WO2022109827A1 - Joint for segmented wind turbine blade, segmented wind turbine blade and method for manufacturing the same - Google Patents

Joint for segmented wind turbine blade, segmented wind turbine blade and method for manufacturing the same Download PDF

Info

Publication number
WO2022109827A1
WO2022109827A1 PCT/CN2020/131322 CN2020131322W WO2022109827A1 WO 2022109827 A1 WO2022109827 A1 WO 2022109827A1 CN 2020131322 W CN2020131322 W CN 2020131322W WO 2022109827 A1 WO2022109827 A1 WO 2022109827A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminate
blade
glove
wind turbine
protruding
Prior art date
Application number
PCT/CN2020/131322
Other languages
French (fr)
Inventor
Brian Baekdahl Damgaard
Vasu DATTA
Koji Fukami
Peter Bjorn ANDERSEN
Original Assignee
Shanghai Electric Wind Power Group Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Electric Wind Power Group Co., Ltd. filed Critical Shanghai Electric Wind Power Group Co., Ltd.
Priority to PCT/CN2020/131322 priority Critical patent/WO2022109827A1/en
Priority to EP20962718.1A priority patent/EP4214412A4/en
Priority to CN202080105157.4A priority patent/CN116096995A/en
Publication of WO2022109827A1 publication Critical patent/WO2022109827A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/342Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using isostatic pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/86Incorporated in coherent impregnated reinforcing layers, e.g. by winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0025Producing blades or the like, e.g. blades for turbines, propellers, or wings
    • B29D99/0028Producing blades or the like, e.g. blades for turbines, propellers, or wings hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • F03D1/0677Longitudinally segmented blades; Connectors therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/302Segmented or sectional blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present disclosure relates generally to wind turbines and more particularly to a joint for a segmented wind turbine blade, a segmented wind turbine blade and a method for manufacturing the same.
  • a segmented blade can be joined or assembled in various different ways, such as by means of bolted joint connections, adhesive joints, joining by lamination etc. These methods of joining are well known and proven from many applications in e.g. automotive, aerospace, and even within wind turbine blade design. However, implementation of these joining strategies are not well proven, and are not widespread in the application of segmented blades. This is strongly influenced from the fact that, although segmented blade concepts have existed in theory for decades, actual implementation and industrialization is limited within the wind industry. The increased technical complexity and derived cost increase of the blade has historically not favoured segmented blade design. But as the development of ever increasing rotor size for wind turbines in complex terrain is accelerating, this picture is starting to change. The need for segmented blades is emerging rapidly, having positive impact on the economy of certain wind projects. Hence, development and application of mechanical joints for segmented blades are an emerging technology, where mechanical joint technologies will be applied in new and innovative solutions.
  • Some embodiments of the present disclosure provide a joint for a segmented wind turbine blade, a segmented wind turbine blade and a method for manufacturing a segmented wind turbine blade.
  • a joint for a segmented wind turbine blade comprises a laminate glove integrally formed on a first blade segment of the segmented wind turbine blade, and a protruding laminate integrally formed on a second blade segment of the segmented wind turbine blade.
  • the laminate glove is configured for housing the protruding laminate, and when the segmented wind turbine blade is assembled on-site, the laminate glove and the protruding laminate are connected together so that the first blade segment is assembled with the second blade segment.
  • a segmented wind turbine blade comprises at least two blade segments and one or more joints.
  • the at least two blade segments comprises a first blade segment and a second blade segment.
  • the one or more joints are configured for connecting the first blade segment and the second blade segment.
  • Each of the one or more joints comprises a laminate glove integrally formed on the first blade segment, and a protruding laminate integrally formed on the second blade segment.
  • the protruding laminate is housed in and connected with the laminate glove so that the first blade segment and the second blade segment are assembled together.
  • a method for manufacturing a segmented wind turbine blade at least comprising a first blade segment and a second blade segment.
  • the method comprises: laying up one or more material layers in a blade mold, the one or more material layers comprising a laminate glove of the first blade segment and a protruding laminate of the second blade segment, the laminate glove housing the protruding laminate; co-infusing the one or more material layers together in the blade mold so as to form a single-piece wind turbine blade; demolding the single-piece wind turbine blade from the blade mold; and separating the laminate glove from the protruding laminate to form the first blade segment with the laminate glove and the second blade segment with the protruding laminate so that the segmented wind turbine blade is formed, and the first blade segment and the second blade segment are able to be reassembled together by connection of the laminate glove and the protruding laminate when the segmented wind turbine blade is assembled on-site.
  • FIG. 1 illustrates a schematic view of a segmented wind turbine blade according to one embodiment of the present disclosure.
  • FIG. 2 illustrates a cross-sectional view of the segmented wind turbine blade of FIG. 1 taken along line A-A.
  • FIG. 3 illustrates a cross-sectional view of the segmented wind turbine blade of FIG. 1 taken along line B-B.
  • FIG. 4 illustrates a schematic view of a portion of a first blade segment of one embodiment according to the present disclosure.
  • FIG. 5 illustrates a schematic view of a second blade segment according to one embodiment of the present disclosure.
  • FIG. 6 is a flow chart of a method for manufacturing a segmented wind turbine blade according to one embodiment of the present disclosure.
  • FIG. 1 illustrates a schematic view of a segmented wind turbine blade 100 according to one embodiment of the present disclosure.
  • the segmented wind turbine blade 100 may include at least two blade segments and one or more joints 30 for connecting the at least two blade segments.
  • the at least two blade segments may include for example, but be not limited to a first blade segment 10 and a second blade segment 20.
  • the one or more joints 30 is used for the segmented wind turbine blade 100 and is configured for connecting the first blade segment 10 and the second blade segment 20.
  • the first blade segment 10 and the second blade segment 20 of the segmented wind turbine blade 100 can be assembled together, thereby enabling transportation of the wind turbine blade 100 in segments, and for the segments to be assembled on-site.
  • the first blade segment 10 of the segmented wind turbine blade 100 includes one of a blade root segment and a blade tip segment
  • the second blade segment 20 of the segmented wind turbine blade 100 includes the other of the blade root segment and the blade tip segment.
  • the first blade segment 10 may include a blade root segment
  • the second blade segment 20 may include a blade tip segment
  • the first blade segment 10 may include the blade tip segment
  • the second blade segment 20 may include the blade root segment.
  • segmented wind turbine blade 100 of the present disclosure should be not limited to include only two blade segments. In other embodiments, the segmented wind turbine blade 100 of the present disclosure may also include three, four or even more blade segments. The number of the segmented wind turbine blade 100 of the present disclosure may vary from two to any desired number. Furthermore, the segmented wind turbine blade 100 of the present disclosure should be not limited to include the blade root segment and the blade tip segment. In other embodiments, the segmented wind turbine blade 100 of the present disclosure may also include one or more medium blade segments located between the blade root segment and the blade tip segment. The above minor or equivalent changes or modifications will be covered in the spirit and scope of the present disclosure.
  • FIG. 2 illustrates a cross-sectional view of the segmented wind turbine blade 100 of FIG. 1 taken along line A-A.
  • FIG. 3 illustrates a cross-sectional view of the segmented wind turbine blade 100 of FIG. 1 taken along line B-B.
  • each joint 30 may include a laminate glove 31 and a protruding laminate 32.
  • the laminate glove 31 is configured for housing the protruding laminate 32.
  • the laminate glove 31 has the size and the shape so to fit the protruding laminate 32.
  • the laminate glove 31 and the protruding laminate 32 of the joint 30 are co-infused during manufacturing of the segmented wind turbine blade 100.
  • FIG. 4 illustrates a schematic view of a portion of a first blade segment 10 of one embodiment according to the present disclosure.
  • the laminate glove 31 of the joint 30 is integrally formed on the first blade segment 10 of the segmented wind turbine blade 100.
  • the laminate glove 31 is as an integral part of the first blade segment 10.
  • FIG. 5 illustrates a schematic view of a second blade segment 20 according to one embodiment of the present disclosure.
  • the protruding laminate 32 of the joint 30 is integrally formed on the second blade segment 20 of the segmented wind turbine blade 100.
  • the protruding laminate 32 is as an integral part of the second blade segment 20.
  • the laminate glove 31 may house the protruding laminate 32 and the laminate glove 31 and the protruding laminate 32 may be connected together by various connecting methods so that the first blade segment 10 is assembled with the second blade segment 20.
  • the joint 30 of the present disclosure may realize disassembly for transportation of the wind turbine blade 100 and re-assembly on-site for installation.
  • the laminate glove 31 of the joint 30 may have an outer glove laminate 311 and an inner glove laminate 312.
  • the protruding laminate 32 of the joint 30 may be located between the outer glove laminate 311 and the inner glove laminate 312 of the laminate glove 31. Therefore, the protruding laminate 32 may be housed in the laminate glove 31.
  • the laminate glove 31 and the protruding laminate 32 may be connected together by adhesive or resin.
  • the adhesive or the resin may act as a load transferring mechanism between the laminate glove 31 and the protruding laminate 32.
  • the laminate glove 31 and the protruding laminate 32 may define one or more holes (not shown) for mechanical fasteners, and the laminate glove 31 and the protruding laminate 32 may be connected together by the mechanical fasteners.
  • the protruding laminate 32 is tapered in a spanwise direction D1 of the segmented wind turbine blade 100, and correspondingly, the outer glove laminate 311 and the inner glove laminate 312 of the laminate glove 31 form a tapered glove opening 313 for housing the tapered protruding laminate 32.
  • Such a tapered mating structure of the laminate glove 31 and the protruding laminate 32 can facilitate disassembly of the laminate glove 31 and the protruding laminate 32.
  • the segmented wind turbine blade 100 may include the one or more joints 30 on a suction side (SS) and the one or more joints 30 on a pressure side (PS) .
  • SS suction side
  • PS pressure side
  • one joint 30 on the suction side and one joint 30 on the pressure side are shown as an example.
  • Each joint 30 on the suction side includes the laminate glove 31 formed on a suction side of the first blade segment 10 and the protruding laminate 32 formed on a suction side of the second blade segment 20.
  • the laminate glove 31 on the suction side is configured for housing the protruding laminate 32 on the suction side so as to create a load transferring joint connecting the first blade segment 10 and the second blade segment 20 on the suction side.
  • Each joint 30 on the pressure side includes the laminate glove 31 formed on the pressure side of the first blade segment 10 and the protruding laminate 32 formed on the pressure side of the second blade segment 20.
  • the laminate glove 31 on the pressure side is configured for housing the protruding laminate 32 on the pressure side so as to create a load transferring joint connecting the first blade segment 10 and the second blade segment 20 on the pressure side.
  • the joint 30, i.e. the laminate glove 31 and the corresponding protruding laminate 32 may be positioned at any given desired spanwise location of the segmented wind turbine blade 100, and the joint 30 may be positioned at any given desired chordwise location of the segmented wind turbine blade 100.
  • the joint 30 may also be positioned in any given desired orientation in a cross section of the segmented wind turbine blade 100.
  • the segmented wind turbine blade 100 may include a plurality of joints 30 in a cross-section.
  • the plurality of joints 30 may be positioned in any desired pattern or spacing sequence in a given cross section the joint 30. That is to say, the first blade segment 10 may include one or more laminate gloves 31, and the second blade segment 20 may include one or more corresponding protruding laminates 32.
  • the segmented wind turbine blade 100 of the present disclosure adopts the joint 30 with the laminate glove 31 fitting the protruding laminate 32 and may be thus disassembled for transportation and re-assembled on-site for installation.
  • the segmented wind turbine blade 100 of the present disclosure is completely scalable in the number of connections per joint 30.
  • the segmented wind turbine blade 100 of the present disclosure is completely scalable in dimensions, positioning, and orientation.
  • FIG. 6 illustrates a flow chart of a method for manufacturing the segmented wind turbine blade 100 according to one embodiment of the present disclosure.
  • the segmented wind turbine blade 100 at least includes the first blade segment 10 and the second blade segment 20.
  • a method for manufacturing the segmented wind turbine blade 100 according to one embodiment of the present disclosure may include steps S11 to S14.
  • step S11 one or more material layers are laid up in a blade mold.
  • the one or more material layers include the laminate glove 31 of the first blade segment 10 and the protruding laminate 32 of the second blade segment 20.
  • the laminate glove 31 of the first blade segment 10 houses the protruding laminate 32 of the second blade segment 20.
  • the one or more material layers may include one or more fiber layers.
  • the one or more fiber layers may include at least one of glass fiber layers and carbon fiber layers.
  • the one or more material layers may further include one or more core material layers made of polymer foam or balsa wood.
  • step S12 the one or more material layers are co-infused together in the blade mold so as to form a single-piece wind turbine blade 100.
  • the one or more material layers are co-infused together with a liquid resin in the blade mold so as to cure the one or more material layers.
  • step S13 the single-piece wind turbine blade 100 is demolded from the blade mold.
  • step S14 the laminate glove 31 is separated from the protruding laminate 32 to form the first blade segment 10 with the laminate glove 31 and the second blade segment 20 with the protruding laminate 32 so that the segmented wind turbine blade 100 is formed, and the first blade segment 10 and the second blade segment 20 are able to be reassembled together by connection of the laminate glove 31 and the protruding laminate 32 when the segmented wind turbine blade 100 is assembled on-site.
  • the method of the present disclosure may manufacture the segmented wind turbine blade 100 in a non-segmented blade mold with the co-infused laminate glove 31 fitting the protruding laminate 32, which can be subsequently disassembled for transportation and re-assembled on-site for installation.
  • the method of the present disclosure enables a unique elimination of tolerance chains, elsewhere causing difficulties of aligning segments for assembly on-site.
  • the method of the present disclosure does not incur additional capital expenditures on manufacturing as the non-segmented blade mold is utilized.
  • the laminate glove 31 has an outer glove laminate 311 and an inner glove laminate 312 as shown in FIGS. 3 and 4, and the protruding laminate 32 is located between the outer glove laminate 311 and the inner glove laminate 312.
  • the laying up the one or more material layers of step S11 may include: wrapping the inner glove laminate 312 onto the protruding laminate 32 prior to co-infusion.
  • the laminate glove 31 and the protruding laminate 32 are co-infused in the blade mold.
  • the laminate glove 31 and the protruding laminate 32 are processed in such a specific way, which enables disassembly of the two elements subsequent to demolding, and for re-assembly after transportation to the wind farm site.
  • the method of the present disclosure may further include: adding between the laminate glove 31 and the protruding laminate 32, a processing material for facilitating disassembly of the laminate glove 31 and the protruding laminate 32 during laying up the one or more material layers of step S11.
  • the adding the processing material between the laminate glove 31 and the protruding laminate 32 may include: covering the protruding laminate 32 with the processing material.
  • the processing material of the present disclosure may have the characteristics of surface tension and bonding characteristics, which enables disassembly of the protruding laminate 32 and the laminate glove 31. Hence making possible for having such the segmented wind turbine blade 100, which can be re-assembled.
  • the processing material may include Teflon.
  • the method of the present disclosure may further include: removing the processing material from the protruding laminate 32 before re-assembly.
  • the blade mold for manufacturing the segmented wind turbine blade 100 according to the present disclosure may include two mold halves.
  • the one or more material layers may be laid up and co-infused respectively in the two mold halves so as to form a suction side blade shell and a pressure side blade shell respectively.
  • the laminate glove 31 and the protruding laminate 32 are placed in each of the two mold halves. Therefore, the laminate glove 31 and the corresponding protruding laminate 32 on the suction side, as well as the laminate glove 31 and the corresponding protruding laminate 32 on the pressure side are formed.
  • the method of the present disclosure may further include: closing the two mold halves; and assembling the suction side blade shell and the pressure side blade shell together to form the single-piece wind turbine blade 100.
  • the method of the present disclosure can manufacture the segmented wind turbine blade 100 in a blade mold in a single piece, and can be demolded in a single piece. Thus, the method of the present disclosure has a lower manufacturing cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

A joint for a segmented wind turbine blade, a segmented wind turbine blade and a method for manufacturing the same are disclosed. The joint includes a laminate glove integrally formed on a first blade segment of the segmented wind turbine blade, and a protruding laminate integrally formed on a second blade segment of the segmented wind turbine blade. The laminate glove is configured for housing the protruding laminate, and when the segmented wind turbine blade is assembled on-site, the laminate glove and the protruding laminate are connected together so that the first blade segment is assembled with the second blade segment.

Description

JOINT FOR SEGMENTED WIND TURBINE BLADE, SEGMENTED WIND TURBINE BLADE AND METHOD FOR MANUFACTURING THE SAME TECHNICAL FIELD
The present disclosure relates generally to wind turbines and more particularly to a joint for a segmented wind turbine blade, a segmented wind turbine blade and a method for manufacturing the same.
BACKGROUND
Modern wind turbines continue to grow in size and be equipped with increasingly long wind turbine blades in order to increase the power production. As the blades get longer, transportation of such blades can be challenging or even impossible in some regions of the world. Navigating in complex terrain and in regions with poor infrastructure poses a challenge for transporting the long blades by road, and in some cases, there is a limit to the length of a blade that can be transported to the wind turbine site. A way of solving this challenge is by blade segmentation, whereby the blade is transported in two or more segments, and is later assembled on-site. A segmented blade offers several additional benefits. The investment into manufacturing assets for producing very long blades can be reduced and transportation cost can be reduced. Hence segmented blades have the potential of bringing sustainable clean wind energy to regions that would otherwise not be a possibility, and improve the business case and economic performance of wind farms located in areas where transportation is challenging.
A segmented blade can be joined or assembled in various different ways, such as by means of bolted joint connections, adhesive joints, joining by lamination etc. These methods of joining are well known and proven from many  applications in e.g. automotive, aerospace, and even within wind turbine blade design. However, implementation of these joining strategies are not well proven, and are not widespread in the application of segmented blades. This is strongly influenced from the fact that, although segmented blade concepts have existed in theory for decades, actual implementation and industrialization is limited within the wind industry. The increased technical complexity and derived cost increase of the blade has historically not favoured segmented blade design. But as the development of ever increasing rotor size for wind turbines in complex terrain is accelerating, this picture is starting to change. The need for segmented blades is emerging rapidly, having positive impact on the economy of certain wind projects. Hence, development and application of mechanical joints for segmented blades are an emerging technology, where mechanical joint technologies will be applied in new and innovative solutions.
SUMMARY
Some embodiments of the present disclosure provide a joint for a segmented wind turbine blade, a segmented wind turbine blade and a method for manufacturing a segmented wind turbine blade.
In one aspect, a joint for a segmented wind turbine blade is provided. The joint comprises a laminate glove integrally formed on a first blade segment of the segmented wind turbine blade, and a protruding laminate integrally formed on a second blade segment of the segmented wind turbine blade. The laminate glove is configured for housing the protruding laminate, and when the segmented wind turbine blade is assembled on-site, the laminate glove and the protruding laminate are connected together so that the first blade segment is assembled with the second blade segment.
In another aspect, a segmented wind turbine blade is provided. The segmented wind turbine blade comprises at least two blade segments and one or more joints. The at least two blade segments comprises a first blade segment and  a second blade segment. The one or more joints are configured for connecting the first blade segment and the second blade segment. Each of the one or more joints comprises a laminate glove integrally formed on the first blade segment, and a protruding laminate integrally formed on the second blade segment. The protruding laminate is housed in and connected with the laminate glove so that the first blade segment and the second blade segment are assembled together.
In still another aspect, a method for manufacturing a segmented wind turbine blade is provided. The segmented wind turbine blade at least comprising a first blade segment and a second blade segment. The method comprises: laying up one or more material layers in a blade mold, the one or more material layers comprising a laminate glove of the first blade segment and a protruding laminate of the second blade segment, the laminate glove housing the protruding laminate; co-infusing the one or more material layers together in the blade mold so as to form a single-piece wind turbine blade; demolding the single-piece wind turbine blade from the blade mold; and separating the laminate glove from the protruding laminate to form the first blade segment with the laminate glove and the second blade segment with the protruding laminate so that the segmented wind turbine blade is formed, and the first blade segment and the second blade segment are able to be reassembled together by connection of the laminate glove and the protruding laminate when the segmented wind turbine blade is assembled on-site.
BRIEF DESCRIPTION OF THE DRAWINGS
To describe the technical solutions in embodiments of the present disclosure more clearly, drawings in descriptions of the embodiments of the present disclosure will be briefly introduced below. It is apparent that the drawings described below are merely some embodiments of the present disclosure and other drawings may be obtained by those of ordinary skill in the art based on these drawings without resorting to creative labor.
FIG. 1 illustrates a schematic view of a segmented wind turbine blade according to one embodiment of the present disclosure.
FIG. 2 illustrates a cross-sectional view of the segmented wind turbine blade of FIG. 1 taken along line A-A.
FIG. 3 illustrates a cross-sectional view of the segmented wind turbine blade of FIG. 1 taken along line B-B.
FIG. 4 illustrates a schematic view of a portion of a first blade segment of one embodiment according to the present disclosure.
FIG. 5 illustrates a schematic view of a second blade segment according to one embodiment of the present disclosure.
FIG. 6 is a flow chart of a method for manufacturing a segmented wind turbine blade according to one embodiment of the present disclosure.
DETAILED DESCRIPTION OF THE EMBODIMENTS
The technical solutions of embodiments of the present disclosure will be described clearly and fully below in combination with drawings in the embodiments of the present disclosure. It is apparent that the described embodiments are merely part of embodiments of the present disclosure rather than all the embodiments. Other embodiments achieved by those of ordinary skill in the art based on the embodiments in the present disclosure without paying creative labor shall all fall within the protective scope of the present disclosure.
FIG. 1 illustrates a schematic view of a segmented wind turbine blade 100 according to one embodiment of the present disclosure. Referring now to FIG. 1, the segmented wind turbine blade 100 according to one embodiment of the present disclosure may include at least two blade segments and one or more joints 30 for connecting the at least two blade segments. The at least two blade segments may include for example, but be not limited to a first blade segment 10  and a second blade segment 20. The one or more joints 30 is used for the segmented wind turbine blade 100 and is configured for connecting the first blade segment 10 and the second blade segment 20. Thus, by the one or more joints 30, the first blade segment 10 and the second blade segment 20 of the segmented wind turbine blade 100 can be assembled together, thereby enabling transportation of the wind turbine blade 100 in segments, and for the segments to be assembled on-site.
The first blade segment 10 of the segmented wind turbine blade 100 includes one of a blade root segment and a blade tip segment, and the second blade segment 20 of the segmented wind turbine blade 100 includes the other of the blade root segment and the blade tip segment. For example, in one embodiment, the first blade segment 10 may include a blade root segment, and the second blade segment 20 may include a blade tip segment. In another embodiment, the first blade segment 10 may include the blade tip segment, and the second blade segment 20 may include the blade root segment.
However, it is noted that the segmented wind turbine blade 100 of the present disclosure should be not limited to include only two blade segments. In other embodiments, the segmented wind turbine blade 100 of the present disclosure may also include three, four or even more blade segments. The number of the segmented wind turbine blade 100 of the present disclosure may vary from two to any desired number. Furthermore, the segmented wind turbine blade 100 of the present disclosure should be not limited to include the blade root segment and the blade tip segment. In other embodiments, the segmented wind turbine blade 100 of the present disclosure may also include one or more medium blade segments located between the blade root segment and the blade tip segment. The above minor or equivalent changes or modifications will be covered in the spirit and scope of the present disclosure.
FIG. 2 illustrates a cross-sectional view of the segmented wind turbine blade 100 of FIG. 1 taken along line A-A. FIG. 3 illustrates a cross-sectional  view of the segmented wind turbine blade 100 of FIG. 1 taken along line B-B. As shown in FIG. 2 and FIG. 3, each joint 30 may include a laminate glove 31 and a protruding laminate 32. The laminate glove 31 is configured for housing the protruding laminate 32. The laminate glove 31 has the size and the shape so to fit the protruding laminate 32. In one embodiment, the laminate glove 31 and the protruding laminate 32 of the joint 30 are co-infused during manufacturing of the segmented wind turbine blade 100.
FIG. 4 illustrates a schematic view of a portion of a first blade segment 10 of one embodiment according to the present disclosure. As shown in FIG. 4, the laminate glove 31 of the joint 30 is integrally formed on the first blade segment 10 of the segmented wind turbine blade 100. The laminate glove 31 is as an integral part of the first blade segment 10. FIG. 5 illustrates a schematic view of a second blade segment 20 according to one embodiment of the present disclosure. As shown in FIG. 5, the protruding laminate 32 of the joint 30 is integrally formed on the second blade segment 20 of the segmented wind turbine blade 100. The protruding laminate 32 is as an integral part of the second blade segment 20.
When the segmented wind turbine blade 100 is required to be assembled on-site, the laminate glove 31 may house the protruding laminate 32 and the laminate glove 31 and the protruding laminate 32 may be connected together by various connecting methods so that the first blade segment 10 is assembled with the second blade segment 20. The joint 30 of the present disclosure may realize disassembly for transportation of the wind turbine blade 100 and re-assembly on-site for installation.
Referring now to FIGS. 2-5, in some embodiments, the laminate glove 31 of the joint 30 may have an outer glove laminate 311 and an inner glove laminate 312. The protruding laminate 32 of the joint 30 may be located between the outer glove laminate 311 and the inner glove laminate 312 of the laminate glove 31. Therefore, the protruding laminate 32 may be housed in the  laminate glove 31. When re-assembly, in one embodiment, the laminate glove 31 and the protruding laminate 32 may be connected together by adhesive or resin. The adhesive or the resin may act as a load transferring mechanism between the laminate glove 31 and the protruding laminate 32. In another embodiment, the laminate glove 31 and the protruding laminate 32 may define one or more holes (not shown) for mechanical fasteners, and the laminate glove 31 and the protruding laminate 32 may be connected together by the mechanical fasteners.
In some embodiment, the protruding laminate 32 is tapered in a spanwise direction D1 of the segmented wind turbine blade 100, and correspondingly, the outer glove laminate 311 and the inner glove laminate 312 of the laminate glove 31 form a tapered glove opening 313 for housing the tapered protruding laminate 32. Such a tapered mating structure of the laminate glove 31 and the protruding laminate 32 can facilitate disassembly of the laminate glove 31 and the protruding laminate 32.
In some embodiment, the segmented wind turbine blade 100 may include the one or more joints 30 on a suction side (SS) and the one or more joints 30 on a pressure side (PS) . In the figures of the present disclosure, one joint 30 on the suction side and one joint 30 on the pressure side are shown as an example. Each joint 30 on the suction side includes the laminate glove 31 formed on a suction side of the first blade segment 10 and the protruding laminate 32 formed on a suction side of the second blade segment 20. The laminate glove 31 on the suction side is configured for housing the protruding laminate 32 on the suction side so as to create a load transferring joint connecting the first blade segment 10 and the second blade segment 20 on the suction side. Each joint 30 on the pressure side includes the laminate glove 31 formed on the pressure side of the first blade segment 10 and the protruding laminate 32 formed on the pressure side of the second blade segment 20. The laminate glove 31 on the pressure side is configured for housing the protruding laminate 32 on the pressure side so as to create a load transferring joint  connecting the first blade segment 10 and the second blade segment 20 on the pressure side.
The joint 30, i.e. the laminate glove 31 and the corresponding protruding laminate 32 may be positioned at any given desired spanwise location of the segmented wind turbine blade 100, and the joint 30 may be positioned at any given desired chordwise location of the segmented wind turbine blade 100. The joint 30 may also be positioned in any given desired orientation in a cross section of the segmented wind turbine blade 100. The segmented wind turbine blade 100 may include a plurality of joints 30 in a cross-section. The plurality of joints 30 may be positioned in any desired pattern or spacing sequence in a given cross section the joint 30. That is to say, the first blade segment 10 may include one or more laminate gloves 31, and the second blade segment 20 may include one or more corresponding protruding laminates 32.
The segmented wind turbine blade 100 of the present disclosure adopts the joint 30 with the laminate glove 31 fitting the protruding laminate 32 and may be thus disassembled for transportation and re-assembled on-site for installation.
The segmented wind turbine blade 100 of the present disclosure is completely scalable in the number of connections per joint 30. The segmented wind turbine blade 100 of the present disclosure is completely scalable in dimensions, positioning, and orientation.
The present disclosure further provides a method for manufacturing the segmented wind turbine blade 100 above-mentioned. FIG. 6 illustrates a flow chart of a method for manufacturing the segmented wind turbine blade 100 according to one embodiment of the present disclosure. As described above, the segmented wind turbine blade 100 at least includes the first blade segment 10 and the second blade segment 20. As shown in FIG. 6, a method for manufacturing the segmented wind turbine blade 100 according to one embodiment of the present disclosure may include steps S11 to S14.
In step S11, one or more material layers are laid up in a blade mold. The one or more material layers include the laminate glove 31 of the first blade segment 10 and the protruding laminate 32 of the second blade segment 20. The laminate glove 31 of the first blade segment 10 houses the protruding laminate 32 of the second blade segment 20.
The one or more material layers may include one or more fiber layers. The one or more fiber layers may include at least one of glass fiber layers and carbon fiber layers. Optionally, the one or more material layers may further include one or more core material layers made of polymer foam or balsa wood.
In step S12, the one or more material layers are co-infused together in the blade mold so as to form a single-piece wind turbine blade 100. For example, the one or more material layers are co-infused together with a liquid resin in the blade mold so as to cure the one or more material layers.
In step S13, the single-piece wind turbine blade 100 is demolded from the blade mold.
In step S14, the laminate glove 31 is separated from the protruding laminate 32 to form the first blade segment 10 with the laminate glove 31 and the second blade segment 20 with the protruding laminate 32 so that the segmented wind turbine blade 100 is formed, and the first blade segment 10 and the second blade segment 20 are able to be reassembled together by connection of the laminate glove 31 and the protruding laminate 32 when the segmented wind turbine blade 100 is assembled on-site.
The method of the present disclosure may manufacture the segmented wind turbine blade 100 in a non-segmented blade mold with the co-infused laminate glove 31 fitting the protruding laminate 32, which can be subsequently disassembled for transportation and re-assembled on-site for installation.
By manufacturing the segmented wind turbine blade 100 in a non-segmented blade mold, the method of the present disclosure enables a unique elimination of tolerance chains, elsewhere causing difficulties of aligning  segments for assembly on-site.
The method of the present disclosure does not incur additional capital expenditures on manufacturing as the non-segmented blade mold is utilized.
In some embodiment, the laminate glove 31 has an outer glove laminate 311 and an inner glove laminate 312 as shown in FIGS. 3 and 4, and the protruding laminate 32 is located between the outer glove laminate 311 and the inner glove laminate 312. Thus, the laying up the one or more material layers of step S11 may include: wrapping the inner glove laminate 312 onto the protruding laminate 32 prior to co-infusion.
The laminate glove 31 and the protruding laminate 32 are co-infused in the blade mold. The laminate glove 31 and the protruding laminate 32 are processed in such a specific way, which enables disassembly of the two elements subsequent to demolding, and for re-assembly after transportation to the wind farm site. Thus, the method of the present disclosure may further include: adding between the laminate glove 31 and the protruding laminate 32, a processing material for facilitating disassembly of the laminate glove 31 and the protruding laminate 32 during laying up the one or more material layers of step S11. In an optional embodiment, the adding the processing material between the laminate glove 31 and the protruding laminate 32 may include: covering the protruding laminate 32 with the processing material.
The processing material of the present disclosure may have the characteristics of surface tension and bonding characteristics, which enables disassembly of the protruding laminate 32 and the laminate glove 31. Hence making possible for having such the segmented wind turbine blade 100, which can be re-assembled. For example, the processing material may include Teflon.
In some embodiments, the method of the present disclosure may further include: removing the processing material from the protruding laminate 32 before re-assembly.
In one embodiment, the blade mold for manufacturing the segmented  wind turbine blade 100 according to the present disclosure may include two mold halves. Thus, in step S11 and step S12, the one or more material layers may be laid up and co-infused respectively in the two mold halves so as to form a suction side blade shell and a pressure side blade shell respectively. The laminate glove 31 and the protruding laminate 32 are placed in each of the two mold halves. Therefore, the laminate glove 31 and the corresponding protruding laminate 32 on the suction side, as well as the laminate glove 31 and the corresponding protruding laminate 32 on the pressure side are formed.
In this case, the method of the present disclosure may further include: closing the two mold halves; and assembling the suction side blade shell and the pressure side blade shell together to form the single-piece wind turbine blade 100.
The method of the present disclosure can manufacture the segmented wind turbine blade 100 in a blade mold in a single piece, and can be demolded in a single piece. Thus, the method of the present disclosure has a lower manufacturing cost.
In the descriptions of the present specification, terms such as “an example” , “some examples” , “illustrative examples” , “embodiments” , “a specific example” or “some examples” are intended to refer to that a specific feature, structure, material, or characteristic described in combination with an embodiment or an example are included in at least one embodiment or example of the present disclosure. In the present specification, the illustrative expressions of the above terms do not necessarily refer to a same embodiment or example. Further, specific feature, structure, material or characteristic described above may be combined in a proper way in one or more embodiments or examples.
The foregoing disclosure is merely illustrative of examples of the present disclosure but not intended to limit the present disclosure, and any modifications, equivalent substitutions, adaptations thereof made within the spirit and principles of the disclosure shall fall within the scope of the present disclosure.

Claims (31)

  1. A joint for a segmented wind turbine blade, comprising:
    a laminate glove integrally formed on a first blade segment of the segmented wind turbine blade; and
    a protruding laminate integrally formed on a second blade segment of the segmented wind turbine blade,
    wherein the laminate glove is configured for housing the protruding laminate, and when the segmented wind turbine blade is assembled on-site, the laminate glove and the protruding laminate are connected together so that the first blade segment is assembled with the second blade segment.
  2. The joint according to claim 1, wherein the laminate glove has an outer glove laminate and an inner glove laminate, and the protruding laminate is located between the outer glove laminate and the inner glove laminate.
  3. The joint according to claim 2, wherein the protruding laminate is tapered in a spanwise direction of the segmented wind turbine blade, and the outer glove laminate and the inner glove laminate form a tapered glove opening for housing the tapered protruding laminate.
  4. The joint according to claim 1, wherein the joint comprises the laminate gloves respectively formed on a suction side and a pressure side of the first blade segment, and the protruding laminates respectively formed on a suction side and a pressure side of the second blade segment, and
    wherein the laminate glove on the suction side is configured for housing the protruding laminate on the suction side, and the laminate glove on the pressure side is configured for housing the protruding laminate on the pressure side.
  5. The joint according to claim 1, wherein the laminate glove and the protruding laminate are connected by adhesive or resin.
  6. The joint according to claim 1, wherein the laminate glove and the protruding laminate are connected by mechanical fasteners.
  7. The joint according to claim 1, wherein the laminate glove and the protruding laminate are co-infused during manufacturing of the segmented wind turbine blade.
  8. The joint according to claim 1, wherein the first blade segment comprises one of a blade root segment and a blade tip segment, and the second blade segment comprises the other of the blade root segment and the blade tip segment.
  9. A segmented wind turbine blade, comprising:
    at least two blade segments comprising a first blade segment and a second blade segment; and
    one or more joints for connecting the first blade segment and the second blade segment, each of which comprises:
    a laminate glove integrally formed on the first blade segment; and
    a protruding laminate integrally formed on the second blade segment,
    wherein the protruding laminate is housed in and connected with the laminate glove so that the first blade segment and the second blade segment are assembled together.
  10. The segmented wind turbine blade according to claim 9, wherein the laminate glove has an outer glove laminate and an inner glove laminate, and the protruding laminate is located between the outer glove laminate and the inner glove laminate.
  11. The segmented wind turbine blade according to claim 10, wherein the protruding laminate is tapered in a spanwise direction of the segmented wind turbine blade, and the outer glove laminate and the inner glove laminate form a tapered glove opening for housing the tapered protruding laminate.
  12. The segmented wind turbine blade according to claim 9, wherein the first blade segment comprises one of a blade root segment and a blade tip segment, and the second blade segment comprises the other of the blade root segment and the blade tip segment.
  13. The segmented wind turbine blade according to claim 9, wherein the laminate glove and the protruding laminate are connected by adhesive or resin.
  14. The segmented wind turbine blade according to claim 9, wherein the laminate glove and the protruding laminate are connected by mechanical fasteners.
  15. The segmented wind turbine blade according to claim 9, wherein the joint comprises the laminate gloves respectively formed on a suction side and a pressure side of the first blade segment, and the protruding laminates respectively formed on a suction side and a pressure side of the second blade  segment, and
    wherein the laminate glove on the suction side is configured for housing the protruding laminate on the suction side, and the laminate glove on the pressure side is configured for housing the protruding laminate on the pressure side.
  16. The segmented wind turbine blade according to claim 9, wherein the joint is positioned at any given desired spanwise location of the segmented wind turbine blade.
  17. The segmented wind turbine blade according to claim 9, wherein the joint is positioned at any given desired chordwise location of the segmented wind turbine blade.
  18. The segmented wind turbine blade according to claim 9, wherein the joint is positioned in any given desired orientation in a cross section of the segmented wind turbine blade.
  19. A method for manufacturing a segmented wind turbine blade, the segmented wind turbine blade at least comprising a first blade segment and a second blade segment, the method comprising:
    laying up one or more material layers in a blade mold, the one or more material layers comprising a laminate glove of the first blade segment and a protruding laminate of the second blade segment, the laminate glove housing the protruding laminate;
    co-infusing the one or more material layers together in the blade mold so as to form a single-piece wind turbine blade;
    demolding the single-piece wind turbine blade from the blade mold; and
    separating the laminate glove from the protruding laminate to form the first blade segment with the laminate glove and the second blade segment with the protruding laminate so that the segmented wind turbine blade is formed, and the first blade segment and the second blade segment are able to be reassembled together by connection of the laminate glove and the protruding laminate when the segmented wind turbine blade is assembled on-site.
  20. The method according to claim 19, wherein the laminate glove has an outer glove laminate and an inner glove laminate, and the protruding laminate is located between the outer glove laminate and the inner glove laminate.
  21. The method according to claim 20, wherein the laying up the one or more material layers comprises:
    wrapping the inner glove laminate onto the protruding laminate prior to co-infusion.
  22. The method according to claim 19, further comprising:
    adding between the laminate glove and the protruding laminate, a processing material for facilitating disassembly of the laminate glove and the protruding laminate during laying up the one or more material layers.
  23. The method according to claim 22, wherein the adding the processing material between the laminate glove and the protruding laminate comprises:
    covering the protruding laminate with the processing material.
  24. The method according to claim 23, further comprising:
    removing the processing material from the protruding laminate before re-assembly.
  25. The method according to claim 19, wherein the processing material comprises Teflon.
  26. The method according to claim 19, wherein the blade mold comprises two mold halves, and the laying up the one or more material layers in the blade mold and the co-infusing the one or more material layers together in the blade mold comprises:
    laying up and co-infusing the one or more material layers respectively in the two mold halves so as to form a suction side blade shell and a pressure side blade shell respectively, wherein the laminate glove and the protruding laminate are placed in each of the two mold halves.
  27. The method according to claim 26, further comprising:
    closing the two mold halves; and
    assembling the suction side blade shell and the pressure side blade shell together to form the single-piece wind turbine blade.
  28. The method according to claim 19, wherein the one or more material layers comprise one or more fiber layers.
  29. The method according to claim 28, wherein the one or more fiber layers comprises at least one of glass fiber layers and carbon fiber layers.
  30. The method according to claim 28, wherein the one or more material layers further comprises one or more core material layers made of polymer foam or balsa wood.
  31. The method according to claim 19, wherein the co-infusing the one or more material layers together in the blade mold comprises:
    co-infusing the one or more material layers together with a liquid resin in the blade mold so as to cure the one or more material layers.
PCT/CN2020/131322 2020-11-25 2020-11-25 Joint for segmented wind turbine blade, segmented wind turbine blade and method for manufacturing the same WO2022109827A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/131322 WO2022109827A1 (en) 2020-11-25 2020-11-25 Joint for segmented wind turbine blade, segmented wind turbine blade and method for manufacturing the same
EP20962718.1A EP4214412A4 (en) 2020-11-25 2020-11-25 Joint for segmented wind turbine blade, segmented wind turbine blade and method for manufacturing the same
CN202080105157.4A CN116096995A (en) 2020-11-25 2020-11-25 Joint for a segmented wind turbine blade, segmented wind turbine blade and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/131322 WO2022109827A1 (en) 2020-11-25 2020-11-25 Joint for segmented wind turbine blade, segmented wind turbine blade and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2022109827A1 true WO2022109827A1 (en) 2022-06-02

Family

ID=81753787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131322 WO2022109827A1 (en) 2020-11-25 2020-11-25 Joint for segmented wind turbine blade, segmented wind turbine blade and method for manufacturing the same

Country Status (3)

Country Link
EP (1) EP4214412A4 (en)
CN (1) CN116096995A (en)
WO (1) WO2022109827A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1977108A (en) * 2004-06-30 2007-06-06 维斯塔斯风力系统有限公司 Wind turbine blades made of two separate sections, and method of assembly
CN101614184A (en) * 2008-06-27 2009-12-30 歌美飒创新技术公司 Blade insert
CN105526044A (en) * 2015-12-24 2016-04-27 东方电气风电有限公司 Connection structure of sectionally-assembled blade of wind-driven generator and manufacture method thereof
CN106121935A (en) * 2016-08-26 2016-11-16 三重型能源装备有限公司 Manufacture method for bolt sleeve assembly, blade and the blade of blade
DE102010015392B4 (en) * 2010-04-19 2019-07-25 Aero-Dynamik-Consult Gmbh Connecting element for a rotor blade of a wind turbine
WO2020068543A1 (en) * 2018-09-24 2020-04-02 General Electric Company Jointed wind turbine blade with noise reduction tape
CN211549890U (en) * 2019-12-26 2020-09-22 中材科技风电叶片股份有限公司 Wind turbine blade root modular prefabricated part, blade root part and blade

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1977108A (en) * 2004-06-30 2007-06-06 维斯塔斯风力系统有限公司 Wind turbine blades made of two separate sections, and method of assembly
CN101614184A (en) * 2008-06-27 2009-12-30 歌美飒创新技术公司 Blade insert
DE102010015392B4 (en) * 2010-04-19 2019-07-25 Aero-Dynamik-Consult Gmbh Connecting element for a rotor blade of a wind turbine
CN105526044A (en) * 2015-12-24 2016-04-27 东方电气风电有限公司 Connection structure of sectionally-assembled blade of wind-driven generator and manufacture method thereof
CN106121935A (en) * 2016-08-26 2016-11-16 三重型能源装备有限公司 Manufacture method for bolt sleeve assembly, blade and the blade of blade
WO2020068543A1 (en) * 2018-09-24 2020-04-02 General Electric Company Jointed wind turbine blade with noise reduction tape
CN211549890U (en) * 2019-12-26 2020-09-22 中材科技风电叶片股份有限公司 Wind turbine blade root modular prefabricated part, blade root part and blade

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4214412A4 *

Also Published As

Publication number Publication date
EP4214412A4 (en) 2023-11-29
EP4214412A1 (en) 2023-07-26
CN116096995A (en) 2023-05-09

Similar Documents

Publication Publication Date Title
US8696317B2 (en) Wind turbine blade
US8123488B2 (en) System and method for joining turbine blades
US11572861B2 (en) Method for forming a rotor blade for a wind turbine
US7891947B2 (en) Turbine blade and method of fabricating the same
US9394881B2 (en) Wind turbine blade and method of fabricating a wind turbine blade
US20160377052A1 (en) Blade root section for a modular rotor blade and method of manufacturing same
CN113685309B (en) Modularized wind power blade
US20200332762A1 (en) A wind turbine blade comprising a root end structure with a pultruded element having a transition portion
CN108495739B (en) Method and apparatus for manufacturing a wind turbine blade body
CN105874169B (en) The jet engine for linking cage structure and the link cage structure using the blade of blade
WO2022109827A1 (en) Joint for segmented wind turbine blade, segmented wind turbine blade and method for manufacturing the same
JP2022509397A (en) Manufacture of segmented wind turbine blades
EP3874156A1 (en) Method to retrofit a wind turbine rotor blade with a replacement blade tip segment
US9333555B2 (en) Manufacturing method of a component of a split blade of a wind turbine
EP3890936B1 (en) A wind turbine blade body manufacturing method
EP3874154B1 (en) A wind turbine rotor blade pre-staged for retrofitting with a replacement blade tip segment
US20220112876A1 (en) Wind turbine rotor blade shell with varying fiber types
US20220314568A1 (en) Wind turbine blade tool and method for producing a wind turbine blade
CN113167217A (en) Joined rotor blades having internal support structures with different fiber orientations for pin reinforcement
US20240254960A1 (en) Manufacturing of segmented wind turbine blade
US20230113689A1 (en) Jointed wind turbine blade with pre-bend
CN112912616A (en) Wind turbine rotor blade joint constructed of dissimilar materials
CN114391063A (en) Segmented rotor blade for a wind turbine and method for joining the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020962718

Country of ref document: EP

Effective date: 20230421

NENP Non-entry into the national phase

Ref country code: DE