WO2022121081A1 - 一种超大丝束碳纤维及其制备方法、连续纤维增强树脂基复合材料及风电叶片 - Google Patents

一种超大丝束碳纤维及其制备方法、连续纤维增强树脂基复合材料及风电叶片 Download PDF

Info

Publication number
WO2022121081A1
WO2022121081A1 PCT/CN2021/071168 CN2021071168W WO2022121081A1 WO 2022121081 A1 WO2022121081 A1 WO 2022121081A1 CN 2021071168 W CN2021071168 W CN 2021071168W WO 2022121081 A1 WO2022121081 A1 WO 2022121081A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
large tow
composite material
continuous carbon
resin
Prior art date
Application number
PCT/CN2021/071168
Other languages
English (en)
French (fr)
Inventor
梁嫄
孙建旭
马豪
Original Assignee
远景能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 远景能源有限公司 filed Critical 远景能源有限公司
Publication of WO2022121081A1 publication Critical patent/WO2022121081A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/046Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/047Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/10Polyamides derived from aromatically bound amino and carboxyl groups of amino carboxylic acids or of polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/10Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of wind turbines, in particular to a super-large tow carbon fiber and a preparation method thereof, a continuous fiber reinforced resin-based composite material and a wind power blade.
  • Wind energy is a clean energy with large stock and high safety. Wind power generation needs to use the blades at the top of the fan to drive and rotate to generate lift, which is further converted into torque through the transmission chain in the nacelle to drive the generator to generate electricity. Under the same circumstances, the larger the impeller, the more wind energy can be captured, so the fan blades are made longer.
  • the weight of the blade usually has a cubic relationship with the length of the blade, so the weight of the blade increases sharply with the increase of the length, which puts forward higher and higher requirements for the design of the blade.
  • the optimal design of blades is one of the core technologies of wind power generation. At present, the traditional structure of most blades is still two shells, which are divided into pressure surface and suction surface. solidified.
  • the main beam contributes most of the flapping stiffness, while the trailing edge beam contributes most of the sway stiffness.
  • the web support is arranged inside the two shells to ensure sufficient stability of the structure, and finally the web and the shell, and the shell and the shell are glued together by structural glue. The longer the blade, the greater the need for efficient materials to rapidly increase blade stiffness.
  • the traditional main beam of wind turbine blades is laid in the main beam mold with glass fiber unidirectional fabric, and resin is introduced into the main beam mold by vacuum infusion and finally cured, prefabricated into the main beam component, and then re-infused and cured with the shell.
  • resin is introduced into the main beam mold by vacuum infusion and finally cured, prefabricated into the main beam component, and then re-infused and cured with the shell.
  • the use of glass fiber for super large blades can no longer meet the extreme demand for stiffness, so it is necessary to introduce fibers with higher modulus.
  • Carbon fiber is an attractive option at this time, with its high specific modulus and specific strength, carbon fiber can achieve the same level of stiffness and strength as glass fiber blades with very little material.
  • carbon fiber can be divided into aviation grade and industrial grade according to the mechanical properties. According to the number of monofilaments in the fiber tow, it can be divided into small tow 1k, 3k, 6k, 12k, 24k, and large tow 24k, 48k, 50k, and oversized tow 100k and above. At present, only some complete machine manufacturers try to use 6k, 12k carbon fiber prepreg, or 24k, 48k, 50k carbon fiber pultruded sheet as the material of the blade main beam.
  • the purpose of the present invention is to provide a cost-effective continuous fiber-reinforced resin-based composite material in order to overcome the above-mentioned defects in the prior art, specifically, to replace the original industrial polypropylene with a large-tow acrylic fiber for civilian use with close chemical components Nitrile raw silk can not only reduce the cost of raw silk, but also improve the efficiency of subsequent pre-oxidation and carbonization due to the increased number of tows, and ultimately reduce the cost of carbon fiber.
  • the purpose of the present application is also to provide a wind power blade using the above-mentioned composite material.
  • the purpose of the present application is to provide a continuous carbon fiber with super large tow.
  • the purpose of the present application is also to provide a method for preparing the above-mentioned super large tow continuous carbon fiber.
  • the present application provides a continuous fiber-reinforced resin-based composite material
  • the composite material includes a resin matrix and super-large tow continuous carbon fibers doped inside the resin matrix
  • the super-large tow continuous carbon fibers are made of civilian acrylic fibers Obtained after pre-oxidation and carbonization.
  • carbon fibers can use their high specific modulus to provide the required stiffness of the blade more efficiently.
  • the doping volume percentage of the ultra-large tow continuous carbon fibers in the composite material is 40% to 80%. If the doping ratio is too small, the stiffness of the composite material will be too low and the design modulus cannot be achieved; if the doping ratio is too large, the process will be difficult to achieve.
  • the number of single filaments in the super large tow continuous carbon fiber is 100k and above.
  • the composite material is doped with hybrid fibers, and the doping percentage of the hybrid fibers is 0-20%.
  • Adding other types of fibers can not only enhance the functionality of composite materials, such as impact resistance, electrical conductivity, and thermal conductivity, but also by adding fibers with different modulus and strength to obtain composite materials with specific modulus and strength .
  • the hybrid fibers include one or more of carbon fibers, glass fibers, aramid fibers, boron fibers, basalt fibers or ultra-high modulus polyethylene fibers, wherein the The number of monofilaments in the carbon fiber is 12-50k, and the modulus of the ultra-high modulus polyethylene fiber is 87-172GPa.
  • the resin matrix comprises a thermosetting resin or a thermoplastic resin
  • the thermosetting resin comprises epoxy resin, vinyl resin, unsaturated polyester resin, polyurethane resin or phenolic resin
  • the thermoplastic resin includes one of polypropylene, polyethylene, polyvinyl chloride, polystyrene, polyacrylonitrile-butadiene-styrene, polyamide, polyether ether ketone or polyphenylene sulfide resin .
  • the present application provides a wind power blade, the wind power blade includes two shells and a web, the shell includes a sandwich panel and a main load-bearing member, the main load-bearing member includes a main beam and/or a web. or trailing edge beam, the main beam and/or trailing edge beam are formed by stacking a plurality of continuous fiber reinforced resin matrix composite materials as described above.
  • the main beam and/or the trailing edge beam are formed by stacking 1-300 pieces of composite materials.
  • the present application also provides an ultra-large tow continuous carbon fiber obtained by pre-oxidizing and carbonizing civilian acrylic fibers.
  • the number of single filaments in the super-large tow continuous carbon fiber is 100k and above.
  • the civilian acrylic fiber is a fiber of acrylonitrile copolymer or homopolymer containing more than 85% of acrylonitrile.
  • the present application also provides a method for preparing the above-mentioned super large tow continuous carbon fiber, the preparation method comprising the following steps:
  • the organic amine solution comprises amine acetate, amine formate, guanidine hydrochloride, ethylenediaminetetraacetic acid, triethylamine, urea, trimethylamine, dicyandiamine, n-hexylamine, dicyandiamide, Hexylamine, cyanamide, pentylamine, diethylamine, hexamethylenediamine, tert-butylamine, n-butylamine, propylamine, isopropylamine, monoethanolamine, diethanolamine, triethanolamine, propylenediamine, benzylamine, piperidine, pyridine, piperidine One of the oxazine or imidazole aqueous solutions.
  • the redox solution includes one of phenol, benzoic acid, potassium permanganate, potassium dichromate, hydrogen peroxide, hydrazine hydrate, and hydroxylamine solutions.
  • the dipping temperature is 10-150° C., and the dipping time is 1-600 min.
  • the dipping temperature is 10-150° C.
  • the dipping time is 1-600 min.
  • the drying temperature is 30-100°C.
  • the temperature of the pre-oxidation is 200 ⁇ 300° C.
  • the time of the pre-oxidation is 10 ⁇ 120 min.
  • the inert gas includes one of nitrogen, helium, neon or argon.
  • the carbonization temperature is 300-1700° C.
  • the carbonization time is 1-20 min.
  • the cost-effective super-large tow carbon fiber pre-oxidized and carbonized by the introduction of civilian acrylic fiber strands is used as a composite material made of hybrid fibers.
  • the modulus has been increased from the current 1-1.5GPa/RMB/kg to 1.8-3GPa/RMB/kg, which further reduces the cost of wind turbine blades using this fiber-reinforced composite material by 10% compared with the market-used 24k or 48k large tow carbon fiber. -20%, thus providing support for the enlargement of wind turbine blades and the efficient use of materials.
  • FIG. 1 is a typical cross-sectional view of a wind turbine blade of the present invention
  • Fig. 2 is the sectional view of the main beam of the wind turbine blade of the present invention
  • FIG. 3 is a cross-sectional view of the composite material for wind power in Example 1.
  • 1 is the wind turbine blade
  • 2 is the leading edge
  • 31 is the main beam
  • 32 is the trailing edge beam
  • 4 is the web
  • 5 is the pressure surface
  • 6 is the suction surface
  • 7 is the trailing edge
  • 8 is the composite material Plate
  • 9 is glass fiber
  • 10 is boron fiber
  • 11 is resin matrix
  • 12 is super large tow continuous carbon fiber.
  • the quantifiers "a” and “an” do not exclude the scenario of multiple elements.
  • the forming process may include fiber pultrusion, vacuum infusion, or prepreg forming.
  • a continuous fiber reinforced resin-based composite material for wind power blades is a super-large tow carbon fiber formed by pre-oxidation and carbonization of textile-grade super-large tow civilian acrylic fiber precursor.
  • the composite material of the present invention in addition to the super-large tow continuous carbon fiber, it may contain or not contain hybrid fibers, such as one of carbon fiber, glass fiber, aramid fiber, boron fiber, basalt fiber, and ultra-high modulus polyethylene fiber. or several.
  • hybrid fibers such as one of carbon fiber, glass fiber, aramid fiber, boron fiber, basalt fiber, and ultra-high modulus polyethylene fiber. or several.
  • the resin matrix comprises a thermosetting resin, such as epoxy resin, vinyl resin, unsaturated polyester resin, polyurethane resin, phenolic resin, or thermoplastic resin, such as polypropylene, polyethylene, polyvinyl chloride, polyvinyl chloride, etc. Styrene, polyacrylonitrile-butadiene-styrene, polyamide, polyetheretherketone, polyphenylene sulfide resin.
  • a thermosetting resin such as epoxy resin, vinyl resin, unsaturated polyester resin, polyurethane resin, phenolic resin
  • thermoplastic resin such as polypropylene, polyethylene, polyvinyl chloride, polyvinyl chloride, etc.
  • Styrene polyacrylonitrile-butadiene-styrene
  • polyamide polyetheretherketone
  • polyphenylene sulfide resin polyphenylene sulfide resin.
  • the pre-treated civil acrylic fiber is placed in an air atmosphere for pre-oxidation, and the pre-oxidation temperature is 200°C.
  • the pre-oxidation time is 2h, and then it is placed in a nitrogen gas atmosphere for carbonization, the carbonization temperature is 1000 °C, and the carbonization time is 15min, to obtain a continuous carbon fiber with super large tow.
  • the super-large tow continuous carbon fiber 12 is evenly mixed with glass fiber 9, boron fiber 10 and epoxy resin, and a plate made of continuous fiber reinforced resin-based composite material is obtained by pultrusion through a mold with a specific cross-sectional shape.
  • epoxy resin is used as the resin matrix 11, and the inside is uniformly doped with super large continuous carbon fibers 12, glass fibers 9 and boron fibers 10.
  • the super large continuous carbon fibers 12, glass fibers 9 , the volume ratio between the boron fibers 10 and the resin matrix 11 is 60:1:1:38.
  • a plurality of composite material plates 8 are stacked (7 are taken as an example in the figure) to form the main beam 31 as shown in FIG. 2 .
  • the prepared main beam 31 is poured together with the sandwich panel and the trailing edge beam 32 to form two shells, wherein the sandwich panel is composed of glass fiber reinforced plastic and a core material, the trailing edge beam 32 adopts the existing glass fiber infusion material, and the two shells are
  • the wind power blade 1 is formed by the body end-to-end butt joint.
  • the wind power blade 1 includes a leading edge 2, a pressure surface 5, a suction surface 6 and a trailing edge 7.
  • a web 4 is fixed between the two main beams 31.
  • the specific structure is shown in the figure 1 shown.
  • the civilian acrylic fiber purchased from Derong Company (Derong) L900 was immersed in 10 °C amine acetate solution, taken out and dried after 10 hours, and the drying temperature was 30 °C. The drying time is 4h, and the pretreated civil acrylic fiber is obtained;
  • the pre-treated civil acrylic fiber is placed in an air atmosphere for pre-oxidation, and the pre-oxidation temperature is 250°C.
  • the oxidation time is 1.5h, and then it is carbonized in a nitrogen gas atmosphere, the carbonization temperature is 800°C, and the carbonization time is 10min to obtain the continuous carbon fiber with super large tow.
  • the super-large tow continuous carbon fiber and glass fiber are mixed and woven into a single-layer hybrid fabric, and then the multi-layer hybrid fabric is evenly laid in the main beam mold in turn, and the resin matrix is introduced into the vacuum environment, and then cured and formed to prefabricate the hybrid fabric. Fiber trailing edge beam.
  • the volume ratio between the super-large tow continuous carbon fibers, glass fibers, and resin matrix is 65:10:25.
  • the civilian acrylic fiber purchased from Derong Company (Derong) L900 was immersed in triethylamine solution at 100°C, taken out and dried after 1 hour, and the drying temperature was 100°C. The drying time is 1h, and the pretreated civil acrylic fiber is obtained;
  • the pre-treated civil acrylic fiber is placed in an air atmosphere for pre-oxidation, and the pre-oxidation temperature is 300°C.
  • the pre-oxidation time is 10min, and then it is carbonized in a nitrogen gas atmosphere, the carbonization temperature is 1700°C, and the carbonization time is 1min to obtain the continuous carbon fiber with super large tow.
  • the super-large tow continuous carbon fibers are evenly laid on the resin matrix film to make carbon fiber prepregs. Then, the multi-layer carbon fiber prepregs are sequentially laid in the main beam mold, and heated to solidify and form, so as to obtain the prefabricated main beam.
  • the volume ratio between the ultra-large tow continuous carbon fibers and the resin matrix is 80:20.
  • the pre-treated civil acrylic fiber is placed in an air atmosphere for pre-oxidation, and the pre-oxidation temperature is 250°C.
  • the pre-oxidation time is 80min, then it is carbonized in a nitrogen gas atmosphere, the carbonization temperature is 1200°C, and the carbonization time is 10min to obtain the continuous carbon fiber with super large tow.
  • the continuous carbon fiber of super large tow Take the continuous carbon fiber of super large tow, apply appropriate drafting force to straighten the fiber and have a certain tension, mix it evenly with aramid fiber, basalt fiber and polystyrene resin, and pass through a mold with a specific cross-sectional shape.
  • the mass ratio between the continuous carbon fiber, aramid fiber, basalt fiber and the resin matrix is 40:10:10:40.
  • the civilian acrylic fiber purchased from Derong Company (De velvet) L900 civil acrylic fiber was dipped in potassium permanganate solution at room temperature, taken out and dried after 4 hours, the drying temperature was 50 °C, and the drying time was 2 h to obtain pretreated civil acrylic fiber;
  • the pre-treated civil acrylic fiber is placed in an air atmosphere for pre-oxidation, and the pre-oxidation temperature is 200°C.
  • the pre-oxidation time is 2h, and then it is carbonized in a nitrogen gas atmosphere, the carbonization temperature is 300°C, and the carbonization time is 20min to obtain the continuous carbon fiber with super large tow.
  • the pre-treated civil acrylic fiber is placed in an air atmosphere for pre-oxidation, and the pre-oxidation temperature is 270°C.
  • the pre-oxidation time is 1h, and then it is placed in a nitrogen gas atmosphere for carbonization, the carbonization temperature is 800°C, and the carbonization time is 15min, to obtain a continuous carbon fiber with super large tow.
  • the super-large tow continuous carbon fiber and glass fiber are mixed and woven into a single-layer hybrid fabric, and then the multi-layer hybrid fabric is evenly laid in the main beam mold in sequence, and polystyrene is introduced in a vacuum environment, and solidified to form, thus prefabricated.
  • Hybrid fiber trailing edge beam In this example, the volume ratio between the super large tow continuous carbon fibers, glass fibers, and polystyrene is 40:15:45.
  • acrylonitrile is connected to linear polyacrylonitrile macromolecular chains under the action of the initiator, and the resulting polyacrylonitrile spinning solution is subjected to spinning processes such as wet spinning or dry jet wet spinning. Afterwards, polyacrylonitrile precursors (ie, common industrial acrylic fibers) can be obtained.
  • the polyacrylonitrile precursor After the polyacrylonitrile precursor is warped, it is sent to a pre-oxidation furnace to obtain pre-oxidized fibers.
  • the pre-oxidized fibers are subjected to low-temperature carbonization and high-temperature carbonization to obtain carbon fibers.
  • Carbon fibers are surface-treated and sizing to obtain carbon fiber products.
  • the temperature of pre-oxidation is controlled between 200 and 300°C.
  • the polyacrylonitrile precursor fiber is pre-oxidized, then carbonized at low temperature and high temperature, and converted into carbon fiber with a turbostratic graphite structure, and finally a carbon fiber with a carbon content of more than 90% is formed.
  • the number of carbon fiber tows prepared is ⁇ 50k.
  • the modulus per unit price of the composite material made of the carbon fiber in the invention is between 1.8 and 3GPa/RMB/kg, which is much larger than the 1.4GPa/RMB/kg of the comparative example. kg, so using this material in the component design of wind turbine blades, under the condition of achieving the same structural rigidity, the cost of components made of this material is lower.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明涉及一种超大丝束碳纤维及其制备方法、连续纤维增强树脂基复合材料及风电叶片,其中,复合材料包括树脂基体以及掺杂在树脂基体内部的超大丝束连续碳纤维,所述超大丝束连续碳纤维由民用腈纶经预氧化和碳化后得到;风电叶片的主梁和/或尾缘梁由多块上述复合材料堆叠而成。与现有技术相比,本发明在风电叶片中引入连续纤维增强树脂基复合材料,可大大降低现有碳纤维复合材料制品成本,为风电叶片结构设计提供更优性价比材料,提升叶片及风机产品的竞争性。

Description

一种超大丝束碳纤维及其制备方法、连续纤维增强树脂基复合材料及风电叶片 技术领域
本发明涉及风力发电机技术领域,具体涉及一种超大丝束碳纤维及其制备方法、连续纤维增强树脂基复合材料及风电叶片。
背景技术
风能是一种存量大、安全性高的清洁能源。风力发电需要利用风机顶端的叶片依靠风能驱动旋转来产生升力,通过机舱内的传动链进一步转化为转矩带动发电机发电。在相同情况下,叶轮越大,则能够捕捉的风能越多,因此风机的叶片越做越长。而叶片的重量通常与叶片长度呈三次方关系,因此叶片的重量随长度的增加而急剧增大,从而对叶片的设计提出了越来越高的要求。叶片的优化设计是风力发电的核心技术之一。目前大多数叶片的传统结构形式仍为两片壳体,分为压力面和吸力面,壳体由玻璃钢和芯材组成的夹层板和主承力部件——主梁和尾缘梁,共同灌注固化而成。主梁贡献了绝大部分的挥舞刚度,而尾缘梁贡献了绝大部分的摆振刚度。两片壳体内部布置腹板支撑保证结构足够的稳定性,并最终由结构胶将腹板和壳体,壳体和壳体胶结组合在一起。叶片越长,越更加需要高效的材料来快速提升叶片刚度。
通常,风电叶片传统主梁采用玻璃纤维单向织物铺设于主梁模具内,并通过真空灌注的方式导入树脂并最终固化,预制成为主梁部件,后续与壳体进行再次灌注固化。而超大叶片单纯采用玻纤已不能满足对刚度的极致需求,因此需要引入更高模量的纤维。
此时碳纤维是一个有吸引力的选择,碳纤维以其高比模量,比强度,可利用极少的材料达到玻纤叶片等同的刚度和强度水平。通常碳纤维根据力学性能高低可分为航空级和工业级,按照纤维丝束中的单丝数量,又可分为小丝束1k,3k,6k,12k,24k,以及大丝束24k,48k,50k,以及超大丝束100k及以上。目前,仅有一些 整机厂商尝试使用6k、12k碳纤维预浸料,或24k以及48k,50k的碳纤维拉挤板作为叶片主梁的材料。尽管碳纤维复合材料的模量为玻璃纤维复合材料的2-4倍,但价格通常为玻璃纤维复合材料的10倍以上,因此性价比方面仍然难以具有足够竞争力。传统碳纤维是由工业用聚丙烯腈原丝经过预氧化及碳化烧制而成,工艺路线从碳纤维被发明初始就没有大的变革,因此价格一直居高不下,其中原丝成本占碳纤维成本50%左右。
因此开发更高性价比的碳纤维来取代玻纤,来使能更大的叶片,成为关键的技术方向。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种性价比更高的连续纤维增强树脂基复合材料,具体是利用化学组分接近的民用大丝束腈纶去取代原本工业用聚丙烯腈原丝,既可实现原丝成本的下降,又由于增加的丝束数量提高后续预氧化及碳化的效率,最终降低碳纤维成本。
本申请之目的还在于提供应用上述复合材料的风电叶片。
本申请之目的还在于提供一种超大丝束连续碳纤维。
本申请之目的还在于提供上述超大丝束连续碳纤维的制备方法。
为了实现本发明之目的,本申请提供以下技术方案。
在第一方面中,本申请提供一种连续纤维增强树脂基复合材料,所述复合材料包括树脂基体以及掺杂在树脂基体内部的超大丝束连续碳纤维,所述超大丝束连续碳纤维由民用腈纶经预氧化及碳化后得到。与玻璃纤维相比,碳纤维可以利用其高比模量更高效地提供叶片所需刚度。
在第一方面的一种实施方式中,所述复合材料中超大丝束连续碳纤维的掺杂体积百分比为40%~80%。掺杂比过小,则复合材料刚度过低,达不到设计模量;掺杂比过大,则工艺难以实现。
在第一方面的一种实施方式中,所述超大丝束连续碳纤维中单丝数量为100k及以上。
在第一方面的一种实施方式中,所述复合材料中掺杂混杂纤维,所述混杂纤维的掺杂百分比为0~20%。添加其它种类纤维,不仅可以增强复合材料的功能性,例如抗冲击性、导电性、导热性,另外,还可以通过添加配比不同模量和强度的纤 维,得到特定模量和强度的复合材料。
在第一方面的一种实施方式中,所述混杂纤维包括碳纤维、玻璃纤维、芳纶纤维、硼纤维、玄武岩纤维或超高模量聚乙烯纤维中的一种或几种,其中,所述碳纤维中单丝数量为12~50k,所述超高模量聚乙烯纤维的模量为87~172GPa。
在第一方面的一种实施方式中,所述树脂基体包括热固性树脂或热塑性树脂,其中,所述热固性树脂包括环氧树脂、乙烯基树脂、不饱和聚酯树脂、聚氨酯树脂或酚醛树脂中的一种,所述热塑性树脂包括聚丙烯、聚乙烯、聚氯乙烯、聚苯乙烯、聚丙烯腈-丁二烯-苯乙烯、聚酰胺、聚醚醚酮或聚苯硫醚树脂中的一种。
在第二方面,本申请提供一种风电叶片,所述风电叶片包括两片壳体以及腹板,所述壳体包括夹层板和主承力部件,所述主承力部件包括主梁和/或尾缘梁,所述主梁和/或尾缘梁由多块如上所述连续纤维增强树脂基复合材料堆叠而成。
在第二方面的一种实施方式中,所述主梁和/或尾缘梁由1~300块复合材料堆叠而成。
在第三方面,本申请还提供一种超大丝束连续碳纤维,所述超大丝束连续碳纤维由民用腈纶经预氧化和碳化后得到。
在第三方面的一种实施方式中,所述超大丝束连续碳纤维中单丝数量为100k及以上。
在第三方面的一种实施方式中,所述民用腈纶为含丙烯腈在85%以上的丙烯腈共聚物或均聚物的纤维。
在第四方面,本申请还提供了上述超大丝束连续碳纤维的制备方法,所述制备方法包括如下步骤:
(1)将民用腈纶浸渍在有机胺溶液或氧化还原溶液中,然后干燥,得到预处理民用腈纶;
(2)将预处理民用腈纶置于空气氛围中进行预氧化,然后将其置于惰性气体氛围中进行碳化,得到所述超大丝束连续碳纤维。
在第四方面的一种实施方式中,所述有机胺溶液包括乙酸胺、甲酸胺、盐酸胍、乙二胺四乙酸、三乙胺、脲、三甲胺、二氰二胺、正己胺、二己胺、氰胺、戊胺、二乙胺、己二胺、叔丁胺、正丁胺、丙胺、异丙胺、一乙醇胺、二乙醇胺、三乙醇胺、丙二胺,苄胺、哌啶、吡啶、哌嗪或咪唑水溶液中的一种。
在第四方面的一种实施方式中,所述氧化还原溶液包括苯酚、苯酸、高锰酸钾、 重铬酸钾、过氧化氢、水合肼、羟胺类溶液中的一种。所述浸渍温度为10~150℃,浸渍时间为1~600min。
在第四方面的一种实施方式中,所述浸渍温度为10~150℃,浸渍时间为浸渍时间为1~600min。
在第四方面的一种实施方式中,所述干燥的温度为30~100℃。
在第四方面的一种实施方式中,所述预氧化的温度为200~300℃,预氧化的时间为10~120min。
在第四方面的一种实施方式中,所述惰性气体包括氮气、氦气、氖气或氩气中的一种。
在第四方面的一种实施方式中,所述碳化的温度为300~1700℃,碳化的时间为1~20min。
与现有技术相比,本发明的有益效果在于:
基于风电叶片设计的关键承力部件,通过引入民用腈纶原丝而预氧化及碳化后的高性价比超大丝束碳纤维作为混杂纤维制成的复合材料,可将复合材料单向板单位重量单位价格的模量从目前的1-1.5GPa/RMB/kg提升至1.8-3GPa/RMB/kg,进一步使采用该纤维增强复合材料的风电叶片较采用市场通用的24k或48k大丝束碳纤维成本降低10%-20%,从而为风电叶片的大型化、材料利用的高效化提供支持。
附图说明
图1为本发明风电叶片典型截面图;
图2为本发明风电叶片主梁截面图;
图3为实施例1中风电用复合材料截面图。
在附图中,1为风电叶片,2为前缘,31为主梁,32为尾缘梁,4为腹板,5为压力面,6为吸力面,7为尾缘,8为复合材料板材,9为玻璃纤维,10为硼纤维,11为树脂基体,12为超大丝束连续碳纤维。
具体实施方式
应当指出,各附图中的各组件可能为了图解说明而被夸大地示出,而不一定是比例正确的。在各附图中,给相同或功能相同的组件配备了相同的附图标记。
在本发明中,除非特别指出,“布置在…上”、“布置在…上方”以及“布置在… 之上”并未排除二者之间存在中间物的情况。此外,“布置在…上或上方”仅仅表示两个部件之间的相对位置关系,而在一定情况下、如在颠倒产品方向后,也可以转换为“布置在…下或下方”,反之亦然。
在本发明中,各实施例仅仅旨在说明本发明的方案,而不应被理解为限制性的。
在本发明中,除非特别指出,量词“一个”、“一”并未排除多个元素的场景。
在此还应当指出,在本发明的实施例中,为清楚、简单起见,可能示出了仅仅一部分部件或组件,但是本领域的普通技术人员能够理解,在本发明的教导下,可根据具体场景需要添加所需的部件或组件。
在此还应当指出,在本发明的范围内,“相同”、“相等”、“等于”等措辞并不意味着二者数值绝对相等,而是允许一定的合理误差,也就是说,所述措辞也涵盖了“基本上相同”、“基本上相等”、“基本上等于”。以此类推,在本发明中,表方向的术语“垂直于”、“平行于”等等同样涵盖了“基本上垂直于”、“基本上平行于”的含义。
另外,本发明的各方法的步骤的编号并未限定所述方法步骤的执行顺序。除非特别指出,各方法步骤可以以不同顺序执行。
传统的风电叶片的主梁或尾缘梁内添加玻璃纤维,但随着风电叶片的增大,其刚度已经无法满足。因此现有技术中会添加单丝数量在100k以下的碳纤维,增大了风电叶片的刚度,但由于碳纤维的价格很高,单位重量单位价格下,材料的刚度提升不大,即实际应用前景不好。本申请之目的通过超大丝束民用腈纶纤维原丝经过预氧化和碳化制成的超低成本碳纤维的引入,提升叶片主承力结构主梁的比刚度,提升叶片整体的综合性价比。成型过程可包括纤维拉挤、真空灌注、或预浸料成型。为实现上述目的,一种风电叶片用连续纤维增强树脂基复合材料,由纺织级超大丝束民用腈纶原丝经过预氧化和碳化而成的超大丝束碳纤维。
在本发明的复合材料,除超大丝束连续碳纤维之外,可以包含或不包含混杂纤维,如碳纤维、玻璃纤维、芳纶纤维、硼纤维、玄武岩纤维、超高模量聚乙烯纤维的一种或几种。
在本发明的复合材料,树脂基体包含热固性树脂,如环氧树脂、乙烯基树脂、不饱和聚酯树脂、聚氨酯树脂、酚醛树脂,或热塑性树脂,如聚丙烯、聚乙烯、聚氯乙烯、聚苯乙烯、聚丙烯腈-丁二烯-苯乙烯、聚酰胺、聚醚醚酮、聚苯硫醚树脂。
实施例
下面将对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
超大丝束连续碳纤维的制备:
(1)将市购的
Figure PCTCN2021071168-appb-000001
(德绒)L900民用腈纶浸渍在常温的乙二胺溶液,5h后取出干燥,干燥温度为60℃。干燥时间为2h,得到预处理民用腈纶;
(2)将预处理民用腈纶置于空气氛围中进行预氧化,预氧化温度为200℃。预氧化时间为2h,然后将其置于氮气气体氛围中进行碳化,碳化温度为1000℃,碳化时间为15min,得到超大丝束连续碳纤维。
连续纤维增强树脂基复合材料的制备:
取100kg超大丝束连续碳纤维12,悬挂于纱架上,同时玻璃纤维9、硼纤维10也分别悬挂于纱架的不同滚轴上,施加适当的牵伸力使纤维伸直并带有一定张力,超大丝束连续碳纤维12与玻璃纤维9、硼纤维10以及环氧树脂混合均匀,通过特定截面形状的模具,拉挤成型得到由连续纤维增强树脂基复合材料制成的板材,该板材结构如图3所示,其以环氧树脂为树脂基体11,内部均匀掺杂超大丝束连续碳纤维12、玻璃纤维9以及硼纤维10,在本实施例中,超大丝束连续碳纤维12、玻璃纤维9、硼纤维10以及树脂基体11之间的体积比为60:1:1:38。
将多块复合材料板材8堆叠(图中以7块作为示例),形成如图2所示的主梁31。
风电叶片的制备:
将制备得到的主梁31与夹层板、尾缘梁32共同灌注形成两片壳体,其中,夹层板由玻璃钢和芯材组成,尾缘梁32采用现有的玻纤灌注材料,两片壳体首尾对接形成风电叶片1,该风电叶片1包括前缘2、压力面5、吸力面6以及尾缘7,同时,在两个主梁31之间固定有一块腹板4,具体结构如图1所示。
实施例2
超大丝束连续碳纤维的制备:
(1)将购于德绒公司的民用腈纶
Figure PCTCN2021071168-appb-000002
(德绒)L900浸渍在10℃的乙酸胺溶液,10h后取出干燥,干燥温度为30℃。干燥时间为4h,得到预处理民用腈纶;
(2)将预处理民用腈纶置于空气氛围中进行预氧化,预氧化温度为250℃。 氧化时间为1.5h,然后将其置于氮气气体氛围中进行碳化,碳化温度为800℃,碳化时间为10min,得到超大丝束连续碳纤维。
连续纤维增强树脂基复合材料的制备:
将超大丝束连续碳纤维与玻璃纤维混合编织为单层混杂织物,然后将多层混杂织物均匀地依次铺放于主梁模具中,真空环境下导入树脂基体,并固化成型,从而预制成混杂纤维尾缘梁。在本实施例中,超大丝束连续碳纤维、玻璃纤维、以及树脂基体之间的体积比为65:10:25。
实施例3
超大丝束连续碳纤维的制备:
(1)将购于德绒公司的民用腈纶
Figure PCTCN2021071168-appb-000003
(德绒)L900浸渍在100℃的三乙胺溶液,1h后取出干燥,得干燥温度为100℃。干燥时间为1h,得到预处理民用腈纶;
(2)将预处理民用腈纶置于空气氛围中进行预氧化,预氧化温度为300℃。预氧化时间为10min,然后将其置于氮气气体氛围中进行碳化,碳化温度为1700℃,碳化时间为1min,得到超大丝束连续碳纤维。
连续纤维增强树脂基复合材料的制备:
将超大丝束连续碳纤维均匀铺放于树脂基体薄膜上,制成碳纤维预浸料。然后将多层碳纤维预浸料依次铺放于主梁模具中,加热使其固化成型,以制得预制主梁。在本实施例中,超大丝束连续碳纤维以及树脂基体之间的体积比为80:20。
将多块复合材料板材堆叠,形成主梁和尾缘梁。
实施例4
超大丝束连续碳纤维的制备:
(1)将购于德绒公司的民用腈纶
Figure PCTCN2021071168-appb-000004
(德绒)L900民用腈纶浸渍在常温的乙二胺溶液,5h后取出干燥,干燥温度为60℃,干燥时间为2h,得到预处理民用腈纶;
(2)将预处理民用腈纶置于空气氛围中进行预氧化,预氧化温度为250℃。预氧化时间为80min,然后将其置于氮气气体氛围中进行碳化,碳化温度为1200℃,碳化时间为10min,得到超大丝束连续碳纤维。
连续纤维增强树脂基复合材料的制备:
取超大丝束连续碳纤维,施加适当的牵伸力使纤维伸直并带有一定张力,与芳 纶纤维、玄武岩纤维以及聚苯乙烯树脂混合均匀,通过特定截面形状的模具,拉挤成型得到由连续纤维增强树脂基复合材料制成的板材,在本实施例中,超大丝束连续碳纤维、芳纶纤维、玄武岩纤维以及树脂基体之间的质量比为40:10:10:40。
将多块复合材料板材堆叠,形成主梁和尾缘梁。
实施例5
超大丝束连续碳纤维的制备:
(1)将购于德绒公司的民用腈纶
Figure PCTCN2021071168-appb-000005
(德绒)L900民用腈纶浸渍在常温的高锰酸钾溶液,4h后取出干燥,干燥温度为50℃,干燥时间为2h,得到预处理民用腈纶;
(2)将预处理民用腈纶置于空气氛围中进行预氧化,预氧化温度为200℃。预氧化时间为2h,然后将其置于氮气气体氛围中进行碳化,碳化温度为300℃,碳化时间为20min,得到超大丝束连续碳纤维。
取100kg超大丝束连续碳纤维,悬挂于纱架上,同时将玄武岩纤维、100GPa的乙烯纤维也分别悬挂于纱架的不同滚轴上,施加适当的牵伸力使纤维伸直并带有一定张力,超大丝束连续碳纤维与玄武岩纤维、乙烯纤维以及环氧树脂混合均匀,通过特定截面形状的模具,拉挤成型得到由连续纤维增强树脂基复合材料制成的板材,在本实施例中,超大丝束连续碳纤维、玄武岩纤维、乙烯纤维以及树脂基体之间的体积比为50:10:10:30。
将多块复合材料板材堆叠,形成主梁和尾缘梁。
实施例6
超大丝束连续碳纤维的制备:
(1)将购于德绒公司的民用腈纶
Figure PCTCN2021071168-appb-000006
(德绒)L900民用腈纶浸渍在常温的水合肼溶液,3h后取出干燥,干燥温度为80℃,干燥时间为2h,得到预处理民用腈纶;
(2)将预处理民用腈纶置于空气氛围中进行预氧化,预氧化温度为270℃。预氧化时间为1h,然后将其置于氮气气体氛围中进行碳化,碳化温度为800℃,碳化时间为15min,得到超大丝束连续碳纤维。
连续纤维增强树脂基复合材料的制备:
将超大丝束连续碳纤维与玻璃纤维混合编织为单层混杂织物,然后将多层混杂织物均匀地依次铺放于主梁模具中,真空环境下导入聚苯乙烯,并固化成型,从而 预制成混杂纤维尾缘梁。在本实施例中,超大丝束连续碳纤维、玻璃纤维、以及聚苯乙烯之间的体积比为40:15:45。
对比例1
连续碳纤维的制备:
在一定的聚合条件下,丙稀腈在引发剂的作用下,连接为线型聚丙烯腈大分子链,生成的聚丙烯腈纺丝液经过湿法纺丝或干喷湿纺等纺丝工艺后即可得到聚丙烯腈原丝(即普通工业腈纶)。
聚丙烯腈原丝经整经后,送入预氧化炉制得预氧化纤维,预氧丝进入低温碳化、高温碳化制得碳纤维,碳纤维经表面处理、上浆即得到碳纤维产品。预氧化的温度控制在200~300℃之间。聚丙烯腈原丝经预氧化处理,再经过低温碳化和高温碳化,转化为具有乱层石墨结构的碳纤维,最终形成含碳量90%以上的碳纤维。制备得到的碳纤维丝束数量为<50k。
连续纤维增强树脂基复合材料的制备:
取连续碳纤维,施加适当的牵伸力使纤维伸直并带有一定张力,与玻璃纤维、硼纤维以及环氧树脂混合均匀得到由复合材料制成的板材,其中,连续碳纤维、玻璃纤维、硼纤维以及树脂基体之间的体积比为60:1:1:38。
性能测试
将实施例1~6以及对比例1制备得到的复合材料进行模量测试,测试方法根据GB/T 3354-2014《定向纤维增强聚合物基复合材料拉伸性能试验方法》,或ASTM D3039-14(Standard test method for tensile properties of polymer matrix composite materials)进行。
结果如下表所示:
组别 模量(GPa) 单位重量单位价格的模量(GPa/RMB/kg)
实施例1 144 2.3
实施例2 160 2.6
实施例3 185 2.7
实施例4 114 1.8
实施例5 136 2.1
实施例6 107 2.1
对比例1 144 1.4
从测试结果中我们可以看出:利用该发明中的碳纤维所制成的复合材料,单位重量单位价格的模量在1.8~3GPa/RMB/kg之间,远大于对比例的1.4GPa/RMB/kg,因此利用该材料到风电叶片的部件设计中,达到相同结构刚度的情况下,采用该材料所制作的部件成本更低。
上述对实施例的描述是为了便于本技术领域的普通技术人员能理解和应用本申请。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其它实施例中而不必付出创造性的劳动。因此,本申请不限于这里的实施例,本领域技术人员根据本申请披露的内容,在不脱离本申请范围和精神的情况下做出的改进和修改都本申请的范围之内。

Claims (19)

  1. 一种连续纤维增强树脂基复合材料,其特征在于,所述复合材料包括树脂基体以及掺杂在树脂基体内部的超大丝束连续碳纤维,所述超大丝束连续碳纤维由民用腈纶经预氧化和碳化后得到。
  2. 如权利要求1所述的连续纤维增强树脂基复合材料,其特征在于,所述复合材料中超大丝束连续碳纤维的掺杂体积百分比为40%~80%。
  3. 如权利要求1所述的连续纤维增强树脂基复合材料,其特征在于,所述超大丝束连续碳纤维中单丝数量为100k及以上。
  4. 如权利要求1所述的连续纤维增强树脂基复合材料,其特征在于,所述复合材料中掺杂混杂纤维,所述混杂纤维的掺杂体积百分比为0~20%。
  5. 如权利要求4所述的连续纤维增强树脂基复合材料,其特征在于,所述混杂纤维包括碳纤维、玻璃纤维、芳纶纤维、硼纤维、玄武岩纤维或超高模量聚乙烯纤维中的一种或几种,其中,所述碳纤维中单丝数量为12k~50k,所述超高模量聚乙烯纤维的模量为87~172GPa。
  6. 如权利要求1所述的连续纤维增强树脂基复合材料,其特征在于,所述树脂基体包括热固性树脂或热塑性树脂,其中,所述热固性树脂包括环氧树脂、乙烯基树脂、不饱和聚酯树脂、聚氨酯树脂或酚醛树脂中的一种,所述热塑性树脂包括聚丙烯、聚乙烯、聚氯乙烯、聚苯乙烯、聚丙烯腈-丁二烯-苯乙烯、聚酰胺、聚醚醚酮或聚苯硫醚树脂中的一种。
  7. 一种风电叶片,所述风电叶片包括两片壳体以及腹板,所述壳体包括夹层板和主承力部件,所述主承力部件包括主梁和尾缘梁,其特征在于,所述主梁和/或尾缘梁由多块如权利要求1~6任一所述连续纤维增强树脂基复合材料堆叠而成。
  8. 如权利要求7所述的风电叶片,其特征在于,所述主梁和/或尾缘梁由1~300块复合材料堆叠而成。
  9. 一种应用在如权利要求1所述连续纤维增强树脂基复合材料中的超大丝束连续碳纤维,其特征在于,所述超大丝束连续碳纤维由民用腈纶经预氧化和碳化后得到。
  10. 如权利要求9所述的超大丝束连续碳纤维,其特征在于,所述超大丝束连续碳纤维中单丝数量为100k及以上。
  11. 如权利要求9所述的超大丝束连续碳纤维,其特征在于,所述民用腈纶为含丙烯腈在85%以上的丙烯腈共聚物或均聚物的纤维。
  12. 一种如权利要求9~11任一所述超大丝束连续碳纤维的制备方法,其特征在于,所述制备方法包括如下步骤:
    (1)将民用腈纶浸渍在有机胺溶液或氧化还原溶液中,然后干燥,得到预处理民用腈纶;
    (2)将预处理民用腈纶置于空气氛围中进行预氧化,然后将其置于惰性气体氛围中进行碳化,得到所述超大丝束连续碳纤维。
  13. 如权利要求12所述的超大丝束连续碳纤维的制备方法,其特征在于,所述有机胺溶液包括乙酸胺、甲酸胺、盐酸胍、乙二胺四乙酸、三乙胺、脲、三甲胺、二氰二胺、正己胺、二己胺、氰胺、戊胺、二乙胺、己二胺、叔丁胺、正丁胺、丙胺、异丙胺、一乙醇胺、二乙醇胺、三乙醇胺、丙二胺,苄胺、哌啶、吡啶、哌嗪或咪唑水溶液中的一种。
  14. 如权利要求12所述的超大丝束连续碳纤维的制备方法,其特征在于,所述氧化还原溶液包括苯酚、苯酸、高锰酸钾、重铬酸钾、过氧化氢、水合肼、羟胺类溶液中的一种。
  15. 如权利要求12所述的超大丝束连续碳纤维的制备方法,其特征在于,步骤(1)中,所述浸渍温度为10~150℃,浸渍时间为1~600min。
  16. 如权利要求12所述的超大丝束连续碳纤维的制备方法,其特征在于,所述干燥的温度为30~100℃。
  17. 如权利要求12所述的超大丝束连续碳纤维的制备方法,其特征在于,所述预氧化的温度为200~300℃,预氧化的时间为10~120min。
  18. 如权利要求12所述的超大丝束连续碳纤维的制备方法,其特征在于,所述惰性气体包括氮气、氦气、氖气或氩气中的一种。
  19. 如权利要求12所述的超大丝束连续碳纤维的制备方法,其特征在于,所述碳化的温度为300~1700℃,碳化的时间为1~20min。
PCT/CN2021/071168 2020-12-08 2021-01-12 一种超大丝束碳纤维及其制备方法、连续纤维增强树脂基复合材料及风电叶片 WO2022121081A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011421180.2A CN112522815B (zh) 2020-12-08 2020-12-08 一种超大丝束碳纤维及其制备方法、连续纤维增强树脂基复合材料及风电叶片
CN202011421180.2 2020-12-08

Publications (1)

Publication Number Publication Date
WO2022121081A1 true WO2022121081A1 (zh) 2022-06-16

Family

ID=74998123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071168 WO2022121081A1 (zh) 2020-12-08 2021-01-12 一种超大丝束碳纤维及其制备方法、连续纤维增强树脂基复合材料及风电叶片

Country Status (2)

Country Link
CN (1) CN112522815B (zh)
WO (1) WO2022121081A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114941188A (zh) * 2022-06-28 2022-08-26 中国科学院宁波材料技术与工程研究所 一种腈纶纤维连续化制备碳纤维的方法
CN117162561A (zh) * 2023-11-02 2023-12-05 中材科技风电叶片股份有限公司 热塑性复合主梁成型方法及风电叶片主梁

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113583323A (zh) * 2021-07-07 2021-11-02 江阴爱科森博顿聚合体有限公司 一种用于风电叶片的碳纤维材料及其制备方法
CN113584875B (zh) * 2021-07-30 2023-04-07 北京化工大学常州先进材料研究院 一种大丝束聚丙烯腈纤维的改性方法
CN117512819B (zh) * 2023-11-29 2024-06-28 山东大学 一种含石墨化碳质填料的高性能碳基纤维制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031188A (en) * 1975-02-13 1977-06-21 Minnesota Mining And Manufacturing Company Process for forming carbonaceous fibers
JPS59125912A (ja) * 1982-12-27 1984-07-20 Mitsubishi Rayon Co Ltd 炭素繊維の製法
CN101591857A (zh) * 2009-06-24 2009-12-02 山东理工大学 用腈纶大小丝束制造纺织用预氧化纤维的方法
CN101906251A (zh) * 2009-06-04 2010-12-08 上海杰事杰新材料股份有限公司 一种风力发电机叶片用复合材料及其制备方法
CN102092135A (zh) * 2010-12-13 2011-06-15 中国航空工业集团公司北京航空材料研究院 一种提高复合材料翼面结构刚度的方法
CN104775187A (zh) * 2015-04-21 2015-07-15 中国科学院宁波材料技术与工程研究所 一种采用腈纶制备碳纤维的方法
CN105508142A (zh) * 2014-10-15 2016-04-20 株洲时代新材料科技股份有限公司 一种多梁结构大尺寸风电叶片及其的制作方法
CN108349117A (zh) * 2015-11-06 2018-07-31 古河电气工业株式会社 热塑性复合材料和成型体
CN108396549A (zh) * 2017-02-04 2018-08-14 中国科学院上海应用物理研究所 一种大丝束聚丙烯腈预氧丝、大丝束碳纤维及其制备方法
CN111910291A (zh) * 2020-07-31 2020-11-10 金发科技股份有限公司 一种pan基碳纤维及其制备方法与由其制成的碳纤维

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101539116A (zh) * 2009-01-15 2009-09-23 南通东泰电工材料有限公司 一种风力发电机叶片用碳纤维大梁
JP5682139B2 (ja) * 2009-05-22 2015-03-11 三菱レイヨン株式会社 炭素繊維束
KR20130028561A (ko) * 2011-09-09 2013-03-19 현대자동차주식회사 굴곡 특성 및 표면 특성이 우수한 라지 토우 탄소섬유 복합재
CN104975527A (zh) * 2014-04-12 2015-10-14 四川鑫达企业集团有限公司 一种油气勘探特种纤维缆绳的制备方法
CN111021066A (zh) * 2019-12-26 2020-04-17 青岛天邦线业有限公司 一种浸胶碳纤维绳

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031188A (en) * 1975-02-13 1977-06-21 Minnesota Mining And Manufacturing Company Process for forming carbonaceous fibers
JPS59125912A (ja) * 1982-12-27 1984-07-20 Mitsubishi Rayon Co Ltd 炭素繊維の製法
CN101906251A (zh) * 2009-06-04 2010-12-08 上海杰事杰新材料股份有限公司 一种风力发电机叶片用复合材料及其制备方法
CN101591857A (zh) * 2009-06-24 2009-12-02 山东理工大学 用腈纶大小丝束制造纺织用预氧化纤维的方法
CN102092135A (zh) * 2010-12-13 2011-06-15 中国航空工业集团公司北京航空材料研究院 一种提高复合材料翼面结构刚度的方法
CN105508142A (zh) * 2014-10-15 2016-04-20 株洲时代新材料科技股份有限公司 一种多梁结构大尺寸风电叶片及其的制作方法
CN104775187A (zh) * 2015-04-21 2015-07-15 中国科学院宁波材料技术与工程研究所 一种采用腈纶制备碳纤维的方法
CN108349117A (zh) * 2015-11-06 2018-07-31 古河电气工业株式会社 热塑性复合材料和成型体
CN108396549A (zh) * 2017-02-04 2018-08-14 中国科学院上海应用物理研究所 一种大丝束聚丙烯腈预氧丝、大丝束碳纤维及其制备方法
CN111910291A (zh) * 2020-07-31 2020-11-10 金发科技股份有限公司 一种pan基碳纤维及其制备方法与由其制成的碳纤维

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Master Thesis", 20 May 2006, BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY, CN, article LI, LULU: "Research on the Oxidation of Pan Tow", pages: 1 - 73, XP009538185 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114941188A (zh) * 2022-06-28 2022-08-26 中国科学院宁波材料技术与工程研究所 一种腈纶纤维连续化制备碳纤维的方法
CN114941188B (zh) * 2022-06-28 2024-04-26 中国科学院宁波材料技术与工程研究所 一种腈纶纤维连续化制备碳纤维的方法
CN117162561A (zh) * 2023-11-02 2023-12-05 中材科技风电叶片股份有限公司 热塑性复合主梁成型方法及风电叶片主梁
CN117162561B (zh) * 2023-11-02 2024-03-22 中材科技风电叶片股份有限公司 热塑性复合主梁成型方法及风电叶片主梁

Also Published As

Publication number Publication date
CN112522815B (zh) 2022-05-17
CN112522815A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
WO2022121081A1 (zh) 一种超大丝束碳纤维及其制备方法、连续纤维增强树脂基复合材料及风电叶片
JP6211881B2 (ja) 炭素繊維及びその製造方法
US20030157309A1 (en) Moulding materials
WO2022134234A1 (zh) 一种连续碳纳米管纤维增强树脂基复合材料、风电叶片及其制备方法
CN110615981A (zh) 传导性聚合物和金属涂覆纤维的传导性组合物
CN111101371A (zh) 一种高性能碳纳米管/碳复合纤维及其快速制备方法
US10822463B2 (en) Resin supply material, preform, and method of producing fiber-reinforced resin
CN109206905B (zh) 一种石墨烯双马树脂复合材料及其制备方法
CN112574468B (zh) 具有多层次连续网络结构的导热高分子复合材料及制备方法
CN104611914B (zh) 一种基于静电纺丝工艺制备高比表面积碳纤维布的方法
CN113002024A (zh) 一种纳米颗粒聚合物复合纳米纤维膜层间增韧碳纤维预浸料的方法
WO1996021695A1 (fr) Preimpregnes et materiau composite renforce par des fibres de carbone
US20100266827A1 (en) Carbon fiber and composite material using the same
CN113072795A (zh) 一种芳纶纤维/石墨烯复合增强碳纤维树脂预浸料
CN206217892U (zh) 贯通道结构及具有其的列车
JP2014101605A (ja) 炭素繊維の製造方法
JP2012102439A (ja) 炭素繊維の表面処理方法
CN111320841A (zh) 一种芳纶纤维/碳纳米管复合增强碳纤维树脂预浸料
CN108943888B (zh) 一种复合材料层间增韧的方法
CN110294632B (zh) 碳纤维立体织物增强聚酰亚胺-碳基双元基体复合材料
JP6139318B2 (ja) 炭素繊維の製造方法
JP5960402B2 (ja) 炭素繊維束及び炭素繊維束の製造方法
JP2004176245A (ja) 炭素繊維シートの製造方法
CN106740952A (zh) 车体底架结构及具有其的列车
JP3215701B2 (ja) 高熱負荷抵抗性c/c材の製造法および核融合炉の第1壁材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21901800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21901800

Country of ref document: EP

Kind code of ref document: A1