WO2022114034A1 - Wireless power feed mask device - Google Patents

Wireless power feed mask device Download PDF

Info

Publication number
WO2022114034A1
WO2022114034A1 PCT/JP2021/043082 JP2021043082W WO2022114034A1 WO 2022114034 A1 WO2022114034 A1 WO 2022114034A1 JP 2021043082 W JP2021043082 W JP 2021043082W WO 2022114034 A1 WO2022114034 A1 WO 2022114034A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless power
antenna
oral cavity
mask
power transfer
Prior art date
Application number
PCT/JP2021/043082
Other languages
French (fr)
Japanese (ja)
Inventor
田邉勇二
小舘直人
Original Assignee
エイターリンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エイターリンク株式会社 filed Critical エイターリンク株式会社
Publication of WO2022114034A1 publication Critical patent/WO2022114034A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/05Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches protecting only a particular body part
    • A41D13/11Protective face masks, e.g. for surgical use, or for use in foul atmospheres
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B18/00Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
    • A62B18/02Masks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • H02J50/23Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of transmitting antennas, e.g. directional array antennas or Yagi antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices

Definitions

  • the present invention relates to a wireless power supply mask device that combines a mask with wireless communication technology.
  • wearable products (wearable devices or wearable computers) have been developed that can be used while wearing a computer or electronic device.
  • wearable products are expected to develop various applied technologies by combining wireless communication technologies for transmitting and / or receiving electric power wirelessly.
  • wearable products were mainly in the form of wristwatches, eyeglasses, etc.
  • the scope of application has been further expanded due to its application to the medical technology field.
  • Patent Document 1 the location information of the disaster victim is transmitted without operating any equipment after the rescuer wears the disaster prevention clothing.
  • Providing disaster prevention clothing (see abstract) ”is disclosed.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2020-20460 (Patent Document 2) states that "a terminal having two layers of an antenna element and a ground is made wearable by giving sufficient flexibility as a whole (see abstract). The composition is disclosed.
  • the most important feature of the present invention is to provide a wireless power transfer mask device in which a mask is combined with wireless communication technology.
  • the present application includes a plurality of means for solving the above-mentioned problems, and one example thereof is a wireless power supply mask device, which includes a mask-shaped main body having a size of covering the oral cavity of the head from the outside.
  • the mask-like body is characterized by comprising a transmitting antenna having a metasurface that supplies power toward the oral cavity.
  • FIG. 1 is an example of a perspective view showing a wireless power transfer mask device attached to the head.
  • FIG. 2 is an example of a partially transparent view of FIG.
  • FIG. 3 is an example of a partially transparent view of FIG.
  • FIG. 4 is an explanatory diagram illustrating the relative relationship between the transmitting antenna and the receiving antenna.
  • FIG. 5 is an enlarged perspective view illustrating a main part of the receiving antenna.
  • FIG. 6 is a perspective view illustrating a wireless power transfer mask device attached to the head.
  • FIG. 7 is an enlarged perspective view illustrating a main part of the transmitting antenna of FIG.
  • FIG. 8 is an explanatory diagram illustrating a combination of a meta surface and an LC resonator.
  • FIG. 9 is an explanatory diagram illustrating the function of the transmitting antenna of FIG.
  • FIG. 10 is an explanatory diagram illustrating the function of the transmitting antenna of FIG. 6 in a graph.
  • FIG. 11 is an explanatory diagram illustrating the control logic of the wireless power transfer mask device.
  • FIG. 12 is an example of the control flow of the wireless power supply mask device.
  • FIG. 13 is an explanatory diagram illustrating the control logic of the wireless power transfer mask device.
  • FIG. 14 is an explanatory diagram illustrating an example of changing the meta surface.
  • FIG. 15 is an explanatory diagram illustrating an example of changing the meta surface.
  • FIG. 16 is an explanatory diagram illustrating the radiation pattern of the metasurface.
  • the wireless power transfer mask device is configured to enable power supply to an electronic device attached to the oral cavity of the human head.
  • an electrical stimulator may be attached as an electronic device to the oral cavity of the head or a predetermined part on the face to reinforce the sensory organs of the patient.
  • an artificial sensory organ as an electronic device to a predetermined part of the head in the oral cavity or on the face to function as a substitute for the patient's sensory organ.
  • a sensor may be attached as an electronic device to the oral cavity of the head or a predetermined part on the face to assist diagnosis, treatment, monitoring, etc.
  • a biocompatibility sensor may be attached to a predetermined portion in the oral cavity or on the face.
  • a temperature sensor may be placed in the oral cavity to detect the patient's body temperature or oral temperature.
  • a glucose sensor may be placed in the oral cavity to detect the glucose concentration from the saliva component in the oral cavity.
  • a pressure sensor may be placed in the oral cavity to detect the patient's quotient force.
  • a given site in the patient's oral cavity or face eg, for example.
  • Teeth, lips, tongue, or any skin, muscle, bone or tissue may be fitted with electronic devices (electrical stimulators, sensors, etc.).
  • the mouthpiece has a suitable configuration for placement in the oral cavity. This configuration varies, and includes, for example, a top-bottom integrated mouthpiece, a top-bottom separated mouthpiece, and the like. By incorporating an electronic device in this mouthpiece, it is easy to attach the electronic device to the patient's oral cavity.
  • teeth there are multiple teeth in the oral cavity, but artificial objects may be attached to these teeth.
  • dentures artificial teeth
  • an artificial object may be further placed on the existing tooth.
  • an electronic device in an artificial object (mouthpiece, denture, etc.) and combine wireless communication technology (reception antenna, etc.) to supply the power.
  • the transmitting antenna transmission device
  • the receiving antenna power receiving device
  • wearable products were often in the form of wristwatches, eyeglasses, and the like.
  • the antenna is attached to the outside of the mask (see FIG. 29, paragraph 0120).
  • a wristband attached to a patient's arm is made wearable for application in the medical technology field (see paragraph 0026). Even in that case, wearable masks are not expected.
  • This embodiment provides a wireless power supply mask device that combines a mask with wireless communication technology.
  • This wireless power transfer mask device is configured to enable power supply to an electronic device mounted in the oral cavity. Further, the wireless power transfer mask device can also be provided with means for optimizing the transmitted power according to the power receiving status of the electronic device.
  • FIGS. 1 to 5 illustrate a mask mounted so as to cover the oral cavity of the head and a transmitting antenna mounted in the mask.
  • 3 to 5 illustrate the relative relationship between the transmitting antenna and the receiving antenna mounted in the oral cavity.
  • the wireless power feeding mask device 1 is specially devised so that the power transmitted from the transmitting antenna to the receiving antenna can be efficiently supplied.
  • the shape of the transmitting antenna conforms to the unique shape of the mask, and has technical characteristics.
  • the shape of the receiving antenna has a technical feature that it can receive electric power with high efficiency even in a limited space unique to the oral cavity.
  • the wireless power supply mask device 1 has a mask (mask / respirator) 100 in order to cover a part of the face of the human body (particularly the oral cavity of the human body).
  • the mask 100 has a mask-shaped main body 110 having a size that covers the oral cavity of the head from the outside.
  • the purpose of use of the mask 100 is not particularly limited.
  • the mask 100 can be used for a variety of purposes, especially for hygiene or treatment (eg, oral surgery, dentistry or other treatment).
  • the mask 100 can also be used for cold protection measures, pollinosis countermeasures, cold countermeasures, virus countermeasures, dust protection measures and the like.
  • the shape and size of the mask 100 shall cover at least a part of the oral cavity of the human head, preferably the entire oral cavity.
  • the mask 100 has various sizes, and has different sizes for adults and children. This embodiment can deal with both of them.
  • the size of the mask 100 can not only cover the oral cavity but also have a size that covers the entire face.
  • the material of the mask 100 is not particularly limited.
  • the mask 100 can be formed using various materials, for example, a cloth mask formed of a cloth such as gauze, a non-woven fabric mask formed of a non-woven fabric, or another material.
  • a mask for example, there is a mask formed by using silicon rubber or the like.
  • the mask 100 has three-dimensional characteristics unlike a general sanitary mask.
  • a general hygiene mask In a general hygiene mask, the main body is formed flat and has a flexible characteristic.
  • a general hygiene mask is configured such that the back surface of the mask fits or abuts around the oral cavity of the head when locked from both ears when worn.
  • a general hygiene mask comes into contact with the area around the oral cavity (particularly the nose of the head, upper lip, lower lip, chin, both cheeks, etc.) when worn.
  • the general hygiene mask is configured to have a good fit between the face and the mask for the purpose of preventing infection, and to be easily folded and stored when not in use.
  • the mask-shaped main body 110 is not formed in a plane but in a three-dimensional manner.
  • the main body 110 includes a contact portion 120 that fits a part of the mask 100 on the face of the human body, and a raised portion (convex portion) 130 that separates a part of the mask 100 from the face of the human body without fitting.
  • the abutting portion 120 is located on the outer peripheral side of the main body portion 110, and abuts on a part of the face of the human body (for example, any part of the nose, both cheeks, and the chin) when the mask is worn. At this time, both come into contact with each other along a surface or line of a predetermined size.
  • the contact portion 120 can have a structure (string, hook, etc.) for locking to both ears of the human face.
  • the raised portion 130 is located on the central side of the main body portion 110 so as to prevent a part of the face (for example, the oral cavity, upper lip and lower lip) from directly contacting the back surface of the mask when the mask is worn. Separate from from at a predetermined height.
  • the raised portion 130 stands upright in the direction perpendicular to the face (H direction in FIG. 1) or in the direction facing the face, so that a part of the central side of the main body portion 110 and a part of the face of the human body can be formed. It forms a space between them.
  • transition portion 132 connecting both of the contact portion 120 that comes into contact with the face and the raised portion 130 that separates from the face.
  • the raised portion 130 preferably retains a predetermined shape or height during use of the mask 100 and / or non-use of the mask. Therefore, it is preferable that the transition portion 132 has a predetermined rigidity.
  • the transition portion 132 can have a rigidity different from that of other portions by being made of a material different from the material used for the contact portion 120.
  • the transition portion 132 may be made of the same material as the material used for the contact portion 120, and may include a reinforcing member or the like in a predetermined region.
  • the main body 110 may be formed of a material having relatively high rigidity as a whole. In this way, the raised portion 130 is supported by the transition portion 132 and is held at a predetermined height away from the face.
  • FIG. 2 a perspective view showing the mask 100 of the wireless power transfer mask device 1 illustrated in FIG. 1 in a translucent manner is exemplified.
  • the transmitting antenna 200 and the control device 250 are built in the raised portion 130 of the main body portion 110. Therefore, the transmitting antenna 200 and the control device 250 are prevented from directly contacting a part of the face of the human body (for example, the oral cavity, the upper lip and the lower lip).
  • the transmitting antenna 200 functions as a power transmitter that transmits electromagnetic waves to the outside. In particular, it functions as an antenna so as to have directivity and gain suitable for enabling power feeding to electronic devices placed in the oral cavity.
  • a loop antenna is used as the transmitting antenna 200.
  • the control device 250 can include any circuit that supplies current to the loop antenna.
  • the transmitting antenna 200 can also function as a reinforcing member that imparts rigidity to the raised portion 130 in addition to the original function of the antenna.
  • the control device 250 can also be attached to the outside of the main body 110.
  • the raised portion 130 has a substantially flat portion in order to facilitate the arrangement of the transmitting antenna 200 in the raised portion 130.
  • the substantially flat portion may have a size that covers a part or all of the oral cavity to secure the mounting surface of the transmitting antenna 200.
  • the raised portion 130 has a predetermined thickness in the thickness direction of the mask. Therefore, the transmitting antenna 200 is attached so as to face the face of the human body within the thickness of the raised portion 130. As a result, the orientation of the transmitting antenna 200 is always maintained toward the inside of the oral cavity. Therefore, the transmitting antenna 200 is protected from the external environment. The same applies to the control device 250.
  • the mask 100 of the wireless power transfer mask device 1 illustrated in FIG. 1 is shown semi-transparently, and the correspondence between the transmitting antenna 200 mounted outside the oral cavity and the receiving antenna 300 mounted inside the oral cavity is exemplified.
  • the receiving antenna 300 is arranged close to the transmitting antenna 200, facilitating the reception of the electromagnetic wave transmitted from the transmitting antenna 200.
  • the receiving antenna 300 arranged in the oral cavity is preferably housed in an arbitrary artificial object 400.
  • the relative relationship between the transmitting antenna 200 and the receiving antenna 300 illustrated in FIG. 3 is expanded and illustrated.
  • a mouthpiece 400 having an arbitrary size and shape is placed in the oral cavity.
  • the mouthpiece 400 can be attached to the oral cavity and at the same time the receiving antenna 300 can be attached to the oral cavity.
  • the biocompatibility condition can be relaxed.
  • any electronic device (electrical stimulator, sensor, etc.) is built in the main body of the mouthpiece 400. Therefore, it is easy to supply the electric power received by the receiving antenna 300 to the electronic devices arranged close to each other.
  • the receiving antenna 300 and the electronic device can be physically connected by a wire or the like.
  • the electronic device may be an electrical stimulator capable of reinforcing the sensory organs (auditory, taste, visual, olfactory, tactile, lacrimal gland, salivary gland, sweat gland) of the human head.
  • the electronic device may be an artificial sensory organ that can function in place of the patient's sensory organs.
  • the electronic device may be a sensor placed on the head of the human body.
  • the electronic device includes a temperature sensor that detects the patient's body temperature or oral temperature, a glucose sensor that detects the concentration of glucose from saliva components in the oral cavity, a pressure sensor that detects the occlusal force in the oral cavity, and the oral cavity. It may be a salivary gland secretion and treatment or any other type of biocompatibility sensor.
  • both the transmitting antenna 200 and the receiving antenna 300 are configured as a loop antenna having an element (conductor) in a ring shape. However, the length (rotational speed) of the coil is changed according to each installation location.
  • the transmitting antenna 200 is incorporated in the main body portion 110 having a relatively thin thickness, it is preferable that the element has an annular shape (one coil shape) to form the thinnest structure (FIG. 1). It has a thickness along the H direction).
  • the receiving antenna 300 is incorporated in the mouthpiece 400 having a relatively thick thickness (thickness along the H direction in FIG. 1), there is a margin for rotating a plurality of elements in a spiral shape.
  • the receiving antenna 300 constitutes the main body 310 so as to proceed in a coil shape around two times. As a result, both ends 320 and 330 of this element are spaced apart at predetermined intervals. The ends 320 and 330 are incorporated in an arbitrary power feeding circuit in order to supply power to the electronic device.
  • the size (diameter) of the coil of these two antennas can be changed according to the installation location and the like. For example, since the receiving antenna 300 is housed in the main body of the mouthpiece 400 in the oral cavity, the diameter of the coil of the receiving antenna 300 is relatively small. To give a specific example, in the illustrated embodiment, the diameter of the receiving antenna 300 is about 5 mm.
  • the transmitting antenna 200 is arranged in the larger main body 110, the diameter of the coil of the transmitting antenna 200 is relatively large without being restricted by the size of the mouthpiece 400 in the oral cavity. From the figure, it can be understood that the diameter of the transmitting antenna 200 is several times larger than the diameter of the receiving antenna 300.
  • the elements are configured in a coil shape, but the rotation speed and the size (diameter) thereof are not limited to those shown in the drawings.
  • a control device 250 for controlling the transmitting antenna 200 is built in the main body of the mask.
  • the control device 250 may be, for example, a small single board computer equipped with a processor.
  • the control device may be, for example, Raspberry Pi (Raspberry Pi (registered trademark)) or the like. Any circuit for operating the transmitting antenna 200 can be associated with the control device 250.
  • the wireless power transfer mask device 1 uses a circular loop antenna as an antenna.
  • the most efficient loop antenna is a circle.
  • the type of loop antenna is not limited to a circle. It is possible to use an approximate octagonal or hexagonal loop antenna depending on the wavelength at the time of use.
  • the antenna used is not limited to the loop antenna.
  • the wireless feeding mask device 1 may use a single patch antenna (planar antenna) or a plurality of patch antennas (including a patch array antenna) as the antenna.
  • the antenna used does not have to be a single unit.
  • the wireless power transfer mask device 1 can also use a metasurface in combination with the antenna.
  • a metasurface is a kind of metamaterial (artificial medium), and is a waveguide element having an arbitrary dielectric constant and magnetic permeability in which a structure small with respect to a wavelength is periodically arranged.
  • the metasurface has a feature that the reflection and transmission phase of the electromagnetic wave incident on the surface can be controlled. Therefore, the metasurface can be used to control the incident light.
  • an antenna design using a metasurface is performed by applying the same concept to microwaves.
  • the planar antenna itself which is a combination of a meta-material and an antenna, is sometimes called a metasurface 10.
  • FIGS. 6 to 14 illustrate a combination of a metasurface and an LC resonator that forms a metasurface antenna (transmitting antenna).
  • 10 and 11 illustrate the simulation results of the function of the transmitting antenna, which was performed using a mathematical model on a computer.
  • 12 to 14 illustrate a control flow with respect to the control of the transmitting antenna.
  • the same reference numbers shall be used for the same or the same devices, parts, components, etc. as those of the first embodiment illustrated with reference to FIGS. 1 to 5, in order to avoid duplication of description. , The detailed explanation is omitted.
  • a metasurface antenna (transmitting antenna) 220 is mounted in a raised portion 130 of a mask-shaped main body portion 110 having a size of covering the oral cavity of the head from the outside. The situation is illustrated.
  • the transmitting antenna 220 has a combination of a metasurface 500 and an LC resonator 600.
  • the transmitting antenna 220 can be used in place of the transmitting antenna 200 of the loop antenna illustrated in FIG.
  • the metasurface 500 is a kind of metamaterial (artificial medium), and is a waveguide element having an arbitrary dielectric constant by periodically arranging a structure small with respect to a wavelength.
  • a metasurface has a feature that can control the reflection and transmission phase of electromagnetic waves incident on the surface. Therefore, the metasurface 500 can be used to control the incident light.
  • an antenna design using the metasurface 10 is performed by applying the same concept to microwaves.
  • the planar antenna itself, which is a combination of a meta-material and an antenna, is sometimes called a metasurface 500.
  • the combination of the metasurface 500 and the LC resonator 600 exemplified in FIG. 6 is shown in a perspective view.
  • the combination of the metasurface 500 and the LC resonator 600 exemplified in FIG. 7 is shown in a plan view.
  • the combination of the metasurface 500 and the LC resonator 600 is arranged on the same plane and has an extremely thin thickness as a whole. This is suitable for mounting in a thin mask 100. Therefore, the combination of the metasurface 500 and the LC resonator 600 can be arranged in the thickness of the raised portion 130 of the mask-shaped main body portion 110.
  • the metasurface 500 can be composed of a plurality of patches 510 and 520.
  • the metasurface 500 is composed of two patches 510 and 520, but it is possible to configure the metasurface 500 from a larger number of patches.
  • Each patch 510 and 520 can be made of any material.
  • each patch 510 and 520 can be configured using precious metals such as gold, silver and copper.
  • each patch 510 and 520 can be arranged on an arbitrary substrate (silicon substrate or the like).
  • Each patch 510 and 520 can be manufactured from any process.
  • a plurality of patches 510 and 520 are configured to be arranged in a predetermined pattern on the surface of the substrate.
  • a metasurface 500 composed of a plurality of patches 510 and 520 may be formed by drawing, creating, and coating a nanopattern on the film. ..
  • any processing such as a spin coating method can be used.
  • the finally obtained metasurface 500 can be mounted in the raised portion 130 of the main body portion 110.
  • the "One chip RF solution” 700 can be combined with the meta surface 500.
  • the "One chip RF solution” 700 is a control device that controls the metasurface 500 and the LC resonator 600.
  • the control device 700 has an appropriate circuit for controlling the feeding to each patch 510 and 520.
  • the control device 700 can include a high frequency switch or an RF switch.
  • a high frequency switch is a switch that switches the path of a high frequency signal.
  • the meta-surface 500 has one gap 530 interposed between two patches 510 and 520 juxtaposed on the upper and lower sides.
  • the two patches 510 and 520 have the same length of each facing side and are separated from each other by the same distance.
  • the wireless power supply mask device 1 can freely change the current pattern on the surface of the metasurface 500 by selectively controlling the high frequency switch.
  • the current pattern flowing on each patch 510 and 520 can be controlled by the ON / OFF combination of the corresponding high frequency switch.
  • the ON / OFF combination of the corresponding high frequency switch For example, by using an electronic high-frequency switch, it is possible to switch on and off the path through which the high-frequency signal passes according to the state of the control signal.
  • the high frequency switch is centrally managed by the control device 700.
  • the plurality of patches 510 and 520 can be fed by a part of these patches, by patches, or by a small group of patches.
  • the number of patches and the number of switches are not limited to the illustrated embodiments.
  • the control device 700 controls the meta surface 500 so that the features of the meta surface 500 can be utilized.
  • An LC resonator 600 is arranged around the meta surface 500 so as to surround the outside thereof.
  • the LC resonator 600 is configured by arranging two resonators configured in a substantially ring shape in a nested manner.
  • An LC component (LC component) 610 is arranged in each resonator.
  • Each of the two ring-shaped LC resonators 600 (ring-shaped portion) has an elongated element extending in an annular shape.
  • the two ring-shaped resonators are similar to each other and are arranged in a nested manner, and are separated from each other by a predetermined distance.
  • the LC resonator 600 can behave like an antenna with respect to a magnetic field penetrating the center of the LC resonator 600.
  • the electromagnetic wave radiated to the outside from this antenna passes through the metasurface 500 nested inside the LC resonator 600. Therefore, a metasurface antenna (transmitting antenna) 220 is formed by combining the metasurface 500 and the LC resonator 600.
  • beamforming can be performed by controlling a plurality of patches 510 and 520 with a high frequency switch. Become.
  • beamforming can be used to switch the transmission direction and transmission power. The switching can be performed in multiple stages.
  • the double ring structure of the LC resonator 600 extends along the contour of a similar polygon.
  • the double ring structures all extend along the periphery of the pentagon.
  • This pentagon can be a regular pentagon having the same length on one side.
  • this pentagon can be an inverted pentagon or an inverted regular pentagon so that the upper side extends in parallel and the apex comes directly below.
  • the two ring-shaped LC resonators 600 can be placed on the outside of the upper and lower lips surrounding the oral cavity so as not to interfere with them.
  • the double ring structure of the LC resonator 600 has a structure that bends at five corners and advances, so that it can have properties similar to those of a circular loop ring. In other words, the double ring structure of the pentagonal LC resonator 600 does not significantly reduce its properties as compared to the circular case.
  • the double ring structure of the LC resonator 600 can have a predetermined strength by having a structure that bends at five corners and advances. For example, even when the upper lip and the lower lip make various movements, the double ring structure arranged around the upper lip and the lower lip can maintain a predetermined shape by the five corners.
  • the inverted pentagon or the inverted regular pentagon has a shape that spreads in contrast to the vertical and horizontal directions, and is therefore suitable for surrounding the oral cavity. Therefore, it is suitable for maintaining the shape of the double ring structure against the movements of the corners of the mouth, the upper lip, the lower lip, and the like.
  • the shape of the transmitting antenna conforms to the unique shape unique to the mask, and has technical characteristics.
  • the double ring structure of the LC resonator 600 is not limited to the above-mentioned inverted pentagon or inverted regular pentagon.
  • the double ring structure may be formed to bend and proceed in a polygonal shape suitable for placement around the oral cavity.
  • the double ring structure of the LC resonator 600 may be formed in a hexagonal or regular hexagonal shape.
  • the double ring structure may be formed into a polygon having arbitrary angles, an inverted polygon, or a regular polygon.
  • Reference numeral 220 in the figure corresponds to the position of the transmitting antenna 220 arranged outside the oral cavity of the human body.
  • Reference numeral 300 in the figure corresponds to the position of the receiving antenna arranged in the oral cavity of the human body. This position corresponds to the center of the three-dimensional space. The positions of these two antennas are positioned in the three-dimensional space according to the actual separation distance.
  • the electromagnetic wave emitted from the transmitting antenna 220 is shown in a relatively bright color (white) according to its intensity at the place where its existence is presumed. Similarly, in places where the presence of electromagnetic waves is not estimated, they are shown in a relatively dark color (black) according to their intensity. Therefore, in the three-dimensional space, the existence of electromagnetic waves is illustrated in gray scale according to their intensities.
  • electromagnetic waves are illustrated in the brightest color.
  • the traveling of the electromagnetic wave toward the outside of the mask that is, the outside of the oral cavity
  • the progress of the electromagnetic wave toward the inside of the mask that is, the inside of the oral cavity
  • the electromagnetic wave emitted from the transmitting antenna 220 to the outside is transmitted to the location of the receiving antenna 300 while maintaining a relatively bright color.
  • the receiving antenna 300 can receive the electromagnetic wave transmitted from the transmitting antenna 220 in a relatively good state.
  • the transmitting antenna 220 Since the transmitting antenna 220 is housed in the main body 110, it is suitable for concentrating the transmission direction of electromagnetic waves in the oral cavity. Therefore, in this embodiment, the transmitting antenna 220 can have a suitable directivity in relation to the receiving antenna 300. It is possible to equip the mask 100 with means for further increasing the directivity of the transmitting antenna 220.
  • a reflector may be arranged on the back side of the transmitting antenna 220 in the main body 110. In this case, when a part of the beam emitted from the transmitting antenna 220 is directed to the outside, the direction may be adjusted or reflected so that the beam is directed toward the oral cavity.
  • the simulation results performed using a mathematical model on a computer with respect to the functions (gain, etc.) of the metasurface antenna (transmitting antenna) 220 are exemplified.
  • the LC resonator 600 behaves as an antenna and generates an electromagnetic wave (beam)
  • a plurality of patches 510 and 520 are controlled by a high frequency switch arranged in the gap 530.
  • Beamforming is performed by. That is, the metasurface 500 of the transmitting antenna 220 changes the directivity of the electromagnetic wave for supplying power to the electronic device arranged in the oral cavity.
  • FIG. 10 illustrates that the gain is distinguished in four stages as a result of beam adjustment for a predetermined frequency. Three of these are shown on the graph. For example, at a frequency of 0.92 GHz, the transmission power is gradually increased as in -66 dB, -37 dB, -62 dB, etc., as illustrated by reference numerals S1, 1, S1, 2, S2, 1 and the like in FIG. I'm changing.
  • the transmitting antenna 220 can have an appropriate gain in practice in relation to the receiving antenna 300.
  • the transmission power of the transmission antenna can be changed stepwise. Therefore, it is possible to supply the optimum power according to the change in the state of the receiving antenna 300 side.
  • the frequency and the like are examples, and the values thereof can be changed according to the embodiment.
  • the wireless power feeding mask device 1 is specially devised so that the power transmitted from the transmitting antenna 220 to the receiving antenna 300 can be efficiently supplied.
  • FIG. 11 a schematic diagram of power transmission control of the wireless power transfer mask device 1 is illustrated.
  • the power transmitter corresponds to the transmitting antenna 220 (LC resonator 600 combined with the metasurface 500) illustrated in FIG.
  • the power receiver corresponds to the receiving antenna 300 arranged in the oral cavity as illustrated in FIG.
  • the sensor corresponds to an electronic device built in the mouthpiece 400 arranged inside the oral cavity.
  • reference numeral A1 illustrates an electromagnetic wave transmitted from the power transmitter side to the power receiver side. As illustrated in FIG. 4, this electromagnetic wave is configured to be received by a receiving antenna 300 built in the mouthpiece 400 arranged inside the oral cavity.
  • Reference numeral A2 illustrates the power supply between the receiving antenna 300 and the sensor inside the mouthpiece 400.
  • the receiving antenna 300 and the sensor are connected by wire, and as a result, the receiving antenna 300 is configured to be able to supply power to the sensor by the received power.
  • the sensor can sense the condition in the oral cavity. Further, the sensor can transmit a signal related to the measured value to the power receiver as a feedback signal (see reference numeral B1). This feedback signal can be transmitted from the receiving antenna 300 side to the power transmitter (wireless power feeding mask device 1) side (see reference numeral B2).
  • the power transmitter can subsequently adjust the electromagnetic wave transmitted to the power receiver (beamforming) based on the received feedback signal.
  • the interval at which the sensing result (measured value) is transmitted it may function as a feedback signal.
  • it may function as a feedback signal by adding further data to the sensing result.
  • step S1 the control device acquires data (feedback signal) from the sensor (electronic device) built in the mouthpiece 400 (see reference numeral B1).
  • step S2 the control device determines whether or not there is an abnormality in the data of the sensor. For example, the control device compares and determines the value acquired from the sensor with a predetermined threshold value.
  • the predetermined threshold value is a set value stored in advance in the control device.
  • the set value is a constant. Therefore, regardless of changes in the environment, the comparison calculation is always performed with a threshold value of a constant value as a reference, so that the calculation can be simplified.
  • the set value is a variable.
  • the comparison calculation is performed based on the threshold value of a different value according to the change in the environment (for example, the change in the body temperature or the oral temperature of the patient), the optimum judgment can be made according to the change in the environment.
  • the variable may be a variable derived according to a predetermined condition from an arbitrary table, database, or the like stored in the storage device associated with the control device.
  • step S2 finds that there is an abnormality as a result of the determination in step S2 (for example, the value acquired by the sensor exceeds or falls below a predetermined threshold value)
  • the control device proceeds to step S3 and the sensor data. Give feedback.
  • step S2 when the control device does not find any abnormality as a result of the determination in step S2 (for example, the value acquired by the sensor is below or above a predetermined threshold value, etc.). Following the determination, the process proceeds to step S4 to determine whether or not the transmission power is the minimum.
  • the control device compares and determines the value of the transmission power with a predetermined threshold value.
  • the predetermined threshold value is a set value stored in advance in the control device.
  • the set value is a constant or a variable.
  • step S4 determines whether the transmission power value is the minimum as a result of the determination in step S4 (for example, the transmission power value falls below a predetermined threshold value).
  • the control device proceeds to step S3 and proceeds to step S3 of the sensor. Feed back the data.
  • step S4 determines whether the value of the transmission power is the minimum as a result of the determination in step S4 (for example, the value of the transmission power exceeds a predetermined threshold value). If the value of the transmission power is not found to be the minimum as a result of the determination in step S4 (for example, the value of the transmission power exceeds a predetermined threshold value), the control device proceeds to step S5. Set to minimize the transmission power. As a result, the process proceeds to step S3, and the sensor data is fed back, but the transmission interval thereof is distinguished from other cases.
  • a sensor is attached to the power receiver side to sense the state in the oral cavity. If there is no abnormality, the sensing information is fed back to the power transmitter for a certain long period of time (for example, once an hour) (low power consumption operation). When there is an abnormality, the sensing information is fed back to the power transmitter in a certain short period (for example, once a minute).
  • the transmission power of the power transmitter can be dynamically changed based on the transmitted feedback signal. For example, the control device reduces the transmission power in the case of low power consumption operation. If not, the controller increases the transmit power in two or multiple steps. As a result, optimum beamforming can be performed according to the operating status of the sensor.
  • the feedback signals may be distinguished by changing the interval between the transmitted signals.
  • the feedback signals may be distinguished by flagging or weighting each signal transmitted. In the latter case, it is not necessary to change the interval of each signal transmitted.
  • Step S3 to feed back the sensor data.
  • the data may be flagged or weighted (for example, "1: null" is added).
  • the process proceeds to step S3, and the sensor data is input. provide feedback. The data may then be flagged or weighted (eg, "0: 1" added).
  • step S4 If, as a result of the determination in step S4, the value of the transmission power is not found to be the minimum (for example, the value of the transmission power exceeds a predetermined threshold value), the process proceeds to step S5 to minimize the transmission power. Set to. At that time, the data may be flagged or weighted (eg, "0: 0" added).
  • step S3 three different types of flagged feedback signals are sent from the power receiver side to the power transmitter side.
  • the control device on the power transmitter side can control the transmission antenna 220 according to the content of the flag. For example, the control device keeps the transmission power high in the case of the "1: null” and "0: 1" flags, while the transmission power is in the case of the "0: 0" flag. It can be changed from large to small. As a result, the transmission power can be reduced as needed.
  • control device of the power transmitter can adjust the magnitude of the transmitted power as beamforming.
  • the adjustment is not limited to two stages, large and small, and can be performed in multiple stages.
  • control device can also adjust the direction of power transmission as beamforming.
  • FIG. 13 a modification of the beamforming illustrated in FIG. 11 is shown.
  • the electromagnetic wave transmitted from one power receiver is received by one power receiver.
  • a plurality of power receivers are provided.
  • the electromagnetic wave transmitted from one power receiver can be received by a plurality of power receivers.
  • sensors may be placed at a plurality of locations in the oral cavity (upper and lower sides of the oral cavity, etc.). Further, for example, a sensor may be arranged in each of a plurality of teeth (two teeth or a plurality of teeth) in the oral cavity. Each sensor can individually sense the state of the oral cavity and feed back the sensing information.
  • the power receiver minimizes the transmit power for one of the two sensors, but minimizes the transmit power for the other sensor, based on the two feedback data received. It is possible to send electromagnetic waves so as not to. At this time, the position of the power receiver associated with each sensor is fed back to the power transmitter, and beamforming can be performed so that each sensor can receive the optimum power.
  • the power transmitter reduces the transmission power for the upper sensor in the oral cavity and increases the transmission power for the lower sensor in the oral cavity.
  • the power transmitter may change the transmission direction so as to move the transmitted electromagnetic wave downward.
  • the metasurface 500 is associated with the transmitting antenna 220, it is possible to realize various radiation patterns.
  • each feedback signal may be distinguished by changing the interval between the transmitted signals.
  • each feedback signal may be distinguished by flagging or weighting each signal transmitted. In the latter case, each feedback signal may be further flagged or weighted as to which of the plurality of sensors it belongs to.
  • the third embodiment of the wireless power transfer mask device 1 using the meta surface will be described with reference to FIGS. 14 and 15.
  • the same reference numbers shall be used for the same or the same devices, parts, components, etc. as those of the first embodiment illustrated with reference to FIGS. 1 to 6, in order to avoid duplication of description. , The detailed explanation is omitted. Further, the same reference numbers shall be used for the same or the same devices, parts, components, etc. as those of the second embodiment illustrated with reference to FIGS. 6 to 13, and the details thereof shall be avoided in order to avoid duplication of description. I will omit the explanation.
  • the wireless power supply mask device 1 has added a reconfigurable metasurface (hereinafter, simply referred to as a metasurface) 10 that can freely manipulate the radiation pattern. Therefore, various beamforming is possible regarding the size of the transmitted power, the direction of the transmitted power, and the like. Therefore, by using the feedback data transmitted from the sensor side in combination, it is possible to gradually switch and apply an appropriate power transmission status according to various usage conditions on the sensor side.
  • a reconfigurable metasurface hereinafter, simply referred to as a metasurface
  • the reference numeral Tx schematically indicates a transmitting device.
  • the transmission device Tx is configured to transmit electromagnetic waves (E1 to E3) for power supply to the outside by using any suitable antenna (not shown).
  • the electromagnetic waves (E1 to E3) are configured to be sent wirelessly in the three-dimensional space and received by the receiving antenna 300 illustrated in FIG.
  • the wireless power supply mask device 1 transmits the electromagnetic waves (E1 to E3) to the outside
  • various types of antennas can be used in the transmission device Tx.
  • the wireless feeding mask device 1 may use a single patch antenna (planar antenna), a plurality of patch antennas (including a patch array antenna), or the like as the antenna.
  • the transmitter Tx has any suitable means for controlling the amplitude and phase of the electromagnetic waves (including microwaves) radiated from the antenna.
  • the transmission device Tx includes a microwave oscillator 4 and an amplifier 6 inside, and enables generation of electromagnetic waves (E1 to E3), and also enables control of its radiation pattern (beam direction) by the control device 3. ing.
  • the wireless power supply mask device 1 adds a reconfigurable metasurface (hereinafter, simply referred to as a metasurface) 10 that can freely manipulate the radiation pattern to the transmission device Tx of the antenna.
  • the metasurface 10 has a larger number of patches and switches than those illustrated in FIG.
  • the metasurface 500 and the LC resonator 600 are configured on the same plane.
  • the transmitting antenna and the metasurface 10 are configured in a multi-layered manner. Therefore, the thickness is increased as a whole, and when accommodating in the thin main body 110, a part of the transmitting antenna and the metasurface may be projected outward from the main body 110.
  • the control device 3 can control not only the electromagnetic wave radiation performed in the normal transmission device Tx but also the electromagnetic wave radiation via the added metasurface 10.
  • the control device 3 of the transmission device Tx controls the meta surface 10, but a control device for controlling the meta surface 10 may be provided separately from the control device 3 of the transmission device Tx. It is possible.
  • the description of the control of the electromagnetic wave radiation pattern by the control device 3 relates to the control of the electromagnetic wave radiation pattern via the metasurface 10.
  • the metasurface 10 is composed of a plurality of waveguide patches or radiation patches (hereinafter, simply referred to as patches) 12a, 12b, 12c ...
  • patches waveguide patches or radiation patches
  • each patch 12a, 12b, 12c a small structure with respect to the wavelength is periodically arranged, and is configured to realize a desired dielectric constant and magnetic permeability.
  • Each patch is configured so that an electromagnetic wave incident from one surface side can pass through the inside and be radiated from the opposite surface side.
  • Each patch 12a, 12b, 12c has a predetermined shape and is regularly arranged.
  • each patch 12a, 12b, 12c has a quadrangular shape (for example, a square) in the XY plane shown in FIG. 14B, and in the Z-axis direction shown in FIG. 14A. It is configured to have an ultra-thin thickness.
  • the patches 12a, 12b, and 12c are regularly arranged on the same plane. As described above, the plurality of patches 12a, 12b, and 12c are preferably configured to be compact, ultrathin, and ultralight.
  • a patch array of m ⁇ n arrangement (m horizontal, n vertical) arranged periodically in the vertical direction and the horizontal direction on the same plane is exemplified. ..
  • adjacent patches are arranged so that the lengths of one side of each quadrangle are aligned in the vertical direction (for example, the positions at both ends of each side) and the spacing (gap) of each quadrangle is kept uniform in the horizontal direction. Has been done.
  • the wireless power transfer mask device 1 in the wireless power transfer mask device 1 according to the present embodiment, high frequency switches 20a and 20b are arranged in adjacent gaps of a plurality of patches 12a, 12b and 12c, respectively. Therefore, the wireless power supply mask device 1 is configured to freely change the current pattern on the surface of the metasurface 10 by selectively controlling these high frequency switches 20a and 20b.
  • switches 20a and 20b are provided between adjacent patches 12a, 12b and 12c in the vertical direction and / or the horizontal direction. Therefore, by switching the energized state of one switch, the power supply state of a part of the two patches arranged so as to sandwich the switch is controlled.
  • the switches 20a and 20b are centrally managed by the control device 3 and individually controlled. As a result, the plurality of patches 12a, 12b, and 12c are not all supplied uniformly, but can be supplied by a part of these patches, by patches, or by a small group of patches.
  • the patches 12a, 12b, and 12c are the same in the vertical and horizontal directions with their relative positions aligned. Aligned at intervals. Adjacent patches 12a, 12b, and 12c are arranged on the outer peripheral side so as to sandwich the switches 20a and 20b. In this way, when there are m horizontal and n vertical patches 12a, 12b, 12c ..., there are a total of "m * (n-1) + n * (m-1)", that is, "2m *". "Nm-n" switches 20a, 20b ... Can be used.
  • the current pattern flowing on each patch 12a, 12b, 12c can be controlled by the ON / OFF combination of the corresponding switches 20a, 20b.
  • the electronic high frequency switches 20a and 20b it is possible to switch on and off the path through which the high frequency signal passes according to the state of the control signal.
  • the combination of switches exists as "2 to the Xth power".
  • the versatility can be further enhanced as compared with general phase control type beamforming.
  • a wireless power supply mask device 1 that performs beamforming in various forms is configured. Is possible.
  • the wireless power transfer mask device 1 may adjust the direction and spread of the transmitted wave or beam so as to spread along the plane of the metasurface 10. For example, as indicated by reference numeral E2, the wireless power transfer mask device 1 may adjust the direction and spread of the beam so as to spread in the direction perpendicular to the plane of the metasurface 10. For example, as indicated by reference numeral E3, the wireless power transfer mask device 1 may adjust the direction and spread of the beam so as to spread at an oblique angle (about an acute angle) with respect to the plane of the metasurface 10. Further, the wireless power transfer mask device 1 can perform beamforming so as to finely adjust the angle, direction, spread, etc. of the emitted beam with respect to the plane of the metasurface 10.
  • the directivity of the beam is indicated by the reference numeral E1
  • the directivity of the beam is indicated by the reference numeral E2
  • the directivity of the beam is indicated by the reference numeral E3, it is suitable for transmitting an electromagnetic wave toward an obliquely upper position in the oral cavity.
  • Switching between the directivity E1, E2, and E3 can be performed while the position of the transmitting antenna is not changed, so that the usability is improved. Therefore, the directivity of the antenna can be variously controlled while keeping the position of the mask 100 having the built-in transmitting antenna.
  • each of the plurality of patches 12 constituting the meta surface 10 has a square shape and has a regular tessellation shape.
  • the shape of the patch 12 may be another shape having a regular tessellation, that is, an equilateral triangle or a regular hexagon.
  • the shape of the patch 12 is not limited to the regular tessellation type.
  • the shape of the patch 12 may be any quadrangle including a rectangle, a rhombus, a trapezoid, or a parallelogram.
  • the shape of the patch 12 may be any polygon including a triangle, a pentagon, or a hexagon.
  • the shape of the patch 12 can be made into a more complicated shape.
  • the shape of the patch 12 may be circular or elliptical.
  • the shape of the patch 12 may be semi-circular or semi-elliptical.
  • the shape of the patch 12 may be substantially L-shaped or substantially V-shaped.
  • the shape of the patch 12 may be substantially C-shaped or substantially U-shaped.
  • the shape of the patch 12 may be a substantially cross shape or a substantially X-shaped shape.
  • the shape of the patch 12 may be a substantially T-shape or a substantially Y-shape.
  • the size of the gap between adjacent patches can be varied. For example, when one side of adjacent patches extends straight to each other, the size of the gap may be constant along the length of the side. For example, when one side of adjacent patches extends in a curved line with each other, the size of the gap may change along the length of the side. However, in order to obtain a good energized state on the surface of the metasurface 10, it is preferable that the size of the gap between adjacent patches is small.
  • the plurality of patches 12 constituting the metasurface 10 each have the same size, shape, and / or material.
  • this embodiment is not limited to this embodiment.
  • the plurality of patches 12 do not necessarily have the same size, shape and / or material.
  • the patch 12 arranged in the center has a relative size, shape, and / or material as compared with the other patches 12 arranged outside the patch 12. May be changed.
  • FIGS. 15A and 15B one specific example of the wireless power transfer mask device 1 exemplified in FIGS. 14A and 14B is illustrated.
  • the patch antenna 30 and the hexagon-type (honeycomb-type) metasurface 14 are arranged so as to be overlapped in a multi-layered manner.
  • the metasurface 14 also contains a plurality of patches 16c, 16d, 16e.
  • the central patch 16c has a hexagonal shape (hexagon, honeycomb).
  • the length of each side of this hexagon is the same, and the angles formed by the two adjacent sides are the same.
  • the central patch 16c and the outer peripheral side patches 16d and 16e arranged on the outer side thereof can have different shapes and sizes, respectively.
  • the patch 16c in the center and the patches 16d and 16e on the outer peripheral side arranged outside the patch 16c are arranged with the length, position and angle of the adjacent sides aligned, respectively.
  • these plurality of patches 16c, 16d, 16e are separated from each other by a uniform size (gap).
  • a switch 26c, 26d is arranged in the center of the adjacent patches 16c, 16d, 16e, respectively.
  • FIG. 15 (B) the radiation pattern (directivity) of the electromagnetic wave emitted from the antenna 30 to the outside when the energized states of the switches 26c and 26d are switched with respect to the meta surface 14 exemplified in FIG. 15 (A).
  • An example of sex is shown.
  • Reference numeral 11a illustrates a state when all the switches 26c and 26d are supplied with power. In this case, the electromagnetic wave is radiated to the outside evenly to the left and right with 0 ° as the center.
  • Reference numeral 11b exemplifies a state when a part of the switches 26c and 26d is fed.
  • the electromagnetic wave is biased from 0 ° to the left side and is radiated to the outside unevenly with respect to the left and right sides.
  • the radiation pattern of the electromagnetic wave emitted from the antenna 30 to the outside can be changed in the same manner as in the meta-surface 10 illustrated in FIG.
  • the main lobe (the lobe in the strongest radiation direction) is changed by changing the radiation pattern from 11a to 11b.
  • the sidelobes (lobes excluding the main lobe) have changed.
  • the directivity of the antenna is changing. The same applies to changes in the anteroposterior ratio and beam width.
  • the radiation pattern can be shaken at least by about ⁇ 30 °.
  • the radiation pattern can be shaken at least by about ⁇ 30 °.
  • the size of the antenna can be reduced and the weight can be reduced, so that it can be applied to a relatively compact installation area. Therefore, it can be applied to the main body 110.
  • the metasurface 14 composed of the plurality of patches 16c, 16d, 16e and the plurality of switches 26c, 26d are used in combination with respect to the antenna 30, and the antenna 30 is variously used. It enables beamforming to realize various radiation patterns. For example, in this embodiment, when beamforming is controlled by using X switches, there are as many combinations of switches as “2 to the Xth power”. However, if necessary, the size, number, number of switches, etc. of the patch shall be narrowed down in consideration of the occupied space. In this embodiment, the control device 3 controls the radiation pattern of the electromagnetic wave radiated through the meta surface 14, thereby considerably increasing the versatility of the control. The same applies to the examples illustrated in FIG.
  • Example 1 exemplified in FIGS. 1 to 6, Example 2 exemplified in FIGS. 6 to 13, and Example 3 exemplified in FIGS. 14 to 16 may be used alone. Alternatively, they may be used in combination with each other. In the latter case, it is possible to appropriately combine some of the components of each embodiment.
  • the transmitting antenna has a patch antenna and a metasurface in combination.
  • the transmitting antenna can have a loop antenna and a metasurface in combination. Therefore, in this embodiment, it is possible to configure the wireless power transfer mask device 1 that performs beamforming in various forms.
  • the control device on the power transmission side and / or the power reception side may be, for example, a single board computer equipped with a processor.
  • the control device may be, for example, Raspberry Pi (Raspberry Pi) or the like. It can also be realized by edge computing with Python (registered trademark) on Raspberry Pi.
  • the control device can be attached to the outside of the main body 110 so that the size is not limited to the inside of the main body 110.
  • the power transmission side and / or the power reception side control device can be associated with the main memory device.
  • Various programs and applications are stored in this main storage device, and each functional element of the entire system is realized by executing these programs and applications by a processor.
  • each of these modules may be implemented by Harware by integrating them.
  • each module may be an independent program or application, but may be implemented in the form of a part of a subprogram or a function in one integrated program or application.
  • the wireless power transfer mask device includes a mask-like main body portion having a size of covering the oral cavity of the head from the outside.
  • This head is not limited to the head of the human body.
  • the wireless power supply mask device includes a mask-shaped main body portion having a size of covering the oral cavity of the head from the outside.
  • This mask-shaped main body is not limited to the mask.
  • it may be an auxiliary tool that wraps around the mouth of the head of any animal such as a dog, cat, horse, cow, pig, or sheep.
  • the mask-shaped main body portion having a size of covering the oral cavity of the head from the outside can be applied to any mask worn on the face.
  • it can be applied to a gas mask worn on the face to protect the human body from poisonous gas, dust, microorganisms, toxins and the like.
  • the mask-shaped main body having a size that covers the oral cavity of the part from the outside can be applied to a medical mask worn on the face for any medical purpose such as assisting breathing.
  • the wireless power transfer mask device uses an LC resonator (Example 2) or a patch antenna (Example 3) having a double ring structure as a transmitting antenna to be combined with the metasurface.
  • the wireless feeding mask device can use a linear antenna as part or more of the transmitting antenna combined with the metasurface.
  • the linear antenna for example, an arbitrary linear antenna such as a dipole antenna, a monopole antenna, or an inverted F-type antenna can be used.
  • the wireless power transfer mask device can add any device, circuit, etc. in order to improve the current flow through the antenna. Further, it should be understood that the wireless power supply mask device according to this embodiment can add an arbitrary member (reflector, radome, etc.) in order to improve the flow of electromagnetic waves in the main body 110.
  • the present invention is not limited to the above-described embodiment, but includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • control lines and information lines indicate those that are considered necessary for explanation, and do not necessarily indicate all the control lines and information lines in the product. In practice, it can be considered that almost all configurations are interconnected. It should be noted that the above-mentioned embodiment discloses at least the configuration described in the claims.
  • Wireless power supply mask device 100 ... Mask, 110 ... Mask-like body, 200 ... Transmit antenna, 220 ... Transmit antenna, 300 ... Receive antenna, 400 ... Artificial object (mouthpiece), 500 ... Metasurface (metamaterial) , 600 ... LC resonator, 700 ... control device

Abstract

Provided is a wireless power feed mask device combining wireless communication technology with a mask. This wireless power feed mask device is provided with a mask-shaped main body portion having a size covering the oral cavity of the head from the outside, and is characterized in that the mask-shaped main body portion is provided with a transmission antenna which has a metasurface and which supplies electric power toward the oral cavity.

Description

ワイヤレス給電マスク装置Wireless power transfer mask device
 本発明は、マスクに無線通信技術を組み合わせた、ワイヤレス給電マスク装置に関する。 The present invention relates to a wireless power supply mask device that combines a mask with wireless communication technology.
 近年、コンピュータまたは電子デバイス等を身につけたまま利用可能にした、ウェアラブル(wearable)製品(ウェアラブル・デバイスまたはウェアラブル・コンピュータ)が開発されている。特に、ウェアラブル製品は、ワイヤレスに電力の送信及び/又は受信を行う無線通信技術を組み合わせることで、様々な応用技術の開発が期待されている。 In recent years, wearable products (wearable devices or wearable computers) have been developed that can be used while wearing a computer or electronic device. In particular, wearable products are expected to develop various applied technologies by combining wireless communication technologies for transmitting and / or receiving electric power wirelessly.
 従前のウェアラブル製品は、腕時計型、眼鏡型等の形態が主流であった。近年、医療技術分野への適用のため、適用対象がより広げられている。しかしながら、頭部の口腔付近に取付けられるマスクへの適用例はあまり知られていない。 Previously, wearable products were mainly in the form of wristwatches, eyeglasses, etc. In recent years, the scope of application has been further expanded due to its application to the medical technology field. However, little is known about its application to masks attached near the oral cavity of the head.
 例えば、国際公開第2020/136717号(特許文献1)には、「防災着衣類を被救助者が身に着けたのちに何らの機器操作もすることなく、被災者の位置情報が発信される防災着衣類を提供する(要約書参照)」構成が開示されている。
 例えば、特開2020-202460号公報(特許文献2)には、「アンテナ素子とグランドの2層を有する端末に、全体として十分な可撓性を持たせて、ウェアラブル化する(要約書参照)」構成が開示されている。
For example, in International Publication No. 2020/136717 (Patent Document 1), "the location information of the disaster victim is transmitted without operating any equipment after the rescuer wears the disaster prevention clothing. Providing disaster prevention clothing (see abstract) ”is disclosed.
For example, Japanese Patent Application Laid-Open No. 2020-20460 (Patent Document 2) states that "a terminal having two layers of an antenna element and a ground is made wearable by giving sufficient flexibility as a whole (see abstract). The composition is disclosed.
国際公開第2020/136717号International Publication No. 2020/136717 特開2020-202460号公報Japanese Unexamined Patent Publication No. 2020-20460
 本発明は、マスクに無線通信技術を組み合わせた、ワイヤレス給電マスク装置を提供することを最も主要な特徴とする。 The most important feature of the present invention is to provide a wireless power transfer mask device in which a mask is combined with wireless communication technology.
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、ワイヤレス給電マスク装置であって、頭部の口腔を外部から覆う大きさを有するマスク状本体部を備え、前記マスク状本体部は、口腔内に向かって電力を供給する、メタサーフェスを有する送信アンテナを備える、ことを特徴とする。
In order to solve the above problems, for example, the configuration described in the claims is adopted.
The present application includes a plurality of means for solving the above-mentioned problems, and one example thereof is a wireless power supply mask device, which includes a mask-shaped main body having a size of covering the oral cavity of the head from the outside. The mask-like body is characterized by comprising a transmitting antenna having a metasurface that supplies power toward the oral cavity.
 本発明によれば、マスクに無線通信技術を組み合わせた、ワイヤレス給電マスク装置を提供することができる。 According to the present invention, it is possible to provide a wireless power supply mask device in which a mask is combined with wireless communication technology.
図1は、頭部に取付けられたワイヤレス給電マスク装置を示した斜視図の例である。FIG. 1 is an example of a perspective view showing a wireless power transfer mask device attached to the head. 図2は、図1の一部透過図の例である。FIG. 2 is an example of a partially transparent view of FIG. 図3は、図1の一部透過図の例である。FIG. 3 is an example of a partially transparent view of FIG. 図4は、送信アンテナと受信アンテナとの相対関係を例示した説明図である。FIG. 4 is an explanatory diagram illustrating the relative relationship between the transmitting antenna and the receiving antenna. 図5は、受信アンテナの要部を拡大して例示した斜視図である。FIG. 5 is an enlarged perspective view illustrating a main part of the receiving antenna. 図6は、頭部に取付けられたワイヤレス給電マスク装置を例示した斜視図である。FIG. 6 is a perspective view illustrating a wireless power transfer mask device attached to the head. 図7は、図6の送信アンテナの要部を拡大して例示した斜視図である。FIG. 7 is an enlarged perspective view illustrating a main part of the transmitting antenna of FIG. 図8は、メタサーフェスとLC共振器の組み合わせを例示した説明図である。FIG. 8 is an explanatory diagram illustrating a combination of a meta surface and an LC resonator. 図9は、図6の送信アンテナの機能を3次元空間内で例示した説明図である。FIG. 9 is an explanatory diagram illustrating the function of the transmitting antenna of FIG. 6 in a three-dimensional space. 図10は、図6の送信アンテナの機能をグラフで例示した説明図である。FIG. 10 is an explanatory diagram illustrating the function of the transmitting antenna of FIG. 6 in a graph. 図11は、ワイヤレス給電マスク装置の制御ロジックを例示した説明図である。FIG. 11 is an explanatory diagram illustrating the control logic of the wireless power transfer mask device. 図12は、ワイヤレス給電マスク装置の制御フローの例である。FIG. 12 is an example of the control flow of the wireless power supply mask device. 図13は、ワイヤレス給電マスク装置の制御ロジックを例示した説明図である。FIG. 13 is an explanatory diagram illustrating the control logic of the wireless power transfer mask device. 図14は、メタサーフェスの変更例を例示した説明図である。FIG. 14 is an explanatory diagram illustrating an example of changing the meta surface. 図15は、メタサーフェスの変更例を例示した説明図である。FIG. 15 is an explanatory diagram illustrating an example of changing the meta surface. 図16は、メタサーフェスの放射パターンを例示した説明図である。FIG. 16 is an explanatory diagram illustrating the radiation pattern of the metasurface.
 以下、人体の頭部の口腔外に取付けられるマスクを利用した、ワイヤレス給電マスク装置の実施例について説明する。特に、ワイヤレス給電マスク装置は、人体の頭部の口腔内に取付けられる電子デバイスへの給電を可能にするように構成されている。 Hereinafter, an example of a wireless power transfer mask device using a mask attached to the outside of the oral cavity of the human head will be described. In particular, the wireless power transfer mask device is configured to enable power supply to an electronic device attached to the oral cavity of the human head.
 医療技術分野の中には、人体の頭部について、治療、診断等を行うものがある。例えば、口腔外科、歯科医療または他の治療(例えば、人工呼吸、内視鏡検査、いびき治療、歯ぎしり治療、唾液分泌治療/診断等)では、人体の頭部の口腔内または顔面上の所定部位における、先天性または後天性の疾患等が取り扱われている。その際、診断、治療、モニタリング等を補助するため、様々な種類の電子デバイスが利用されている。 In the medical technology field, there are those that treat, diagnose, etc. the head of the human body. For example, in oral surgery, dentistry or other treatments (eg, artificial respiration, endoscopy, sickness treatment, gnashing treatment, salivary secretion treatment / diagnosis, etc.), a predetermined area of the human head in the oral cavity or on the face. Congenital or acquired diseases, etc. are dealt with in. At that time, various types of electronic devices are used to assist diagnosis, treatment, monitoring, and the like.
 例えば、頭部には、重要な感覚器(聴覚、味覚、視覚、嗅覚、触覚、涙腺、唾液腺、発汗腺等)が集まっているが、患者の中には、その感覚器の一部について、先天性または後天性の疾患を有するものがある。そのような場合、電子デバイスを用いて、患者の感覚器の補強を行うことがある。 For example, important sensory organs (hearing, taste, sight, smell, touch, lacrimal glands, salivary glands, sweating glands, etc.) are gathered in the head, but some patients have some of the sensory organs. Some have congenital or acquired illness. In such cases, electronic devices may be used to reinforce the patient's sensory organs.
 例えば、頭部の口腔内または顔面上の所定部位に、電子デバイスとして電気刺激機器を取付けて、患者の感覚器の補強を行うことがある。同様に、頭部の口腔内または顔面上の所定部位に、電子デバイスとして人工感覚器を取付けて、患者の感覚器の替わりに機能させることも考えられる。 For example, an electrical stimulator may be attached as an electronic device to the oral cavity of the head or a predetermined part on the face to reinforce the sensory organs of the patient. Similarly, it is conceivable to attach an artificial sensory organ as an electronic device to a predetermined part of the head in the oral cavity or on the face to function as a substitute for the patient's sensory organ.
 また、頭部の口腔内または顔面上の所定部位に、電子デバイスとしてセンサを取付けて、診断、治療、モニタリング等を補助することがある。例えば、口腔内または顔面上の所定部位に、生体適合性センサを取付けることがある。具体的には、口腔内に温度センサを配置して、患者の体温または口腔温を検知することがある。また、口腔内にグルコース・センサを配置して、口腔内の唾液成分からグルコースの濃度を検知することがある。また、口腔内に圧力センサを配置して、患者の咬合力を検知することがある。 In addition, a sensor may be attached as an electronic device to the oral cavity of the head or a predetermined part on the face to assist diagnosis, treatment, monitoring, etc. For example, a biocompatibility sensor may be attached to a predetermined portion in the oral cavity or on the face. Specifically, a temperature sensor may be placed in the oral cavity to detect the patient's body temperature or oral temperature. In addition, a glucose sensor may be placed in the oral cavity to detect the glucose concentration from the saliva component in the oral cavity. In addition, a pressure sensor may be placed in the oral cavity to detect the patient's quotient force.
 このように、口腔外科、歯科医療または他の治療では、様々な目的のために、治療の最中、治療の前段階または治療の後段階において、患者の口腔内または顔面上の所定部位(例えば、歯、唇、舌、または任意の皮膚、筋肉、骨若しくは組織)に電子デバイス(電気刺激機器、センサ等)を取り付けることがある。 Thus, in oral surgery, dentistry or other treatments, for a variety of purposes, during treatment, pre-treatment or post-treatment, a given site in the patient's oral cavity or face (eg, for example). , Teeth, lips, tongue, or any skin, muscle, bone or tissue) may be fitted with electronic devices (electrical stimulators, sensors, etc.).
 患者の口腔内に電子デバイスを取り付ける際、口腔内に配置されている他の人工物を利用することがある。例えば、口腔外科、歯科医療の治療または他の治療では、マウスピース(mouthpiece)を利用することがある。マウスピースは、口腔内に配置されるのに適当な構成を有する。この構成は様々であって、例えば、上下一体型マウスピース、上下分離型マウスピース等がある。このマウスピースの中に電子デバイスを内蔵させることで、患者の口腔内への電子デバイスの取り付けを容易にしている。 When installing an electronic device in the patient's oral cavity, other artificial objects placed in the oral cavity may be used. For example, oral surgery, dental treatment or other treatments may utilize a mouthpiece. The mouthpiece has a suitable configuration for placement in the oral cavity. This configuration varies, and includes, for example, a top-bottom integrated mouthpiece, a top-bottom separated mouthpiece, and the like. By incorporating an electronic device in this mouthpiece, it is easy to attach the electronic device to the patient's oral cavity.
 同様に、口腔内には複数の歯があるが、これら歯に対して人工物が取り付けられることがある。例えば、喪失した歯を補う為に、義歯(人工歯)を配置することがある。また、既存の歯の上に、さらに人工物を被せることがある。これら人工物の中に電子デバイスを内蔵させることで、患者の口腔内への電子デバイスの取り付けを容易にすることも考えられる。 Similarly, there are multiple teeth in the oral cavity, but artificial objects may be attached to these teeth. For example, dentures (artificial teeth) may be placed to replace lost teeth. In addition, an artificial object may be further placed on the existing tooth. By incorporating an electronic device in these artificial objects, it is possible to facilitate the attachment of the electronic device into the patient's oral cavity.
 電子デバイス(電気刺激機器、センサ等)を駆動させるためには、所定の電力を給電する必要がある。しかしながら、マウスピース等の中に電池を設けて、電子デバイスに電力を供給する場合、電池の交換やマウスピースの大型化等が課題となる。一方、有線で電子デバイスに電力を供給する場合、配線の負担、切断、メンテナンス等が課題となる。特に、口腔内はスペースが限られるため、配線の取り回しは容易ではない。 In order to drive electronic devices (electrical stimulators, sensors, etc.), it is necessary to supply a predetermined amount of electric power. However, when a battery is provided in a mouthpiece or the like to supply electric power to an electronic device, there are problems such as replacement of the battery and enlargement of the mouthpiece. On the other hand, when power is supplied to an electronic device by wire, the burden of wiring, disconnection, maintenance, and the like become problems. In particular, since the space in the oral cavity is limited, it is not easy to route the wiring.
 そこで、人工物(マウスピース、義歯等)の中に電子デバイスを内蔵するともに、その電力を給電するために無線通信技術(受信アンテナ等)を組み合わせることが検討されている。この場合、送電電力の無駄を防ぐため、受信アンテナ(受電装置)と対に機能する送信アンテナ(送電装置)は、口腔の近くに配置されることが望ましい。そこで、口腔の周囲に取付けられるマスクに送信アンテナを関連付けることが検討されている。 Therefore, it is being considered to incorporate an electronic device in an artificial object (mouthpiece, denture, etc.) and combine wireless communication technology (reception antenna, etc.) to supply the power. In this case, in order to prevent waste of transmitted power, it is desirable that the transmitting antenna (transmission device) that functions as a pair with the receiving antenna (power receiving device) is arranged near the oral cavity. Therefore, it is considered to associate a transmitting antenna with a mask attached around the oral cavity.
 従前のウェアラブル製品は、腕時計型、眼鏡型等の形態が多かった。しかし、医療技術分野への適用を想定して、人体の頭部の口腔に取付けられるマスクを利用して、ウェアラブル製品を構成する例は少なかった。
 例えば、特許文献1では、アンテナは、マスクの外側に取り付けられている(図29、段落0120参照)。
 例えば、特許文献2では、医療技術分野への適用のため、患者の腕に取付けられるリストバンドをウェアラブル化している(段落0026参照)。その場合であっても、マスクのウェアラブル化は想定されていない。
In the past, wearable products were often in the form of wristwatches, eyeglasses, and the like. However, assuming application to the medical technology field, there have been few examples of constructing wearable products using a mask attached to the oral cavity of the human head.
For example, in Patent Document 1, the antenna is attached to the outside of the mask (see FIG. 29, paragraph 0120).
For example, in Patent Document 2, a wristband attached to a patient's arm is made wearable for application in the medical technology field (see paragraph 0026). Even in that case, wearable masks are not expected.
 本実施例は、マスクに無線通信技術を組み合わせた、ワイヤレス給電マスク装置を提供する。このワイヤレス給電マスク装置は、口腔内に取付けられる電子デバイスへの給電を可能にするように構成されている。さらに、このワイヤレス給電マスク装置は、電子デバイスの受電状況に応じて、送電電力を最適化する手段を備えることも可能である。 This embodiment provides a wireless power supply mask device that combines a mask with wireless communication technology. This wireless power transfer mask device is configured to enable power supply to an electronic device mounted in the oral cavity. Further, the wireless power transfer mask device can also be provided with means for optimizing the transmitted power according to the power receiving status of the electronic device.
 以下、図1乃至図5を参照して、ワイヤレス給電マスク装置1の実施例1について説明する。
 図1及び図2には、頭部の口腔を覆うように取付けられるマスクと、当該マスク内に取付けられる送信アンテナとが例示されている。
 図3乃至図5には、上記送信アンテナと、口腔内に取付けられる受信アンテナとの相対関係が例示されている。
Hereinafter, the first embodiment of the wireless power transfer mask device 1 will be described with reference to FIGS. 1 to 5.
1 and 2 illustrate a mask mounted so as to cover the oral cavity of the head and a transmitting antenna mounted in the mask.
3 to 5 illustrate the relative relationship between the transmitting antenna and the receiving antenna mounted in the oral cavity.
 本実施例に係るワイヤレス給電マスク装置1は、送信アンテナから受信アンテナへ向けて送信される電力の供給を効率的に行えるように、特別な工夫を行っている。
 特に、送信アンテナの形状が、マスクならではの独特な形状に則しており、技術的な特徴がある。
 また、受信アンテナの形状が、口腔内ならではの限られた空間においても、高効率に電力を受電できるような、技術的な特徴がある。
The wireless power feeding mask device 1 according to the present embodiment is specially devised so that the power transmitted from the transmitting antenna to the receiving antenna can be efficiently supplied.
In particular, the shape of the transmitting antenna conforms to the unique shape of the mask, and has technical characteristics.
In addition, the shape of the receiving antenna has a technical feature that it can receive electric power with high efficiency even in a limited space unique to the oral cavity.
 図1を参照すると、人体の頭部に取り付けられた、ワイヤレス給電マスク装置1の斜視図が例示されている。同図に例示しているように、ワイヤレス給電マスク装置1は、人体の顔の一部(特に人体の口腔)を覆うため、マスク(mask/respirator)100を有する。このマスク100は、頭部の口腔を外部から覆う大きさを有するマスク状本体部110を有する。 Referring to FIG. 1, a perspective view of a wireless power transfer mask device 1 attached to the head of a human body is illustrated. As illustrated in the figure, the wireless power supply mask device 1 has a mask (mask / respirator) 100 in order to cover a part of the face of the human body (particularly the oral cavity of the human body). The mask 100 has a mask-shaped main body 110 having a size that covers the oral cavity of the head from the outside.
 本実施例では、マスク100の使用目的について特に限定しない。
 例えば、マスク100の使用目的は様々であって、特に、衛生または治療(例えば、口腔外科、歯科医療または他の治療)のために用いることができる。さらに、マスク100は、防寒対策、花粉症対策、風邪対策、ウイルス対策、防塵対策等に用いることも可能である。
In this embodiment, the purpose of use of the mask 100 is not particularly limited.
For example, the mask 100 can be used for a variety of purposes, especially for hygiene or treatment (eg, oral surgery, dentistry or other treatment). Further, the mask 100 can also be used for cold protection measures, pollinosis countermeasures, cold countermeasures, virus countermeasures, dust protection measures and the like.
 本実施例では、マスク100の形状及び大きさは、少なくとも人体の頭部の口腔の一部を覆うものとし、好ましくは口腔の全体を覆うものとする。
 例えば、マスク100の大きさは様々であって、大人用と子供用とで、異なる大きさを有している。本実施例は、その双方に対応することができる。また、マスク100の大きさは、口腔を覆うだけでなく、さらに、顔の全体を覆う大きさを有することも可能である。
In this embodiment, the shape and size of the mask 100 shall cover at least a part of the oral cavity of the human head, preferably the entire oral cavity.
For example, the mask 100 has various sizes, and has different sizes for adults and children. This embodiment can deal with both of them. Further, the size of the mask 100 can not only cover the oral cavity but also have a size that covers the entire face.
 本実施例では、マスク100の素材について特に限定はしない。
 例えば、マスク100は様々な素材を用いて形成することができ、例えば、ガーゼなどの布を用いて形成された布製マスク、不織布を用いて形成された不織布マスクまたは他の素材を用いて形成されたマスクがある。他、例えば、シリコンゴム等を用いて形成されたマスクがある。
 ただし、本実施例では、マスク100は、一般的な衛生マスクとは異なり、立体的な特徴を有するものとする。
In this embodiment, the material of the mask 100 is not particularly limited.
For example, the mask 100 can be formed using various materials, for example, a cloth mask formed of a cloth such as gauze, a non-woven fabric mask formed of a non-woven fabric, or another material. There is a mask. In addition, for example, there is a mask formed by using silicon rubber or the like.
However, in this embodiment, the mask 100 has three-dimensional characteristics unlike a general sanitary mask.
 一般的な衛生マスクでは、本体をフラット(平坦)に形成するとともに、フレキシブル(柔軟性)な特徴を有するように構成されている。この場合、一般的な衛生マスクは、装着時には、両耳から係止されると、マスクの裏面が頭部の口腔の周囲にフィットまたは当接するように構成されている。一般的な衛生マスクは、装着時に、口腔の周囲(特に、頭部の鼻、上唇、下唇、顎、両頬等)と当接する。このように、一般的な衛生マスクは、感染予防を目的として、顔面とマスクとの間で良好なフィット性を有するとともに、非使用時には、折畳みや収納が容易となるように構成されている。 In a general hygiene mask, the main body is formed flat and has a flexible characteristic. In this case, a general hygiene mask is configured such that the back surface of the mask fits or abuts around the oral cavity of the head when locked from both ears when worn. A general hygiene mask comes into contact with the area around the oral cavity (particularly the nose of the head, upper lip, lower lip, chin, both cheeks, etc.) when worn. As described above, the general hygiene mask is configured to have a good fit between the face and the mask for the purpose of preventing infection, and to be easily folded and stored when not in use.
 これに対して、本実施例に係るマスク状本体部110は、一般的な衛生マスクと異なり、平面的に構成されず、立体的に構成されている。本体部110は、人体の顔面上にマスク100の一部をフィットさせる当接部120と、人体の顔面上からマスク100の一部をフィットさせずに離間させる隆起部(凸状部)130とを有する。
 当接部120は、本体部110の外周側に位置し、マスクの装着時に、人体の顔面の一部(例えば、鼻、両頬、顎のうちの任意の部位)と当接する。この際、所定の大きさの面または線に沿って、双方は当接する。なお、図1には例示していないが、当接部120は、人体の顔面の両耳に対して係止可能にするための構造(紐またはフック等)を有することができる。
On the other hand, unlike a general sanitary mask, the mask-shaped main body 110 according to the present embodiment is not formed in a plane but in a three-dimensional manner. The main body 110 includes a contact portion 120 that fits a part of the mask 100 on the face of the human body, and a raised portion (convex portion) 130 that separates a part of the mask 100 from the face of the human body without fitting. Has.
The abutting portion 120 is located on the outer peripheral side of the main body portion 110, and abuts on a part of the face of the human body (for example, any part of the nose, both cheeks, and the chin) when the mask is worn. At this time, both come into contact with each other along a surface or line of a predetermined size. Although not illustrated in FIG. 1, the contact portion 120 can have a structure (string, hook, etc.) for locking to both ears of the human face.
 隆起部130は、本体部110の中央側に位置し、マスクの装着時に、顔面の一部(例えば、口腔、上唇及び下唇)とマスクの裏面とが直接当接することを防ぐように、顔面から所定の高さで離間する。例えば、隆起部130は、顔面に対して垂直方向(図1のH方向)または顔の向く方向に起立することにより、本体部110の中央側の一部と、人体の顔面の一部との間にスペースを形成している。 The raised portion 130 is located on the central side of the main body portion 110 so as to prevent a part of the face (for example, the oral cavity, upper lip and lower lip) from directly contacting the back surface of the mask when the mask is worn. Separate from from at a predetermined height. For example, the raised portion 130 stands upright in the direction perpendicular to the face (H direction in FIG. 1) or in the direction facing the face, so that a part of the central side of the main body portion 110 and a part of the face of the human body can be formed. It forms a space between them.
 顔面と当接する当接部120と、顔面から離間する隆起部130との間には、双方をつなぐ遷移部132が存在する。隆起部130は、マスク100の使用中及び/またはマスクの非使用中に、所定の形状または高さを保持することが好ましい。このため、遷移部132は、所定の剛性を備えることが好ましい。 There is a transition portion 132 connecting both of the contact portion 120 that comes into contact with the face and the raised portion 130 that separates from the face. The raised portion 130 preferably retains a predetermined shape or height during use of the mask 100 and / or non-use of the mask. Therefore, it is preferable that the transition portion 132 has a predetermined rigidity.
 例えば、遷移部132は、当接部120に用いられる素材とは異なる素材から構成されることで、他の部位とは異なる剛性を有することができる。または、遷移部132は、当接部120に用いられる素材と同じ素材から構成されるとともに、所定領域に補強部材等を含むことができる。または、本体部110は、全体的に比較的剛性の高い素材から形成されていてもよい。このように、隆起部130は、遷移部132によって支持されることで、顔面から離間した所定の高さで保持される。 For example, the transition portion 132 can have a rigidity different from that of other portions by being made of a material different from the material used for the contact portion 120. Alternatively, the transition portion 132 may be made of the same material as the material used for the contact portion 120, and may include a reinforcing member or the like in a predetermined region. Alternatively, the main body 110 may be formed of a material having relatively high rigidity as a whole. In this way, the raised portion 130 is supported by the transition portion 132 and is held at a predetermined height away from the face.
 図2を参照すると、図1に例示した、ワイヤレス給電マスク装置1のマスク100を半透明に示した斜視図が例示されている。
 図1及び図2から理解できるように、本体部110の隆起部130の中に送信アンテナ200と、制御装置250とを内蔵している。このため、送信アンテナ200と、制御装置250とは、人体の顔面の一部(例えば、口腔、上唇及び下唇)に対して直接当接することが防がれている。
With reference to FIG. 2, a perspective view showing the mask 100 of the wireless power transfer mask device 1 illustrated in FIG. 1 in a translucent manner is exemplified.
As can be understood from FIGS. 1 and 2, the transmitting antenna 200 and the control device 250 are built in the raised portion 130 of the main body portion 110. Therefore, the transmitting antenna 200 and the control device 250 are prevented from directly contacting a part of the face of the human body (for example, the oral cavity, the upper lip and the lower lip).
 送信アンテナ200は、外部に電磁波を送信する電力送信機として機能する。特に、口腔内に配置される電子デバイスへの給電を可能にするのに適する指向性と利得を有するように、アンテナとして機能する。実施例1では、送信アンテナ200として、ループ・アンテナを用いている。制御装置250は、ループ・アンテナに電流を供給する任意の回路を含むことができる。 The transmitting antenna 200 functions as a power transmitter that transmits electromagnetic waves to the outside. In particular, it functions as an antenna so as to have directivity and gain suitable for enabling power feeding to electronic devices placed in the oral cavity. In the first embodiment, a loop antenna is used as the transmitting antenna 200. The control device 250 can include any circuit that supplies current to the loop antenna.
 本体部110の隆起部130の中に送信アンテナ200を組み込むことによって、送信アンテナ200は、アンテナ本来の機能に加えて、隆起部130に剛性を付与する補強部材として機能することもできる。制御装置250についても同様である。ただし、制御装置250は、本体部110の外側に取付けることも可能である。 By incorporating the transmitting antenna 200 in the raised portion 130 of the main body portion 110, the transmitting antenna 200 can also function as a reinforcing member that imparts rigidity to the raised portion 130 in addition to the original function of the antenna. The same applies to the control device 250. However, the control device 250 can also be attached to the outside of the main body 110.
 図1及び図2から理解できるように、隆起部130は、その中に送信アンテナ200を配置することを容易にするため、略平坦部を有する。略平坦部は、口腔の一部または全部を覆う大きさを有することにより、送信アンテナ200の取付け面を確保してもよい。隆起部130は、マスクの厚さ方向で、所定の厚さを有する。このため、送信アンテナ200は、その隆起部130の厚さの中で、人体の顔面と正対するように取付けられる。この結果、送信アンテナ200の向きは、常に口腔の内部に向うように維持されている。従って、送信アンテナ200は、外部環境から保護されている。制御装置250についても同様である。 As can be understood from FIGS. 1 and 2, the raised portion 130 has a substantially flat portion in order to facilitate the arrangement of the transmitting antenna 200 in the raised portion 130. The substantially flat portion may have a size that covers a part or all of the oral cavity to secure the mounting surface of the transmitting antenna 200. The raised portion 130 has a predetermined thickness in the thickness direction of the mask. Therefore, the transmitting antenna 200 is attached so as to face the face of the human body within the thickness of the raised portion 130. As a result, the orientation of the transmitting antenna 200 is always maintained toward the inside of the oral cavity. Therefore, the transmitting antenna 200 is protected from the external environment. The same applies to the control device 250.
 図3を参照すると、図1に例示した、ワイヤレス給電マスク装置1のマスク100を半透明に示すとともに、口腔外に取付けられる送信アンテナ200と口腔内に取付けられる受信アンテナ300との対応関係が例示されている。
 同図から理解できるように、受信アンテナ300は、送信アンテナ200と近接配置されており、送信アンテナ200から送信される電磁波の受信を容易にしている。
 同図から理解できるように、口腔内に配置される受信アンテナ300は、好適には、任意の人工物400内に収容されている。
Referring to FIG. 3, the mask 100 of the wireless power transfer mask device 1 illustrated in FIG. 1 is shown semi-transparently, and the correspondence between the transmitting antenna 200 mounted outside the oral cavity and the receiving antenna 300 mounted inside the oral cavity is exemplified. Has been done.
As can be understood from the figure, the receiving antenna 300 is arranged close to the transmitting antenna 200, facilitating the reception of the electromagnetic wave transmitted from the transmitting antenna 200.
As can be seen from the figure, the receiving antenna 300 arranged in the oral cavity is preferably housed in an arbitrary artificial object 400.
 図4を参照すると、図3に例示した送信アンテナ200と受信アンテナ300の相対関係が拡大して例示されている。
 例えば、口腔内に、任意の大きさと形状を有するマウスピース400を配置する。マウスピース400の本体内には、受信アンテナ300を内蔵することによって、口腔内にマウスピース400を取付けると同時に、口腔内への受信アンテナ300の取付けを行うことができる。受信アンテナ300を外部環境に直接晒さないことで、その生体適合性の条件を緩和することができる。
With reference to FIG. 4, the relative relationship between the transmitting antenna 200 and the receiving antenna 300 illustrated in FIG. 3 is expanded and illustrated.
For example, a mouthpiece 400 having an arbitrary size and shape is placed in the oral cavity. By incorporating the receiving antenna 300 in the main body of the mouthpiece 400, the mouthpiece 400 can be attached to the oral cavity and at the same time the receiving antenna 300 can be attached to the oral cavity. By not directly exposing the receiving antenna 300 to the external environment, the biocompatibility condition can be relaxed.
 さらに、マウスピース400の本体内には、任意の電子デバイス(電気刺激機器、センサ等)が内蔵されている。このため、受信アンテナ300によって受信された電力を、近接配置された電子デバイスに給電することを容易にしている。マウスピース400の本体内では、受信アンテナ300と電子デバイスとはワイヤ等で物理的に接続することができる。 Furthermore, any electronic device (electrical stimulator, sensor, etc.) is built in the main body of the mouthpiece 400. Therefore, it is easy to supply the electric power received by the receiving antenna 300 to the electronic devices arranged close to each other. In the main body of the mouthpiece 400, the receiving antenna 300 and the electronic device can be physically connected by a wire or the like.
 例えば、電子デバイスは、人体の頭部の感覚器(聴覚、味覚、視覚、嗅覚、触覚、涙腺、唾液腺、発汗腺)の補強を行うことができる電気刺激機器でもよい。
 例えば、電子デバイスは、患者の感覚器の替わりに機能することができる人工感覚器でもよい。
 例えば、電子デバイスは、人体の頭部に配置されるセンサでもよい。具体的には、電子デバイスは、患者の体温または口腔温を検知する温度センサ、口腔内の唾液成分からグルコースの濃度を検知するグルコース・センサ、口腔内の咬合力を検知する圧力センサ、口腔内の唾液腺分泌及び治療または他の種類の任意の生体適合性センサでもよい。
For example, the electronic device may be an electrical stimulator capable of reinforcing the sensory organs (auditory, taste, visual, olfactory, tactile, lacrimal gland, salivary gland, sweat gland) of the human head.
For example, the electronic device may be an artificial sensory organ that can function in place of the patient's sensory organs.
For example, the electronic device may be a sensor placed on the head of the human body. Specifically, the electronic device includes a temperature sensor that detects the patient's body temperature or oral temperature, a glucose sensor that detects the concentration of glucose from saliva components in the oral cavity, a pressure sensor that detects the occlusal force in the oral cavity, and the oral cavity. It may be a salivary gland secretion and treatment or any other type of biocompatibility sensor.
 図5を参照すると、図4に例示した受信アンテナ300を拡大して例示している。
 図4及び図5から理解できるように、送信アンテナ200と受信アンテナ300は、いずれも、エレメント(導線)を環状にしたループ・アンテナとして構成されている。ただし、それぞれの設置場所等に応じて、コイルの進む長さ(回転数)を変えている。
With reference to FIG. 5, the receiving antenna 300 illustrated in FIG. 4 is enlarged and illustrated.
As can be understood from FIGS. 4 and 5, both the transmitting antenna 200 and the receiving antenna 300 are configured as a loop antenna having an element (conductor) in a ring shape. However, the length (rotational speed) of the coil is changed according to each installation location.
 例えば、送信アンテナ200は、比較的に厚さの薄い本体部110内に組み込まれるため、好ましくは、エレメントを円環状(1回りのコイル状)にした、最も厚さの薄い構成(図1のH方向に沿った厚さ)を有している。
 これに対して、受信アンテナ300は、比較的厚みのある(図1のH方向に沿った厚さ)マウスピース400の中に組み込まれるため、エレメントを螺旋状に複数回転する余裕がある。
For example, since the transmitting antenna 200 is incorporated in the main body portion 110 having a relatively thin thickness, it is preferable that the element has an annular shape (one coil shape) to form the thinnest structure (FIG. 1). It has a thickness along the H direction).
On the other hand, since the receiving antenna 300 is incorporated in the mouthpiece 400 having a relatively thick thickness (thickness along the H direction in FIG. 1), there is a margin for rotating a plurality of elements in a spiral shape.
 図示した実施例では、受信アンテナ300は、2回りのコイル状に進むように、本体310を構成している。この結果、このエレメントの両端部320、330は、所定間隔で離間している。各端部320、330は、電子デバイスへの給電を行うため、任意の給電回路内に組み込まれている。
 これら2つのアンテナは、設置場所等に応じて、コイルの大きさ(直径)を変えることができる。
 例えば、受信アンテナ300は、口腔内のマウスピース400の本体内に収容されるため、受信アンテナ300のコイルの直径を比較的小さくしている。具体例を挙げると、図示した実施例では、受信アンテナ300の直径は、約5mmである。
In the illustrated embodiment, the receiving antenna 300 constitutes the main body 310 so as to proceed in a coil shape around two times. As a result, both ends 320 and 330 of this element are spaced apart at predetermined intervals. The ends 320 and 330 are incorporated in an arbitrary power feeding circuit in order to supply power to the electronic device.
The size (diameter) of the coil of these two antennas can be changed according to the installation location and the like.
For example, since the receiving antenna 300 is housed in the main body of the mouthpiece 400 in the oral cavity, the diameter of the coil of the receiving antenna 300 is relatively small. To give a specific example, in the illustrated embodiment, the diameter of the receiving antenna 300 is about 5 mm.
 一方、送信アンテナ200は、より大きな本体部110内に配置されるため、口腔内のマウスピース400の大きさに拘束されず、送信アンテナ200のコイルの直径を比較的大きくしている。同図からは、送信アンテナ200の直径は、受信アンテナ300の直径と比べて、数倍以上大きいことが理解できる。
 なお、送信アンテナ200と受信アンテナ300は、いずれも、エレメントをコイル状に構成しているが、その回転数と大きさ(直径)は、図示したものに限定されない。
On the other hand, since the transmitting antenna 200 is arranged in the larger main body 110, the diameter of the coil of the transmitting antenna 200 is relatively large without being restricted by the size of the mouthpiece 400 in the oral cavity. From the figure, it can be understood that the diameter of the transmitting antenna 200 is several times larger than the diameter of the receiving antenna 300.
In both the transmitting antenna 200 and the receiving antenna 300, the elements are configured in a coil shape, but the rotation speed and the size (diameter) thereof are not limited to those shown in the drawings.
 マスクの本体内には、送信アンテナ200を制御するための制御装置250が内蔵されている。制御装置250は、例えば、小型の、プロセッサを搭載したシングルボードコンピュータでもよい。制御装置は、例えば、Raspberry Pi(ラズベリー・パイ(登録商標))等でもよい。制御装置250には、送信アンテナ200を機能させるための任意の回路を関連付けることができる。 A control device 250 for controlling the transmitting antenna 200 is built in the main body of the mask. The control device 250 may be, for example, a small single board computer equipped with a processor. The control device may be, for example, Raspberry Pi (Raspberry Pi (registered trademark)) or the like. Any circuit for operating the transmitting antenna 200 can be associated with the control device 250.
 なお、本実施例1に係るワイヤレス給電マスク装置1は、アンテナとして円形のループ・アンテナを用いている。一般的には、ループ・アンテナで一番効率が良いのは円形だとされている。しかしながら、本実施例では、ループ・アンテナの種類は円形に限定されない。使用時の波長等に応じて、近似の八角、六角等のループ・アンテナを用いることは可能である。 The wireless power transfer mask device 1 according to the first embodiment uses a circular loop antenna as an antenna. Generally, it is said that the most efficient loop antenna is a circle. However, in this embodiment, the type of loop antenna is not limited to a circle. It is possible to use an approximate octagonal or hexagonal loop antenna depending on the wavelength at the time of use.
 さらに、本実施例1に係るワイヤレス給電マスク装置1では、用いられるアンテナは、ループ・アンテナに限定されない。例えば、ワイヤレス給電マスク装置1は、アンテナとして、単一のパッチ・アンテナ(平面アンテナ)または複数個のパッチ・アンテナ(パッチ・アレイ・アンテナを含む)等を用いることも可能である。 Further, in the wireless power transfer mask device 1 according to the first embodiment, the antenna used is not limited to the loop antenna. For example, the wireless feeding mask device 1 may use a single patch antenna (planar antenna) or a plurality of patch antennas (including a patch array antenna) as the antenna.
 さらに、本実施例1に係るワイヤレス給電マスク装置1では、用いられるアンテナは、単体である必要はない。例えば、ワイヤレス給電マスク装置1は、アンテナに対して、メタサーフェスを組み合わせて用いることも可能である。
 メタサーフェスとは、メタマテリアル(人口媒質)の一種であり、波長に対して小さい構造体を周期配置した任意の誘電率・透磁率を有する導波素子である。メタサーフェスは、その表面に入射した電磁波の反射や透過位相を制御できる特徴を有している。このため、メタサーフェスは、入射光の制御に利用することができる。本実施例では、同様のコンセプトをマイクロ波に適用することによって、メタサーフェスを用いたアンテナ設計を行っている。メタマテリアル(meta-material)とアンテナを組み合わせた平面アンテナ自体をメタサーフェス10と呼ぶこともある。
Further, in the wireless power transfer mask device 1 according to the first embodiment, the antenna used does not have to be a single unit. For example, the wireless power transfer mask device 1 can also use a metasurface in combination with the antenna.
A metasurface is a kind of metamaterial (artificial medium), and is a waveguide element having an arbitrary dielectric constant and magnetic permeability in which a structure small with respect to a wavelength is periodically arranged. The metasurface has a feature that the reflection and transmission phase of the electromagnetic wave incident on the surface can be controlled. Therefore, the metasurface can be used to control the incident light. In this embodiment, an antenna design using a metasurface is performed by applying the same concept to microwaves. The planar antenna itself, which is a combination of a meta-material and an antenna, is sometimes called a metasurface 10.
 以下、図6乃至図14を参照して、メタマテリアルを用いた、ワイヤレス給電マスク装置1の実施例2について説明する。
 図6乃至図9には、メタサーフェス・アンテナ(送信アンテナ)を形成する、メタサーフェスとLC共振器の組み合わせが例示されている。
 図10及び図11には、上記送信アンテナの機能に関して、コンピュータ上で数学的モデルを用いて行われたシミュレーション結果が例示されている。
 図12乃至図14には、上記送信アンテナの制御に関して、制御のフローが例示されている。
 以下の説明では、図1乃至図5を参照して例示した実施例1のものと同様または同一の装置、部品、構成要素等については、同じ参照番号を用いるものとし、記載の重複を避けるため、その詳細な説明は割愛する。
Hereinafter, the second embodiment of the wireless power transfer mask device 1 using the metamaterial will be described with reference to FIGS. 6 to 14.
6 to 9 illustrate a combination of a metasurface and an LC resonator that forms a metasurface antenna (transmitting antenna).
10 and 11 illustrate the simulation results of the function of the transmitting antenna, which was performed using a mathematical model on a computer.
12 to 14 illustrate a control flow with respect to the control of the transmitting antenna.
In the following description, the same reference numbers shall be used for the same or the same devices, parts, components, etc. as those of the first embodiment illustrated with reference to FIGS. 1 to 5, in order to avoid duplication of description. , The detailed explanation is omitted.
 図6を参照すると、図1に例示した構成において、頭部の口腔を外部から覆う大きさを有するマスク状本体部110の隆起部130内に、メタサーフェス・アンテナ(送信アンテナ)220を取付けた様子が例示されている。この送信アンテナ220は、メタサーフェス500とLC共振器600の組み合わせを有している。この送信アンテナ220は、図1に例示したループ・アンテナの送信アンテナ200の替わりに用いることができる。 Referring to FIG. 6, in the configuration exemplified in FIG. 1, a metasurface antenna (transmitting antenna) 220 is mounted in a raised portion 130 of a mask-shaped main body portion 110 having a size of covering the oral cavity of the head from the outside. The situation is illustrated. The transmitting antenna 220 has a combination of a metasurface 500 and an LC resonator 600. The transmitting antenna 220 can be used in place of the transmitting antenna 200 of the loop antenna illustrated in FIG.
 メタサーフェス500とは、メタマテリアル(人口媒質)の一種であり、波長に対して小さい構造体を周期配置して任意の誘電率を有する導波素子である。一般に、メタサーフェスは、その表面に入射した電磁波の反射や透過位相を制御できる特徴を有している。このため、メタサーフェス500は、入射光の制御に利用することができる。本実施例では、同様のコンセプトをマイクロ波に適用することによって、メタサーフェス10を用いたアンテナ設計を行っている。メタマテリアル(meta-material)とアンテナを組み合わせた平面アンテナ自体をメタサーフェス500と呼ぶこともある。 The metasurface 500 is a kind of metamaterial (artificial medium), and is a waveguide element having an arbitrary dielectric constant by periodically arranging a structure small with respect to a wavelength. In general, a metasurface has a feature that can control the reflection and transmission phase of electromagnetic waves incident on the surface. Therefore, the metasurface 500 can be used to control the incident light. In this embodiment, an antenna design using the metasurface 10 is performed by applying the same concept to microwaves. The planar antenna itself, which is a combination of a meta-material and an antenna, is sometimes called a metasurface 500.
 図7を参照すると、図6に例示したメタサーフェス500とLC共振器600の組み合わせを斜視図で示している。
 図8を参照すると、図7に例示したメタサーフェス500とLC共振器600の組み合わせを平面図で示している。
With reference to FIG. 7, the combination of the metasurface 500 and the LC resonator 600 exemplified in FIG. 6 is shown in a perspective view.
Referring to FIG. 8, the combination of the metasurface 500 and the LC resonator 600 exemplified in FIG. 7 is shown in a plan view.
 これらの図から、メタサーフェス500とLC共振器600の組み合わせは、同一平面上に配置されるとともに、全体として厚さを極薄に構成することが理解できる。このことは、厚さの薄いマスク100の中に取付けるのに適当である。従って、マスク状本体部110の隆起部130の厚さの中に、メタサーフェス500とLC共振器600の組み合わせを配置することができる From these figures, it can be understood that the combination of the metasurface 500 and the LC resonator 600 is arranged on the same plane and has an extremely thin thickness as a whole. This is suitable for mounting in a thin mask 100. Therefore, the combination of the metasurface 500 and the LC resonator 600 can be arranged in the thickness of the raised portion 130 of the mask-shaped main body portion 110.
 図7から理解できるように、メタサーフェス500は、複数個のパッチ510、520から構成することができる。なお、図示した実施例では、2個のパッチ510、520からメタサーフェス500が構成されているが、より多い数のパッチからメタサーフェス500を構成することは可能である。 As can be seen from FIG. 7, the metasurface 500 can be composed of a plurality of patches 510 and 520. In the illustrated embodiment, the metasurface 500 is composed of two patches 510 and 520, but it is possible to configure the metasurface 500 from a larger number of patches.
 各パッチ510、520は、それぞれ、任意の素材から構成することができる。例えば、各パッチ510、520は、金、銀、銅等の貴金属を用いて構成することができる。また、各パッチ510、520は、任意の基板(シリコン基板等)上に配置することができる。 Each patch 510 and 520 can be made of any material. For example, each patch 510 and 520 can be configured using precious metals such as gold, silver and copper. Further, each patch 510 and 520 can be arranged on an arbitrary substrate (silicon substrate or the like).
 各パッチ510、520は、任意の工程から製造することができる。例えば、基板の表面上に、複数個のパッチ510、520が所定のパターンで並べられるように構成する。例えば、基板の表面を均一な膜厚に制御した後、その膜上にナノパターンを描画、作成、及びコーティングすることで、複数個のパッチ510、520からなるメタサーフェス500を形成してもよい。この際、例えば、スピンコーティング法等、任意の加工を用いることができる。最終的に得られたメタサーフェス500は、本体部110のうち、隆起部130の中に取付けられることができる。 Each patch 510 and 520 can be manufactured from any process. For example, a plurality of patches 510 and 520 are configured to be arranged in a predetermined pattern on the surface of the substrate. For example, after controlling the surface of the substrate to a uniform film thickness, a metasurface 500 composed of a plurality of patches 510 and 520 may be formed by drawing, creating, and coating a nanopattern on the film. .. At this time, any processing such as a spin coating method can be used. The finally obtained metasurface 500 can be mounted in the raised portion 130 of the main body portion 110.
 メタサーフェス500に対しては、「One chip RF solution」700を組み合わせることができる。「One chip RF solution」700は、メタサーフェス500とLC共振器600の制御を行う制御装置である。この制御装置700は、各パッチ510、520への給電を制御するために、適当な回路を有する。例えば、制御装置700は、高周波スイッチまたはRFスイッチを含むことができる。高周波スイッチとは、高周波信号の経路を切り替えるスイッチのことである。 "One chip RF solution" 700 can be combined with the meta surface 500. The "One chip RF solution" 700 is a control device that controls the metasurface 500 and the LC resonator 600. The control device 700 has an appropriate circuit for controlling the feeding to each patch 510 and 520. For example, the control device 700 can include a high frequency switch or an RF switch. A high frequency switch is a switch that switches the path of a high frequency signal.
 図8を参照すると、メタサーフェス500は、上下2つに並置された2つのパッチ510、520の間に、1つの隙間530を介在させている。好ましくは、2つのパッチ510、520は、正対する各辺の長さを同一に揃えるとともに、それぞれ、同一の距離で離間する。 Referring to FIG. 8, the meta-surface 500 has one gap 530 interposed between two patches 510 and 520 juxtaposed on the upper and lower sides. Preferably, the two patches 510 and 520 have the same length of each facing side and are separated from each other by the same distance.
 隣り合う2つのパッチ510、520の間に高周波スイッチを関連付けることで、これら2つのパッチ510、520の通電状態を同時に制御することができる。このため、ワイヤレス給電マスク装置1は、高周波スイッチを選択的に制御することで、メタサーフェス500表面の電流パターンを自在に変更することができる。 By associating a high frequency switch between two adjacent patches 510 and 520, the energization state of these two patches 510 and 520 can be controlled at the same time. Therefore, the wireless power supply mask device 1 can freely change the current pattern on the surface of the metasurface 500 by selectively controlling the high frequency switch.
 各パッチ510、520上を流れる電流パターンは、対応する高周波スイッチのON/OFFの組み合わせによって制御することができる。例えば、電子式の高周波スイッチを用いることで、制御信号の状態に応じて、高周波信号が通過する経路のオンとオフとを切り換えることができる。 The current pattern flowing on each patch 510 and 520 can be controlled by the ON / OFF combination of the corresponding high frequency switch. For example, by using an electronic high-frequency switch, it is possible to switch on and off the path through which the high-frequency signal passes according to the state of the control signal.
 高周波スイッチは、制御装置700によって一元的に管理されている。この結果、複数個のパッチ510、520は、これらパッチの一部ごと、パッチごと、またはパッチの小集団ごとに給電することができる。なお、パッチの数と、スイッチの数とは、図示した態様に限定されない。
 このように、制御装置700は、メタサーフェス500の特徴を利用できるように、メタサーフェス500の制御を行っている。
The high frequency switch is centrally managed by the control device 700. As a result, the plurality of patches 510 and 520 can be fed by a part of these patches, by patches, or by a small group of patches. The number of patches and the number of switches are not limited to the illustrated embodiments.
In this way, the control device 700 controls the meta surface 500 so that the features of the meta surface 500 can be utilized.
 メタサーフェス500の周囲には、その外側を囲むように、LC共振器600が配置されている。LC共振器600は、略リング状に構成された2つの共振器を入れ子状に配置することで構成されている。それぞれの共振器にはLCコンポーネント(LC component)610が配置されている。 An LC resonator 600 is arranged around the meta surface 500 so as to surround the outside thereof. The LC resonator 600 is configured by arranging two resonators configured in a substantially ring shape in a nested manner. An LC component (LC component) 610 is arranged in each resonator.
 2つのリング状のLC共振器600(リング状部)は、それぞれ、細長いエレメントを環状に延在させている。好適には、2つのリング状の共振器は、互いに相似形を有するとともに、入れ子状に配置されており、互いに所定距離で離間している。 Each of the two ring-shaped LC resonators 600 (ring-shaped portion) has an elongated element extending in an annular shape. Preferably, the two ring-shaped resonators are similar to each other and are arranged in a nested manner, and are separated from each other by a predetermined distance.
 LC共振器600は、その中央を貫く磁場に対してアンテナ状に振る舞うことができる。このアンテナから外部に放射される電磁波は、LC共振器600の内側に入れ子状に配置されたメタサーフェス500を通過する。従って、メタサーフェス500とLC共振器600とを組み合わせた、メタサーフェス・アンテナ(送信アンテナ)220が形成されている。 The LC resonator 600 can behave like an antenna with respect to a magnetic field penetrating the center of the LC resonator 600. The electromagnetic wave radiated to the outside from this antenna passes through the metasurface 500 nested inside the LC resonator 600. Therefore, a metasurface antenna (transmitting antenna) 220 is formed by combining the metasurface 500 and the LC resonator 600.
 例えば、LC共振器600がアンテナとして振る舞って、電磁波(ビーム)を生成する際、高周波スイッチによって複数個のパッチ510、520を制御することで、ビームフォーミング(ビームの調整)を行うことが可能となる。例えば、ビームフォーミングにより送信の方向や送信電力を切り替えることができる。その切り替えは、多段階で行うことができる。 For example, when the LC resonator 600 behaves as an antenna and generates an electromagnetic wave (beam), beamforming (beam adjustment) can be performed by controlling a plurality of patches 510 and 520 with a high frequency switch. Become. For example, beamforming can be used to switch the transmission direction and transmission power. The switching can be performed in multiple stages.
 図示した実施例では、LC共振器600の2重リング構造は、いずれも相似形の多角形の輪郭に沿って延在する。特に、2重リング構造は、いずれも五角形の周縁に沿って延在している。この五角形は、1辺の長さが等しい正五角形とすることができる。また、この五角形は、真上の辺が平行に延在するとともに、真下に頂点が来るように、逆五角形または逆正五角形とすることができる。特に、逆五角形または逆正五角形の形状を有することによって、2つのリング状のLC共振器600は、口腔を囲む上唇と下唇の外側で、それらと干渉しないように配置することができる。 In the illustrated embodiment, the double ring structure of the LC resonator 600 extends along the contour of a similar polygon. In particular, the double ring structures all extend along the periphery of the pentagon. This pentagon can be a regular pentagon having the same length on one side. Further, this pentagon can be an inverted pentagon or an inverted regular pentagon so that the upper side extends in parallel and the apex comes directly below. In particular, by having an inverted pentagonal or inverted pentagonal shape, the two ring-shaped LC resonators 600 can be placed on the outside of the upper and lower lips surrounding the oral cavity so as not to interfere with them.
 LC共振器600の2重リング構造は、5つの角部で折れ曲がって進む構造を有することで、円形のループリングと近似した性質を備えることができる。換言すると、五角形のLC共振器600の2重リング構造は、円形の場合と対比して、その性質を大きく低減させていない。 The double ring structure of the LC resonator 600 has a structure that bends at five corners and advances, so that it can have properties similar to those of a circular loop ring. In other words, the double ring structure of the pentagonal LC resonator 600 does not significantly reduce its properties as compared to the circular case.
 LC共振器600の2重リング構造は、5つの角部で折れ曲がって進む構造を有することで、所定の強度を備えることができる。例えば、上唇と下唇とが様々な動きをした場合であっても、その周囲に配置された2重リング構造が、5つの角部によって、所定の形状を維持できるようにしている。 The double ring structure of the LC resonator 600 can have a predetermined strength by having a structure that bends at five corners and advances. For example, even when the upper lip and the lower lip make various movements, the double ring structure arranged around the upper lip and the lower lip can maintain a predetermined shape by the five corners.
 特に、逆五角形または逆正五角は、上下及び左右方向に対照的に広がる形状を有しているため、口腔を囲むのに適している。このため、口角、上唇、下唇等の動きに対して、2重リング構造の形状を維持するのに適している。このように、送信アンテナの形状が、マスクならではの独特な形状に則しており、技術的な特徴がある。 In particular, the inverted pentagon or the inverted regular pentagon has a shape that spreads in contrast to the vertical and horizontal directions, and is therefore suitable for surrounding the oral cavity. Therefore, it is suitable for maintaining the shape of the double ring structure against the movements of the corners of the mouth, the upper lip, the lower lip, and the like. As described above, the shape of the transmitting antenna conforms to the unique shape unique to the mask, and has technical characteristics.
 なお、LC共振器600の2重リング構造は、上述した逆五角形または逆正五角形に限定されない。例えば、2重リング構造は、口腔の周囲に配置されるのに適した多角形の形状で、折れ曲がって進むように形成されてもよい。例えば、LC共振器600の2重リング構造は、六角形または正六角形に形成されてもよい。さらには、2重リング構造は、任意の角を有する多角形、逆多角形または正多角形に形成されてもよい。 The double ring structure of the LC resonator 600 is not limited to the above-mentioned inverted pentagon or inverted regular pentagon. For example, the double ring structure may be formed to bend and proceed in a polygonal shape suitable for placement around the oral cavity. For example, the double ring structure of the LC resonator 600 may be formed in a hexagonal or regular hexagonal shape. Furthermore, the double ring structure may be formed into a polygon having arbitrary angles, an inverted polygon, or a regular polygon.
 図9を参照すると、メタサーフェス・アンテナ(送信アンテナ)220の機能に関して、3次元空間内での電磁波の放射について、コンピュータ上で数学的モデルを用いて行われたシミュレーション結果が例示されている。
 同図の符号220は、人体の口腔外に配置された送信アンテナ220の位置に相当している。同図の符号300は、人体の口腔内に配置された受信アンテナの位置に相当している。この位置は、3次元空間の中心に相当する。これら2つのアンテナの位置は、実際の離間距離に合わせて、3次元空間内で位置決めされている。
With reference to FIG. 9, regarding the function of the metasurface antenna (transmitting antenna) 220, the simulation result performed by using a mathematical model on a computer for the radiation of electromagnetic waves in a three-dimensional space is exemplified.
Reference numeral 220 in the figure corresponds to the position of the transmitting antenna 220 arranged outside the oral cavity of the human body. Reference numeral 300 in the figure corresponds to the position of the receiving antenna arranged in the oral cavity of the human body. This position corresponds to the center of the three-dimensional space. The positions of these two antennas are positioned in the three-dimensional space according to the actual separation distance.
 図10では、送信アンテナ220から発射された電磁波について、その存在が推定される場所では、その強度に応じて比較的に明るい色(白色)で示している。同様に、電磁波の存在が推定されない場所では、その強度に応じて比較的に暗い色(黒色)で示している。このため、3次元空間内で、電磁波の存在が、その強度に応じて、グレースケールで例示されている。 In FIG. 10, the electromagnetic wave emitted from the transmitting antenna 220 is shown in a relatively bright color (white) according to its intensity at the place where its existence is presumed. Similarly, in places where the presence of electromagnetic waves is not estimated, they are shown in a relatively dark color (black) according to their intensity. Therefore, in the three-dimensional space, the existence of electromagnetic waves is illustrated in gray scale according to their intensities.
 例えば、送信アンテナ220の場所では、電磁波について、最も明るい色で例示されている。符号220aで示すように、マスク100の内部に送信アンテナ220が配置されているため、マスクの外側(即ち、口腔の外側)に向う電磁波の進行は制限されている。また、符号220bで示すように、マスクの内側(即ち、口腔の内側)に向う電磁波の進行は、その進行を妨げるものがないため、制限されていない。従って、送信アンテナ220から外部に出る電磁波は、比較的に明るい色を保ちながら、受信アンテナ300の場所まで伝達している。この結果、受信アンテナ300は、比較的に良好な状態で、送信アンテナ220から送られた電磁波を受電できることが理解できる。 For example, at the location of the transmitting antenna 220, electromagnetic waves are illustrated in the brightest color. As indicated by reference numeral 220a, since the transmitting antenna 220 is arranged inside the mask 100, the traveling of the electromagnetic wave toward the outside of the mask (that is, the outside of the oral cavity) is restricted. Further, as indicated by reference numeral 220b, the progress of the electromagnetic wave toward the inside of the mask (that is, the inside of the oral cavity) is not restricted because there is nothing to hinder the progress. Therefore, the electromagnetic wave emitted from the transmitting antenna 220 to the outside is transmitted to the location of the receiving antenna 300 while maintaining a relatively bright color. As a result, it can be understood that the receiving antenna 300 can receive the electromagnetic wave transmitted from the transmitting antenna 220 in a relatively good state.
 送信アンテナ220は、本体部110内に収容されるため、電磁波の送電方向を口腔内に集中させるのに適している。従って、本実施例は、送信アンテナ220は、受信アンテナ300との関係で、好適な指向性を有することができる。
 なお、送信アンテナ220の指向をより高める手段をマスク100に備えることは可能である。例えば、本体部110内で、送信アンテナ220の裏側に反射板を配置してもよい。この場合、送信アンテナ220から発射されるビームの一部が外部に向かうとき、その方向を調整または反射させて、口腔内に向かうようにしてもよい。
Since the transmitting antenna 220 is housed in the main body 110, it is suitable for concentrating the transmission direction of electromagnetic waves in the oral cavity. Therefore, in this embodiment, the transmitting antenna 220 can have a suitable directivity in relation to the receiving antenna 300.
It is possible to equip the mask 100 with means for further increasing the directivity of the transmitting antenna 220. For example, a reflector may be arranged on the back side of the transmitting antenna 220 in the main body 110. In this case, when a part of the beam emitted from the transmitting antenna 220 is directed to the outside, the direction may be adjusted or reflected so that the beam is directed toward the oral cavity.
 図10を参照すると、メタサーフェス・アンテナ(送信アンテナ)220の機能(利得等)に関して、コンピュータ上で数学的モデルを用いて行われたシミュレーション結果が例示されている。
 上述のように、本実施例では、LC共振器600がアンテナとして振る舞って、電磁波(ビーム)を生成する際、隙間530内に配置された高周波スイッチによって複数個のパッチ510、520を制御することによって、ビームフォーミング(ビームの向きや幅等の調整)を行う。
 つまり送信アンテナ220のメタサーフェス500は、口腔内に配置される電子デバイスに対して給電するための電磁波の指向性を変更する。
With reference to FIG. 10, the simulation results performed using a mathematical model on a computer with respect to the functions (gain, etc.) of the metasurface antenna (transmitting antenna) 220 are exemplified.
As described above, in this embodiment, when the LC resonator 600 behaves as an antenna and generates an electromagnetic wave (beam), a plurality of patches 510 and 520 are controlled by a high frequency switch arranged in the gap 530. Beamforming (adjustment of beam direction, width, etc.) is performed by.
That is, the metasurface 500 of the transmitting antenna 220 changes the directivity of the electromagnetic wave for supplying power to the electronic device arranged in the oral cavity.
 図10では、所定の周波数に対して、ビームの調整の結果、利得を4段階で区別することが例示されている。グラフ上では、このうち、3つの例が示されている。例えば、0.92GHzの周波数では、図10の符号S1,1、S1,2、S2,1等で例示するように、-66dB、-37dB、-62dB等のように、送信電力を段階的に変化させている。 FIG. 10 illustrates that the gain is distinguished in four stages as a result of beam adjustment for a predetermined frequency. Three of these are shown on the graph. For example, at a frequency of 0.92 GHz, the transmission power is gradually increased as in -66 dB, -37 dB, -62 dB, etc., as illustrated by reference numerals S1, 1, S1, 2, S2, 1 and the like in FIG. I'm changing.
 従って、本実施例は、送信アンテナ220は、受信アンテナ300との関係で、実施上適当な利得を有することができる。
 特に、本実施例は、送信アンテナの送信電力を段階的に変化させることができる。このため、受信アンテナ300側の状態の変化に応じて、最適な電力を給電することが可能となっている。
 なお、周波数等は、例示であって、その値は、実施態様に応じて変化させることができる。
Therefore, in this embodiment, the transmitting antenna 220 can have an appropriate gain in practice in relation to the receiving antenna 300.
In particular, in this embodiment, the transmission power of the transmission antenna can be changed stepwise. Therefore, it is possible to supply the optimum power according to the change in the state of the receiving antenna 300 side.
The frequency and the like are examples, and the values thereof can be changed according to the embodiment.
 本実施例に係るワイヤレス給電マスク装置1は、送信アンテナ220から受信アンテナ300へ向けて送信される電力の供給を効率的に行えるように、特別な工夫を行っている。
 図11を参照すると、ワイヤレス給電マスク装置1の送電制御の概略図が例示されている。
 電力送信機は、図6に例示した、送信アンテナ220(メタサーフェス500を組み合わせたLC共振器600)に相当している。
 電力受信機は、図3に例示した、口腔内に配置された受信アンテナ300に相当している。
 センサは、図3に例示したように、口腔の内部に配置されたマウスピース400に内蔵された電子デバイスに相当している。
The wireless power feeding mask device 1 according to the present embodiment is specially devised so that the power transmitted from the transmitting antenna 220 to the receiving antenna 300 can be efficiently supplied.
With reference to FIG. 11, a schematic diagram of power transmission control of the wireless power transfer mask device 1 is illustrated.
The power transmitter corresponds to the transmitting antenna 220 (LC resonator 600 combined with the metasurface 500) illustrated in FIG.
The power receiver corresponds to the receiving antenna 300 arranged in the oral cavity as illustrated in FIG.
As illustrated in FIG. 3, the sensor corresponds to an electronic device built in the mouthpiece 400 arranged inside the oral cavity.
 図11を参照すると、符号A1は、電力送信機側から電力受信機側に送信される電磁波を例示している。この電磁波は、図4に例示したように、口腔の内部に配置されたマウスピース400に内蔵された受信アンテナ300によって受電されるように構成されている。
 符号A2は、マウスピース400の内部における、受信アンテナ300とセンサとの間の電力の給電を例示している。例えば、マウスピース400の内部で、受信アンテナ300とセンサとが有線で接続されており、この結果、受信アンテナ300が受電した電力によってセンサを給電できるように構成されている。
Referring to FIG. 11, reference numeral A1 illustrates an electromagnetic wave transmitted from the power transmitter side to the power receiver side. As illustrated in FIG. 4, this electromagnetic wave is configured to be received by a receiving antenna 300 built in the mouthpiece 400 arranged inside the oral cavity.
Reference numeral A2 illustrates the power supply between the receiving antenna 300 and the sensor inside the mouthpiece 400. For example, inside the mouthpiece 400, the receiving antenna 300 and the sensor are connected by wire, and as a result, the receiving antenna 300 is configured to be able to supply power to the sensor by the received power.
 センサは、口腔内の状態をセンシングすることができる。さらに、センサは、その測定値に関する信号を、フィードバック信号として、電力受信機に送信することができる(符号B1参照)。このフィードバック信号は、受信アンテナ300側から電力送信機(ワイヤレス給電マスク装置1)側に送信することができる(符号B2参照)。 The sensor can sense the condition in the oral cavity. Further, the sensor can transmit a signal related to the measured value to the power receiver as a feedback signal (see reference numeral B1). This feedback signal can be transmitted from the receiving antenna 300 side to the power transmitter (wireless power feeding mask device 1) side (see reference numeral B2).
 電力送信機(ワイヤレス給電マスク装置1)は、受信したフィードバック信号に基づいて、その後に、電力受信機に向けて送信する電磁波を調整(ビームフォーミング)することができる。なお、センシング結果(測定値)を送信する間隔を変化させることで、フィードバック信号として機能させてもよい。または、センシング結果に対してさらなるデータを付加することで、フィードバック信号として機能させてもよい。 The power transmitter (wireless power supply mask device 1) can subsequently adjust the electromagnetic wave transmitted to the power receiver (beamforming) based on the received feedback signal. By changing the interval at which the sensing result (measured value) is transmitted, it may function as a feedback signal. Alternatively, it may function as a feedback signal by adding further data to the sensing result.
 以下、図12を参照して、フィードバック信号を送信するフローについて例示する。このフローは複数のステップから構成され、各ステップは、マウスピース(人工物)400に内蔵され、センサ及び受信アンテナ300と関連付けられた制御装置によって行われる。この例では、フィードバック信号は、センサのセンシング結果(測定値)を送信する間隔を変化させることで、フィードバック信号として機能している。
 ステップS1では、制御装置は、マウスピース400に内蔵されたセンサ(電子デバイス)からデータ(フィードバック信号)を取得する(符号B1参照)。
Hereinafter, a flow for transmitting a feedback signal will be illustrated with reference to FIG. This flow is composed of a plurality of steps, each step being built into the mouthpiece (artificial object) 400 and performed by a control device associated with a sensor and a receiving antenna 300. In this example, the feedback signal functions as a feedback signal by changing the interval at which the sensing result (measured value) of the sensor is transmitted.
In step S1, the control device acquires data (feedback signal) from the sensor (electronic device) built in the mouthpiece 400 (see reference numeral B1).
 ステップS2では、制御装置は、上記センサのデータに異常があるか否かの判定を行う。例えば、制御装置が、センサから取得した値を、所定の閾値と比較判定を行う。所定の閾値は、制御装置内に予め記憶されている設定値である。
 例えば、設定値は、定数である。このため、環境の変化にかかわらず、常に一定の値の閾値を基準として比較演算を行うため、その計算を単純化することができる。
In step S2, the control device determines whether or not there is an abnormality in the data of the sensor. For example, the control device compares and determines the value acquired from the sensor with a predetermined threshold value. The predetermined threshold value is a set value stored in advance in the control device.
For example, the set value is a constant. Therefore, regardless of changes in the environment, the comparison calculation is always performed with a threshold value of a constant value as a reference, so that the calculation can be simplified.
 または、設定値は、変数である。この場合、環境の変化に応じて(例えば、患者の体温または口腔温の変化等)、異なる値の閾値を基準として比較演算を行うため、環境の変化に応じて、最適な判定を行うことができる。
 変数は、制御装置と関連付けられた記憶装置内に保存された任意のテーブル、データベース等から、所定条件に応じて導かれる変数でもよい。
Alternatively, the set value is a variable. In this case, since the comparison calculation is performed based on the threshold value of a different value according to the change in the environment (for example, the change in the body temperature or the oral temperature of the patient), the optimum judgment can be made according to the change in the environment. can.
The variable may be a variable derived according to a predetermined condition from an arbitrary table, database, or the like stored in the storage device associated with the control device.
 制御装置は、ステップS2での判定の結果、異常があることが認められた場合(例えば、センサの取得した値が、所定の閾値を上回る、または下回る等)、ステップS3に進み、センサのデータをフィードバックする。 When the control device finds that there is an abnormality as a result of the determination in step S2 (for example, the value acquired by the sensor exceeds or falls below a predetermined threshold value), the control device proceeds to step S3 and the sensor data. Give feedback.
 一方、制御装置は、ステップS2での判定の結果、上記判定の結果として、異常があることが認められない場合(例えば、センサの取得した値が、所定の閾値を下回る、または上回る等)、その判定に続いて、ステップS4に進み、送信電力が最小であるか否かの判定を行う。
 上記判定では、例えば、制御装置は、送信電力の値を、所定の閾値と比較判定を行う。所定の閾値は、制御装置内に予め記憶されている設定値である。設定値は、定数または変数である。
On the other hand, when the control device does not find any abnormality as a result of the determination in step S2 (for example, the value acquired by the sensor is below or above a predetermined threshold value, etc.). Following the determination, the process proceeds to step S4 to determine whether or not the transmission power is the minimum.
In the above determination, for example, the control device compares and determines the value of the transmission power with a predetermined threshold value. The predetermined threshold value is a set value stored in advance in the control device. The set value is a constant or a variable.
 制御装置は、ステップS4での判定の結果、送信電力の値が最小であることが認められた場合(例えば、送信電力の値が、所定の閾値を下回る等)、ステップS3に進み、センサのデータをフィードバックする。 When the control device finds that the transmission power value is the minimum as a result of the determination in step S4 (for example, the transmission power value falls below a predetermined threshold value), the control device proceeds to step S3 and proceeds to step S3 of the sensor. Feed back the data.
 一方、制御装置は、ステップS4での判定の結果、送信電力の値が最小であることが認められない場合(例えば、送信電力の値が、所定の閾値を上回る等)、ステップS5に進み、送信電力を最小にする設定を行う。この結果、ステップS3に進み、センサのデータをフィードバックするが、その送信間隔は、他の場合とは区別される。 On the other hand, if the value of the transmission power is not found to be the minimum as a result of the determination in step S4 (for example, the value of the transmission power exceeds a predetermined threshold value), the control device proceeds to step S5. Set to minimize the transmission power. As a result, the process proceeds to step S3, and the sensor data is fed back, but the transmission interval thereof is distinguished from other cases.
 このように、電力受信機側には、センサが付属しており、口腔内の状態をセンシングする。
 異常がない場合には、一定の長期間(例えば、1時間に1回)で、電力送信機へセンシング情報をフィードバックする(低消費電力動作)。
 異常がある場合には、一定の短期間(例えば、1分間に1回)で、電力送信機へセンシング情報をフィードバックする。
In this way, a sensor is attached to the power receiver side to sense the state in the oral cavity.
If there is no abnormality, the sensing information is fed back to the power transmitter for a certain long period of time (for example, once an hour) (low power consumption operation).
When there is an abnormality, the sensing information is fed back to the power transmitter in a certain short period (for example, once a minute).
 このように、異常の存在の有無に関する情報を電力送信機側へフィードバックすることで、疑似的に消費電力の状態をフィードバックすることができる。電力送信機側では、送信されたフィードバック信号に基づいて、電力送信機の送信電力を動的に変えることができる。
 例えば、制御装置は、低消費電力動作の場合は、送信電力を小さくする。そうでない場合は、制御装置は、送信電力を2段階または多段階で大きくする。この結果、センサの稼働状況に応じて、最適なビームフォーミングを行うことができる。
In this way, by feeding back the information regarding the presence or absence of the abnormality to the power transmitter side, it is possible to feed back the state of power consumption in a pseudo manner. On the power transmitter side, the transmission power of the power transmitter can be dynamically changed based on the transmitted feedback signal.
For example, the control device reduces the transmission power in the case of low power consumption operation. If not, the controller increases the transmit power in two or multiple steps. As a result, optimum beamforming can be performed according to the operating status of the sensor.
 このように、フィードバック信号は、送信される各信号の間隔を変更することで、区別されてもよい。または、フィードバック信号は、送信される各信号にフラグ付けまたは重み付けをすることで区別されてもよい。後者の場合、送信される各信号の間隔を変更する必要はない。 In this way, the feedback signals may be distinguished by changing the interval between the transmitted signals. Alternatively, the feedback signals may be distinguished by flagging or weighting each signal transmitted. In the latter case, it is not necessary to change the interval of each signal transmitted.
 例えば、図12を再度参照すると、変更例では、ステップS2での判定の結果、異常があることが認められた場合(例えば、センサの取得した値が、所定の閾値を上回る、または下回る等)、ステップS3に進み、センサのデータをフィードバックする。その際、データにフラグ付けまたは重み付けをしてもよい(例えば、「1:null」の追加)。
 また、ステップS4での判定の結果、送信電力の値が最小であることが認められた場合(例えば、送信電力の値が、所定の閾値を下回る等)、ステップS3に進み、センサのデータをフィードバックする。その際、データにフラグ付けまたは重み付けをしてもよい(例えば、「0:1」の追加)。
 また、ステップS4での判定の結果、送信電力の値が最小であることが認められない場合(例えば、送信電力の値が、所定の閾値を上回る等)、ステップS5に進み、送信電力を最小にする設定を行う。その際、データにフラグ付けまたは重み付けをしてもよい(例えば、「0:0」の追加)。
For example, referring to FIG. 12 again, in the modified example, when an abnormality is found as a result of the determination in step S2 (for example, the value acquired by the sensor exceeds or falls below a predetermined threshold value, etc.). , Step S3 to feed back the sensor data. At that time, the data may be flagged or weighted (for example, "1: null" is added).
If, as a result of the determination in step S4, the value of the transmission power is found to be the minimum (for example, the value of the transmission power falls below a predetermined threshold value), the process proceeds to step S3, and the sensor data is input. provide feedback. The data may then be flagged or weighted (eg, "0: 1" added).
If, as a result of the determination in step S4, the value of the transmission power is not found to be the minimum (for example, the value of the transmission power exceeds a predetermined threshold value), the process proceeds to step S5 to minimize the transmission power. Set to. At that time, the data may be flagged or weighted (eg, "0: 0" added).
 従って、ステップS3を介して、3つの異なる種類のフラグの付けられたフィードバック信号が電力受信機側から電力送信機側に送られる。
 電力送信機側の制御装置は、フラグの内容に応じて、送信アンテナ220の制御を行うことができる。例えば、制御装置は、「1:null」と「0:1」のフラグの場合には、送信電力を大にしたまま維持する一方、「0:0」のフラグの場合には、送信電力を大から小に変更することができる。その結果、必要に応じて、送信電力を小さくすることができる。
Therefore, through step S3, three different types of flagged feedback signals are sent from the power receiver side to the power transmitter side.
The control device on the power transmitter side can control the transmission antenna 220 according to the content of the flag. For example, the control device keeps the transmission power high in the case of the "1: null" and "0: 1" flags, while the transmission power is in the case of the "0: 0" flag. It can be changed from large to small. As a result, the transmission power can be reduced as needed.
 このように、電力送信機(ワイヤレス給電マスク装置1)の制御装置は、ビームフォーミングとして、送電電力の大きさを調整することができる。その調整は、大と小の2段階に限定されず、多段階で行うことができる。
 他、制御装置は、ビームフォーミングとして、送電方向の向きを調整することも可能である。
In this way, the control device of the power transmitter (wireless power supply mask device 1) can adjust the magnitude of the transmitted power as beamforming. The adjustment is not limited to two stages, large and small, and can be performed in multiple stages.
In addition, the control device can also adjust the direction of power transmission as beamforming.
 図13を参照すると、図11に例示したビームフォーミングの変形例が示されている。
 図11に例示した実施例では、1つの電力受信機から送られた電磁波は、1つの電力受信機によって受信されていた。
 図13に例示した実施例は、電力受信機は、複数設けられている。この場合、1つの電力受信機から送られた電磁波は、複数の電力受信機によって受信することができる。
Referring to FIG. 13, a modification of the beamforming illustrated in FIG. 11 is shown.
In the embodiment illustrated in FIG. 11, the electromagnetic wave transmitted from one power receiver is received by one power receiver.
In the embodiment illustrated in FIG. 13, a plurality of power receivers are provided. In this case, the electromagnetic wave transmitted from one power receiver can be received by a plurality of power receivers.
 例えば、口腔内の複数の箇所(口腔内の上側と下側等)に、それぞれセンサを配置してもよい。また、例えば、口腔内の複数の歯(2つの歯または複数の歯)のそれぞれに、センサを配置してもよい。各センサは、それぞれ、個別に口腔内の状態をセンシングし、そのセンシング情報をフィードバックすることができるものとする。 For example, sensors may be placed at a plurality of locations in the oral cavity (upper and lower sides of the oral cavity, etc.). Further, for example, a sensor may be arranged in each of a plurality of teeth (two teeth or a plurality of teeth) in the oral cavity. Each sensor can individually sense the state of the oral cavity and feed back the sensing information.
 例えば、口腔内の2つの異なる場所に、それぞれセンサが配置されていると仮定する。
 ここで、2つのうちの一方のセンサは、送信電力を最小にする設定を行うデータをフィードバックするが、他方のセンサは、送信電力を最小にする設定を行うデータをフィードバックしないものとする。
 この場合、電力受信機は、受信した2つのフィードバックデータに基づいて、2つのうちの一方のセンサに対しては、送信電力を最小にするが、他方にセンサに対しては、送信電力を最小にしないように、電磁波を送ることができる。
 この際、各センサに関連付けられた電力受信機の位置を電力送信機にフィードバックし、各センサが最適な受電ができるように、ビームフォーミングすることを可能にする。
For example, suppose sensors are located at two different locations in the oral cavity.
Here, it is assumed that one of the two sensors feeds back the data for setting to minimize the transmission power, but the other sensor does not feed back the data for setting to minimize the transmission power.
In this case, the power receiver minimizes the transmit power for one of the two sensors, but minimizes the transmit power for the other sensor, based on the two feedback data received. It is possible to send electromagnetic waves so as not to.
At this time, the position of the power receiver associated with each sensor is fed back to the power transmitter, and beamforming can be performed so that each sensor can receive the optimum power.
 例えば、口腔内の上側のセンサでは、低消費電力動作であるが、口腔内の下側のセンサでは、そうでないと仮定する。その場合、電力送信機は、口腔内の上側のセンサについては送信電力を小さくし、口腔内の下側のセンサについては送信電力を大きくする。
 例えば、電力送信機は、送信される電磁波を下側に寄せるように、送信方向を変化させてもよい。
 特に本実施例では、送信アンテナ220にはメタサーフェス500が関連付けられているため、様々な放射パターンを実現することが可能となっている。
For example, it is assumed that the upper sensor in the oral cavity has low power consumption operation, but the lower sensor in the oral cavity does not. In that case, the power transmitter reduces the transmission power for the upper sensor in the oral cavity and increases the transmission power for the lower sensor in the oral cavity.
For example, the power transmitter may change the transmission direction so as to move the transmitted electromagnetic wave downward.
In particular, in this embodiment, since the metasurface 500 is associated with the transmitting antenna 220, it is possible to realize various radiation patterns.
 この場合も、各フィードバック信号は、送信される各信号の間隔を変更することで、区別されてもよい。または、各フィードバック信号は、送信される各信号にフラグ付けまたは重み付けをすることで区別されてもよい。後者の場合、各フィードバック信号は、さらに、複数のセンサのうちのどのセンサに属すかについて、フラグ付けまたは重み付けをしてもよい。 In this case as well, each feedback signal may be distinguished by changing the interval between the transmitted signals. Alternatively, each feedback signal may be distinguished by flagging or weighting each signal transmitted. In the latter case, each feedback signal may be further flagged or weighted as to which of the plurality of sensors it belongs to.
 以下、図14及び図15を参照して、メタサーフェスを用いた、ワイヤレス給電マスク装置1の実施例3について説明する。
 以下の説明では、図1乃至図6を参照して例示した実施例1のものと同様または同一の装置、部品、構成要素等については、同じ参照番号を用いるものとし、記載の重複を避けるため、その詳細な説明は割愛する。
 また、図6乃至図13を参照して例示した実施例2のものと同様または同一の装置、部品、構成要素等については、同じ参照番号を用いるものとし、記載の重複を避けるため、その詳細な説明は割愛する。
Hereinafter, the third embodiment of the wireless power transfer mask device 1 using the meta surface will be described with reference to FIGS. 14 and 15.
In the following description, the same reference numbers shall be used for the same or the same devices, parts, components, etc. as those of the first embodiment illustrated with reference to FIGS. 1 to 6, in order to avoid duplication of description. , The detailed explanation is omitted.
Further, the same reference numbers shall be used for the same or the same devices, parts, components, etc. as those of the second embodiment illustrated with reference to FIGS. 6 to 13, and the details thereof shall be avoided in order to avoid duplication of description. I will omit the explanation.
 本実施例に係るワイヤレス給電マスク装置1は、放射パターンを自在に操れるリコンフィグラブル・メタサーフェス(以下、単にメタサーフェスという)10を追加している。このため、送電電力の大きさ、送電電力の向き等について、多様なビームフォーミングを可能にしている。このため、センサ側から送信されるフィードバックデータを組み合わせて用いることで、センサ側の多様な使用状態に応じて、適当な送電状況を段階的に切り替えて適用することを可能にしている。 The wireless power supply mask device 1 according to this embodiment has added a reconfigurable metasurface (hereinafter, simply referred to as a metasurface) 10 that can freely manipulate the radiation pattern. Therefore, various beamforming is possible regarding the size of the transmitted power, the direction of the transmitted power, and the like. Therefore, by using the feedback data transmitted from the sensor side in combination, it is possible to gradually switch and apply an appropriate power transmission status according to various usage conditions on the sensor side.
 図14の(A)を参照すると、符号Txは、送信装置を概略的に示している。この送信装置Txは、図示しない任意の適当なアンテナを用いて、電力供給用の電磁波(E1乃至E3)を外部に送信するように構成されている。この電磁波(E1乃至E3)は、3次元空間内をワイヤレスに送られて、図3に例示した受信アンテナ300によって受電されるように構成されている。 With reference to FIG. 14 (A), the reference numeral Tx schematically indicates a transmitting device. The transmission device Tx is configured to transmit electromagnetic waves (E1 to E3) for power supply to the outside by using any suitable antenna (not shown). The electromagnetic waves (E1 to E3) are configured to be sent wirelessly in the three-dimensional space and received by the receiving antenna 300 illustrated in FIG.
 本実施例に係るワイヤレス給電マスク装置1は、上記電磁波(E1乃至E3)を外部に送信するため、送信装置Tx内に、様々な種類のアンテナを利用することができる。例えば、ワイヤレス給電マスク装置1は、アンテナとして、単一のパッチ・アンテナ(平面アンテナ)または複数のパッチ・アンテナ(パッチ・アレイ・アンテナを含む)等を用いることができる。送信装置Txは、アンテナから放射される電磁波(マイクロ波を含む)の振幅と位相を制御するため、任意の適当な手段を有する。
 例えば、送信装置Txは、内部にマイクロ波発振器4と増幅器6を含み、電磁波(E1乃至E3)の生成を可能にするとともに、制御装置3によって、その放射パターン(ビーム方向)の制御を可能にしている。
Since the wireless power supply mask device 1 according to the present embodiment transmits the electromagnetic waves (E1 to E3) to the outside, various types of antennas can be used in the transmission device Tx. For example, the wireless feeding mask device 1 may use a single patch antenna (planar antenna), a plurality of patch antennas (including a patch array antenna), or the like as the antenna. The transmitter Tx has any suitable means for controlling the amplitude and phase of the electromagnetic waves (including microwaves) radiated from the antenna.
For example, the transmission device Tx includes a microwave oscillator 4 and an amplifier 6 inside, and enables generation of electromagnetic waves (E1 to E3), and also enables control of its radiation pattern (beam direction) by the control device 3. ing.
 本実施例では、ワイヤレス給電マスク装置1は、上記アンテナの送信装置Txに対して、放射パターンを自在に操れるリコンフィグラブル・メタサーフェス(以下、単にメタサーフェスという)10を追加している。このメタサーフェス10は、図6に例示したものと比べて、より多い数のパッチとスイッチとを有している。 In this embodiment, the wireless power supply mask device 1 adds a reconfigurable metasurface (hereinafter, simply referred to as a metasurface) 10 that can freely manipulate the radiation pattern to the transmission device Tx of the antenna. The metasurface 10 has a larger number of patches and switches than those illustrated in FIG.
 図6に例示した構成では、メタサーフェス500とLC共振器600とは同一平面上に構成されていた。一方、図14に例示した構成では、送信アンテナとメタサーフェス10とは、多層状に構成されている。このため、全体として厚さを増しており、厚さの薄い本体部110内に収容する際、送信アンテナとメタサーフェスの一部を本体部110から外に突出させてもよい。 In the configuration illustrated in FIG. 6, the metasurface 500 and the LC resonator 600 are configured on the same plane. On the other hand, in the configuration illustrated in FIG. 14, the transmitting antenna and the metasurface 10 are configured in a multi-layered manner. Therefore, the thickness is increased as a whole, and when accommodating in the thin main body 110, a part of the transmitting antenna and the metasurface may be projected outward from the main body 110.
 本実施例では、制御装置3は、通常の送信装置Tx内で行われる電磁波の放射の制御だけでなく、追加されたメタサーフェス10を介した電磁波の放射の制御を行うことができる。なお、本実施例ではメタサーフェス10の制御を送信装置Txの制御装置3が行う構成としたが、送信装置Txの制御装置3とは別に、メタサーフェス10の制御を行う制御装置を設けることも可能である。
 以下、制御装置3による電磁波の放射パターンの制御の説明は、メタサーフェス10を介した電磁波の放射パターンの制御に関する。
In this embodiment, the control device 3 can control not only the electromagnetic wave radiation performed in the normal transmission device Tx but also the electromagnetic wave radiation via the added metasurface 10. In this embodiment, the control device 3 of the transmission device Tx controls the meta surface 10, but a control device for controlling the meta surface 10 may be provided separately from the control device 3 of the transmission device Tx. It is possible.
Hereinafter, the description of the control of the electromagnetic wave radiation pattern by the control device 3 relates to the control of the electromagnetic wave radiation pattern via the metasurface 10.
 図14の(A)及び(B)から理解できるように、メタサーフェス10は、複数の導波パッチまたは放射パッチ(以下、単にパッチという)12a、12b、12c・・・から構成されている。各パッチ12a、12b、12cには、波長に対して小さな構造体が周期的に配置されていて、所望の誘電率や透磁率を実現するように構成されている。
 各パッチは、一方の表面側から入射した電磁波を、内部を通過させて、反対の表面側から放射することができるように構成されている。
As can be understood from (A) and (B) of FIG. 14, the metasurface 10 is composed of a plurality of waveguide patches or radiation patches (hereinafter, simply referred to as patches) 12a, 12b, 12c ... In each patch 12a, 12b, 12c, a small structure with respect to the wavelength is periodically arranged, and is configured to realize a desired dielectric constant and magnetic permeability.
Each patch is configured so that an electromagnetic wave incident from one surface side can pass through the inside and be radiated from the opposite surface side.
 各パッチ12a、12b、12cは、所定の形状を有し、規則的に配列されている。例えば、各パッチ12a、12b、12cは、図14の(B)に示すX-Y平面では、四角形(例えば、正方形)の形状を有するとともに、図14の(A)に示すZ軸方向では、極薄の厚さを有するように構成されている。各パッチ12a、12b、12cは、同一平面上で規則的に配置されている。このように複数のパッチ12a、12b、12cは、好ましくは、小型、極薄、極軽量に構成される。 Each patch 12a, 12b, 12c has a predetermined shape and is regularly arranged. For example, each patch 12a, 12b, 12c has a quadrangular shape (for example, a square) in the XY plane shown in FIG. 14B, and in the Z-axis direction shown in FIG. 14A. It is configured to have an ultra-thin thickness. The patches 12a, 12b, and 12c are regularly arranged on the same plane. As described above, the plurality of patches 12a, 12b, and 12c are preferably configured to be compact, ultrathin, and ultralight.
 図14の(B)を参照すると、同一平面上で、縦方向及び横方向で周期的に配置された、m×nの配列(横m個、縦n個)のパッチ配列が例示されている。例えば、隣り合うパッチが、縦方向では各四角形の1辺の長さの位置(例えば、各辺の両端位置)を揃えるとともに、横方向では各四角形の間隔(隙間)を均一に保つように配置されている。 Referring to (B) of FIG. 14, a patch array of m × n arrangement (m horizontal, n vertical) arranged periodically in the vertical direction and the horizontal direction on the same plane is exemplified. .. For example, adjacent patches are arranged so that the lengths of one side of each quadrangle are aligned in the vertical direction (for example, the positions at both ends of each side) and the spacing (gap) of each quadrangle is kept uniform in the horizontal direction. Has been done.
 図14の(B)を参照すると、本実施例に係るワイヤレス給電マスク装置1は、複数のパッチ12a、12b、12cの隣り合う隙間内に、それぞれ高周波スイッチ20a、20bを配置している。このため、ワイヤレス給電マスク装置1は、これら高周波スイッチ20a、20bを選択的に制御することで、メタサーフェス10表面の電流パターンを自在に変更させるように構成されている。 Referring to (B) of FIG. 14, in the wireless power transfer mask device 1 according to the present embodiment, high frequency switches 20a and 20b are arranged in adjacent gaps of a plurality of patches 12a, 12b and 12c, respectively. Therefore, the wireless power supply mask device 1 is configured to freely change the current pattern on the surface of the metasurface 10 by selectively controlling these high frequency switches 20a and 20b.
 図14の(B)を参照すると、縦方向及び/または横方向で、隣り合うパッチ12a、12b、12cの間にスイッチ20a、20bが設けられている。従って、1つのスイッチの通電状態を切り替えることで、そのスイッチを挟むように配置された2つのパッチの一部の給電状態が制御される。各スイッチ20a、20bは、制御装置3によって一元的に管理されて、個別に制御される。この結果、複数のパッチ12a、12b、12cは、すべて一様に給電されるのではなく、これらパッチの一部ごと、パッチごと、またはパッチの小集団ごとに給電することができる。 Referring to (B) of FIG. 14, switches 20a and 20b are provided between adjacent patches 12a, 12b and 12c in the vertical direction and / or the horizontal direction. Therefore, by switching the energized state of one switch, the power supply state of a part of the two patches arranged so as to sandwich the switch is controlled. The switches 20a and 20b are centrally managed by the control device 3 and individually controlled. As a result, the plurality of patches 12a, 12b, and 12c are not all supplied uniformly, but can be supplied by a part of these patches, by patches, or by a small group of patches.
 例えば、図14の(B)に例示した構成では、それぞれが同一の大きさの正方形に形成されたパッチ12a、12b、12cが、縦方向及び横方向で、相対的な位置を揃えて、同一間隔で整列されている。隣り合うパッチ12a、12b、12cは、外周側に、スイッチ20a、20bを間に挟むように配置されている。このように、横m個、縦n個のパッチ12a、12b、12c・・・が存在する場合、全部で「m*(n-1)+n*(m-1)」個、すなわち「2m*n-m-n 」個のスイッチ20a、20b・・・を用いることができる。 For example, in the configuration illustrated in FIG. 14B, the patches 12a, 12b, and 12c, each of which is formed into a square of the same size, are the same in the vertical and horizontal directions with their relative positions aligned. Aligned at intervals. Adjacent patches 12a, 12b, and 12c are arranged on the outer peripheral side so as to sandwich the switches 20a and 20b. In this way, when there are m horizontal and n vertical patches 12a, 12b, 12c ..., there are a total of "m * (n-1) + n * (m-1)", that is, "2m *". "Nm-n" switches 20a, 20b ... Can be used.
 各パッチ12a、12b、12c上を流れる電流パターンは、対応するスイッチ20a、20bのON/OFFの組み合わせによって制御することができる。例えば、電子式の高周波スイッチ20a、20bを用いることで、制御信号の状態に応じて、高周波信号が通過する経路のオンとオフとを切り換えることができる。このように、全体として、スイッチがX個存在する場合、スイッチの組み合わせは、「2のX乗」通り存在することになる。この結果、一般的な位相制御型のビームフォーミングと比較して、汎用性を各段に高めることができる。 The current pattern flowing on each patch 12a, 12b, 12c can be controlled by the ON / OFF combination of the corresponding switches 20a, 20b. For example, by using the electronic high frequency switches 20a and 20b, it is possible to switch on and off the path through which the high frequency signal passes according to the state of the control signal. As described above, when there are X switches as a whole, the combination of switches exists as "2 to the Xth power". As a result, the versatility can be further enhanced as compared with general phase control type beamforming.
 従って、本実施例では、上記のように、複数のパッチ12a、12b、12cとスイッチ20a、20bとを配置することによって、多様な形態でビームフォーミングを行う、ワイヤレス給電マスク装置1を構成することが可能となる。図14の(A)を参照すると、各スイッチ20a、20bを個別に制御することで、符号E1、E2、E3で例示するように、複数の異なる態様でビームフォーミングを行うことが概略的に例示されている。なお、図14の(A)では、符号E1、E2、E3が重ねて示されているが、実際には、これら符号E1、E2、E3のいずれかが選択的に用いられる。 Therefore, in this embodiment, as described above, by arranging a plurality of patches 12a, 12b, 12c and switches 20a, 20b, a wireless power supply mask device 1 that performs beamforming in various forms is configured. Is possible. Referring to (A) of FIG. 14, it is schematically illustrated that beamforming is performed in a plurality of different modes as illustrated by reference numerals E1, E2, and E3 by individually controlling the switches 20a and 20b. Has been done. Although the reference numerals E1, E2, and E3 are overlapped in FIG. 14A, any one of the reference numerals E1, E2, and E3 is selectively used.
 例えば、符号E1に示すように、ワイヤレス給電マスク装置1は、メタサーフェス10の平面に沿って広がるように、送信波またはビームの向きと広がりを調整してもよい。
 例えば、符号E2に示すように、ワイヤレス給電マスク装置1は、メタサーフェス10の平面に対して垂直方向(約直角)に広がるように、ビームの向きと広がりを調整してもよい。
 例えば、符号E3に示すように、ワイヤレス給電マスク装置1は、メタサーフェス10の平面に対して斜めの角度(約鋭角)で広がるように、ビームの向きと広がりを調整してもよい。
 さらに、ワイヤレス給電マスク装置1は、メタサーフェス10の平面に対して、放出されるビームの角度、方向、広がり等をより細かく調整するように、ビームフォーミングを行うことができる。
For example, as indicated by reference numeral E1, the wireless power transfer mask device 1 may adjust the direction and spread of the transmitted wave or beam so as to spread along the plane of the metasurface 10.
For example, as indicated by reference numeral E2, the wireless power transfer mask device 1 may adjust the direction and spread of the beam so as to spread in the direction perpendicular to the plane of the metasurface 10.
For example, as indicated by reference numeral E3, the wireless power transfer mask device 1 may adjust the direction and spread of the beam so as to spread at an oblique angle (about an acute angle) with respect to the plane of the metasurface 10.
Further, the wireless power transfer mask device 1 can perform beamforming so as to finely adjust the angle, direction, spread, etc. of the emitted beam with respect to the plane of the metasurface 10.
 例えば、ビームの指向性が符号E1に示す場合、口腔内の手前側の位置等に向けて電磁波を送信するのに適している。
 例えば、ビームの指向性が符号E2に示す場合、口腔内の奥側の位置等に向けて電磁波を送信するのに適している。
 例えば、ビームの指向性が符号E3に示す場合、口腔内の斜め上側の位置等に向けて電磁波を送信するのに適している。
 各指向性E1、E2、E3の切り替えは、送信アンテナの位置を変更することなく、固定したままで行うことができるため、使い勝手を高めている。このため、送信アンテナを内蔵したマスク100の位置はそのままに、アンテナの指向性を様々に制御できる。
For example, when the directivity of the beam is indicated by the reference numeral E1, it is suitable for transmitting an electromagnetic wave toward a position on the front side in the oral cavity or the like.
For example, when the directivity of the beam is indicated by the reference numeral E2, it is suitable for transmitting an electromagnetic wave toward a position on the inner side of the oral cavity.
For example, when the directivity of the beam is indicated by the reference numeral E3, it is suitable for transmitting an electromagnetic wave toward an obliquely upper position in the oral cavity.
Switching between the directivity E1, E2, and E3 can be performed while the position of the transmitting antenna is not changed, so that the usability is improved. Therefore, the directivity of the antenna can be variously controlled while keeping the position of the mask 100 having the built-in transmitting antenna.
 以上、図14に例示した実施形態では、メタサーフェス10を構成する複数のパッチ12は、それぞれが正方形の形状を有し、正平面充填形を有する。しかし、本実施例は、この態様に限定されない。
 例えば、パッチ12の有する形状は、正平面充填形を有する他の形状、即ち正三角形または正六角形形でもよい。
 しかしながら、パッチ12の有する形状は、正平面充填形に限定されない。
 例えば、パッチ12の有する形状は、長方形、菱形、台形または平行四辺形を含む任意の四角形でもよい。
 例えば、パッチ12の有する形状は、三角形、五角形または六角形を含む任意の多角形でもよい。
As described above, in the embodiment illustrated in FIG. 14, each of the plurality of patches 12 constituting the meta surface 10 has a square shape and has a regular tessellation shape. However, this embodiment is not limited to this embodiment.
For example, the shape of the patch 12 may be another shape having a regular tessellation, that is, an equilateral triangle or a regular hexagon.
However, the shape of the patch 12 is not limited to the regular tessellation type.
For example, the shape of the patch 12 may be any quadrangle including a rectangle, a rhombus, a trapezoid, or a parallelogram.
For example, the shape of the patch 12 may be any polygon including a triangle, a pentagon, or a hexagon.
 他、パッチ12の有する形状は、より複雑な形状にすることは可能である。
 例えば、パッチ12の有する形状は、円形または楕円形でもよい。
 例えば、パッチ12の有する形状は、半円形または半楕円形でもよい。
 例えば、パッチ12の有する形状は、略L字形または略V字形でもよい。
 例えば、パッチ12の有する形状は、略C字形または略U字形でもよい。
 例えば、パッチ12の有する形状は、略十字形または略X字形の形状でもよい。
 例えば、パッチ12の有する形状は、略T字形または略Y字形の形状でもよい。
In addition, the shape of the patch 12 can be made into a more complicated shape.
For example, the shape of the patch 12 may be circular or elliptical.
For example, the shape of the patch 12 may be semi-circular or semi-elliptical.
For example, the shape of the patch 12 may be substantially L-shaped or substantially V-shaped.
For example, the shape of the patch 12 may be substantially C-shaped or substantially U-shaped.
For example, the shape of the patch 12 may be a substantially cross shape or a substantially X-shaped shape.
For example, the shape of the patch 12 may be a substantially T-shape or a substantially Y-shape.
 各パッチ12の形状に応じて、隣り合うパッチの間の隙間の大きさを様々に変えることができる。
 例えば、隣り合うパッチの1辺が互いにまっすぐに延在する場合、その辺の長さに沿って隙間の大きさは一定でもよい。
 例えば、隣り合うパッチの1辺が互いに曲線状に延在する場合、その辺の長さに沿って隙間の大きさは変化してもよい。
 ただし、メタサーフェス10の表面上で良好な通電状態を得るため、隣り合うパッチの間の隙間の大きさは小さい方が好ましい。
Depending on the shape of each patch 12, the size of the gap between adjacent patches can be varied.
For example, when one side of adjacent patches extends straight to each other, the size of the gap may be constant along the length of the side.
For example, when one side of adjacent patches extends in a curved line with each other, the size of the gap may change along the length of the side.
However, in order to obtain a good energized state on the surface of the metasurface 10, it is preferable that the size of the gap between adjacent patches is small.
 以上、図14に例示した実施形態では、メタサーフェス10を構成する複数のパッチ12は、それぞれが同一の大きさ、形状及び/または素材を有していた。しかしながら、本実施例は、この態様に限定されない。
 例えば、複数のパッチ12は、必ずしも同一の大きさ、形状及び/または素材を有していなくてもよい。
 例えば、メタサーフェス10を構成する複数のパッチ12のうち、中央に配置されるパッチ12は、その外側に配置される他のパッチ12と対比して、相対的に大きさ、形状及び/または素材を変化させてもよい。
As described above, in the embodiment illustrated in FIG. 14, the plurality of patches 12 constituting the metasurface 10 each have the same size, shape, and / or material. However, this embodiment is not limited to this embodiment.
For example, the plurality of patches 12 do not necessarily have the same size, shape and / or material.
For example, of the plurality of patches 12 constituting the metasurface 10, the patch 12 arranged in the center has a relative size, shape, and / or material as compared with the other patches 12 arranged outside the patch 12. May be changed.
 図15(A)及び(B)を参照すると、図14の(A)及び(B)に例示したワイヤレス給電マスク装置1について、具体例の1つが例示されている。
 図15(A)を参照すると、パッチ・アンテナ30と、ヘキサゴン型(ハニカム型)メタサーフェス14とが、多層状に重ねられて配置されている。メタサーフェス14は、同様に複数のパッチ16c、16d、16eを含んでいる。
With reference to FIGS. 15A and 15B, one specific example of the wireless power transfer mask device 1 exemplified in FIGS. 14A and 14B is illustrated.
Referring to FIG. 15A, the patch antenna 30 and the hexagon-type (honeycomb-type) metasurface 14 are arranged so as to be overlapped in a multi-layered manner. The metasurface 14 also contains a plurality of patches 16c, 16d, 16e.
 図15(A)を参照すると、中央のパッチ16cは、六角形(ヘキサゴン、ハニカム)の形状を有している。この六角形の各辺の長さは同一であり、隣り合う2つの辺のなす角度は、それぞれ等しい。この例では、中央のパッチ16cと、その外側に配置される外周側のパッチ16d、16eとは、それぞれ、異なる形状、大きさを有することができる。 Referring to FIG. 15 (A), the central patch 16c has a hexagonal shape (hexagon, honeycomb). The length of each side of this hexagon is the same, and the angles formed by the two adjacent sides are the same. In this example, the central patch 16c and the outer peripheral side patches 16d and 16e arranged on the outer side thereof can have different shapes and sizes, respectively.
 中央のパッチ16cと、その外側に配置される外周側のパッチ16d、16eとは、それぞれ、隣り合う辺の長さと位置と角度とを揃えて配置されている。好適には、これら複数のパッチ16c、16d、16eは、互いに、均一の大きさ(隙間)で離間している。隣り合うパッチ16c、16d、16eの間には、それぞれの中央にスイッチ26c、26dが配置されている。 The patch 16c in the center and the patches 16d and 16e on the outer peripheral side arranged outside the patch 16c are arranged with the length, position and angle of the adjacent sides aligned, respectively. Preferably, these plurality of patches 16c, 16d, 16e are separated from each other by a uniform size (gap). A switch 26c, 26d is arranged in the center of the adjacent patches 16c, 16d, 16e, respectively.
 図15(B)を参照すると、図15(A)に例示したメタサーフェス14に対して、各スイッチ26c、26dの通電状態を切り替えたときの、アンテナ30から外部に出る電磁波の放射パターン(指向性)の例が示されている。
 符号11aは、すべてのスイッチ26c、26dを給電したときの状態を例示している。この場合、電磁波は、0°を中心として、左右に対して均等に、外部に放射されている。
 符号11bは、スイッチ26c、26dの一部を給電したときの状態を例示している。この場合、電磁波は、0°から左側に偏って、左右に対して不均等に、外部に放射されている。
 このように、図15に例示したメタサーフェス14の場合、図14に例示したメタサーフェス10と同様に、アンテナ30から外部に出る電磁波の放射パターンを変化させることができる。
Referring to FIG. 15 (B), the radiation pattern (directivity) of the electromagnetic wave emitted from the antenna 30 to the outside when the energized states of the switches 26c and 26d are switched with respect to the meta surface 14 exemplified in FIG. 15 (A). An example of sex) is shown.
Reference numeral 11a illustrates a state when all the switches 26c and 26d are supplied with power. In this case, the electromagnetic wave is radiated to the outside evenly to the left and right with 0 ° as the center.
Reference numeral 11b exemplifies a state when a part of the switches 26c and 26d is fed. In this case, the electromagnetic wave is biased from 0 ° to the left side and is radiated to the outside unevenly with respect to the left and right sides.
As described above, in the case of the meta-surface 14 illustrated in FIG. 15, the radiation pattern of the electromagnetic wave emitted from the antenna 30 to the outside can be changed in the same manner as in the meta-surface 10 illustrated in FIG.
 具体的には、図16を参照すると、11aから11bへと放射パターンを変化させることで、メインローブ(最も強い放射方向のローブ)が変化していることが理解できる。同様に、この場合、サイドローブ(メインローブを除くローブ)が変化していることが理解できる。この結果、アンテナの指向性が変化している。他、前後比、ビーム幅の変化についても同様である。 Specifically, referring to FIG. 16, it can be understood that the main lobe (the lobe in the strongest radiation direction) is changed by changing the radiation pattern from 11a to 11b. Similarly, in this case, it can be seen that the sidelobes (lobes excluding the main lobe) have changed. As a result, the directivity of the antenna is changing. The same applies to changes in the anteroposterior ratio and beam width.
 ビームフォーミングの仕方は様々だが、本実施例では、少なくとも、±30°程度に放射パターンを振ることができる。
 その際、電磁波の向き、広がり(範囲)、形状、大きさ、分岐の仕方等、複数種類の選択が可能となる。
 このため、本実施例では、きめ細かなビームの調整を可能にする。
 さらに、本実施例では、アンテナの大きさを小型化及び軽量化を達成することができるため、比較的にコンパクトな設置面積への適用を可能にする。従って、本体部110への適用も可能となる。
There are various methods of beamforming, but in this embodiment, the radiation pattern can be shaken at least by about ± 30 °.
At that time, it is possible to select a plurality of types such as the direction, spread (range), shape, size, and branching method of the electromagnetic wave.
Therefore, in this embodiment, it is possible to finely adjust the beam.
Further, in this embodiment, the size of the antenna can be reduced and the weight can be reduced, so that it can be applied to a relatively compact installation area. Therefore, it can be applied to the main body 110.
 以上、図15を参照して説明した実施例では、アンテナ30に対して、複数のパッチ16c、16d、16eからなるメタサーフェス14と、複数のスイッチ26c、26dとを組み合わせて用いることにより、多様な放射パターンを実現するビームフォーミングを可能にしている。
 例えば、本実施例では、X個のスイッチを用いてビームフォーミングの制御を行う場合、スイッチの組み合わせが「2のX乗」通り存在することになる。ただし、必要に応じて、占有スペースとの兼ね合いで、パッチの大きさ、数、スイッチの数などを絞るものとする。
 本実施例では、制御装置3は、メタサーフェス14を介して放射される電磁波の放射パターンを制御することで、その制御の汎用性を相当に高めている。
 図14に例示した実施例においても同様である。
In the embodiment described with reference to FIG. 15, the metasurface 14 composed of the plurality of patches 16c, 16d, 16e and the plurality of switches 26c, 26d are used in combination with respect to the antenna 30, and the antenna 30 is variously used. It enables beamforming to realize various radiation patterns.
For example, in this embodiment, when beamforming is controlled by using X switches, there are as many combinations of switches as “2 to the Xth power”. However, if necessary, the size, number, number of switches, etc. of the patch shall be narrowed down in consideration of the occupied space.
In this embodiment, the control device 3 controls the radiation pattern of the electromagnetic wave radiated through the meta surface 14, thereby considerably increasing the versatility of the control.
The same applies to the examples illustrated in FIG.
 以上、図1乃至図6に例示した実施例1と、図6乃至図13に例示した実施例2と、図14~16に例示した実施例3とは、それぞれ単独で用いられてもよく、または、それぞれ組み合わせて用いられてもよい。後者の場合、各実施例の一部の構成要素を適当に組み合わせることが可能である。
 例えば、実施例3では、送信アンテナは、パッチ・アンテナと、メタサーフェスとを組み合わせて有している。これに対して、実施例1と実施例3とを組み合わせることで、送信アンテナは、ループ・アンテナと、メタサーフェスとを組み合わせて有することができる。
 従って、本実施例では、多様な形態でビームフォーミングを行う、ワイヤレス給電マスク装置1を構成することが可能となる。
As described above, Example 1 exemplified in FIGS. 1 to 6, Example 2 exemplified in FIGS. 6 to 13, and Example 3 exemplified in FIGS. 14 to 16 may be used alone. Alternatively, they may be used in combination with each other. In the latter case, it is possible to appropriately combine some of the components of each embodiment.
For example, in the third embodiment, the transmitting antenna has a patch antenna and a metasurface in combination. On the other hand, by combining the first and third embodiments, the transmitting antenna can have a loop antenna and a metasurface in combination.
Therefore, in this embodiment, it is possible to configure the wireless power transfer mask device 1 that performs beamforming in various forms.
 送電側及び/または受電側の制御装置は、例えば、プロセッサを搭載したシングルボードコンピュータでもよい。制御装置は、例えば、Raspberry Pi(ラズベリー・パイ)等でもよい。また、ラズベリー・パイ上でのPython(登録商標)などによるエッジコンピューティングで実現することも可能である。特に送電側では、制御装置は、口腔内に大きさが限定されないため、大きさの面でより多様な種類から選択することができる。さらに、送電側では、制御装置は、本体部110の外側に取付けることで、本体部110内に大きさが限定されないようにすることもできる。 The control device on the power transmission side and / or the power reception side may be, for example, a single board computer equipped with a processor. The control device may be, for example, Raspberry Pi (Raspberry Pi) or the like. It can also be realized by edge computing with Python (registered trademark) on Raspberry Pi. Especially on the power transmission side, since the size of the control device is not limited to the oral cavity, it is possible to select from a wider variety of sizes in terms of size. Further, on the power transmission side, the control device can be attached to the outside of the main body 110 so that the size is not limited to the inside of the main body 110.
 送電側及び/または受電側の制御装置は、主記憶装置を関連付けることができる。この主記憶装置には、各種プログラムやアプリケーションなど(モジュール)が記憶されており、これらのプログラムやアプリケーションをプロセッサが実行することで全体システムの各機能要素が実現される。なお、これらの各モジュールは集積化する等によりハーウェアで実装してもよい。また、各モジュールはそれぞれ独立したプログラムやアプリケーションでもよいが、1つの統合プログラムやアプリケーションの中の一部のサブプログラムや関数などの形で実装されていてもよい。 The power transmission side and / or the power reception side control device can be associated with the main memory device. Various programs and applications (modules) are stored in this main storage device, and each functional element of the entire system is realized by executing these programs and applications by a processor. In addition, each of these modules may be implemented by Harware by integrating them. Further, each module may be an independent program or application, but may be implemented in the form of a part of a subprogram or a function in one integrated program or application.
 以上、図面を参照して、本実施例1乃至3にかかるワイヤレス給電マスク装置が説明された。
 本実施例は、図示した形態に限定されないことを理解されたい。
 例えば、上記説明では、ワイヤレス給電マスク装置は、頭部の口腔を外部から覆う大きさを有するマスク状本体部を含む。この頭部は、人体の頭部に限定されない。例えば、犬、猫、馬、牛、豚、羊等の任意の動物の頭部であってもよい。
 また、上記説明では、ワイヤレス給電マスク装置は、頭部の口腔を外部から覆う大きさを有するマスク状本体部を含む。このマスク状本体部は、マスクに限定されない。例えば、犬、猫、馬、牛、豚、羊等の任意の動物の頭部の口の周りを覆う補助具であってもよい。
As described above, the wireless power transfer mask device according to the first to third embodiments has been described with reference to the drawings.
It should be understood that this embodiment is not limited to the illustrated embodiment.
For example, in the above description, the wireless power transfer mask device includes a mask-like main body portion having a size of covering the oral cavity of the head from the outside. This head is not limited to the head of the human body. For example, it may be the head of any animal such as a dog, a cat, a horse, a cow, a pig, or a sheep.
Further, in the above description, the wireless power supply mask device includes a mask-shaped main body portion having a size of covering the oral cavity of the head from the outside. This mask-shaped main body is not limited to the mask. For example, it may be an auxiliary tool that wraps around the mouth of the head of any animal such as a dog, cat, horse, cow, pig, or sheep.
 さらに、頭部の口腔を外部から覆う大きさを有するマスク状本体部は、顔面に着用される任意のマスクに適用することもできる。例えば、毒ガス、粉塵、微生物、毒素等から人体を保護するために顔面に着用されるガスマスクに適用することもできる。
 他、部の口腔を外部から覆う大きさを有するマスク状本体部は、呼吸の補助等、任意の医療用の目的で、顔面に着用される医療用のマスクに適用することもできる。
Further, the mask-shaped main body portion having a size of covering the oral cavity of the head from the outside can be applied to any mask worn on the face. For example, it can be applied to a gas mask worn on the face to protect the human body from poisonous gas, dust, microorganisms, toxins and the like.
In addition, the mask-shaped main body having a size that covers the oral cavity of the part from the outside can be applied to a medical mask worn on the face for any medical purpose such as assisting breathing.
 また、上記説明では、ワイヤレス給電マスク装置は、メタサーフェスと組み合わせられる送信アンテナとして、2重リング構造のLC共振器(実施例2)またはパッチ・アンテナ(実施例3)を用いることが例示されたが、本実施例は、その形態に限定されない。ワイヤレス給電マスク装置は、メタサーフェスと組み合わせられる送信アンテナの一部または複数として、線状アンテナを用いることができる。線状アンテナとして、例えば、ダイポール・アンテナ、モノポールアンテナ、逆F型アンテナ等の任意の線状のアンテナを用いることができる。 Further, in the above description, it is exemplified that the wireless power transfer mask device uses an LC resonator (Example 2) or a patch antenna (Example 3) having a double ring structure as a transmitting antenna to be combined with the metasurface. However, this embodiment is not limited to the embodiment. The wireless feeding mask device can use a linear antenna as part or more of the transmitting antenna combined with the metasurface. As the linear antenna, for example, an arbitrary linear antenna such as a dipole antenna, a monopole antenna, or an inverted F-type antenna can be used.
 また、本実施例にかかるワイヤレス給電マスク装置は、アンテナを介した電流の流れをよくするため、任意のデバイスや回路等を追加できることを理解されたい。また、本実施例にかかるワイヤレス給電マスク装置は、本体部110内での電磁波の流れをよくするため、任意の部材(反射板、レドーム等)を追加できることを理解されたい。 Also, it should be understood that the wireless power transfer mask device according to this embodiment can add any device, circuit, etc. in order to improve the current flow through the antenna. Further, it should be understood that the wireless power supply mask device according to this embodiment can add an arbitrary member (reflector, radome, etc.) in order to improve the flow of electromagnetic waves in the main body 110.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, but includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
 なお、上述の実施例は少なくとも特許請求の範囲に記載の構成を開示している。
In addition, the control lines and information lines indicate those that are considered necessary for explanation, and do not necessarily indicate all the control lines and information lines in the product. In practice, it can be considered that almost all configurations are interconnected.
It should be noted that the above-mentioned embodiment discloses at least the configuration described in the claims.
1…ワイヤレス給電マスク装置、100…マスク、110…マスク状本体部、200…送信アンテナ、220…送信アンテナ、300…受信アンテナ、400…人工物(マウスピース)、500…メタサーフェス(メタマテリアル)、600…LC共振器、700…制御装置 1 ... Wireless power supply mask device, 100 ... Mask, 110 ... Mask-like body, 200 ... Transmit antenna, 220 ... Transmit antenna, 300 ... Receive antenna, 400 ... Artificial object (mouthpiece), 500 ... Metasurface (metamaterial) , 600 ... LC resonator, 700 ... control device

Claims (10)

  1.  ワイヤレス給電マスク装置であって、
     頭部の口腔を外部から覆う大きさを有するマスク状本体部を備え、
     前記マスク状本体部は、口腔内に向かって電力を供給する、メタサーフェスを有する送信アンテナを備える、
    ワイヤレス給電マスク装置。
    It is a wireless power transfer mask device
    It has a mask-like body that covers the oral cavity of the head from the outside.
    The mask-like body comprises a transmitting antenna having a metasurface that supplies power toward the oral cavity.
    Wireless power transfer mask device.
  2.  前記送信アンテナは、2重リング構造の共振器を有する、
    請求項1に記載のワイヤレス給電マスク装置。
    The transmitting antenna has a resonator having a double ring structure.
    The wireless power transfer mask device according to claim 1.
  3.  前記2重リング構造は、大小の2つのリング形状部を入れ子状に配置したものであり、
     前記送信アンテナは、前記2つのリング形状部の中に、前記メタサーフェスを配置する、
    請求項2に記載のワイヤレス給電マスク装置。
    The double ring structure has two large and small ring-shaped portions arranged in a nested manner.
    The transmitting antenna arranges the metasurface in the two ring-shaped portions.
    The wireless power transfer mask device according to claim 2.
  4.  前記大小の2つのリング形状部は、互いに相似形の多角形である、
    請求項3に記載のワイヤレス給電マスク装置。
    The two large and small ring-shaped portions are polygons similar to each other.
    The wireless power transfer mask device according to claim 3.
  5.  前記メタサーフェスは、少なくとも2つの導電パッチから構成され、かつ隣り合う前記2つの導電パッチを接続する高周波スイッチを配置する、
    請求項1から4のいずれか1項に記載のワイヤレス給電マスク装置。
    The metasurface is composed of at least two conductive patches and arranges a high frequency switch connecting the two adjacent conductive patches.
    The wireless power transfer mask device according to any one of claims 1 to 4.
  6.  前記送信アンテナは、ループ・アンテナから構成される、
    請求項1に記載のワイヤレス給電マスク装置。
    The transmitting antenna is composed of a loop antenna.
    The wireless power transfer mask device according to claim 1.
  7.  前記送信アンテナは、パッチ・アンテナから構成される、
    請求項1に記載のワイヤレス給電マスク装置。
    The transmitting antenna is composed of a patch antenna.
    The wireless power transfer mask device according to claim 1.
  8.  前記送信アンテナは、前記口腔内に配置される電子デバイスに対して給電するための電磁波の指向性を変更する
    請求項1から7のいずれか1項に記載のワイヤレス給電マスク装置。
    The wireless power transfer mask device according to any one of claims 1 to 7, wherein the transmitting antenna changes the directivity of an electromagnetic wave for supplying power to an electronic device arranged in the oral cavity.
  9.  前記メタサーフェスを制御する制御装置を有し、
     前記電子デバイスは、
      異常がない場合は、一定の長期間で、前記制御装置へ情報をフィードバックし、
      異常がある場合は、一定の短期間で、前記制御装置へ情報をフィードバックするように構成され、
     前記制御装置は、前記フィードバックされた情報に基づいて、前記送信アンテナの送信電力の大きさを変更する、
    請求項8に記載のワイヤレス給電マスク装置。
    It has a control device that controls the metasurface, and has
    The electronic device is
    If there is no abnormality, the information is fed back to the control device for a certain long period of time.
    If there is an abnormality, it is configured to feed back information to the control device in a short period of time.
    The control device changes the magnitude of the transmission power of the transmission antenna based on the feedback information.
    The wireless power transfer mask device according to claim 8.
  10.  前記電子デバイスは、前記口腔内の状態をセンシングするセンサ、または感覚器の補強を行う電気刺激機器である、
    請求項8または9に記載のワイヤレス給電マスク装置。
    The electronic device is a sensor that senses the state of the oral cavity, or an electrical stimulator that reinforces a sensory organ.
    The wireless power transfer mask device according to claim 8 or 9.
PCT/JP2021/043082 2020-11-24 2021-11-24 Wireless power feed mask device WO2022114034A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-194700 2020-11-24
JP2020194700A JP2024012724A (en) 2020-11-24 2020-11-24 Wireless power supply mask device

Publications (1)

Publication Number Publication Date
WO2022114034A1 true WO2022114034A1 (en) 2022-06-02

Family

ID=81755597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043082 WO2022114034A1 (en) 2020-11-24 2021-11-24 Wireless power feed mask device

Country Status (2)

Country Link
JP (1) JP2024012724A (en)
WO (1) WO2022114034A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7148195B1 (en) 2022-06-09 2022-10-05 株式会社上山製作所 stimulation system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015207A1 (en) * 2011-07-28 2013-01-31 三洋電機株式会社 Battery pack and battery pack charging method
JP2016119666A (en) * 2014-12-23 2016-06-30 パロ アルト リサーチ センター インコーポレイテッド Radio-frequency (rf) energy harvesting in multiband using adaptive antenna
JP2018062420A (en) * 2016-10-14 2018-04-19 株式会社東芝 Moving measurement system, transporting object monitoring system and moving measurement method
JP2019115149A (en) * 2017-12-22 2019-07-11 株式会社Soken Non-contact power reception device
JP2019531682A (en) * 2016-08-12 2019-10-31 エナージャス コーポレイション Compact high-efficiency design of near-field power transmission system
JP2020522972A (en) * 2017-06-06 2020-07-30 サプライ, インコーポレイテッドSupply, Inc. Wireless power supply method and system
JP2020141486A (en) * 2019-02-28 2020-09-03 マクセルホールディングス株式会社 Wireless power feeding device for intraoral electronic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015207A1 (en) * 2011-07-28 2013-01-31 三洋電機株式会社 Battery pack and battery pack charging method
JP2016119666A (en) * 2014-12-23 2016-06-30 パロ アルト リサーチ センター インコーポレイテッド Radio-frequency (rf) energy harvesting in multiband using adaptive antenna
JP2019531682A (en) * 2016-08-12 2019-10-31 エナージャス コーポレイション Compact high-efficiency design of near-field power transmission system
JP2018062420A (en) * 2016-10-14 2018-04-19 株式会社東芝 Moving measurement system, transporting object monitoring system and moving measurement method
JP2020522972A (en) * 2017-06-06 2020-07-30 サプライ, インコーポレイテッドSupply, Inc. Wireless power supply method and system
JP2019115149A (en) * 2017-12-22 2019-07-11 株式会社Soken Non-contact power reception device
JP2020141486A (en) * 2019-02-28 2020-09-03 マクセルホールディングス株式会社 Wireless power feeding device for intraoral electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7148195B1 (en) 2022-06-09 2022-10-05 株式会社上山製作所 stimulation system
JP2023180418A (en) * 2022-06-09 2023-12-21 株式会社上山製作所 stimulation system

Also Published As

Publication number Publication date
JP2024012724A (en) 2024-01-31

Similar Documents

Publication Publication Date Title
US10994140B2 (en) Devices, systems, and methods for stimulation therapy
CN103329350B (en) Antenna assembly
ES2299606T3 (en) GARMENTS WITH MEDICAL SENSORS.
US6788976B2 (en) Movement timing simulator
WO2014030856A1 (en) Light irradiator for treating skin
US6704603B1 (en) Adaptive stimulator for relief of symptoms of neurological disorders
WO2022114034A1 (en) Wireless power feed mask device
JP2013514143A (en) Indwelling device and method for accurately positioning medical patch by patient at target position
JP2018522640A (en) Phototherapy bandage system
CA2842852C (en) Electrostimulation system
US20140257449A1 (en) Conductive garment
US11857329B2 (en) Modular garment for a wearable medical device
US11569568B2 (en) Wearable antenna and intra-uterine monitoring system
KR101907511B1 (en) Electric stimulator for muscles and joints
US20130245358A1 (en) Cervical bone growth stimulators utilizing combined magnetic field therapy
KR102284817B1 (en) An Electrical Muscle Stimulating Type of a Wearable Band Device for a Health
US20200253822A1 (en) Module and device for emitting electromagnetic waves
CN111375129A (en) Wearable heart device
CN107349532B (en) Ultrasonic treatment head acting on eyes
KR200383031Y1 (en) Articulation protecting band for heating
CN105381544A (en) Wearable pulse magnetic therapeutic apparatus and knitted fabric using same
KR100500795B1 (en) Band for curing human body
CN210250889U (en) Utilize electromagnetic wave to restrain quick growth's of pathological change tissue wearable equipment
KR102051219B1 (en) Health improving tool with body mounted type
KR20210076523A (en) EEG measurement head cap

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21898006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP