WO2022121339A1 - 半导体结构及半导体结构的制造方法 - Google Patents

半导体结构及半导体结构的制造方法 Download PDF

Info

Publication number
WO2022121339A1
WO2022121339A1 PCT/CN2021/110734 CN2021110734W WO2022121339A1 WO 2022121339 A1 WO2022121339 A1 WO 2022121339A1 CN 2021110734 W CN2021110734 W CN 2021110734W WO 2022121339 A1 WO2022121339 A1 WO 2022121339A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric layer
layer
semiconductor structure
substrate
lower electrode
Prior art date
Application number
PCT/CN2021/110734
Other languages
English (en)
French (fr)
Inventor
苏星松
刘洋浩
郁梦康
白卫平
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/452,266 priority Critical patent/US20220181327A1/en
Publication of WO2022121339A1 publication Critical patent/WO2022121339A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto

Definitions

  • the present disclosure relates to, but is not limited to, a semiconductor structure and a method of fabricating the semiconductor structure.
  • DRAM Dynamic Random Access Memory
  • Embodiments of the present disclosure provide a semiconductor structure and a method for fabricating the semiconductor structure, so as to improve the performance of the semiconductor structure.
  • a first aspect of the present disclosure provides a semiconductor structure comprising:
  • the second dielectric layer is located between the first dielectric layer and the lower electrode, and the thickness of the upper part of the second dielectric layer is smaller than the thickness of the bottom part of the second dielectric layer.
  • a second aspect of the present disclosure provides a method of fabricating a semiconductor structure, comprising:
  • the stacked structure including a first dielectric layer
  • the removed portion of the upper portion of the initial dielectric layer is larger than the removed portion of the lower portion of the initial dielectric layer.
  • FIG. 1 is a schematic structural diagram of a semiconductor structure according to an exemplary embodiment
  • FIG. 2 is a schematic flowchart of a method for manufacturing a semiconductor structure according to an exemplary embodiment
  • FIG. 3 is a structural diagram of forming a capacitor hole according to a method for manufacturing a semiconductor structure according to an exemplary embodiment
  • FIG. 4 is a structural diagram of forming an initial dielectric layer according to a method for manufacturing a semiconductor structure according to an exemplary embodiment
  • FIG. 5 is a structural diagram of forming a second dielectric layer according to a method for manufacturing a semiconductor structure according to an exemplary embodiment
  • FIG. 6 is a structural diagram of forming an initial dielectric layer according to a method for manufacturing a semiconductor structure according to another exemplary embodiment
  • FIG. 7 is a structural diagram of forming a second dielectric layer according to a method for manufacturing a semiconductor structure according to another exemplary embodiment
  • FIG. 8 is a structural diagram of forming a lower electrode according to a method for manufacturing a semiconductor structure according to an exemplary embodiment
  • FIG. 9 is a structural diagram of removing the first sacrificial layer and the second sacrificial layer according to a method for manufacturing a semiconductor structure according to an exemplary embodiment
  • FIG. 10 is a structural diagram of forming a dielectric layer according to a method for manufacturing a semiconductor structure according to an exemplary embodiment.
  • Capacitor body part 11. Capacitor hole; 12. Substrate; 13. Laminated structure; 131. First dielectric layer; 132. First sacrificial layer; 133. First support layer; 135, second support layer; 20, second dielectric layer; 21, side surface; 22, bottom surface; 23, inclined surface; 30, initial dielectric layer; 40, lower electrode; 50, dielectric layer; 60, upper electrode; 111. A first opening.
  • the semiconductor structure includes: a substrate 12 ; a plurality of discrete lower electrodes 40 on the substrate 12 ; a first dielectric layer 131 between the lower electrodes 40 and the second dielectric layer 20 ; wherein, the second dielectric layer 20 is located between the first dielectric layer 131 and the lower electrode 40 , and the upper thickness of the second dielectric layer 20 is smaller than the bottom thickness of the second dielectric layer 20 .
  • the semiconductor structure of one embodiment of the present disclosure includes a substrate 12 , a plurality of lower electrodes 40 , a first dielectric layer 131 and a second dielectric layer 20 .
  • the thickness of the upper part of the second dielectric layer 20 is smaller than the thickness of the bottom part of the second dielectric layer 20
  • an initial dielectric layer 30 is formed at the bottom of the capacitor hole, and part of the initial dielectric layer 30 is removed to make the remaining initial dielectric layer 30 .
  • the layer 30 serves as the second dielectric layer 20 , wherein the removed part of the upper part of the initial dielectric layer 30 is larger than the removed part of the bottom part of the initial dielectric layer 30 , so that the thickness of the upper part of the second dielectric layer 20 is smaller than the thickness of the bottom part of the second dielectric layer 20 .
  • the thickness here can be understood as the dimension of the second dielectric layer 20 along the surface direction of the substrate 12 .
  • the sidewall of the first dielectric layer 131 is perpendicular to the surface of the substrate 12 , that is, a right angle is formed between the sidewall of the first dielectric layer 131 and the surface of the substrate 12 , and the second dielectric layer 20 By filling the right angle, the problem of charge accumulation at the right angle of the lower electrode can be avoided, so as to avoid the phenomenon of leakage current at the corner of the lower electrode.
  • the surface of the second dielectric layer 20 includes a side surface 21 , a bottom surface 22 and a sloped surface 23 , the side surface 21 is in direct contact with the first dielectric layer 131 , and the bottom surface 22 is in direct contact with the substrate 12 , the sloped surface 23 is in direct contact with the lower electrode 40 .
  • the second dielectric layer 20 surrounds the sidewall of the first dielectric layer 131 and covers the bottom of the lower electrode 40 , but it needs to ensure that the lower electrode 40 is in direct contact with the substrate 12 . Since the second dielectric layer 20 is filled at the corner of the first dielectric layer 131 and the substrate 12 , the phenomenon of charge accumulation at the bottom of the lower electrode 40 can be avoided.
  • the sloped surface 23 is an arc surface, and the arc surface is curved inside the second dielectric layer 20 , that is, the sloped surface 23 does not have sharp corners, which can make the bottom of the lower electrode 40 smooth, and it is difficult to form an electric charge. accumulation, so that the charges can be uniformly distributed in the lower electrode 40, and the purpose of reducing the leakage current is achieved.
  • the second dielectric layer 20 has a bowl shape with an open bottom.
  • the bottom electrode 40 is cup-shaped and the bottom of the cross section is U-shaped, the second dielectric layer 20 covers the bottom of the bottom electrode 40 and an opening is formed in the middle of the bottom surface 22 , and the opening can ensure the bottom of the bottom electrode 40 In direct contact with the substrate 12 .
  • the bottom of the lower electrode 40 may be electrically connected to the contact pads through the openings.
  • the sloped surface 23 is curved toward the inside of the second dielectric layer 20 , so as to ensure that the thickness of the upper part of the second dielectric layer 20 is smaller than the thickness of the bottom part of the second dielectric layer 20 .
  • the material of the second dielectric layer 20 includes at least one of SiCN, SiBN, SiSbN and SiPN.
  • the second dielectric layer 20 may be formed of SiN doped with at least one of C, B, P, and Sb ions.
  • the height of the second dielectric layer 20 is not higher than the height of the first dielectric layer 131 .
  • the first sacrificial layer 132 is formed above the first dielectric layer 131 , and the first sacrificial layer 132 needs to be removed after the lower electrode 40 is formed. Therefore, when the first sacrificial layer 132 When the second dielectric layer 20 is doped with the same type of ions, in order to ensure that the second dielectric layer 20 will not be affected in the subsequent process of removing the first sacrificial layer 132, the second dielectric layer 20 can be located in the second dielectric layer 20.
  • a sacrificial layer 132 that is, the second dielectric layer 20 is completely located in the closed space surrounded by the bottom of the lower electrode 40, the first dielectric layer 131 and the substrate 12.
  • the first sacrificial layer 132 is subsequently removed by a wet process , the second dielectric layer 20 can be prevented from being affected.
  • the height of the second dielectric layer 20 is higher than that of the first dielectric layer 131 .
  • a first sacrificial layer 132 is formed above the first dielectric layer 131 , and the first sacrificial layer 132 needs to be removed after the lower electrode 40 is formed. Therefore, when the first sacrificial layer 132 When the second dielectric layer 20 is doped with different types of ions, the second dielectric layer 20 will not be affected in the subsequent process of removing the first sacrificial layer 132, and it may not be considered whether the top of the second dielectric layer 20 exceeds The top of the first dielectric layer 131 . As shown in FIG. 7 , the height of the second dielectric layer 20 is higher than that of the first dielectric layer 131 . Increasing the height of the second dielectric layer 20 is beneficial to increase the thickness of the bottom of the second dielectric layer 20 and further reduce leakage current.
  • the embodiment in which the height of the second dielectric layer 20 is not higher than the height of the first dielectric layer 131 is not excluded.
  • the etching selectivity ratio of the first sacrificial layer 132 and the second dielectric layer 20 can be adjusted by selecting appropriate etching materials to achieve the purpose of removing the first sacrificial layer 132 and retaining the second dielectric layer 20 .
  • the substrate 12 includes several discrete contact pads, and the lower electrode 40 is in direct contact with the contact pads, thereby ensuring electrical connection between the lower electrode 40 and the contact pads.
  • the material of the contact pad includes, but is not limited to, tungsten (W).
  • W tungsten
  • the plurality of lower electrodes 40 are provided in a one-to-one correspondence with the plurality of contact pads.
  • the semiconductor structure further includes: a first support layer 133 located in the middle of the lower electrode 40 and separating the lower electrode 40; a second support layer 135 located on the upper part of the lower electrode 40 and separating the lower electrode 40
  • the dielectric layer 50 covers the surface of the lower electrode 40 ; the upper electrode 60 covers the surface of the dielectric layer 50 .
  • the first dielectric layer 131 , the first support layer 133 and the second support layer 135 are arranged in sequence along the height direction, and the first dielectric layer 131 and the first support layer 133 are spaced apart. 133 is spaced apart from the second support layer 135 .
  • the first dielectric layer 131 , the first supporting layer 133 and the second supporting layer 135 realize the supporting function for the lower electrode 40 and the upper electrode 60 .
  • the first dielectric layer 131 , the first support layer 133 and the second support layer 135 may be made of the same material, and the first dielectric layer 131 , the first support layer 133 and the second support layer 135 may also be made of different materials s material.
  • the first dielectric layer 131, the first support layer 133, and the second support layer 135 may each include silicon nitride (SiN).
  • a dielectric layer 50 is disposed between the lower electrode 40 and the upper electrode 60, and the material of the dielectric layer 50 includes a high-k material; wherein the high-k material includes but is not limited to high-k materials such as aluminum oxide, zirconium oxide, and hafnium oxide. K material or any combination thereof.
  • the material of the lower electrode 40 includes, but is not limited to, titanium nitride (TiN).
  • the material of the upper electrode 60 includes, but is not limited to, titanium nitride.
  • An embodiment of the present disclosure also provides a method for manufacturing a semiconductor structure. As shown in FIG. 2 , the method for manufacturing a semiconductor structure includes:
  • the removed portion of the upper portion of the initial dielectric layer 30 is larger than the removed portion of the lower portion of the initial dielectric layer 30 .
  • an initial dielectric layer 30 is formed at the bottom of the capacitor hole 11 , and the removed portion of the upper portion of the initial dielectric layer 30 is larger than the removed portion of the lower portion of the initial dielectric layer 30 , so that the second dielectric layer is formed.
  • the thickness of the upper portion of the layer 20 is smaller than the thickness of the bottom portion of the second dielectric layer 20, which can avoid the problem of leakage current at the bottom of the lower electrode 40, thereby improving the performance of the semiconductor structure.
  • the substrate 12 and the stacked structure 13 form a capacitor body portion 10 , and a capacitor hole 11 is formed in the capacitor body portion 10 , and the capacitor hole 11 penetrates the stacked structure 13 to expose the substrate 12 .
  • the stacked structure 13 further includes a first sacrificial layer 132, and the first sacrificial layer 132 is formed on the first dielectric layer 131; wherein the initial dielectric layer 30 and the first sacrificial layer 132 are doped with the same type ions.
  • a first dielectric layer 131 is formed on the surface of the substrate 12 , and then a first sacrificial layer 132 is formed on the surface of the first dielectric layer 131 .
  • an initial dielectric layer 30 is formed at the bottom of the capacitor hole 11 .
  • the initial dielectric layer 30 and the first sacrificial layer 132 may be ion-doped by means of ion implantation.
  • the first dielectric layer 131 and the first sacrificial layer 132 can be formed by adopting a physical vapor deposition (Physical Vapor Deposition, PVD) process, a chemical vapor deposition (Chemical Vapor Deposition, CVD) process, or an atomic layer deposition (Atomic Layer Deposition, ALD) process, etc. form.
  • PVD Physical Vapor Deposition
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • the doped ions include at least one of C, B, P, and Sb, that is, the initial dielectric layer 30 and the first sacrificial layer 132 can be doped with at least one of C, B, P, and Sb.
  • the initial dielectric layer 30 and the first sacrificial layer 132 can be doped with at least one of C, B, P, and Sb.
  • the height of the second dielectric layer 20 is not higher than the height of the first dielectric layer 131 .
  • the first sacrificial layer 132 and the second dielectric layer 20 are doped with the same type of ions, in order to ensure that the second dielectric layer 20 will not be damaged during the subsequent removal of the first sacrificial layer 132, the first sacrificial layer 132 can be removed.
  • the two dielectric layers 20 are located below the first sacrificial layer 132 , that is, the height of the second dielectric layer 20 is not higher than the height of the first dielectric layer 131 .
  • a lower electrode 40 is formed in the capacitor hole 11 , for example, a lower electrode made of titanium nitride is formed by PVD or CVD.
  • the second dielectric layer 20 is completely located in the closed space surrounded by the bottom of the lower electrode 40, the first dielectric layer 131 and the substrate 12.
  • the first sacrificial layer 132 is subsequently removed by a wet process, the second dielectric layer 20 can be prevented from being removed. affected.
  • the stacked structure 13 further includes a first support layer 133 , a second sacrificial layer 134 and a second support layer 135 which are sequentially formed over the first sacrificial layer 132 .
  • the specific formation process of the second dielectric layer 20 will be described with reference to FIGS. 3 to 5 .
  • a substrate 12 is provided, and a first dielectric layer 131 , a first sacrificial layer 132 , a first supporting layer 133 , a second sacrificial layer 134 and a second supporting layer 135 are sequentially formed on the substrate 12 , namely the first dielectric layer 131 , a first sacrificial layer 132 , a first support layer 133 , a second sacrificial layer 134 and a second support layer 135 as the stacked structure 13 .
  • the stacked structure 13 is etched to form a plurality of capacitor holes 11 and expose the upper surface of the substrate 12 , as shown in FIG. 3 .
  • the bottom of the capacitor hole 11 is filled with the initial dielectric layer 30, and the top of the initial dielectric layer 30 does not exceed the bottom end of the first sacrificial layer 132. As shown in FIG. 4, the top of the initial dielectric layer 30 is lower than the first sacrificial layer. 132 bottom end.
  • the initial dielectric layer 30 is partially etched, the removed part of the upper part of the initial dielectric layer 30 is larger than the removed part of the lower part of the initial dielectric layer 30 , and part of the substrate 12 is exposed, thereby forming the second dielectric layer 20 as shown in FIG. 5 .
  • the stacked structure 13 further includes a first sacrificial layer 132, and the first sacrificial layer 132 is formed on the first dielectric layer 131; wherein the second dielectric layer 20 and the first sacrificial layer 132 are doped with different type of ions, the height of the second dielectric layer 20 is higher than the height of the first dielectric layer 131 .
  • the second dielectric layer 20 will not be affected in the process of removing the first sacrificial layer 132, so the second dielectric layer 20 can be removed.
  • the top of the dielectric layer 20 is higher than the bottom of the first sacrificial layer 132 to ensure the thickness of the bottom of the second dielectric layer 20 and avoid the problem of leakage current to the greatest extent.
  • the stacked structure 13 further includes a first support layer 133 , a second sacrificial layer 134 and a second support layer 135 which are sequentially formed over the first sacrificial layer 132 .
  • the specific formation process of the second dielectric layer 20 will be described with reference to FIG. 3 , FIG. 6 and FIG. 7 .
  • a substrate 12 is provided, and a first dielectric layer 131 , a first sacrificial layer 132 , a first supporting layer 133 , a second sacrificial layer 134 and a second supporting layer 135 are sequentially formed on the substrate 12 , namely the first dielectric layer 131 , a first sacrificial layer 132 , a first support layer 133 , a second sacrificial layer 134 and a second support layer 135 as the stacked structure 13 .
  • the stacked structure 13 is etched to form a plurality of capacitor holes 11 and expose the upper surface of the substrate 12 , as shown in FIG. 3 .
  • the bottom of the capacitor hole 11 is filled with an initial dielectric layer 30 , and the top of the initial dielectric layer 30 is made higher than the bottom of the first sacrificial layer 132 , as shown in FIG. 6 .
  • the initial dielectric layer 30 is partially etched, and the removed part of the upper part of the initial dielectric layer 30 is larger than the removed part of the lower part of the initial dielectric layer 30 , and part of the substrate 12 is exposed, thereby forming the second dielectric layer 20 as shown in FIG. 7 .
  • the first support layer 133, the second sacrificial layer 134, the second support layer 135 and the initial dielectric layer 30 can be obtained by adopting a physical vapor deposition process, a chemical vapor deposition process, or an atomic layer deposition process, etc. form.
  • the first dielectric layer 131 , the first support layer 133 , and the second support layer 135 may be made of the same material, or the first dielectric layer 131 , the first support layer 133 , and the second support layer 135 may be made of different materials.
  • the first dielectric layer 131 , the first support layer 133 and the second support layer 135 may include silicon nitride.
  • the material of the second dielectric layer 20 includes at least one of SiCN, SiBN, SiSbN and SiPN.
  • the initial dielectric layer 30 may be formed by doping at least one of C, B, P, and Sb ions in silicon nitride.
  • the method for manufacturing a semiconductor structure further includes: forming a lower electrode 40 in the capacitor hole 11, the bottom of the lower electrode 40 being in direct contact with the substrate 12; removing the first sacrificial layer 132 and the second sacrificial layer 134;
  • the dielectric layer 50 is formed on the surface of the lower electrode 40 ;
  • the upper electrode 60 is formed on the surface of the dielectric layer 50 .
  • the lower electrode 40 is formed in the capacitor hole 11 , the first sacrificial layer 132 and the second sacrificial layer 134 are removed, the first dielectric layer 131 , the first support The layer 133 and the second support layer 135 realize the support for the lower electrode 40 .
  • a dielectric layer 50 is formed on the surface of the lower electrode 40 , the dielectric layer 50 also covers the upper surface of the second support layer 135 , and the upper electrode 60 is formed on the surface of the dielectric layer 50 .
  • the semiconductor structure shown in FIG. 1 refer to the semiconductor structure shown in FIG. 1 .
  • lower electrodes 40 are formed in each capacitor hole 11 , as shown in FIG. 8 .
  • the first sacrificial layer 132 and the second sacrificial layer 134 in FIG. 8 are removed.
  • the lower electrode 40 can support the lower electrode 40 through the first dielectric layer 131 , the first supporting layer 133 and the second supporting layer 135 , specifically as follows As shown in FIG.
  • part of the second support layer 135 can be removed to form the first opening 111, the first opening 111 exposes the second sacrificial layer 134, and the second sacrificial layer 134 is removed by wet etching; Part of the first support layer 133 is exposed to the first sacrificial layer 132, and the first sacrificial layer 132 is removed by wet etching; the surface of the lower electrode 40 is covered with the dielectric layer 50, and the dielectric layer 50 covers the first support layer 133 and the second support The layer 135 is specifically shown in FIG. 10 .
  • the upper electrode 60 is covered on the surface of the dielectric layer 50 to form the semiconductor structure shown in FIG. 1 .
  • the substrate 12 includes several discrete contact pads, and the lower electrode 40 is in direct contact with the contact pads.
  • the material of the contact pad includes but is not limited to tungsten (W).
  • the first sacrificial layer 132 and the second sacrificial layer 134 may be removed by a wet etching process.
  • the formation process of the lower electrode 40 , the dielectric layer 50 and the upper electrode 60 may be a physical vapor deposition process, a chemical vapor deposition process, or an atomic layer deposition process in the related art, which is not limited here.
  • the material of the lower electrode 40 includes, but is not limited to, titanium nitride.
  • the material of the upper electrode 60 includes, but is not limited to, titanium nitride.
  • the material of the dielectric layer 50 includes a high-k material; wherein, the high-k material includes, but is not limited to, at least one of aluminum oxide, zirconium oxide, and aluminum oxide.
  • Embodiments of the present disclosure disclose a semiconductor structure and a method for manufacturing the semiconductor structure.
  • the thickness of the upper part of the second dielectric layer smaller than the thickness of the bottom part of the second dielectric layer, that is, the bottom part of the second dielectric layer is thicker than the upper part of the second dielectric layer, the problem of leakage current at the bottom of the lower electrode can be avoided, thereby improving the performance of semiconductor structures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本公开实施例公布了一种半导体结构及半导体结构的制造方法。半导体结构包括衬底;位于衬底上若干分立的下电极;位于下电极之间的第一介质层和第二介质层;其中,第二介质层位于第一介质层和下电极之间,且第二介质层的上部厚度小于第二介质层的底部厚度。

Description

半导体结构及半导体结构的制造方法
本公开基于申请号为202011431331.2,申请日为2020年12月07日,申请名称为“半导体结构及半导体结构的制造方法”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及但不限于一种半导体结构及半导体结构的制造方法。
背景技术
随着DRAM(Dynamic Random Access Memory)厚度的不断缩小,电容下电极之间的距离越来越短,由此导致DRAM中电容的漏电流问题尤为严重,影响器件性能。
发明内容
以下是对本公开详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供一种半导体结构及半导体结构的制造方法,以改善半导体结构的性能。
根据一些实施例,本公开的第一方面,提供了一种半导体结构,包括:
衬底;
位于衬底上若干分立的下电极;
位于所述下电极之间的第一介质层和第二介质层;
其中,所述第二介质层位于所述第一介质层和所述下电极之间,且所述第二介质层的上部厚度小于所述第二介质层的底部厚度。
根据一些实施例,本公开的第二方面,提供了一种半导体结构的制造方法,包括:
提供衬底;
在所述衬底上形成叠层结构,所述叠层结构包括第一介质层;
在所述叠层结构中形成若干电容孔,所述电容孔穿过所述第一介质层并暴露所述衬底;
在所述电容孔的底部形成初始介质层;
去除部分所述初始介质层形成第二介质层,所述第二介质层暴露所述衬底;
其中,初始介质层上部的去除部分大于初始介质层下部的去除部分。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
并入到说明书中并且构成说明书的一部分的附图示出了本公开的实施例,并且与描述一起用于解释本公开实施例的原理。在这些附图中,类似的附图标记用于表示类似的要素。下面描述中的附图是本公开的一些实施例,而不是全部实施例。对于本领域技术人员来讲,在不付出创造性劳动的前提下,可以根据这些附图获得其他的附图。
通过结合附图考虑以下对本公开的实施方式的详细说明,本公开的各种目标,特征和优点将变得更加显而易见。附图仅为本公开的示范性图解,并非一定是按比例绘制。在附图中,同样的附图标记始终表示相同或类似的部件。其中:
图1是根据一示例性实施方式示出的一种半导体结构的结构示意图;
图2是根据一示例性实施方式示出的一种半导体结构的制造方法的流程示意图;
图3是根据一示例性实施方式示出的一种半导体结构的制造方法形成电容孔的结构图;
图4是根据一示例性实施方式示出的一种半导体结构的制造方法形成初始介质层的结构图;
图5是根据一示例性实施方式示出的一种半导体结构的制造方法形成第二介质层的结构图;
图6是根据另一示例性实施方式示出的一种半导体结构的制造方法形成初始介质层的结构图;
图7是根据另一示例性实施方式示出的一种半导体结构的制造方法形成第二介质层的结构图;
图8是根据一示例性实施方式示出的一种半导体结构的制造方法形成下电极的结构图;
图9是根据一示例性实施方式示出的一种半导体结构的制造方法去除第一牺牲层和第二牺牲层的结构图;
图10是根据一示例性实施方式示出的一种半导体结构的制造方法形成介质层的结构图。
附图标记说明如下:
10、电容本体部;11、电容孔;12、衬底;13、叠层结构;131、第一介质层;132、第一牺牲层;133、第一支撑层;134、第二牺牲层;135、第二支撑层;20、第二介质层;21、侧部表面;22、底部表面;23、斜部表面;30、初始介质层;40、下电极;50、介质层;60、上电极;111、第一开口。
具体实施方式
下面将结合本公开实施例中的附图,对公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
本公开的一个实施例提供了一种半导体结构,请参考图1,半导体结构包括:衬底12;位于衬底12上若干分立的下电极40;位于下电极40之间的第一介质层131和第二介质层20;其中,第二介质层20位于第一介质层131和下电极40之间,且第二介质层20的上部厚度小于第二介质层20的底部厚度。
本公开一个实施例的半导体结构包括衬底12、多个下电极40、第一介质层131和第二介质层20。通过使得第二介质层20的上部厚度小于第二介质层20的底部厚度,即第二介质层20的底部相对于第二介质层20的上部较厚,可以避免下电极40的底部出现漏电流的问题,从而改善半导体结构的性能。
针对第二介质层20的上部厚度小于第二介质层20的底部厚度,在半导体结构制造过程中,在电容孔的底部形成初始介质层30,去除部分的初始介质层30以使剩余的初始介质层30作为第二介质层20,其中,初始介质层30上部的去除部分大于初始介质层30底部的去除部分,从而使得第二介质层20的上部厚度小于第二介质层20的底部厚度。此处的厚度可以理解为第二介质层20沿衬底12表面方向上的尺寸。
在一些实施例中,第一介质层131的侧壁与衬底12的表面垂直,即第一介质层131的侧壁与衬底12的表面之间形成了一个直角,而第二介质层20填充此直角,从而可以避免下电极在直角处发生电荷聚积的问题,以此避免下电极在拐角处产生漏电流的现象。
在一些实施例中,第二介质层20的表面包括侧部表面21、底部表面22和斜部表面23,侧部表面21和第一介质层131直接接触,底部表面22和衬底12直接接触,斜部表面23和下电极40直接接触。
例如,结合图1可以看出,第二介质层20环绕第一介质层131的侧壁设置,并且包覆下电极40的底部,但需要保证下电极40与衬底12直接接触。由于第二介质层20填充于第一介质层131与衬底12的拐角处,从而可以避免下电极40的底部出现电荷聚积的现象。
在一些实施例中,斜部表面23为弧面,弧面向第二介质层20内部弯曲,即斜部表面23不存在尖锐的拐角,可以使得下电极40的底部变得圆滑,不易形成电荷的聚积,从而可以使得电荷均匀分布在下电极40中,达到了减小漏电流的目的。
在一些实施例中,第二介质层20呈具有底部开口的碗状。例如,下电极40为杯状且截面的底部呈U型,第二介质层20包覆下电极40的底部且底部表面22的中间位置处形成了一个开口,此开口可以保证下电极40的底部与衬底12直接接触。当衬底12中存在接触垫时,下电极40的底部可以通过开口与接触垫电连接。斜部表面23向第二介质层20内部弯曲,以此保证第二介质层20的上部厚度小于第二介质层20的底部厚度。
在一些实施例中,第二介质层20的材质包括SiCN、SiBN、SiSbN和SiPN中的至少一种。
例如,第二介质层20可以由掺杂C,B,P,Sb中的至少一种离子的SiN 形成。
在一些实施例中,第二介质层20的高度不高于第一介质层131的高度。
例如,结合图5,在半导体结构的制造过程中,第一介质层131的上方形成有第一牺牲层132,第一牺牲层132在形成下电极40后需要去除,因此当第一牺牲层132与第二介质层20内掺杂有相同类型的离子时,为了保证在后续去除第一牺牲层132的过程中不会对第二介质层20产生影响,因此可以使得第二介质层20位于第一牺牲层132的下方,即第二介质层20完全位于下电极40的底部、第一介质层131和衬底12围成的封闭空间中,在后续利用湿法工艺去除第一牺牲层132时,可以防止第二介质层20受到影响。
在一些实施例中,第二介质层20的高度高于第一介质层131的高度。
例如,结合图7,在半导体结构的制造过程中,第一介质层131的上方形成有第一牺牲层132,第一牺牲层132在形成下电极40后需要去除,因此当第一牺牲层132与第二介质层20内掺杂有不同类型的离子时,在后续去除第一牺牲层132的过程中不会对第二介质层20产生影响,可以不考虑第二介质层20的顶端是否超过第一介质层131的顶端。如图7所示的第二介质层20的高度高于第一介质层131的高度,通过增加第二介质层20的高度有利于增大第二介质层20底部的厚度,进一步降低漏电流。
当第一牺牲层132与第二介质层20内掺杂有不同类型的离子时,不排除第二介质层20的高度不高于第一介质层131的高度的实施例。例如,通过选择合适的刻蚀材料可以调节第一牺牲层132和第二介质层20的刻蚀选择比以达到去除第一牺牲层132以及保留第二介质层20的目的。
在一些实施例中,衬底12包括若干分立的接触垫,下电极40与接触垫直接接触,从而保证下电极40与接触垫之间电连接。
例如,接触垫的材料包括但不限于钨(W)。多个下电极40与多个接触垫一一相对应地设置。
在一些实施例中,半导体结构还包括:第一支撑层133,位于下电极40的中部并将下电极40分隔开;第二支撑层135,位于下电极40的上部并将下电极40分隔开;介质层50,覆盖在下电极40的表面;上电极60,覆盖在介质层50的表面。
例如,如图1所示,第一介质层131、第一支撑层133以及第二支撑层 135沿高度方向依次设置,且第一介质层131与第一支撑层133间隔设置,第一支撑层133与第二支撑层135间隔设置。第一介质层131、第一支撑层133以及第二支撑层135实现了对下电极40和上电极60的支撑作用。
在一些实施例中,第一介质层131、第一支撑层133以及第二支撑层135可以采用相同的材料,第一介质层131、第一支撑层133以及第二支撑层135也可以采用不同的材料。例如,第一介质层131、第一支撑层133以及第二支撑层135可以均包括氮化硅(SiN)。
在一些实施例中,下电极40和上电极60之间设置有介质层50,介质层50的材料包括高k材料;其中,高k材料包括但不限于氧化铝、氧化锆和氧化铪等高K材料或其任意组合物。
在一些实施例中,下电极40的材料包括但不限于氮化钛(TiN)。
在一些实施例中,上电极60的材料包括但不限于氮化钛。
本公开的一个实施例还提供了一种半导体结构的制造方法,如图2所示,半导体结构的制造方法包括:
S101,提供衬底12;
S103,在衬底12上形成叠层结构13,叠层结构13包括第一介质层131;
S105,在叠层结构13中形成若干电容孔11,电容孔11穿过第一介质层131并暴露衬底12;
S107,在电容孔11的底部形成初始介质层30;
S109,去除部分初始介质层30形成第二介质层20,第二介质层20暴露衬底12;
其中,初始介质层30上部的去除部分大于初始介质层30下部的去除部分。
本公开一个实施例的半导体结构的制造方法通过在电容孔11的底部形成初始介质层30,并且使得初始介质层30上部的去除部分大于初始介质层30下部的去除部分,使得形成的第二介质层20的上部厚度小于第二介质层20的底部厚度,可以避免下电极40的底部出现漏电流的问题,从而改善半导体结构的性能。
在一些实施例中,衬底12和叠层结构13形成了电容本体部10,在电容本体部10内形成了电容孔11,电容孔11贯穿叠层结构13,从而暴露衬底 12。
在一些实施例中,叠层结构13还包括第一牺牲层132,第一牺牲层132形成于第一介质层131上;其中,初始介质层30和第一牺牲层132内掺杂有相同类型的离子。
例如,在衬底12的表面形成第一介质层131,然后在第一介质层131的表面形成第一牺牲层132,在形成电容孔11后,在电容孔11的底部形成初始介质层30。初始介质层30和第一牺牲层132可以通过离子注入的方式进行离子掺杂。
第一介质层131和第一牺牲层132可以通过采用物理气相沉积(Physical Vapor Deposition,PVD)工艺、化学气相沉积(Chemical Vapor Deposition,CVD)工艺或原子层沉积(Atomic Layer Deposition,ALD)工艺等形成。
在一些实施例中,掺杂的离子包括C,B,P,Sb中的至少一种,即在初始介质层30和第一牺牲层132内可以掺杂C,B,P,Sb中的至少一种,以此使得初始介质层30在刻蚀工艺中更容易形成平滑过渡的形貌。
在一些实施例中,第二介质层20的高度不高于第一介质层131的高度。
例如,考虑到第一牺牲层132与第二介质层20内掺杂有相同类型的离子时,为了保证后续在去除第一牺牲层132的过程中不会损害第二介质层20,可以使得第二介质层20位于第一牺牲层132的下方,即第二介质层20的高度不高于第一介质层131的高度。在形成第二介质层20后,在电容孔11内形成下电极40,例如通过PVD或CVD等方式形成氮化钛材质的下电极。第二介质层20完全位于下电极40的底部、第一介质层131和衬底12围成的封闭空间中,在后续利用湿法工艺去除第一牺牲层132时,可以防止第二介质层20受到影响。
在一些实施例中,叠层结构13还包括在第一牺牲层132上方依次形成的第一支撑层133、第二牺牲层134和第二支撑层135。
例如,结合图3至图5对第二介质层20的具体形成过程进行说明。
提供一衬底12,并在衬底12上方依次形成第一介质层131、第一牺牲层132、第一支撑层133、第二牺牲层134和第二支撑层135,即第一介质层131、第一牺牲层132、第一支撑层133、第二牺牲层134和第二支撑层135作为叠层结构13。刻蚀叠层结构13形成多个电容孔11,并暴露衬底12的上表面, 如图3所示。
在电容孔11的底部填充初始介质层30,并且使得初始介质层30的顶端不超过第一牺牲层132的底端,如图4所示出的初始介质层30的顶端低于第一牺牲层132的底端。
部分刻蚀初始介质层30,初始介质层30上部的去除部分大于初始介质层30下部的去除部分,并且暴露部分的衬底12,从而形成如图5所示的第二介质层20。
在一些实施例中,叠层结构13还包括第一牺牲层132,第一牺牲层132形成于第一介质层131上;其中,第二介质层20和第一牺牲层132内掺杂有不同类型的离子,第二介质层20的高度高于第一介质层131的高度。
例如,考虑到第一牺牲层132与第二介质层20内掺杂有不同类型的离子时,从而在去除第一牺牲层132的过程中不会影响第二介质层20,因此可以使得第二介质层20的顶端高于第一牺牲层132的底端,保证第二介质层20的底部厚度,能够最大程度地避免漏电流的问题。
在一些实施例中,叠层结构13还包括在第一牺牲层132上方依次形成的第一支撑层133、第二牺牲层134和第二支撑层135。
例如,结合图3、图6和图7对第二介质层20的具体形成过程进行说明。
提供一衬底12,并在衬底12上方依次形成第一介质层131、第一牺牲层132、第一支撑层133、第二牺牲层134和第二支撑层135,即第一介质层131、第一牺牲层132、第一支撑层133、第二牺牲层134和第二支撑层135作为叠层结构13。刻蚀叠层结构13形成多个电容孔11,并暴露衬底12的上表面,如图3所示。
在电容孔11的底部填充初始介质层30,并且使得初始介质层30的顶端高于第一牺牲层132的底端,如图6所示。
部分刻蚀初始介质层30,初始介质层30上部的去除部分大于初始介质层30下部的去除部分,并且暴露部分的衬底12,从而形成如图7所示的第二介质层20。
针对上述实施例,需要说明的是,第一支撑层133、第二牺牲层134、第二支撑层135以及初始介质层30可以通过采用物理气相沉积工艺、化学气相沉积工艺或原子层沉积工艺等形成。
第一介质层131、第一支撑层133、第二支撑层135可以采用相同的材料,或者,第一介质层131、第一支撑层133以及第二支撑层135也可以采用不同的材料。在本实施例中,第一介质层131、第一支撑层133以及第二支撑层135可以包括氮化硅。
而第二介质层20的材质包括SiCN、SiBN、SiSbN和SiPN中的至少一种。例如,可以通过在氮化硅中内掺杂C,B,P,Sb中的至少一种离子形成初始介质层30。
在一些实施例中,半导体结构的制造方法,还包括:在电容孔11中形成下电极40,下电极40的底部与衬底12直接接触;去除第一牺牲层132和第二牺牲层134;在下电极40的表面形成介质层50;在介质层50的表面形成上电极60。
例如,在形成如图5或图7所示的结构后,在电容孔11中形成下电极40,将第一牺牲层132和第二牺牲层134进行去除,第一介质层131、第一支撑层133以及第二支撑层135实现对下电极40的支撑。在下电极40的表面形成介质层50,介质层50还覆盖第二支撑层135的上表面,在介质层50的表面形成上电极60,具体可以参见图1所示的半导体结构。
例如,以图5中的结构为例,在各个电容孔11中形成下电极40,如图8所示。去除图8中的第一牺牲层132和第二牺牲层134,此时下电极40可以通过第一介质层131、第一支撑层133以及第二支撑层135实现对下电极40的支撑,具体如图9所示,可以去除部分第二支撑层135形成第一开口111,第一开口111暴露第二牺牲层134,通过湿法刻蚀去除第二牺牲层134;然后可以通过同样的方式,去除部分第一支撑层133以暴露第一牺牲层132,以湿法刻蚀去除第一牺牲层132;在下电极40的表面覆盖介质层50,且介质层50覆盖第一支撑层133和第二支撑层135,具体如图10所示。在介质层50的表面覆盖上电极60,形成如图1所示的半导体结构。
在一些实施例中,衬底12包括若干分立的接触垫,而下电极40与接触垫直接接触。其中,接触垫的材料包括但不限于钨(W)。
第一牺牲层132和第二牺牲层134可以采用湿法刻蚀工艺去除。对于下电极40、介质层50以及上电极60的形成工艺可以是相关技术中的物理气相沉积工艺、化学气相沉积工艺或原子层沉积工艺等,此处不作限定。
下电极40的材料包括但不限于氮化钛。
上电极60的材料包括但不限于氮化钛。
介质层50的材料包括高k材料;其中,高k材料包括但不限于氧化铝、氧化锆和氧化哈中的至少一种。
本说明书中各实施例或实施方式采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分相互参见即可。
在本说明书的描述中,参考术语“实施例”、“示例性的实施例”、“一些实施方式”、“示意性实施方式”、“示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施方式或示例中。
在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
可以理解的是,本公开所使用的术语“第一”、“第二”等可在本公开中用于描述各种结构,但这些结构不受这些术语的限制。这些术语仅用于将第一个结构与另一个结构区分。
在一个或多个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的多个部分没有按比例绘制。此外,可能未示出某些公知的部分。为了简明起见,可以在一幅图中描述经过数个步骤后获得的结构。在下文中描述了本公开的许多特定的细节,例如器件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本公开。但正如本领域技术人员能够理解的那样,可以不按照这些特定的细节来实现本公开。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域技术人 员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。
工业实用性
本公开实施例公布了一种半导体结构及半导体结构的制造方法。通过使得第二介质层的上部厚度小于第二介质层的底部厚度,即第二介质层的底部相对于第二介质层的上部较厚,可以避免下电极的底部出现漏电流的问题,从而改善半导体结构的性能。

Claims (17)

  1. 一种半导体结构,包括:
    衬底;
    位于所述衬底上若干分立的下电极;
    位于所述下电极之间的第一介质层和第二介质层;
    其中,所述第二介质层位于所述第一介质层和所述下电极之间,且所述第二介质层的上部厚度小于所述第二介质层的底部厚度。
  2. 根据权利要求1所述的半导体结构,其中,所述第一介质层的侧壁与所述衬底的表面垂直。
  3. 根据权利要求1所述的半导体结构,其中,所述第二介质层的表面包括侧部表面、底部表面和斜部表面,所述侧部表面和所述第一介质层直接接触,所述底部表面和所述衬底直接接触,所述斜部表面和所述下电极直接接触。
  4. 根据权利要求3所述的半导体结构,其中,所述斜部表面为弧面,所述弧面向所述第二介质层内部弯曲。
  5. 根据权利要求1至4中任一项所述的半导体结构,其中,所述第二介质层的材质包括SiCN、SiBN、SiSbN和SiPN中的至少一种。
  6. 根据权利要求3所述的半导体结构,其中,所述第二介质层的高度不高于所述第一介质层的高度。
  7. 根据权利要求3所述的半导体结构,其中,所述第二介质层的高度高于所述第一介质层的高度。
  8. 根据权利要求3所述的半导体结构,其中,所述衬底包括若干分立的接触垫,所述下电极与所述接触垫直接接触。
  9. 根据权利要求1所述的半导体结构,其中,所述半导体结构还包括:
    第一支撑层,位于所述下电极的中部并将所述下电极分隔开;
    第二支撑层,位于所述下电极的上部并将所述下电极分隔开;
    介质层,覆盖在所述下电极的表面;
    上电极,覆盖在所述介质层的表面。
  10. 根据权利要求1所述的半导体结构,其中,所述第二介质层呈具有 底部开口的碗状。
  11. 一种半导体结构的制造方法,包括:
    提供衬底;
    在所述衬底上形成叠层结构,所述叠层结构包括第一介质层;
    在所述叠层结构中形成若干电容孔,所述电容孔穿过所述第一介质层并暴露所述衬底;
    在所述电容孔的底部形成初始介质层;
    去除部分所述初始介质层,形成第二介质层,所述第二介质层暴露所述衬底;
    其中,所述初始介质层上部的去除部分大于所述初始介质层下部的去除部分。
  12. 根据权利要求11所述的半导体结构的制造方法,其中,
    所述叠层结构还包括第一牺牲层,所述第一牺牲层形成于所述第一介质层上;
    其中,所述第二介质层和所述第一牺牲层内掺杂有相同类型的离子。
  13. 根据权利要求12所述的半导体结构的制造方法,其中,
    所述离子包括C,B,P,Sb中的至少一种。
  14. 根据权利要求12所述的半导体结构的制造方法,其中,
    所述第二介质层的高度不高于所述第一介质层的高度。
  15. 根据权利要求11所述的半导体结构的制造方法,其中,
    所述叠层结构还包括第一牺牲层,所述第一牺牲层形成于所述第一介质层上;
    其中,所述第二介质层和所述第一牺牲层内掺杂有不同类型的离子,所述第二介质层的高度高于所述第一介质层的高度。
  16. 根据权利要求12至15中任一项所述的半导体结构的制造方法,其中,
    所述叠层结构还包括在所述第一牺牲层上方依次形成的第一支撑层、第二牺牲层和第二支撑层。
  17. 根据权利要求16所述的半导体结构的制造方法,其中,还包括:
    在所述电容孔中形成下电极,所述下电极的底部与所述衬底直接接触;
    去除所述第一牺牲层和所述第二牺牲层;
    在所述下电极的表面形成介质层;
    在所述介质层的表面形成上电极。
PCT/CN2021/110734 2020-12-07 2021-08-05 半导体结构及半导体结构的制造方法 WO2022121339A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/452,266 US20220181327A1 (en) 2020-12-07 2021-10-26 Semiconductor structure and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011431331.2A CN114597210A (zh) 2020-12-07 2020-12-07 半导体结构及半导体结构的制造方法
CN202011431331.2 2020-12-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/452,266 Continuation US20220181327A1 (en) 2020-12-07 2021-10-26 Semiconductor structure and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2022121339A1 true WO2022121339A1 (zh) 2022-06-16

Family

ID=81812615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110734 WO2022121339A1 (zh) 2020-12-07 2021-08-05 半导体结构及半导体结构的制造方法

Country Status (2)

Country Link
CN (1) CN114597210A (zh)
WO (1) WO2022121339A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026659A (en) * 1989-08-23 1991-06-25 Gold Star Electron Co., Ltd. Process for fabricating stacked trench capacitors of dynamic ram
US20040012047A1 (en) * 2002-07-19 2004-01-22 Fujitsu Limited Semiconductor device with transistor and capacitor and its manufacture method
KR20050033202A (ko) * 2003-10-06 2005-04-12 동부아남반도체 주식회사 반도체 소자의 캐패시터 형성 방법
US20080029801A1 (en) * 2006-08-02 2008-02-07 Elpida Memory, Inc. Semiconductor device and method of forming the same
CN111106095A (zh) * 2018-10-29 2020-05-05 长鑫存储技术有限公司 沟槽及其形成方法、电容器的制备方法及电容器
CN111261774A (zh) * 2018-11-30 2020-06-09 长鑫存储技术有限公司 电容器及其制造方法、半导体器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026659A (en) * 1989-08-23 1991-06-25 Gold Star Electron Co., Ltd. Process for fabricating stacked trench capacitors of dynamic ram
US20040012047A1 (en) * 2002-07-19 2004-01-22 Fujitsu Limited Semiconductor device with transistor and capacitor and its manufacture method
KR20050033202A (ko) * 2003-10-06 2005-04-12 동부아남반도체 주식회사 반도체 소자의 캐패시터 형성 방법
US20080029801A1 (en) * 2006-08-02 2008-02-07 Elpida Memory, Inc. Semiconductor device and method of forming the same
CN111106095A (zh) * 2018-10-29 2020-05-05 长鑫存储技术有限公司 沟槽及其形成方法、电容器的制备方法及电容器
CN111261774A (zh) * 2018-11-30 2020-06-09 长鑫存储技术有限公司 电容器及其制造方法、半导体器件

Also Published As

Publication number Publication date
CN114597210A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
US8058678B2 (en) Semiconductor memory device including a cylinder type storage node and a method of fabricating the same
US7449739B2 (en) Storage capacitor for semiconductor memory cells and method of manufacturing a storage capacitor
TWI543241B (zh) 電容器及其製造方法
KR20100105090A (ko) 커패시터 및 이의 제조 방법
US20140084419A1 (en) Capacitor structure
TWI710110B (zh) 電容器及其製造方法
KR20200140645A (ko) 반도체 장치
CN111834529A (zh) 一种电容结构、半导体器件以及电容结构制备方法
US11107879B2 (en) Capacitor structure and fabrication method thereof
TW201535681A (zh) 電容器、電容儲存節點及其製造方法
CN112786595A (zh) 半导体存储器装置
US20230232607A1 (en) Semiconductor device structure and method making the same
CN115241372A (zh) 存储器件、半导体结构及其形成方法
WO2022121339A1 (zh) 半导体结构及半导体结构的制造方法
CN217955857U (zh) 半导体装置
US20230187482A1 (en) Method of manufacturing semiconductor structure and semiconductor structure
TW202347719A (zh) 半導體裝置
US20220181327A1 (en) Semiconductor structure and manufacturing method thereof
TWI578447B (zh) 記憶體裝置及其製造方法
CN113270546A (zh) 半导体存储器件
WO2023272889A1 (zh) 半导体结构及其制作方法
TWI594372B (zh) 記憶體裝置及其製造方法
US20230309292A1 (en) Capacitor and dram device including the same
US20240188285A1 (en) Semiconductor device
US11825644B2 (en) Semiconductor memory device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902049

Country of ref document: EP

Kind code of ref document: A1