VSC 2 converters.
  • the frequencies of the BESS1 and BESS2 and of the stations VSC1 and VSC2 are stabilized by the active power sharing algorithm of the BESS1 and BESS2 which are equivalent in steady state to the primary frequency setting of the groups G1 and G2.
  • the active power setpoint step of the BESS1 is translated simultaneously into a step of its frequency by the action of its active power sharing algorithm.
  • This frequency modification will lead to a gradual increase in the angle of the voltage of the BESS1 with respect to the converter station VSC1 as well as an increase in the active power supplied by the BESS1 and exported by the station VSC1.
  • the HVDC capacitors which will compensate for the production-consumption imbalance of the AC1 system by charging, which will increase the HVDC voltages of the VSC1 and VSC2 stations.
  • the increase in the HVDC voltage of the VSC2 station will also increase its electrical frequency thanks to its active power sharing algorithm and thus gradually increase the angle of its voltage compared to the angle of the voltage of the BESS2 as well as the import of the VSC2 station while reducing the active power supplied by the BESS2.
  • the disconnection of the BESS 1 leads to a complete and instantaneous resumption of the supply of the load L1 by the station VSC1 which was initially exporting.
  • the power enabling station VSC1 to supply L1 is initially supplied by capacitor Cdc 1 then shared between Cdc 1 and Cdc 2, which causes a drop in the HVDC voltages of stations VSC1 and VSC2.
  • the VSC2 station load sharing algorithm affects its HVDC voltage drop on its frequency as shown in Figure 16. This frequency drop gradually causes a drop in the voltage angle of VSC2 with respect to -vis the angle of the voltage of the BESS 2 which leads to a gradual increase in the active power of the BESS 2 as shown in figure 17.
  • the BESS 2 load sharing algorithm alone makes it possible to stabilize the frequencies of the AC2 system as well as of the AC1 system (defined exclusively by the VSC1 station) which no longer has a local energy source.
  • the present case study no. 3 is identical in all respects to case study no. 2 except that the nominal frequency of the BESS2 and of the VSC station 2 is 60 Hz.
  • the behavior of the system global is also identical to case study 2 with slight time differences related to the change in the nominal frequency of the AC2 system. There is therefore also synchronization of the systems in terms of power sharing despite the different frequencies.
  • the present invention makes several AC electrical systems interconnected by HVDC VSC links synchronous.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

A method for driving bidirectional AC/DC converters (2a, 2b) of substations linking a first AC system, provided with at least one first AC generator (10a) and/or at least one first load (11a), to at least one second AC system, comprising at least one second AC generator (10b) and/or at least one second load (11b), through a DC line (1), characterized in that each of said converters (2a, 2b) is controlled in voltage source (or grid forming) mode, with a vector control algorithm for controlling the amplitude and the angle of the AC voltage of the converter, on the AC system side; and comprises a function F for driving said converters, of the type balancing the load in terms of active power between each substation of the DC line and its AC system, said function providing a frequency of said AC voltage that is used by said vector control of each of said converters to calculate said angle of said AC voltage.

Description

Description Description
Titre : PROCEDE DE PILOTAGE DE CONVERTISSEURS BIDIRECTIONNELS COURANT ALTERNATIF/COURANT CONTINU POUR LA SYNCHRONISATION DE SYSTEMES ELECTRIQUES A COURANT ALTERNATIF RACCORDES ENTRE EUX PAR LIAISON A COURANT CONTINUE Title: METHOD FOR CONTROLLING BIDIRECTIONAL ALTERNATING CURRENT / DIRECT CURRENT CONVERTERS FOR THE SYNCHRONIZATION OF ALTERNATING CURRENT ELECTRICAL SYSTEMS CONNECTED TOGETHER BY A DIRECT CURRENT LINK
Domaine technique Technical area
[0001] La présente invention relève du domaine des systèmes électriques et de la stabilisation et de la tenue en fréquence des systèmes électriques à courant alternatifs (AC) interconnectés par des lignes à courant continu. Ces systèmes comportent, pour leur raccordement avec les lignes à courant continu, des stations de conversion courant alternatif/courant continu (AC/DC) bidirectionnelles de type convertisseur source de tension (VSC pour Voltage Source Converter en anglais) côté système à courant alternatif. The present invention relates to the field of electrical systems and the stabilization and frequency behavior of alternating current (AC) electrical systems interconnected by direct current lines. These systems comprise, for their connection with the direct current lines, bidirectional alternating current/direct current (AC/DC) conversion stations of the voltage source converter (VSC) type on the alternating current system side.
[0002] Dans le cadre des réseaux électriques, les lignes à courant continu sont principalement des lignes haute tension courant continu (HVDC pour high voltage direct current en anglais). In the context of electrical networks, direct current lines are mainly high voltage direct current lines (HVDC for high voltage direct current in English).
[0003] L’invention concerne plus particulièrement les systèmes électriques à courant alternatif (AC pour « alternating current » en anglais) interconnectés par des liaisons de type haute tension courant continu (HVDC pour « high voltage direct current » en anglais) et comportant des stations de conversion aternatif/continu AC/DC de type convertisseur source de tension (VSC Voltage Source Converter en anglais). The invention relates more particularly to alternating current electrical systems (AC for "alternating current" in English) interconnected by links of the high voltage direct current type (HVDC for "high voltage direct current" in English) and comprising alternative/direct AC/DC conversion stations of the voltage source converter type (VSC Voltage Source Converter in English).
Technique antérieure Prior technique
[0004] Les liaisons HVDC VSC sont des lignes d’une tension supérieure à 1500 volts en courant continu. De telles lignes sont historiquement pilotées en mode source de courant « grid feeding / grid following en anglais », c’est-à-dire que les stations de conversion sont pilotées côté courant alternatif avec une boucle de régulation interne de courant et des boucles de régulation externes de puissance active et réactive ainsi qu’une boucle à verrouillage de phase (PLL pour « phase lock loop » en anglais). Ces stations de conversion nécessitent la présence de groupes de production régulant l’amplitude et la fréquence de la tension dans chaque système courant alternatif afin qu’elles puissent s’y synchroniser. [0004] HVDC VSC links are lines with a voltage greater than 1500 volts direct current. Such lines are historically controlled in "grid feeding / grid following" current source mode, i.e. the converter stations are controlled on the alternating current side with an internal current regulation loop and external active and reactive power regulation as well as a phase lock loop (PLL). These converter stations require the presence of production groups regulating the amplitude and frequency of the voltage in each alternating current system so that they can synchronize with it.
[0005] Si l’on prend l’exemple d’une liaison HVDC simple selon la figure 1 qui comporte une ligne continue 1 entre une première station de conversion pourvue d’un convertisseur 2a et une seconde station de conversion pourvue d’un second convertisseur 2b, une des deux stations de conversion pilote le flux de puissance active dans la liaison tandis que la seconde station de conversion équilibre sa tension HVDC afin de stabiliser le flux de puissance active dans la liaison comme décrit dans le document Cuiqing Du, Ambra Sannino and Math H. J. Bollen, “Analysis of the Control Algorithms of Voltage-Source Converter HVDC”, IEEE, 2005 DOI: 10.1109/PTC.2005.4524566. If we take the example of a simple HVDC link according to Figure 1 which comprises a continuous line 1 between a first converter station provided with a converter 2a and a second converter station provided with a second converter 2b, one of the two converter stations controls the flow of active power in the link while the second converter station balances its HVDC voltage in order to stabilize the flow of active power in the link as described in Cuiqing Du, Ambra Sannino and Math HJ Bollen, “Analysis of the Control Algorithms of Voltage-Source Converter HVDC”, IEEE, 2005 DOI: 10.1109/PTC.2005.4524566.
[0006] Les liaisons HVDC en mode grid feeding / grid following peuvent offrir des services système (fonctions contractualisées comme le réglage de la fréquence et le réglage de la tension des systèmes en courant alternatif) similaires aux systèmes à batteries de stockage d’énergie (BESS pour Battery Energy Storage System en anglais) pilotés en mode source de courant tels que le réglage rapide de fréquence au travers de la modulation de leur injection de puissance active ou le réglage de tension au travers de la modulation de leur injection de puissance réactive. [0006] HVDC links in grid feeding/grid following mode can offer system services (contracted functions such as frequency adjustment and voltage adjustment of alternating current systems) similar to energy storage battery systems ( BESS (Battery Energy Storage System) driven in current source mode such as fast frequency adjustment through the modulation of their active power injection or voltage adjustment through the modulation of their reactive power injection.
[0007] Néanmoins, comme décrit dans le document Jenny Z. Zhou, Hui Ding, Shengtao Fan, Yi Zhang and Aniruddha M. Gole, “Impact of Short-Circuit Ratio and Phase-Locked- Loop Parameters on the Small-Signal Behavior of a VSC-HVDC Converter”, IEEE Transactions on Power Delivery, vol. 29, n° 5, 2014, les liaisons HDVC nécessitent un rapport de court-circuit (SCR pour short-circuit ratio) minimum (ce rapport correspond à une quantification de la proximité des générateurs raccordés et la difficulté de synchronisation) dans chaque système en courant alternatif pour pouvoir fonctionner de façon stable. De même, les services système liés au réglage de fréquence que peut faire transiter une telle liaison n’offrent pas le même niveau de performance et donc la même sûreté de fonctionnement qu’une interconnexion en courant alternatif connectant directement deux systèmes électriques courant alternatif (systèmes AC). Il n’est par exemple pas possible de bénéficier d’une réponse inertielle (ou inertie), qui est instantanée, ou d’une libération directe de la réserve du système situé d’un premier côté de la liaison HVDC pour le réglage primaire de fréquence du système AC du second côté de la liaison HVDC. [0007] Nevertheless, as described in the document Jenny Z. Zhou, Hui Ding, Shengtao Fan, Yi Zhang and Aniruddha M. Gole, “Impact of Short-Circuit Ratio and Phase-Locked-Loop Parameters on the Small-Signal Behavior of a VSC-HVDC Converter”, IEEE Transactions on Power Delivery, vol. 29, No. 5, 2014, HDVC links require a minimum short-circuit ratio (SCR) (this ratio corresponds to a quantification of the proximity of the connected generators and the difficulty of synchronization) in each system in alternating current to operate stably. Similarly, the system services related to frequency adjustment that such a link can convey do not offer the same level of performance and therefore the same operating reliability as an alternating current interconnection directly connecting two alternating current electrical systems (systems AC). It is for example not possible to benefit from an inertial response (or inertia), which is instantaneous, or from a direct release of the reserve of the system located on a first side of the HVDC link for the primary adjustment of frequency of the AC system on the second side of the HVDC link.
[0008] Le document J. Rocabert, A. Luna, F. Blaabjerg and P. Rodriguez, “Control of power converters in AC microgrids”, IEEE Transactions on Power Electronics, vol. 27, n°11 , 2012 décrit pour sa part un fonctionnement des convertisseurs statiques dont font partie les stations de conversion HVDC pilotées en mode source de tension « grid forming en anglais ». Les principaux avantages du mode grid forming pour une station de conversion HVDC sont de supprimer la limite SCR présente en mode grid feeding ainsi que de permettre d’injecter ou absorber instantanément de la puissance active comme le font les systèmes de stockage par batteries en anglais « Battery Energy Storage System » (BESS) en mode grid forming. [0009] Différentes stratégies d’algorithmes de partage de la charge des stations de conversion HVDC sont proposées dans les documents Ebrahim Rokrok, Taoufik Qoria, Antoine Bruyere, Bruno Francois, Xavier Guillaud, “Classification and Dynamic Assessment of Droop-Based Grid-Forming Control Schemes: Application in HVDC Systems”, 21st Power Systems Computation Conference, 2020 et Bin Peng, Xin Yin, John Shen, Jun Wang, “Application of Virtual Synchronization Control Strategy in MMC based VSC-HVDC System”, IEEE Transactions on Power Delivery, vol. 29, n° 5, 2014 sans pour autant prendre en compte le fonctionnement complet des liaisons HVDC. [0008] The document J. Rocabert, A. Luna, F. Blaabjerg and P. Rodriguez, “Control of power converters in AC microgrids”, IEEE Transactions on Power Electronics, vol. 27, No. 11, 2012 describes for its part an operation of the static converters of which the HVDC converter stations controlled in “grid forming” voltage source mode form part. The main advantages of grid forming mode for an HVDC converter station are to eliminate the SCR limit present in grid feeding mode as well as to allow instantaneous injection or absorption of active power as battery storage systems do in English. Battery Energy Storage System” (BESS) in grid forming mode. [0009] Different algorithm strategies for sharing the load of HVDC converter stations are proposed in the documents Ebrahim Rokrok, Taoufik Qoria, Antoine Bruyere, Bruno Francois, Xavier Guillaud, “Classification and Dynamic Assessment of Droop-Based Grid-Forming Control Schemes: Application in HVDC Systems”, 21st Power Systems Computation Conference, 2020 and Bin Peng, Xin Yin, John Shen, Jun Wang, “Application of Virtual Synchronization Control Strategy in MMC based VSC-HVDC System”, IEEE Transactions on Power Delivery , flight. 29, n° 5, 2014 without however taking into account the complete operation of the HVDC links.
[0010] Le document Muhammad Raza, Monica Aragüés Penalba, Oriol Gomis-Bellmunt, “Short circuit analysis of an offshore AC network having multiple grid”, Elsevier, Electrical Power and Energy Systems 102, 2018 quant à lui considère bien les liaisons HVDC dans leur ensemble mais prévoit seulement le pilotage en mode grid forming de la station de conversion de l’un des systèmes AC qu’elles interconnectent tandis que la station de conversion du second système AC interconnecté ou les stations de conversion des autres systèmes AC interconnectés sont pilotées en mode grid feeding. [0010] The document Muhammad Raza, Monica Aragüés Penalba, Oriol Gomis-Bellmunt, “Short circuit analysis of an offshore AC network having multiple grid”, Elsevier, Electrical Power and Energy Systems 102, 2018 considers the HVDC connections in as a whole but only provides for the control in grid forming mode of the converter station of one of the AC systems that they interconnect while the converter station of the second interconnected AC system or the converter stations of the other interconnected AC systems are controlled in grid-feeding mode.
[0011] Ces documents s’appuient sur un fonctionnement classique d’une liaison HVDC dans lequel une des deux stations de conversion pilote le flux de puissance active dans la liaison tandis que la seconde station de conversion équilibre la tension HVDC afin de stabiliser le flux de puissance active dans la liaison. [0011] These documents are based on a conventional operation of an HVDC link in which one of the two converter stations controls the flow of active power in the link while the second converter station balances the HVDC voltage in order to stabilize the flow. of active power in the link.
[0012] Le document US2020/335975 A1 concerne un dispositif d’ajustement de niveau de tension d’un convertisseur multi-niveaux modulaire (MMC) pour réduire la fluctuation de fréquence dans un réseau de puissance pour lequel le niveau de sortie du convertisseur MMC est ajusté en réponse à un changement de fréquence dans le réseau de puissance. Ce dispositif ne cherche pas à répercuter des variations de la tension continue d’un convertisseur, côté ligne en courant continu, sur la fréquence de la tension alternative en sortie de ce convertisseur côté système à courant alternatif. [0012] The document US2020/335975 A1 relates to a device for adjusting the voltage level of a modular multi-level converter (MMC) to reduce the frequency fluctuation in a power network for which the output level of the MMC converter is adjusted in response to a frequency change in the power network. This device does not seek to pass on variations of the direct current voltage of a converter, line side to direct current, on the frequency of the alternating voltage at the output of this converter on the system side to alternating current.
[0013] En conclusion il n’est pas prévu dans les systèmes actuels à liaison HDVC VSC de rendre synchrones les systèmes qu’elles interconnectent ce qui ne permet pas de faire bénéficier chaque réseau courant alternatif des capacités en inertie et en régulation de fréquence de l’autre ou des autres réseaux courant alternatif. Il n’est ainsi pas prévu de synchroniser deux systèmes à courant alternatif par une fonction F de pilotage de convertisseurs disposés dans des sous stations de part et d’autre d’une ligne à courant continu. [0013] In conclusion, current systems with an HDVC VSC link are not intended to make the systems they interconnect synchronous, which does not allow each alternating current network to benefit from the inertia and frequency regulation capacities of the other or other alternating current networks. There is therefore no provision for synchronizing two alternating current systems by a function F for controlling converters arranged in substations on either side of a direct current line.
Résumé [0014] Au vu de ce qui précède, la présente invention porte en particulier sur un procédé de pilotage décentralisé des stations de conversion permettant de rendre synchrones les différents systèmes électriques à courant alternatif interconnectés par des liaisons à courant continu comme des liaisons HVDC VSC afin d’améliorer la stabilité et tenue en fréquence desdits systèmes électriques à courant alternatif. Summary In view of the foregoing, the present invention relates in particular to a method for decentralized control of converter stations making it possible to make the various alternating current electrical systems interconnected by direct current links such as HVDC VSC links synchronous in order to to improve the stability and frequency behavior of said alternating current electrical systems.
[0015] Dans le contexte de la présente invention, la notion de synchronisme entre les systèmes à courant alternatif est définie par la capacité de chaque système courant alternatif à : In the context of the present invention, the notion of synchronism between alternating current systems is defined by the capacity of each alternating current system to:
- Participer à la correction des déséquilibres production/consommation des autres systèmes à courant alternatif sans retard lié aux temps de réponse des boucles de régulation et aux temps d’acquisition des différentes mesures. - Participate in the correction of production/consumption imbalances of other alternating current systems without delay linked to the response times of the regulation loops and the acquisition times of the various measurements.
- Stabiliser ses propres déséquilibres production/consommation et donc sa fréquence électrique en utilisant de façon indistincte sa propre réserve primaire pour le réglage de sa fréquence ainsi que les réserves primaires des autres systèmes électriques courant alternatif. - Stabilize its own production/consumption imbalances and therefore its electrical frequency by indiscriminately using its own primary reserve to adjust its frequency as well as the primary reserves of other alternating current electrical systems.
[0016] La présente invention concerne ainsi plus particulièrement un procédé de pilotage de convertisseurs bidirectionnels courant alternatif/courant continu, de sous-stations reliant un premier système à courant alternatif pourvu d’au moins un premier générateur de courant alternatif et/ou au moins une première charge, à au moins un second système à courant alternatif, comportant au moins un second générateur de courant alternatif et/ou au moins une seconde charge, au travers d’une ligne en courant continu, pour lequel la commande de chacun desdits convertisseurs est réalisée en mode source de tension (en anglais grid forming), avec un algorithme de commande vectorielle de l’amplitude et de l’angle de la tension alternative de chaque convertisseur, côté système en courant alternatif, et comporte une fonction F de pilotage desdits convertisseurs, ou règle de contrôle, du type partage de la charge en puissance active entre chaque sous-station de la ligne en courant continu et son système à courant alternatif, ladite fonction fournissant une fréquence de ladite tension alternative exploitée par ladite commande vectorielle desdits convertisseurs pour le calcul dudit angle de ladite tension alternative. The present invention thus relates more particularly to a method for controlling bidirectional alternating current/direct current converters, substations connecting a first alternating current system provided with at least one first alternating current generator and/or at least a first load, to at least one second alternating current system, comprising at least one second alternating current generator and/or at least one second load, through a direct current line, for which the control of each of said converters is carried out in voltage source mode (in English grid forming), with an algorithm for vector control of the amplitude and the angle of the alternating voltage of each converter, on the alternating current system side, and comprises a control function F of said converters, or control rule, of the active power load sharing type between each substation of the direct current line and its system e to alternating current, said function providing a frequency of said alternating voltage used by said vector control of said converters for calculating said angle of said alternating voltage.
[0017] La fonction de pilotage permet, contrairement aux systèmes de l’art antérieur, une régulation de tension et de fréquence des systèmes reliés par la ligne à courant continu au travers de cette ligne à courant continu. The control function allows, unlike the systems of the prior art, voltage and frequency regulation of the systems connected by the direct current line through this direct current line.
[0018] Préférablement, ladite fonction F de pilotage est telle que la fréquence électrique fvsc. de ladite tension alternative en sortie d’un dit convertisseur /, côté système à courant alternatif, est fonction de la tension continue UDCvsc en sortie dudit convertisseur /, côté ligne en courant continu, de sorte que des variations de la tension continue en sortie dudit convertisseur /, côté ligne en courant continu, soient répercutées sur la fréquence de la tension alternative en sortie de ce convertisseur, côté système à courant alternatif. Preferably, said control function F is such that the electrical frequency f vsc . of said alternating voltage at the output of a said converter /, on the alternating current system side, is a function of the direct voltage U DCvsc at the output of said converter /, on the side direct current line, so that variations in the direct current voltage at the output of said converter /, on the direct current line side, are reflected in the frequency of the alternating voltage at the output of this converter, on the alternating current system side.
[0019] L’algorithme de commande vectorielle peut comporter une régulation de tension alternative avec boucle de courant alternatif pourvue d’une fonction de limitation du courant alternatif à une valeur limite. Ceci permet au convertisseur de fonctionner en source de tension tout en le protégeant en cas d’appel de courant trop important. [0019] The vector control algorithm may comprise an alternating voltage regulation with alternating current loop provided with a function of limiting the alternating current to a limit value. This allows the converter to operate as a voltage source while protecting it in the event of excessive current inrush.
[0020] L’algorithme de commande vectorielle peut être un algorithme de type machine synchrone virtuelle, ladite fonction F de pilotage modulant la fréquence électrique des convertisseurs bidirectionnels côté courant alternatif. Ceci revient à avoir la fonction de pilotage en surcouche de la commande vectorielle pour réaliser un transfert de puissance au travers de la ligne à courant continu. The vector control algorithm can be a virtual synchronous machine type algorithm, said control function F modulating the electrical frequency of the bidirectional converters on the alternating current side. This amounts to having the control function superimposed on the vector control to carry out a transfer of power through the direct current line.
[0021] Selon un mode de réalisation particulier, la fonction F de pilotage, ou règle de contrôle, est une fonction liant la fréquence du courant alternatif courante fvsc. à la tension continue courante UDCvsc de la forme : According to a particular embodiment, the control function F, or control rule, is a function linking the frequency of the current alternating current f vsc . at the current DC voltage U DCvsc of the form:
[0022] [Math. 1]
Figure imgf000007_0001
[0022] [Math. 1]
Figure imgf000007_0001
Avec fvsc. la fréquence du convertisseur /, UDCvsc la tension du convertisseur / à un instant donné et fvsc ni . et UDCvvr et Kvsc i. respectivement la fréquence nominale, la tension DC nominale et le gain de réglage de l’algorithme pour chaque convertisseur /. With f vsc . the frequency of the converter /, U DCvsc the voltage of the converter / at a given instant and f vsc ni . and U DCvvr and K vsc i. respectively the nominal frequency, the nominal DC voltage and the adjustment gain of the algorithm for each converter /.
[0023] Le gain de réglage peut être directement implémenté au niveau de calculateurs locaux pilotant lesdits convertisseurs. [0023] The adjustment gain can be directly implemented at the level of local computers controlling said converters.
[0024] Ledit gain de réglage peut aussi être fixé au niveau d’un calculateur distant d’un centre de contrôle pilotant lesdites sous-stations et transmis aux convertisseurs bidirectionnels desdites sous-stations au travers d’un réseau informatique reliant ledit calculateur distants à des calculateurs locaux pilotant lesdits convertisseurs en fonction de paramètres de fonctionnement des systèmes reliés auxdites sous-stations. [0024] Said adjustment gain can also be set at the level of a computer remote from a control center controlling said substations and transmitted to the bidirectional converters of said substations through a computer network connecting said remote computer to local computers controlling said converters according to operating parameters of the systems connected to said substations.
[0025] Ceci peut être fait lors de la mise en place de la ligne et/ou permet d’adapter le gain en cas de changement de configuration d’un ou plusieurs systèmes. This can be done when setting up the line and/or makes it possible to adapt the gain in the event of a change in the configuration of one or more systems.
[0026] Le pilotage du transit de puissance dans ladite ligne à courant continu peut être réalisé au niveau des moyens de production et de stockage de chacun des systèmes courant alternatif interconnectés via leurs régulations classiques de puissance active et de fréquence de sorte que l’implémentation dudit procédé ne nécessite pas de modification de la régulation de puissance active et de la régulation de réglage primaire de fréquence desdits moyens de production et de stockage. [0026] The control of the power transit in said direct current line can be carried out at the level of the means of production and storage of each of the alternating current systems interconnected via their conventional regulations of active power and of frequency so that the implementation of said method does not require modification of the active power regulation and of the primary frequency adjustment regulation of said production and storage means.
[0027] La ligne en courant continu est avantageusement une ligne de type HDVC (liaison haute tension à courant continu) reliant au moins deux systèmes électriques à courant alternatif. The direct current line is advantageously a line of the HDVC (high voltage direct current link) type connecting at least two alternating current electrical systems.
[0028] L’invention concerne en outre un programme informatique comportant des instructions pour la mise en oeuvre du procédé de l’invention lorsque ce programme est exécuté par un processeur. The invention further relates to a computer program comprising instructions for implementing the method of the invention when this program is executed by a processor.
[0029] L’invention concerne de plus un support d’enregistrement non transitoire lisible par un ordinateur sur lequel est enregistré un programme pour la mise en oeuvre du procédé de l’invention lorsque ce programme est exécuté par un processeur. The invention further relates to a non-transitory recording medium readable by a computer on which is recorded a program for the implementation of the method of the invention when this program is executed by a processor.
[0030] L’invention concerne en outre un réseau électrique mixte courant alternatif / courant continu comportant au moins une ligne HVDC (liaison haute tension à courant continu) reliant au moins deux systèmes à courant alternatif au travers de stations de conversion munies de convertisseurs bidirectionnels courant alternatif/courant continu, pour lequel les convertisseurs desdites stations de conversions sont commandés selon le procédé de l’invention. The invention further relates to a mixed alternating current / direct current electrical network comprising at least one HVDC line (high voltage direct current link) connecting at least two alternating current systems through converter stations provided with bidirectional converters alternating current/direct current, for which the converters of said converter stations are controlled according to the method of the invention.
Brève description des dessins Brief description of the drawings
[0031] D’autres caractéristiques, détails et avantages apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés, sur lesquels : [0031] Other characteristics, details and advantages will appear on reading the detailed description below, and on analyzing the appended drawings, in which:
[0032] [Fig. 1] montre un schéma simplifié d’une liaison HDVC et de ses convertisseurs selon l’art antérieur. [0032] [Fig. 1] shows a simplified diagram of an HDVC link and its converters according to the prior art.
[0033] [Fig. 2] montre un schéma simplifié d’une liaison HDVC et de ses convertisseurs selon l’invention. [0033] [Fig. 2] shows a simplified diagram of an HDVC link and its converters according to the invention.
[0034] [Fig. 3] montre un schéma simplifié d’un cas d’étude pour l’invention. [0034] [Fig. 3] shows a simplified diagram of a case study for the invention.
[0035] [Fig. 4] montre une modélisation d’un réseau à deux systèmes à courant alternatifs reliés par une liaison série ; [0035] [Fig. 4] shows a model of a network with two alternating current systems connected by a serial link;
[0036] [Fig. 5] montre une courbe de tension de la ligne à courant continu ; [0036] [Fig. 5] shows a DC line voltage curve;
[0037] [Fig. 6] montre une courbe de partage de puissance active ; [0037] [Fig. 6] shows an active power sharing curve;
[0038] [Fig. 7] montre une courbe de fréquence d’un premier système ; [0038] [Fig. 7] shows a frequency curve of a first system;
[0039] [Fig. 8] montre une courbe de partage de puissance active du premier système ; [0040] [Fig. 9] montre une courbe de tension de la ligne à courant continu ; [0039] [Fig. 8] shows an active power sharing curve of the first system; [0040] [Fig. 9] shows a DC line voltage curve;
[0041] [Fig. 10] montre une courbe de fréquence du second système ; [0041] [Fig. 10] shows a frequency curve of the second system;
[0042] [Fig. 11] montre une courbe de partage de puissance active du premier système ; [0042] [Fig. 11] shows an active power sharing curve of the first system;
[0043] [Fig. 12] montre une courbe de fréquence du second système ; [0043] [Fig. 12] shows a frequency curve of the second system;
[0044] [Fig. 13] montre une courbe de fréquence du premier système ; [0044] [Fig. 13] shows a frequency curve of the first system;
[0045] [Fig. 14] montre une courbe de partage de puissance active du premier système ; [0045] [Fig. 14] shows an active power sharing curve of the first system;
[0046] [Fig. 15] montre une courbe de tension de la ligne à courant continu ; [0046] [Fig. 15] shows a DC line voltage curve;
[0047] [Fig. 16] montre une courbe de fréquence du second système ; [0047] [Fig. 16] shows a frequency curve of the second system;
[0048] [Fig. 17] montre une courbe de partage de la puissance active du second système. [0048] [Fig. 17] shows an active power sharing curve of the second system.
[0049] La figure 1 représente un exemple schématique traditionnel d’une liaison HDVC 1 et de convertisseurs bidirectionnels 2a, 2b de sous-stations à ses extrémités entre des systèmes en courant alternatif S1 et S2. Les convertisseurs comportent un transformateur 3a, 3b d’entrée recevant une tension alternative U1 , U2, un filtre de courant alternatif 5a, 5b et une self 6a, 6b, ainsi qu’un module de conversion bidirectionnel 4a, 4b. Chaque convertisseur est piloté par un calculateur local 7a, 7b. Les convertisseurs comportent un bus en courant continu pourvu de condensateurs 61 a, 61b, 62a, 62b qui régulent la tension de la ligne en courant continu et servent de tampon d’énergie. Figure 1 shows a traditional schematic example of an HDVC link 1 and bidirectional converters 2a, 2b of substations at its ends between alternating current systems S1 and S2. The converters comprise an input transformer 3a, 3b receiving an alternating voltage U1, U2, an alternating current filter 5a, 5b and a choke 6a, 6b, as well as a bidirectional conversion module 4a, 4b. Each converter is controlled by a local computer 7a, 7b. The converters include a DC bus with capacitors 61a, 61b, 62a, 62b which regulate the DC line voltage and act as a power buffer.
[0050] Selon l’art antérieur, les calculateurs pilotent les convertisseurs en mode source de courant GFE (« grid feeding » en anglais) ou pilotent un convertisseur en mode source de courant GFE et l’autre en mode source de tension GFO (« grid forming » en anglais). According to the prior art, the computers control the converters in GFE current source mode ("grid feeding" in English) or control one converter in GFE current source mode and the other in GFO voltage source mode (" grid forming” in English).
[0051] La figure 2 représente un exemple simplifié d’une liaison HDVC et de convertisseurs selon l’invention où les calculateurs 71a, 71b pilotent les convertisseurs en mode source de tension GFO avec une fonction de régulation comme il va être décrit plus bas. FIG. 2 represents a simplified example of an HDVC link and of converters according to the invention where the computers 71a, 71b drive the converters in GFO voltage source mode with a regulation function as will be described below.
[0052] En figure 3 sont représentés des systèmes simplifiés AC1 et AC2 comportant chacun un générateur et une charge et reliés aux extrémités d’une ligne en courant continu HDVC 1 . In FIG. 3 are represented simplified systems AC1 and AC2 each comprising a generator and a load and connected to the ends of a direct current line HDVC 1 .
[0053] Un premier système AC1 comporte un générateur G1 10a de type machine tournante ou source d’énergie avec un convertisseur en mode source de tension GFO, par exemple de type machine tournante virtuelle, une charge L1 11 a des liaisons selfiques XGi 12a et Xvsci 13a représentant des lignes de raccordement et le convertisseur VSC1 2a. [0054] Un second système AC2 comporte un groupe générateur G2 10a de type machine tournante ou source d’énergie avec un convertisseur en mode source de tension GFO, par exemple de type machine tournante virtuelle, une charge L2 11 a, des liaisons selfiques XG2 12b et Xvsœ 13b et le convertisseur VSC2 2a. A first system AC1 comprises a generator G1 10a of the rotating machine or energy source type with a converter in GFO voltage source mode, for example of the virtual rotating machine type, a load L1 11 has inductive links X Gi 12a and Xvsci 13a representing connection lines and the VSC1 converter 2a. A second AC2 system comprises a generator unit G2 10a of the rotating machine or energy source type with a converter in GFO voltage source mode, for example of the virtual rotating machine type, a load L2 11a, inductive links X G 2 12b and Xvsœ 13b and the VSC2 2a converter.
[0055] Chaque convertisseur bidirectionnel est contrôlé par une commande vectorielle de la tension alternative de ces convertisseurs mais, dans le cadre de l’invention, le convertisseur est piloté en mode source de tension GFO et une fonction F, de pilotage du convertisseur liant la fréquence électrique fvsa du courant alternatif dudit convertisseur côté système à courant alternatif à une tension Uocvs (ici fvsci fonction de UDCI et fvs > fonction de UDCS) dudit convertisseur côté ligne HDVC est implémentée en surcouche de ladite commande vectorielle. De ce fait, la fréquence électrique dudit courant alternatif côté système en courant alternatif est liée aux variations de la tension continue au niveau de la sortie côté courant continu du convertisseur correspondant. Each bidirectional converter is controlled by a vector control of the alternating voltage of these converters but, in the context of the invention, the converter is controlled in GFO voltage source mode and a function F, for controlling the converter linking the electrical frequency fvsa of the alternating current of said alternating current system side converter at a voltage Uocvs (here fvsci function of UDCI and fvs > function of UDCS) of said HDVC line side converter is implemented as an overlay of said vector control. Therefore, the electrical frequency of said alternating current on the alternating current system side is related to the variations of the direct current voltage at the level of the direct current side output of the corresponding converter.
[0056] La fonction F ou règle de contrôle se lit : The function F or control rule reads:
[Math. 2]
Figure imgf000010_0001
et correspond à une famille d’algorithmes de partage de charge avec fvsa la fréquence électrique de chaque station de conversion côté AC, Uocvsa la tension de chaque station de conversion côté DC et F la fonction liant fvsa à Uocvsa-
[Math. 2]
Figure imgf000010_0001
and corresponds to a family of load sharing algorithms with fvsa the electrical frequency of each converter station on the AC side, Uocvsa the voltage of each converter station on the DC side and F the function linking fvsa to Uocvsa-
[0057] Un exemple de de règle de contrôle particulière sous forme d’une fonction F simple applicable à l’invention est alors : An example of a particular control rule in the form of a simple function F applicable to the invention is then:
[Math. 3]
Figure imgf000010_0002
[Math. 3]
Figure imgf000010_0002
Avec fvscm, Uocvscm et Kvsa respectivement la fréquence nominale, la tension DC nominale et le gain de réglage de l’algorithme pour chaque station de conversion. With fvscm, Uocvscm and Kvsa respectively the nominal frequency, the nominal DC voltage and the algorithm adjustment gain for each converter station.
[0058] Contrairement aux réalisations de l’art antérieur, dans la présente invention aucune des stations de conversion ne régule explicitement le transit de puissance dans la liaison HVDC. Cette régulation est implicitement confié aux sources d’énergie, groupes de production et systèmes de stockage de chacun des systèmes AC interconnectés, au moyen de leurs régulations classiques de puissance active et de fréquence. Aussi la présente invention ne nécessite pas de modifier la régulation de puissance active et le réglage primaire de fréquence des moyens de production et de stockage existants. [0059] Les effets de l’invention sont illustrés ci-après par le comportement des systèmes schématisés selon la figure 2 lors de différents évènements. Contrary to the embodiments of the prior art, in the present invention none of the converter stations explicitly regulates the transit of power in the HVDC link. This regulation is implicitly entrusted to the energy sources, production groups and storage systems of each of the interconnected AC systems, by means of their conventional active power and frequency regulations. Also the present invention does not require modifying the active power regulation and the primary frequency adjustment of the existing production and storage means. The effects of the invention are illustrated below by the behavior of the systems schematized according to FIG. 2 during various events.
[0060] Les évènements illustrant le fonctionnement des systèmes selon le précédé de l’invention sont : The events illustrating the operation of the systems according to the precedent of the invention are:
[0061 ] A - Evènement n°1 : modification des consignes de puissance de G1 et G2. [0061] A - Event no. 1: modification of the power setpoints of G1 and G2.
[0062] Par exemple on procède à une augmentation de la consigne de puissance active du groupe générateur G1 d’une valeur Pcons et on baisse de la puissance active du groupe générateur G2 de cette même valeur. For example, the active power setpoint of the generator group G1 is increased by a value P cons and the active power of the generator group G2 is reduced by this same value.
[0063] L’augmentation de consigne de G1 induit une augmentation de sa puissance mécanique réelle ou virtuelle via le processus de pilotage de la source primaire du groupe générateur G1 tandis que la diminution de consigne de G2 induit une diminution de sa puissance mécanique réelle ou virtuelle via le processus de pilotage de la source primaire du groupe G2 The setpoint increase of G1 induces an increase in its real or virtual mechanical power via the process of controlling the primary source of the generator set G1 while the setpoint decrease in G2 induces a decrease in its real or virtual mechanical power. virtual through the process of controlling the primary source of the group G2
[0064] Il en résulte un déséquilibre des équations des masses tournantes des deux groupes qui se traduit par une augmentation progressive de la fréquence du groupe G1 ainsi qu’une baisse progressive de la fréquence du groupe G2 à partir de l’équation des masses tournantes : This results in an imbalance of the equations of the rotating masses of the two groups which results in a progressive increase in the frequency of the group G1 as well as a progressive decrease in the frequency of the group G2 from the equation of the rotating masses :
[0065] [Math. 4]
Figure imgf000011_0001
a)m (rad.s-1) : la vitesse de rotation mécanique
[0065] [Math. 4]
Figure imgf000011_0001
a) m (rad.s -1 ): the mechanical rotation speed
J (kg.m2) : le moment d’inertie J (kg.m 2 ): the moment of inertia
Pm ( ) : la puissance mécanique P m ( ) : the mechanical power
Pe (V/) : la puissance électrique des masses tournantes linéarisée :
Figure imgf000011_0002
P e (V/): the electrical power of the linearized rotating masses:
Figure imgf000011_0002
Et la constante d’inertie d’un groupe de production : And the inertia constant of a production group:
[Math. 6] H = -[Math. 6] H = -
Avec : With :
H (s), f (Hz) : la fréquence électrique, a)n (rad. s-1) : la vitesse de rotation mécanique nominale, Sn (V4) : la puissance apparente nominale, fn (Hz) : la fréquence électrique nominale. H (s), f (Hz): the electrical frequency, a) n (rad. s -1 ): the nominal mechanical rotation speed, S n (V4): the nominal apparent power, f n (Hz): the rated electrical frequency.
[0067] Il y a alors une variation des fréquences des générateurs en réponse au changement de consigne. There is then a variation in the frequencies of the generators in response to the change in setpoint.
[0068] Dans un second temps a lieu une modification des partages de puissance active dans chaque système à courant alternatif. [0068] Secondly, there is a modification of the active power sharing in each alternating current system.
[0069] On appellera angle de la tension l’angle de phase des tensions. We will call the voltage angle the phase angle of the voltages.
[0070] Les variations progressives des fréquences fG1 et fG2 induisent respectivement une augmentation de l’angle 0Gi de la tension UGI et une diminution de l’angle 0G2de la tension UG2 selon l’équation : The progressive variations of the frequencies f G1 and f G2 respectively induce an increase in the angle 0 Gi of the voltage UGI and a decrease in the angle 0G2 of the voltage UG2 according to the equation:
[Math. 7]
Figure imgf000012_0001
alors que les angles Qvsci et Ôysc2 au niveau des stations de conversion n’ont pas encore évolué à ce stade.
[Math. 7]
Figure imgf000012_0001
whereas the Qvsci and Ôysc2 angles at the converter stations have not yet changed at this stage.
[0071] Il en résulte un nouveau partage de la puissance active entre les groupes et les stations de conversions selon les équations : This results in a new sharing of the active power between the generators and the converter stations according to the equations:
[Math. 8]
Figure imgf000012_0002
qui régit la fourniture de puissance active par le groupe de production G1 et ;
[Math. 8]
Figure imgf000012_0002
which governs the supply of active power by the production group G1 and;
[Math. 9]
Figure imgf000012_0003
qui régit la fourniture de puissance active par la station de conversion VSC1 (convention importatrice), avec :
[Math. 9]
Figure imgf000012_0003
which governs the supply of active power by the converter station VSC1 (importing agreement), with:
[0072] PG1 (W),PVSC1 (IV), UG1 (V), UVSC1 (V),IL1 (A) : les tensions efficaces entre phases du groupe G1 et de la station de conversion VSC1 ainsi que la valeur efficace du courant de la charge L1 et 9G1 (rad), 9vscl(rad') et yL1 (rad) : les angles des tensions du groupe G1 et de la station de conversion VSC1 ainsi que l’angle du courant lu de la charge L1 . [0072] P G1 (W), P VSC1 (IV), U G1 (V), U VSC1 (V), I L1 (A): the rms voltages between phases of the group G1 and of the converter station VSC1 as well as the rms value of the current of the load L1 and 9 G1 (rad), 9 vscl (rad') and y L1 (rad): the angles of the voltages of the group G1 and of the converter station VSC1 as well as the angle of the current read of the load L1 .
[0073] Ces équations sont valables aussi pour le second système en courant alternatif en remplaçant les indices 1 par des indices 2. These equations are also valid for the second alternating current system by replacing the indices 1 by indices 2.
[0074] Dans ce cas nous avons PG1 croissant, Pvsci décroissant (convention importateur), PG2 décroissant et Pvsc2 croissant L’augmentation de PG1 se traduit en effet instantanément par une baisse équivalente de Pvsci et donc de l’importation (ou une augmentation de l’exportation en fonction du point de fonctionnement initial) tandis que la baisse de PG2 se traduit instantanément par une augmentation équivalente de Pvsc2 et donc de l’importation (ou une baisse de l’exportation en fonction du point de fonctionnement initial). In this case we have increasing P G1 , decreasing Pvsci (importer convention), decreasing PG2 and increasing Pvsc2 The increase in P G1 is in fact instantly reflected by an equivalent decrease in Pvsci and therefore in the import (or a increase in export depending on the initial operating point) while the drop in P G2 instantly translates into an equivalent increase in Pvsc2 and therefore in import (or a drop in export depending on the initial operating point ).
[0075] Ensuite, le système complet se stabilise au nouveau point de fonctionnement : Then, the complete system stabilizes at the new operating point:
[0076] Les variations des puissances actives AC des stations de conversion se répercutent instantanément côté DC et se traduisent par une charge en énergie des condensateurs du bus DC de la station de la zone 1 et donc une augmentation progressive de UDCI et inversement pour la station de la zone 2 : [0076] Variations in the AC active powers of the converter stations are instantly reflected on the DC side and result in an energy charge of the DC bus capacitors of the station in zone 1 and therefore a gradual increase in UDCI and vice versa for the station. of area 2:
[Math. 10]
Figure imgf000013_0001
[Math. 10]
Figure imgf000013_0001
[0077] Il en résulte progressivement une augmentation de la puissance active PDC transitée par la ligne HVDC de la zone 1 vers la zone 2 : This gradually results in an increase in the PDC active power transmitted by the HVDC line from zone 1 to zone 2:
[Math. 13]
Figure imgf000013_0002
[Math. 13]
Figure imgf000013_0002
Avec PDC12 (V ), t/DC1 (7) et UDC2(y) les tensions de sortie des stations de conversion 1 et 2 côté DC, RDC (H) : la résistance équivalente de la ligne DC. [0078] L’algorithme de partage de la charge de chaque station selon l’équation de la présente invention va répercuter ces évolutions sur leur fréquence électrique : With P DC12 (V ), t/ DC1 (7) and U DC2 (y) the output voltages of converter stations 1 and 2 on the DC side, R DC (H): the equivalent resistance of the DC line. The load sharing algorithm for each station according to the equation of the present invention will pass on these changes to their electrical frequency:
[Math. 14]
Figure imgf000014_0001
[Math. 14]
Figure imgf000014_0001
[Math. 15] dfvsc2 < Q dt ce qui va réduire progressivement puis stabiliser l’écart d’angle de phase entre les groupes et les stations de conversion de sorte que PGi=PGiref, PG2=PG2ref-[Math. 15] dfvsc2 < Q dt which will gradually reduce then stabilize the phase angle difference between the groups and the converter stations so that PGi=PGiref, PG2=PG2ref-
Le terme de réglage primaire contenu dans PGiref et PG2ref : The primary adjustment term contained in P G iref and PG2ref:
[Math. 16] [Math. 16]
Pref = P0 ~ Kàf permet alors au système global de se stabiliser. Pref = P 0 ~ Kàf then allows the global system to stabilize.
[0079] B - Evènement n°2 : perte du groupe de production G1 : [0079] B - Event no. 2: loss of production group G1:
[0080] L’évènement est par exemple un découplage de G1 en cas d’export du système n°1 vers le système n°2. The event is for example a decoupling of G1 in the event of export from system n°1 to system n°2.
[0081] La première étape est une modification du partage de puissance active dans le premier système. Le groupe G1 n’étant plus connecté au réseau et la charge L1 restant globalement constante, l’intégralité de cette charge est reprise instantanément par la station VSC1. L’expression de la puissance active de la station VSC1 côté courant alternatif peut être réduite de l’équation Math. 9 ci-dessus à l’expression simplifiée ci- dessous : The first step is a modification of the active power sharing in the first system. As the G1 group is no longer connected to the network and the L1 load remains generally constant, all of this load is instantly taken over by the VSC1 station. The expression for the active power of the station VSC1 on the alternating current side can be reduced by the equation Math. 9 above to the simplified expression below:
[Math. 17]
Figure imgf000014_0002
[Math. 17]
Figure imgf000014_0002
[0082] La deuxième étape est une modification du transit de puissance sur la liaison HVDC. La variation de puissance de la station VSC1 est alimentée dans les premiers instants par sa réserve d’énergie électrostatique, les condensateurs 61 a, 52a de la figure 1 ce qui cause une chute rapide de la tension UDCI : The second step is a modification of the power transit on the HVDC link. The power variation of the VSC1 station is supplied in the first moments by its reserve of electrostatic energy, the capacitors 61 a, 52a of figure 1 which causes a rapid drop in the voltage UDCI:
[Math. 18] [Math. 18]
2HSn dUDC 2HS n dU DC
77 ~ ‘ HVDC AC Equation d’un condensateur sur un bus DC (en puissance) linéarisée. 77~' HVDC AC Equation of a capacitor on a DC bus (in power) linearized.
[0083] Dans ce cas on a : In this case we have:
[Math. 19]
Figure imgf000015_0001
tension UDC2 n’ayant pas encore évoluée, une baisse progressive du transit de puissance active PDCI2 s’effectue jusqu’à obtenir un import du système n°1 depuis le système n°2 : PDCI2<0.
[Math. 19]
Figure imgf000015_0001
voltage UDC2 has not yet changed, a gradual drop in the flow of active power PDCI2 takes place until system no. 1 is imported from system no. 2: PDCI2<0.
[0085] La troisième étape est une stabilisation du système complet au nouveau point de fonctionnement. The third step is stabilization of the complete system at the new operating point.
[0086] Dans le système n°2, c’est tout d’abord les condensateurs 61 b, 62b de la station 2 qui vont se décharger progressivement pour participer à alimenter le nouveau transit de puissance PDCI2. Ce faisant la tension UDC2 va également chuter selon l’équation en puissance d’un condensateur sur un bus DC linéarisée : In system no. 2, it is first of all the capacitors 61b, 62b of station 2 which will gradually discharge to participate in supplying the new power flow PDCI2. In doing so, the UDC2 voltage will also drop according to the power equation of a capacitor on a linearized DC bus:
[Math. 20]
Figure imgf000015_0002
ce qui va contribuer à alimenter la charge du système n°1 .
[Math. 20]
Figure imgf000015_0002
which will contribute to supplying the load of system n°1.
[0087] L’algorithme de partage de la charge de station VSC2 correspondant à la présente invention va alors répercuter cette chute sur sa fréquence électrique : The VSC2 station load sharing algorithm corresponding to the present invention will then pass on this drop to its electrical frequency:
[Math. 21] dfvscz < Q dt [Math. 21] dfvscz < Q dt
[0088] Cette évolution de la fréquence va engendrer une baisse progressive de l’angle de la tension de la station VSC2 selon l’équation This change in frequency will cause a gradual drop in the voltage angle of the station VSC2 according to the equation
[Math. 21]
Figure imgf000015_0003
vis-à-vis de celui du groupe G2 entraînant une reprise de la puissance active de VSC2 par G2 selon les équations :
[Math. 21]
Figure imgf000015_0003
vis-à-vis that of the group G2 leading to a recovery of the active power of VSC2 by G2 according to the equations:
[Math. 22]
Figure imgf000016_0001
et
[Math. 22]
Figure imgf000016_0001
and
[Math. 23]
Figure imgf000016_0002
jusqu’à trouver un point d’équilibre grâce à l’algorithme de réglage de fréquence de G2
[Math. 23]
Figure imgf000016_0002
until you find a balance point thanks to G2's frequency tuning algorithm
[Math. 24] [Math. 24]
Pref = P0 ~ Kàf. Pref = P 0 ~ Kaf.
[0089] Le fonctionnement de l’invention est illustré par simulation numérique. Trois cas d’étude ont été modélisés et simulés avec le logiciel « Powerfactory » de la société Digsilent GmbH version 2020 SP2A : The operation of the invention is illustrated by digital simulation. Three case studies were modeled and simulated with the “Powerfactory” software from Digsilent GmbH version 2020 SP2A:
[0090] Cas d’étude n°1 : systèmes AC conventionnels - chaque système est alimenté par un groupe de production conventionnel. [0090] Case study no. 1: conventional AC systems - each system is supplied by a conventional production group.
[0091] Cas d’étude n°2 : systèmes AC 100% électronique de puissance : chaque système est alimenté par une source de type BESS. [0091] Case study no. 2: 100% power electronic AC systems: each system is powered by a BESS-type source.
[0092] Cas d’étude n°3 : systèmes AC 100% électronique de puissance fonctionnant avec deux fréquences nominales différentes : chaque système est alimenté par une source de type BESS, le système n°1 a une fréquence nominale de 50 Hz tandis que le système n°2 a une fréquence nominale de 60 Hz. [0092] Case study no. 3: 100% power electronic AC systems operating with two different nominal frequencies: each system is powered by a BESS-type source, system no. 1 has a nominal frequency of 50 Hz while system n°2 has a nominal frequency of 60 Hz.
[0093] Les résultats présentés ci-dessous sont issues de simulations dynamiques RMS, par conséquent les phénomènes observés correspondent aux équations développées ci- dessus. The results presented below come from dynamic RMS simulations, consequently the phenomena observed correspond to the equations developed above.
[0094] Cas d’étude n°1 : systèmes AC conventionnels - chaque système est alimenté par un groupe de production conventionnel [0094] Case study n°1: conventional AC systems - each system is supplied by a conventional production group
[0095] La vue globale du modèle « Powerfactory » du cas d’étude numéro 1 est donnée en figure 4. The global view of the “Powerfactory” model of case study number 1 is given in figure 4.
[0096] Les systèmes en courant alternatif AC1 et AC2 comportent chacun un générateur 211 , 212, une première ligne en courant alternatif moyenne tension 221 , 222 un transformateur moyenne tension vers haute tension 231 , 232, une ligne haute tension 241 ,242 alimentant une charge 251 , 252, un transformateur haute tension 261 , 262 une ligne haute tension 271 , 272 de liaison avec un convertisseur bidirectionnel AC/DC d’une station de conversion 281 , 282 et sont reliés ensemble par la ligne HDVC 30 entre les stations de conversion. The alternating current systems AC1 and AC2 each comprise a generator 211, 212, a first medium voltage alternating current line 221, 222 a medium voltage to high voltage transformer 231, 232, a high voltage line 241, 242 supplying a load 251, 252, a high voltage transformer 261, 262 a high voltage line 271, 272 connecting with a bidirectional AC/DC converter of a converter station 281, 282 and are connected together by the HDVC line 30 between the converter stations.
[0097] Des condensateurs 291 , 292 sont reliés aux deux extrémités de la ligne HDVC. [0097] Capacitors 291, 292 are connected to both ends of the HDVC line.
[0098] Les données des lignes, des transformateurs et les condensateurs de filtrage DC de l’essai en simulation sont les suivants. [0098] The data of lines, transformers and DC filter capacitors of the simulation test are as follows.
[0099] Les lignes AC 221 et 222 sont des lignes de 33 kV avec une résistance de 0,047 Ohm pour 1 km une inductance de 0,34 mH pour 1 km et une capacitance de 0,3 pF pour 1 km. The AC lines 221 and 222 are 33 kV lines with a resistance of 0.047 Ohm for 1 km, an inductance of 0.34 mH for 1 km and a capacitance of 0.3 pF for 1 km.
[0100] Les lignes AC 241 et 242 sont des lignes de 150 kV avec une résistance de 0,06 Ohm pour 1 km une inductance de 0,44 mH pour 1 km et une capacitance de 0,14 pF pour 1 km. The AC lines 241 and 242 are 150 kV lines with a resistance of 0.06 Ohm for 1 km, an inductance of 0.44 mH for 1 km and a capacitance of 0.14 pF for 1 km.
[0101] Les transformateurs 231 et 232 sont des transformateurs 33/150 kV avec au niveau haute tension une résistance de 0,79 Ohm et une inductance de 42,13 mH. The transformers 231 and 232 are 33/150 kV transformers with, at the high voltage level, a resistance of 0.79 Ohm and an inductance of 42.13 mH.
[0102] Les groupes de production 211 et 212 sont identiques et ont une puissance apparente nominale de 100 MVA et une constante d’inertie de 5s. The production groups 211 and 212 are identical and have a nominal apparent power of 100 MVA and an inertia constant of 5s.
[0103] Les stations de conversion sont modélisées en convention importatrice. The converter stations are modeled using the import convention.
[0104] Les charges L1 et L2 sont modélisées sous forme de puissances constantes. The loads L1 and L2 are modeled in the form of constant powers.
[0105] La ligne continue est une ligne de ± 150kV avec une résistance de 0,019 Ohm par km et une inductance de 0,1 pH par km. The continuous line is a line of ± 150 kV with a resistance of 0.019 Ohm per km and an inductance of 0.1 pH per km.
[0106] Les transformateur 261 , 262 sont des transformateurs 150/110 kV avec au niveau haute tension une résistance de 0,241 Ohm, une inductance de 76,74 mH. [0106] The transformers 261, 262 are 150/110 kV transformers with a high voltage level with a resistance of 0.241 Ohm, an inductance of 76.74 mH.
[0107] Les condensateurs 291 , 292 sont des condensateurs de 400 pF. The capacitors 291, 292 are 400 pF capacitors.
[0108] Les tensions nominales entre phases pour la partie AC et entre pôles pour la partie DC du système global sont les suivantes : The nominal voltages between phases for the AC part and between poles for the DC part of the overall system are as follows:
[0109] [Tableau 1]
Figure imgf000017_0001
[0109] [Table 1]
Figure imgf000017_0001
[0110] L’algorithme de réglage primaire des groupes de production et les algorithmes de partage de la puissance active des stations de conversion ont été paramétrés de la façon suivante : [0111] [Tableau 2]
Figure imgf000018_0001
[0110] The primary adjustment algorithm for the production groups and the active power sharing algorithms for the converter stations have been configured as follows: [0111] [Table 2]
Figure imgf000018_0001
[0112] Le coefficient K va être calculé en fonction de la déviation acceptable de la tension de la ligne HVDC et une déviation acceptable en fréquence en cas d’incident dimensionnant. La déviation maximale de la fréquence et la déviation maximale de la tension dépendent de la politique réseau et de l’incident dimensionnant. Par exemple on choisit ici 200 mHz/30 kV. Ce coefficient peut être adapté au besoin. The coefficient K will be calculated according to the acceptable deviation of the voltage of the HVDC line and an acceptable deviation in frequency in the event of a dimensioning incident. The maximum frequency deviation and the maximum voltage deviation depend on the grid policy and the dimensioning incident. For example, 200 mHz/30 kV is chosen here. This coefficient can be adapted as needed.
[0113] La simulation réalisée inclut les évènements suivants : The simulation performed includes the following events:
A : t=10 s : augmentation de 50% de la charge L1 ; A: t=10 s: 50% increase in L1 load;
B : t=30 s : augmentation de la consigne de puissance active de G1 sous forme d’échelon ; B: t=30 s: increase in the active power setpoint of G1 in the form of a step;
C : t=50 s : le disjoncteur de G1 n°1 s’ouvre. C: t=50 s: the circuit breaker of G1 n°1 opens.
[0114] A : t=10 s : augmentation de 50% de la charge L1 : [0114] A: t=10 s: 50% increase in load L1:
[0115] On observe dans un premier temps un nouveau partage de la puissance active de la charge L1 251 dans le système AC1. Ce nouveau partage se traduit pour la station de conversion VSC1 281 par une diminution instantanée de son export. Avant que l’import de la station de conversion VSC2 282 ne diminue, la diminution de l’export de VSC1 est tout d’abord compensé intégralement par le condensateur équivalent Cdc1 291 puis partagé entre les condensateurs Cdc1 291 et Cdc2 292. La décharge en énergie électrostatique des condensateurs Cdc1 et Cdc2 entraîne une chute des tensions DC des stations de conversion VSC1 et VSC2 comme représenté en figure 5. A new sharing of the active power of the load L1 251 in the system AC1 is first observed. This new sharing translates for the VSC1 281 converter station into an instantaneous reduction in its export. Before the import of the VSC2 282 converter station decreases, the decrease in the export of VSC1 is first of all fully compensated by the equivalent capacitor Cdc1 291 then shared between the capacitors Cdc1 291 and Cdc2 292. The discharge in electrostatic energy of the capacitors Cdc1 and Cdc2 leads to a drop in the DC voltages of the converter stations VSC1 and VSC2 as shown in figure 5.
[0116] L’algorithme de partage de la charge des stations de conversion reporte ces chutes de tension DC sur les fréquences des convertisseurs des stations de conversion VSC 1 281 et VSC 2 282. The conversion station load sharing algorithm transfers these DC voltage drops to the frequencies of the converters of the VSC 1281 and VSC 2282 converter stations.
[0117] Au niveau du système AC2, la chute de la fréquence du convertisseur de la station VSC2 281 entraîne une diminution progressive de l’angle de la tension du convertisseur de la station de conversion VSC2 282 comparativement à l’angle de la tension du générateur G2 212 ainsi qu’une augmentation progressive de la puissance fournie par le générateur G2 grâce au phénomène de puissance synchronisante comme représenté en figure 6 représentant les puissances au niveau de VSC2 et de G2. [0118] Les fréquences des générateurs G1 et G2 et des stations VSC1 et VSC2 sont alors stabilisées par l’algorithme de réglage primaire de fréquence des générateurs G1 et G2. At the level of the AC2 system, the fall in the frequency of the converter of the station VSC2 281 leads to a progressive reduction in the angle of the voltage of the converter of the converter station VSC2 282 compared to the angle of the voltage of the generator G2 212 as well as a progressive increase in the power supplied by generator G2 thanks to the phenomenon of synchronizing power as represented in FIG. 6 representing the powers at the level of VSC2 and of G2. The frequencies of the generators G1 and G2 and of the stations VSC1 and VSC2 are then stabilized by the primary frequency adjustment algorithm of the generators G1 and G2.
[0119] B : t=30 s : augmentation de la consigne de puissance active du générateur G1 211 sous forme d’un échelon de consigne : [0119] B: t=30 s: increase in the active power setpoint of generator G1 211 in the form of a setpoint step:
[0120] On observe en figure 7 que l’échelon de consigne de puissance active de G1 se traduit par une augmentation progressive de sa fréquence jusqu’à environ 32 secondes via l’action de sa régulation turbine et de son équation des masses tournantes. Cette modification de fréquence va entraîner une augmentation progressive de l’angle de la tension de G1 211 vis-à-vis de la station de conversion VSC1 281 et ainsi augmenter respectivement la puissance active fournie par G1 et exportée par la station de conversion VSC1 comme représenté en figure 8. It can be seen in Figure 7 that the active power setpoint step of G1 results in a gradual increase in its frequency up to about 32 seconds via the action of its turbine regulation and its equation of the rotating masses. This frequency modification will lead to a gradual increase in the angle of the voltage of G1 211 with respect to the converter station VSC1 281 and thus respectively increase the active power supplied by G1 and exported by the converter station VSC1 as represented in figure 8.
[0121] Comme pour l’évènement précédent, c’est dans un premier temps les condensateurs Cdc1 et Cdc2 qui vont compenser le déséquilibre production/consommation du système AC1 en se chargeant ce qui va faire augmenter les tensions HVDC des stations VSC1 et VSC2 comme représenté en figure 9. As for the previous event, it is initially the capacitors Cdc1 and Cdc2 which will compensate for the production/consumption imbalance of the AC1 system by charging, which will increase the HVDC voltages of the VSC1 and VSC2 stations as represented in figure 9.
[0122] L’élévation de la tension HVDC de la station VSC2 va également faire augmenter sa fréquence électrique grâce à son algorithme de partage de la puissance active et ainsi faire progressivement augmenter l’angle de sa tension comparativement à l’angle de la tension du générateur G2 et ainsi augmenter l’import de la station VSC 2 tout en réduisant la puissance active fournie par G2. [0122] The increase in the HVDC voltage of the VSC2 station will also increase its electrical frequency thanks to its active power sharing algorithm and thus gradually increase the angle of its voltage compared to the angle of the voltage of the generator G2 and thus increase the import of the VSC 2 station while reducing the active power supplied by G2.
[0123] Comme pour l’évènement précédent, le réglage primaire des générateurs G1 et G2 va stabiliser la fréquence des deux systèmes AC comme représenté à la figure 10 pour le système G2, VSC2. As for the previous event, the primary setting of generators G1 and G2 will stabilize the frequency of the two AC systems as shown in Figure 10 for system G2, VSC2.
[0124] C : t=50 s : le disjoncteur de G1 s’ouyre : [0124] C: t=50 s: the G1 circuit breaker opens:
[0125] La déconnexion de G1 entraîne une reprise intégrale et instantanée de l’alimentation de la charge L1 par la station VSC1 qui était initialement exportatrice et devient donc importatrice comme représenté en figure 11 . [0125] The disconnection of G1 leads to a complete and instantaneous resumption of the power supply of the load L1 by the station VSC1 which was initially exporting and therefore becomes importing as represented in figure 11 .
[0126] La puissance active permettant à la station VSC1 d’alimenter L1 est dans les premiers instants fournie par le condensateur Cdc 1 puis partagé entre Cdc 1 et Cdc 2 ce qui entraîne une chute des tensions HVDC des stations VSC1 et VSC2. The active power enabling station VSC1 to supply L1 is initially supplied by capacitor Cdc 1 then shared between Cdc 1 and Cdc 2, which causes a drop in the HVDC voltages of stations VSC1 and VSC2.
[0127] L’algorithme de partage de la charge de la station VSC2 répercute sa chute de tension HVDC sur sa fréquence et cette chute de fréquence entraîne progressivement une baisse de l’angle de la tension de VSC2 vis-à-vis de l’angle de la tension de G2 ainsi qu’une reprise progressive de la puissance active de la station VSC2 par G2. [0127] The load sharing algorithm of the VSC2 station affects its HVDC voltage drop on its frequency and this frequency drop gradually causes a drop in the angle of the voltage of VSC2 with respect to the angle of the voltage of G2 as well as a gradual recovery of the active power of the station VSC2 by G2.
[0128] L’algorithme de réglage primaire de fréquence de G2 permet à lui seul de stabiliser les fréquences du système AC2 comme représenté en figure 12 ainsi que du système AC1 comme représenté en figure 13. Le système AC1 est alors régulée en tension et fréquence uniquement par la station VSC1 puisque G1 est déconnecté du système AC1 qui n’a plus de source d’énergie locale. The primary frequency adjustment algorithm of G2 alone makes it possible to stabilize the frequencies of the AC2 system as represented in FIG. 12 as well as of the AC1 system as represented in FIG. 13. The AC1 system is then regulated in voltage and frequency only by the VSC1 station since G1 is disconnected from the AC1 system which no longer has a local energy source.
[0129] Cas d’étude n°2 : système 100% électronique de puissance [0129] Case study no. 2: 100% electronic power system
[0130] Dans ce cas d’étude les groupes G1 et G2 sont remplacées par des systèmes de stockage d’énergie à batteries (BESS pour BATTERY ENERGY STORAGE SYSTEM en anglais) en mode grid forming avec un algorithme de partage de la puissance active de type commande par statisme (droop control en anglais)) suivant : In this case study, the groups G1 and G2 are replaced by battery energy storage systems (BESS for BATTERY ENERGY STORAGE SYSTEM in English) in grid forming mode with an active power sharing algorithm of droop control type following:
[0131] [Math. 25] [0131] [Math. 25]
[0132] fBEss = fn fP [?ref ~ ^fiESs] [0132] f BE ss = fn fP [?ref ~ ^fiESs]
[0133] avec : [0133] with:
[0134] fBEss (Hz) : la fréquence de chaque système de stockage à batterie ; f B Ess (Hz): the frequency of each battery storage system;
[0135] fn (Hz) : la fréquence nominale de chaque système de stockage à batterie ; f n (Hz): the nominal frequency of each battery storage system;
[0136] Pref (MW) : la consigne de puissance active de chaque système de stockage à batterie ; Pref (MW): the active power setpoint of each battery storage system;
[0137] P BESS (MW) : la puissance active injectée par chaque système de stockage à batterie ; P BESS (MW): the active power injected by each battery storage system;
[0138] KfP (Hz/MW) : le gain de réglage de l’algorithme de partage de la puissance active qui est été paramétré à 0,01 Hz/MW. Kf P (Hz/MW): the adjustment gain of the active power sharing algorithm which has been set at 0.01 Hz/MW.
[0139] Les équations: [0139] The equations:
[0140] [Math. 26] [0140] [Math. 26]
UGI = U Glref ; UG2 = U G2ref ; U VSC1 = U vsciref J U VSC2 = U vsc2ref UGI = U Glref ; U G2 = U G2ref ; U VSC1 = U vsci ref JU VSC2 = U vsc2 ref
[0141] [Math. 27]
Figure imgf000020_0001
[0141] [Math. 27]
Figure imgf000020_0001
[0142] Restent valables en remplaçant les indices G par BESS, de même il faut remplacer G1 et G2 par BESS1 et BESS2 dans la figure 4. [0143] La simulation réalisée inclut les évènements suivants : [0142] Remain valid by replacing the indices G by BESS, likewise it is necessary to replace G1 and G2 by BESS1 and BESS2 in figure 4. The simulation performed includes the following events:
D : t=1 s augmentation de 50% de la charge L1 ; D: t=1 s 50% increase in L1 load;
E : t=2 s la consigne de puissance active du BESS 1 passe de 40 MW à 50 MW sous forme d’échelon ; E: t=2 s the BESS 1 active power setpoint changes from 40 MW to 50 MW in the form of a step;
F : t=5 s le disjoncteur du BESS 1 s’ouvre. F: t=5 s the BESS 1 circuit breaker opens.
[0144] D : t=1 s : augmentation de 50% de la charge L1 : [0144] D: t=1 s: 50% increase in load L1:
[0145] On observe dans un premier temps un nouveau partage de la puissance active de la charge L1 dans le système n°1 . Ce nouveau partage représenté en figure 14 se traduit pour la station VSC1 par une diminution instantanée de son export. A new sharing of the active power of load L1 in system no. 1 is first observed. This new sharing represented in FIG. 14 results for the station VSC1 in an instantaneous reduction in its export.
[0146] La diminution de l’export de VSC1 est tout d’abord alimenté intégralement par le condensateur équivalent Cdc1 puis partagé entre Cdc1 et Cdc2. La décharge en énergie électrostatique des condensateurs Cdc1 et Cdc2 entraînent une chute des tensions DC associées représentée en figure 15. L’import de la station VSC2 n’ayant pas encore diminué en cet instant. The reduction in the export of VSC1 is first of all supplied entirely by the equivalent capacitor Cdc1 then shared between Cdc1 and Cdc2. The electrostatic energy discharge of capacitors Cdc1 and Cdc2 leads to a drop in the associated DC voltages represented in figure 15. The import of the VSC2 station has not yet decreased at this time.
[0147] L’algorithme de partage de la charge des stations de conversion reporte ces chutes de tension DC sur les fréquences des convertisseurs VSC 1 et VSC 2. The conversion station load sharing algorithm transfers these DC voltage drops to the frequencies of the VSC 1 and VSC 2 converters.
[0148] Cette chute de la fréquence de VSC2 entraîne une diminution progressive de l’angle de la tension de VSC2 comparativement à l’angle de la tension du BESS2 ainsi qu’une augmentation progressive de la puissance fournie par le BESS2 grâce au phénomène de puissance synchronisante. This drop in the frequency of VSC2 leads to a gradual decrease in the angle of the voltage of VSC2 compared to the angle of the voltage of the BESS2 as well as a gradual increase in the power supplied by the BESS2 thanks to the phenomenon of synchronizing power.
[0149] Les fréquences des BESS1 et BESS2 et des stations VSC1 et VSC2 sont stabilisées par l’algorithme de partage de la puissance active des BESS1 et BESS2 qui sont équivalents en régime permanent au réglage primaire de fréquence des groupes G1 et G2. The frequencies of the BESS1 and BESS2 and of the stations VSC1 and VSC2 are stabilized by the active power sharing algorithm of the BESS1 and BESS2 which are equivalent in steady state to the primary frequency setting of the groups G1 and G2.
[0150] E : t=2 s : la consigne de puissance active du BESS1 passe de 40 MW à 50 MW sous forme d’échelon [0150] E: t=2 s: the active power setpoint of the BESS1 changes from 40 MW to 50 MW in the form of a step
[0151] On observe que l’échelon de consigne de puissance active du BESS1 se traduit simultanément par un échelon de sa fréquence par l’action de son algorithme de partage de la puissance active. Cette modification de fréquence va entraîner une augmentation progressive de l’angle de la tension du BESS1 vis-à-vis de la station de conversion VSC1 ainsi qu’une augmentation de la puissance active fournie par le BESS1 et exportée par la station VSC1. [0152] Comme pour l’évènement précédent, c’est dans un premier temps les condensateurs HVDC qui vont compenser le déséquilibre production - consommation du système AC1 en se chargeant ce qui va faire augmenter les tensions HVDC des stations VSC1 et VSC2. It is observed that the active power setpoint step of the BESS1 is translated simultaneously into a step of its frequency by the action of its active power sharing algorithm. This frequency modification will lead to a gradual increase in the angle of the voltage of the BESS1 with respect to the converter station VSC1 as well as an increase in the active power supplied by the BESS1 and exported by the station VSC1. As for the previous event, it is initially the HVDC capacitors which will compensate for the production-consumption imbalance of the AC1 system by charging, which will increase the HVDC voltages of the VSC1 and VSC2 stations.
[0153] L’élévation de la tension HVDC de la station VSC2 va également faire augmenter sa fréquence électrique grâce à son algorithme de partage de la puissance active et ainsi faire progressivement augmenter l’angle de sa tension comparativement à l’angle de la tension du BESS2 ainsi que l’import de la station VSC2 tout en réduisant la puissance active fournie par le BESS2. The increase in the HVDC voltage of the VSC2 station will also increase its electrical frequency thanks to its active power sharing algorithm and thus gradually increase the angle of its voltage compared to the angle of the voltage of the BESS2 as well as the import of the VSC2 station while reducing the active power supplied by the BESS2.
[0154] Comme pour l’évènement précédent, le réglage primaire des BESS1 et BESS2 va stabiliser la fréquence des deux systèmes AC. As for the previous event, the primary setting of BESS1 and BESS2 will stabilize the frequency of the two AC systems.
[0155] F : t=5 s : le disjoncteur du BESS1 s’ouyre [0155] F: t=5 s: the BESS1 circuit breaker opens
[0156] La déconnexion du BESS 1 entraîne une reprise intégrale et instantanée de l’alimentation de la charge L1 par la station VSC1 qui était initialement exportatrice. The disconnection of the BESS 1 leads to a complete and instantaneous resumption of the supply of the load L1 by the station VSC1 which was initially exporting.
[0157] La puissance permettant à la station VSC1 d’alimenter L1 est dans les premiers instants fournie par le condensateur Cdc 1 puis partagé entre Cdc 1 et Cdc 2 ce qui entraîne une chute des tensions HVDC des stations VSC1 et VSC2. The power enabling station VSC1 to supply L1 is initially supplied by capacitor Cdc 1 then shared between Cdc 1 and Cdc 2, which causes a drop in the HVDC voltages of stations VSC1 and VSC2.
[0158] L’algorithme de partage de la charge de la station VSC2 répercute sa chute de tension HVDC sur sa fréquence comme représenté en figure 16. Cette chute de fréquence entraîne progressivement une baisse de l’angle de la tension de VSC2 vis-à-vis de l’angle de la tension du BESS 2 qui entraîne une augmentation progressive de la puissance active du BESS 2 comme représenté en figure 17. The VSC2 station load sharing algorithm affects its HVDC voltage drop on its frequency as shown in Figure 16. This frequency drop gradually causes a drop in the voltage angle of VSC2 with respect to -vis the angle of the voltage of the BESS 2 which leads to a gradual increase in the active power of the BESS 2 as shown in figure 17.
[0159] L’algorithme de partage de la charge du BESS 2 permet à lui seul de stabiliser les fréquences du système AC2 ainsi que du système AC1 (définie exclusivement par la station VSC1) qui n’a plus de source d’énergie locale. The BESS 2 load sharing algorithm alone makes it possible to stabilize the frequencies of the AC2 system as well as of the AC1 system (defined exclusively by the VSC1 station) which no longer has a local energy source.
[0160] Cas d’étude n°3 : système 100% électronique de puissance avec Hz et
Figure imgf000022_0001
f>n=60 Hz :
[0160] Case study no. 3: 100% electronic power system with Hz and
Figure imgf000022_0001
f>n=60Hz:
[0161] Le présent cas d’étude n°3 est identique en tout point au cas d’étude n°2 à la différence près que la fréquence nominale du BESS2 et de la station VSC 2 est de 60 Hz. Le comportement du système global est également identique au cas d’étude n°2 avec de légères différences temporelles liées au changement de la fréquence nominale du système AC2. IL y a donc là aussi synchronisation des systèmes au plan du partage de puissance malgré les fréquences différentes. [0162] Contrairement à l’art antérieur, la présente invention rend synchrones plusieurs systèmes électriques AC interconnectés par des liaisons HVDC VSC. The present case study no. 3 is identical in all respects to case study no. 2 except that the nominal frequency of the BESS2 and of the VSC station 2 is 60 Hz. The behavior of the system global is also identical to case study 2 with slight time differences related to the change in the nominal frequency of the AC2 system. There is therefore also synchronization of the systems in terms of power sharing despite the different frequencies. Contrary to the prior art, the present invention makes several AC electrical systems interconnected by HVDC VSC links synchronous.

Claims

-22--22-
Revendications Claims
[Revendication 1] Procédé de pilotage de convertisseurs bidirectionnels courant alternatif/courant continu (2a, 2b), de sous-stations reliant un premier système à courant alternatif comportant au moins un premier générateur (10a) de courant alternatif et/ou au moins une première charge (11a), à au moins un second système à courant alternatif, comportant au moins un second générateur (10b) de courant alternatif et/ou au moins une seconde charge (11b), au travers d’une ligne en courant continu (1), caractérisé en ce que la commande de chacun desdits convertisseurs (2a, 2b) est réalisée en mode source de tension (en anglais grid forming), avec un algorithme de commande vectorielle de l’amplitude et de l’angle de la tension alternative du convertisseur, côté système à courant alternatif ; et comporte une fonction F de pilotage desdits convertisseurs ou règle de contrôle, du type partage de la charge en puissance active entre chaque sous-station de la ligne en courant continu et son système à courant alternatif, ladite fonction fournissant une fréquence de ladite tension alternative exploitée par ladite commande vectorielle de chacun desdits convertisseurs pour le calcul dudit angle de ladite tension alternative. [Claim 1] Method for controlling bidirectional alternating current/direct current converters (2a, 2b), of substations connecting a first alternating current system comprising at least one first alternating current generator (10a) and/or at least one first load (11a), to at least one second alternating current system, comprising at least one second alternating current generator (10b) and/or at least one second load (11b), through a direct current line ( 1), characterized in that the control of each of said converters (2a, 2b) is carried out in voltage source mode (in English grid forming), with a vector control algorithm of the amplitude and the angle of the voltage converter AC, AC system side; and comprises a function F for controlling said converters or control rule, of the active power load sharing type between each substation of the direct current line and its alternating current system, said function providing a frequency of said alternating voltage exploited by said vector control of each of said converters for calculating said angle of said alternating voltage.
[Revendication 2] Procédé de pilotage de convertisseurs bidirectionnels selon la revendication 1 , pour lequel ladite fonction F de pilotage est telle que la fréquence électrique fvsc. de ladite tension alternative en sortie d’un dit convertisseur /, côté système à courant alternatif, est fonction de la tension continue UDCvsc en sortie dudit convertisseur /, côté ligne en courant continu, de sorte que des variations de la tension continue en sortie dudit convertisseur /, côté ligne en courant continu, soient répercutées sur la fréquence de la tension alternative en sortie de ce convertisseur, côté système à courant alternatif. [Claim 2] Method for controlling bidirectional converters according to claim 1, for which said control function F is such that the electrical frequency f vsc . of said alternating voltage at the output of a said converter /, on the alternating current system side, is a function of the direct current voltage U DCvsc at the output of said converter /, on the direct current line side, so that variations in the direct current voltage at the output of said converter /, on the direct current line side, are reflected in the frequency of the alternating voltage at the output of this converter, on the alternating current system side.
[Revendication 3] Procédé de pilotage de convertisseurs bidirectionnels selon la revendication 1 ou 2, pour lequel ledit algorithme de commande vectorielle comporte une régulation de tension alternative avec boucle de courant alternatif pourvue d’une fonction de limitation du courant alternatif à une valeur limite. [Claim 3] Method for controlling bidirectional converters according to claim 1 or 2, for which said vector control algorithm comprises an alternating voltage regulation with an alternating current loop provided with a function of limiting the alternating current to a limit value.
[Revendication 4] Procédé de pilotage de convertisseurs bidirectionnels selon la revendication 1 ou 2, pour lequel ledit algorithme de commande vectorielle est un algorithme de type machine synchrone virtuelle, ladite fonction F de pilotage modulant la fréquence électrique des convertisseurs bidirectionnels côté courant alternatif. [Claim 4] A method of driving bidirectional converters according to claim 1 or 2, for which said vector control algorithm is a virtual synchronous machine type algorithm, said driving function F modulating the electric frequency of the bidirectional converters on the alternating current side.
[Revendication 5] Procédé de pilotage de convertisseurs bidirectionnels selon l’une quelconque des revendications précédentes, pour lequel la fonction F de pilotage, ou règle de contrôle, est une fonction liant la fréquence du courant alternatif courante fvsc. d’un convertisseur / à la tension continue courante UDCvsc de ce convertisseur / de la forme : [Claim 5] Method for controlling bidirectional converters according to any one of the preceding claims, for which the control function F, or control rule, is a function linking the frequency of the current alternating current f vsc . of a converter / to the current DC voltage U DCvsc of this converter / of the form:
[Math. 28]
Figure imgf000025_0001
[Math. 28]
Figure imgf000025_0001
Avec fVSCi la fréquence dudit convertisseur /, UDCvsc la tension dudit convertisseur / à un instant donné et fvscni et UDCVSC et Kvsct respectivement la fréquence nominale, la tension DC nominale et le gain de réglage de l’algorithme pour chaque convertisseur /. With f VSCi the frequency of said converter /, U DCvsc the voltage of said converter / at a given instant and fvsc ni and U DC VSC and K vsc t respectively the nominal frequency, the nominal DC voltage and the adjustment gain of the algorithm for each converter /.
[Revendication 6] Procédé de pilotage de convertisseurs bidirectionnels selon la revendication 5, pour lequel ledit gain de réglage est directement implémenté au niveau de calculateurs locaux pilotant lesdits convertisseurs. [Claim 6] Method for controlling bidirectional converters according to Claim 5, for which the said adjustment gain is directly implemented at the level of local computers controlling the said converters.
[Revendication 7] Procédé de pilotage de convertisseurs bidirectionnels selon la revendication 5, pour lequel ledit gain de réglage est fixé au niveau d’un calculateur distant d’un centre de contrôle pilotant lesdites sous-stations et transmis aux convertisseurs bidirectionnels desdites sous-stations au travers d’un réseau informatique reliant ledit calculateur distants à des calculateurs locaux pilotant lesdits convertisseurs en fonction de paramètres de fonctionnement des systèmes reliés auxdites sous-stations. [Claim 7] Method for driving bidirectional converters according to claim 5, for which said adjustment gain is set at the level of a computer remote from a control center controlling said substations and transmitted to the bidirectional converters of said substations through a computer network connecting said remote computer to local computers controlling said converters according to operating parameters of the systems connected to said substations.
[Revendication 8] Procédé de pilotage de convertisseurs bidirectionnels selon l’une quelconque des revendications précédentes, pour lequel le pilotage du transit de puissance dans ladite ligne à courant continu est réalisé au niveau des moyens de production et de stockage de chacun des systèmes courant alternatif interconnectés via leurs régulations classiques de puissance active et de réglage primaire de fréquence de sorte que l’implémentation dudit procédé ne nécessite pas de modification de la régulation de puissance active et de la régulation de réglage primaire de fréquence desdits moyens de production et de stockage. [Claim 8] Method for controlling bidirectional converters according to any one of the preceding claims, for which the control of the power transit in the said direct current line is carried out at the level of the means of production and storage of each of the alternating current systems interconnected via their conventional active power and primary frequency adjustment regulations so that the implementation of said method does not require modification of the active power regulation and the primary frequency adjustment regulation of said production and storage means.
[Revendication 9] Procédé de pilotage de convertisseurs bidirectionnels selon l’une quelconque des revendications précédentes, pour lequel la ligne courant en continu est une ligne de type HDVC (liaison haute tension à courant continu) reliant au moins deux systèmes électriques à courant alternatif. [Claim 9] Method for controlling bidirectional converters according to any one of the preceding claims, for which the direct current line is a line of the HDVC type (high voltage direct current link) connecting at least two alternating current electrical systems.
[Revendication 10] Programme informatique comportant des instructions pour la mise en oeuvre du procédé selon l’une des revendications 1 à 9 lorsque ce programme est exécuté par un processeur. [Revendication 11] Support d’enregistrement non transitoire lisible par un ordinateur sur lequel est enregistré un programme pour la mise en oeuvre du procédé selon l’une des revendications 1 à 9 lorsque ce programme est exécuté par un processeur. [Claim 10] Computer program comprising instructions for implementing the method according to one of Claims 1 to 9 when this program is executed by a processor. [Claim 11] Non-transitory recording medium readable by a computer on which is recorded a program for implementing the method according to one of Claims 1 to 9 when this program is executed by a processor.
[Revendication 12] Réseau électrique mixte courant alternatif / courant continu comportant au moins une ligne HVDC (liaison haute tension à courant continu) reliant au moins deux systèmes à courant alternatif au travers de stations de conversion munies de convertisseurs bidirectionnels courant alternatif/courant continu, caractérisé en ce que les convertisseurs desdites stations de conversions sont commandés selon le procédé de l’une quelconque des revendications 1 à 9. [Claim 12] Mixed alternating current / direct current electrical network comprising at least one HVDC line (high voltage direct current link) connecting at least two alternating current systems through converter stations equipped with bidirectional alternating current / direct current converters, characterized in that the converters of said conversion stations are controlled according to the method of any one of claims 1 to 9.
PCT/EP2021/085313 2020-12-11 2021-12-10 Method for driving bidirectional ac/dc converters for synchronizing ac electrical systems connected to one another by a dc link WO2022123060A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2013071A FR3117707A1 (en) 2020-12-11 2020-12-11 METHOD FOR CONTROLLING BIDIRECTIONAL ALTERNATING CURRENT / DIRECT CURRENT CONVERTERS FOR THE SYNCHRONIZATION OF ALTERNATING CURRENT ELECTRICAL SYSTEMS CONNECTED TOGETHER BY A DIRECT CURRENT LINK
FRFR2013071 2020-12-11

Publications (1)

Publication Number Publication Date
WO2022123060A1 true WO2022123060A1 (en) 2022-06-16

Family

ID=75539408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/085313 WO2022123060A1 (en) 2020-12-11 2021-12-10 Method for driving bidirectional ac/dc converters for synchronizing ac electrical systems connected to one another by a dc link

Country Status (2)

Country Link
FR (1) FR3117707A1 (en)
WO (1) WO2022123060A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU91224B1 (en) * 2004-06-29 2006-03-09 Electric Power Res Inst Power flow controller responsive to power circulation demand for optimizing power transfer
EP1717941A2 (en) * 2005-04-29 2006-11-02 ABB Technology AG Electric power converter
DE102013114668A1 (en) * 2013-12-20 2015-06-25 Ge Energy Power Conversion Gmbh Method for operating a high voltage direct current transmission
EP3070805A1 (en) * 2015-03-19 2016-09-21 General Electric Technology GmbH Power transmission network
US20200266722A1 (en) * 2019-02-15 2020-08-20 Sichuan University Dynamic stability analysis and control method for voltage sourced converter based high voltage direct current transmission system
US20200335975A1 (en) 2017-12-28 2020-10-22 Hyosung Heavy Industries Corporation Method for controlling output level of modular multilevel converter for reducing power system frequency change

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU91224B1 (en) * 2004-06-29 2006-03-09 Electric Power Res Inst Power flow controller responsive to power circulation demand for optimizing power transfer
EP1717941A2 (en) * 2005-04-29 2006-11-02 ABB Technology AG Electric power converter
DE102013114668A1 (en) * 2013-12-20 2015-06-25 Ge Energy Power Conversion Gmbh Method for operating a high voltage direct current transmission
EP3070805A1 (en) * 2015-03-19 2016-09-21 General Electric Technology GmbH Power transmission network
US20200335975A1 (en) 2017-12-28 2020-10-22 Hyosung Heavy Industries Corporation Method for controlling output level of modular multilevel converter for reducing power system frequency change
US20200266722A1 (en) * 2019-02-15 2020-08-20 Sichuan University Dynamic stability analysis and control method for voltage sourced converter based high voltage direct current transmission system

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BIN PENGXIN YINJOHN SHENJUN WANG: "Application of Virtual Synchronization Control Strategy in MMC based VSC-HVDC System", IEEE TRANSACTIONS ON POWER DELIVERY, vol. 29, no. 5, 2014
CUIQING DUAMBRA SANNINOMATH H.J. BOLLEN: "Analysis of the Control Algorithms of Voltage-Source Converter HVDC", 2005, IEEE
EBRAHIM ROKROKTAOUFIK QORIAANTOINE BRUYEREBRUNO FRANCOISXAVIER GUILLAUD: "Classification and Dynamic Assessment of Droop-Based Grid-Forming Control Schemes: Application in HVDC Systems", 21 ST POWER SYSTEMS COMPUTATION CONFÉRENCE, 2020
J. ROCABERTA. LUNAF. BLAABJERGP. RODRIGUEZ: "Control of power converters in AC microgrids", IEEE TRANSACTIONS ON POWER ELECTRONICS, vol. 27, no. 11, 2012
JENNY Z. ZHOUHUI DINGSHENGTAO FANYI ZHANGANIRUDDHA M. GOLE: "Impact of Short-Circuit Ratio and Phase-Locked-Loop Parameters on the Small-Signal Behavior of a VSC-HVDC Converter", IEEE TRANSACTIONS ON POWER DELIVERY, vol. 29, no. 5, 2014, XP011559661, DOI: 10.1109/TPWRD.2014.2330518
MUHAMMAD RAZAMÔNICA ARAGUÉS PENALBAORIOL GOMIS-BELLMUNT: "Electrical Power and Energy Systems", 2018, ELSEVIER, article "Short circuit analysis of an offshore AC network having multiple grid", pages: 102

Also Published As

Publication number Publication date
FR3117707A1 (en) 2022-06-17

Similar Documents

Publication Publication Date Title
Ratnam et al. Future low-inertia power systems: Requirements, issues, and solutions-A review
Nasser et al. Buffered-microgrid structure for future power networks; a seamless microgrid control
US10008853B2 (en) Generator dispatching or load shedding control method and system for microgrid applications
US7787272B2 (en) Inverter based storage in dynamic distribution systems including distributed energy resources
Jain et al. Grid-forming control strategies for blackstart by offshore wind farms
Bahrman et al. The new black start: System restoration with help from voltage-sourced converters
Asghar et al. Fuzzy logic‐based intelligent frequency and voltage stability control system for standalone microgrid
US9513650B2 (en) Method in an electric power system, controller, computer programs, computer program products and electric power system
WO2017216575A1 (en) An energy management system and method for grid-connected and islanded micro-energy generation
CN107086597A (en) The control method of virtual synchronous generator
EP3729598B1 (en) Method and system for regulating an electrical converter for autonomous frequency stabilisation with load transients in a microgrid comprising a diesel engine-generator
Zhao et al. Grid‐forming requirements based on stability assessment for 100% converter‐based Irish power system
Adeyemo et al. Reactive power control for multiple batteries connected in parallel using modified power factor method
Lei et al. Energy storage system control strategy to minimize the voltage and frequency fluctuation in the microgird
WO2022123060A1 (en) Method for driving bidirectional ac/dc converters for synchronizing ac electrical systems connected to one another by a dc link
Yuan et al. Control strategies for permanent magnet synchronous generator‐based wind turbine with independent grid‐forming capability in stand‐alone operation mode
WO2015075372A1 (en) Power grid frequency adjustment method
Lin et al. A coordinated droop controls and power management scheme for hybrid energy storage systems in DC microgrids
EP2158657B1 (en) Control system and method for a tcsc in an electric energy transport network in particular using a sliding-modes approach
Wang et al. A frequency control method based on a coordinated active and reactive power optimization adjustment for weak HVDC sending-end power grid
Zheng et al. Adaptive multiple‐master strategy for power management of distributed generators in an islanded distribution subsystem
Gupta et al. Single‐phase wind‐BES microgrid with seamless transition capability
Nasser et al. Buffered Microgrids with Modular Back-to-Back Converter Grid Interface. Energies 2022, 15, 7879
Choi et al. Advanced active power control considering the characteristics of distributed energy resources in microgrid
Dai Frequency control coordination among non-synchronous AC areas connected by a multi-terminal HVDC grid.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21836131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21836131

Country of ref document: EP

Kind code of ref document: A1