WO2022116731A1 - 电力电子化智能电池单元 - Google Patents

电力电子化智能电池单元 Download PDF

Info

Publication number
WO2022116731A1
WO2022116731A1 PCT/CN2021/125613 CN2021125613W WO2022116731A1 WO 2022116731 A1 WO2022116731 A1 WO 2022116731A1 CN 2021125613 W CN2021125613 W CN 2021125613W WO 2022116731 A1 WO2022116731 A1 WO 2022116731A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
power
interface
voltage
battery module
Prior art date
Application number
PCT/CN2021/125613
Other languages
English (en)
French (fr)
Inventor
李睿
谢弘洋
吴西奇
蔡旭
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2022116731A1 publication Critical patent/WO2022116731A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of battery energy storage, and in particular, the present invention relates to a power electronic intelligent battery unit that is safe, reliable, high-efficiency and flexible in capacity expansion.
  • the battery energy storage system has the advantages of no moving parts, no special requirements for the site, easy capacity expansion, and good dynamic characteristics. widely.
  • a typical high-capacity battery system is composed of a large number of battery cells according to the method shown in Figure 1.
  • a single battery cell is connected in series and parallel to form a battery module, multiple battery modules form a battery cluster, and multiple battery clusters further form a large-capacity battery system.
  • the capacity battery system uses the single-stage PCS as the power interface, and is connected to the grid or load to realize the bidirectional flow of power.
  • FIG. 2 shows a typical residential solar-storage complementary on-grid and off-grid integrated power conversion architecture.
  • residential photovoltaic cells and energy storage batteries form a good complementary and synergistic relationship.
  • the 48V battery module is connected to the 400V DC bus through the isolated bidirectional DC converter.
  • Tesla has also launched an energy storage system for industrial and commercial applications, as shown in Figure 3:
  • the 48V low-voltage battery module is equivalent to a PowerPod with an output voltage of 400V at the output of the DC converter through a 1.6kW isolated bidirectional DC converter.
  • 16 groups of PowerPods are connected in parallel through the DC bus to form a 25kW/4-hour Powerpack
  • 10 groups of Powerpacks are connected in parallel and connected to 250kW inverters to form a 250kW/4-hour battery energy storage system.
  • the state of charge of each battery cell is inconsistent during the charge-discharge cycle of the energy storage system.
  • the charging process there will be a situation where one battery is fully charged, while the remaining batteries are not fully charged. In order to avoid overcharging the battery, the remaining battery cells will not be able to be fully charged;
  • the discharge process there will be a situation where the power of a certain battery has reached the minimum allowable state of charge, while the rest of the batteries can still be further discharged. Discharge will stop. It can be seen that the inconsistent performance of battery cells will limit the available capacity of the energy storage system as a whole, resulting in a waste of configuration capacity and increasing the cost of the energy storage system.
  • the circulating current caused by the inconsistency of the battery will also accelerate the aging and damage of the battery, and increase the maintenance cost of the system.
  • all the battery cells connected in series with the battery will also fail to work normally.
  • the number of battery cells connected in series is often large, and this problem will also significantly increase the cost and efficiency of battery energy storage systems.
  • Battery screening refers to testing the performance of each battery cell when the battery leaves the factory, and selecting battery cells with consistent performance to connect in series and parallel to form a battery module. This process requires a lot of time and labor costs. At the same time, the proportion of batteries that can pass the screening and meet the requirements of the energy storage system is only about 60%, which makes the cost of battery manufacturing and screening very large.
  • the battery balancing is to make the state of charge of each battery cell always remain the same through passive balancing or active balancing after the batteries form a string.
  • Passive balancing consumes the power of cells with a high state of charge on resistors or diodes, resulting in large losses and slow current sharing.
  • Active balancing uses energy storage elements such as capacitors and inductors, and cooperates with the high-speed switching of the switch to transfer the power from the battery cells with a high state of charge to those with a low state of charge. This method can effectively balance the battery cells. But the hardware cost is high and the control is complicated. In order to ensure the safe and reliable operation of the battery energy storage system, battery balancing is an indispensable functional unit, which further increases the loss and cost of the battery energy storage system.
  • BMS battery management system
  • PCS power conversion unit
  • BMU battery monitoring unit
  • the battery monitoring unit has the functions of collecting battery voltage, current, and temperature information, and balancing the battery cells in the battery module. Since the battery module itself lacks power control capability and can only be charged and discharged passively, it is difficult to avoid overcharging and overdischarging. The overcharge and overdischarge of the battery will cause the battery capacity to decrease and the internal resistance to increase, and at the same time cause irreversible structural damage inside the battery. Further development will lead to the occurrence of a short circuit in the battery, resulting in thermal runaway of the battery and causing battery energy storage. Serious failure of the system.
  • the battery monitoring unit in the battery module can only passively provide battery status information to the overall battery management system, and the battery management system also lacks an effective battery fault status assessment method.
  • the structural damage of the battery especially the potential internal short-circuit fault, in the early stage, the external characteristics of the battery such as voltage, current, and surface temperature will not change significantly, and it is difficult to be effectively and accurately identified by the battery monitoring unit.
  • the further development of these damages and minor faults will lead to serious internal short-circuit faults, resulting in large-scale thermal runaway.
  • Patent application number CN111416399A proposes an intelligent battery and intelligent control module with active detection and control function, which can realize a function of active detection and control, and then replace the external control mechanism.
  • the module cannot pre-judge the battery's fault information and take measures in advance, which still cannot effectively avoid the serious consequences of battery failure.
  • the patent with the application number CN103944225A proposes an intelligent battery management method and an intelligent battery management device, which maintains the best working state of the battery and prolongs the service life of the battery, but also cannot guarantee the safe operation of the battery.
  • a power electronic intelligent battery unit comprising:
  • a battery module comprising a plurality of battery cells connected in series and sensors for measuring voltage, current, pressure and/or temperature of the battery cells;
  • the intelligent battery interface is connected with the output side of the battery module and the sensor, and the intelligent battery interface has a power interface and an information interface to the outside world,
  • the battery module monitors the voltage, current, pressure and/or temperature information of the battery cells, while providing or absorbing power through the smart battery interface.
  • the smart battery interface transmits status information and fault information through the information interface, and receives control information from the information interface,
  • the intelligent battery interface changes its own DC voltage gain according to the voltage of the battery output side of the connected battery module, so as to maintain the voltage stability of the power interface of the power electronic intelligent battery unit.
  • the senor is one or more of the following:
  • a plurality of voltage sensors, temperature sensors and pressure sensors arranged on the battery cells of the battery module for detecting cell voltage, temperature and pressure data of the battery module;
  • a plurality of voltage sensors and current sensors arranged in the battery module detect voltage and current data on the output side of the battery module.
  • the smart battery interface includes:
  • a conditioning circuit which is connected to the output end of the sensor, and adjusts the electrical signal output by the sensor to form an electrical signal that can be read by the processor;
  • a power converter which is connected to the battery module, realizes bidirectional flow and active control of power according to the control of the processor, and forms a stable and controllable output voltage at the power interface;
  • the equalization circuit is arranged at both ends of each battery cell. Through a certain equalization algorithm, under the control of the processor, the equalization circuit realizes the balance of the state of charge of the battery cell through the switching of the switch.
  • the power converter is a bidirectional isolated DC converter, and the bidirectional isolated DC converter has different voltage gain expressions during forward operation and reverse operation.
  • the power converter includes:
  • the first AC-DC conversion circuit includes a first full-bridge circuit composed of first to fourth switching transistors;
  • the second AC-DC conversion circuit includes a second full-bridge circuit composed of fifth to eighth switch transistors.
  • An isolated bidirectional resonant network includes a first inductor, a transformer, a first AC port on the primary side of the transformer and a second AC port on the secondary side of the transformer,
  • the midpoints of the two bridge arms of the first full-bridge circuit are respectively connected to the first AC end and the second AC end of the first AC port of the isolated bidirectional resonant network, and the two bridge arms of the second full-bridge circuit The midpoint is respectively connected to the first AC end and the second AC end of the second AC port of the isolated bidirectional resonant network.
  • the isolated bidirectional resonant network further includes a second inductor, a first capacitor, a second capacitor, and an auxiliary capacitor, the first inductor and the first capacitor are connected in series, and one end of the first inductor is connected to The first AC terminal of the first AC port and one end of the first capacitor are connected to the first AC terminal of the primary side of the transformer, the second AC terminal of the primary side of the transformer is connected to the second AC terminal of the first AC port, and the secondary side of the transformer is connected to the second AC terminal of the first AC port.
  • the first AC terminal is connected to one end of the second capacitor, the other end of the second capacitor is connected to one end of the second inductor, the other end of the second inductor is connected to the first AC terminal of the second AC port, and the second AC terminal of the secondary side of the transformer is connected.
  • the terminal is connected to the second AC terminal of the second AC port; a tap is drawn from the middle of the winding of the primary side of the transformer, and an auxiliary capacitor is connected between the tap and the second AC terminal of the primary side of the transformer.
  • the isolated bidirectional resonant network further includes a first capacitor and an auxiliary capacitor, the first inductor and the first capacitor are connected in series, and one end of the first inductor is connected to the first AC port of the first AC port
  • One end of the first capacitor is connected to the first AC terminal of the primary side of the transformer
  • the second AC terminal of the primary side of the transformer is connected to the second AC terminal of the first AC port
  • the two ports of the secondary side of the transformer are connected to the second AC port of the second AC port.
  • Two ports, a tap is drawn from the middle of the winding of the primary side of the transformer, and an auxiliary capacitor is connected between the tap and the second AC end of the primary side of the transformer.
  • the power converter is a bidirectional non-isolated DC converter, comprising first to fourth switching transistors, an inductor, and first and second capacitors, the first switching transistor and the second switching transistor A half bridge is formed in series, and the first capacitor is connected in parallel; the third switch tube and the fourth switch tube are connected in series to form a half bridge, and the second capacitor is connected in parallel at the same time, and the sources of the second switch tube and the fourth switch tube are connected; the inductor connects the two halves The midpoint of the bridge arm.
  • the smart battery interface further includes:
  • the protection device is installed with the connection end of the intelligent battery interface and the power interface;
  • the heat sink is installed on the power converter and the battery module, absorbs the heat generated by the two, and increases the heat dissipation area. At the same time, the heat sink has a unified structure and can convert the power when the ambient temperature is too low. The extra heat generated by the heater is transferred to the battery module to avoid damage to the battery module due to low temperature.
  • the power converter further includes an auxiliary power supply, and the auxiliary power supply provides power for the processor, the drive circuit of the power converter, the protection device, the heat sink and the equalization circuit.
  • the processor is configured to perform one or more of the following operations:
  • the parameter model of the battery module is identified and calibrated;
  • the current stored energy of the battery and the power boundary conditions of the current charging and discharging of the battery are estimated, and the power of charging and discharging of the battery is controlled;
  • the current reliability of the battery module is calculated according to the fault prediction model and reliability model. Reduced power operation;
  • the fault diagnosis model Using its own status information such as voltage, current, temperature, pressure, and historical charge-discharge cycle records, according to the fault diagnosis model, it can be judged whether the battery is currently faulty; when it is judged that the battery module is faulty, the module will be taken out of the running state and take the initiative to cool down. measures to avoid thermal runaway of the module, and at the same time send out fault information through the communication interface;
  • the voltage on the output side of the battery module is obtained by comparing the voltage sensor with the voltage on the power interface of the power electronic intelligent battery module.
  • the DC voltage gain is increased to make the said The voltage of the power interface remains unchanged;
  • the power of the battery module increases with the charging of the battery and the voltage on the output side of the battery module rises, the DC voltage gain is reduced to keep the voltage of the power interface unchanged;
  • the power transmitted by the intelligent battery interface is monitored by the voltage sensor and the current sensor, and the magnitude and direction of the output current of the battery module are changed, so that the magnitude and direction of the output power of the power electronic intelligent battery module meet the set requirements.
  • the smart battery interface is connected to an online computing platform, and the online computing platform collects a large number of power electronic smart battery modules through long-distance communication with a large number of power electronic smart battery modules in repeated cycles.
  • Parameters and state trajectories during operation, through big data mining and intelligent algorithms, the parameter models, state estimation algorithms, fault prediction algorithms and charge-discharge control algorithms of batteries in different working environments are corrected and optimized, and the results are periodically Distributed underground to each smart battery module.
  • an intelligent battery interface is provided, the intelligent battery interface is connected to the output side of a battery module and a sensor, and the intelligent battery interface is connected to a power interface and an information exchange interface, the intelligent battery interface is Interfaces include:
  • a conditioning circuit which is connected to the output end of the sensor, and adjusts the electrical signal output by the sensor to form an electrical signal that can be read by the processor;
  • a power converter which is connected to the battery module, realizes bidirectional flow and active control of power according to the control of the processor, and forms a stable and controllable output voltage at the power interface;
  • the equalization circuit is arranged at both ends of each battery cell. Through a certain equalization algorithm, under the control of the processor, the equalization circuit realizes the balance of the state of charge of the battery cell through the switching of the switch.
  • the smart battery interface includes:
  • the protection device is installed at the connection end of the intelligent battery interface and the power interface;
  • the heat sink is installed on the power converter and the battery module, absorbs the heat generated by the two, and increases the heat dissipation area. At the same time, the heat sink has a unified structure and can convert the power when the ambient temperature is too low. The extra heat generated by the heater is transferred to the battery module to avoid damage to the battery module due to low temperature.
  • the smart battery interface further includes an auxiliary power supply, which provides power for the processor, the drive circuit of the power converter, the protection device, the heat sink and the equalization circuit.
  • a battery system composed of the above-mentioned power electronic intelligent battery unit, including:
  • a plurality of the power electronic intelligent battery units, the DC bus and the communication bus are provided.
  • the power interfaces of the plurality of power electronic smart battery units are connected to the DC bus in parallel, or the power interfaces of the plurality of power electronic smart battery units are connected to the DC bus after being connected in series;
  • the information exchange interfaces of the plurality of power electronic intelligent battery units are connected to the communication bus, upload the status information and fault information of each battery, receive control commands for the power electronic intelligent battery units, and control the input and cut-off of the battery units. out, and the magnitude and direction of the transmission power.
  • the power size of each power electronic smart battery unit is determined, and the power of the power electronic smart battery unit is combined
  • the interface control method determines the control strategy for each unit.
  • the faulty power electronic intelligent battery unit uploads the battery fault information to the communication bus through the information exchange interface;
  • the power of the power electronic intelligent battery cells that have not failed is redistributed, and the control commands it receives control the magnitude and direction of the transmission power of the battery cells.
  • FIG. 1 shows a composition method of a large-capacity battery system in the prior art.
  • Figure 2 shows a typical household-type optical storage complementary on-grid integrated power conversion architecture.
  • Figure 3 shows a schematic diagram of an energy storage system based on a high-frequency DCDC converter.
  • FIG. 4 shows the step-by-step battery recycling detection process.
  • FIG. 5 shows a schematic block diagram of an electronically intelligent battery unit according to an embodiment of the present invention.
  • FIG. 6 shows a schematic block diagram of a smart battery interface according to an embodiment of the present invention.
  • FIG. 7 shows a schematic diagram showing the hardware structure of an electronic intelligent battery unit according to an embodiment of the present invention.
  • FIG. 8 shows a schematic circuit diagram of a conditioning circuit according to one embodiment of the present invention.
  • FIG. 9 shows a schematic circuit diagram of a bidirectional isolated DC converter according to an embodiment of the present invention.
  • FIG. 10 shows a schematic circuit diagram of a bidirectional isolated DC converter according to another embodiment of the present invention.
  • FIG. 11 shows a schematic circuit diagram of a bidirectional isolated DC converter according to yet another embodiment of the present invention.
  • FIG. 12 shows a schematic circuit diagram of a bidirectional non-isolated DC converter according to an embodiment of the present invention.
  • FIG. 13 shows a schematic circuit diagram of an equalization circuit according to an embodiment of the present invention.
  • FIG. 14 shows an overall flow diagram of a battery module according to an embodiment of the present invention.
  • Figure 15 shows a flowchart of parameter identification according to one embodiment of the present invention.
  • Figure 16 shows a state of charge estimation flowchart according to one embodiment of the present invention.
  • Figure 17 shows a flow diagram of an online platform according to one embodiment of the present invention.
  • FIG. 18 shows a schematic diagram of a parallel capacity expansion system 800 based on power electronics and intelligent battery cells according to an embodiment of the present invention.
  • FIG. 19 shows a schematic diagram of a series capacity expansion system 900 based on power electronics and intelligent battery cells according to an embodiment of the present invention.
  • the present invention provides a power electronic intelligent battery unit that is safe, reliable, high-efficiency and flexibly expandable, which can realize that the battery module can operate more safely, reliably and efficiently, and can realize multiple batteries at the same time.
  • the power electronic intelligent battery unit consists of two parts: the intelligent battery interface and the battery module.
  • the battery module part is similar to the traditional battery energy storage system, and a battery module with a certain voltage and capacity is composed of a plurality of battery cells in series and parallel.
  • the intelligent battery interface integrates the functions of the battery management system and power conversion, which can realize the detection and recording of the voltage, temperature, and pressure conditions of each battery cell in the battery module, as well as the input and output current of the entire battery module. Status information, online identification and estimation of battery internal parameters, state of charge, and state of health. At the same time, it has rich communication interfaces to realize information exchange with the outside world. At the same time, the smart battery interface also integrates the function of bidirectional power exchange, providing stable and controllable input and output current, port voltage and dynamic response characteristics at the external port. At the same time, the intelligent battery interface and battery module carry out unified packaging and heat dissipation management, and externally appear as a unified power electronic intelligent battery unit, and have an information exchange interface and a power conversion interface.
  • FIG. 5 shows a schematic block diagram of an electronically intelligent battery unit according to an embodiment of the present invention.
  • the power electronics smart battery unit 100 in this embodiment includes a battery module 110 and a smart battery interface 120 .
  • the battery module 110 can be composed of several battery cells connected in series, and has an energy storage function.
  • One end of the smart battery interface 120 is connected to the output side of the battery module 110 and the sensors of several battery cells in the battery module 110 .
  • the other end of the smart battery interface 120 is connected to the power interface 130 and the information exchange interface 140 of the smart battery unit 100 .
  • the smart battery interface 120 has functions of battery status monitoring, battery status estimation, battery safety management, and battery charge-discharge power conversion.
  • FIG. 6 shows a schematic block diagram of a smart battery interface according to an embodiment of the present invention.
  • the smart battery interface of this embodiment is applied to the power electronic smart battery unit in FIG. 1 , and the smart battery interface monitors the voltage, current, pressure and temperature of the battery module and each battery cell in the battery module. information, estimate the working state of the battery module, predict the health state and reliability of the battery module, set the power boundary conditions for battery charging and discharging, monitor the fault condition of the battery module, and exchange battery status information through the information exchange interface of the intelligent battery unit .
  • the functions of the smart battery interface 210 may include battery reliability prediction, state of health prediction, parameter model correction, state of health estimation, state of charge estimation, power boundary conditions, power control, and the like.
  • the smart battery interface 210 is connected to the information exchange interface 220 , transmits status information and fault information to the information exchange interface 220 , and receives control information from the information exchange interface 220 .
  • the smart battery interface 210 is connected to the power interface 230, and changes its own DC voltage gain according to the voltage of the battery output side 240 of the connected battery module to maintain the voltage stability of the power interface 230 of the power electronic smart battery unit.
  • the smart battery interface 210 is connected to a battery sensor 250 arranged on the battery module.
  • the battery sensor 250 may include a plurality of voltage sensors, temperature sensors, pressure sensors, and the like.
  • the smart battery interface 210 detects the cell voltage, temperature and pressure data of the battery module through a plurality of voltage sensors, temperature sensors and pressure sensors arranged on the battery cells of the battery module, A voltage sensor and a current sensor detect the voltage and current data on the output side of the battery module.
  • the intelligent battery interface 210 uses various parameter identification methods to identify and calibrate the parameter model of the battery module by measuring, collecting and recording the battery voltage, current, pressure and temperature information;
  • the smart battery interface 210 integrates the parameter model of the battery module by measuring, collecting and recording the battery voltage, current, pressure and temperature information, and estimates and records the state of charge of the battery by using a variety of state of charge estimation methods;
  • the smart battery interface 210 estimates the battery state of health by synthesizing various battery state of health estimation models by measuring, collecting and recording battery voltage, current, pressure and temperature information, combined with the battery state of charge information;
  • the intelligent battery interface 210 updates the current equivalent circuit model of the battery module through the estimated battery state of charge and battery health state, and corrects the controller parameters of the battery charge-discharge power conversion;
  • the smart battery interface 210 estimates the current stored energy of the battery and the power boundary conditions of the current charging and discharging of the battery through the estimated battery state of charge and the battery state of health, and controls the power of the battery charging and discharging;
  • the smart battery interface 210 utilizes a large number of battery modules' voltage, current, temperature, pressure and other status information, as well as historical charge-discharge cycle records and fault records, through data mining and model training, to analyze the battery's status trajectories within a certain period of time before different faults occur, and extract Determine the characteristic parameters of different failure probabilities, establish a mathematical model of characteristic parameters and failure probability, establish a mathematical model for calculating the overall reliability of the smart battery unit, and send the model to each smart battery unit through the data bus.
  • the intelligent battery interface 210 evaluates the historical working track of the battery, analyzes the existing hidden troubles, predicts the current state of health of the battery, predicts the possible faults and fault types, and provides fault prediction information;
  • the smart battery interface 210 uses its own state information such as voltage, current, temperature, pressure, etc., and historical charge-discharge cycle records, and calculates the current reliability of the battery module according to the fault prediction model and reliability model. For smart battery cells whose reliability is lower than required , proactively warn and reduce the power upper limit;
  • the intelligent battery interface 210 uses its own status information such as voltage, current, temperature, pressure, etc., and historical charge-discharge cycle records to judge whether the battery is currently faulty according to the fault diagnosis model; And take active cooling measures to avoid thermal runaway of the module, and at the same time send out fault information through the communication interface;
  • the smart battery interface 210 collects the voltage on the output side of the battery module obtained by the voltage sensor and the voltage on the power interface of the power electronics smart battery module.
  • the DC voltage is increased. gain to keep the voltage of the power interface unchanged;
  • the power of the battery module increases as the battery is charged, and the voltage at the output side of the battery module rises, the DC voltage gain is reduced to keep the voltage of the power interface unchanged;
  • the smart battery interface 210 monitors the power transmitted by the smart battery interface through the voltage sensor and the current sensor, and changes the magnitude and direction of the output current of the battery module, so that the magnitude and direction of the output power of the power electronic smart battery module meet the set requirements.
  • the intelligent battery interface 210 realizes fault cooperative protection of the battery module and the intelligent battery interface through fault diagnosis; when the intelligent battery interface judges that the battery module has an overcurrent and/or high temperature fault, it sends a fault signal and reduces power at the same time , to eliminate the fault state; when the intelligent battery interface judges that one or more of short-circuit fault, overvoltage fault, undervoltage fault, and internal overvoltage fault of the battery have occurred, a fault signal will be sent, and the power of the power electronic intelligent battery unit will be disconnected at the same time. interface, make the battery module out of operation, isolate the fault in time, and avoid accidents.
  • the smart battery interface 210 has a battery overvoltage monitoring function and a battery undervoltage monitoring function. When it is detected that the output side voltage of the battery module and the cell voltage of each battery module are higher than the allowable maximum value, the smart battery interface determines that the battery is overvoltage. When it is detected that the output side voltage of the battery module and the cell voltage of each battery module are lower than the allowable minimum value, the intelligent battery interface judges the battery undervoltage fault and sends out a battery undervoltage fault. fault signal.
  • the smart battery interface 210 has a battery over-current monitoring function. When it is detected that the current at the output side of the battery module is higher than the allowable maximum value, the smart battery interface determines that the battery is over-current fault and sends a battery over-current fault signal.
  • the smart battery interface 210 has a battery temperature monitoring function. When it is detected that the temperature of the battery cell is higher than the allowable maximum value, the smart battery interface determines that the battery temperature is too high, and sends a battery high temperature fault signal; when the battery cell detected by the temperature sensor is detected When the temperature is lower than the allowable minimum value, the intelligent battery interface judges that the battery temperature is too low, and sends a battery low temperature fault signal.
  • the smart battery interface 210 has a battery short-circuit monitoring function. When the cell voltage of the battery module detected by the voltage sensor is lower than the short-circuit fault threshold, the smart battery interface determines that the cell of the battery module is internally short-circuited, and sends a battery internal short-circuit fault signal .
  • the smart battery interface 210 has a battery pressure monitoring function. When the internal pressure of the battery detected by the battery pressure sensor is higher than the allowable value, the module determines that the internal pressure of the battery is too large, and sends an internal overvoltage fault signal of the battery.
  • the intelligent battery interface and the battery module implement a unified thermal management strategy: the battery module in the power electronics intelligent battery module has performance defects due to the low ambient temperature, and the low temperature state is detected and acquired by the battery information monitoring unit; the intelligent battery interface controls the power converter by controlling The efficiency of power conversion is reduced, and more loss and heat are generated; the smart battery interface and the battery module have a unified heat dissipation package, and the heat generated by the smart battery interface increases the temperature of the battery module and maintains a relatively stable temperature through the unified heat dissipation structure. temperature to ensure the reliable operation of the battery module.
  • FIG. 7 shows a schematic diagram showing the hardware structure of an electronic intelligent battery unit according to an embodiment of the present invention.
  • the power electronic intelligent battery unit 700 may include a battery module 701 , a processor 702 , various sensors 703 - 707 , a conditioning circuit 708 , a power converter 709 , a protection device 710 , an equalization circuit 711 , a heat sink 712 and a communication interface 713 .
  • the battery module 701 is composed of a plurality of battery cells connected in series and parallel, and is the hardware basis of the power electronic intelligent battery unit.
  • the processor 702 can realize functions such as analog-to-digital conversion, calculation, and control, and is connected to the conditioning circuit 708 to output control signals to the power converter 709, the protection device 710, the equalization circuit 711, and the heat sink 712, and communicate with the communication interface 713. Data interaction.
  • Sensors may include voltage sensors, current sensors, temperature sensors, pressure sensors, and the like.
  • Voltage sensors 703 are arranged at both ends of each battery cell.
  • Voltage sensors 707 are arranged at both ends of the entire battery module for collecting voltage signals.
  • the current sensors 705 and 706 are arranged on the string formed by each battery cell and at both ends of the power converter, and are used for collecting current signals.
  • the temperature sensor 704 and the pressure sensor are arranged around the battery module to collect temperature and pressure signals at various positions of the battery module. At the same time, the temperature sensor (not shown) is also arranged on the power converter and the heat sink. The key position is used to collect temperature signals of power converters and heat sinks.
  • the electronic intelligent battery unit of the present invention may include more or more sensors. Fewer sensors, the number and arrangement of sensors are not limited to the examples shown.
  • the conditioning circuit 708 is connected to the output ends of the above-mentioned sensors, and adjusts the electrical signals output by the above-mentioned sensors to form electrical signals that can be read by the processor.
  • FIG. 8 shows a schematic circuit diagram of a conditioning circuit according to one embodiment of the present invention.
  • the conditioning circuit may include a first resistor R1 , a second resistor R2 and a comparator 801 .
  • the signal input end of the conditioning circuit is connected to one end of the first resistor R1, the other end of the first resistor R1 is connected to one end of the second resistor R2 and the non-inverting input end of the comparator 801, the other end of the second resistor R2 is grounded, and the comparator
  • the inverting input terminal of 801 is connected to the signal output terminal.
  • the power converter 709 is connected across the battery module.
  • the power converter 709 can use a bidirectional DC converter to realize bidirectional power flow and active control, and to form a stable and controllable output voltage and dynamic characteristics at the external port of the power electronic smart battery unit.
  • the power converter 709 described in the present invention can be implemented by a bidirectional isolated DC converter.
  • FIG. 9 shows a schematic circuit diagram of a bidirectional isolated DC converter according to an embodiment of the present invention.
  • the power converter includes a first AC-DC conversion circuit, a second AC-DC conversion circuit and an isolated bidirectional resonant network.
  • the first AC-DC conversion circuit includes a full-bridge circuit composed of first to fourth switch tubes S1, S2, S3, and S4.
  • the first to fourth switch transistors S1, S2, S3, and S4 may be MOS transistors.
  • the first to fourth switch tubes S1 , S2 , S3 and S4 respectively have a control end, a first end and a second end.
  • the first ends of the first switch S1 and the second switch S2 are connected to each other and to the first end of the DC port of the first AC-DC conversion circuit.
  • the second end of the first switch S1 is connected to the first end of the fourth switch S4, and the connection node M1 is used as the midpoint of the first bridge arm.
  • the second end of the second switch S2 is connected to the first end of the third switch S3, and the connection node M2 is used as the midpoint of the second bridge arm.
  • the second ends of the third switch S3 and the fourth switch S4 are connected to each other and to the second end of the DC port of the first AC-DC conversion circuit.
  • the midpoints M1 and M2 of the two bridge arms of the full-bridge circuit are respectively connected to the first AC end and the second AC end of the first AC port of the isolated bidirectional resonant network.
  • the second AC-DC conversion circuit includes a full-bridge circuit composed of fifth to eighth switch tubes S5, S6, S7, and S8.
  • the fifth to eighth switch transistors S5, S6, S7, and S8 may be MOS transistors.
  • the fifth to eighth switch tubes S5, S6, S7, and S8 respectively have a control end, a first end and a second end.
  • the first ends of the fifth switch S5 and the sixth switch S6 are connected to each other and to the first end of the DC port of the second AC-DC conversion circuit.
  • the second end of the fifth switch S5 is connected to the first end of the eighth switch S8, and the connection node M3 is used as the midpoint of the third bridge arm.
  • the second end of the sixth switch S6 is connected to the first end of the seventh switch S7, and the connection node M4 is used as the midpoint of the fourth bridge arm.
  • the second ends of the seventh switch S7 and the eighth switch S8 are connected to each other and to the second end of the DC port of the second AC-DC conversion circuit.
  • the midpoints M3 and M4 of the two bridge arms of the full-bridge circuit are respectively connected to the first AC end and the second AC end of the second AC port of the isolated bidirectional resonant network.
  • the isolated bidirectional resonant network includes: a first inductor L 1 , a second inductor L 2 , a first capacitor C 1 , a second capacitor C 2 , an auxiliary capacitor C 3 , a first AC port, a second AC port and a transformer T 1 ,
  • the first inductor L1 and the first capacitor C1 are connected in series, one end of the first inductor L1 is connected to the first AC terminal of the first AC port, and one end of the first capacitor C1 is connected to the first AC terminal of the primary side of the transformer T1.
  • the second AC terminal of the primary side of the transformer T1 is connected to the second AC terminal of the first AC port
  • the first AC terminal of the secondary side of the transformer T1 is connected to one end of the second capacitor C2
  • the second AC terminal of the second capacitor C2 is connected.
  • the other end is connected to one end of the second inductor L2
  • the other end of the second inductor L2 is connected to the first AC end of the second AC port
  • the second AC end of the secondary side of the transformer T1 is connected to the second AC end of the second AC port.
  • a tap is drawn from the middle of the winding of the primary side of the transformer T1, an auxiliary capacitor C3 is connected between the tap and the second AC end of the primary side of the transformer T1, and the excitation inductance of the transformer T1 is divided into two excitation inductances by the tap : the first excitation inductance L m1 and the second excitation inductance L m2 , the second excitation inductance L m2 and the auxiliary capacitor C 3 are connected in parallel and then connected in series with the first excitation inductance L m1 to form an equivalent excitation branch.
  • the bidirectional isolated DC converter has different voltage gain expressions during forward operation and reverse operation.
  • the voltage gain expression of the bidirectional isolated DC converter during forward operation is:
  • V 1 is the DC port voltage of the first AC-DC conversion circuit
  • V 2 is the DC port voltage of the second AC-DC conversion circuit
  • f n f S /f 1
  • f S is the operating frequency
  • m f 1 /f 2
  • f 1 is the frequency at which the first inductor and the first capacitor resonate in series
  • f 2 is the frequency at which the second excitation inductor and the auxiliary capacitor resonate in parallel
  • h n 2 L 2 /L 1
  • g C 2 /(n 2 C 1 )
  • k 1 L m1 /L 1
  • k 2 L m2 /L 1
  • f n is the normalized frequency
  • R 1 is the forward load
  • n is the primary and secondary turns ratio of the transformer.
  • the voltage gain expression of the bidirectional isolated DC converter in reverse operation is:
  • the voltage gain of the bidirectional isolated DC converter when the parameters of the converter elements are determined, the voltage gain of the bidirectional isolated DC converter can be changed by changing the switching frequency of the first and second AC-DC converter circuits, so that the voltage gain of the bidirectional isolated DC converter can be changed in the battery module Keeps the voltage of the power interface of the power electronics smart battery unit stable when the port voltage changes due to the battery state of charge.
  • FIG. 10 shows a schematic circuit diagram of a bidirectional isolated DC converter according to another embodiment of the present invention. Similar to the embodiment shown in FIG. 9 , the power converter is composed of a first AC-DC conversion circuit, a second AC-DC conversion circuit and an isolated resonant network. In order to simplify this specification, similar parts are only briefly described.
  • the first AC-DC conversion circuit is composed of switch tubes S1, S2, S3, and S4 to form a full-bridge circuit, and the midpoint of the two bridge arms of the full-bridge circuit is connected to the first AC port of the isolated bidirectional resonant network; the second AC-DC conversion circuit is composed of switches.
  • the tubes S5, S6, S7, and S8 form a full-bridge circuit, and the midpoints of the two bridge arms of the full-bridge circuit are connected to the second AC port of the isolated bidirectional resonant network;
  • the isolated resonant network includes a first inductor L 1 and a first capacitor C 1 , the first AC port, the second AC port and the transformer T 1 , the first inductor L 1 and the first capacitor C 1 are connected in series, one end of the first inductor L 1 is connected to the first AC end of the first AC port, the first One end of the capacitor C1 is connected to the first AC terminal of the primary side of the transformer T1, the second AC terminal of the primary side of the transformer T1 is connected to the second AC terminal of the first AC port, and the two ports of the secondary side of the transformer T1 are connected to the first AC terminal.
  • Two ports of the two AC ports a tap is drawn from the middle of the winding of the primary side of the transformer T1, an auxiliary capacitor C2 is connected between the tap and the second AC end of the primary side of the transformer T1, and the excitation inductance of the transformer T1 is divided by the tap.
  • Two excitation inductances: the first excitation inductance L m1 and the second excitation inductance L m2 , the second excitation inductance L m2 and the auxiliary capacitor C 2 are connected in parallel and then connected in series with the first excitation inductance L m1 to form an equivalent excitation branch.
  • the bidirectional isolated DC converter has different voltage gain expressions during forward operation and reverse operation.
  • the voltage gain expression of the bidirectional isolated DC converter during forward operation is:
  • V 1 is the effective value of the first AC port voltage
  • V 2 is the effective value of the second AC port voltage
  • f n is the normalized frequency
  • f n f S /f 1
  • f S is the operating frequency
  • m f 1 /f 2
  • f 1 is the frequency at which the first inductor and the first capacitor resonate in series
  • f 2 is the frequency at which the third inductor and the second capacitor resonate in parallel
  • k 1 L 2 /L 1
  • k 2 L 3 /L 1
  • R 1 is the forward load
  • R 2 is the reverse load
  • the voltage gain of the bidirectional isolated DC converter when the parameters of the converter elements are determined, the voltage gain of the bidirectional isolated DC converter can be changed by changing the switching frequency of the first and second AC-DC converter circuits, so that the voltage gain of the bidirectional isolated DC converter can be changed in the battery module Keeps the voltage of the power interface of the power electronics smart battery unit stable when the port voltage changes due to the battery state of charge.
  • FIG. 11 shows a schematic circuit diagram of a bidirectional isolated DC converter according to yet another embodiment of the present invention. Similar to the embodiment shown in Fig. 9, the power converter is composed of a first AC-DC conversion circuit, a second AC-DC conversion circuit and an isolated resonant network. In order to simplify this specification, similar parts are only briefly described.
  • the first AC-DC conversion circuit is composed of switch tubes S1, S2, S3, and S4 to form a full-bridge circuit, the DC port V1 of the full-bridge circuit, and the midpoint of the two bridge arms of the full-bridge circuit is connected to the first AC port of the isolated bidirectional resonant network;
  • the second AC-DC conversion circuit consists of switch tubes S5, S6, S7, and S8 to form a full-bridge circuit.
  • the DC port of the full-bridge circuit is V2.
  • the midpoint of the two bridge arms of the full-bridge circuit is connected to the second AC port of the isolated bidirectional resonant network; the isolated type
  • the resonant network includes a first inductance L1, a transformer T1, a first AC port, and a second AC port; wherein, one end of the first inductance L1 and the first AC end of the primary side of the transformer T1, the first inductance The other end is connected to the first AC terminal of the first AC port, the second AC terminal of the primary side of the transformer T1 is connected to the second AC terminal of the first AC port; the secondary side port of the transformer T1 is connected to the second AC port.
  • switches S1 and S4 are turned on or off at the same time, S2 and S3 are turned on or off at the same time, S5 and S8 are turned on or off at the same time, and S6 and S7 are turned on or off at the same time. Turn on or off at the same time; S1 and S3 are complementary turned on, S2 and S4 are complementary turned on, S5 and S7 are complementary turned on, S6 and S8 are complementary turned on; and defined in a switching cycle, the turn-on signal of S1 leads S5 The turn-on signal phase of When the transformer ratio is n, it can be obtained that the voltage on both sides of the power converter satisfies the following relationship:
  • P is the power transmitted by the converter from the V1 side to the V2 side.
  • the voltage gain of the bidirectional isolated DC converter when the parameters of the converter elements are determined, by changing the switching frequency and phase shift angle of the first and second AC-DC conversion circuits That is, the voltage gain of the bidirectional isolated DC converter can be changed, so that the voltage of the power interface of the power electronic intelligent battery unit can be kept stable when the battery module port voltage changes due to the battery state of charge.
  • FIG. 12 shows a schematic circuit diagram of a bidirectional non-isolated DC converter according to an embodiment of the present invention.
  • the bidirectional non-isolated DC converter includes first to fourth switch tubes S1, S2, S3, and S4, an inductance L and capacitors C1 and C2.
  • the first switch S1 and the second switch S2 are connected in series to form a half bridge, and the capacitor C1 is connected in parallel;
  • the third switch S3 and the fourth switch S4 are connected in series to form a half bridge, and the capacitor C2 is connected in parallel; the sources of the switches S2 and S4 Connected; inductor L connects the midpoints of the two half-bridge arms.
  • the switch tubes S1 and S2 are complementarily turned on, and the switch tubes S3 and S4 are complementarily turned on.
  • the ratio of the on-time of the switch S1 to one switching cycle is the duty cycle D1
  • the ratio of the on-time of the switch S3 to one switching cycle is the duty cycle D2.
  • the voltage gain of the bidirectional non-isolated DC converter can be changed through the duty cycle D1 and the duty cycle D2, so that the voltage gain at the port of the battery module varies due to When the state of charge of the battery changes, the voltage of the power interface of the power electronic intelligent battery unit is kept stable.
  • FIGS. 9 to 12 Multiple embodiments of the power converter of the present invention have been described above with reference to FIGS. 9 to 12 .
  • the specific embodiments shown in FIGS. 9 to 12 are only used to schematically illustrate the power converter of the present invention. converter, rather than limiting the specific circuit structure of the power converter of the present invention. Therefore, in other embodiments of the present invention, the power converter may adopt other forms of circuit structures, as long as a bidirectional converter that can achieve similar functions can be used as the power converter described in the present invention, and falls within the scope of the present invention protected range.
  • the power converter 709 may also include an auxiliary power source 714 .
  • Auxiliary power supply 714 may provide power for the processor, drive circuits of the power converter, protection devices, heat sinks, and equalization circuits.
  • the protection device 710 may be a relay, a fuse, or the like.
  • the protection device 710 may be installed at the output end of the power electronics smart battery module.
  • the power electronic intelligent battery module When the power electronic intelligent battery module is required to be withdrawn from operation due to internal faults or external commands, the power electronic intelligent battery module can be safely and effectively switched out by controlling the relay.
  • the fuse can be blown after the current exceeds the threshold, which plays a protective role.
  • the equalizing circuit 711 is arranged at both ends of each battery cell. Through a certain balancing algorithm, under the control of the processor, the balancing circuit 711 realizes the balancing of the state of charge of the battery cells through switching of the switches.
  • FIG. 13 shows a schematic circuit diagram of an equalization circuit according to an embodiment of the present invention.
  • the battery module includes N battery cells connected in series.
  • the equalization circuit may include 2N switches and N-1 capacitors. As shown in FIG.
  • the heat dissipation device 712 may include heat dissipation structures such as a heat sink, a fan, and the like.
  • the radiator 712 is installed on the power converter and the battery module to absorb the heat generated by the two and increase the heat dissipation area.
  • the heat sink 712 has a uniform structure, and when the ambient temperature is too low, it can transfer the additional heat generated by the power converter to the battery module to avoid damage to the battery module due to low temperature.
  • the fan can adjust the air flow rate of the heat dissipation channel inside the power electronic intelligent battery unit, improve the efficiency of heat exchange between the radiator and the air, reduce the temperature of the intelligent battery unit, and avoid damage to the battery and converter due to excessive temperature. device components.
  • the communication interface 713 plays a function of two-way information exchange with the outside world, and can perform local and remote information exchange in wired and wireless forms.
  • the processor 702 of the power electronic intelligent battery unit 700 executes software, and the processor 702 can be configured as a parameter identification unit 721, a state estimation unit 722, a fault prediction unit 723, a charge and discharge control unit 724, and a balance control unit 725 , converter control unit 726 , fault processing unit 727 , heat dissipation control unit 728 , capacity expansion control unit 729 .
  • the processor 702 of the power electronic intelligent battery unit 700 exchanges information with the online computing platform through the communication interface 713 .
  • Figure 14 shows a general flow diagram of a software portion of a battery module according to an embodiment of the present invention. The working process of the battery module will be described below with reference to FIG. 14 and each functional unit of the processor 702 .
  • the parameter identification unit 721 uses the parameter identification algorithm to identify and calculate the internal parameters of the battery involved in the various battery parameter models on-line according to the collected battery voltage, current, and temperature information, in combination with various battery parameter models, to characterize the performance of the battery. Variety.
  • Figure 15 shows a flowchart of parameter identification according to one embodiment of the present invention.
  • the parameter identification unit substitutes the last updated value of the battery parameters, the current external excitation signal and the battery response history information stored in the storage unit into the battery electric-thermal parameter model, and calculates the battery terminal
  • the predicted value of voltage and temperature is compared with the current battery voltage and temperature response information to obtain the prediction error of the parameter model; further use the parameter update optimization algorithm to reduce the prediction error of the parameter model as the optimization goal and direction.
  • the parameters in the battery electric-thermal model are corrected and updated, and new battery parameter update values are obtained, which are applied to the next battery parameter identification process; at the same time, the battery information collected by the current sensor is also stored in the storage unit. Applied when calculating battery response predictions.
  • the above parameter identification process is carried out continuously during the operation of the battery module.
  • the battery parameters are considered to be stable and unchanged, and the error between the predicted value of the parameter model and the actual response is continuously reduced by updating and optimizing the parameters.
  • the parameter identification algorithm can track the changes of battery parameters, so as to realize Identify the battery parameters during the life cycle, and further estimate the battery state of health and predict battery failures based on the identified parameters.
  • the state estimation unit 722 estimates the state of charge and state of health of the battery on-line according to the collected battery voltage, current, and temperature information, combined with the parameter identification results of the parameter identification unit, and combined with the state estimation model, and uses a filtering algorithm to eliminate the state estimation. Random noise and accumulated error in the process.
  • FIG 16 shows a state of charge estimation flowchart according to one embodiment of the present invention.
  • the state of charge of the battery (State of Charge, abbreviated as SOC) indicates the ratio of the current stored charge of the battery to the maximum charge that the battery can store.
  • SOC state of charge
  • the state of charge calculation model adopts the state equation of the battery. The current measured value is calculated to obtain the predicted value of the current state of charge.
  • the state of charge correction method applies the observation equation of the battery and substitutes in The measured value of the current battery voltage and the predicted value of the state of charge obtained by the voltage sensor are used to obtain the correction value of the state of charge; since the parameters in the battery observation equation will change with the change of the state of charge, the correction value of the state of charge is calculated.
  • update the battery observation equation with the obtained state-of-charge prediction value similarly, after calculating the state-of-charge correction value, store it in the storage unit, and also calculate the required state of charge for the next time.
  • the parameters of the battery state equation are updated to complete a state of charge estimation cycle.
  • the battery state of charge estimation process is continuously carried out, and the battery state of charge is continuously predicted, corrected and tracked, and the obtained battery state of charge information is further applied to the battery charge and discharge control and balance. manage.
  • the fault prediction unit 723 evaluates the current reliability of the battery according to the collected battery voltage, current, and temperature information, combined with the identification result obtained by the parameter identification unit and the battery state obtained by the state estimation unit, and predicts the probability of future failure of the battery, Provide a reference for the safe and reliable operation of the battery.
  • the charge and discharge control unit 724 provides the current maximum allowable values of charge and discharge current and power of the battery module and a charge and discharge plan according to the results obtained by the state estimation unit and the fault prediction unit.
  • the balancing control unit 725 provides the current working mode of the balancing circuit according to the state-of-charge data of each battery cell obtained by the state estimation unit, and controls the operation of the corresponding switch to achieve voltage balance between the battery cells.
  • the converter control unit 726 controls the voltage gain and power of the converter according to the current battery module voltage and the given power command, and provides a stable and controllable output voltage and charging and discharging power at the output port of the power electronic intelligent battery module.
  • the fault processing unit 727 judges whether the battery module is faulty according to the collected battery voltage, current, temperature and pressure information. When it is judged that the battery module is faulty, it takes corresponding fault processing operations to avoid the occurrence of thermal runaway of the battery. Send a fault signal to the outside world.
  • the heat dissipation control unit 728 controls the current rotation speed of the fan according to the collected temperature information of the battery and the power converter. When the ambient temperature is too low, the inverter will be actively controlled to generate excess heat, raising the temperature of the entire power electronics smart battery module, to avoid damage to the battery due to low temperature.
  • the capacity expansion control unit 729 works when a plurality of power electronic smart battery modules are expanded in series and parallel, and plays an overall control role for the plurality of power electronic smart battery modules participating in the capacity expansion.
  • the capacity expansion control unit 729 determines that each smart battery module is provided in the capacity expansion system according to the charge and discharge power boundary conditions given by the charge and discharge control unit of each smart battery module and the efficiency curve of each battery module through information interaction with each smart battery module.
  • the size of the charging and discharging power can realize the optimal operation of the overall safety and efficiency.
  • the online computing platform collects the parameters and state trajectories of a large number of power electronic smart battery modules running in repeated cycles through long-distance communication with a large number of power electronic smart battery modules.
  • the parameter model, state estimation algorithm, fault prediction algorithm and charge-discharge control algorithm of the battery are modified and optimized, and the results are periodically sent to each smart battery module to improve the accuracy and calculation of parameter identification, state evaluation and fault prediction. speed, improve the efficiency and reliability of intelligent battery module operation.
  • Figure 17 shows a flow diagram of an online platform according to one embodiment of the present invention.
  • the collected data is preprocessed, battery operating mode clustering, data normalization, feature parameter extraction, and data set division.
  • perform regression modeling and neural network training to obtain a health state model, a reliability model, and a failure criterion
  • the electronic intelligent battery unit formed by the above embodiments can deeply integrate the structure and function of the battery management system and the power converter.
  • the measurement circuit, equalization circuit, and low-voltage side port of the power converter of the battery management system are all built around the battery module, which can realize the unified design of the circuit structure.
  • the voltage and current sensors used by the battery management system to measure battery information can be multiplexed with the voltage and current sensors required for closed-loop control of the power converter.
  • the power converter can provide auxiliary power for the processor, measurement circuit and equalization circuit of the battery management system at the same time.
  • the deep integration of the circuit structure can reduce the hardware cost of the power electronic intelligent battery module, and bring the compactness and modularity of the hardware design.
  • the battery management system In order to realize real-time monitoring of battery information, as well as parameter identification, state estimation, and fault prediction and judgment of the battery, the battery management system needs to monitor the voltage, current and temperature information of the battery module. Similarly, in order to realize the closed-loop control of the high-voltage side voltage and charging and discharging power, the power converter also needs to detect the voltage and current information of the battery. As for the control information, in order to realize the charge and discharge control, the battery management system needs to transmit the setting instructions of the charge and discharge power and current to the control unit of the power converter, generate the corresponding modulation waveform, and then drive the power converter switching device to realize the charging and discharging.
  • Discharge power regulation when the battery management system judges that the intelligent battery module needs to be out of operation, in addition to directly controlling the outlet relay, it also needs to send a drive blocking signal to the power converter.
  • the power converter also needs to obtain the battery module equivalent circuit parameters obtained by the battery parameter identification unit, so as to improve the dynamic performance of the closed-loop control. Therefore, the battery management system and the power converter realize real-time sharing and interaction of information. By sharing the processor or memory unit, the two can realize the high-speed transmission and sharing of the above information, save the information communication overhead, and improve the information exchange speed of the intelligent battery module. and reliability, realize real-time tracking of battery module state changes, and realize fast and reliable response to control commands given by the outside world.
  • the battery module is highly sensitive to temperature. Too high temperature will lead to accelerated aging of the battery module, decomposition of electrode active materials and even thermal runaway of the battery; short circuit. Therefore, the battery management system needs to monitor the temperature of the battery module, and respond and deal with the high temperature or low temperature in time.
  • the internal resistance of the battery module and the loss generated by the power converter components will generate heat inside the smart battery unit, and a radiator and a fan need to be installed for heat dissipation.
  • the battery module and the power transmission unit can share the radiator and fan, reducing the size, weight and cost of the radiator, and at the same time increasing the effective heat dissipation area of each part.
  • the thermal management unit can manage the temperature of the smart battery module in a unified manner through the temperature sensors arranged around the key parts of the battery module and the power sensor, effectively avoiding excessive heat accumulation.
  • the thermal management unit can also control the power converter to use a low-efficiency working and modulation mode to generate excess heat, and provide this part of the heat to the battery module through a unified heat dissipation package to avoid the battery module due to damaged by low temperature.
  • the traditional battery module only has a battery monitoring unit, which can only monitor the state of the battery module, and is in a passive position in the entire energy storage system. Because only the PCS at the outlet of the large-capacity battery energy storage system is used as a power converter The output power of each battery module in the energy storage system is automatically allocated by the state of charge, open circuit voltage and internal impedance of each battery module. Even if the battery monitoring unit finds that the battery module deviates from the normal operating state, it cannot take effective measures to change the abnormal operation.
  • the power electronic intelligent battery module enables the intelligent battery module to actively control and adjust the power and temperature of the battery module through the deep integration of the battery management system and the power converter.
  • the intelligent battery module When the intelligent battery module detects that the battery module deviates from the normal operating state, it can actively control the power converter to reduce the charging and discharging power of the battery to prevent the battery from being in an overcharged or overdischarged state; when the temperature of the battery module is too high, it can reduce the The current of the intelligent battery module reduces the heat loss of the internal resistance of the power converter and the battery module, and at the same time increases the fan speed and reduces the temperature of the intelligent battery module.
  • the intelligent battery module can set the upper limit of the charging and discharging power of the battery module and the duration of the peak charging and discharging power in real time, so that the battery module always works in a high-reliability operation mode, avoiding The aging of the battery module is accelerated and the internal damage is continuously intensified, which prolongs the working life of the battery module and avoids the occurrence of battery module failure as much as possible.
  • the characteristics of the battery and the characteristics that the energy storage battery is not susceptible to mechanical damage most of the faults of the battery in the energy storage system come from the internal structural damage of the battery caused by overcharge, overdischarge and high temperature and low temperature operation.
  • the long evolution and development process by effectively identifying and predicting such damage and aging characteristics, and actively controlling the derating operation of the battery module can effectively improve the reliability of battery operation.
  • the heat generated by the decomposition of the active material and electrolyte requires a certain accumulation process before thermal runaway occurs.
  • the total heat released by the battery during a failure is related to the amount of power stored inside the battery. Therefore, through the active control of the intelligent battery unit, the operating power and stored charge of the battery module can be actively reduced before the failure occurs, and the heat dissipation can be effectively carried out when the failure occurs.
  • thermal runaway improve the reliability of intelligent battery module operation, and avoid large-scale failures of energy storage systems.
  • the battery module As the battery module continues to participate in the charge-discharge cycle in the energy storage system, the battery will continue to age, and the internal parameters will continue to change.
  • a controllable charge and discharge current is generated to simulate the test conditions during offline testing, so that the parameter identification unit can be tested at all stages of the battery module life cycle.
  • the measurement samples required for key parameters can realize the tracking, identification and calibration of key parameter transformations, improve the accuracy of parameter identification of smart battery modules, and provide reliable data support for state estimation, fault prediction and judgment functions.
  • the power electronic smart battery unit formed by the above embodiments has excellent uniformity and easy expansion.
  • the power electronic intelligent battery interface When the state of charge and aging degree of the battery module change, the open circuit voltage and internal impedance of the battery module will also change accordingly.
  • the power converter can be actively controlled By adjusting the voltage gain and control parameters, through the rapid interaction of battery information and the deep integration of functions, the power electronic smart battery interface can realize fast closed-loop control of the external power port of the power electronic smart battery module, ensuring stable port voltage and dynamic performance. Therefore, for different battery types, series-parallel scales, state of charge and aging degrees, the power electronics smart battery interface can show consistent interface characteristics.
  • the consistent interface characteristics provided by the power electronic smart battery interface even if the battery type, capacity, voltage, and state of charge of each battery module Different from the aging degree, it can also be connected to the DC bus in parallel with the same interface voltage, and due to the consistent port characteristics, there will be no circulating current between the smart battery modules, which can effectively improve the cycle efficiency of the parallel expansion system, reduce power loss and The battery circulation loss improves the overall efficiency of the system.
  • the grid-connected inverter on the DC bus or a smart battery unit can control the DC bus voltage, and the remaining smart battery modules output the determined power according to the power distribution algorithm to maintain the power balance of the DC bus to achieve high efficiency, Intelligent parallel expansion.
  • FIG. 18 shows a schematic diagram of a parallel capacity expansion system 800 based on power electronics and intelligent battery cells according to an embodiment of the present invention.
  • the parallel capacity expansion system 800 based on power electronic intelligent battery cells in this embodiment includes: N power electronic smart battery cells 811 , 812 . . . 81N, a DC bus 820 and a communication bus 830 .
  • the N power electronic smart battery units 811 , 812 . . . 81N may be the power electronic smart battery units disclosed in the above embodiments of the present invention.
  • the power interfaces of the N power electronic smart battery cells 811 , 812 . . . 81N are connected in parallel to the DC bus 820 .
  • the information exchange interfaces of the N power electronic intelligent battery units 811, 812...81N are connected to the communication bus 830, the status information and fault information of each battery are uploaded, the control commands for the power electronic intelligent battery units are received, and the battery units are controlled. input, cut-out, and the magnitude and direction of transmission power.
  • the consistent interface characteristics provided by the power electronic smart battery interface even if the battery type, capacity, voltage, state of charge of each battery module Different from the aging degree, it can also be connected in series with the same port characteristics.
  • the power of each battery unit can be changed to avoid the short-board effect of the battery series and the overcharge and over-discharge of the battery module. , which can effectively improve the effective capacity and actual life of the series expansion system, and improve the overall benefit of the system.
  • FIG. 19 shows a schematic diagram of a series capacity expansion system 900 based on power electronics and intelligent battery cells according to an embodiment of the present invention.
  • a series capacity expansion system 900 based on power electronic intelligent battery cells in this embodiment includes: N power electronic smart battery cells 911 , 912 . . . 91N, a DC bus 920 and a communication bus 930 .
  • the N power electronic smart battery units 911 , 912 . . . 91N may be power electronic smart battery modules disclosed in the above embodiments of the present invention.
  • the power interfaces of the N power electronic intelligent battery units 911 , 912 . . . 91N are connected in series and then connected to the DC bus 920 .
  • the information exchange interfaces of the N power electronic intelligent battery units 911, 912... 91N are connected to the communication bus 930 to upload the status information and fault information of each battery, receive control commands for the power electronic intelligent battery units, and control the battery units. input, cut-out, and the magnitude and direction of transmission power.
  • the system coordination control strategy is designed for the series-parallel capacity expansion system based on the power electronic intelligent battery unit.
  • the power allocated to each battery unit is limited within its allowable value; the coordinated control strategy of the system can improve the overall efficiency of the battery operation.
  • the most efficient power distribution scheme is designed for the series-parallel capacity expansion system based on the power electronic intelligent battery unit.
  • the fault protection method based on an intelligent battery unit series-parallel system, the protection logic includes: a battery unit in the N power electronic intelligent battery units fails, the fault information is first detected and acquired by its own battery state monitoring unit, and its Its own intelligent battery interface completes the active fault isolation of the faulty battery unit; the faulty power electronic intelligent battery unit uploads the battery fault information to the communication bus through the information exchange interface; Redistribution, the control commands it receives control the size and direction of the transmission power of the battery cells, so as to realize the safe and reliable operation of the energy storage system.
  • the power port of the power electronic intelligent battery unit has uniform and controllable port characteristics, so the series-parallel expansion system composed of the power electronic intelligent battery unit has the ability to suppress the circulating current between the battery modules, eliminating the loss caused by the circulating current between the battery modules. Therefore, the series-parallel capacity expansion system based on the power electronic intelligent battery unit has the characteristics of no circulating current between modules and high efficiency.
  • the power port of the power electronic intelligent battery unit has uniform and controllable port characteristics, and it is not necessary to ensure the consistency of the battery modules in each intelligent battery unit, but only the consistency of the battery cells in a single intelligent battery unit.
  • the unit power voltage is relatively small, and the consistency screening of the battery cells is low, so the series-parallel capacity expansion system based on the power electronic intelligent battery unit has the characteristics of low screening cost and easy production.
  • the power electronic intelligent battery unit disclosed in the embodiment of the present invention has excellent intelligent features.
  • the power electronic intelligent battery unit can detect and collect the characteristics and parameters of the battery module under actual operating conditions and simulated test conditions through deeply integrated sensors and controllers, and use advanced parameter identification algorithms and state evaluation algorithms. And the fault prediction algorithm can quickly and accurately estimate the internal parameters, state quantity and reliability of the battery module.
  • data mining and intelligent algorithms can be used to further provide battery parameter models, characteristic parameters, aging and battery modules that meet the characteristics of corresponding operating conditions for battery modules running under various actual complex operating conditions. Curves and failure prediction curves.
  • the intelligence of power electronic intelligent battery unit fault handling is reflected in the intelligence of fault prediction and judgment.
  • intelligent fault prediction and judgment algorithms, as well as clustering algorithms based on big data it can be used in the early and later stages of faults. Accurate and timely prediction and identification are carried out at each stage, especially for the small structural damage inside the battery caused by electrical abuse and thermal abuse, early detection and identification are carried out to prevent problems before they occur.
  • the fault handling of the power electronic intelligent battery unit can be actively managed and intervened at each stage of the fault through the deep integration with the power converter.
  • the fault prediction unit When the battery failure probability given by the fault prediction unit is high, it can actively reduce the charging and discharging power of the intelligent battery unit in the energy storage system, delay the further development of battery damage, and improve the operation reliability; further, it can actively discharge to the outside and reduce its own Store power, reduce the heat generated when a fault occurs, reduce the possible harm, avoid the occurrence of battery thermal runaway, and improve the overall reliability of the system.
  • the redundancy control of the capacity expansion system can quickly arrange a certain battery unit to withdraw from operation, and notify the maintenance personnel to carry out overhaul and maintenance to improve the safety and reliability of the system.
  • the voltage and power of each battery module are determined by the state of charge, open circuit voltage and internal impedance of the battery, and cannot be actively adjusted and distributed.
  • the expansion system composed of power electronic intelligent battery cells also has intelligent synergy characteristics. Operational safety and reliability are the primary conditions for the power electronic intelligent battery unit to form a capacity expansion system. According to the fault prediction results of each intelligent battery unit, the boundary conditions for its own safe and reliable operation are obtained. When the capacity expansion system performs power or voltage distribution , according to the boundary conditions given by each intelligent battery unit, to ensure the reliability of the overall operation of the system, and to avoid the occurrence of battery overcharge and overdischarge.
  • each smart battery unit can give its own efficiency and power curve under the condition of charging and discharging according to the internal parameters and operating trajectory information obtained by its own identification.
  • the highest efficiency to achieve the unity and combination of safe, reliable and cost-effective operation.

Abstract

本发明公开了一种电力电子化智能电池单元,包括:电池模块,所述电池模块包括多个串联的电池芯以及用于测量所述电池芯的电压、电流、压力和/或温度的传感器;以及智能电池接口,所述智能电池接口与所述电池模块的输出侧及传感器相连,并且所述智能电池接口对外界具有功率接口和信息接口,其中所述电池模块监测电池芯的电压、电流、压力和/或温度信息,同时通过所述智能电池接口提供或吸收功率。

Description

电力电子化智能电池单元 技术领域
本发明涉及电池储能技术领域,具体而言,本发明涉及一种安全可靠、高效率及灵活扩容的电力电子化智能电池单元。
背景技术
随着新能源发电装机容量的不断增加和智能电网的不断发展,对于储能系统的容量和功能提出了越来越高的要求。其中,电池储能系统具有无运动部件、对场地无特殊要求、易于扩容、动态特性好的优势,在电网侧调频调峰、用户侧负荷应急保障、可再生能源功率波动平滑等场合的应用日趋广泛。
典型的大容量电池系统由海量电池芯按照图1所示方法组成,单个电池芯经串并联后组成电池模块,多个电池模块组成电池簇,多个电池簇进一步形成大容量电池系统,整个大容量电池系统以单级式PCS作为功率接口,联接到电网或负荷,实现功率的双向流动。
除了应用于支撑电网的大容量储能系统,电池储能在户用型储能领域也有着广泛的应用。图2所示为典型的户用型光储互补并离网一体化功率变换架构,该系统中,户用型光伏电池与储能电池构成良好的互补协同关系。其中,通过隔离型双向直流变换器,把48V电池模块接入400V直流母线。特斯拉也推出了应用于工商业的储能系统,如图3所示:48V低压电池模块经1.6kW的隔离型双向直流变换器,在直流变换器输出端等效为一个输出电压400V的PowerPod,16组PowerPod经直流母线并联组成一个25kW/4小时的Powerpack,10组Powerpack并联后接入250kW逆变器组成一个250kW/4小时的电池储能系统。
由于单个电池芯的电压低、容量小,因此,在各类储能应用场景中,需要将海量的电池芯单体进行串并联。同时,在电池芯的生产制造过程中,难以保证每个电池芯性能的一致性,在电池芯接入储能系统,参与充放电循环后,每个电池芯所处的工作环境、每个电池芯的老化速率也不尽相同,从而也导致了电池芯性能不一致性的进一步加剧。而电池芯单体性能的不一致性,使得在同一个储能系统中,难以保证每个电池荷电状态的相同。而由于电池芯的开路电压、内阻抗又与电池荷电状态紧密相关,当电池芯荷电状态不一致时,在电池模块内部和并联的电池模块间,都将由于电池电压的不一致而存在环流,这一环流的持续存在,将在电池内阻、线路电阻上产生可观的损耗,使得电池储能系统的充放电循环效率显著降低。同时,电池环流的存在也会加速电池的老化,使得电池内阻增大,进一步增加储能系统的损耗,也降低了储能系统的整体寿命,提高了系统成本。
如上所述,由于电池性能不一致性,导致了在储能系统充放电循环过程中,每个电池芯单体的荷电状态不一致。对于一系列串联的电池芯,在充电过程中, 会存在某一电池电量已充满,而其余电池电量未充满的情况,为了避免对该电池的过充电,其余电池芯的电量将无法进一步充满;同样,在放电过程中,会存在某一电池电量已到达最小容许荷电状态,而其余电池仍可进一步放电的情况,此时,为了避免过放电导致的电池芯损坏,所有串联的电池芯都将停止继续放电。由此可见,电池芯性能的不一致,将导致储能系统整体的可用容量受到限制,造成配置容量的浪费,增加储能系统的成本。
同时,由于电池不一致性造成的环流也将加速电池的老化与损坏,增加系统的维护成本。另一方面,对于一系列串联的电池芯而言,当其中某一电池芯老化损坏,无法继续进行充放电时,所有与该电池串联的电池芯也将无法正常工作。由于大容量高电压的储能系统中,串联的电池芯数量往往很大,这一问题也将显著提高电池储能系统的成本与效能。
为解决电池芯性能不一致的问题,目前常采用电池筛选和电池均衡两种手段。电池筛选指的是在电池出厂时,对每个电池芯的性能进行测试,挑选性能一致的电池芯进行串并联组成电池模块。这一过程需要耗费大量的时间成本和人力成本,同时,能够通过筛选,符合储能系统要求的一致性的电池比例也仅有60%左右,使得电池生产制造和筛选的成本十分庞大。
而电池均衡是在电池形成组串后,通过被动均衡或主动均衡两种方式,使得每个电池芯的荷电状态总是保持一致。被动均衡将荷电状态高的电池芯的电量消耗在电阻或二极管上,产生的损耗大、均流速度慢。主动均衡则利用电容、电感等储能元件,配合开关管的高速切换,将电量从高荷电状态的电池芯向低荷电状态的电池芯进行转移,该方法能够有效对电池芯实现均衡,但硬件成本高、控制复杂。而为了保证电池储能系统的安全可靠运行,电池均衡又是不可或缺的功能单元,也进一步增加了电池储能系统的损耗和成本。
在传统的电池储能系统中,仅有一个总体的电池管理系统(BMS)和一个功率变换单元(PCS),每一个电池模块中,配置了电池监控单元(BMU)。电池监控单元具有采集电池电压、电流、温度信息,以及对电池模块内电池芯进行均衡的功能。由于电池模块自身缺乏功率控制能力,只能被动地进行充电与放电,因此,难以避免发生过充电和过放电。而电池的过充与过放将导致电池容量下降、内阻增加,同时在电池内部造成不可逆转的结构性损伤,进一步发展,将导致电池内短路的发生,造成电池热失控,引发电池储能系统的严重事故。
同时,电池模块内的电池监控单元仅能被动地向总体电池管理系统提供电池状态信息,电池管理系统也缺乏有效的电池故障状态评估手段。对于电池的结构性损伤,特别是潜在的内短路故障而言,在发生初期,电池的电压、电流、表面温度等外特性并不会发生明显的改变,难以被电池监控单元有效、准确识别。而这些损伤与微小故障进一步发展,则会引发严重的内短路故障,造成大范围的热失控。
现有技术中,已有以下一些电池管理和电池安全管控的方法被提出:
(1)申请号为CN111416399A的专利提出了一种主动侦测与控制功能的智能电池及智能控制模块,能实现一种主动侦测与控制的功能,进而取代外部 的控制机制。然而由于不能主动估算电池的健康状态,该模块无法预先判断电池的故障信息并提前采取措施,仍然不能有效避免电池故障带来的严重后果。
(2)申请号为CN103944225A的专利提出一种电池智能管理方法及电池智能管理装置,保持电池的最佳工作状态,延长了电池的使用寿命,但同样不能保证电池的安全运行。
发明内容
根据本发明的一个方面,提供一种电力电子化智能电池单元,包括:
电池模块,所述电池模块包括多个串联的电池芯以及用于测量所述电池芯的电压、电流、压力和/或温度的传感器;以及
智能电池接口,所述智能电池接口与所述电池模块的输出侧及传感器相连,并且所述智能电池接口对外界具有功率接口和信息接口,
其中所述电池模块监测电池芯的电压、电流、压力和/或温度信息,同时通过所述智能电池接口提供或吸收功率。
在本发明的一个实施例中,所述智能电池接口通过信息接口传送状态信息和故障信息,并从信息接口接收控制信息,
所述智能电池接口根据所连接的电池模块的电池输出侧的电压大小,改变自身的直流电压增益,维持所述电力电子化智能电池单元的功率接口的电压稳定。
在本发明的一个实施例中,所述传感器为以下各项中的一项或多项:
布置在所述电池模块电池芯上的多个电压传感器、温度传感器和压力传感器,用于检测电池模块的电芯电压、温度和压力数据;
布置在所述电池模块内的多个电压传感器和电流传感器,检测所述电池模块输出侧的电压和电流数据。
在本发明的一个实施例中,所述智能电池接口包括:
处理器;
调理电路,所述调理电路连接所述传感器的输出端,将所述传感器输出的电信号进行调理,形成处理器能够读取的电信号;
功率变换器,所述功率变换器与电池模块相连,根据处理器的控制实现功率的双向流动与主动控制,在所述功率接口形成稳定可控的输出电压;和
均衡电路,所述均衡电路布置在各个电池芯单体两端,通过一定的均衡算法,在处理器的控制下,均衡电路通过开关管的切换,实现电池芯单体荷电状态的均衡。
在本发明的一个实施例中,所述功率变换器是双向隔离型直流变换器,所述双向隔离型直流变换器在正向运行和反向运行时,具有不同的电压增益表达式。
在本发明的一个实施例中,所述功率变换器包括:
第一交直流变换电路,包括第一至第四开关管组成的第一全桥电路;
第二交直流变换电路,包括第五至第八开关管组成的第二全桥电路;以及
隔离型双向谐振网络,包括第一电感、变压器、变压器原边一侧的第一交 流端口以及变压器副边一侧的第二交流端口,
其中所述第一全桥电路的两个桥臂中点分别连接隔离型双向谐振网络的第一交流端口的第一交流端和第二交流端,所述第二全桥电路的两个桥臂中点分别连接隔离型双向谐振网络的第二交流端口的第一交流端和第二交流端。
在本发明的一个实施例中,所述隔离型双向谐振网络还包括第二电感、第一电容、第二电容、辅助电容器,第一电感和第一电容串联连接,第一电感的一端连接到第一交流端口的第一交流端,第一电容的一端连接到变压器原边的第一交流端,变压器原边的第二交流端与第一交流端口的第二交流端相连,变压器副边的第一交流端连接第二电容的一端,第二电容的另一端接连接第二电感的一端,第二电感的另一端接连接第二交流端口的第一交流端,变压器副边的第二交流端连接第二交流端口的第二交流端;变压器原边的绕组中间引出一抽头,在抽头和变压器原边的第二交流端之间连接有辅助电容器。
在本发明的一个实施例中,所述隔离型双向谐振网络还包括第一电容和辅助电容器,第一电感和第一电容串联连接,第一电感的一端连接到第一交流端口的第一交流端,第一电容的一端连接到变压器原边的第一交流端,变压器原边的第二交流端与第一交流端口的第二交流端相连,变压器副边的两端口连接第二交流端口的两端口,变压器原边的绕组中间引出一抽头,在抽头和变压器原边的第二交流端之间连接有辅助电容器。
在本发明的一个实施例中,所述功率变换器是双向非隔离直流变换器,包括第一至第四开关管、电感和第一电容和第二电容,第一开关管和第二开关管串联形成半桥,同时并联第一电容;第三开关管和第四开关管串联形成半桥,同时并联第二电容,第二开关管和第四开关管的源极相连;电感连接两个半桥的桥臂中点。
在本发明的一个实施例中,所述智能电池接口还包括:
保护装置,所述保护装安装智能电池接口与功率接口的连接端;
散热装置,所述散热器安装在功率变换器与电池模块上,吸收两者产生的热量,增大散热面积,同时所述散热器具有统一的结构,当环境温度过低时,能够将功率变换器额外产生的热量传递到电池模块,避免电池模块由于低温而损坏。
在本发明的一个实施例中,所述功率变换器还包含辅助电源,所述辅助电源为处理器、功率变换器的驱动电路、保护装置、散热装置和均衡电路提供电源。
在本发明的一个实施例中,所述处理器被配置成进行以下操作中的一项或多项:
通过测量、采集和记录的电池电压、电流、压力和温度信息,利用多种参数辨识方法,对电池模块的参数模型进行辨识和校准;
通过测量、采集和记录的电池电压、电流、压力和温度信息,综合电池模块的参数模型,并利用多种荷电状态估算方法,估算并记录电池的荷电状态;
通过测量、采集和记录的电池电压、电流、压力和温度信息,结合电池荷电状态信息,综合多种电池健康状态估算模型,估算电池健康状态;
通过估算得到的电池荷电状态和电池健康状态,更新电池模块当前的等效电路模型,对电池充放电功率转换的控制器参数进行修正;
通过估算得到的电池荷电状态和电池健康状态,估算出电池当前存储的能量及电池当前充放电的功率边界条件,对电池充放电的功率进行控制;
将大量电池模块的电压、电流、温度、压力等状态信息及历史充放电循环记录、故障记录上传至在线计算平台,通过数据挖掘与模型训练,分析不同故障发生前一定时间内电池的状态轨迹,提取判断不同故障发生概率的特征参数,并建立特征参数与故障概率之间的数学模型,建立计算智能电池单元整体可靠性的数学模型,并将模型通过数据总线下发给各个智能电池单元。
评估电池的历史工作轨迹,分析存在的故障隐患,对当前电池的健康状态进行预测,预判可能发生的故障与故障类型,并给出故障预判信息;
利用自身的电压、电流、温度、压力等状态信息、历史充放电循环记录,根据故障预测模型与可靠性模型,计算电池模块当前可靠性,对于可靠性低于要求的智能电池单元,主动预警并减小功率运行;
利用自身的电压、电流、温度、压力等状态信息、历史充放电循环记录,根据故障诊断模型,判断电池当前是否发生故障;当判断电池模块发生故障时,将模块退出运行状态,并采取主动降温措施,避免模块发生热失控,同时通过通讯接口发出故障信息;
比较电压传感器得到电池模块输出侧的电压与电力电子化智能电池模块功率接口的电压,当电池模块的电量随电池放电而降低,电池模块输出侧的电压下降时,提高直流电压增益,使所述功率接口的电压保持不变;当电池模块的电量随电池充电而增加,电池模块输出侧的电压上升时,降低直流电压增益,使所述功率接口的电压保持不变;
通过电压传感器与电流传感器监测所述智能电池接口传输的功率,改变电池模块输出电流的大小与方向,使电力电子化的智能电池模块输出的功率大小和方向满足设定要求。
在本发明的一个实施例中,所述智能电池接口与在线计算平台连接,所述在线计算平台通过与大量电力电子化智能电池模块间的远程通讯,收集大量电力电子化智能电池模块在反复循环运行期间的参数与状态轨迹,通过大数据挖掘与智能算法,对各个不同工作环境下的电池的参数模型、状态估算算法、故障预测算法与充放电控制算法进行修正和优化,并将结果周期性地下发到各个智能电池模块。
根据本发明的另一个实施例,提供一种智能电池接口,所述智能电池接口与电池模块的输出侧及传感器相连,并且所述智能电池接口与功率接口和信息交互接口相连,所述智能电池接口包括:
处理器;
调理电路,所述调理电路连接所述传感器的输出端,将所述传感器输出的电信号进行调理,形成处理器能够读取的电信号;
功率变换器,所述功率变换器与电池模块相连,根据处理器的控制实现功率的双向流动与主动控制,在所述功率接口形成稳定可控的输出电压;和
均衡电路,所述均衡电路布置在各个电池芯单体两端,通过一定的均衡算法,在处理器的控制下,均衡电路通过开关管的切换,实现电池芯单体荷电状态的均衡。
在本发明的另一个实施例中,智能电池接口包括:
保护装置,所述保护装置安装在智能电池接口与功率接口的连接端;
散热装置,所述散热器安装在功率变换器与电池模块上,吸收两者产生的热量,增大散热面积,同时所述散热器具有统一的结构,当环境温度过低时,能够将功率变换器额外产生的热量传递到电池模块,避免电池模块由于低温而损坏。
在本发明的另一个实施例中,智能电池接口还包含辅助电源,所述辅助电源为处理器、功率变换器的驱动电路、保护装置、散热装置和均衡电路提供电源。
根据本发明的又一实施例,提供一种由上述电力电子化智能电池单元构成的电池系统,包括:
多个所述电力电子化智能电池单元、直流母线与通讯总线。
其中所述多个电力电子化智能电池单元的功率接口以并联方式连接到所述直流母线,或者所述多个电力电子化智能电池单元的功率接口以串联方式连接后连接到所述直流母线;
所述多个电力电子化智能电池单元的信息交互接口连接到所述通讯总线,上传各个电池的状态信息与故障信息,接收对电力电子化智能电池单元的控制命令,控制电池单元的投入、切出,及传输功率的大小与方向。
在本发明的又一个实施例中,基于多个所述电力电子化智能电池单元提供的电池状态信息,确定各个电力电子化智能电池单元的功率大小,并结合所述电力电子化智能电池单元功率接口控制方法,为各个单元确定控制策略。
在本发明的又一个实施例中,当多个所述电力电子化智能电池单元中某个电池单元发生故障时,其故障信息首先被其自身的电池状态监测单元检测获取,同时其自身的智能电池接口完成故障电池单元的主动故障隔离;
发生故障的电力电子化智能电池单元将电池故障的信息通过信息交互接口上传至通讯总线;
没有发生故障的电力电子化智能电池单元的功率进行重新分配,其接收的控制命令控制电池单元的传输功率的大小与方向。
附图说明
为了进一步阐明本发明的各实施例的以上和其它优点和特征,将参考附图来呈现本发明的各实施例的更具体的描述。可以理解,这些附图只描绘本发明的典型实施例,因此将不被认为是对其范围的限制。在附图中,为了清楚明了,相同或相应的部件将用相同或类似的标记表示。
图1示出现有技术的大容量电池系统的组成方法。
图2示出典型的户用型光储互补并离网一体化功率变换架构。
图3示出基于高频DCDC变换器的储能系统原理图。
图4示出梯次电池回收检测流程。
图5示出根据本发明的一个实施例的电子化智能电池单元的示意框图。
图6示出根据本发明的一个实施例的智能电池接口的示意框图。
图7示出示出根据本发明的一个实施例的电子化智能电池单元的硬件结构示意图。
图8示出根据本发明的一个实施例的调理电路的电路示意图。
图9示出根据本发明的一个实施例的双向隔离型直流变换器的电路示意图。
图10示出根据本发明的另一个实施例的双向隔离型直流变换器的电路示意图。
图11示出根据本发明又一实施例的双向隔离型直流变换器的电路示意图。
图12示出根据本发明的一个实施例的双向非隔离型直流变换器的电路示意图。
图13示出根据本发明的一个实施例的均衡电路的电路示意图。
图14示出根据本发明的实施例的电池模块的总体流程图。
图15示出根据本发明的一个实施例的参数辨识流程图。
图16示出根据本发明的一个实施例的荷电状态估算流程图。
图17示出根据本发明的一个实施例的在线平台的流程图。
图18示出根据本发明的一个实施例的基于电力电子化智能化电池单元的并联扩容系统800的示意图。
图19示出根据本发明的一个实施例的基于电力电子化智能化电池单元的串联扩容系统900的示意图。
具体实施方式
在以下的描述中,参考各实施例对本发明进行描述。然而,本领域的技术人员将认识到可在没有一个或多个特定细节的情况下或者与其它替换和/或附加方法、材料或组件一起实施各实施例。在其它情形中,未示出或未详细描述公知的结构、材料或操作以免使本发明的各实施例的诸方面晦涩。类似地,为了解释的目的,阐述了特定数量、材料和配置,以便提供对本发明的实施例的全面理解。然而,本发明可在没有特定细节的情况下实施。此外,应理解附图中示出的各实施例是说明性表示且不一定按比例绘制。
在本说明书中,对“一个实施例”或“该实施例”的引用意味着结合该实施例描述的特定特征、结构或特性被包括在本发明的至少一个实施例中。在本说明书各处中出现的短语“在一个实施例中”并不一定全部指代同一实施例。
针对现有技术中存在的问题,本发明提供一种安全可靠、高效率及灵活扩容的电力电子化智能电池单元,能实现电池模块能更加安全可靠和高效率地运行,同时可以实现多个电池模块的灵活拔插和组合扩容。电力电子化智能电池单元由智能电池接口和电池模块两部分组成。电池模块部分与传统的电池储能系统类似,由多个电池芯单体串并联组成一定电压和容量的电池模块。智能电 池接口集成了电池管理系统和功率变换的功能,能够实现电池模块内各个电池芯单体的电压、温度、压力状况以及整个电池模块输入输出电流的检测与记录,同时,利用采集到的电池状态信息,对电池的内部参数、荷电状态、健康状态进行在线辨识与估算。同时,具有丰富的通信接口,实现与外界的信息交互。同时,智能电池接口也集成了双向功率交换的功能,在外端口提供稳定可控的输入输出电流、端口电压和动态响应特性。同时,智能电池接口和电池模块进行统一的封装和散热管理,对外表现为统一的电力电子化智能电池单元,并具有信息交互接口和功率转换接口。
图5示出根据本发明的一个实施例的电子化智能电池单元的示意框图。
请参考图5,本实施例的电力电子化智能电池单元100包括:电池模块110和智能电池接口120。电池模块110可以由若干个电池芯串联组成,具备能量存储功能。智能电池接口120的一端与电池模块110的输出侧及电池模块110内的若干个电池芯的传感器相连。智能电池接口120的另一端与智能电池单元100的功率接口130和信息交互接口140相连。智能电池接口120具备电池状态监控、电池状态估算、电池安全管理和电池充放电功率转换功能。
图6示出根据本发明的一个实施例的智能电池接口的示意框图。
请参考图6,本实施例的智能电池接口,应用于图1中电力电子化智能电池单元,此智能电池接口通过监测电池模块中所述电池模块和各个电池芯的电压、电流、压力和温度信息,估算电池模块的工作状态、预测电池模块的健康状态和可靠性、设定电池充放电的功率边界条件、监督电池模块的故障情况、通过所述智能电池单元的信息交互接口交互电池状态信息。
如图6所示,智能电池接口210的功能可包括电池可靠性预测、健康状态预测、参数模型修正、健康状态估算、荷电状态估算、功率边界条件以及功率控制等等。
智能电池接口210与信息交互接口220相连,向信息交互接口220传送状态信息和故障信息,并从信息交互接口220接收控制信息。
智能电池接口210与功率接口230相连,根据所连接的电池模块的电池输出侧240的电压大小,改变自身的直流电压增益,维持所述电力电子化智能电池单元的功率接口230的电压稳定。
智能电池接口210与布置在电池模块上的电池传感器250相连。电池传感器250可以包括多个电压传感器、温度传感器和压力传感器等。智能电池接口210通过布置在所述电池模块电池芯上的多个电压传感器、温度传感器和压力传感器,检测电池模块的电芯电压、温度和压力数据,通过布置在所述电池模块内的多个电压传感器和电流传感器,检测所述电池模块输出侧的电压和电流数据。
智能电池接口210通过测量、采集和记录的电池电压、电流、压力和温度信息,利用多种参数辨识方法,对电池模块的参数模型进行辨识和校准;
智能电池接口210通过测量、采集和记录的电池电压、电流、压力和温度信息,综合电池模块的参数模型,并利用多种荷电状态估算方法,估算并记录电池的荷电状态;
智能电池接口210通过测量、采集和记录的电池电压、电流、压力和温度信息,结合电池荷电状态信息,综合多种电池健康状态估算模型,估算电池健康状态;
智能电池接口210通过估算得到的电池荷电状态和电池健康状态,更新电池模块当前的等效电路模型,对电池充放电功率转换的控制器参数进行修正;
智能电池接口210通过估算得到的电池荷电状态和电池健康状态,估算出电池当前存储的能量及电池当前充放电的功率边界条件,对电池充放电的功率进行控制;
智能电池接口210利用大量电池模块的电压、电流、温度、压力等状态信息及历史充放电循环记录、故障记录,通过数据挖掘与模型训练,分析不同故障发生前一定时间内电池的状态轨迹,提取判断不同故障发生概率的特征参数,并建立特征参数与故障概率的数学模型,建立计算智能电池单元整体可靠性的数学模型,并将模型通过数据总线下发给各个智能电池单元。
智能电池接口210评估电池的历史工作轨迹,分析存在的故障隐患,对当前电池的健康状态进行预测,预判可能发生的故障与故障类型,并给出故障预判信息;
智能电池接口210利用自身的电压、电流、温度、压力等状态信息、历史充放电循环记录,根据故障预测模型与可靠性模型,计算电池模块当前可靠性,对于可靠性低于要求的智能电池单元,主动预警并减小功率上限;
智能电池接口210利用自身的电压、电流、温度、压力等状态信息、历史充放电循环记录,根据故障诊断模型,判断电池当前是否发生故障;当判断电池模块发生故障时,将模块退出运行状态,并采取主动降温措施,避免模块发生热失控,同时通过通讯接口发出故障信息;
智能电池接口210采集电压传感器得到的电池模块输出侧的电压与电力电子化智能电池模块功率接口的电压,当电池模块的电量随电池放电而降低,电池模块输出侧的电压下降时,提高直流电压增益,使所述功率接口的电压保持不变;当电池模块的电量随电池充电而增加,电池模块输出侧的电压上升时,降低直流电压增益,使所述功率接口的电压保持不变;
智能电池接口210通过电压传感器与电流传感器监测所述智能电池接口传输的功率,改变电池模块输出电流的大小与方向,使电力电子化的智能电池模块输出的功率大小和方向满足设定要求。
智能电池接口210通过故障诊断,实现所述电池模块和所述智能电池接口的故障协同保护;当智能电池接口判断所述电池模块发生过流和/或高温故障,发出故障信号,同时减小功率,消除故障状态;当智能电池接口判断发生短路故障、过压故障、欠压故障、电池内部过压故障中的一种或多种,发出故障信号,同时断开电力电子化智能电池单元的功率接口,使电池模块退出运行,及时隔离故障,避免事故发生。
智能电池接口210具有电池过压监测功能和电池欠压监测功能,当检测到电池模块输出侧电压及各电池模块的电芯电压高于允许的最大值,所述智能电池接口判断为电池过压故障,并发出电池过压故障信号;当检测到电池模块输 出侧电压及各电池模块的电芯电压低于允许的最小值,所述智能电池接口判断为电池欠压故障,并发出电池欠压故障信号。
智能电池接口210具有电池过流监测功能,当检测到电池模块输出侧的电流高于允许的最大值,所述智能电池接口判断为电池过流故障,并发出电池过流故障信号。
智能电池接口210具有电池温度监测功能,当检测到电芯温度高于允许的最大值,所述智能电池接口判断为电池温度过高,并发出电池高温故障信号;当通过温度传感器检测的电芯温度低于允许的最小值,所述智能电池接口判断为电池温度过低,并发出电池低温故障信号。
智能电池接口210具有电池短路监测功能,当通过电压传感器检测的电池模块的电芯电压低于短路故障阈值,所述智能电池接口判断为电池模块的电芯内部短路,并发出电池内部短路故障信号。
智能电池接口210具有电池压力监测功能,当通过电池压力传感器检测到的电池内部压力高于允许值,模块的判断为电池内部压力过大,并发出电池内部过压故障信号。
智能电池接口和电池模块进行统一的热量管理策略:电力电子化智能电池模块中电池模块由于环境温度过低发生性能缺陷,低温状态被电池信息监测单元检测获取;智能电池接口通过对功率变换器控制使功率变换的效率降低,产生更多的损耗和热量;智能电池接口与电池模组具有统一的散热封装,智能电池接口产生的热量通过统一的散热结构使得电池模块的温度上升且维持在相对稳定的温度,保证电池模块的可靠运行。
图7示出示出根据本发明的一个实施例的电子化智能电池单元的硬件结构示意图。
电力电子化智能电池单元700可以包括电池模块701、处理器702、多种传感器703-707、调理电路708、功率变换器709、保护装置710、均衡电路711、散热装置712与通讯接口713。
电池模块701由多个电池芯单体经串并联后组成,是电力电子化智能电池单元的硬件基础。
处理器702可以实现模拟-数字转换、计算、控制等功能,连接调理电路708,将控制信号输出到功率变换器709、保护装置710、均衡电路711和散热装置712,并与通讯接口713间进行数据交互。
传感器可包括电压传感器、电流传感器、温度传感器和压力传感器等。电压传感器703布置在各个电池芯的两端。电压传感器707布置在整个电池模块的两端,用于采集电压信号。电流传感器705、706布置在各个电池芯组成的组串,以及功率变换器两端,用于采集电流信号。温度传感器704与压力传感器(未示出)围绕电池模块各处进行布置,用于采集电池模块各个位置的温度和压力信号,同时,温度传感器(未示出)也布置在功率变换器和散热装置的关键位置,用于采集功率变换器和散热装置的温度信号。本领域的技术人员应该理解,图中仅示意性示出个多个传感器的示例,该示例仅用于解释本发明而非限制本发明,本发明的电子化智能电池单元可包括更多或更少的传感器,传 感器的数量和布置方式不限于所示的示例。
调理电路708连接在上述各个传感器的输出端,将上述传感器输出的电信号进行调理,形成处理器能够读取的电信号。
图8示出根据本发明的一个实施例的调理电路的电路示意图。如图8所示,调理电路可包括第一电阻R1、第二电阻R2和比较器801。调理电路的信号输入端与第一电阻R1的一端相连,第一电阻R1的另一端连接至第二电阻R2的一端及比较器801的同相输入端,第二电阻R2的另一端接地,比较器801的反相输入端与信号输出端相连。
返回图7,功率变换器709连接在电池模块两端。在本发明的一个实施例中,功率变换器709可以采用双向直流变换器,实现功率的双向流动与主动控制,在电力电子化智能电池单元的外端口形成稳定可控的输出电压和动态特性。
本发明中所述的功率变换器709可以采用双向隔离型直流变换器实现。图9示出根据本发明的一个实施例的双向隔离型直流变换器的电路示意图。该功率变换器包括第一交直流变换电路、第二交直流变换电路和隔离型双向谐振网络。第一交直流变换电路包括第一至第四开关管S1、S2、S3、S4组成的全桥电路。第一至第四开关管S1、S2、S3、S4可以是MOS管。第一至第四开关管S1、S2、S3、S4分别具有控制端、第一端和第二端。第一开关管S1和第二开关管S2的第一端彼此连接并连接到第一交直流变换电路的直流端口的第一端。第一开关管S1的第二端与第四开关管S4的第一端相连,其连接节点M1作为第一桥臂中点。第二开关管S2的第二端与第三开关管S3的第一端相连,其连接节点M2作为第二桥臂中点。第三开关管S3和第四开关管S4的第二端彼此连接并连接到第一交直流变换电路的直流端口的第二端。全桥电路两个桥臂中点M1和M2分别连接隔离型双向谐振网络的第一交流端口的第一交流端和第二交流端。
第二交直流变换电路包括第五至第八开关管S5、S6、S7、S8组成的全桥电路。第五至第八开关管S5、S6、S7、S8可以是MOS管。第五至第八开关管S5、S6、S7、S8分别具有控制端、第一端和第二端。第五开关管S5和第六开关管S6的第一端彼此连接并连接到第二交直流变换电路的直流端口的第一端。第五开关管S5的第二端与第八开关管S8的第一端相连,其连接节点M3作为第三桥臂中点。第六开关管S6的第二端与第七开关管S7的第一端相连,其连接节点M4作为第四桥臂中点。第七开关管S7和第八开关管S8的第二端彼此连接并连接到第二交直流变换电路的直流端口的第二端。全桥电路两个桥臂中点M3和M4分别连接隔离型双向谐振网络的第二交流端口的第一交流端和第二交流端。隔离型双向谐振网络包括:第一电感L 1、第二电感L 2、第一电容C 1、第二电容C 2、辅助电容器C 3、第一交流端口、第二交流端口以及变压器T 1,第一电感L 1和第一电容C 1串联连接,第一电感L 1的一端连接到第一交流端口的第一交流端,第一电容C 1的一端连接到变压器T 1原边的第一交流端,变压器T 1原边的第二交流端与第一交流端口的第二交流端相连,变压器T 1副边的第一交流端连接第二电容C 2的一端,第二电容C 2的另一端接连接第 二电感L 2的一端,第二电感L 2的另一端接连接第二交流端口的第一交流端,变压器T 1副边的第二交流端连接第二交流端口的第二交流端;变压器T 1原边的绕组中间引出一抽头,在抽头和变压器T 1原边的第二交流端之间连接有辅助电容器C 3,变压器T 1的励磁电感被抽头分成两个励磁电感:第一励磁电感L m1和第二励磁电感L m2,第二励磁电感L m2和辅助电容器C 3并联连接再与第一励磁电感L m1串联连接组成一条等效励磁支路。
所述双向隔离型直流变换器在正向运行和反向运行时,具有不同的电压增益表达式。所述双向隔离型直流变换器正向运行时的电压增益表达式为:
Figure PCTCN2021125613-appb-000001
Figure PCTCN2021125613-appb-000002
其中,V 1为第一交直流变换电路直流端口电压,V 2为第二交直流变换电路直流端口电压,f n=f S/f 1,f S为工作频率,m=f 1/f 2,f 1为第一电感和第一电容串联谐振的频率,f 2为第二励磁电感和辅助电容器并联谐振的频率,
Figure PCTCN2021125613-appb-000003
h=n 2L 2/L 1,g=C 2/(n 2C 1),k 1=L m1/L 1,k 2=L m2/L 1,f n为归一化频率,R 1为正向负载,n为变压器的原副边匝比。
所述双向隔离型直流变换器反向运行时的电压增益表达式为:
Figure PCTCN2021125613-appb-000004
Figure PCTCN2021125613-appb-000005
其中,
Figure PCTCN2021125613-appb-000006
f n=f S/f 1,m=f 1/f 2,f 1为第二电感和第二电容串联谐振的频率,f 2为第二励磁电感和辅助电容器并联谐振的频率,
Figure PCTCN2021125613-appb-000007
h=L 1/(n 2L 2),g=n 2C 1/C 2,k 1=L m1/L 2,k 2=L m2/L 2,f n为归一化频率,R 2为反向负载。
根据上述电压增益公式,在变换器元件参数确定的情况下,通过改变第一和第二交直流变换电路的开关频率,即能够改变所述双向隔离型直流变换器的电压增益,从而在电池模块端口电压因电池荷电状态而变化时,保持电力电子化智能电池单元功率接口的电压稳定。
图10示出根据本发明的另一个实施例的双向隔离型直流变换器的电路示意图。与图9所示实施例类似,该功率变换器由第一交直流变换电路、第二交直流变换电路和隔离型谐振网络组成,为了简化本说明书,对相似部分仅进行简要描述。第一交直流变换电路由开关管S1、S2、S3、S4组成全桥电路,全桥电路两个桥臂中点连接隔离型双向谐振网络的第一交流端口;第二交直流变换电路由开关管S5、S6、S7、S8组成全桥电路,全桥电路两个桥臂中点连接隔离型双向谐振网络的第二交流端口;隔离型谐振网络包括第一电感L 1、第一电容C 1、第一交流端口、第二交流端口以及变压器T 1,第一电感L 1和第一电容C 1串联连接,第一电感L 1的一端连接到第一交流端口的第一交流端,第一电容C 1的一端连接到变压器T 1原边的第一交流端,变压器T 1原边的第二交流端与第一交流端口的第二交流端相连,变压器T 1副边的两端口连接第二交流端口的两端口,变压器T 1原边的绕组中间引出一抽头,在抽头和变压器T 1原边的第二交流端之间连接有辅助电容器C 2,变压器T 1的励磁电感被抽头分成两个励磁电感:第一励磁电感L m1和第二励磁电感L m2,第二励磁电感L m2和辅助电容器C 2并联连接再与第一励磁电感L m1串联连接组成一条等效励磁支路。
所述双向隔离型直流变换器在正向运行和反向运行时,具有不同的电压增益表达式。所述双向隔离型直流变换器正向运行时的电压增益表达式为:
Figure PCTCN2021125613-appb-000008
其中,V 1为第一交流端口电压的有效值,V 2为第二交流端口电压的有效值,f n为归一化频率,f n=f S/f 1,f S为工作频率,m=f 1/f 2,f 1为第一电感和第一电容串联谐振的频率,
Figure PCTCN2021125613-appb-000009
f 2为第三电感和第二电容并联谐振的频率,
Figure PCTCN2021125613-appb-000010
k 1=L 2/L 1,k 2=L 3/L 1,R 1为正向负载;
计算所述非隔离型谐振网络反向运行的电压增益表达式G 2(f n)为:
Figure PCTCN2021125613-appb-000011
其中,
Figure PCTCN2021125613-appb-000012
R 2为反向负载;
根据上述电压增益公式,在变换器元件参数确定的情况下,通过改变第一和第二交直流变换电路的开关频率,即能够改变所述双向隔离型直流变换器的电压增益,从而在电池模块端口电压因电池荷电状态而变化时,保持电力电子化智能电池单元功率接口的电压稳定。
图11示出根据本发明又一实施例的双向隔离型直流变换器的电路示意图。与图9所示实施例类似,该功率变换器由第一交直流变换电路、第二交直 流变换电路和隔离型谐振网络组成,为了简化本说明书,对相似部分仅进行简要描述。第一交直流变换电路由开关管S1、S2、S3、S4组成全桥电路,全桥电路直流端口V1,全桥电路两个桥臂中点连接隔离型双向谐振网络的第一交流端口;第二交直流变换电路由开关管S5、S6、S7、S8组成全桥电路,全桥电路直流端口V2,全桥电路两个桥臂中点连接隔离型双向谐振网络的第二交流端口;隔离型谐振网络包括第一电感L1、变压器T1、第一交流端口、第二交流端口;其中,所述第一电感L1的一端和所述变压器T1原边的第一交流端,所述第一电感的另一端连接到所述第一交流端口的第一交流端,变压器T1原边的第二交流端与第一交流端口的第二交流端连接;变压器T1副边端口与第二交流端口连接。
所述的功率变换器的一种单移相调制模式中,开关S1和S4同时导通或关断,S2和S3同时导通或关断,S5和S8同时导通或关断,S6和S7同时导通或关断;S1和S3互补导通,S2和S4互补导通,S5和S7互补导通,S6和S8互补导通;且定义在一个开关周期内,S1的导通信号领先S5的导通信号相位
Figure PCTCN2021125613-appb-000013
当变压器变比为n时,可得到该功率变换器两侧电压满足如下关系:
Figure PCTCN2021125613-appb-000014
其中,P为变换器从V1侧向V2侧传输的功率。
根据上述电压增益公式,在变换器元件参数确定的情况下,通过改变第一和第二交直流变换电路的开关频率和移相角度
Figure PCTCN2021125613-appb-000015
即能够改变所述双向隔离型直流变换器的电压增益,从而在电池模块端口电压因电池荷电状态而变化时,保持电力电子化智能电池单元功率接口的电压稳定。
本发明中所述的功率变换器也可以采用双向非隔离型直流变换器实现。图12示出根据本发明的一个实施例的双向非隔离型直流变换器的电路示意图。所述的双向非隔离直流变换器包括第一至第四开关管S1、S2、S3、S4,电感L和电容C1、C2。第一开关管S1和第二开关管S2串联形成半桥,同时并联电容C1;第三开关管S3和第四开关管S4串联形成半桥,同时并联电容C2;开关管S2和S4的源极相连;电感L连接两个半桥桥臂中点。
在一个开关周期内,开关管S1和S2互补导通,开关管S3和S4互补导通。定义在一个开关周期内,开关管S1开通时间占一个开关周期的比值为占空比D1,开关管S3开通时间占一个开关周期的比值为占空比D2,根据电感的稳态条件,在电感电流连续模式下,可以计算得到所述双向非隔离型直流变换器的电压增益。
Figure PCTCN2021125613-appb-000016
根据上述电压增益公式,在变换器元件参数确定的情况下,通过占空比D1和占空比D2,即能够改变所述双向非隔离型直流变换器的电压增益,从而在电池模块端口电压因电池荷电状态而变化时,保持电力电子化智能电池单元功率接口的电压稳定。
以上结合图9至图12描述了本发明的功率变换器的多个实施例,本领域的技术人员应该理解图9至图12所示的具体实施例仅用于示意性示出本发明的功率变换器,而非限制本发明的功率变换器具体电路结构。因此,在本发明的其他实施例中,功率变换器可以采用其他形式的电路结构,只要能够实现类似功能的双向变换器均可以作为本发明中所描述的功率变换器,并落入本发明的保护范围。
返回图7,功率变换器709还可包含辅助电源714。辅助电源714可以为处理器、功率变换器的驱动电路、保护装置、散热装置和均衡电路提供电源。
在本发明的实施例中,保护装置710可以是继电器、保险丝或类似装置。保护装置710可以安装在电力电子化智能电池模块的输出端。当由于内部故障或外界指令需要电力电子化智能电池模块退出运行时,能够通过对继电器的控制,使得电力电子化智能电池模块安全、有效切出。保险丝能够在电流超过阈值后熔断,起到保护作用。
均衡电路711布置在各个电池芯单体两端。通过一定的均衡算法,在处理器的控制下,均衡电路711通过开关管的切换,实现电池芯单体荷电状态的均衡。图13示出根据本发明的一个实施例的均衡电路的电路示意图。电池模块包括N个串联的电池芯。均衡电路可包括2N个开关管和N-1个电容。如图13所示,仅示意性示出三个电池芯B 1至B 3,开关管Q 1a和Q 1b串联在第一电池芯B 1的正极和负极之间;开关管Q 2a和Q 2b串联在第二电池芯B 2的正极和负极之间;开关管Q 3a和Q 3b串联在第三电池芯B 3的正极和负极之间;电容C 1的一端与开关管Q 1a和Q 1b的连接端子相连,另一端与开关管Q 2a和Q 2b的连接端子相连;电容C 2的一端与开关管Q 2a和Q 2b的连接端子相连,另一端与开关管Q 3a和Q 3b的连接端子相连。
返回图7,散热装置712可包括散热器、风扇等散热结构。散热器712安装在功率变换器与电池模块上,吸收两者产生的热量,增大散热面积。同时散热器712具有统一的结构,当环境温度过低时,能够将功率变换器额外产生的热量传递到电池模块,避免电池模块由于低温而损坏。风扇能够在处理器的控制下,调节电力电子化智能电池单元内部散热通道的空气流速,提高散热器与空气之间热量交换的效率,降低智能电池单元温度,避免由于温度过高损坏电池与变换器元件。
通讯接口713起到与外界的信息双向交互功能,能够以有线和无线形式进行本地和远程的信息交互。
在工作过中,电力电子化智能电池单元700的处理器702执行软件,处理器702可以被构造成参数辨识单元721、状态估算单元722、故障预测单元723、充放电控制单元724、均衡控制单元725、变换器控制单元726、故障处理单元727、散热控制单元728、扩容控制单元729。电力电子化智能电池单元700的处理器702通过通信接口713与在线计算平台进行信息交互。图14示出根据本发明的实施例的电池模块软件部分的总体流程图。下面结合图14以及处理器702的各个功能单元对电池模块的工作过程进行描述。
参数辨识单元721根据采集到的电池电压、电流、温度信息,结合多种电 池参数模型,利用参数辨识算法,对多种电池参数模型中涉及的电池内部参数进行在线辨识与计算,表征电池性能的变化。图15示出根据本发明的一个实施例的参数辨识流程图。当外部激励施加到电池模块时,参数辨识单元将上一次电池参数的更新值、当前外部激励信号与存储在存储单元内的电池响应历史信息代入到电池电-热参数模型中,计算出电池端电压与温度的预测值,将此预测值与当前电池的电压、温度响应信息比较,得到参数模型的预测误差;进一步利用参数更新优化算法,将减小参数模型预测误差作为优化目标与方向,对电池电-热模型中的参数进行修正与更新,得到新的电池参数更新值,应用到下一次电池参数辨识过程;同时,也将当前的传感器采集到的电池信息存储在存储单元内,在下一次计算电池响应预测值时进行应用。上述参数辨识流程在电池模块运行过程中不断进行,在较短的时间尺度内,认为电池参数稳定不变,通过对参数的更新优化使得参数模型的预测值与实际响应间的误差不断减小到零,从而得到能够反应电池实际特性的准确电池参数;而在较长的时间尺度内,电池参数随着电池充放电与老化而发生改变,参数辨识算法能够跟踪电池参数的变化,从而实现在电池生命周期内对电池参数的辨识,并根据辨识得到的参数进一步进行电池健康状态的估计与电池故障预测。
状态估算单元722根据采集到的电池电压、电流、温度信息,结合参数辨识单元的参数辨识结果,结合状态估算模型,对电池的荷电状态、健康状态进行在线估算,并采用滤波算法消除状态估算过程中的随机噪声与累积误差。
图16示出根据本发明的一个实施例的荷电状态估算流程图。电池荷电状态(State of Charge,简写为SOC),表示电池当前存储电荷占电池最大所能存储电荷的比值。在荷电状态估算流程中,通过电流传感器采集电池电流测量值,带入到荷电状态(SOC)计算模型中,荷电状态计算模型采用电池的状态方程,由荷电状态的历史值与电池电流测量值计算得到当前荷电状态的预测值,由于历史荷电状态与电池测量值存在的误差,计算得到的荷电状态预测值需要进行校正;荷电状态校正方法应用电池的观测方程,代入电压传感器得到的当前电池电压的测量值与荷电状态预测值,得到荷电状态的校正值;由于电池观测方程中的参数会随着荷电状态的变化而变化,因此在计算荷电状态校正值前,先利用得到的荷电状态预测值对电池观测方程进行更新;同样,在计算得到荷电状态的校正值后,将其存储在存储单元内,同时也对下一次荷电状态计算需要的电池状态方程进行参数更新,完成一次荷电状态估算循环。如上所述,在电池运行过程中,电池荷电状态估算流程不断进行,对电池荷电状态进行不断地预测、校正与跟踪,得到的电池荷电状态信息进一步应用于电池的充放电控制与均衡管理。
故障预测单元723根据采集到的电池电压、电流、温度信息,结合参数辨识单元得到的辨识结果和状态估算单元得到的电池状态,对电池当前的可靠性进行评估,预测电池未来发生故障的概率,为电池的安全可靠运行提供参考。
充放电控制单元724根据状态估算单元和故障预测单元得出的结果,给出当前电池模块充放电电流与功率的最大容许值以及充放电计划。
均衡控制单元725根据状态估算单元得出的各个电池芯的荷电状态数据, 给出当前均衡电路的工作模式,控制相应的开关管工作,实现电池芯间电压的均衡。
变换器控制单元726根据当前电池模块电压及给出的功率指令,控制变换器的电压增益及功率大小,在电力电子化智能电池模块的输出端口提供稳定可控的输出电压和充放电功率。
故障处理单元727根据采集到的电池电压、电流、温度与压力信息,对电池模块是否发生故障进行判断,当判断电池模块发生故障时,采取对应的故障处理操作,避免电池热失控的发生,同时向外界发出故障信号。
散热控制单元728根据采集到的电池与功率变换器的温度信息,控制当前风扇的转速。而当环境温度过低时,将主动控制变换器产生多余的热量,升高整个电力电子化智能电池模块的温度,避免电池由于低温而损坏。
扩容控制单元729在多个电力电子化智能电池模块串并联扩容时工作,对参与扩容的多个电力电子化智能电池模块起到整体控制作用。扩容控制单元729通过与各个智能电池模块间的信息交互,根据各个智能电池模块充放电控制单元给出的充放电功率边界条件以及各个电池模块的效率曲线,确定各个智能电池模块在扩容系统中提供的充放电功率大小,实现整体的安全性最优与效率最优运行。
在线计算平台通过与大量电力电子化智能电池模块间的远程通讯,收集大量电力电子化智能电池模块在反复循环运行器件的参数与状态轨迹,通过大数据挖掘与智能算法,对各个不同工作环境下的电池的参数模型、状态估算算法、故障预测算法与充放电控制算法进行修正和优化,并将结果周期性地下发到各个智能电池模块,提升参数辨识、状态评估和故障预测的准确性和运算速度,提高智能电池模块运行的效益与可靠性。图17示出根据本发明的一个实施例的在线平台的流程图。首先,收集大量电力电子化智能电池模块在反复循环运行器件的参数与状态轨迹,包括电池电压、电流、温度数据、电池荷电状态数据、电池老化退役数据、电池故障数据等。然后,对收集的数据进行预处理、电池运行模式聚类、数据标准化、特征参数提取、划分数据集。接下来,进行回归法建模和神经网络训练,得到健康状态模型、可靠性模型和故障判据等。
通过上述实施例形成的电子化智能电池单元能够将电池管理系统和功率变换器在结构与功能上进行深度融合。
第一,电路结构的深度融合。
在硬件架构上,电池管理系统的测量电路、均衡电路、功率变换器的低压侧端口,均围绕电池模块进行构建,能够实现电路结构上的统一设计。电池管理系统测量电池信息的电压电流传感器与功率变换器实现闭环控制所需要的电压电流传感器能够实现复用。功率变换器能够同时为电池管理系统的处理器、测量电路、均衡电路提供辅助电源。电路结构上的深度融合能够减少电力电子化智能电池模块的硬件成本,带来硬件设计的紧凑性与模块化特点。
第二,信息的深度融合和交互。
为实现对电池信息的实时监测,以及对电池的参数辨识、状态估算以及故障预测和判断,电池管理系统需要对电池模块的电压、电流与温度信息进行监 测。同样,功率变换器为了实现高压侧电压和充放电功率的闭环控制,也需要对电池的电压与电流信息进行检测。而对于控制信息,电池管理系统为了实现充放电控制,需要将充放电功率与电流的设定指令传递到功率变换器的控制单元,生成相应的调制波形后驱动功率变换器开关器件,实现对充放电功率的调节;电池管理系统在判断需要智能电池模块退出运行时,除了直接控制出口继电器,也需要对功率变换器发送驱动闭锁信号。而功率变换器也需要获取电池参数辨识单元得到的电池模块等效电路参数,从而提高闭环控制的动态性能。因此电池管理系统与功率变换器在信息上实现实时共享与交互,两者通过共用处理器或内存单元,能够实现上述信息的高速传递和共用,节约信息通讯开销,提升智能电池模块的信息交互速度和可靠性,对电池模块的状态改变实现实时跟踪,对外界给出的控制指令实现快速可靠的响应。
第三,热管理的深度融合。
电池模块对温度具有较高的敏感性,过高的温度将导致电池模块的加速老化、电极活性材料分解乃至电池热失控;过低的温度将导致电池容量下降、金属晶枝生长乃至隔膜破损与内短路。因此,电池管理系统需要对电池模块的温度进行监测,并对出现的高温或低温情况做出及时的反应和处理。在电力电子化智能电池单元运行过程中,电池模块的内阻和功率变换器元件产生的损耗将在智能电池单元内部产生热量,需要安装散热器与风扇进行散热处理。通过硬件上的统一设计和封装,电池模块和功率传输单元能够共用散热器和风扇,减小散热器的体积、重量与成本,同时也增加每一部分的有效散热面积。在热管理上,通过围绕电池模块和功率传感器关键部位布置的温度传感器,热管理单元能够对智能电池模块的温度进行统一的管理,有效避免热量的过度累积。同时,在低温环境下运行时,热管理单元也能够控制功率变换器采用效率较低的工作与调制模式,产生多余热量,通过统一的散热封装将该部分热量提供给电池模块,避免电池模块因低温而损坏。
第四,可靠性管理的深度融合。
传统的电池模块仅具有电池监测单元,本身仅能够实现对电池模块的状态监测,在整个储能系统中处于被动运行的地位,由于大容量电池储能系统内仅有出口处的PCS作为功率变换器,储能系统内部各个电池模块的输出功率由各个电池模块的荷电状态、开路电压和内阻抗自动分配,即使电池监测单元发现电池模块偏离正常运行状态,也无法采取有效措施改变非正常运行状况,因此容易导致电池模块长期处于过充电、过放电和过温运行,进一步加速电池的老化与损坏,降低了整个储能系统的寿命和可靠性,提高了故障发生的概率。而电力电子化智能电池模块通过电池管理系统和功率变换器的深度融合,使得智能电池模块能够主动地对电池模块的功率、温度进行控制和调节。当智能电池模块检测到电池模块偏离正常运行状态时,能够主动控制功率变换器,减小电池的充放电功率,避免电池处于过充电或过放电状态;当电池模块温度过高时,能够减小智能电池模块的电流,减小功率变换器和电池模块内阻的热损耗,同时提高风扇转速,降低智能电池模块的温度。根据智能电池模块的电池故障预测单元的预测结果,智能电池模块能够实时设定电池模块充放电功率的上限、 峰值充放电功率的持续时间,使得电池模块始终按照高可靠性的运行模式工作,避免电池模块的老化加速以及内部损伤的不断加剧,延长电池模块的工作寿命,尽可能避免电池模块故障的发生。根据电池特性和储能电池不易受到机械损伤的特点,储能系统中电池的大多数故障来自于过充电、过放电和高温与低温运行导致的电池内部结构性损伤,而这类故障往往有着较长的演变和发展过程,通过有效辨识和预测这类损伤和老化的特征,主动控制电池模块降额运行,能够有效提升电池运行的可靠性。即使当电池发生故障时,由活性材料和电解液分解产生的热量也需要一定的累积过程才会导致热失控的发生。同时,电池在故障过程中释放的总热量与电池内部存储的电量有关。因此,通过智能电池单元的主动控制,在故障发生前主动降低电池模块的运行功率和储存电荷,在故障发生时进行有效散热,控制电池模块的温度和产热量低于阈值,即可避免电池模块的热失控,提升智能电池模块运行的可靠性,避免储能系统大规模故障的发生。
第五,电池测试系统的深度融合。
随着电池模块在储能系统内不断参与充放电循环,电池将不断老化,内部参数也将不断变换,为了避免参数辨识算法产生的误差,电力电子化智能电池模块能够利用深度融合功率变换器的特性,在电池模块在储能系统中处于备用状态时,产生可控的充放电电流,模拟离线测试时的测试工况,从而在电池模块生命周期的各个阶段,均可为参数辨识单元提供测试关键参数所需要的测量样本,从而实现对关键参数变换的跟踪和辨识校准,提升智能电池模块参数辨识的准确性,为状态估算、故障预测与判断功能提供可靠的数据支撑。
通过上述实施例形成的电力电子化智能电池单元具有优异的统一性与易扩展性。
当电池模块的荷电状态和老化程度发生变化时,电池模块的开路电压和内阻抗也会相应发生变化,通过电力电子化智能电池接口,当电池模块特性发生变化时,能够主动控制功率变换器调节电压增益和控制参数,通过电池信息的快速交互和功能的深度融合,电力电子化智能电池接口能够对电力电子化智能电池模块对外的功率端口实现快速的闭环控制,保证稳定的端口电压和动态性能。因此,对于不同的电池类型、串并联规模、荷电状态和老化程度,通过电力电子化智能电池接口,能够表现出一致的接口特性。由此,在基于电力电子化智能电池单元的生产过程中,只需要保证模块内电池芯单体的一致性,而对不同模块的电池芯一致性要求则大大降低,能够有效削减电池分拣与匹配的时间成本与人工成本,大幅提高电池产品的可利用率,产生可观的经济效益。
在本发明的一个实施例中,在电力电子化智能电池单元并联扩容时,通过电力电子化智能电池接口的提供的一致的接口特性,即使各个电池模块的电池类型、容量、电压、荷电状态和老化程度不同,也能够以相同的接口电压并联在直流母线上,且由于一致的端口特性,各个智能电池模块间不会存在环流现象,能够有效提升并联扩容系统的循环效率,减少功率损耗和电池环流损耗,提升系统的整体效益。在并联扩容时,可以由直流母线上的并网逆变器或某一智能电池单元控制直流母线电压,其余智能电池模块按照功率分配算法输出确 定的功率,维持直流母线的功率平衡,实现高效、智能的并联扩容。当某一智能电池单元由于维护、更换或故障原因需要退出运行时,其余智能电池单元只需要重新分配功率,即可实现电力电子化智能电池单元并联扩容系统的正常运行,为系统提供充分的可维护性、冗余性和可靠性。
图18示出根据本发明的一个实施例的基于电力电子化智能化电池单元的并联扩容系统800的示意图。
请参考图18,本实施例的基于电力电子化智能化电池单元的并联扩容系统800包括:N个电力电子化智能电池单元811、812…81N、直流母线820与通讯总线830。N个电力电子化智能电池单元811、812…81N可以是本发明上述实施例中公开的电力电子化智能电池单元。N个电力电子化智能电池单元811、812…81N的功率接口以并联方式连接到所述直流母线820。N个电力电子化智能电池单元811、812…81N的信息交互接口连接到所述通讯总线830,上传各个电池的状态信息与故障信息,接收对电力电子化智能电池单元的控制命令,控制电池单元的投入、切出,及传输功率的大小与方向。
在本发明的另一个实施例中,在电力电子化智能电池单元串联扩容时,通过电力电子化智能电池接口提供的一致的接口特性,即使各个电池模块的电池类型、容量、电压、荷电状态和老化程度不同,也能够以相同的端口特性实现串联,通过合理分配各个串联智能电池单元的端口电压,改变各个电池单元的功率,避免电池串联的短板效应与电池模块的过充、过放,能够有效提升串联扩容系统的有效容量和实际寿命,提升系统的整体效益。当某一智能电池单元由于维护、更换或故障原因需要退出运行时,该智能电池单元切除后将自身旁路,其余智能电池单元只需要调节各自的电压增益,保证串联后的母线电压不变,即可实现电力电子化智能电池单元串联扩容系统的正常运行,为系统提供充分的可维护性、冗余性和可靠性,实现高效、智能的并联扩容。
图19示出根据本发明的一个实施例的基于电力电子化智能化电池单元的串联扩容系统900的示意图。
请参考图19,本实施例的基于电力电子化智能化电池单元的串联扩容系统900包括:N个电力电子化智能电池单元911、912…91N、直流母线920与通讯总线930。N个电力电子化智能电池单元911、912…91N可以是本发明的上述实施例公开的电力电子化智能电池模块。N个电力电子化智能电池单元911、912…91N的功率接口以串联方式连接后连接到所述直流母线920。N个电力电子化智能电池单元911、912…91N的信息交互接口连接到所述通讯总线930,上传各个电池的状态信息与故障信息,接收对电力电子化智能电池单元的控制命令,控制电池单元的投入、切出,及传输功率的大小与方向。
为基于电力电子化智能电池单元的串并联扩容系统设计系统协调控制策略,应该满足:系统协调控制策略能保证电池运行安全性,基于参与扩容的各个电池单元提供的最大允许充放电功率信息,将分配给各个电池单元的功率限制在其允许值之内;系统协调控制策略能提高电池运行总体效率,基于参与扩容的提供的充放电功率与效率的数据,应用优化算法,计算得到使扩容系统总体运行效率最高的功率分配方案。
基于智能化电池单元串并联系统的故障保护方法,保护逻辑包括:N个电力电子化智能电池单元中某个电池单元发生故障,其故障信息首先被其自身的电池状态监测单元检测获取,同时其自身的智能电池接口完成故障电池单元的主动故障隔离;发生故障的电力电子化智能电池单元将电池故障的信息通过信息交互接口上传至通讯总线;没有发生故障的电力电子化智能电池单元的功率进行重新分配,其接收的控制命令控制电池单元的传输功率的大小与方向,实现储能系统的安全可靠运行。
电力电子化智能电池单元的功率端口具有统一可控的端口特性,所以由电力电子化智能电池单元组成的串并联扩容系统,具有电池模块间环流抑制能力,消除了电池模块间环流产生的损耗,故基于所述电力电子化智能电池单元的串并联扩容系统,具有无模块间环流、高效率的特性。
电力电子化智能电池单元的功率端口具有统一可控的端口特性,不需要保证各个智能电池单元内电池模块的一致性,仅需要保证单个智能电池单元内电池电芯的一致性,由于单个智能电池单元功率电压较小,电芯一致性筛选难度低,故基于所述电力电子化智能电池单元的串并联扩容系统,具有低筛选成本、易生产的特性。
本发明的实施例的所公开的电力电子化智能电池单元具有优异的智能化特点。
第一,电力电子化智能电池单元监测、评估的智能化。
电力电子化智能电池单元通过深度融合的传感器和控制器,能够在实际运行工况和模拟测试工况下对电池模块的特性和参数进行检测和采集,并通过先进的参数辨识算法、状态评估算法和故障预测算法对电池模块的内部参数、状态量和可靠性进行快速、准确估算。通过将大量电池数据在云端进行汇总和聚合,能够进一步通过数据挖掘与智能算法,对运行在各种实际复杂工况下的电池模块给出符合相应工况特点的电池参数模型、特征参数、老化曲线和故障预测曲线。随着智能电池单元的运行,能够根据大量数据轨迹对电池模块全生命周期的变化情况进行描绘,实现智能化的检测与评估,以及进一步的控制与管理,并由此提升电池运行的效益和可靠性。
第二,电力电子化智能电池单元故障处理的智能化。
电力电子化智能电池单元故障处理的智能化一方面体现在故障预测与判定的智能化,通过智能化的故障预测与判定算法,以及基于大数据的聚类算法,能够在故障发生的早期和之后各个阶段进行准确及时的预测和识别,特别是对于电滥用和热滥用导致的电池内部微小的结构性损伤,进行尽早的发现与识别,防患于未然。另一方面,电力电子化智能电池单元的故障处理通过与功率变换器的深度融合,能够在故障的各个阶段进行主动的管控与干预。在故障预测单元给出的电池故障概率较高时,能够主动降低智能电池单元在储能系统中的充放电功率,延缓电池损伤的进一步发展,提升运行可靠性;进一步能够主动对外放电,减少自身储存电量,减少故障发生时产生的热量,减小可能造成的危害,避免电池热失控的发生,提升系统整体的可靠性。同时,根据上述电力电子化智能电池模块的易扩展性,当某一电池单元的可靠性低于阈值时,能 够通过扩容系统的冗余性控制,迅速安排某一电池单元退出运行,并通知维护人员进行检修与维护,提高系统的安全性与可靠性。
第三,电力电子化智能电池单元扩容系统的智能化。
传统的电池储能系统内,各个电池模块的电压与功率由电池的荷电状态、开路电压和内阻抗决定,无法主动调节与分配。而电力电子化智能电池单元组成的扩容系统,除了具有良好的端口一致性与易扩展性,也具有智能化的协同特性。运行安全性与可靠性是电力电子化智能电池单元组成扩容系统的首要条件,根据各个智能电池单元对自身的故障预测结果,得到自身安全可靠运行的边界条件,扩容系统在进行功率或电压分配时,遵照各个智能电池单元给出的边界条件,保证系统整体运行的可靠性,避免电池过充过放的发生。同时,各个智能电池单元能够根据自身辨识得到的内部参数与运行轨迹信息,给出自身在充放电情况下的效率与功率曲线,在扩容系统进行功率分配时,能够在保证系统安全性与可靠性的前提下,尽可能使得系统整体的损耗最小、效率最高,实现安全可靠与经济高效运行的统一与结合。
尽管上文描述了本发明的各实施例,但是,应该理解,它们只是作为示例来呈现的,而不作为限制。对于相关领域的技术人员显而易见的是,可以对其做出各种组合、变型和改变而不背离本发明的精神和范围。因此,此处所公开的本发明的宽度和范围不应被上述所公开的示例性实施例所限制,而应当仅根据所附权利要求书及其等同替换来定义。

Claims (19)

  1. 一种电力电子化智能电池单元,包括:
    电池模块,所述电池模块包括多个串联的电池芯以及用于测量所述电池芯的电压、电流、压力和/或温度的传感器;以及
    智能电池接口,所述智能电池接口与所述电池模块的输出侧及传感器相连,并且所述智能电池接口对外界具有功率接口和信息接口,
    其中所述电池模块监测电池芯的电压、电流、压力和/或温度信息,同时通过所述智能电池接口提供或吸收功率。
  2. 如权利要求1所述的电力电子化智能电池单元,其特征在于,所述智能电池接口通过信息接口传送状态信息和故障信息,并从信息接口接收控制信息,
    所述智能电池接口根据所连接的电池模块的电池输出侧的电压大小,改变自身的直流电压增益,维持所述电力电子化智能电池单元的功率接口的电压稳定。
  3. 如权利要求1所述的电力电子化智能电池单元,其特征在于,所述传感器以下各项中的一项或多项:
    布置在所述电池模块电池芯上的多个电压传感器、温度传感器和压力传感器,用于检测电池模块的电芯电压、温度和压力数据;
    布置在所述电池模块内的多个电压传感器和电流传感器,检测所述电池模块输出侧的电压和电流数据。
  4. 如权利要求1所述的电力电子化智能电池单元,其特征在于,所述智能电池接口包括:
    处理器;
    调理电路,所述调理电路连接所述传感器的输出端,将所述传感器输出的电信号进行调理,形成处理器能够读取的电信号;
    功率变换器,所述功率变换器与电池模块相连,根据处理器的控制实现功率的双向流动与主动控制,在所述功率接口形成稳定可控的输出电压;和
    均衡电路,所述均衡电路布置在各个电池芯单体两端,通过一定的均衡算法,在处理器的控制下,均衡电路通过开关管的切换,实现电池芯单体荷电状态的均衡。
  5. 如权利要求4所述的电力电子化智能电池单元,其特征在于,所述功率变换器是双向隔离型直流变换器,所述双向隔离型直流变换器在正向运行和反向运行时,具有不同的电压增益表达式。
  6. 如权利要求5所述的电力电子化智能电池单元,其特征在于,所述功率变换器包括:
    第一交直流变换电路,包括第一至第四开关管组成的第一全桥电路;
    第二交直流变换电路,包括第五至第八开关管组成的第二全桥电路;以及
    隔离型双向谐振网络,包括第一电感、变压器、变压器原边一侧的第一交流端口以及变压器副边一侧的第二交流端口,
    其中所述第一全桥电路的两个桥臂中点分别连接隔离型双向谐振网络的第一交流端口的第一交流端和第二交流端,所述第二全桥电路的两个桥臂中点分别连接隔离型双向谐振网络的第二交流端口的第一交流端和第二交流端。
  7. 如权利要求6所述的电力电子化智能电池单元,其特征在于,所述隔离型双向谐振网络还包括第二电感、第一电容、第二电容、辅助电容器,第一电感和第一电容串联连接,第一电感的一端连接到第一交流端口的第一交流端,第一电容的一端连接到变压器原边的第一交流端,变压器原边的第二交流端与第一交流端口的第二交流端相连,变压器副边的第一交流端连接第二电容的一端,第二电容的另一端接连接第二电感的一端,第二电感的另一端接连接第二交流端口的第一交流端,变压器副边的第二交流端连接第二交流端口的第二交流端;变压器原边的绕组中间引出一抽头,在抽头和变压器原边的第二交流端之间连接有辅助电容器。
  8. 如权利要求6所述的电力电子化智能电池单元,其特征在于,所述隔离型双向谐振网络还包括第一电容和辅助电容器,第一电感和第一电容串联连接,第一电感的一端连接到第一交流端口的第一交流端,第一电容的一端连接到变压器原边的第一交流端,变压器原边的第二交流端与第一交流端口的第二交流端相连,变压器副边的两端口连接第二交流端口的两端口,变压器原边的绕组中间引出一抽头,在抽头和变压器原边的第二交流端之间连接有辅助电容器。
  9. 如权利要求4所述的电力电子化智能电池单元,其特征在于,所述功率变换器是双向非隔离直流变换器,包括第一至第四开关管、电感和第一电容和第二电容,第一开关管和第二开关管串联形成半桥,同时并联第一电容;第三开关管和第四开关管串联形成半桥,同时并联第二电容,第二开关管和第四开关管的源极相连;电感连接两个半桥的桥臂中点。
  10. 如权利要求4所述的电力电子化智能电池单元,其特征在于,所述智能电池接口还包括:
    保护装置,所述保护装置安装在/于智能电池接口与功率接口的连接端;
    散热装置,所述散热器安装在功率变换器与电池模块上,吸收两者产生的热量,增大散热面积,同时所述散热器具有统一的结构,当环境温度过低时,能够将功率变换器额外产生的热量传递到电池模块,避免电池模块由于低温而损坏。
  11. 如权利要求10所述的电力电子化智能电池单元,其特征在于,所述功率变换器还包含辅助电源,所述辅助电源为处理器、功率变换器的驱动电路、保护装置、散热装置和均衡电路提供电源。
  12. 如权利要求10所述的电力电子化智能电池单元,其特征在于,所述处理器被配置成进行以下操作中的一项或多项:
    通过测量、采集和记录的电池电压、电流、压力和温度信息,利用多种参数辨识方法,对电池模块的参数模型进行辨识和校准;
    通过测量、采集和记录的电池电压、电流、压力和温度信息,综合电池模块的参数模型,并利用多种荷电状态估算方法,估算并记录电池的荷电状态;
    通过测量、采集和记录的电池电压、电流、压力和温度信息,结合电池荷电状态信息,综合多种电池健康状态估算模型,估算电池健康状态;
    通过估算得到的电池荷电状态和电池健康状态,更新电池模块当前的等效电路模型,对电池充放电功率转换的控制器参数进行修正;
    通过估算得到的电池荷电状态和电池健康状态,估算出电池当前存储的能量及电池当前充放电的功率边界,对电池充放电的功率进行控制;
    将大量电池模块的电压、电流、温度、压力等状态信息及历史充放电循环记录、故障记录上传至在线计算平台,通过数据挖掘与模型训练,分析不同故障发生前一定时间内电池的状态轨迹,提取判断不同故障发生概率的特征参数,并建立特征参数与故障概率的数学模型,建立计算智能电池单元整体可靠性的数学模型,并将模型通过数据总线下发给各个智能电池单元。
    评估电池的历史工作轨迹,分析存在的故障隐患,对当前电池的健康状态进行预测,预判可能发生的故障与故障类型,并给出故障预判信息;
    利用自身的电压、电流、温度、压力等状态信息、历史充放电循环记录,根据故障预测模型与可靠性模型,计算电池模块当前可靠性,对于可靠性低于要求的智能电池单元,主动预警并减小功率运行;
    利用自身的电压、电流、温度、压力等状态信息、历史充放电循环记录,根据故障诊断模型,判断电池当前是否发生故障;当判断电池模块发生故障时,将模块退出运行状态,并采取主动降温措施,避免模块发生热失控,同时通过通讯接口发出故障信息;
    比较电压传感器得到电池模块输出侧的电压与电力电子化智能电池模块功率接口的电压,当电池模块的电量随电池放电而降低,电池模块输出侧的电压下降时,提高直流电压增益,使所述功率接口的电压保持不变;当电池模块的电量随电池充电而增加,电池模块输出侧的电压上升时,降低直流电压增益,使所述功率接口的电压保持不变;
    通过电压传感器与电流传感器监测所述智能电池接口传输的功率,改变电池模块输出电流的大小与方向,使电力电子化的智能电池模块输出的功率大小和方向满足设定要求。
  13. 如权利要求1所述的电力电子化智能电池单元,其特征在于,所述智能电池接口与在线计算平台连接,所述在线计算平台通过与大量电力电子化智能电池模块间的远程通讯,收集大量电力电子化智能电池模块在反复循环运行期间的参数与状态轨迹,通过大数据挖掘与智能算法,对各个不同工作环境下的电池的参数模型、状态估算算法、故障预测算法与充放电控制算法进行修正和优化,并将结果周期性地下发到各个智能电池模块。
  14. 一种智能电池接口,所述智能电池接口与电池模块的输出侧及传感器相连,并且所述智能电池接口与功率接口和信息交互接口相连,所述智能电池接口包括:
    处理器;
    调理电路,所述调理电路连接所述传感器的输出端,将所述传感器输出的电信号进行调理,形成处理器能够读取的电信号;
    功率变换器,所述功率变换器与电池模块相连,根据处理器的控制实现功率的双向流动与主动控制,在所述功率接口形成稳定可控的输出电压;和
    均衡电路,所述均衡电路布置在各个电池芯单体两端,通过一定的均衡算法,在处理器的控制下,均衡电路通过开关管的切换,实现电池芯单体荷电状态的均衡。
  15. 如权利要求14所述的智能电池接口,其特征在于,还包括:
    保护装置,所述保护装置安装在智能电池接口与功率接口的连接端;
    散热装置,所述散热器安装在功率变换器与电池模块上,吸收两者产生的热量,增大散热面积,同时所述散热器具有统一的结构,当环境温度过低时,能够将功率变换器额外产生的热量传递到电池模块,避免电池模块由于低温而损坏。
  16. 如权利要求15所述的智能电池接口,其特征在于,还包含辅助电源,所述辅助电源为处理器、功率变换器的驱动电路、保护装置、散热装置和均衡电路提供电源。
  17. 一种由权利要求1至16中的任一项所述的电力电子化智能电池单元构成的电池系统,包括:
    多个所述电力电子化智能电池单元、直流母线与通讯总线。
    其中所述多个电力电子化智能电池单元的功率接口以并联方式连接到所述直流母线,或者所述多个电力电子化智能电池单元的功率接口以串联方式连接后连接到所述直流母线;
    所述多个电力电子化智能电池单元的信息交互接口连接到所述通讯总线,上传各个电池的状态信息与故障信息,接收对电力电子化智能电池单元的控制命令,控制电池单元的投入、切出,及传输功率的大小与方向。
  18. 如权利要求17所述的电池系统,其特征在于,基于多个所述电力电子化智能电池单元提供的电池状态信息,确定各个电力电子化智能电池单元的功率大小,并结合所述电力电子化智能电池单元功率接口控制方法,为各个单元确定控制策略。
  19. 如权利要求17所述的电池系统,其特征在于,当多个所述电力电子化智能电池单元中某个电池单元发生故障时,其故障信息首先被其自身的电池状态监测单元检测获取,同时其自身的智能电池接口完成故障电池单元的主动故障隔离;
    发生故障的电力电子化智能电池单元将电池故障的信息通过信息交互接口上传至通讯总线;
    没有发生故障的电力电子化智能电池单元的功率进行重新分配,其接收的控制命令控制电池单元的传输功率的大小与方向。
PCT/CN2021/125613 2020-12-01 2021-10-22 电力电子化智能电池单元 WO2022116731A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011379108.8A CN112366795B (zh) 2020-12-01 2020-12-01 电力电子化智能电池单元
CN202011379108.8 2020-12-01

Publications (1)

Publication Number Publication Date
WO2022116731A1 true WO2022116731A1 (zh) 2022-06-09

Family

ID=74535705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125613 WO2022116731A1 (zh) 2020-12-01 2021-10-22 电力电子化智能电池单元

Country Status (2)

Country Link
CN (1) CN112366795B (zh)
WO (1) WO2022116731A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114865756A (zh) * 2022-07-11 2022-08-05 浙江大学 一种电池储能系统及控制方法、储能系统、计算机设备
CN116488316A (zh) * 2023-04-21 2023-07-25 国网浙江省电力有限公司建设分公司 一种在线核容直流电源系统
CN116505632A (zh) * 2023-06-30 2023-07-28 西安为光能源科技有限公司 电池充放电电路及控制系统与方法
CN117614047A (zh) * 2024-01-24 2024-02-27 西安为光能源科技有限公司 一种中压直挂数据中心供电系统
CN117639279A (zh) * 2024-01-25 2024-03-01 杭州闪充聚能新能源有限公司 家用储能系统的控制装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112366795B (zh) * 2020-12-01 2022-12-09 上海交通大学 电力电子化智能电池单元
CN113437371A (zh) * 2021-05-19 2021-09-24 湖南大学 一种新能源汽车锂离子电池热失控预警系统及预警方法
CN113777435B (zh) * 2021-10-08 2024-01-16 华帝股份有限公司 一种用于燃气灶的模拟用户检测方法
CN114069789B (zh) * 2021-11-20 2023-09-22 傲普(上海)新能源有限公司 一种电池簇并联环流变压器控制电路
CN114089201A (zh) * 2021-11-29 2022-02-25 同济大学 一种锂离子电池内部状态测量系统
CN115149558B (zh) * 2022-06-30 2023-11-28 上海交通大学 具有智能化控制架构的高压大容量电池储能功率转换系统
CN116148679B (zh) * 2023-04-19 2023-07-07 深圳市伟创源科技有限公司 一种电池健康状态的预测方法及相关装置
CN116960900B (zh) * 2023-09-19 2024-01-05 成都电科星拓科技有限公司 一种开关电源ic集成故障保护方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090083459A1 (en) * 2007-09-21 2009-03-26 Divyasimha Harish Universal interface compatibility of a sensor
CN106300548A (zh) * 2016-09-27 2017-01-04 北海益生源农贸有限责任公司 一种电池智能管理系统
CN106505694A (zh) * 2016-12-30 2017-03-15 卢文浩 一种智能电池组的管理系统及控制方法
CN206516729U (zh) * 2016-12-30 2017-09-22 北京知行新能科技有限公司 电池功率管理系统
CN109435763A (zh) * 2018-11-15 2019-03-08 吉林工程技术师范学院 一种新能源汽车的电池管理系统
CN112366795A (zh) * 2020-12-01 2021-02-12 上海交通大学 电力电子化智能电池单元

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7742318B2 (en) * 2008-06-10 2010-06-22 Virginia Tech Intellectual Properties, Inc. Multi-element resonant converters
CN110854980A (zh) * 2018-08-21 2020-02-28 北京德意新能科技有限公司 一种应用于分布式储能系统的智能电池功率模块
CN111146932A (zh) * 2019-12-03 2020-05-12 华中科技大学 一种dc-dc电能传输系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090083459A1 (en) * 2007-09-21 2009-03-26 Divyasimha Harish Universal interface compatibility of a sensor
CN106300548A (zh) * 2016-09-27 2017-01-04 北海益生源农贸有限责任公司 一种电池智能管理系统
CN106505694A (zh) * 2016-12-30 2017-03-15 卢文浩 一种智能电池组的管理系统及控制方法
CN206516729U (zh) * 2016-12-30 2017-09-22 北京知行新能科技有限公司 电池功率管理系统
CN109435763A (zh) * 2018-11-15 2019-03-08 吉林工程技术师范学院 一种新能源汽车的电池管理系统
CN112366795A (zh) * 2020-12-01 2021-02-12 上海交通大学 电力电子化智能电池单元

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114865756A (zh) * 2022-07-11 2022-08-05 浙江大学 一种电池储能系统及控制方法、储能系统、计算机设备
CN114865756B (zh) * 2022-07-11 2022-10-11 浙江大学 一种电池储能系统及控制方法、储能系统、计算机设备
CN116488316A (zh) * 2023-04-21 2023-07-25 国网浙江省电力有限公司建设分公司 一种在线核容直流电源系统
CN116488316B (zh) * 2023-04-21 2024-04-05 国网浙江省电力有限公司建设分公司 一种在线核容直流电源系统
CN116505632A (zh) * 2023-06-30 2023-07-28 西安为光能源科技有限公司 电池充放电电路及控制系统与方法
CN116505632B (zh) * 2023-06-30 2023-09-15 西安为光能源科技有限公司 电池充放电电路及控制系统与方法
CN117614047A (zh) * 2024-01-24 2024-02-27 西安为光能源科技有限公司 一种中压直挂数据中心供电系统
CN117614047B (zh) * 2024-01-24 2024-03-29 西安为光能源科技有限公司 一种中压直挂数据中心供电系统
CN117639279A (zh) * 2024-01-25 2024-03-01 杭州闪充聚能新能源有限公司 家用储能系统的控制装置

Also Published As

Publication number Publication date
CN112366795A (zh) 2021-02-12
CN112366795B (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
WO2022116731A1 (zh) 电力电子化智能电池单元
US10305298B2 (en) Method and apparatus for creating a dynamically reconfigurable energy storage device
CN114050633B (zh) 一种锂电池储能系统的动态管控方法、装置和电子设备
US10074997B2 (en) Method and apparatus for creating a dynamically reconfigurable energy storage device
JP6329755B2 (ja) バッテリ管理装置及びエネルギー保存システム
KR102283790B1 (ko) 배터리 랙 및 그 구동 방법
US20140079960A1 (en) Battery system and energy storage system
KR102196639B1 (ko) 리튬이온배터리와 슈퍼커패시터를 이용한 에너지 저장 시스템 및 이의 출력 안정화 방법
US20130020997A1 (en) Battery System
CN104333059A (zh) 用于通信基站备用电源的智能维护系统及方法
US11509155B2 (en) Power electronics-based battery management
CN115378102B (zh) 一种储能系统荷电状态全电流均衡方法
CN116345648B (zh) 大型储能系统电池簇soc平衡方法、设备和存储介质
US20220255327A1 (en) Decentralized active equalization method for cascaded lithium-ion battery pack
CN112134319B (zh) 一种能量回馈式梯次电池充放电均衡系统及其控制方法
CN115566758A (zh) 电池能量管理系统及方法
WO2013136413A1 (ja) 電力蓄積システム、および、蓄電モジュールの制御方法
CN113595180A (zh) 一种动力电池装置
KR102151652B1 (ko) 척컨버터 토폴로지를 이용한 리튬이온 전지 셀밸런싱 장치
Yuyin et al. Voltage Equalization Optimization Strategy for Storage Battery of Power Grid
CN115800423B (zh) 储能系统和储能系统的调节方法
CN115800420B (zh) 储能系统和储能系统的调节方法
CN115800422B (zh) 储能系统和储能系统的调节方法
CN115800421B (zh) 储能系统和储能系统的调节方法
CN115149558B (zh) 具有智能化控制架构的高压大容量电池储能功率转换系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899765

Country of ref document: EP

Kind code of ref document: A1