WO2022111604A1 - 一种样本分析装置及分析方法 - Google Patents

一种样本分析装置及分析方法 Download PDF

Info

Publication number
WO2022111604A1
WO2022111604A1 PCT/CN2021/133309 CN2021133309W WO2022111604A1 WO 2022111604 A1 WO2022111604 A1 WO 2022111604A1 CN 2021133309 W CN2021133309 W CN 2021133309W WO 2022111604 A1 WO2022111604 A1 WO 2022111604A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
sample
ultrasonic
needle
cavity
Prior art date
Application number
PCT/CN2021/133309
Other languages
English (en)
French (fr)
Inventor
张少维
汪云
郁琦
韩维春
李琦
陈恒
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN202180077916.5A priority Critical patent/CN116783490A/zh
Publication of WO2022111604A1 publication Critical patent/WO2022111604A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1004Cleaning sample transfer devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0437Cleaning cuvettes or reaction vessels

Definitions

  • the embodiments of the present application relate to a sample analysis device and a sample analysis method.
  • sampling needles such as sample needles and reagent needles, etc.
  • the sampling needle is reused, and it will come into contact with different liquid media during the working process.
  • the embodiments of the present application provide a sample analysis device and an analysis method, which can improve the consistency of cleaning objects.
  • an embodiment of the present application provides a sample analysis device, including:
  • Reagent unit for carrying reagents
  • a dispensing mechanism comprising a sample needle driving mechanism and a sample needle for performing sample dispensing
  • the sample needle driving mechanism drives the sample needle to move, so as to suck the sample and discharge it to the reaction cup located at the sample adding position
  • An ultrasonic cleaning unit comprising an ultrasonic generator and a cleaning cavity for carrying a cleaning medium and a top opening into which the sample needle at least partially extends, and the ultrasonic generator transmits a sound field to the cleaning medium through the cleaning cavity energy to clean the sample needle, and the ultrasonic generator is located at the bottom of the cleaning cavity;
  • a liquid injection mechanism for injecting the cleaning medium into the cleaning cavity
  • a controller controls the liquid injection mechanism to inject the cleaning medium into the cleaning cavity with a liquid volume greater than or equal to the volume of the cleaning cavity, and controls the ultrasonic cleaning unit to perform the sample needle on the sample needle. Ultrasonic cleaning is performed, so that the amount of cleaning medium in the cleaning cavity remains unchanged during the cleaning process.
  • an embodiment of the present application provides a sample analysis device, including:
  • Reagent unit for carrying reagents
  • a dispensing mechanism comprising a sample needle driving mechanism and a sample needle for performing sample dispensing
  • the sample needle driving mechanism drives the sample needle to move, so as to suck the sample and discharge it to the reaction cup located at the sample adding position
  • An ultrasonic cleaning unit comprising an ultrasonic generator and a cleaning cavity for carrying a cleaning medium and a top opening into which the sample needle at least partially extends, and the ultrasonic generator transmits a sound field to the cleaning medium through the cleaning cavity energy to clean the sample needle, and the ultrasonic generator is located at the bottom of the cleaning cavity;
  • a liquid injection mechanism for injecting the cleaning medium into the cleaning cavity
  • a controller when the ultrasonic cleaning conditions are met, the controller controls the liquid injection mechanism to inject the cleaning medium into the cleaning cavity with an amount greater than or equal to the volume of the cleaning cavity, and controls the ultrasonic cleaning
  • the unit performs ultrasonic cleaning on the sample needle, so that the amount of the cleaning medium in the cleaning cavity remains unchanged during the cleaning process.
  • the embodiments of the present application provide a sample analysis method, including:
  • the sample needle sucks the sample and discharges it into the reaction cup located at the sample loading position;
  • the reagent needle sucks the reagent and discharges it into the reaction cup located at the reagent adding position;
  • an ultrasonic cleaning unit comprising an ultrasonic generator and a cleaning cavity for carrying a cleaning medium and a top opening into which the sample needle at least partially extends, the ultrasonic generator vibrates the cleaning cavity, and the cleaning cavity Vibration causes the cleaning medium to vibrate to clean the sample needle, and the ultrasonic generator is located at the bottom of the cleaning cavity;
  • the cleaning medium whose liquid volume is greater than or equal to the cleaning cavity is injected into the cleaning cavity, and the sample needle is ultrasonically cleaned, so that the cleaning medium liquid volume of the cleaning cavity remains unchanged during the cleaning process.
  • the liquid volume of the cleaning medium injected into the cleaning cavity in the ultrasonic cleaning unit is controlled by the liquid injection mechanism, so that the liquid volume of the cleaning medium in the cleaning cavity is not changed during the cleaning process, thereby. So that the liquid level height and load of the ultrasonic cleaning unit are consistent during ultrasonic cleaning, and the reflection and propagation paths of sound waves in the pool are consistent, which improves the consistency of cleaning ability and reduces the damage to the surface roughness of the sample needle.
  • FIG. 1 is a schematic structural diagram of a sample analysis device provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a sample analysis device according to another embodiment
  • FIG. 3 is a schematic structural diagram of a sample analysis device according to another embodiment
  • FIG. 4 is a schematic structural diagram of a mixing mechanism according to an embodiment
  • FIG. 5 is a schematic structural diagram of a sample analysis device according to still another embodiment
  • FIG. 6 is a perspective view of some components of a sample analysis device of one embodiment
  • 7 and 8 are respectively a top view and a side view of an ultrasonic cleaning unit of an embodiment
  • 9 and 10 are respectively a top view and a side view of an ultrasonic cleaning unit of another embodiment
  • FIG. 11 is a schematic diagram of a liquid circuit structure of an ultrasonic cleaning unit according to an embodiment
  • 12 and 13 are respectively a top view and a side view of an ultrasonic cleaning unit according to another embodiment
  • 14 and 15 are respectively a top view and a side view of an ultrasonic cleaning unit according to another embodiment
  • 16 is a flowchart of a sample analysis method of one embodiment.
  • a corresponding cleaning unit will be specially designed.
  • the needle tube completes the dispensing of the medium once - the sample needle is to complete the dispensing of the sample, and the reagent needle is to complete the dispensing of the reagent.
  • the cleaning position for cleaning After cleaning, the next media dispensing will be performed. In order to try to avoid the cleaning taking too long and affecting the test speed, generally this cleaning cannot completely remove the contaminants.
  • This method can better clean up accumulated residual substances, but requires manual execution, the execution time and frequency cannot be accurately controlled, and the operation complexity is high. And the abnormal operation or improper operation of the precision unit may cause damage or failure of the unit.
  • the second is to add special chemical cleaning: this method is to use one or more chemical cleaning agents to perform special cleaning on the objects to be cleaned by adding them regularly, usually automatically. This method is only suitable for contaminants that can react with the cleaning agent used, and it is difficult to remove complex contaminants, especially for occasions where the cleaning and peeling force is small. In addition, the introduction of excessive cleaning media will also increase the complexity of operations and the difficulty of managing consumables.
  • the probe will be specially designed with a corresponding cleaning unit, but also the mixing mechanism will also be designed with a corresponding cleaning unit-generally, special cleaning schemes and cleaning units will be designed for different objects to be cleaned, because The liquid medium that each object to be cleaned is in contact with is different, so if a better cleaning effect is required, each object to be cleaned needs a special cleaning plan and cleaning unit.
  • other objects to be cleaned such as the mixing mechanism, also have the above-mentioned problem of residual accumulation, and they are also processed by the above-mentioned two processing methods, but similarly, there are also the above-mentioned two kinds of processing methods.
  • the inherent shortcomings and problems of each approach are not only the probe will be specially designed with a corresponding cleaning unit, but also the mixing mechanism will also be designed with a corresponding cleaning unit-generally, special cleaning schemes and cleaning units will be designed for different objects to be cleaned, because The liquid medium that each object to be cleaned is in contact with is different, so if a better cleaning effect is required, each object to be cleaned needs
  • This application introduces an ultrasonic cleaning unit to perform ultrasonic cleaning on the object to be cleaned, which has the effect of strong stripping cleaning, can effectively eliminate the accumulated pollutant residues, and clean the object relatively cleanly.
  • a sample analysis device which may include: a sample unit 10, a reagent unit 50, a dispensing mechanism, an ultrasonic cleaning unit, a liquid injection mechanism and a controller 110, which will be described in detail below.
  • the sample unit 10 is used to carry samples.
  • the sample unit 10 can be implemented by a sample distribution module (SDM, Sample Delivery Module) and a front-end track.
  • SDM sample distribution module
  • Sample Delivery Module a sample delivery module
  • the reagent unit 50 is used for carrying reagents.
  • the reagent unit 50 is provided in a disc-shaped structure, and the reagent unit 50 has a plurality of positions for carrying the reagent container.
  • the reagent unit 50 can rotate and drive the reagent container it carries to rotate, so as to rotate the reagent container. to the aspirate reagent position for the dispensing mechanism to aspirate the reagent.
  • the dispensing mechanism includes a sample dispensing mechanism 20, which includes a sample needle driving mechanism 21 and a sample needle 23 for performing sample dispensing.
  • the sample needle driving mechanism 21 drives the sample needle 23 to move to aspirate the sample and discharge it into the sample needle 23.
  • the number of sample needles 23 may be one or more.
  • the sample needle driving mechanism 21 can drive the sample needles 23 to move independently.
  • the sample needle driving mechanism 21 can be a two-dimensional or three-dimensional driving mechanism, which can be designed according to specific requirements.
  • a typical set of sequential actions is as follows: the sample needle 23 moves to, for example, the suction position to aspirate the sample, and then moves to, for example, the sample addition position to discharge the suctioned sample into the cuvette, and then moves to the predetermined location to be cleaned.
  • the outer wall of the sample needle 23 may also be cleaned once.
  • the dispensing mechanism further includes a reagent dispensing mechanism 60.
  • the reagent dispensing mechanism 60 includes a reagent needle driving device 61 and a reagent needle 63.
  • the controller 110 controls the reagent driving device 61 to move the reagent needle 63 to the reagent unit for suction.
  • the reagents are discharged side by side to the reaction cup located at the reagent adding position, and the controller 110 also controls the ultrasonic cleaning unit to perform ultrasonic cleaning on the reagent needle 63 .
  • the reagent needle driving mechanism 61 can drive these reagent needles 63 to move independently.
  • the reagent needle driving mechanism 61 can be a two-dimensional or three-dimensional driving mechanism, which can be designed according to specific requirements.
  • the reagent needle 63 moves to, for example, the suction reagent position to absorb the reagent, and then moves to the reagent addition position to discharge the suctioned reagent into the reaction cup, and then moves It is cleaned at a predetermined position; of course, in some examples, after the reagent needle 63 absorbs the reagent and before discharging the reagent, the outer wall of the reagent needle 63 can also be cleaned once.
  • the controller 110 controls the reagent needle 63 to continuously perform multiple reagent suction operations to absorb the required multiple reagents; In the process of multiple required reagents, the outer wall of the reagent needle 63 may be cleaned after the first reagent suction operation is completed and before the next reagent suction operation is started.
  • the sample analysis device may further include a reaction unit 80 , a mixing mechanism 90 and a measuring unit 100 , which will be described in detail below.
  • the reaction unit 80 has a plurality of placement positions for placing the reaction cups, and the reaction unit 80 is used to incubate the reaction solution in the reaction cups on the placement positions, wherein the reaction solution is prepared or formed at least from the sample and the reagent.
  • the reaction unit 80 is arranged in a disc-shaped structure, and the reaction unit 80 can rotate and drive the reaction cup in its placement position to rotate, for scheduling the reaction cup in the reaction unit 80 and incubating the reaction solution in the reaction cup.
  • the sample adding position, reagent adding position, mixing position, and measurement position, etc. mentioned in this document may be the placement positions of certain positions in the reaction unit 80, that is, the sample adding position, the reagent adding position, the mixing position and the measurement position. etc.
  • the reaction unit 80 may include an inner ring portion and an outer ring portion that can be rotated independently or together; the inner ring portion includes one or more orbits, and each orbit is provided with several placement positions for the reaction cups Incubating and scheduling the reaction cups between the positions of the inner ring; the outer ring includes one or more orbits, and each orbit is provided with a number of positions for placing the reaction cups on the outer ring. Scheduling between bits. 1 to 3 show an outer ring portion with one track, and an inner ring portion with three tracks.
  • the mixing mechanism 90 is used for mixing the reaction liquid that needs to be mixed in the reaction cup.
  • the mixing mechanism 90 mixes the reaction liquid at the mixing position.
  • the measurement unit 100 is used to measure the reaction liquid.
  • the measuring unit 100 is used to measure the reaction solution in the reaction cup that has been incubated and is located at the measuring position to obtain the test result.
  • the measuring unit 100 may be a photometric measuring unit, which can detect the luminescence intensity or absorbance of the reaction solution to be measured, and calculate the concentration of the component to be measured in the sample through a calibration curve.
  • the assay unit 100 may be separately disposed outside the reaction unit 80 .
  • the mixing mechanism 90 includes a stirring rod driving mechanism 91 and a stirring rod 93, and the stirring rod driving mechanism 91 can drive the stirring rod 93 to move and perform stirring action; the stirring rod ultrasonic cleaning unit 140 is provided in the stirring rod. On the movement track of the rod 93, the stirring rod 93 can be moved to the stirring rod ultrasonic cleaning unit 140 to be cleaned.
  • the number of stirring rods 93 may be one or more. When the number of stirring rods is multiple, when one stirring rod 93 performs a stirring action, the other stirring rods 93 can use this time to be used for stirring. For cleaning, an example with three stirring roots 93 is shown in FIG. 4 .
  • the sample analysis device may include an ultrasonic cleaning unit, such as the sample needle ultrasonic cleaning unit 40 shown in FIG. 1, for ultrasonic cleaning of the sample needle; the sample analysis device may also include a larger number of ultrasonic cleaning units, such as 2 includes the sample needle ultrasonic cleaning unit 40 and the reagent needle ultrasonic cleaning unit 120, or with reference to FIG. 5 includes the sample needle ultrasonic cleaning unit 40, the reagent needle ultrasonic cleaning unit 120 and the stirring rod ultrasonic cleaning unit 140, and the reagent needle ultrasonic cleaning unit 120 It is used for ultrasonic cleaning of the reagent needle 63 , and the stirring rod ultrasonic cleaning unit 140 is used for ultrasonic cleaning of the stirring rod 93 .
  • an ultrasonic cleaning unit such as the sample needle ultrasonic cleaning unit 40 shown in FIG. 1, for ultrasonic cleaning of the sample needle
  • the sample analysis device may also include a larger number of ultrasonic cleaning units, such as 2 includes the sample needle ultrasonic cleaning unit 40 and the reagent needle ultrasonic cleaning
  • the sample needle ultrasonic cleaning unit 40 is arranged on the movement trajectory of the sample needle, the reagent needle ultrasonic cleaning unit 120 is arranged on the reagent needle movement trajectory, and the stirring rod ultrasonic cleaning unit 140 is arranged on the movement trajectory of the stirring rod 93 .
  • the sample needle ultrasonic cleaning unit 40 and the reagent needle ultrasonic cleaning unit 120 may be the same ultrasonic cleaning unit, and the ultrasonic cleaning unit is disposed at the intersection of the movement trajectories of the sample needle 23 and the reagent needle 63 In this way, the sample needle 23 and the reagent needle 63 can be time-divisionally multiplexed in the same ultrasonic cleaning unit.
  • sample needle ultrasonic cleaning unit 40 the reagent needle ultrasonic cleaning unit 120 and the stirring rod ultrasonic cleaning unit 140 can use ultrasonic cleaning units of the same structure, and there is no need to redesign different ultrasonic cleaning units for different objects to be cleaned.
  • sample needle ultrasonic cleaning unit 40 will be used as an example for detailed introduction.
  • the sample needle ultrasonic cleaning unit 40 includes an ultrasonic generator 6 and a cleaning cavity 1 for carrying a cleaning medium and a top opening into which the sample needle 23 at least partially extends.
  • the ultrasonic generator 6 transmits sound field energy to the cleaning medium through the cleaning cavity 1 , to clean the sample needle 23 , and the ultrasonic generator 6 is located at the bottom of the cleaning cavity 1 . Please refer to FIG. 8 or FIG.
  • the ultrasonic generator 6 is arranged at the bottom of the cleaning cavity 1 , and the ultrasonic generator 6 is connected with the cleaning cavity 1 to realize the transmission of the generated sound field energy to the cleaning cavity 1 , and the cleaning cavity 1
  • the bottom of the cleaning chamber and the pool wall vibrate, and the cleaned dirty substances will not adhere to the bottom and the pool wall of the cleaning chamber 1, which keeps the cleaning chamber 1 clean; in addition, the ultrasonic generator 6 is arranged in the cleaning chamber 1.
  • the bottom shock source is used to make the center of gravity of the ultrasonic generator 6 and the central axis of the cleaning cavity 1 on the same line, and the center of gravity will not be shifted for a long time; it is understandable that due to the effect of gravity , the dirty substances are easier to adhere to the bottom of the cleaning cavity 1, but since the ultrasonic generator 6 is arranged at the bottom of the cleaning cavity 1 in this embodiment, the bottom of the cleaning cavity 1 vibrates greatly, which can effectively prevent the dirty substances. Attached to the bottom of the cleaning chamber 1.
  • the ultrasonic generator 6 and the cleaning cavity 1 are integrally designed, so that the connection between the ultrasonic generator 6 and the cleaning cavity 1 can be prevented from loosening, and the ultrasonic generator 6 and the cleaning cavity 1 are integrally designed. , can improve the reliability and stability of ultrasonic cleaning.
  • the liquid injection mechanism is used to inject a cleaning medium into the cleaning cavity 1, so that the ultrasonic cleaning unit can perform ultrasonic cleaning on the sample needle 23 through the cleaning medium.
  • the liquid injection mechanism is used to inject a cleaning medium into the cleaning cavity 1, so that the ultrasonic cleaning unit can perform ultrasonic cleaning on the reagent needle 63 through the cleaning medium; in the stirring rod ultrasonic cleaning unit In 140, the liquid injection mechanism is used for injecting cleaning medium into the cleaning cavity 1, so that the ultrasonic cleaning unit can perform ultrasonic cleaning on the stirring rod 93 through the cleaning medium.
  • Ultrasonic cleaning is to use the cavitation, acceleration and/or direct flow of ultrasonic waves in the liquid to directly and indirectly affect the liquid and pollutants, so that the pollutants are dispersed, emulsified and peeled off to achieve cleaning purpose.
  • ultrasonic cleaning can use the strong cavitation and vibration generated by ultrasonic waves to peel off the dirt on the surface of the object to be cleaned, and at the same time, it can also decompose and emulsify the greasy dirt.
  • the media used for ultrasonic cleaning herein include chemical agents, such as cleaning agents as described herein.
  • the cleaning agent may be an alkaline cleaning agent, such as sodium hydroxide (NaOH) and potassium hydroxide (KOH).
  • surfactants can be added to the cleaning agent to enhance the cleaning effect.
  • the object to be cleaned after the object to be cleaned is ultrasonically cleaned with a cleaning agent, the object to be cleaned will be ultrasonically cleaned with deionized water to brush it again, so as to prevent the cleaning agent from remaining on the object to be cleaned and affect the test results of subsequent tests.
  • the controller 110 is used to control the liquid injection mechanism to inject the cleaning medium into the cleaning chamber 1 with a liquid volume greater than or equal to the volume of the cleaning chamber 1, and to control the ultrasonic cleaning unit to perform ultrasonic waves on the sample needle 23, the reagent needle 63 or the stirring rod 93 cleaning, so that the amount of cleaning medium in the cleaning chamber 1 remains unchanged during the cleaning process.
  • the ultrasonic cleaning unit is controlled to perform ultrasonic cleaning on the sample needle 23, the reagent needle 63 or the stirring rod 93, so that the cleaning chamber 1 can be cleaned during the cleaning process.
  • the liquid volume of the cleaning medium remains unchanged, so that the liquid level and load of the ultrasonic cleaning unit remain the same when cleaning, and the reflection and propagation paths of sound waves in the pool are consistent, which improves the consistency of cleaning ability and reduces the need for sample needle 23, reagent needle 63 or The damage of the surface roughness of the stirring rod 93 maintains the resistance of the surface to the adhesion of dirt.
  • the controller 110 controls the liquid injection mechanism to inject the cleaning medium into the cleaning chamber 1, and before the ultrasonic cleaning unit performs ultrasonic cleaning on the sample needle 23, the reagent needle 63 or the stirring rod 93, the controller 110 also controls the injection mechanism.
  • the liquid mechanism stops injecting the cleaning medium into the cleaning chamber 1 . Stopping the injection of the cleaning medium before the ultrasonic cleaning can prevent the cleaning medium from flowing during the ultrasonic cleaning, and avoid the influence of the dynamic pressure of the liquid injection on the cleaning ability.
  • the ultrasonic wave The cleaning unit further includes an overflow chamber 2 for receiving the overflowing liquid from the cleaning chamber 1 , and a second waste liquid discharge port 5 communicating with the overflow chamber 2 .
  • the controller 110 controls the liquid injection mechanism to inject the cleaning medium into the cleaning chamber 1, and when the cleaning medium is filled with the cleaning chamber 1 and continues to inject liquid, part of the cleaning medium will overflow from the cleaning chamber 1 to the overflow chamber 2, and finally It is discharged through the second waste liquid discharge port 5; in addition, when the cleaning chamber 1 is filled with cleaning medium and the sample needle 23, the reagent needle 63 or the stirring rod 93 protrudes into the cleaning chamber 1, part of the cleaning medium will also be caused The overflow chamber 2 will overflow from the cleaning chamber 1.
  • the ultrasonic cleaning unit further includes a first waste liquid discharge port 4 communicated with the bottom of the cleaning cavity 1 .
  • the ultrasonic cleaning unit shown in FIGS. 9 and 10 also has a first waste liquid discharge port 4 at the bottom.
  • the ultrasonic cleaning unit can discharge the cleaning medium in the cleaning cavity 1 through the first waste liquid discharge port 4 after the ultrasonic cleaning is completed; it can also discharge the cleaning medium in the cleaning cavity 1 during the ultrasonic cleaning process. , which can be set according to the cleaning needs.
  • the cleaning medium after ultrasonic cleaning in the cleaning chamber 1 can be completely or as much discharged as possible, so as to avoid residual dirt in the cleaning chamber 1 , thereby avoiding the influence of the remaining dirt.
  • Next ultrasonic cleaning Referring to FIG.
  • the ultrasonic cleaning unit may further include a control valve 101 for opening and closing the first waste liquid discharge port 4, such as a solenoid valve; when the control valve 101 is opened, the waste liquid can pass through the first waste liquid.
  • the discharge port 4 is discharged.
  • the control valve 101 can be controlled to be closed, and after the cleaning is completed, the control valve 101 is controlled to be opened again, so that the cleaning medium stored in the cleaning chamber 1 is discharged through the first waste liquid discharge port 4 .
  • the control valve 101 can also be controlled to open, so that the cleaning medium needs to be continuously transported from the liquid inlet 3 to the cleaning chamber 1 .
  • the first waste liquid discharge port 4 may not be configured with the control valve 101 .
  • the cleaning medium needs to be continuously transported from the liquid inlet port 3 to the cleaning chamber 1 .
  • the overflow chamber 2 uses gravity to discharge the liquid from the second waste liquid discharge port 5 .
  • the cleaning chamber 1 is connected to the first waste liquid discharge port 4 by a waste liquid pump. When the cleaning medium in the cleaning chamber 1 needs to be discharged, the waste liquid pump is turned on to clean the cleaning medium in the cleaning chamber 1. Strong discharge, the use of a waste liquid pump can improve the discharge effect of the cleaning medium in the cleaning chamber 1, and avoid residues that affect the cleaning quality of the next ultrasonic cleaning.
  • the overflow chamber 2 is disposed around the cleaning chamber 1 , wherein the height of the sidewall of the cleaning chamber 1 is smaller than the height of the sidewall of the overflow chamber 2 .
  • the ultrasonic cleaning unit is placed horizontally, and the upper surface of the cleaning chamber 1 is on the same level.
  • the overflow chamber 2 is arranged around the cleaning chamber 1 and can receive the liquid overflowing from the cleaning chamber 1 from any direction, and has a good overflow liquid receiving effect.
  • the controller 110 can be made to judge that the cleaning chamber 1 is overflowing.
  • the liquid level of the cleaning medium in the cleaning chamber 1 can be detected by a liquid level probe extending into the cleaning chamber 1.
  • the method of detecting the liquid level is not limited here.
  • the height of the side wall of the cleaning chamber 1 is smaller than that of the overflow chamber 2, when the overflow chamber 2 also overflows, the liquid level of the cleaning medium must be higher than the height of the cleaning chamber 1.
  • the controller 110 can stop the liquid injection, the damage of the sample analysis device due to overflow is avoided, thereby improving the reliability of the sample analysis device.
  • the liquid injection mechanism includes a liquid injection port 3 communicating with the cleaning cavity 1 for injecting a cleaning medium into the cleaning cavity 1 .
  • the liquid injection mechanism further includes a medium conveying channel 7 for injecting the cleaning medium into the liquid inlet 3 .
  • the medium conveying channel 7 is provided with a switch 8 for opening the medium conveying channel 7 .
  • the controller 110 controls the switch 8 to inject the cleaning medium into the cleaning chamber 1 .
  • one end of the medium conveying channel 7 is connected to the liquid inlet 3, and the other end of the medium conveying channel 7 can be connected with one or more branches, and each branch can be provided with a switch 8, such as a solenoid valve; And closing the control valve 8 can control the conduction and cut-off of the corresponding branch.
  • each branch can be connected to a different cleaning medium, so that a variety of different cleaning media can be used to clean the objects to be cleaned, and each branch corresponds to a cleaning medium
  • the control valve 8 of the corresponding branch is controlled to be opened, and the corresponding cleaning medium is transported into the cleaning cavity 1 through the medium transport channel 7 and the liquid inlet 3 .
  • Ultrasonic cleaning can allow one or more cleaning media to clean the objects to be cleaned; in the case of sufficient cleaning time, during the cleaning process, different cleaning media can be used to clean the objects to be cleaned in turn; in the case of insufficient cleaning time
  • a cleaning medium such as cleaning liquid can be used to clean the object to be cleaned.
  • a cleaning solution can be used in some ultrasonic cleanings, and one or more cleaning media can be used in other ultrasonic cleanings.
  • This one or more cleaning media At least a cleaning agent is included, for example, after performing N times of ultrasonic cleaning using only cleaning liquid, ultrasonic cleaning using cleaning agent is performed once.
  • the sample analysis device further includes another form of liquid injection mechanism
  • the liquid injection mechanism includes a sample needle 23 or a reagent needle 63 and a cleaning medium for injecting the sample into the sample
  • the medium conveying channel of the needle 23 or the reagent needle 63 is provided with a switch for opening the medium conveying channel.
  • the controller 110 controls the liquid injection mechanism to inject the cleaning medium into the cleaning cavity through the sample needle 23 or the reagent needle 63 .
  • the ultrasonic cleaning unit does not need to be provided with a liquid inlet that communicates with the cleaning chamber 1. mouth 3.
  • the controller 110 controls the liquid injection mechanism to stop injecting the cleaning medium into the cleaning chamber 1 when the cleaning medium overflows from the cleaning chamber 1 during the process of controlling the liquid injection mechanism to inject the cleaning medium into the cleaning chamber 1 .
  • the sample analysis device can be provided with a liquid level detection device.
  • the liquid level detection device is located on the upper end surface of the side wall of the cleaning chamber 1. When the liquid level detection device detects that the cleaning medium overflows from the cleaning chamber 1 , controlling the liquid injection mechanism to stop injecting the cleaning medium into the cleaning chamber 1, which can ensure that the cleaning chamber 1 is filled with the cleaning medium and at the same time better control the amount of the cleaning medium and avoid the waste of the cleaning medium.
  • the liquid injection mechanism injects the cleaning medium into the cleaning chamber 1 , and the cleaning chamber 1 keeps overflowing. It can be understood that during the cleaning process, the overflowing while injecting the cleaning medium can also keep the cleaning medium liquid volume in the cleaning chamber 1 unchanged, but the dynamic pressure of the liquid injection will affect the vibration surface amplitude, thereby affecting the ultrasonic cleaning unit. Therefore, it is necessary to control the injection speed of the cleaning medium to ensure that the sound pressure will not change too much during ultrasonic operation, so that the fluctuation range of the sound pressure does not exceed 30%.
  • the liquid level of the cleaning medium in the overflow cavity 1 is less than or equal to 2 mm. If the liquid level of the cleaning medium in the overflow chamber 1 is too high, for example, higher than 2 mm, the load of the ultrasonic cleaning unit will be affected, resulting in unstable load, thereby affecting the cleaning effect.
  • the sample analysis device further includes a liquid suction mechanism, and the liquid suction mechanism is used for suctioning the cleaning medium from the cleaning chamber 1 , and the sample needle 23 , the reagent needle 63 or the stirring rod 93 is cleaned in the ultrasonic cleaning unit.
  • the liquid injection mechanism injects the cleaning medium into the cleaning chamber 1, and the liquid suction mechanism sucks the cleaning medium in the cleaning chamber 1, so that the volume of the cleaning medium in the cleaning chamber 1 is the same as the volume of the cleaning chamber 1. For example, after the cleaning medium in the cleaning chamber 1 is filled, the liquid injection mechanism continues to inject liquid into the cleaning chamber 1. At this time, the liquid suction mechanism needs to suck up the cleaning medium that is about to overflow, so that the cleaning medium in the cleaning chamber 1 remains full state.
  • the cleaning medium is chemical or water.
  • the chemical reagents refer to some media that can chemically react with the pollutants on the object to be cleaned, for example, some acidic liquids.
  • the sound pressure of the ultrasonic waves generated by the ultrasonic generator 6 ranges from 1 MPa to 50 MPa.
  • the ultrasonic sound pressure range is controlled within the range of 1 MPa to 50 MPa for ultrasonic cleaning, and the cleaning effect of the sample needle 23, the reagent needle 63 or the stirring rod 93 is good and the surface of the object to be cleaned will not produce cavitation corrosion. If the cavitation sound pressure is lower than 1MPa, the cleaning ability of the ultrasonic cleaning unit cannot be guaranteed.
  • Controlling the sound pressure of the ultrasonic wave to be greater than 1MPa can better clean the stains on the sample needle 23, the reagent needle 63 or the stirring rod 93. If the cavitation sound pressure exceeds 50MPa, it is not easy to control the cleaning effect when the stainless steel sample needle 23, reagent needle 63 or stirring rod 93 is used for ultrasonic cleaning, and it will also cause the mass sample needle 23, reagent needle 63 or stirring rod 93. The surface roughness is damaged, which affects the general cleaning effect of the sample needle 23 , the reagent needle 63 or the stirring rod 93 , and the surfaces of the sample needle 23 , the reagent needle 63 or the stirring rod 93 are easily stained and adhered.
  • the ultrasonic generator 6 includes a transducer ceramic sheet for emitting ultrasonic energy, and the ultrasonic cleaning unit performs ultrasonic cleaning on the sample needle 23, the reagent needle 63 or the stirring rod 93.
  • the working of the transducer ceramic sheet is The temperature does not exceed 45°C.
  • the high cleaning temperature causes damage to the sample needle 23, the reagent needle 63 or the stirring rod 93.
  • the sound pressure emitted by the ultrasonic generator 6 can be kept stable, and the sound pressure emitted by the ultrasonic generator 6 can be kept stable by avoiding the high temperature. cause an impact.
  • the transducer ceramic sheet of the ultrasonic generator can be improved or the working sequence can be improved, so as to ensure that the temperature will not be too high.
  • the height at which the sample needle 23, the reagent needle 63 or the stirring rod 93 protrudes into the cleaning medium is less than or equal to two times the working wavelength. one part. The inventors found that when the height at which the sample needle 23, the reagent needle 63 or the stirring rod 93 protrudes into the cleaning medium is less than or equal to one-half of the working wavelength, the ultrasonic cleaning unit has no effect on the sample needle 23, the reagent needle 63 or the stirring rod 93. Ultrasonic cleaning works best.
  • the object to be cleaned in the sample analysis device may include the sample needle 23 , the reagent needle 63 or the stirring rod 93 .
  • the sample analysis device can be configured with a sample needle ultrasonic cleaning unit 40 and a first cleaning unit 30 to clean it;
  • the sample analysis device can be configured with a reagent needle ultrasonic cleaning unit. 120 and the second cleaning unit 70 clean it, and the second cleaning unit 70 can be a device with the same structure as the ultrasonic cleaning unit; with reference to FIGS.
  • the sample analysis device can be configured with a stirring rod ultrasonic cleaning unit 140 and the third cleaning unit 130 to clean it, and the third cleaning unit 130 may be a device with the same structure as the ultrasonic cleaning unit.
  • the first cleaning unit 30 is arranged on the movement trajectory of the sample needle
  • the second cleaning unit 70 is arranged on the movement trajectory of the reagent needle 63
  • the third cleaning unit 130 is arranged on the movement trajectory of the stirring rod 93 .
  • the first cleaning unit 30 may be an ordinary cleaning unit for the sample needle 23, or another ultrasonic cleaning unit for the sample needle 23;
  • the second cleaning unit 70 may be an ordinary cleaning unit for the reagent needle 63, or a reagent needle Another ultrasonic cleaning unit of 63;
  • the third cleaning unit 130 may be an ordinary cleaning unit of the stirring rod 93, or may be another ultrasonic cleaning unit of the stirring rod 93.
  • the normal cleaning unit 30 of the sample needle 23 is used to perform normal mode cleaning on the sample needle 23 .
  • the common cleaning unit 30 of the sample needle 23 is used to perform cleaning operations such as rinsing and/or soaking the sample needle 23 with cleaning liquid and/or cleaning agent.
  • the cleaning solution in this article refers to liquid media such as physiological saline, distilled water or diluent, while the cleaning agent refers to some media that can chemically react with the pollutants on the object to be cleaned, such as some acidic liquids. Wait.
  • the common cleaning unit 30 of the sample needle 23 can be implemented by some existing or future cleaning structures.
  • the general cleaning unit 70 of the reagent needle 63 is used to perform general mode cleaning on the reagent needle 63 .
  • the common cleaning unit 70 of the reagent needle 63 is used to perform cleaning operations such as rinsing and/or soaking the reagent needle 63 with cleaning liquid and/or cleaning agent.
  • the common cleaning unit 70 of the reagent needle 63 can be implemented by some existing or future cleaning structures.
  • the general cleaning unit 130 of the stirring rod 93 is used to perform general mode cleaning on the stirring rod 93 after the stirring is completed.
  • the common cleaning unit 130 of the stirring rod 93 is used to perform cleaning operations such as rinsing and/or soaking the stirring rod with cleaning liquid and/or cleaning agent.
  • the common cleaning unit 130 of the stirring rod 93 can be implemented by some existing or future cleaning structures.
  • a project test needs to go through the following processes: adding samples and reagents, mixing and incubating the reaction solution formed by the samples and reagents, and measuring the reaction solution after the incubation; and in this process, the sample needle 23 After one sample is discharged and before the next sample is drawn, it generally needs to be cleaned to prevent cross-contamination; similarly, the reagent needle 63 generally needs to be cleaned after one time of reagent is discharged and before the next one is drawn to prevent cross-contamination. Cross-contamination; similarly, the mixing mechanism 90 generally needs to be cleaned after using the stirring rod 93 to stir the reaction solution in one cuvette and before stirring the reaction solution in the next cuvette to prevent cross-contamination.
  • the controller 110 controls the sample needle drive mechanism 21 to drive the sample needle 23 to move to the sample unit 10 to suck the sample to be injected and discharge it to the reaction cup located at the sample injection position; the controller 110 controls The reagent needle driving mechanism 61 drives the reagent needle 63 to move to the reagent unit 50 to absorb the reagent and discharge it to the reaction cup located at the reagent adding position; it is understood that the process of adding the sample and adding the reagent can be performed simultaneously or sequentially It can be carried out by adding the sample first and then adding the reagent, or adding the reagent first and then adding the sample.
  • the controller 110 controls the mixing mechanism 90 to mix the reaction solution, and the controller 110 controls the reaction unit 80 to incubate the reaction solution. After the incubation is completed, the controller 110 controls the measuring unit 100 to measure the reaction solution after the incubation.
  • the sample needle, reagent needle and stirring rod can be cleaned during the test process.
  • the controller 110 also controls the first cleaning unit 30 to perform normal mode cleaning on the sample needle after discharging the sample, and controls the ultrasonic cleaning unit 40 to perform ultrasonic cleaning on the sample needle when the ultrasonic cleaning conditions are met.
  • the controller 110 also controls the second cleaning unit 70 to perform normal mode cleaning on the reagent needles after the reagents are discharged, and controls the ultrasonic cleaning unit 120 to perform ultrasonic cleaning on the reagent needles when the ultrasonic cleaning conditions are met.
  • the controller 110 also controls the third cleaning unit 130 to perform normal mode cleaning on the mixing mechanism after the stirring is completed, and controls the ultrasonic cleaning unit 140 to perform ultrasonic cleaning on the mixing mechanism when the ultrasonic cleaning conditions are met.
  • the "stirring completion” mentioned here refers to the completion of stirring the reaction solution in a reaction cup.
  • the ultrasonic cleaning unit can perform ultrasonic cleaning on the objects to be cleaned during continuous cycle work, or perform ultrasonic cleaning on the objects to be cleaned after completing the tasks of this project. For example, this batch applied for 50 items for testing. During the testing process, if the ultrasonic cleaning conditions are met, you can perform ultrasonic cleaning on the cleaning objects after completing the 50 item tests, or you can complete the pending cleaning. Ultrasonic cleaning is performed on the subject as soon as it completes the task of the current item.
  • the ultrasonic generator 6 is a device: the ultrasonic generator 6 converts the received working electricity into a high-frequency alternating current signal for driving, and converts the electrical power into mechanical power, that is, ultrasonic waves and then sends out the ultrasonic waves.
  • the ultrasonic generator 6 can be turned on and off. When turned on, the ultrasonic generator 6 works, and when turned off, the ultrasonic generator 6 stops working.
  • the present invention considers that the ultrasonic generator 6 is also turned off during the cleaning process, and the cleaning medium is directly used to clean the object to be cleaned, so that the ultrasonic cleaning unit can be turned into a common cleaning unit, that is, an ultrasonic cleaning unit.
  • the cleaning unit can realize both ultrasonic cleaning and ordinary cleaning. Therefore, in some embodiments, it is considered to integrate the ultrasonic cleaning unit and the ordinary cleaning unit.
  • the ultrasonic cleaning unit turns on the ultrasonic generator 6, it can perform ultrasonic cleaning, and when the ultrasonic generator 6 is turned off, it can perform normal cleaning.
  • the Multiple ultrasonic cleaning units are designed together;
  • Figures 12 and 13 are such an example, two ultrasonic cleaning units are designed together, taking the cleaning of the sample needle 23 as an example, in the examples of Figures 12 and 13, it is possible to Two sample needles 23 are cleaned at the same time, and similarly, multiple reagent needles 63 or stirring rods 93 can also be cleaned at the same time.
  • the overflow cavity 2 of these multiple ultrasonic cleaning units is shared, and accordingly, the second waste liquid discharge port 5 is also shared.
  • 14 and 15 is such an example, two ultrasonic cleaning units share a common overflow cavity 2, and this overflow cavity 2 discharges waste liquid through a second waste liquid discharge port 5.
  • ultrasonic cleaning is used to clean at least one of serum protein, hemoglobin, or separation gel of the sample needle 23 , the reagent needle 63 or the stirring rod 93 .
  • a sample analysis device including a sample unit, a reagent unit, a dispensing mechanism, an ultrasonic cleaning unit, a liquid injection mechanism, and a controller, wherein: the sample unit is used for carrying samples; the reagent unit is used for carrying reagents;
  • the injection mechanism includes a sample needle drive mechanism and a sample needle for sample dispensing.
  • the sample needle drive mechanism drives the sample needle to move to suck the sample and discharge it to the cuvette at the sample adding position;
  • the ultrasonic cleaning unit includes an ultrasonic generator and It is used to carry the cleaning medium and a cleaning cavity with a top opening into which the sample needle at least partially extends.
  • the ultrasonic generator transmits sound field energy to the cleaning medium through the cleaning cavity to clean the sample needle.
  • the ultrasonic generator is located in the cleaning cavity. Bottom; the liquid injection mechanism is used to inject the cleaning medium into the cleaning cavity; when the controller meets the ultrasonic cleaning conditions, the controller controls the liquid injection mechanism to inject the cleaning medium into the cleaning cavity with a volume greater than or equal to the volume of the cleaning cavity, and controls the ultrasonic cleaning
  • the unit performs ultrasonic cleaning on the sample needle, so that the amount of cleaning medium in the cleaning cavity remains unchanged during the cleaning process.
  • the controller controls the liquid injection mechanism to inject the cleaning medium into the cleaning cavity with an amount greater than or equal to the volume of the cleaning cavity, and controls the ultrasonic cleaning unit to adjust the reagent needle/stirring rod. Perform ultrasonic cleaning so that the amount of cleaning medium in the cleaning cavity remains unchanged during the cleaning process.
  • the sample needle, reagent needle or stirring rod does not need to be ultrasonically cleaned after each use. If the ultrasonic cleaning conditions are set to meet the ultrasonic cleaning conditions, it means that the sample needle, reagent needle or stirring rod has Only when ultrasonic cleaning is required, the ultrasonic cleaning unit is controlled to perform ultrasonic cleaning on sample needles, reagent needles or stirring rods, so as to avoid time waste and energy consumption problems caused by ultrasonic cleaning after each use.
  • the ultrasonic cleaning conditions involved in the above embodiment whether it is the ultrasonic cleaning conditions for cleaning the sample needle 23, the ultrasonic cleaning conditions for cleaning the reagent needle 6, or the ultrasonic cleaning conditions for the stirring rod for ultrasonic cleaning of the stirring rod 93,
  • Their ultrasonic cleaning conditions can be the same or different, and their ultrasonic cleaning conditions can be one or more of the following:
  • Preset regular cleaning time points for example, set the regular cleaning time at 8:00 am, 12:00 pm, and 4:00 pm every day. When the regular cleaning time point is reached, ultrasonic cleaning will be started;
  • the sample analysis device Since the last ultrasonic cleaning, the sample analysis device has been working for the first time - for example, the first time is set to 4 hours, when the distance from the last ultrasonic cleaning is 4 hours, the sample analysis device will automatically start an ultrasonic cleaning again;
  • the cumulative number of samples or items tested by the sample analysis device has reached the first number—for example, if the first number is set to 400, the sample analysis device has cumulatively tested again after the last ultrasonic cleaning. If the number of samples or items is 400, the sample analysis device will automatically start an ultrasonic cleaning again; or, since the last ultrasonic cleaning, the number of ordinary cleanings has reached the second number—for example, set the second number to 400, Then, after the last ultrasonic cleaning, the sample analysis device has performed 400 ordinary cleanings in total, and the sample analysis device will automatically start an ultrasonic cleaning again;
  • the sample analysis device controls the sample needle to suck the sample and discharges it to the reaction cup located at the sample loading position, and then performs an ultrasonic cleaning;
  • the sample analysis device stops injecting the cleaning medium into the cleaning cavity—for example, after the sample analysis device controls the liquid injection mechanism to stop injecting the cleaning medium into the cleaning cavity, an ultrasonic cleaning is performed.
  • a hardware structure is further included, when the hardware structure is triggered, an ultrasonic cleaning start command is issued.
  • the sample analysis device may include a button, when the button is pressed, an ultrasonic cleaning start command will be issued; therefore, the user can manually press the button to send the ultrasonic cleaning start command to the sample analysis device.
  • sample analysis device Referring to FIG. 16, some embodiments of the present invention also disclose a sample analysis method, which includes the following steps:
  • Step 1000 the sample needle sucks the sample and discharges it into the reaction cup located at the sample loading position;
  • Step 1100 The reagent needle sucks the reagent and discharges it into the reaction cup located at the reagent adding position;
  • Step 1200 mixing at least the reaction solution formed by the sample and the reagent;
  • Step 1300 incubate the reaction solution
  • Step 1400 Measure the reaction solution that has been incubated
  • the ultrasonic cleaning unit includes an ultrasonic generator and a cleaning cavity for carrying the cleaning medium and a top opening into which the sample needle at least partially extends.
  • the ultrasonic generator vibrates the cleaning cavity, and the vibration of the cleaning cavity makes the cleaning medium vibrate, so that the The sample needle is cleaned, and the ultrasonic generator is located at the bottom of the cleaning cavity;
  • the injection of the cleaning medium into the cleaning cavity is stopped.
  • At least one (item) refers to one or more, and "a plurality” refers to two or more.
  • “And/or” is used to describe the relationship between related objects, indicating that there can be three kinds of relationships, for example, “A and/or B” can mean: only A, only B, and both A and B exist , where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, c can be single or multiple.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • Units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented as a software functional unit and sold or used as a stand-alone product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , which includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM for short), Random Access Memory (RAM for short), magnetic disk or CD, etc. that can store program codes medium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

样本分析装置及分析方法,样本分析装置包括样本单元(10)、试剂单元(50)、分注机构(20)、超声波清洗单元(40、120、140)、注液机构和控制器(110),分注机构(20)包括样本针驱动机构(21)和样本针(23),超声波清洗单元(40、120、140)包括超声波发生器(6)和用于承载清洗介质以及供样本针(23)至少部分伸入的顶部开口的清洗腔体(1);控制器(110)控制注液机构向清洗腔体(1)注入清洗介质的液量大于或等于清洗腔体(1)的容积,控制超声波清洗单元(40、120、140)对样本针(23)进行超声波清洗,以使清洗过程中清洗腔体(1)的清洗介质液量不变。可以使得超声波清洗单元进行超声波清洗时负载保持一致,提升清洗能力的一致性。

Description

一种样本分析装置及分析方法 技术领域
本申请实施例涉及一种样本分析装置和样本分析方法。
背景技术
体外诊断检验设备,需要使用采样针(例如样本针和试剂针等)进行样本和试剂的加注,以保证充分反应。采样针为重复使用,其在工作过程中,会接触不同的液体介质,为了消除不同介质之间的携带污染,需要在采样针每次工作后进行清洗,以清除采样针表面残留的物质,避免其被带入下一个反应中,造成交叉污染,影响测试结果的准确性。
对采样针如何清洗一直是一个在不断研究的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种样本分析装置及分析方法,能够提高对清洗对象的一致性。
第一方面,本申请实施例提供了一种样本分析装置,包括:
样本单元,用于承载样本;
试剂单元,用于承载试剂;
分注机构,包括样本针驱动机构和用于进行样本分注的样本针,所述样本针驱动机构驱动所述样本针移动,以吸取所述样本并排放到位于加样位的反应杯;
超声波清洗单元,包括超声波发生器和用于承载清洗介质以及供所述样本针至少部分伸入的顶部开口的清洗腔体,所述超声波发生器通过所述清洗腔体向所述清洗介质传递声场能量,以对所述样本针进行清洗,超声波发生器位于所述清洗腔体的底部;
注液机构,用于向所述清洗腔体注入所述清洗介质;
控制器,所述控制器控制所述注液机构向所述清洗腔体注入所述清洗介质的液量大于或等于所述清洗腔体的容积,控制所述超声波清洗单元对所述样本针进行超声波清洗,以使清洗过程中所述清洗腔体的清洗介质液量不变。
第二方面,本申请实施例提供一种样本分析装置,包括:
样本单元,用于承载样本;
试剂单元,用于承载试剂;
分注机构,包括样本针驱动机构和用于进行样本分注的样本针,所述样本针驱动机构驱动所述样本针移动,以吸取所述样本并排放到位于加样位的反应杯;
超声波清洗单元,包括超声波发生器和用于承载清洗介质以及供所述样本针至少部分伸入的顶部开口的清洗腔体,所述超声波发生器通过所述清洗腔体向所述清洗介质传递声场能量,以对所述样本针进行清洗,超声波发生器位于所述清洗腔体的底部;
注液机构,用于向所述清洗腔体注入所述清洗介质;
控制器,所述控制器在满足超声波清洗条件时,控制所述注液机构向所述清洗腔体注入所述清洗介质的液量大于或等于所述清洗腔体的容积,控制所述超声波清洗单元对所述样本针进行超声波清洗,以使清洗过程中所述清洗腔体的清洗介质液量不变。
第三方面,本申请实施例提供一种样本分析方法,包括:
样本针吸取样本,并排放到位于加样位的反应杯中;
试剂针吸取试剂,并排放到位于加试剂位的反应杯中;
对至少由样本和试剂形成的反应液进行混匀;
对反应液进行孵育;
对孵育完成的反应液进行测定;
其中:
超声波清洗单元,包括超声波发生器和用于承载清洗介质以及供所述样本针至少部分伸入的顶部开口的清洗腔体,所述超声波发生器使所述清洗腔体振动,所述清洗腔体振动使得所述清洗介质振动,以对所述样本针进行清洗,超声波发生器位于所述清洗腔体的底部;
向所述清洗腔体注入液量大于或等于所述清洗腔体的所述清洗介质,对样本针进行超声波清洗,以使清洗过程中所述清洗腔体的清洗介质液量不变。
依据上述实施例的样本分析装置和样本分析方法,通过控制注液机构向超声波清洗单元中的清洗腔体注入清洗介质的液量,使得清洗过程中清洗腔体的清洗介质液量不变,从而使得超声波清洗单元进行超声波清洗时液面高度保持一致,负载保持一致,声波在池内的反射传播路径一致,提高清洗能力一致性,减少对样本针表面粗糙度的损坏。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请一个实施例提供的样本分析装置的结构示意图;
图2为另一种实施例的样本分析装置的结构示意图;
图3为又一种实施例的样本分析装置的结构示意图;
图4为一种实施例的混匀机构的结构示意图;
图5为再一种实施例的样本分析装置的结构示意图;
图6为一种实施例的样本分析装置的部分部件的立体图;
图7和图8分别为一种实施例的超声波清洗单元的俯视图和侧视图;
图9和图10分别为另一种实施例的超声波清洗单元的俯视图和侧视图;
图11为一种实施例的超声波清洗单元的液路结构示意图;
图12和图13分别为又一种实施例的超声波清洗单元的俯视图和侧视图;
图14和图15分别为再一种实施例的超声波清洗单元的俯视图和侧视图;
图16为一种实施例的样本分析方法的流程图。
具体实施方式
下面结合说明书附图和具体的实施例对本申请进行进一步的说明。所描述的实施例不应视为对本申请的限制,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在以下的描述中,涉及到“一些实施例”,其描述了所有可能实施例的子集,但是可以理解,“一些实施例”可以是所有可能实施例的相同子集或不同子集,并且可以在不冲突的情况下相互结合。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述本申请实施例的目的,不是旨在限制本申请。
一般地,针对例如样本针和试剂针等,会专门设计相应的清洗单元,当针管完成一次介质的分注后——样本针是对样本完成分注,试剂针是对试剂完成分注,一般都会运动至清洗位进行清洗,清洗完成后,再执行下一次介质 的分注。为了尽量避免清洗花费时间太长,对测试速度造成影响,一般这种清洗都无法完全去除污染物,随着仪器长期使用,其表面的微小污染的累积最终可能导致交叉污染超标,或残留的累积会导致部件表面属性发生变化,增加清洗后液体残留,该残留进入反应系统后会导致测试结果异常。
对于这种情况,可以有两种处理方式:
一是进行定期人工维护清理:这种方式可以较好的清理累积残留物质,但需要人工执行,执行时间及频率无法准确控制,操作复杂度较高。且对于精密单元的异常操作或操作不当,可能会造成单元的损坏或失效。
二是增加特殊化学清洗:这种方式是使用一种或多种化学清洗剂,通过定期添加的方式对待清洗对象进行特殊清洗,一般为自动执行。这种方式只适用于能够与所使用清洗剂产生反应的污染物质,对于复杂的污染物质则还是难以清除,尤其对于清洗剥离力较小的场合。另外,过多的清洗介质的引入,也会增加操作复杂度和对耗材管理的难度。
除了诸如样本针和试剂针等探针需要清洗,样本分析装置中还有其他一些部分也需要清洗,例如混匀机构,尤其是通过搅拌杆进行搅拌来混匀的混匀机构——一般地,使用探针进行完样本和试剂的分注后,需要进一步对样本和试剂混合在一起的反应液进行搅拌混匀,以保证充分反应;这过程中,搅拌杆也会接触到不同的液体介质,为了消除不同介质之间的携带污染,也需要在搅拌杆每搅拌完一次后进行清洗,以清除搅拌杆表面残留的物质,避免其被带入下一个反应中,造成交叉污染,影响测试结果的准确性。
不仅探针会专门设计有相应的清洗单元,同样地,混匀机构也会设计有相应的清洗单元——一般地,会对不同的待清洗对象设计专门的清洗方案和清洗单元,这是因为各待清洗对象所接触的液体介质不同,因此若需要达到较好的清洗效果,各待清洗对象都需要有专门的清洗方案和清洁单元。另外,可以理解地,除探针外,其他待清洗对象例如混匀机构,也存在上述的残留累积的问题,并且也通过上述的两种处理方式来处理,但是同样地,也存在上述两种处理方式各自的固有缺点和问题。
本申请引入超声波清洗单元,来对待清洗对象进行超声波清洗,这具有强力剥离清洗的效果,可以有效消除累积污染物残留,清洗得比较干净。
参照图1,一些实施例中公开了一种样本分析装置,其可以包括:样本单元10、试剂单元50、分注机构、超声波清洗单元、注液机构和控制器110,下面具体说明。
样本单元10用于承载样本。例如样本单元10可以通过样本分配模块(SDM,Sample Delivery Module)及前端轨道来实现。
试剂单元50用于承载试剂。在一些实施例中,试剂单元50呈圆盘状结构设置,试剂单元50具有多个用于承载试剂容器的位置,试剂单元50能够转动并带动其承载的试剂容器转动,用于将试剂容器转动到吸试剂位,以供分注机构吸取试剂。
分注机构包括样本分注机构20,样本分注机构20包括样本针驱动机构21和用于进行样本分注的样本针23,样本针驱动机构21驱动样本针23移动,以吸取样本并排放到位于加样位的反应杯。一些实施例中,样本针23的数量可以为一根或多根。一些实施例中,当样本针23为多根时,样本针驱动机构21可以驱动这些样本针23各自独立地运动。样本针驱动机构21可以是一个二维或三维的驱动机构,这可以根据具体的需求来设计。对于样本针23而言,一套典型的时序动作是这样的:样本针23运动到例如吸样位去吸取样本,然后再运动到例如加样位将所吸取的样本排放到反应杯,然后移动到预定位置被清洗。当然,一些例子中,在样本针23吸取样本后且排放样本前,也可以对样本针23进行一次外壁的清洗。
一些实施例中,分注机构还包括试剂分注机构60,试剂分注机构60包括试剂针驱动装置61和试剂针63,控制器110控制试剂驱动装置61将试剂针63移动到试剂单元以吸取试剂,并排放到位于加试剂位的反应杯,控制器110还控制超声波清洗单元对试剂针63进行超声波清洗。一些实施例中,试剂针63可以为一根或多根。一些实施例中,当试剂针63为多根时,试剂针驱动机构61可以驱动这些试剂针63各自独立地运动。试剂针驱动机构61可 以是一个二维或三维的驱动机构,这可以根据具体的需求来设计。对于试剂针63而言,一套典型的时序动作是这样的:试剂针63运动到例如吸试剂位去吸取试剂,然后再运动到例如加试剂位将所吸取的试剂排放到反应杯,然后移动到预定位置被清洗;当然,一些例子中,在试剂针63吸取试剂后且排放试剂前,也可以对试剂针63进行一次外壁的清洗。在一些实施例中,当试剂针63被设置成连续吸取多种试剂再一起排放时,则控制器110控制试剂针63连续进行多次吸试剂操作以吸取所需的多种试剂;其中在吸取所需要的多种试剂的过程中,在完成一次吸试剂操作后且开始下次吸试剂操作之前,可以对试剂针63进行外壁清洗。
可以理解的是,一些实施例中,样本分析装置还可以包括反应单元80、混匀机构90和测定单元100,下面具体说明。
反应单元80具有多个用于放置反应杯的放置位,反应单元80用于孵育放置位上反应杯中的反应液,其中反应液至少由样本和试剂所制备或者说形成。一些实施例中,反应单元80呈圆盘状结构设置,反应单元80能够转动并带动其放置位中的反应杯转动,用于在反应单元80内调度反应杯以及孵育反应杯中的反应液。本文中所涉及到的加样位、加试剂位、混匀位和测定位等,可以是反应单元80中某些位置的放置位,即加样位、加试剂位、混匀位和测定位等是被设置于反应单元80内。在一些实施例中,反应单元80可以包括可独立转动或一起转动的内圈部和外圈部;内圈部包括一圈或多圈轨道,每圈轨道设置有若干放置位,用于反应杯的孵育和将反应杯在内圈部的各放置位之间的调度;外圈部包括一圈或多圈轨道,每圈轨道设置有若干放置位,用于将反应杯在外圈部的各放置位之间调度。图1至3中显示了具有一圈轨道的外圈部,以及具有三圈轨道的内圈部。
混匀机构90用于对反应杯中需要混匀的反应液进行混匀。例如混匀机构90对位于混匀位的反应液进行混匀。
测定单元100用于对反应液进行测定。例如测定单元100用于对孵育完成的且位于测定位的反应杯中的反应液进行测定,得到测试结果。一些实施例中,测定单元100可以是光测式的测定单元,其可以对待测的反应液的发光强度或者吸光度进行检测,通过定标曲线,计算样本中待测成分的浓度等。在一些实施例中,测定单元100可以分离设置于反应单元80的外面。
请参照图4,一些实施例中,混匀机构90包括搅拌杆驱动机构91和搅拌杆93,搅拌杆驱动机构91能够驱动搅拌杆93移动和执行搅拌动作;搅拌杆超声波清洗单元140设置于搅拌杆93的运动轨迹上,这样搅拌杆93可以移动到搅拌杆超声波清洗单元140来被清洗。一些实施例中,搅拌杆93的数量可以为一根或多根,当搅拌杆的数量为多根时,在其中一根搅拌杆93执行搅拌动作时,其他搅拌杆93可以利用这个时间来被清洗,图4中显示的是具有三根搅拌根93的例子。
样本分析装置可以包括一个超声波清洗单元,例如是为图1中所示的样本针超声波清洗单元40,用于对样本针进行超声波清洗;样本分析装置也可以包括更多数量的超声波清洗单元,例如参照图2包括样本针超声波清洗单元40和试剂针超声波清洗单元120,或者参照图5包括样本针超声波清洗单元40、试剂针超声波清洗单元120和搅拌杆超声波清洗单元140,试剂针超声波清洗单元120用于对试剂针63进行超声波清洗,搅拌杆超声波清洗单元140用于对搅拌杆93进行超声波清洗。其中,样本针超声波清洗单元40设置于样本针的运动轨迹上,试剂针超声波清洗单元120设置在试剂针的运动轨迹上,搅拌杆超声波清洗单元140设置在搅拌杆93的运动轨迹上。另外,在一些实施例中,例如参照图3,样本针超声波清洗单元40和试剂针超声波清洗单元120可以是同一个超声波清洗单元,该超声波清洗单元设置于样本针23和试剂针63运动轨迹相交处,这样样本针23和试剂针63就可以分时复用同一个超声波清洗单元。可以理解的是,样本针超声波清洗单元40、试剂针超声波清洗单元120和搅拌杆超声波清洗单元140可以使用同样结构的超声波清洗单元,不用专门针对不同的待清洗对象重新设计不同的超声波清洗单元。下面,以样本针超声波清洗单元40作为示例进行具体介绍。
样本针超声波清洗单元40包括超声波发生器6和用于承载清洗介质以及供样本针23至少部分伸入的顶部开口的清洗腔体1,超声波发生器6通过清洗腔体1向清洗介质传递声场能量,以对样本针23进行清洗,超声波发生器6位于清洗腔体1的底部。请参照图8或者图10,超声波发生器6设置于清洗腔体1的底部,超声波发生器6通过 与清洗腔体1连接从而实现将产生的声场能量传递至清洗腔体1,清洗腔体1的底部和池壁振动,清洗下来的脏污物质不会粘附到清洗腔体1的底部和池壁上,保持了清洗腔体1的清洁;另外,超声波发生器6设置于清洗腔体1的底部,采用底部震源的方式,可以使得超声波发生器6的重心与清洗腔体1的中轴在同一条线上,长时间使用也不会发生重心偏移;可以理解的是,由于重力作用,脏污物质更容易附着在清洗腔体1的底部,但是由于本实施例将超声波发生器6设置于清洗腔体1的底部,清洗腔体1的底部振动较大,能够有效防止脏污物质附着在清洗腔体1的底部。
另外,在一些实施例中,超声波发生器6与清洗腔体1一体设计,这样能避免超声波发生器6与清洗腔体1的连接部分产生松动,通过超声波发生器6与清洗腔体1一体设计,能提高超声清洗的可靠性和稳定性。
在样本针超声波清洗单元40中,注液机构用于向清洗腔体1注入清洗介质,以供超声波清洗单元通过清洗介质对样本针23进行超声波清洗。可以理解的是,在试剂针超声波清洗单元120中,注液机构用于向清洗腔体1注入清洗介质,以供超声波清洗单元通过清洗介质对试剂针63进行超声波清洗;在搅拌杆超声波清洗单元140中,注液机构用于向清洗腔体1注入清洗介质,以供超声波清洗单元通过清洗介质对搅拌杆93进行超声波清洗。
超声波清洗(ultrasonic cleaning),是利用超声波在液体中的空化作用、加速度作用和/或直进流作用等对液体和污染物直接、间接的作用,使污染物被分散、乳化、剥离而达到清洗目的。一般地,超声波清洗可以利用超声波产生的强烈空化作用及振动将待清洗对象表面的污垢剥离脱离,同时还可以将油脂性的污物分解和乳化。一些实施例中,本文中的超声波清洗所使用的媒介包含化学试剂,例如本文所说的清洗剂。其中,清洗剂可以为碱性清洗剂,例如氢氧化钠(NaOH)、氢氧化钾(KOH)。另外,可以在清洗剂中增加表活成分以增强清洗效果。一些实施例中,使用清洗剂对待清洗对象完成一次超声波清洗后,会用去离子水再对待清洗对象进行超声清洗以刷洗一遍,防止待清洗对象上面残留有清洗剂而影响后续测试的测试结果。
控制器110,其用于控制注液机构向清洗腔体1注入清洗介质的液量大于或等于清洗腔体1的容积,控制超声波清洗单元对样本针23、试剂针63或搅拌杆93进行超声波清洗,以使清洗过程中清洗腔体1的清洗介质液量不变。
可以理解的是,注液机构向清洗腔体1注入的清洗介质的液量等于清洗腔体1的容积时,清洗介质可以刚好注满清洗腔体1;注液机构向清洗腔体1注入的清洗介质的液量大于清洗腔体1的容积时,清洗介质可以注满清洗腔体1,并将超出部分溢流出去。以上两种情况,都能使得清洗腔体1内部注满清洗介质,另外,控制超声波清洗单元对样本针23、试剂针63或搅拌杆93进行超声波清洗,以使清洗过程中清洗腔体1的清洗介质液量不变,使得超声波清洗单元进行清洗时液面高度保持一致,负载保持一致,声波在池内的反射传播路径一致,提高清洗能力的一致性,减少对样本针23、试剂针63或搅拌杆93表面粗糙度的损坏,保持表面对脏污黏附的抵抗力。
可以理解的是,若在超声波清洗单元工作时注液机构继续注液,注液动压会影响振动面振幅,从而影响超声波清洗单元的清洗能力。一些实施例中,在控制器110控制注液机构向清洗腔体1注入清洗介质之后,在超声波清洗单元对样本针23、试剂针63或搅拌杆93进行超声波清洗前,控制器110还控制注液机构停止向清洗腔体1注入清洗介质。进行超声波清洗前停止注入清洗介质,可以使得进行超声波清洗时清洗介质没有发生流动,免除了注液动压对清洗能力带来的影响。
为了妥善处理从清洗腔体1溢流出来的清洗介质,避免溢流出来的清洗介质影响样本分析装置的正常运行或者影响样本分析的效果,请参照图7和图8,一些实施例中,超声波清洗单元还包括用于承接从清洗腔体1中溢流出液体的溢流腔体2,和与溢流腔体2连通的第二废液排出口5。控制器110控制注液机构向清洗腔体1注入清洗介质,并且在清洗介质注满清洗腔体1后继续注液时,部分清洗介质会从清洗腔体1溢流出溢流腔体2,最后由第二废液排出口5排放出去;另外,当清洗腔体1注满清洗介质且样本针23、试剂针63或搅拌杆93伸入到清洗腔体1内部时,也会导致部分清洗介质会从清洗腔体1溢流出溢流腔体2。一些实施例中,超声波清洗单元还包括与清洗腔体1的底部连通的第一废液排出口4。例如图7和图8所示的超声波清洗单元,底部设置有第一废液排出口4;图9和图10所示的超声波清洗单元,底部也设置有第一废液排出口4。可以理解的是,超声波清洗单元可以在完成 超声波清洗后,通过第一废液排出口4将清洗腔体1中的清洗介质排出;也可以在超声波清洗过程中排出清洗腔体1中的清洗介质,具体视清洗需求而设置即可。通过设置第一废液排出口4,能够将清洗腔体1中进行完超声波清洗后的清洗介质全部或尽可能地排出,避免清洗腔体1中残留有污物,进而避免残留的污物影响下一次超声波清洗。参照图11所示,为超声波清洗单元的一种液路结构示意图。一些实施例中,超声波清洗单元还可以包括用于开启和关闭第一废液排出口4的控制阀101——例如电磁阀;当控制阀101被开启时,则废液可以通过第一废液排出口4排出。在清洗过程中,控制阀101可以被控制关闭,在清洗完成后,控制阀101再被控制开启,从而存留于清洗腔体1中清洗介质通过第一废液排出口4排出。另外,清洗过程中,控制阀101也可以被控制开启,这样,清洗介质需要不断从进液口3被输送到清洗腔体1。在另一些实施例中,第一废液排出口4也可以没有配置控制阀101,在这样的例子中,清洗介质需要不断从进液口3被输送到清洗腔体1。一些实施例中,溢流腔体2是利用重力从第二废液排出口5排出液体的。一些实施例中,清洗腔体1利用废液泵与第一废液排出口4连接,需要排出清洗腔体1中的清洗介质时,开启废液泵从而对清洗腔体1中的清洗介质进行强排,采用废液泵能够提高清洗腔体1中的清洗介质的排出效果,避免残留而影响下一次超声波清洗的清洗质量。
请参照图7,一些实施例中,溢流腔体2围绕清洗腔体1设置,其中清洗腔体1的侧壁高度小于溢流腔体2的侧壁高度。可以理解的是,一般情况下,超声波清洗单元水平放置,清洗腔体1的上表面位于同一水平面上,当注入中的清洗腔体1的液量大于清洗腔体1的容积时,清洗介质可以从任意的方向溢流出去,因此,溢流腔体2围绕清洗腔体1设置,能够承接清洗腔体1从任意一个方向溢流出来的液体,具有较好的溢流液体承接效果。在一些实施例中,可以通过检测清洗腔体1中的液位高度判断清洗腔体1是否产生溢流,当检测到清洗腔体1中清洗介质的液位高度等于清洗腔体1的高度,则可以让控制器110判断到清洗腔体1产生溢流,例如可以通过伸入至清洗腔体1中的液位探针检测清洗腔体1中清洗介质的液位高度,当然也可以采用其他检测液位的方式,例如红外检测等,此处不作限定。另外由于清洗腔体1的侧壁高度小于溢流腔体2的侧壁高度,这样当溢流腔体2也发生溢流时,清洗介质的液位必然比清洗腔体1的高度要高,因此当检测到的液位高度高于清洗腔体1的高度时,可以判断溢流腔体2发生溢流故障(例如第二废液排出口5堵塞),这样控制器110能够停止注液,避免由于溢流而导致样本分析装置损坏,进而提高样本分析装置的可靠性。
请参照图7和图8,一些实施例中,注液机构包括与清洗腔体1连通的注液口3,用以向清洗腔体1注入清洗介质。请参照图11,一些实施例中,注液机构还包括用于将清洗介质注入进液口3的介质输送通道7,介质输送通道7上设置有用于开启介质输送通道7的开关8,控制器110通过控制开关8以使清洗介质注入清洗腔体1。具体地,介质输送通道7一端与进液口3连接,介质输送通道7的另一端可以连接有一条或多条支路,每条支路上都可以设置一个开关8——例如电磁阀;通过开启和关闭控制阀8就可以控制对应支路的导通和截止。当介质输送通道7连接有多条支路时,则每条支路可以连接一不同的清洗介质,这样就可以实现多种不同清洗介质分别对待清洗对象进行清洗,每条支路对应一种清洗介质,当需要使用时,则控制开启对应支路的控制阀8,将对应的清洗介质通过介质输送通道7和进液口3输送到清洗腔体1中。超声波清洗可以允许一种或多种清洗介质对待清洗对象进行清洗;在清洗时间充足的情况下,在清洗过程中,可以使用不同的清洗介质依次对待清洗对象进行清洗;在清洗时间不充足的情况下,可以使用一种清洗介质例如清洗液对待清洗对象进行清洗。当然,在对待清洗对象进行超声波清洗时,可以在某些次的超声波清洗中使用一种清洗液,而在另一些超声波清洗中使用一种或多种清洗介质,这一种或多种清洗介质至少包含有清洗剂,例如每进行完N次的仅使用清洗液的超声波清洗后,就进行一次使用有清洗剂的超声波清洗。
区别于图11所示的注液机构,一些实施例中,样本分析装置还包括另一种形式的注液机构,该注液机构包括样本针23或试剂针63和用于将清洗介质注入样本针23或试剂针63的介质输送通道,介质输送通道上设置有用于开启介质输送通道的开关,控制器110控制该注液机构以通过样本针23或试剂针63向清洗腔体注入清洗介质。可以理解的是,如果样本分析装置采用本实施例的注液机构,通过样本针23或试剂针63向清洗腔体1注入清洗介质, 超声波清洗单元则无需设置与清洗腔体1连通的进液口3。
一些实施例中,控制器110控制注液机构向清洗腔体1注入的清洗介质的过程中,当清洗介质从清洗腔体1中溢出后,控制注液机构停止向清洗腔体1注入清洗介质。可以理解的是,样本分析装置可以设置液位检测装置,例如液位检测装置位于清洗腔体1的侧壁的上端面,当通过液位检测装置检测到清洗介质从清洗腔体1中溢出后,控制注液机构停止向清洗腔体1注入清洗介质,能够保证清洗腔体1注满清洗介质的同时较好地控制清洗介质的用量,避免造成清洗介质的浪费。
在另外的一些实施例中,在超声波清洗单元对样本针23、试剂针63或搅拌杆93进行超声波清洗时,注液机构向清洗腔体1注入清洗介质,清洗腔体1保持溢流。可以理解的是,在清洗过程中,一边注入清洗介质一边溢流,也能够使得清洗腔体1的清洗介质液量不变,但是注液动压会影响振动面振幅,从而影响超声波清洗单元的清洗能力,因此需要控制清洗介质的注入速度,保证超声波工作时声压不会有太大变化,使声压上下波动幅度不超过30%。
一些实施例中,超声波清洗单元对样本针23、试剂针63或搅拌杆93进行超声波清洗时,溢流腔体1内清洗介质的液位小于等于2毫米。若是溢流腔体1内清洗介质的液位过高,例如高于2毫米时,会影响超声波清洗单元的负载,导致负载不稳定,从而影响清洗效果。
请参照图9和图10所示的超声波清洗单元,仅设置有清洗腔体1,没有设置溢流腔体,当清洗腔体1中的清洗介质发生溢流时,会带来诸如影响设备正常运行、影响样本分析结果等不良效果。因此,在一些实施例中,样本分析装置还包括吸液机构,吸液机构用于从清洗腔体1中吸走清洗介质,在超声波清洗单元对样本针23、试剂针63或搅拌杆93进行超声波清洗时,注液机构向清洗腔体1注入清洗介质,吸液机构吸走清洗腔体1中的清洗介质,以使清洗腔体1内清洗介质体积和清洗腔体1容积相同。例如,清洗腔体1中的清洗介质注满后,注液机构继续向清洗腔体1注液,此时吸液机构需要吸走即将溢出的清洗介质,使得清洗腔体1内的清洗介质保持注满状态。
一些实施例中,清洗介质为化学试剂或水。其中,化学试剂是指可以与待清洗对象上面的污染物质进行化学反应的一些介质,例如可以是一些带酸性的液体等。
一些实施例中,超声波清洗单元对样本针23、试剂针63或搅拌杆93进行超声波清洗过程中,超声波发生器6产生的超声波的声压范围在1兆帕至50兆帕之间。超声波的声压范围控制在1兆帕至50兆帕范围内进行超声波清洗,对样本针23、试剂针63或搅拌杆93的清洗效果良好且不会被清洗对象的表面产生空化腐蚀现象。若低于1MPa的空化声压,超声波清洗单元的清洗能力得不到保证,控制超声波的声压大于1MPa能够较好地清洗样本针23、试剂针63或搅拌杆93上的污渍。若超过50MPa的空化声压,对使用不锈钢材质的样本针23、试剂针63或搅拌杆93进行超声波清洗时不容易控制清洗效果,也会造成质样本针23、试剂针63或搅拌杆93表面粗糙度被破坏,影响质样本针23、试剂针63或搅拌杆93的普通清洗效果,以及样本针23、试剂针63或搅拌杆93表面容易被脏污黏附。
一些实施例中,超声波发生器6包括用于发出超声波能量的换能器陶瓷片,超声波清洗单元对样本针23、试剂针63或搅拌杆93进行超声波清洗过程中,换能器陶瓷片的工作温度不超过45℃。通过控制换能器陶瓷片的工作温度不超过45℃,第一方面能避免过高的温度而影响超声波发生器6的使用寿命,第二方面能控制清洗介质的温度不会过高,避免过高的清洗温度对样本针23、试剂针63或搅拌杆93造成损坏,第三方面,能够保持超声波发生器6发出的声压稳定,避免温度过高对超声波发生器6发出的声压保持稳定造成影响。本领域技术人员可以理解,可以对超声波发生器的换能器陶瓷片进行改进或者对工作时序进行改进,从而保证温度不会过高。
一些实施例中,超声波清洗单元对样本针23、试剂针63或搅拌杆93进行超声波清洗过程中,样本针23、试剂针63或搅拌杆93伸入清洗介质的高度小于或等于工作波长的二分之一。发明人发现,当样本针23、试剂针63或搅拌杆93伸入清洗介质的高度小于或者等于工作波长的二分之一时,超声波清洗单元对样本针23、试剂针63或搅拌杆93的超声清洗效果最佳。
可以理解的是,样本分析装置中的待清洗对象可以有样本针23、试剂针63或者搅拌杆93。参照图1,对于样本针23,样本分析装置可以配置样本针超声波清洗单元40和第一清洗单元30对其进行清洗;参照图2,对于试剂 针63,样本分析装置可以配置试剂针超声波清洗单元120和第二清洗单元70对其进行清洗,第二清洗单元70可以是与超声波清洗单元结构相同的装置;参照图5和图6,对于搅拌杆93,样本分析装置可以配置搅拌杆超声波清洗单元140和第三清洗单元130对其进行清洗,第三清洗单元130可以是与超声波清洗单元结构相同的装置。其中,第一清洗单元30设置于样本针的运动轨迹上,第二清洗单元70设置在试剂针63的运动轨迹上,第三清洗单元130设置在搅拌杆93的运动轨迹上。
其中,第一清洗单元30可以是样本针23的普通清洗单元,也可以是样本针23的另一个超声波清洗单元;第二清洗单元70可以是试剂针63的普通清洗单元,也可以是试剂针63的另一个超声波清洗单元;第三清洗单元130可以是搅拌杆93的普通清洗单元,也可以是搅拌杆93的另一个超声波清洗单元。一些实施例中,样本针23的普通清洗单元30用于对样本针23进行普通模式清洗。例如样本针23的普通清洗单元30用于通过清洗液和/或清洗剂等对样本针23进行冲洗和/或浸泡等清洗操作。本文中的清洗液指的是诸如生理盐水、蒸馏水或稀释液等液体介质,而清洗剂则是指可以与待清洗对象上面的污染物质进行化学反应的一些介质,例如可以是一些带酸性的液体等。样本针23的普通清洗单元30可以采用现有或未来出现的一些清洗结构来实现。一些实施例中,试剂针63的普通清洗单元70用于对试剂针63进行普通模式清洗。例如试剂针63的普通清洗单元70用于通过清洗液和/或清洗剂等对试剂针63进行冲洗和/或浸泡等清洗操作。试剂针63的普通清洗单元70可以采用现有或未来出现的一些清洗结构来实现。一些实施例中,搅拌杆93的普通清洗单元130用于对搅拌完成后的搅拌杆93进行普通模式清洗。例如搅拌杆93的普通清洗单元130用于通过清洗液和/或清洗剂等对搅拌杆进行冲洗和/或浸泡等清洗操作。搅拌杆93的普通清洗单元130可以采用现有或未来出现的一些清洗结构来实现。
一般地,一个项目测试需要经过这样的流程:加样和加试剂,对样本和试剂形成的反应液进行混匀和孵育,对孵育完成的反应液进行测定;而在这个过程中,样本针23在排放完一次样本后且吸取下一次样本前,一般需要进行清洗,以防止交叉污染;类似地,试剂针63在排放完一次试剂后且吸取下一次试剂前,一般也需要进行清洗,以防止交叉污染;类似地,混匀机构90在使用搅拌杆93搅拌完一个反应杯中的反应液后且对下一个反应杯中反应液进行搅拌前,一般也需要进行清洗,以防止交叉污染。
因此,一个具体的测试流程中,控制器110控制样本针驱动机构21驱动样本针23移动到样本单元10以吸取待进样的样本,并排放到位于加样位的反应杯;控制器110控制试剂针驱动机构61驱动试剂针63移动到试剂单元50以吸取试剂,并排放到位于加试剂位的反应杯;可以理解地,加样本和加试剂的过程,可以是同时进行,也可以是先后进行,并且可以是先加样再加试剂,也可以是先加试剂再加样。接着,控制器110控制混匀机构90对反应液进行混匀,控制器110控制反应单元80对反应液进行孵育。当孵育完成后,控制器110控制测定单元100对孵育完成的反应液进行测定。
为了防止交叉污染,在测试流程中可以对样本针、试剂针和搅拌杆等进行清洗。
例如,在上述的测试流程中,控制器110还控制第一清洗单元30对排放完样本后的样本针进行普通模式清洗,控制超声波清洗单元40在满足超声波清洗条件时对样本针进行超声波清洗。
例如,在上述的测试流程中,控制器110还控制第二清洗单元70对排放完试剂后的试剂针进行普通模式清洗,控制超声波清洗单元120在满足超声波清洗条件时对试剂针进行超声波清洗。
例如,在上述的测试流程中,控制器110还控制第三清洗单元130对搅拌完成后的混匀机构进行普通模式清洗,控制超声波清洗单元140在满足超声波清洗条件时对混匀机构进行超声波清洗。可以理解地,这里说的“搅拌完成”,指的是对一个反应杯中的反应液完成搅拌。
在达到超声波清洗条件时,超声波清洗单元可以在连续周期工作中对待清洗对象执行超声波清洗,也可以在完成本次项目的任务后对待清洗对象执行超声波清洗。举个例子,本次批量申请了50个项目测试,在测试过程中,如果达到了超声波清洗条件,那么可以在完成这50个项目测试后再对待清洗对象执行超声波清洗,也可以在完成待清洗对象执行完当前项目的任务后就立即对其执行超声波清洗。
需要说明的是,超声波发生器6是这样一种器件:超声波发生器6把所接收的工作电转换成高频交流电信号进行驱动,将电功率转换成机械功率即超声波再发出去。一些实施例中,超声波发生器6能够被开启和关闭,当被开启时,超声波发生器6进行工作,当被关闭时,超声波发生器6停止工作。
由于超声波发生器6能够被开启和关闭,因此本发明考虑也在清洗过程中超声波发生器6关闭,直接使用清洗介质来清洗被清洗对象,这样超声波清洗单元就可以变为普通清洗单元,即超声波清洗单元既可以实现超声波清洗,也可以实现普通清洗。因此一些实施例中,考虑将超声波清洗单元和普通清洗单元一体设置。当超声波清洗单元开启超声波发生器6时,其能够进行超声波清洗,当关闭超声波发生器6时,其能够进行普通清洗。
考虑到待清洗对象可能为多个,例如试剂针63有多根,例如样本针有多根,例如搅拌杆有多根,为了使得多个清洗对象可以同时进行清洗,以提升工作效率,可以将多个超声波清洗单元设计在一起;图12和图13就是这样的一个例子,将两个超声波清洗单元设计在一起,以对样本针23的清洗为例,图12和图13的例子中,可以同时对两根样本针23进行清洗,类似地,也可以同时对多根试剂针63或者搅拌杆93进行清洗。
在将多个超声波清洗单元设计在一起的实施例中,也可以进一步集成,例如这多个超声波清洗单元的溢流腔体2是共用的,相应地,第二废液排出口5也是共用的;图14和图15就是这样的例子,两个超声波清洗单元共同一个溢流腔体2,这个溢流腔体2通过一个第二废液排出口5进行废液的排出。
一些实施例中,超声波清洗用于清洗样本针23、试剂针63或者搅拌杆93的血清蛋白、血红蛋白或分离胶中的至少一种。
另一个实施例提供一种样本分析装置,包括样本单元、试剂单元、分注机构、超声波清洗单元、注液机构和控制器,其中:样本单元用于承载样本;试剂单元用于承载试剂;分注机构包括样本针驱动机构和用于进行样本分注的样本针,样本针驱动机构驱动样本针移动,以吸取样本并排放到位于加样位的反应杯;超声波清洗单元,括超声波发生器和用于承载清洗介质以及供样本针至少部分伸入的顶部开口的清洗腔体,超声波发生器通过清洗腔体向清洗介质传递声场能量,以对样本针进行清洗,超声波发生器位于清洗腔体的底部;注液机构用于向清洗腔体注入清洗介质;控制器在满足超声波清洗条件时,控制注液机构向清洗腔体注入清洗介质的液量大于或等于清洗腔体的容积,控制超声波清洗单元对样本针进行超声波清洗,以使清洗过程中清洗腔体的清洗介质液量不变。
同理,一些实施例中,控制器在满足超声波清洗条件时,控制注液机构向清洗腔体注入清洗介质的液量大于或等于清洗腔体的容积,控制超声波清洗单元对试剂针/搅拌杆进行超声波清洗,以使清洗过程中清洗腔体的清洗介质液量不变。
可以理解的是,一般情况下,样本针、试剂针或者搅拌杆不需要在每次使用后都进行超声波清洗,设置超声波清洗条件,满足超声波清洗条件,即表示样本针、试剂针或者搅拌杆有超声波清洗需求,才控制超声波清洗单元对样本针、试剂针或者搅拌杆进行超声波清洗,避免每次使用后都进行超声波清洗带来的时间浪费和能源消耗问题。
上述实施例涉及的超声波清洗条件,不论是对样本针23进行清洗的超声波清洗条件,还是对试剂针6进行清洗的超声波清洗条件,还是对搅拌杆93进行超声清洗的搅拌杆的超声波清洗条件,它们的超声波清洗条件可以相同也可以不同,它们的超声波清洗条件具体可以是下面的一种或多种:
样本分析装置开机时——这是指样本分析装置开机时就启动超声波清洗,以为接下来的测试做好准备;
样本分析装置关机时——这是指样本分析装置接收到关机指令时,先进行超声波清洗,然后再执行关机指令以进行关机;
样本分析装置进入休眠时——这是指样本分析装置进入休眠前,先进行超声波清洗,然后再进入休眠;
样本分析装置退出休眠时——这是指样本分析装置进入休眠前,先进行超声波清洗,然后再进入休眠;
预设的定期清洗时间点——例如设置每天早上8点,12点,下午4点等为定期清洗时间,到达定期清洗时间点时,就会启动超声波清洗;
距离上一次超声波清洗,样本分析装置已工作第一时间——例如将第一时间设置为4个小时,当距离上一次超 声波清洗为4小时后,样本分析装置又会自动启动一次超声波清洗;
距离上一次超声波清洗,样本分析装置累计测试的样本数量或项目数量已达第一数量——例如将第一数量设置为400个,则当距离上一次超声波清洗后,样本分析装置又累计测试了400个样本数量或项目数量,样本分析装置又会自动启动一次超声波清洗;又或者,距离上一次超声波清洗,进行普通清洗的次数已达到第二数量——例如将第二数量设置为400个,则当距离上一次超声波清洗后,样本分析装置又累计进行了400次普通清洗,样本分析装置又会自动启动一次超声波清洗;
接收到超声波清洗启动命令——例如用户手动下达超声波清洗启动命令;
样本针排放完样本后——例如样本分析装置控制样本针吸取样本,并排放到位于加样位的反应杯后,进行一次超声波清洗;
样本分析装置停止向清洗腔体注入清洗介质后——例如样本分析装置控制注液机构停止向清洗腔体注入清洗介质后,进行一次超声波清洗。
为了方便用户下达超声波清洗启动命令,一些实施例中,还包括一硬件结构,当该硬件结构被触发时,发出超声波清洗启动命令。例如样本分析装置可以包括一按键,当该按键被按下时,则会发出超声波清洗启动命令;因此用户可以手动来按动该按键,从而向样本分析装置发出超声波清洗启动命令。
以上是样本分析装置的一些说明。请参照图16,本发明一些实施例中还公开一种样本分析方法,其包括以下步骤:
步骤1000:样本针吸取样本,并排放到位于加样位的反应杯中;
步骤1100:试剂针吸取试剂,并排放到位于加试剂位的反应杯中;
步骤1200:对至少由样本和试剂形成的反应液进行混匀;
步骤1300:对反应液进行孵育;
步骤1400:对孵育完成的反应液进行测定;
其中:
超声波清洗单元,包括超声波发生器和用于承载清洗介质以及供样本针至少部分伸入的顶部开口的清洗腔体,超声波发生器使清洗腔体振动,清洗腔体振动使得清洗介质振动,以对样本针进行清洗,超声波发生器位于清洗腔体的底部;
向清洗腔体注入液量大于或等于清洗腔体的清洗介质,对样本针进行超声波清洗,以使清洗过程中清洗腔体的清洗介质液量不变。
在一些实施例中,在向清洗腔体注入清洗介质之后,在对样本针进行超声波清洗前,停止向清洗腔体注入清洗介质。
本申请的说明书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或装置不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或装置固有的其他步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中 a,b,c可以是单个,也可以是多个。
应当理解,在本申请实施例的描述中,多个(或多项)的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其他的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
还应了解,本申请实施例提供的各种实施方式可以任意进行组合,以实现不同的技术效果。
以上是对本申请的较佳实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请精神的共享条件下还可作出种种等同的变形或替换,这些等同的变形或替换均包括在本申请权利要求所限定的范围内。

Claims (20)

  1. 一种样本分析装置,其特征在于,包括:
    样本单元,用于承载样本;
    试剂单元,用于承载试剂;
    分注机构,包括样本针驱动机构和用于进行样本分注的样本针,所述样本针驱动机构驱动所述样本针移动,以吸取所述样本并排放到位于加样位的反应杯;
    超声波清洗单元,包括超声波发生器和用于承载清洗介质以及供所述样本针至少部分伸入的顶部开口的清洗腔体,所述超声波发生器通过所述清洗腔体向所述清洗介质传递声场能量,以对所述样本针进行清洗,超声波发生器位于所述清洗腔体的底部;
    注液机构,用于向所述清洗腔体注入所述清洗介质;
    控制器,所述控制器控制所述注液机构向所述清洗腔体注入所述清洗介质的液量大于或等于所述清洗腔体的容积,控制所述超声波清洗单元对所述样本针进行超声波清洗,以使清洗过程中所述清洗腔体的清洗介质液量不变。
  2. 根据权利要求1所述的样本分析装置,其特征在于,在所述控制器控制所述注液机构向所述清洗腔体注入清洗介质之后,在所述超声波清洗单元对所述样本针进行超声波清洗前,所述控制器还控制所述注液机构停止向所述清洗腔体注入清洗介质。
  3. 根据权利要求1所述的样本分析装置,其特征在于,所述超声波清洗单元还包括用于承接从所述清洗腔体中溢流出液体的溢流腔体,和与所述溢流腔体连通的第二废液排出口,所述超声波清洗单元还包括与所述清洗腔体的底部连通的第一废液排出口。
  4. 根据权利要求3所述的样本分析装置,其特征在于,所述溢流腔体围绕所述清洗腔体设置,所述清洗腔体的侧壁高度小于所述溢流腔体的侧壁高度。
  5. 根据权利要求3所述的样本分析装置,其特征在于,所述注液机构包括与所述清洗腔体连通的注液口,用以向所述清洗腔体注入清洗介质。
  6. 根据权利要求3所述的样本分析装置,其特征在于,所述控制器控制所述注液机构向所述清洗腔体注入的所述清洗介质,当所述清洗介质从所述清洗腔体中溢出后,控制所述注液机构停止向所述清洗腔体注入清洗介质。
  7. 根据权利要求3所述的样本分析装置,其特征在于,在所述所述超声波清洗单元对所述样本针进行超声波清洗时,所述注液机构向所述清洗腔体注入所述清洗介质,所述清洗腔体保持溢流。
  8. 根据权利要求3所述的样本分析装置,其特征在于,所述超声波清洗单元对所述样本针进行超声波清洗时,所述溢流腔体内清洗介质的液位小于等于2毫米。
  9. 根据权利要求1所述的样本分析装置,其特征在于,还包括吸液机构,用于从所述清洗腔体中吸走所述清洗介质,在所述超声波清洗单元对所述样本针进行超声波清洗时,所述注液机构向所述清洗腔体注入所述清洗介质,所述吸液机构吸走所述清洗腔体中的清洗介质,以使所述清洗腔体内清洗介质体积和清洗腔体容积相同。
  10. 根据权利要求1所述的样本分析装置,其特征在于,所述清洗介质为化学试剂或水。
  11. 根据权利要求1所述的样本分析装置,其特征在于,所述超声波清洗单元对所述样本针进行超声波清洗过程中,所述超声波发生器产生的超声波的声压范围在1兆帕至50兆帕之间。
  12. 根据权利要求1所述的样本分析装置,其特征在于,所述超声波发生器包括用于发出超声波能量的换能器陶瓷片,所述超声波清洗单元对所述样本针进行超声波清洗过程中,所述换能器陶瓷片的工作温度不超过45℃。
  13. 根据权利要求1所述的样本分析装置,其特征在于,所述超声波清洗单元对所述样本针进行超声波清洗过程中,所述样本针伸入所述清洗介质的高度小于或等于工作波长的二分之一。
  14. 根据权利要求1所述的样本分析装置,其特征在于,所述分注机构还包括试剂针驱动装置和试剂针,所述控制器控制所述试剂驱动装置将试剂针移动到试剂单元以吸取试剂,并排放到位于加试剂位的反应杯,所述控制器 还控制所述超声波清洗单元对所述试剂针进行超声波清洗。
  15. 根据权利要求1所述的样本分析装置,其特征在于,所述超声波清洗用于清洗样本针的血清蛋白、血红蛋白或分离胶中的至少一种。
  16. 一种样本分析装置,其特征在于,包括:
    样本单元,用于承载样本;
    试剂单元,用于承载试剂;
    分注机构,包括样本针驱动机构和用于进行样本分注的样本针,所述样本针驱动机构驱动所述样本针移动,以吸取所述样本并排放到位于加样位的反应杯;
    超声波清洗单元,包括超声波发生器和用于承载清洗介质以及供所述样本针至少部分伸入的顶部开口的清洗腔体,所述超声波发生器通过所述清洗腔体向所述清洗介质传递声场能量,以对所述样本针进行清洗,超声波发生器位于所述清洗腔体的底部;
    注液机构,用于向所述清洗腔体注入所述清洗介质;
    控制器,所述控制器在满足超声波清洗条件时,控制所述注液机构向所述清洗腔体注入所述清洗介质的液量大于或等于所述清洗腔体的容积,控制所述超声波清洗单元对所述样本针进行超声波清洗,以使清洗过程中所述清洗腔体的清洗介质液量不变。
  17. 根据权利要求16所述的样本分析装置,其特征在于,所述超声波清洗条件包括以下的一种或多种:
    所述样本分析装置开机时;
    所述样本分析装置关机时;
    所述样本分析装置进入休眠时;
    所述样本分析装置退出休眠时;
    预设的定期清洗时间点;
    距离上一次超声波清洗,所述样本分析装置已工作第一时间;
    距离上一次超声波清洗,所述样本分析装置累计测试的样本数量或项目数量已达第一数量;
    接收到超声波清洗启动命令;
    所述样本针排放完样本后;
    所述样本分析装置停止向所述清洗腔体注入清洗介质后。
  18. 根据权利要求17所述的样本分析装置,其特征在于,还包括一硬件结构,当该硬件结构被触发时,发出所述超声波清洗启动命令。
  19. 一种样本分析方法,其特征在于,包括:
    样本针吸取样本,并排放到位于加样位的反应杯中;
    试剂针吸取试剂,并排放到位于加试剂位的反应杯中;
    对至少由样本和试剂形成的反应液进行混匀;
    对反应液进行孵育;
    对孵育完成的反应液进行测定;
    其中:
    超声波清洗单元,包括超声波发生器和用于承载清洗介质以及供所述样本针至少部分伸入的顶部开口的清洗腔体,所述超声波发生器使所述清洗腔体振动,所述清洗腔体振动使得所述清洗介质振动,以对所述样本针进行清洗,超声波发生器位于所述清洗腔体的底部;
    向所述清洗腔体注入液量大于或等于所述清洗腔体的所述清洗介质,对样本针进行超声波清洗,以使清洗过程中所述清洗腔体的清洗介质液量不变。
  20. 根据权利要求19所述的样本分析方法,其特征在于,在向所述清洗腔体注入清洗介质之后,在对所述样本针进行超声波清洗前,停止向所述清洗腔体注入清洗介质。
PCT/CN2021/133309 2020-11-25 2021-11-25 一种样本分析装置及分析方法 WO2022111604A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180077916.5A CN116783490A (zh) 2020-11-25 2021-11-25 一种样本分析装置及分析方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011340594.2 2020-11-25
CN202011340594.2A CN114544994A (zh) 2020-11-25 2020-11-25 一种样本分析装置和样本分析方法

Publications (1)

Publication Number Publication Date
WO2022111604A1 true WO2022111604A1 (zh) 2022-06-02

Family

ID=81659700

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2021/133309 WO2022111604A1 (zh) 2020-11-25 2021-11-25 一种样本分析装置及分析方法
PCT/CN2021/133276 WO2022111600A1 (zh) 2020-11-25 2021-11-25 样本分析装置
PCT/CN2021/133308 WO2022111603A1 (zh) 2020-11-25 2021-11-25 一种样本分析装置及分析方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/133276 WO2022111600A1 (zh) 2020-11-25 2021-11-25 样本分析装置
PCT/CN2021/133308 WO2022111603A1 (zh) 2020-11-25 2021-11-25 一种样本分析装置及分析方法

Country Status (2)

Country Link
CN (4) CN114544994A (zh)
WO (3) WO2022111604A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116148027B (zh) * 2023-04-18 2024-04-05 北京层浪生物科技有限公司 样本制备仪

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042635A (ja) * 1983-08-19 1985-03-06 Toshiba Corp 生化学分析装置におけるノズル洗浄装置
US20090032064A1 (en) * 2004-09-14 2009-02-05 Bti Holdings Inc. Plate washing system with ultrasonic cleaning of pipes and a control method thereof
CN101726613A (zh) * 2008-10-30 2010-06-09 希森美康株式会社 标本处理仪及其清洗方法
CN203900065U (zh) * 2014-05-23 2014-10-29 无锡妤卓兰科技有限公司 一种超声波清洗槽结构
CN204817325U (zh) * 2015-07-23 2015-12-02 四川迈克生物医疗电子有限公司 样本针清洗装置和样本分析仪
CN205008327U (zh) * 2015-09-22 2016-02-03 安图实验仪器(郑州)有限公司 样本针清洗装置
CN107735688A (zh) * 2015-06-29 2018-02-23 株式会社日立高新技术 超声波清洗器以及使用该超声波清洗器的自动分析装置
CN110072641A (zh) * 2016-12-20 2019-07-30 株式会社日立高新技术 超声波清洗器及使用了该超声波清洗器的自动分析装置
CN110088631A (zh) * 2016-12-20 2019-08-02 株式会社日立高新技术 超声波清洗器以及使用超声波清洗器的自动分析装置
CN110476068A (zh) * 2016-12-23 2019-11-19 豪夫迈·罗氏有限公司 洗涤体外诊断系统的抽吸探针的方法,体外诊断方法和体外诊断系统
CN111856056A (zh) * 2020-08-05 2020-10-30 丹东百特仪器有限公司 一种高通量激光粒度仪全自动加样系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH049670A (ja) * 1990-04-27 1992-01-14 Olympus Optical Co Ltd 分析装置
JP2004279289A (ja) * 2003-03-18 2004-10-07 Hitachi High-Technologies Corp 自動分析装置
JP4455495B2 (ja) * 2003-05-15 2010-04-21 株式会社資生堂 試料注入方法
US7621282B2 (en) * 2004-06-17 2009-11-24 Abbott Laboratories, Inc. Probe washing cups and methods
CN1963527B (zh) * 2005-11-10 2011-12-14 深圳迈瑞生物医疗电子股份有限公司 全自动生化分析仪及其分析方法
CN101169450B (zh) * 2006-10-27 2012-06-27 深圳迈瑞生物医疗电子股份有限公司 全自动生化分析方法及装置
CN101726616B (zh) * 2008-10-31 2014-07-16 深圳迈瑞生物医疗电子股份有限公司 自动分析装置及其工作方法
JP2010164448A (ja) * 2009-01-16 2010-07-29 Panasonic Corp 分注装置
CN102221626B (zh) * 2010-04-14 2015-04-22 深圳迈瑞生物医疗电子股份有限公司 一种全自动生化分析仪及其工作方法
CN103376331B (zh) * 2012-04-17 2018-10-19 深圳迈瑞生物医疗电子股份有限公司 一种高速生化分析仪
CN105067826A (zh) * 2015-07-23 2015-11-18 四川迈克生物医疗电子有限公司 样本针清洗装置、样本针清洗方法、样本分析仪
JP6838905B2 (ja) * 2016-09-21 2021-03-03 株式会社日立ハイテク 自動分析装置
CN208795744U (zh) * 2018-08-01 2019-04-26 上海裕隆医学检验所股份有限公司 全自动免疫分析仪

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042635A (ja) * 1983-08-19 1985-03-06 Toshiba Corp 生化学分析装置におけるノズル洗浄装置
US20090032064A1 (en) * 2004-09-14 2009-02-05 Bti Holdings Inc. Plate washing system with ultrasonic cleaning of pipes and a control method thereof
CN101726613A (zh) * 2008-10-30 2010-06-09 希森美康株式会社 标本处理仪及其清洗方法
CN203900065U (zh) * 2014-05-23 2014-10-29 无锡妤卓兰科技有限公司 一种超声波清洗槽结构
CN107735688A (zh) * 2015-06-29 2018-02-23 株式会社日立高新技术 超声波清洗器以及使用该超声波清洗器的自动分析装置
CN204817325U (zh) * 2015-07-23 2015-12-02 四川迈克生物医疗电子有限公司 样本针清洗装置和样本分析仪
CN205008327U (zh) * 2015-09-22 2016-02-03 安图实验仪器(郑州)有限公司 样本针清洗装置
CN110072641A (zh) * 2016-12-20 2019-07-30 株式会社日立高新技术 超声波清洗器及使用了该超声波清洗器的自动分析装置
CN110088631A (zh) * 2016-12-20 2019-08-02 株式会社日立高新技术 超声波清洗器以及使用超声波清洗器的自动分析装置
CN110476068A (zh) * 2016-12-23 2019-11-19 豪夫迈·罗氏有限公司 洗涤体外诊断系统的抽吸探针的方法,体外诊断方法和体外诊断系统
US20190369132A1 (en) * 2016-12-23 2019-12-05 Roche Diagnostics Operations, Inc. Method of washing an aspiration probe of an in-vitro diagnostic system, in-vitro diagnostic method, and in-vitro diagnostic system
CN111856056A (zh) * 2020-08-05 2020-10-30 丹东百特仪器有限公司 一种高通量激光粒度仪全自动加样系统

Also Published As

Publication number Publication date
WO2022111603A1 (zh) 2022-06-02
CN116783490A (zh) 2023-09-19
CN117157528A (zh) 2023-12-01
CN114544994A (zh) 2022-05-27
WO2022111600A1 (zh) 2022-06-02
CN116529610A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
CN110476068B (zh) 洗涤体外诊断系统的抽吸探针的方法,体外诊断方法和体外诊断系统
JP2011513737A (ja) 流体処理用プローブを清浄化する装置および方法
EP2182369A1 (en) Automatic analyzing device and dispensing method
JPWO2015037339A1 (ja) ノズル洗浄方法及び自動分析装置
WO2022111604A1 (zh) 一种样本分析装置及分析方法
JP2005241442A (ja) 洗浄装置、洗浄装置を用いた分析装置及び洗浄方法
CN101755212A (zh) 搅拌判断装置、搅拌判断方法和分析装置
CN101393223A (zh) 标本分析装置及移液器
JP5668128B2 (ja) 洗浄用容器および臨床検査用分析装置
JP5878138B2 (ja) 試料分析装置
JP2007047038A (ja) 液体分注装置
JP2005249535A (ja) 分注プローブ及びこれを備えた自動分析装置
JPH01254871A (ja) 分析装置用分注ノズルの洗浄方法および分注ノズル装置
JP2010101873A (ja) 噴射ノズル、液体排出方法及び自動分析装置
EP4198520A2 (en) Sample analyzer and cleaning control method therefor
US20220034927A1 (en) Automated analyzer and cleaning method
JPH0639266A (ja) 液体攪拌方法及びその装置
CN216979100U (zh) 样本分析设备
JPWO2019078030A1 (ja) 自動分析装置およびプローブの洗浄方法
CN116223823A (zh) 样本分析装置及其工作方法
WO2021260993A1 (ja) 自動分析装置が備える分注プローブを洗浄する方法、自動分析装置
JP5439395B2 (ja) 臨床検査用分析装置
JP2010185829A (ja) 分注機構、分注方法及び分析装置
CN116265949A (zh) 样本分析设备
CN116256527A (zh) 一种样本分析仪及超声清洗装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897104

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180077916.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897104

Country of ref document: EP

Kind code of ref document: A1