WO2022107555A1 - 放射線診断装置、放射線診断装置の作動方法 - Google Patents

放射線診断装置、放射線診断装置の作動方法 Download PDF

Info

Publication number
WO2022107555A1
WO2022107555A1 PCT/JP2021/039310 JP2021039310W WO2022107555A1 WO 2022107555 A1 WO2022107555 A1 WO 2022107555A1 JP 2021039310 W JP2021039310 W JP 2021039310W WO 2022107555 A1 WO2022107555 A1 WO 2022107555A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
ultraviolet
source
irradiation
control unit
Prior art date
Application number
PCT/JP2021/039310
Other languages
English (en)
French (fr)
Inventor
淳 榎本
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022563658A priority Critical patent/JPWO2022107555A1/ja
Publication of WO2022107555A1 publication Critical patent/WO2022107555A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment

Definitions

  • the technique of the present disclosure relates to a radiation diagnostic device and a method of operating the radiation diagnostic device.
  • a radiation diagnostic device that irradiates a patient with radiation and obtains a radiation image is known.
  • radiological diagnostic equipment There are two types of radiological diagnostic equipment: a stationary type installed in a radiography room and a mobile type that can be moved in a medical facility by means of traveling wheels.
  • the stationary radiation diagnostic apparatus includes, for example, one radiation source that emits radiation and a moving mechanism that moves the position of the radiation source in the radiography chamber.
  • the radiation source can be moved by a moving mechanism, for example, between a position corresponding to a standing table and a position corresponding to a lying table.
  • Japanese Patent Application Laid-Open No. 2020-110234 describes a set position corresponding to a standing position photographing table and a set position corresponding to a lying position photographing table by controlling the operation of a moving mechanism in a stationary radiation diagnostic apparatus.
  • An auto-positioning device (hereinafter abbreviated as AP (Auto Positioning)) that automatically moves a radiation source is described in any of them. According to the AP device, it is possible to save the trouble of manually moving the radiation source.
  • One embodiment according to the technique of the present disclosure provides a radiation diagnostic apparatus capable of efficiently sterilizing an imaging table, and a method of operating the radiation diagnostic apparatus.
  • the radiation diagnostic apparatus of the present disclosure is installed in a radiation imaging room by controlling the operation of one radiation source that emits radiation, a moving mechanism that moves the position of the radiation source in the radiography room, and the movement mechanism.
  • An auto-positioning device that includes an auto-positioning control unit that automatically moves the radiation source to the set position corresponding to the camera stand, and an ultraviolet source that emits ultraviolet rays, which are moved together with the radiation source by the moving mechanism. It is provided with an ultraviolet source to be used and an ultraviolet source control unit that causes the ultraviolet source to irradiate the photographing table with ultraviolet rays when the auto-positioning function is executed.
  • the ultraviolet source control unit irradiates the ultraviolet source before the radiation source is moved to the set position by the auto-positioning function and the radiation is emitted from the radiation source.
  • the ultraviolet source control unit is at least one of before the radiation is emitted from the radiation source and the radiation source is moved to the set position by the auto-positioning function, and during the movement of the radiation source to the set position by the auto-positioning function. In one case, it is preferable to irradiate the ultraviolet source.
  • the ultraviolet source control unit uses the ultraviolet source before the current radiation imaging. It is preferable not to irradiate.
  • the ultraviolet source control unit changes the sterilizing ability of ultraviolet rays according to the distance between the radiation source and the photographing table. In this case, it is preferable that the ultraviolet source control unit changes the sterilizing ability by changing at least one of the intensity and the irradiation time of the ultraviolet rays.
  • the ultraviolet source control unit is provided with a camera or a moving object detection sensor, and does not irradiate with an ultraviolet source when a person is photographed in the image taken by the camera or when the moving object detection sensor detects a moving object.
  • the auto-positioning device includes a camera or a moving object detection sensor provided to prevent the auto-positioning function from being executed in an environment where a person is present, and it is preferable that the camera or the moving object detection sensor included in the auto-positioning device is diverted.
  • the ultraviolet source control unit irradiates the ultraviolet source when the auto-positioning control unit executes the auto-positioning function in response to an instruction from the operator.
  • the ultraviolet source control unit irradiates the ultraviolet source when the auto-positioning control unit executes the auto-positioning function at a preset time.
  • the radiation source is equipped with an irradiation field limiting device that defines the irradiation field of radiation, and the ultraviolet source is provided in the irradiation field limiting device.
  • the method of operating the radiation diagnostic apparatus of the present disclosure is a method of operating a radiation diagnostic apparatus including one radiation source that emits radiation and an auto-positioning apparatus including a moving mechanism that moves the position of the radiation in the radiography chamber.
  • an auto-positioning apparatus including a moving mechanism that moves the position of the radiation in the radiography chamber.
  • the radiodiagnosis device 2 is a device that irradiates the patient P with radiation R such as X-rays and ⁇ -rays and captures a radiation image RI (see FIG. 2) of the patient P. It is operated by an operator such as an engineer.
  • the radiation diagnostic apparatus 2 includes a radiation irradiation unit 10.
  • the irradiation unit 10 includes a radiation source 11 and an irradiation field limiting device 12.
  • the radiation source 11 has a radiation tube 13 that emits radiation R.
  • the irradiation field limiting device 12 limits the irradiation field of the radiation R emitted from the radiation tube 13.
  • the radiation irradiation unit 10 is suspended from the ceiling 16 of the radiography room by a support column 15.
  • the support column 15 is attached to a rail 17 around the ceiling 16 via a bogie 18.
  • the bogie 18 contains a prop motor 19 and a bogie motor 20.
  • the strut 15 can be expanded and contracted in the height direction by the strut motor 19, whereby the radiation irradiation unit 10 can be moved in the height direction.
  • the trolley 18, and thus the radiation irradiation unit 10 can be moved horizontally in the radiation photographing chamber along the rail 17 by the trolley motor 20.
  • the support column 15 can also be manually moved in the height direction.
  • the dolly 18 can be manually moved horizontally.
  • the radiation irradiation unit 10 is attached to the support column 15 via the rotating unit 21.
  • the rotating portion 21 has a built-in motor 22 for the rotating portion.
  • the rotating unit 21, and thus the radiation irradiation unit 10, can be rotated with respect to the support column 15 by the rotating unit motor 22 with the axis orthogonal to the paper surface as the rotating axis.
  • the rotating portion 21 can also be manually rotated.
  • a standing position shooting table 25S and a lying position shooting table 25L are installed in the radiography room.
  • the irradiation unit 10 is also used in the standing position photographing table 25S and the lying position photographing table 25L.
  • the standing shooting table 25S and the lying position shooting table 25L are examples of the "shooting table" according to the technique of the present disclosure.
  • the standing shooting table 25S and the lying position shooting table 25L may be collectively referred to as a shooting table 25.
  • the electronic cassette 26 is housed in the standing shooting table 25S and the lying position shooting table 25L.
  • the electronic cassette 26 is a portable radiation detector in which a detection panel is housed in a flat rectangular parallelepiped housing having a rectangular planar shape.
  • the detection panel has a configuration in which a plurality of pixels that generate signal charges in response to the radiation R or visible light converted from the radiation R by a scintillator are arranged.
  • the housing includes a control circuit that controls the operation of the detection panel, a signal processing circuit that converts the signal charge of the pixel into a pixel value, and generates a radiographic image RI.
  • a communication unit that performs wired communication or wireless communication with the control device 51 (see FIG. 2), a battery that supplies electric power to each unit, and the like are also built-in.
  • the control circuit that controls the operation of the detection panel causes the detection panel to perform the storage operation of accumulating the signal charge in the pixel.
  • the control circuit causes the detection panel to perform a read operation of reading the accumulated signal charge from the pixel. As a result, the radiation image RI is output from the detection panel.
  • FIG. 1 illustrates a state in which a radiographic image RI of the chest of a patient P positioned in front of a standing imaging table 25S is radiographed.
  • the electronic cassette 26 is housed and used in the standing position photographing table 25S and the lying position photographing table 25L, and is also removed from the standing position photographing table 25S or the lying position photographing table 25L in the radiography room and held by the patient P. It may be used in a standing position or placed under a patient P lying on a bed in a hospital room.
  • the standing shooting table 25S has a stand 28, a connection portion 29, a holder 30, and the like.
  • the stand 28 is composed of a pedestal 31 installed on the floor of the radiography room and a support column 32 extending in the height direction from the pedestal 31.
  • the connection portion 29 connects the holder 30 to the stand 28.
  • the connection portion 29, and thus the holder 30, can be moved in the height direction with respect to the support column 32, and the height can be adjusted according to the height of the patient P or the imaging site.
  • the holder 30 has a box shape and houses the electronic cassette 26 inside.
  • the holder 30 is mostly made of a conductive material having electromagnetic wave shielding properties such as aluminum and stainless steel. Further, the holder 30 is formed of a material such as carbon whose front surface facing the radiation irradiation unit 10 transmits radiation R.
  • the recumbent imaging table 25L has a pedestal 33, a connection portion 34, a top plate 35, a holder 36, etc. installed on the floor of the radiography imaging room.
  • the connecting portion 34 connects the top plate 35 to the pedestal 33.
  • the pedestal 33 is an elevating type, whereby the height of the top plate 35 and the holder 36 can be adjusted.
  • the top plate 35 has a rectangular plate shape having a length and a width that allows the patient P to lie on his / her back, and is formed of a material that transmits radiation R such as carbon.
  • the holder 36 is arranged in the space between the pedestal 33 formed by the connecting portion 34 and the top plate 35.
  • the holder 36 has a box shape whose upper portion is covered with a top plate 35, and houses the electronic cassette 26 inside.
  • the holder 36 is made of a conductive material having electromagnetic wave shielding properties such as aluminum and stainless steel.
  • the holder 36 can be slidably moved in the direction along the long side direction of the top plate 35 by a slide mechanism (not shown).
  • An ultraviolet source 38 is attached to the outer surface of the irradiation field limiting device 12.
  • the ultraviolet source 38 irradiates the holder 30 of the standing position photographing table 25S and the top plate 35 of the lying position photographing table 25L with ultraviolet rays UV for sterilization.
  • an LED Light Emitting Diode
  • an LD Laser Diode
  • the central wavelength of ultraviolet UV is 200 nm or more and 280 nm or less, for example, 254 nm or 222 nm.
  • the intensity of ultraviolet UV is constant.
  • a camera 40 is attached to the ceiling 16.
  • the camera 40 captures almost the entire view of the radiation photographing room.
  • the camera 40 is provided to detect whether or not a person such as a patient P and an operator is present in the radiography room.
  • the radiation diagnostic device 2 includes a voltage generator 50, a control device 51, a console 52, and the like.
  • the voltage generator 50 generates a voltage applied to the radiation tube 13.
  • the voltage generator 50 and the radiation tube 13 are connected by a voltage cable. Through this voltage cable, the voltage generated in the voltage generator 50 is supplied to the radiation tube 13.
  • the radiation tube 13 is provided with, for example, a filament, a target, a grid electrode, and the like (all not shown).
  • a voltage from the voltage generator 50 is applied between the filament, which is the cathode, and the target, which is the anode.
  • the voltage applied between this filament and the target is called the tube voltage.
  • the filament emits thermions corresponding to the applied tube voltage toward the target.
  • the target emits radiation R by the collision of thermions from the filament.
  • the grid electrodes are located between the filament and the target.
  • the grid electrode changes the flow rate of thermions from the filament to the target according to the voltage applied from the voltage generator 50.
  • the flow rate of thermions from this filament to the target is called the tube current.
  • the control device 51 controls the operation of the radiation source 11 through the voltage generator 50.
  • the control device 51 acquires the irradiation conditions of the radiation R from the console 52 to the patient P.
  • the irradiation conditions are the tube voltage applied to the radiation tube 13, the tube current, and the irradiation time of the radiation R.
  • the tube current irradiation time product that is, the so-called mAs value may be used as the irradiation condition.
  • An instruction to start irradiation of radiation R to the patient P is input to the control device 51 by the operator through the irradiation switch 53.
  • the control device 51 operates the voltage generator 50 under the irradiation conditions acquired from the console 52, and emits the radiation R from the radiation tube 13.
  • the control device 51 also controls the operation of the electronic cassette 26.
  • the control device 51 causes the detection panel of the electronic cassette 26 to perform the storage operation in accordance with the timing of the start of irradiation of the radiation R by the radiation source 11, and the reading operation in accordance with the timing of the end of the irradiation of the radiation R by the radiation source 11. To the detection panel. Further, the control device 51 receives the radiographic image RI transmitted from the electronic cassette 26. The control device 51 transfers the radiographic image RI to the console 52.
  • the console 52 is, for example, a personal computer.
  • the shooting menu is input to the console 52 by the operator.
  • the console 52 transmits the irradiation conditions according to the input shooting menu to the control device 51. Further, the console 52 receives the radiographic image RI transferred from the control device 51, performs image processing on the received radiographic image RI, and displays the radiographic image RI after the image processing on the display 93 (see FIG. 5). ..
  • the console 52 is communicably connected to a radiological information system (RIS) via a network such as a LAN (Local Area Network).
  • RIS radiological information system
  • the console 52 receives a shooting order from RIS. In the radiography order, the specific contents of the radiological radiography performed on the patient P are described.
  • the console 52 is communicably connected to the image database server via the network.
  • the image database server is, for example, a PACS (Picture Archiving and Communication System) server, which receives a radiation image RI from the console 52 and stores and manages the received radiation image RI.
  • the control device 51 is connected to a moving mechanism 55 that moves the position of the radiation irradiation unit 10 in the radiography chamber.
  • the moving mechanism 55 includes the above-mentioned strut 15, the strut motor 19, the bogie 18, the bogie motor 20, the rotating portion 21, the rotating portion motor 22, and the position detecting unit 56.
  • the position detection unit 56 is, for example, a potentiometer provided on each of the support column 15, the carriage 18, and the rotating unit 21, and detects the position of the radiation irradiation unit 10 in the radiography chamber.
  • the positions of the irradiation unit 10 in the radiography chamber are, specifically, the height position changed by the support column 15 and the support column motor 19, the horizontal position changed by the trolley 18 and the trolley motor 20, and the rotating unit 21 and the rotating unit 21. It is a rotation position that is changed by the motor 22 for the rotating portion.
  • the control device 51 controls the operation of the moving mechanism 55 (post motor 19, carriage motor 20, and rotary unit motor 22) in response to an AP function execution instruction from the operator through the remote controller 57, thereby controlling the AP.
  • the AP function is a function of automatically moving the radiation irradiation unit 10 (radiation source 11) to a set position (see FIG. 6) corresponding to the standing position photographing table 25S and the lying position photographing table 25L. By this AP function, the ultraviolet source 38 is moved together with the radiation source 11.
  • the control device 51 also controls the operation of the ultraviolet source 38.
  • the control device 51 executes the AP function, the control device 51 causes the ultraviolet source 38 to irradiate the standing image pickup table 25S or the lying position image pickup table 25L with ultraviolet rays UV.
  • the camera 40 is also connected to the control device 51.
  • the control device 51 controls the operation of the moving mechanism 55 according to the captured image of the camera 40.
  • the irradiation field limiting device 12 is formed with an incident opening 60 in which the radiation R from the radiation tube 13 is incident and an exit opening 61 in which the radiation R is emitted.
  • four shielding plates 62 are provided in the vicinity of the emission opening 61.
  • the shielding plate 62 is made of a material that shields radiation R, for example, lead.
  • the shielding plate 62 is arranged on each side of the quadrangle, in other words, is assembled in a checkered pattern, and forms a quadrangular irradiation opening through which the radiation R is transmitted.
  • the irradiation field limiting device 12 changes the size of the irradiation aperture by changing the position of each shielding plate 62, thereby changing the irradiation field of the radiation R to the photographing table 25.
  • the irradiation field lamp 63 and the mirror 64 are provided in the irradiation field limiting device 12.
  • the irradiation field lamp 63 emits, for example, orange visible light L toward the mirror 64.
  • the irradiation field lamp 63 turns on and off in response to an instruction from the operator. Further, the irradiation field lamp 63 is automatically turned on for about several seconds immediately after the radiation irradiation unit 10 reaches the set position this time by the AP function described later.
  • the mirror 64 reflects visible light L.
  • the mirror 64 is formed by depositing an aluminum film on an acrylic plate, for example.
  • the visible light L reflected by the mirror 64 is emitted toward the photographing table 25 through the exit opening 61 as light representing the irradiation field.
  • the mirror 64 is retracted to a position away from the incident opening 60 and the exit opening 61 when the radiation R shown in FIG. 3 is irradiated.
  • a filter for changing the radiation quality of the radiation R may be provided in the irradiation field limiting device 12.
  • the control device 51 includes a storage 70 and a CPU (Central Processing Unit) 71.
  • the storage 70 is, for example, a hard disk drive or a solid state drive.
  • the operation program 72 and the set position information 73 are stored in the storage 70.
  • the CPU 71 cooperates with a memory or the like (not shown) to obtain an irradiation condition acquisition unit 75, a radiation source control unit 76, a cassette control unit 77, an image transfer unit 78, and an AP control unit 79.
  • the ultraviolet source control unit 80 includes a measurement unit 81.
  • the irradiation condition acquisition unit 75 acquires the irradiation condition transmitted from the console 52.
  • the irradiation condition acquisition unit 75 outputs the acquired irradiation condition to the radiation source control unit 76.
  • the radiation source control unit 76 controls the operation of the radiation source 11.
  • the radiation source control unit 76 sets the irradiation conditions from the irradiation condition acquisition unit 75 in the voltage generator 50.
  • the radiation source control unit 76 emits the radiation R from the radiation tube 13 under the set irradiation conditions.
  • the radiation source control unit 76 outputs an irradiation start notification signal for notifying the start of irradiation of radiation R and an irradiation end notification signal for notifying the end of irradiation of radiation R to the cassette control unit 77.
  • the cassette control unit 77 controls the operation of the electronic cassette 26.
  • the cassette control unit 77 causes the detection panel of the electronic cassette 26 to perform a storage operation in accordance with the irradiation start notification signal from the radiation source control unit 76. Further, the cassette control unit 77 causes the detection panel to perform a read operation in accordance with the irradiation end notification signal from the radiation source control unit 76. As a result, the cassette control unit 77 outputs the radiographic image RI from the detection panel. Further, the cassette control unit 77 receives the radiation image RI transmitted from the electronic cassette 26, and outputs the received radiation image RI to the image transfer unit 78. The image transfer unit 78 transfers the radiographic image RI from the cassette control unit 77 to the console 52.
  • An electronic cassette 26 that has a function of detecting the start and end of irradiation of the radiation R and that performs the storage operation and the reading operation by itself may be used.
  • a camera 40, a moving mechanism 55, and a remote controller 57 are connected to the AP control unit 79.
  • the AP control unit 79 detects whether or not a person is shown in the captured image of the camera 40 by using a well-known image recognition technique.
  • the AP control unit 79 reads the set position information 73 from the storage 70.
  • the AP control unit 79 controls the operation of the movement mechanism 55 in response to the AP function execution instruction from the remote controller 57, thereby providing an AP function for moving the radiation irradiation unit 10 to the set position registered in the set position information 73. Run.
  • the AP control unit 79 moves the radiation irradiation unit 10 to the home position defined in the radiation imaging room when there is time until the next radiography, or at the end of medical treatment.
  • the camera 40, the moving mechanism 55, the remote controller 57, and the AP control unit 79 constitute the AP device 85.
  • the ultraviolet source control unit 80 controls the operation of the ultraviolet source 38.
  • the ultraviolet source control unit 80 causes the ultraviolet source 38 to irradiate the photographing table 25 with ultraviolet UV when the AP control unit 79 executes the AP function.
  • the measuring unit 81 measures the elapsed time from the start of irradiation of the ultraviolet UV of the ultraviolet source 38.
  • the console 52 includes a storage 90, a CPU (Central Processing Unit) 91, an input device 92 such as a keyboard and a mouse, and a display 93.
  • the storage 90 is, for example, a hard disk drive or a solid state drive.
  • the operation program 94 and the irradiation condition table 95 are stored in the storage 90.
  • the CPU 91 When the operation program 94 is activated, the CPU 91 functions as a shooting menu reception unit 100, an irradiation condition setting unit 101, an image processing unit 102, and a display control unit 103 in cooperation with a memory or the like (not shown).
  • the display control unit 103 Prior to radiographic imaging, the display control unit 103 displays a list of imaging orders from RIS on the display 93. The operator browses the list of shooting orders and confirms the contents. The display control unit 103 displays, together with the shooting order, a plurality of types of shooting menus prepared in advance on the display 93 in a form that can be selectively selected. By operating the input device 92, the operator selects and inputs a shooting menu that matches the contents of the shooting order. As a result, the shooting menu is accepted by the shooting menu reception unit 100. The shooting menu reception unit 100 outputs the received shooting menu to the irradiation condition setting unit 101. Further, the shooting menu reception unit 100 outputs the received shooting menu to the AP control unit 79 of the control device 51.
  • the irradiation condition setting unit 101 reads out the irradiation conditions according to the shooting menu from the irradiation condition table 95, and transmits the read irradiation conditions to the control device 51.
  • the irradiation condition table 95 is a table in which irradiation conditions are registered for each shooting menu.
  • the imaging menu is a combination of imaging sites such as the chest and abdomen, imaging postures such as standing and lying down, and imaging orientations such as front and back (see FIG. 6).
  • the irradiation condition can be modified via the input device 92 before being transmitted to the control device 51.
  • the image processing unit 102 performs various image processing on the radiation image RI from the control device 51.
  • the image processing unit 102 performs, for example, offset correction processing, sensitivity correction processing, defect pixel correction processing, and the like as image processing.
  • the offset correction process is a process of subtracting the offset correction image output in a state where the radiation R is not irradiated from the radiation image RI in pixel units. By performing this offset correction processing, the image processing unit 102 removes fixed pattern noise caused by dark charges and the like from the radiation image RI.
  • the sensitivity correction process is a process for correcting variations in the sensitivity of each pixel of the detection panel of the electronic cassette 26, variations in the output characteristics of the circuit that reads out the signal charge, and the like, based on the sensitivity correction data.
  • the defective pixel correction process is a process of linearly interpolating the pixel values of defective pixels with the pixel values of surrounding normal pixels based on the information of defective pixels having abnormal pixel values, which is generated at the time of shipment or periodic inspection.
  • the image processing unit 102 outputs the radiation image RI that has undergone such various image processing to the display control unit 103.
  • the display control unit 103 displays the radiation image RI from the image processing unit 102 on the display 93.
  • the set position is registered in the set position information 73 for each shooting menu.
  • the set positions are the height position, the horizontal position, and the rotation position of the radiation irradiation unit 10 in the radiation photographing room.
  • the height position is represented by the length of the support column 15 and the carriage 18, in other words, the distance from the ceiling 16 to the irradiation unit 10.
  • the horizontal position is represented by the XY coordinates of the distance from the reference point (for example, the home position) of the radiography room.
  • the rotation position is represented by the angle of the radiation irradiation unit 10.
  • the angle of the irradiation unit 10 is 0 ° toward the standing image pickup table 25S shown by the solid line in FIG. 1, and 90 ° toward the lying position image pickup table 25L shown by the broken line in FIG.
  • the set position is the distance from the point (focus) where the radiation R is emitted at the target of the radiation tube 13 to the surface of the detection panel of the electronic cassette 26 housed in the photographing table 25, that is, the SID (Source to Image receptor Distance). It is the corresponding position.
  • the SID is set to a value predetermined by the shooting menu, for example, 100 cm when the shooting menu is "chest standing front” and 180 cm when the shooting menu is "lower limb standing front".
  • the AP control unit 79 executes the AP function when the remote controller 57 is operated by the operator and an AP function execution instruction is input from the remote controller 57. More specifically, the AP control unit 79 moves the radiation irradiation unit 10 from the setting position corresponding to the imaging menu of the previous radiography to the setting position corresponding to the imaging menu of the current radiography.
  • the ultraviolet source control unit 80 causes the ultraviolet source 38 to irradiate ultraviolet UV immediately after the radiation irradiation unit 10 moves to a set position corresponding to the photographing menu of the current radiography by the AP function. As a result, the photographing table 25 used for the current radiography is sterilized by ultraviolet UV.
  • the ultraviolet source control unit 80 stops the irradiation of the ultraviolet source 38 with ultraviolet UV.
  • the first set time TS1 varies depending on the intensity of ultraviolet UV rays, the type of bacteria and / or virus to be sterilized, and the like, but is generally several seconds to several tens of minutes.
  • the new coronavirus (SARS (Severe Acute Respiratory Syndrome) -CoV (Coronavirus) -2) is inactivated by irradiation with ultraviolet UV rays for several seconds. More specifically, it has been reported that 99.7% of UV rays with a center wavelength of 222 nm and an intensity of 1 W / m 2 are inactivated by irradiation for 30 seconds (https://xtech.nikkei.com/atcl/). nxt / news / 18/08672 /). It is also reported that 99.9% of UV rays with a central wavelength of 254 nm are inactivated in 10 to 15 seconds (https://robotstart.info/2020/1510/uvbuster-covid19.html). ).
  • SARS severe Acute Respiratory Syndrome
  • -CoV Coronavirus
  • the operator waits for the first set time TS1 to elapse and the irradiation of ultraviolet UV rays is stopped, then operates the irradiation switch 53 to input an instruction to start irradiation of radiation R to the patient P.
  • the radiation source control unit 76 emits radiation R from the radiation tube 13. That is, the ultraviolet source control unit 80 causes the ultraviolet source 38 to irradiate the ultraviolet UV before the radiation irradiation unit 10 is moved to the set position by the AP function and the radiation R is emitted from the radiation source 11.
  • the AP control unit 79 stops the AP function when a person appears in the captured image of the camera 40 while the AP function is being executed.
  • the AP control unit 79 stops the AP function while a person is shown in the captured image.
  • the AP control unit 79 resumes execution of the AP function when a person does not appear in the captured image.
  • the AP control unit 79 starts executing the AP function, if a person is shown in the captured image of the camera 40, the AP control unit 79 does not execute the AP function. That is, the camera 40 is provided in the AP device 85 in order not to execute the AP function in an environment where there are people.
  • "a person is shown” includes not only the case where the whole human body is shown but also the case where a part of the human body is shown.
  • the ultraviolet source control unit 80 takes the ultraviolet source 38 as an example.
  • the irradiation of ultraviolet rays and UV rays is stopped.
  • the ultraviolet source control unit 80 stops the irradiation of ultraviolet UV while a person is shown in the captured image.
  • the ultraviolet source control unit 80 restarts the irradiation of ultraviolet UV when a person does not appear in the captured image.
  • the ultraviolet source control unit 80 moves the ultraviolet source control unit 80 to a set position corresponding to the photographing menu of the current radiography by the AP function, and when the ultraviolet source 38 is started to irradiate the ultraviolet UV, the camera 40.
  • a signal is output to the ultraviolet source 38 not to instruct the ultraviolet source 38 to irradiate the ultraviolet UV or to prohibit the ultraviolet source 38 from irradiating the ultraviolet UV. That is, the camera 40 is diverted so as not to irradiate the ultraviolet UV in the environment where there is a person.
  • the operation program 72 when the operation program 72 is activated, the CPU 71 of the control device 51 starts the irradiation condition acquisition unit 75, the radiation source control unit 76, the cassette control unit 77, the image transfer unit 78, and the AP control unit 79. , And functions as an ultraviolet source control unit 80.
  • the ultraviolet source control unit 80 includes a measurement unit 81.
  • the CPU 91 of the console 52 When the operation program 94 is activated, the CPU 91 of the console 52 functions as a shooting menu reception unit 100, an irradiation condition setting unit 101, an image processing unit 102, and a display control unit 103.
  • the procedure for radiography by the radiodiagnosis device 2 starts from the radiography preparation work.
  • the shooting preparation work is a work performed by the operator.
  • the imaging preparation work is a work of setting irradiation conditions and a work of positioning the patient P and the like.
  • the operator operates the irradiation switch 53 to give an instruction to start irradiation of the radiation R.
  • the operator inputs the shooting menu according to the shooting order from the RIS by operating the input device 92 as the work of setting the irradiation conditions.
  • the shooting menu is accepted by the shooting menu reception unit 100.
  • the irradiation conditions corresponding to the shooting menu received by the shooting menu reception unit 100 are read out from the irradiation condition table 95 by the irradiation condition setting unit 101.
  • the irradiation condition is transmitted from the irradiation condition setting unit 101 to the control device 51.
  • the operator operates the remote controller 57 after inputting the shooting menu.
  • the remote controller 57 issues an AP function execution instruction.
  • the AP function execution instruction is received by the AP control unit 79 (YES in step ST100).
  • the operation of the support motor 19, the bogie motor 20, and the rotary unit motor 22 of the moving mechanism 55 is controlled by the AP control unit 79, and as shown in FIG. 7, the current set position is changed from the previous set position.
  • the AP function of moving the radiation irradiation unit 10 to is executed (step ST110). In other words, the radiation irradiation unit 10 is moved from the previous set position to the current set position.
  • the AP control unit 79 stops the AP function (step ST130). In other words, the movement of the radiation irradiation unit 10 is stopped.
  • the radiography room is photographed by the camera 40 provided on the ceiling 16.
  • the AP function is activated by the AP control unit 79 as shown in FIG. It is stopped (step ST150).
  • the AP function continues to be stopped while a person is shown in the captured image (YES in step ST160).
  • the AP control unit 79 resumes execution of the AP function (step ST110). If a person is shown in the captured image of the camera 40 when the execution of the AP function is started, the AP function is not executed.
  • step ST200 when the irradiation unit 10 reaches the set position this time by executing the AP function (YES in step ST200), as shown in FIG. 7, the control of the ultraviolet source control unit 80 is performed. Underneath, irradiation of ultraviolet UV by the ultraviolet source 38 is performed (step ST210).
  • the measuring unit 81 measures the elapsed time from the start of UV irradiation (step ST220). When the elapsed time reaches the first set time TS1 (YES in step ST230), the irradiation of ultraviolet UV rays by the ultraviolet source 38 is stopped under the control of the ultraviolet source control unit 80 (step ST240).
  • step ST230 When a person appears in the image taken by the camera 40 while the ultraviolet UV is being irradiated (NO in step ST230, YES in step ST250), as shown in FIG. 9, the control of the ultraviolet source control unit 80 is performed. Below, the irradiation of ultraviolet UV rays by the ultraviolet source 38 is stopped (step ST260). Irradiation of ultraviolet UV continues to be stopped while a person is shown in the captured image (YES in step ST270). When a person disappears from the captured image (NO in step ST270), the irradiation of ultraviolet UV rays by the ultraviolet source 38 is resumed under the control of the ultraviolet source control unit 80 (step ST210).
  • the AP function moves the radiation irradiation unit 10 to the setting position corresponding to the shooting menu of the current radiation photography, and when the ultraviolet source 38 is started to irradiate the ultraviolet UV, a person is shown in the image taken by the camera 40. If this is the case, the ultraviolet UV source 38 does not irradiate the ultraviolet UV.
  • the operator After the first set time TS1 elapses and the irradiation of ultraviolet UV rays is stopped, the operator causes the patient P to enter the radiography room, stands the patient P in front of the standing image pickup table 25S, or causes the patient P to stand in front of the standing image pickup table 25S.
  • Patient P may be laid on the top plate 35 of 25 L. Further, the position of the holder 30 or the holder 36 is adjusted to perform positioning.
  • the irradiation condition acquisition unit 75 acquires the irradiation condition from the console 52.
  • the irradiation conditions are output from the irradiation condition acquisition unit 75 to the radiation source control unit 76, and are set in the voltage generator 50 by the radiation source control unit 76.
  • the radiation R is irradiated from the radiation tube 13 toward the patient P under the control of the radiation source control unit 76.
  • the radiographic image RI is output from the electronic cassette 26 under the control of the cassette control unit 77.
  • the radiation image RI is output from the electronic cassette 26 to the cassette control unit 77, and further output from the cassette control unit 77 to the image transfer unit 78.
  • the radiographic image RI is transferred to the console 52 by the image transfer unit 78.
  • various image processes are applied to the radiation image RI by the image processing unit 102.
  • the radiation image RI subjected to various image processing is output from the image processing unit 102 to the display control unit 103. Then, under the control of the display control unit 103, it is displayed on the display 93 and is used for viewing by the operator.
  • the radiation diagnostic apparatus 2 controls the operations of one radiation source 11 that emits radiation R, a moving mechanism 55 that moves the position of the radiation source 11 in the radiography chamber, and a moving mechanism 55.
  • the AP device 85 including the AP control unit 79 that executes the AP function that automatically moves the radiation source 11 to the set position corresponding to the photographing table 25 installed in the radiation photographing room, and the ultraviolet rays that emit ultraviolet rays UV.
  • the source 38 is an ultraviolet source 38 that is moved together with the radiation source 11 by the moving mechanism 55, and an ultraviolet source control unit 80 that causes the ultraviolet source 38 to irradiate the photographing table 25 with ultraviolet UV when the AP function is executed. And prepare. Therefore, it is possible to sterilize the photographing table 25 more efficiently than in the case of irradiating ultraviolet rays UV without interlocking with the AP function.
  • the ultraviolet source control unit 80 causes the ultraviolet source 38 to irradiate the ultraviolet UV before the radiation source 11 is moved to the set position by the AP function and the radiation R is emitted from the radiation source 11. Therefore, it is possible to reliably sterilize the photographing table 25 used for radiography from now on by ultraviolet rays and UV rays. The risk of infection by bacteria and / or viruses attached to the imaging table 25 by contact with patient P can be greatly reduced.
  • the ultraviolet source control unit 80 stops the irradiation of the ultraviolet source 38 with ultraviolet UV. Therefore, it is possible to prevent a person from being irradiated with ultraviolet UV rays.
  • the camera 40 is provided in the AP device 85 so that the AP function is not executed in an environment where there are people. Then, the camera 40 is diverted so as not to irradiate the ultraviolet UV in an environment where there is a person. Therefore, existing equipment can be utilized, and an increase in equipment cost can be suppressed.
  • the ultraviolet source control unit 80 causes the ultraviolet source 38 to irradiate ultraviolet UV when the AP control unit 79 executes the AP function in response to an instruction from the operator.
  • the operator instructs the execution of the AP function at the timing when radiography is about to be performed. Therefore, sterilization by ultraviolet UV can be performed at an appropriate timing.
  • the ultraviolet source 38 is provided on the outer surface of the irradiation field limiting device 12. Therefore, the photographing table 25 can be efficiently irradiated with ultraviolet UV rays.
  • the location where the ultraviolet source 38 is provided is not limited to the outer surface of the irradiation field limiting device 12.
  • the ultraviolet source 38 may be provided inside the irradiation field limiting device 12. More specifically, the ultraviolet source 38 is provided along with the irradiation field lamp 63.
  • the ultraviolet UV emitted from the ultraviolet source 38 is reflected by the mirror 64 and is irradiated toward the photographing table 25 through the exit opening 61, similarly to the visible light L emitted from the irradiation field lamp 63.
  • the shielding plate 62 is moved to a position where the size of the irradiation opening is maximized so that the irradiation range of ultraviolet rays UV is maximized.
  • the ultraviolet source 38 is provided inside the irradiation field limiting device 12, the patient P and the operator will not be touched, so that there is no risk of collision and damage. Further, if the ultraviolet source 38 is provided alongside the irradiation field lamp 63, the ultraviolet UV can be irradiated by using the same mechanism as the visible light L from the irradiation field lamp 63. However, since it is necessary to move the shielding plate 62 to the position where the size of the irradiation opening is maximized, it is preferable to provide the ultraviolet source 38 on the outer surface of the irradiation field limiting device 12 in that such control is not necessary. ..
  • the location where the ultraviolet source 38 is installed is not limited to the outer surface or the inside of the irradiation field limiting device 12, and the number of installed ultraviolet sources 38 is not limited to one.
  • it may be provided on the outer surface of the radiation source 11 or may be provided on the support column 15. In short, any place can be used as long as it can irradiate the photographing table 25 with ultraviolet rays and UV rays.
  • the ultraviolet source 38 may be provided with a swing function to cover a wide irradiation range with one unit.
  • the motion detection sensor 110 may detect whether or not there is a person in the radiography imaging room.
  • the moving object detection sensor 110 is a sensor that detects a moving object by utilizing a change in infrared rays, a change in reflected ultrasonic waves, shading of visible light, or the like, and is generally called a motion sensor.
  • the motion detection sensor 110 is mounted on the ceiling 16, for example, and constitutes the AP device 112 together with the AP control unit 79 and the like.
  • the moving object detection sensor 110 detects a moving object in the radiography chamber. When the moving object detection sensor 110 detects a moving object, it outputs a signal to that effect to the AP control unit 79.
  • the AP control unit 79 stops the AP function when the moving object detection sensor 110 detects a moving object while the AP function is being executed.
  • the AP control unit 79 stops the AP function while the motion detection sensor 110 detects the motion object.
  • the AP control unit 79 resumes the execution of the AP function. Further, if the moving object detection sensor 110 detects a moving object when starting the execution of the AP function, the AP control unit 79 does not execute the AP function.
  • the ultraviolet source control unit 80 causes the ultraviolet source 38 to detect the moving object.
  • Ultraviolet UV irradiation is stopped.
  • the ultraviolet source control unit 80 stops the irradiation of ultraviolet UV while the moving object detection sensor 110 detects the moving object.
  • the ultraviolet source control unit 80 restarts the irradiation of the ultraviolet UV.
  • the ultraviolet source control unit 80 is a moving object detection sensor when the irradiation unit 10 is moved to a set position corresponding to the photographing menu of the current radiography by the AP function and the ultraviolet source 38 is started to be irradiated with ultraviolet UV.
  • the 110 detects a moving object, it outputs a signal that does not instruct the ultraviolet source 38 to irradiate the ultraviolet UV or prohibits the ultraviolet source 38 from irradiating the ultraviolet UV.
  • the ultraviolet source control unit 80 stops the irradiation of the ultraviolet source 38 with the ultraviolet UV when the moving object detection sensor 110 detects the moving object. Therefore, as in the case of using the camera 40, it is possible to prevent a person from being irradiated with ultraviolet UV rays.
  • the motion detection sensor 110 is provided in the AP device 112 in order not to execute the AP function in an environment where a person is present. Then, the motion detection sensor 110 is diverted so as not to irradiate the ultraviolet UV in an environment where there is a person. Therefore, as in the case of using the camera 40, the existing equipment can be utilized, and the increase in the equipment cost can be suppressed. Further, the motion detection sensor 110 is cheaper than the camera 40, and moreover, according to the motion detection sensor 110, it is not necessary to analyze the captured image to detect whether or not a person is photographed as in the camera 40.
  • the following mode is performed. It may be carried out.
  • the ultraviolet source control unit 80 irradiates the ultraviolet source 38 with ultraviolet UV before the radiation R is emitted from the radiation source 11 and the irradiation unit 10 moves to the set position by the AP function. To do. Specifically, the ultraviolet source control unit 80 irradiates the ultraviolet source 38 with ultraviolet UV after the radiation R is emitted from the radiation source 11 in the previous radiography and the preset second set time TS2 has elapsed. To start. Then, the ultraviolet source 38 is irradiated with ultraviolet UV during the preset third set time TS3. The operator waits for the third set time TS3 to elapse and the irradiation of ultraviolet UV rays is stopped, then operates the remote controller 57 to input the AP function execution instruction related to the current radiography.
  • the average time (for example, 3 minutes) required from the end of the previous radiography to the patient P leaving the radiography room is set.
  • the third set time TS3 like the first set time TS1, is set to a sufficient time to kill bacteria and / or viruses.
  • the ultraviolet source control unit 80 may cause the ultraviolet source 38 to irradiate the ultraviolet UV before the radiation R is emitted from the radiation source 11 and the radiation irradiation unit 10 moves to the set position by the AP function. good. By doing so, it is possible to sterilize the imaging table 25 to which bacteria and / or viruses may have adhered, which was used in the previous radiography, by ultraviolet UV. The risk of infection by bacteria and / or viruses can be further reduced.
  • the radiation R is emitted from the radiation source 11 in the previous radiography, and after the second set time TS2 has elapsed, the ultraviolet source 38 is started to be irradiated with ultraviolet UV, but the present invention is not limited to this.
  • the ultraviolet source 38 may be started to irradiate the ultraviolet UV.
  • the ultraviolet source control unit 80 causes the ultraviolet source 38 to irradiate ultraviolet UV while the radiation irradiation unit 10 is moving to a set position by the AP function. Specifically, the ultraviolet source control unit 80 causes the ultraviolet source 38 to start irradiation with ultraviolet UV when an AP function execution instruction is input from the remote controller 57. Then, while the AP function is being executed, the irradiation of ultraviolet UV is continued. Further, in the ultraviolet source control unit 80, the irradiation time of the ultraviolet UV after the irradiation unit 10 is moved to the set position this time by the AP function reaches the first set time TS1 as in the example shown in FIG. If so, the ultraviolet source 38 is stopped from irradiating with ultraviolet UV.
  • the ultraviolet source control unit 80 may cause the ultraviolet source 38 to irradiate the ultraviolet UV while the radiation irradiation unit 10 is moving to the set position by the AP function.
  • the ultraviolet source 38 may cause the ultraviolet source 38 to irradiate the ultraviolet UV while the radiation irradiation unit 10 is moving to the set position by the AP function.
  • the floor surface and the like can also be sterilized by ultraviolet rays and UV rays. The risk of infection by bacteria and / or viruses can be further reduced.
  • FIG. 18 shows an embodiment shown in FIG. 16 in which the ultraviolet source 38 is irradiated with ultraviolet UV before the radiation R is emitted from the radiation source 11 and the irradiation unit 10 is moved to the set position by the AP function.
  • FIG. 17 shows an example in which the ultraviolet source 38 is irradiated with ultraviolet UV while the irradiation unit 10 is being moved to the set position by the AP function.
  • the AP control unit 79 does not execute the AP function when a person is photographed in the captured image of the camera 40 or when the motion detection sensor 110 detects a motion object.
  • the ultraviolet source control unit 80 does not instruct the ultraviolet source 38 to irradiate ultraviolet UV when a person is photographed in the image taken by the camera 40 or when the moving object detection sensor 110 detects a moving object, or the ultraviolet source 38 does not instruct the ultraviolet source 38 to irradiate the ultraviolet UV.
  • the ultraviolet source control unit 80 has the same patient P for the previous radiography and the current radiography, and is used in the previous radiography and the current radiography.
  • a signal is output to the ultraviolet source 38 not to instruct the ultraviolet source 38 to irradiate the ultraviolet UV or to prohibit the irradiation of the ultraviolet UV to the ultraviolet source 38 before the current radiography.
  • the patient ID (Identification Data) of the patient P of the previous radiography and the current radiography is the same as “P0001”, and the shooting postures of the shooting menus of the previous radiography and the current radiography are “P0001”.
  • Standing the case where the standing shooting table 25S is used is illustrated.
  • the imaging table 25 used in the previous radiography and this radiography is the same, it is due to bacteria and / or virus from another patient P. There is no risk of infection.
  • the irradiation of the ultraviolet UV by the ultraviolet source 38 is not performed before the current radiography, the irradiation of the meaningless ultraviolet UV can be avoided. It is possible to save the time and power consumption required for irradiation with ultraviolet rays and UV rays.
  • the sterilizing ability of ultraviolet UV is changed according to the distance between the radiation source 11 and the photographing table 25.
  • the distance between the radiation source 11 and the photographing table 25 is specifically SID.
  • the ultraviolet source control unit 80 changes the sterilizing ability of the ultraviolet UV according to the SID by changing the intensity and the irradiation time of the ultraviolet UV. More specifically, the ultraviolet source control unit 80 increases the intensity of the ultraviolet UV and lengthens the irradiation time as the SID becomes longer. For example, when the SID is 80 cm, the intensity of ultraviolet UV is 15 W / m 2 , and the irradiation time is 3 minutes. On the other hand, when the SID is 180 cm, the intensity of ultraviolet UV is 40 W / m 2 and the irradiation time is 8 minutes.
  • the irradiation time is a time set as the first set time TS1 or the third set time TS3. The intensity of the ultraviolet UV is changed by increasing or decreasing the voltage applied to the ultraviolet source 38 and / or the applied current.
  • the ultraviolet source control unit 80 changes the sterilizing ability of ultraviolet UV according to the distance between the radiation source 11 and the photographing table 25. Specifically, the ultraviolet source control unit 80 changes the sterilizing ability of ultraviolet UV by changing the intensity and irradiation time of ultraviolet UV. Therefore, sterilization can be performed according to the distance between the radiation source 11 and the photographing table 25.
  • the intensity and the irradiation time of the ultraviolet UV may be changed.
  • ultraviolet UV having a center wavelength of 254 nm which has a relatively high sterilizing ability, is irradiated, and when the distance between the radiation source 11 and the photographing table 25 is short, the sterilizing ability is high.
  • the bactericidal ability of the ultraviolet UV may be changed by changing the wavelength of the ultraviolet UV, such as irradiating the ultraviolet UV with a relatively low center wavelength of 222 nm.
  • the set time information 120 is input to the AP control unit 79 of the fourth embodiment.
  • the set time information 120 is stored in the storage 70.
  • a preset set time is registered in the set time information 120.
  • the set time is a time at which the AP control unit 79 automatically executes the AP function without waiting for an instruction from the operator.
  • the set time is set by the operator, the administrator of the medical facility, or the like.
  • the AP control unit 79 executes the AP function at the set time registered in the set time information 120.
  • the morning medical treatment start time “09:00”, the afternoon medical treatment start time “13:00”, and the afternoon medical treatment end time “17:00” of the medical facility are set as set times. An example is shown.
  • the AP control unit 79 arranges the radiation irradiation unit 10 at a set time, for example, from a home position determined in the radiation imaging room to a position facing the holder 30 of the standing imaging table 25S. Move it. Then, the AP control unit 79 moves the radiation irradiation unit 10 to a position facing the top plate 35 of the recumbent imaging table 25L, and finally returns it to the original home position.
  • the ultraviolet source control unit 80 causes the ultraviolet source 38 to irradiate the ultraviolet UV when the AP control unit 79 executes the AP function at the set time.
  • the ultraviolet source control unit 80 causes the ultraviolet source 38 to irradiate the ultraviolet UV when the AP control unit 79 executes the AP function at a preset time. Therefore, sterilization can be performed at a time when sterilization is particularly necessary, such as a medical treatment start time.
  • Ultraviolet UV with a central wavelength of 222 nm has an effect on the human body as compared with ultraviolet UV having a central wavelength of 254 nm, as described in paragraphs [0028] to [0031] of Japanese Patent No. 6306097 and FIGS. 7 and 8. Less is. Therefore, when irradiating ultraviolet UV with a central wavelength of 222 nm, it is not necessary to dare to stop the irradiation of ultraviolet UV to the ultraviolet source 38 even when a person enters the radiography room.
  • a switch for turning on / off the power of the ultraviolet source 38 may be provided, and the ultraviolet source 38 may be irradiated with ultraviolet UV by a manual operation of the operator.
  • the ultraviolet source 38 may be continuously irradiated with ultraviolet UV, or may be irradiated with ultraviolet UV in a pulse shape.
  • the intensity of the third embodiment is changed by changing the duty ratio of the pulse.
  • the standing shooting table 25S and the lying position shooting table 25L are exemplified, but the present invention is not limited to this. It suffices that at least one of the standing position photographing table 25S and the lying position photographing table 25L is provided.
  • an AP function execution instruction may be issued to the AP control unit 79 at the same time.
  • the entire surface of the holder 30 of the standing imaging table 25S is irradiated with ultraviolet UV rays, and when the imaging site is one ankle, only the central portion of the holder 30 is irradiated with ultraviolet UV rays.
  • the irradiation range of ultraviolet UV may be changed according to the above.
  • a CR (Computed Radiography) cassette in which the imaging plate is housed in a portable housing may be used.
  • the so-called ceiling suspension type in which the radiation irradiation unit 10 is suspended from the ceiling 16 of the radiation imaging room by the support column 15 is exemplified, but the present invention is not limited to this.
  • a method may be used in which a rail is laid around the floor surface of the radiation photographing room and the radiation irradiation unit 10 is attached to the tip of a column extending in the height direction from the floor surface.
  • the irradiation condition acquisition unit 75, the radiation source control unit 76, the cassette control unit 77, the image transfer unit 78, the AP control unit 79, the ultraviolet source control unit 80, the measurement unit 81, and the shooting menu reception unit 100 As the hardware structure of the processing unit (Processing Unit) that executes various processes such as the irradiation condition setting unit 101, the image processing unit 102, and the display control unit 103, the following various processors are used. be able to. As described above, various processors include FPGAs (Field Programmable Gate Array) in addition to CPUs 71 and 91, which are general-purpose processors that execute software (operation programs 72 and 94) and function as various processing units.
  • FPGAs Field Programmable Gate Array
  • PLD programmable logic device
  • ASIC Application Specific Integrated Circuit
  • One processing unit may be composed of one of these various processors, or may be a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs and / or a CPU). It may be configured in combination with FPGA). Further, a plurality of processing units may be configured by one processor.
  • one processor is configured by a combination of one or more CPUs and software, as represented by a computer such as a client and a server.
  • the processor functions as a plurality of processing units.
  • SoC System On Chip
  • SoC system On Chip
  • the various processing units are configured by using one or more of the above-mentioned various processors as a hardware-like structure.
  • an electric circuit in which circuit elements such as semiconductor elements are combined can be used.
  • a and / or B is synonymous with "at least one of A and B". That is, “A and / or B” means that it may be A alone, B alone, or a combination of A and B. Further, in the present specification, when three or more matters are connected and expressed by "and / or", the same concept as “A and / or B" is applied.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

放射線を出射する1台の放射線源と、放射線撮影室内において放射線源の位置を移動させる移動機構、および移動機構の動作を制御することで、放射線撮影室に設置された撮影台に対応した設定位置に放射線源を自動的に移動させるオートポジショニング機能を実行するオートポジショニング制御部を含むオートポジショニング装置と、紫外線を出射する紫外線源であり、移動機構によって放射線源とともに移動される紫外線源と、オートポジショニング機能を実行する場合に、撮影台への紫外線の照射を紫外線源に行わせる紫外線源制御部と、を備える放射線診断装置。

Description

放射線診断装置、放射線診断装置の作動方法
 本開示の技術は、放射線診断装置、放射線診断装置の作動方法に関する。
 患者に放射線を照射して放射線画像を得る放射線診断装置が知られている。放射線診断装置には、放射線撮影室に設置される据え置き型と、走行用の車輪により医療施設内を移動可能な移動型とがある。据え置き型の放射線診断装置は、例えば、放射線を出射する1台の放射線源と、放射線撮影室内において放射線源の位置を移動させる移動機構とを備えている。放射線源は、移動機構によって、例えば、立位撮影台に対応する位置と臥位撮影台に対応する位置との間で移動可能である。
 特開2020-110234号公報には、据え置き型の放射線診断装置において、移動機構の動作を制御することで、立位撮影台に対応した設定位置および臥位撮影台に対応した設定位置のうちのいずれかに放射線源を自動的に移動させるオートポジショニング(以下、AP(Auto Positioning)と略す)装置が記載されている。AP装置によれば、放射線源を手動で移動させる手間を省くことができる。
 ところで、立位撮影台および臥位撮影台といった撮影台は、患者との接触によって細菌および/またはウイルスが付着し、汚染されるおそれがある。このため、撮影台を殺菌することが好ましい。しかしながら、効率的に殺菌を行わないと、放射線診断装置の稼働率が低下し、患者を長時間待たせる等の問題が生じるおそれがある。このため、撮影台を効率的に殺菌する技術が要望されていた。
 本開示の技術に係る1つの実施形態は、撮影台を効率的に殺菌することが可能な放射線診断装置、放射線診断装置の作動方法を提供する。
 本開示の放射線診断装置は、放射線を出射する1台の放射線源と、放射線撮影室内において放射線源の位置を移動させる移動機構、および移動機構の動作を制御することで、放射線撮影室に設置された撮影台に対応した設定位置に放射線源を自動的に移動させるオートポジショニング機能を実行するオートポジショニング制御部を含むオートポジショニング装置と、紫外線を出射する紫外線源であり、移動機構によって放射線源とともに移動される紫外線源と、オートポジショニング機能を実行する場合に、撮影台への紫外線の照射を紫外線源に行わせる紫外線源制御部と、を備える。
 紫外線源制御部は、オートポジショニング機能により放射線源が設定位置に移動し、放射線源から放射線が出射される前に、紫外線源に照射を行わせることが好ましい。
 紫外線源制御部は、放射線源から放射線が出射され、オートポジショニング機能により放射線源が設定位置に移動する前、およびオートポジショニング機能により放射線源が設定位置に移動する最中のうちの少なくともいずれか1つの場合に、紫外線源に照射を行わせることが好ましい。
 紫外線源制御部は、前回の放射線撮影と今回の放射線撮影の患者が同じで、かつ前回の放射線撮影と今回の放射線撮影で使用する撮影台が同じ場合、今回の放射線撮影の前に紫外線源による照射を行わないことが好ましい。
 紫外線源制御部は、放射線源と撮影台との距離に応じて、紫外線の殺菌能力を変更することが好ましい。この場合、紫外線源制御部は、紫外線の強度および照射時間のうちの少なくとも1つを変更することで、殺菌能力を変更することが好ましい。
 カメラまたは動体検知センサを備え、紫外線源制御部は、カメラの撮影画像に人が写った場合、または、動体検知センサが動体を検知した場合、紫外線源による照射を行わないことが好ましい。
 オートポジショニング装置は、人がいる環境下でオートポジショニング機能を実行させないために設けられたカメラまたは動体検知センサを含み、オートポジショニング装置に含まれるカメラまたは動体検知センサが流用されることが好ましい。
 紫外線源制御部は、オペレータからの指示に応じてオートポジショニング制御部がオートポジショニング機能を実行する場合に、紫外線源に照射を行わせることが好ましい。
 紫外線源制御部は、予め設定された設定時刻にオートポジショニング制御部がオートポジショニング機能を実行する場合に、紫外線源に照射を行わせることが好ましい。
 放射線源には、放射線の照射野を規定する照射野限定器が取り付けられており、紫外線源は照射野限定器に設けられていることが好ましい。
 本開示の放射線診断装置の作動方法は、放射線を出射する1台の放射線源と、放射線撮影室内において放射線の位置を移動させる移動機構を含むオートポジショニング装置とを備える放射線診断装置の作動方法であって、移動機構の動作を制御することで、放射線撮影室に設置された撮影台に対応した設定位置に放射線源を自動的に移動させるオートポジショニング機能を実行すること、および、オートポジショニング機能を実行する場合に、撮影台への紫外線の照射を、移動機構によって放射線源とともに移動される紫外線源に行わせること、を含む。
 本開示の技術によれば、撮影台を効率的に殺菌することが可能な放射線診断装置、放射線診断装置の作動方法を提供することができる。
放射線診断装置を示す図である。 放射線診断装置の制御装置を中心としたブロック図である。 照射野限定器で放射線の照射野を規定している様子を示す図である。 照射野ランプから照射野を表す可視光を照射している様子を示す図である。 制御装置およびコンソールのCPUの処理部を示すブロック図である。 設定位置情報を示す図である。 AP機能により放射線照射部が設定位置に移動し、放射線源から放射線が出射される前に、紫外線源に紫外線の照射を行わせる態様を示す図である。 AP機能を実行している最中に、カメラの撮影画像に人が写った場合、AP機能を停止させる態様を示す図である。 紫外線源に紫外線の照射を行わせている最中に、カメラの撮影画像に人が写った場合、紫外線源に紫外線の照射を停止させる態様を示す図である。 制御装置の処理手順を示すフローチャートである。 制御装置の処理手順を示すフローチャートである。 照射野限定器の内部に紫外線源を設けた態様を示す図である。 動体検知センサによって放射線撮影室に人がいるか否かを検知する態様を示す図である。 AP機能を実行している最中に、動体検知センサが動体を検知した場合、AP機能を停止させる態様を示す図である。 紫外線源に紫外線の照射を行わせている最中に、動体検知センサが動体を検知した場合、紫外線源に紫外線の照射を停止させる態様を示す図である。 放射線源から放射線が出射され、AP機能により放射線照射部が設定位置に移動する前に、紫外線源に紫外線の照射を行わせる態様を示す図である。 AP機能により放射線照射部が設定位置に移動する最中に、紫外線源に紫外線の照射を行わせる態様を示す図である。 図16で示した態様と図17で示した態様とを複合して実施した例を示す図である。 前回の放射線撮影と今回の放射線撮影の患者が同じで、かつ前回の放射線撮影と今回の放射線撮影で使用する撮影台が同じ場合、今回の放射線撮影の前に紫外線源に紫外線の照射を行わない第2実施形態を示す図である。 放射線源と撮影台との距離に応じた紫外線の強度および照射時間を示す表である。 第4実施形態のAP制御部および紫外線源制御部を示す図である。 予め設定された設定時刻にAP制御部がAP機能を実行する場合に、紫外線源に紫外線の照射を行わせる態様を示す図である。
 [第1実施形態]
 一例として図1に示すように、放射線診断装置2は、患者PにX線、γ線といった放射線Rを照射して、患者Pの放射線画像RI(図2参照)を撮影する装置であり、放射線技師等のオペレータにより操作される。放射線診断装置2は放射線照射部10を備える。放射線照射部10は、放射線源11および照射野限定器12を含む。放射線源11は、放射線Rを出射する放射線管13を有する。照射野限定器12は、放射線管13から出射された放射線Rの照射野を限定する。
 放射線照射部10は、支柱15によって放射線撮影室の天井16から吊り下げられている。支柱15は、天井16に巡らされたレール17に台車18を介して取り付けられている。台車18には、支柱用モータ19および台車用モータ20が内蔵されている。支柱15は支柱用モータ19によって高さ方向に伸縮可能であり、これにより放射線照射部10は高さ方向に移動可能である。また、台車18、ひいては放射線照射部10は、台車用モータ20によって、レール17に沿って放射線撮影室内を水平方向に移動可能である。なお、支柱15は、手動によって高さ方向に移動させることもできる。同様に、台車18は、手動によって水平方向に移動させることもできる。
 さらに、放射線照射部10は、回転部21を介して支柱15に取り付けられている。回転部21には回転部用モータ22が内蔵されている。回転部21、ひいては放射線照射部10は、回転部用モータ22によって、紙面と直交する軸を回転軸として、支柱15に対して回転可能である。なお、回転部21は、手動によって回転させることもできる。
 放射線撮影室には、立位撮影台25Sおよび臥位撮影台25Lが設置されている。放射線照射部10は、立位撮影台25Sおよび臥位撮影台25Lで兼用される。立位撮影台25Sおよび臥位撮影台25Lは、本開示の技術に係る「撮影台」の一例である。なお、以下では、立位撮影台25Sおよび臥位撮影台25Lを、まとめて撮影台25と表記する場合がある。
 立位撮影台25Sおよび臥位撮影台25Lには、電子カセッテ26が収容される。電子カセッテ26は、平面形状が矩形の偏平な略直方体形状の筐体内に検出パネルが収納された可搬型の放射線検出器である。検出パネルは、放射線R、またはシンチレータによって放射線Rから変換された可視光に感応して信号電荷を発生する画素が複数配列された構成である。筐体には、検出パネルの他にも、検出パネルの動作を制御する制御回路、および画素の信号電荷を画素値に変換して放射線画像RIを生成する信号処理回路等が内蔵されている。また、制御装置51(図2参照)との有線通信または無線通信を行う通信部、および各部に電力を供給するバッテリー等も内蔵されている。
 放射線Rの照射が開始された場合、検出パネルの動作を制御する制御回路は、信号電荷を画素に蓄積する蓄積動作を検出パネルに行わせる。放射線Rの照射が終了した場合、制御回路は、蓄積された信号電荷を画素から読み出す読み出し動作を検出パネルに行わせる。これにより、検出パネルから放射線画像RIが出力される。
 電子カセッテ26は、検出パネルの前面が放射線照射部10に対向する姿勢で立位撮影台25Sおよび臥位撮影台25Lにセットされる。図1では、立位撮影台25Sの前にポジショニングされた患者Pの胸部の放射線画像RIを放射線撮影している様子を例示している。なお、電子カセッテ26は、立位撮影台25Sおよび臥位撮影台25Lに収容されて用いられる他に、放射線撮影室において立位撮影台25Sまたは臥位撮影台25Lから取り外して患者Pに持たせた状態で用いられたり、病室のベッドに仰臥する患者Pの下に載置した状態で用いられたりする。
 立位撮影台25Sは、スタンド28、接続部29、およびホルダ30等を有する。スタンド28は、放射線撮影室の床面に設置される台座31と、台座31から高さ方向に延びる支柱32とで構成される。接続部29は、ホルダ30をスタンド28に接続する。接続部29、ひいてはホルダ30は、支柱32に対して高さ方向に移動可能であり、患者Pの身長、あるいは撮影部位に応じた高さ調節が可能となっている。
 ホルダ30は箱状であり、内部に電子カセッテ26を収容する。ホルダ30は、大部分がアルミ、ステンレスといった電磁波遮蔽性を有する導電性材料によって形成されている。また、ホルダ30は、放射線照射部10と対向する前面がカーボン等の放射線Rを透過する材料によって形成されている。
 臥位撮影台25Lは、放射線撮影室の床面に設置される台座33、接続部34、天板35、およびホルダ36等を有する。接続部34は、天板35を台座33に接続する。台座33は昇降式であり、これにより天板35およびホルダ36は高さ調節が可能となっている。天板35は、患者Pが仰臥することができる長さおよび幅を有する矩形板状であり、カーボン等の放射線Rを透過する材料によって形成されている。
 ホルダ36は、接続部34によって形成された台座33と天板35との間のスペースに配されている。ホルダ36は、天板35によって上部が覆われた箱状であり、内部に電子カセッテ26を収容する。ホルダ36は、アルミ、ステンレスといった電磁波遮蔽性を有する導電性材料によって形成されている。ホルダ36は、図示省略したスライド機構によって、天板35の長辺方向に沿う方向にスライド移動可能である。
 照射野限定器12の外面には、紫外線源38が取り付けられている。紫外線源38は、立位撮影台25Sのホルダ30、および臥位撮影台25Lの天板35に対して殺菌用の紫外線UVを照射する。紫外線源38としては、エキシマランプ等の石英管を用いた一般的な紫外線ランプの他、LED(Light Emitting Diode)、またはLD(Laser Diode)等を採用することができる。紫外線UVの中心波長は200nm以上280nm以下であり、例えば254nm、あるいは222nmである。また、紫外線UVの強度は一定である。
 天井16にはカメラ40が取り付けられている。カメラ40は、放射線撮影室のほぼ全景を撮影する。カメラ40は、患者Pおよびオペレータ等の人が放射線撮影室内に存在しているか否かを検知するために設けられている。
 一例として図2に示すように、放射線診断装置2は、電圧発生器50、制御装置51、およびコンソール52等を備える。
 電圧発生器50は、放射線管13に印加する電圧を発生する。電圧発生器50と放射線管13とは、電圧ケーブルで接続されている。この電圧ケーブルを通じて、電圧発生器50において発生した電圧が放射線管13に供給される。
 放射線管13には、例えば、フィラメント、ターゲット、グリッド電極等(いずれも図示省略)が設けられている。陰極であるフィラメントと陽極であるターゲットの間には、電圧発生器50からの電圧が印加される。このフィラメントとターゲットの間に印加される電圧は、管電圧と呼ばれる。フィラメントは、印加された管電圧に応じた熱電子をターゲットに向けて放出する。ターゲットは、フィラメントからの熱電子の衝突によって放射線Rを放射する。グリッド電極は、フィラメントとターゲットの間に配置されている。グリッド電極は、電圧発生器50から印加される電圧に応じて、フィラメントからターゲットに向かう熱電子の流量を変更する。このフィラメントからターゲットに向かう熱電子の流量は、管電流と呼ばれる。
 制御装置51は、電圧発生器50を通じて放射線源11の動作を制御する。制御装置51は、コンソール52から患者Pへの放射線Rの照射条件を取得する。照射条件は、放射線管13に印加する管電圧、管電流、および放射線Rの照射時間である。なお、管電流と照射時間の代わりに、管電流照射時間積、いわゆるmAs値を照射条件としてもよい。
 制御装置51には、照射スイッチ53を通じて、オペレータにより患者Pへの放射線Rの照射開始指示が入力される。照射開始指示が入力された場合、制御装置51は、コンソール52から取得した照射条件にて電圧発生器50を動作させ、放射線管13から放射線Rを出射させる。
 制御装置51は、電子カセッテ26の動作も制御する。制御装置51は、放射線源11による放射線Rの照射開始のタイミングに合わせて、蓄積動作を電子カセッテ26の検出パネルに行わせ、放射線源11による放射線Rの照射終了のタイミングに合わせて、読み出し動作を検出パネルに行わせる。また、制御装置51は、電子カセッテ26から送信された放射線画像RIを受信する。制御装置51は、放射線画像RIをコンソール52に転送する。
 コンソール52は、例えばパーソナルコンピュータである。コンソール52には、オペレータにより撮影メニューが入力される。コンソール52は、入力された撮影メニューに応じた照射条件を制御装置51に送信する。また、コンソール52は、制御装置51から転送された放射線画像RIを受信し、受信した放射線画像RIに画像処理を施して、画像処理後の放射線画像RIをディスプレイ93(図5参照)に表示する。
 コンソール52は、LAN(Local Area Network)等のネットワークを介して、放射線科情報システム(RIS;Radiology Information System)と通信可能に接続されている。コンソール52は、RISから撮影オーダーを受信する。撮影オーダーには、患者Pに対して行う放射線撮影の具体的な内容が記されている。また、コンソール52は、ネットワークを介して、画像データベースサーバと通信可能に接続されている。画像データベースサーバは、例えば、PACS(Picture Archiving and Communication System)サーバであり、コンソール52から放射線画像RIを受信し、受信した放射線画像RIを蓄積管理する。
 制御装置51には、放射線撮影室内において放射線照射部10の位置を移動させる移動機構55が接続されている。移動機構55は、前述の支柱15および支柱用モータ19、台車18および台車用モータ20、回転部21および回転部用モータ22と、位置検出部56とで構成される。位置検出部56は、例えば、支柱15、台車18、および回転部21の各々に設けられたポテンショメータであり、放射線照射部10の放射線撮影室内における位置を検出する。放射線照射部10の放射線撮影室内における位置とは、具体的には、支柱15および支柱用モータ19により変化する高さ位置、台車18および台車用モータ20により変化する水平位置、並びに回転部21および回転部用モータ22により変化する回転位置である。
 制御装置51は、リモートコントローラ57を通じたオペレータからのAP機能実行指示に応じて移動機構55(支柱用モータ19、台車用モータ20、および回転部用モータ22)の動作を制御することで、AP機能を実行する。AP機能は、立位撮影台25Sおよび臥位撮影台25Lに対応した設定位置(図6参照)に放射線照射部10(放射線源11)を自動的に移動させる機能である。このAP機能によって、放射線源11とともに紫外線源38が移動される。
 制御装置51は、紫外線源38の動作も制御する。制御装置51は、AP機能を実行する場合に、立位撮影台25Sまたは臥位撮影台25Lへの紫外線UVの照射を紫外線源38に行わせる。
 制御装置51にはカメラ40も接続されている。制御装置51は、カメラ40の撮影画像に応じて移動機構55の動作を制御する。
 一例として図3および図4に示すように、照射野限定器12には、放射線管13からの放射線Rが入射する入射開口60と、放射線Rが出射する出射開口61とが形成されている。出射開口61の近傍には、4枚の遮蔽板62(図3および図4では3枚のみ図示)が設けられている。遮蔽板62は、放射線Rを遮蔽する材料、例えば鉛等で形成されている。遮蔽板62は、四角形の各辺上に配置、換言すれば井桁状(checkered pattern)に組まれており、放射線Rを透過させる四角形の照射開口を形成する。照射野限定器12は、各遮蔽板62の位置を変更することで照射開口の大きさを変化させ、これにより撮影台25への放射線Rの照射野を変更する。
 照射野限定器12内には、照射野ランプ63とミラー64が設けられている。照射野ランプ63は、例えば橙色の可視光Lをミラー64に向けて発する。照射野ランプ63は、オペレータによる指示に応じて点消灯する。また、照射野ランプ63は、後述するAP機能によって今回の設定位置に放射線照射部10が到達した直後に、数秒程度自動的に点灯する。
 図4に示すように、ミラー64は可視光Lを反射する。ミラー64は、例えばアクリル板にアルミ膜を蒸着してなる。ミラー64で反射された可視光Lは、照射野を表す光として、出射開口61を通じて撮影台25に向けて照射される。ミラー64は、図3に示す放射線Rの照射時は、入射開口60および出射開口61から外れた位置に退避している。なお、放射線Rの線質を変更するためのフィルタを照射野限定器12内に設けてもよい。
 一例として図5に示すように、制御装置51は、ストレージ70とCPU(Central Processing Unit)71とを備える。ストレージ70は、例えばハードディスクドライブまたはソリッドステートドライブである。ストレージ70には、作動プログラム72および設定位置情報73が記憶されている。作動プログラム72が起動されると、CPU71は、図示省略したメモリ等と協働して、照射条件取得部75、放射線源制御部76、カセッテ制御部77、画像転送部78、AP制御部79、および紫外線源制御部80として機能する。紫外線源制御部80は計測部81を含む。
 照射条件取得部75は、コンソール52から送信された照射条件を取得する。照射条件取得部75は、取得した照射条件を放射線源制御部76に出力する。
 放射線源制御部76は、放射線源11の動作を制御する。放射線源制御部76は、照射条件取得部75からの照射条件を電圧発生器50に設定する。放射線源制御部76は、照射スイッチ53を通じて放射線Rの照射開始指示が入力された場合、設定した照射条件にて、放射線管13から放射線Rを出射させる。放射線源制御部76は、放射線Rの照射開始を報せる照射開始報知信号、および放射線Rの照射終了を報せる照射終了報知信号をカセッテ制御部77に出力する。
 カセッテ制御部77は、電子カセッテ26の動作を制御する。カセッテ制御部77は、放射線源制御部76からの照射開始報知信号に合わせて、電子カセッテ26の検出パネルに蓄積動作を行わせる。また、カセッテ制御部77は、放射線源制御部76からの照射終了報知信号に合わせて、検出パネルに読み出し動作を行わせる。これにより、カセッテ制御部77は、検出パネルから放射線画像RIを出力させる。また、カセッテ制御部77は、電子カセッテ26から送信された放射線画像RIを受信し、受信した放射線画像RIを画像転送部78に出力する。画像転送部78は、カセッテ制御部77からの放射線画像RIをコンソール52に転送する。なお、放射線Rの照射開始および照射終了を検知する機能を有し、自ら蓄積動作および読み出し動作を行う電子カセッテ26を用いてもよい。
 AP制御部79には、カメラ40、移動機構55、およびリモートコントローラ57が接続されている。AP制御部79は、周知の画像認識技術を用いて、カメラ40の撮影画像に人が写っているか否かを検知する。AP制御部79は、ストレージ70から設定位置情報73を読み出す。AP制御部79は、リモートコントローラ57からのAP機能実行指示に応じて移動機構55の動作を制御することで、設定位置情報73に登録された設定位置に放射線照射部10を移動させるAP機能を実行する。なお、AP制御部79は、次回の放射線撮影まで時間がある場合、あるいは診療終了時等に、放射線撮影室内に定められたホームポジションに放射線照射部10を移動させる。カメラ40、移動機構55、リモートコントローラ57、およびAP制御部79は、AP装置85を構成する。
 紫外線源制御部80は紫外線源38の動作を制御する。紫外線源制御部80は、AP制御部79がAP機能を実行する場合に、撮影台25への紫外線UVの照射を紫外線源38に行わせる。計測部81は、紫外線源38の紫外線UVの照射開始からの経過時間を計測する。
 コンソール52は、ストレージ90、CPU(Central Processing Unit)91、キーボード、マウス等の入力デバイス92、およびディスプレイ93を備える。ストレージ90は、例えばハードディスクドライブまたはソリッドステートドライブである。ストレージ90には、作動プログラム94および照射条件テーブル95が記憶されている。作動プログラム94が起動されると、CPU91は、図示省略したメモリ等と協働して、撮影メニュー受付部100、照射条件設定部101、画像処理部102、および表示制御部103として機能する。
 放射線撮影に先立ち、表示制御部103は、RISからの撮影オーダーのリストをディスプレイ93に表示する。オペレータは、撮影オーダーのリストを閲覧して内容を確認する。表示制御部103は、撮影オーダーと併せて、予め用意された複数種の撮影メニューを、択一的に選択可能な形態でディスプレイ93に表示する。オペレータは、入力デバイス92を操作することで、撮影オーダーの内容と一致する撮影メニューを選択して入力する。これにより、撮影メニュー受付部100において撮影メニューが受け付けられる。撮影メニュー受付部100は、受け付けた撮影メニューを照射条件設定部101に出力する。また、撮影メニュー受付部100は、受け付けた撮影メニューを制御装置51のAP制御部79に出力する。
 照射条件設定部101は、撮影メニューに応じた照射条件を照射条件テーブル95から読み出し、読み出した照射条件を制御装置51に送信する。照射条件テーブル95は、撮影メニュー毎に照射条件が登録されたテーブルである。撮影メニューは、胸部、腹部等の撮影部位、立位、臥位等の撮影姿勢、および正面、背面等の撮影向きの組み合わせである(図6参照)。なお、照射条件は、制御装置51に送信する前に、入力デバイス92を介して修正することが可能である。
 画像処理部102は、制御装置51からの放射線画像RIに対して各種画像処理を施す。画像処理部102は、画像処理として、例えば、オフセット補正処理、感度補正処理、および欠陥画素補正処理等を行う。
 オフセット補正処理は、放射線Rが照射されていない状態で出力されたオフセット補正用画像を、放射線画像RIから画素単位で差し引く処理である。画像処理部102は、このオフセット補正処理を行うことで、暗電荷等に起因する固定パターンノイズを放射線画像RIから除去する。感度補正処理は、感度補正データに基づき、電子カセッテ26の検出パネルの各画素の感度のばらつき、信号電荷を読み出す回路の出力特性のばらつき等を補正する処理である。欠陥画素補正処理は、出荷時や定期点検時に生成される、画素値が異常な欠陥画素の情報に基づき、欠陥画素の画素値を周囲の正常な画素の画素値で線形補間する処理である。画像処理部102は、こうした諸々の画像処理を施した放射線画像RIを、表示制御部103に出力する。表示制御部103は、画像処理部102からの放射線画像RIをディスプレイ93に表示する。
 一例として図6に示すように、設定位置情報73には、撮影メニュー毎に設定位置が登録されている。設定位置は、放射線撮影室内における放射線照射部10の高さ位置、水平位置、および回転位置である。高さ位置は、支柱15および台車18の長さ、言い換えれば天井16から放射線照射部10までの距離で表される。水平位置は、放射線撮影室の基準点(例えばホームポジション)を原点とする距離のXY座標で表される。回転位置は、放射線照射部10の角度で表される。放射線照射部10の角度は、図1において実線で示した立位撮影台25Sに向かう角度が0°、図1において破線で示した臥位撮影台25Lに向かう角度が90°である。
 設定位置は、放射線管13のターゲットにおいて放射線Rが発せられる点(焦点)から、撮影台25に収容された電子カセッテ26の検出パネルの表面までの距離、すなわちSID(Source to Image receptor Distance)に応じた位置である。SIDは、例えば撮影メニューが「胸部 立位 正面」の場合は100cm、撮影メニューが「下肢 立位 正面」の場合は180cm等、撮影メニューによって予め決まった値が設定されている。
 一例として図7に示すように、AP制御部79は、オペレータによりリモートコントローラ57が操作されて、リモートコントローラ57からAP機能実行指示が入力された場合、AP機能を実行する。より詳しくは、AP制御部79は、前回の放射線撮影の撮影メニューに対応する設定位置から、今回の放射線撮影の撮影メニューに対応する設定位置に、放射線照射部10を移動させる。
 紫外線源制御部80は、AP機能により放射線照射部10が今回の放射線撮影の撮影メニューに対応する設定位置に移動した直後に、紫外線源38に紫外線UVの照射を行わせる。これにより、今回の放射線撮影に用いる撮影台25に対して紫外線UVによる殺菌が行われる。紫外線源制御部80は、計測部81にて計測されている紫外線UVの照射開始からの経過時間が予め設定された第1設定時間TS1に達した場合、紫外線源38に紫外線UVの照射を停止させる。第1設定時間TS1は、紫外線UVの強度、および殺菌対象の細菌および/またはウイルスの種類等により異なるが、大体数秒~数十分である。例えば新型コロナウイルス(SARS(Severe Acute Respiratory Syndrome)-CoV(Coronavirus)-2)は、数秒の紫外線UVの照射で不活性化するとの報告がある。より詳しくは、中心波長222nm、強度1W/mの紫外線UVの場合、30秒間の照射で99.7%が不活性化するとの報告がある(https://xtech.nikkei.com/atcl/nxt/news/18/08672/)。また、中心波長254nmの紫外線UVの場合、10秒~15秒で99.9%が不活性化するとの報告もある(https://robotstart.info/2020/09/10/uvbuster-covid19.html)。
 オペレータは、第1設定時間TS1が経過して紫外線UVの照射が停止されるのを待って、照射スイッチ53を操作して患者Pへの放射線Rの照射開始指示を入力する。放射線源制御部76は、放射線管13から放射線Rを出射させる。つまり、紫外線源制御部80は、AP機能により放射線照射部10が設定位置に移動し、放射線源11から放射線Rが出射される前に、紫外線源38に紫外線UVの照射を行わせる。
 一例として図8に示すように、AP制御部79は、AP機能を実行している最中に、カメラ40の撮影画像に人が写った場合、AP機能を停止させる。AP制御部79は、撮影画像に人が写っている間、AP機能を停止させる。AP制御部79は、撮影画像に人が写らなくなった場合、AP機能の実行を再開する。また、AP制御部79は、AP機能の実行を開始させる際に、カメラ40の撮影画像に人が写っていた場合、AP機能を実行しない。つまり、カメラ40は、人がいる環境下でAP機能を実行させないために、AP装置85に設けられている。ここで、「人が写っている」とは、人の身体の全体が写っている場合はもちろん、人の身体の一部が写っている場合も含む。
 また、一例として図9に示すように、紫外線源制御部80は、紫外線源38に紫外線UVの照射を行わせている最中に、カメラ40の撮影画像に人が写った場合、紫外線源38に紫外線UVの照射を停止させる。紫外線源制御部80は、撮影画像に人が写っている間、紫外線UVの照射を停止させる。紫外線源制御部80は、撮影画像に人が写らなくなった場合、紫外線UVの照射を再開する。また、紫外線源制御部80は、AP機能により放射線照射部10が今回の放射線撮影の撮影メニューに対応する設定位置に移動し、紫外線源38に紫外線UVの照射を開始させる際に、カメラ40の撮影画像に人が写っていた場合、紫外線源38に紫外線UVの照射を指示しない、または紫外線源38に紫外線UVの照射を禁止する信号を出力する。つまり、カメラ40は、人がいる環境下で紫外線UVの照射を行わせないために流用される。
 次に、上記構成による作用について、図10および図11に示すフローチャートを参照して説明する。図5で示したように、作動プログラム72が起動されると、制御装置51のCPU71が、照射条件取得部75、放射線源制御部76、カセッテ制御部77、画像転送部78、AP制御部79、および紫外線源制御部80として機能される。紫外線源制御部80には計測部81が含まれる。また、作動プログラム94が起動されると、コンソール52のCPU91が、撮影メニュー受付部100、照射条件設定部101、画像処理部102、および表示制御部103として機能される。
 放射線診断装置2による放射線撮影の手順は、撮影準備作業から開始される。撮影準備作業はオペレータが行う作業である。撮影準備作業は、具体的には照射条件を設定する作業と、患者P等のポジショニングを行う作業である。撮影準備作業終了後、オペレータは照射スイッチ53を操作して、放射線Rの照射開始指示を行う。
 オペレータは、照射条件を設定する作業として、入力デバイス92を操作することで、RISからの撮影オーダーに応じた撮影メニューを入力する。撮影メニューは、撮影メニュー受付部100において受け付けられる。そして、撮影メニュー受付部100において受け付けられた撮影メニューに応じた照射条件が、照射条件設定部101により照射条件テーブル95から読み出される。照射条件は、照射条件設定部101から制御装置51に送信される。
 一例として図10に示すように、撮影メニューの入力後、オペレータは、リモートコントローラ57を操作する。これにより、リモートコントローラ57からAP機能実行指示が発せられる。AP機能実行指示はAP制御部79において受信される(ステップST100でYES)。そして、AP制御部79によって移動機構55の支柱用モータ19、台車用モータ20、および回転部用モータ22の動作が制御され、図7で示したように、前回の設定位置から今回の設定位置に放射線照射部10を移動させるAP機能が実行される(ステップST110)。言い換えれば、前回の設定位置から今回の設定位置への放射線照射部10の移動が行われる。位置検出部56によって今回の設定位置に放射線照射部10が到達したことが検出された場合(ステップST120でYES)、AP制御部79によりAP機能が停止される(ステップST130)。言い換えれば、放射線照射部10の移動が停止される。
 天井16に設けられたカメラ40によって、放射線撮影室内が撮影されている。AP機能が実行されている最中に、カメラ40の撮影画像に人が写った場合(ステップST120でNO、ステップST140でYES)、図8で示したように、AP制御部79によりAP機能が停止される(ステップST150)。撮影画像に人が写っている間(ステップST160でYES)、AP機能が停止され続ける。撮影画像に人が写らなくなった場合(ステップST160でNO)、AP制御部79によりAP機能の実行が再開される(ステップST110)。なお、AP機能の実行を開始させる際に、カメラ40の撮影画像に人が写っていた場合、AP機能は実行されない。
 一例として図11に示すように、AP機能の実行によって、今回の設定位置に放射線照射部10が到達した場合(ステップST200でYES)、図7で示したように、紫外線源制御部80の制御の下、紫外線源38による紫外線UVの照射が行われる(ステップST210)。
 計測部81によって、紫外線UVの照射開始からの経過時間が計測される(ステップST220)。経過時間が第1設定時間TS1に達した場合(ステップST230でYES)、紫外線源制御部80の制御の下、紫外線源38による紫外線UVの照射が停止される(ステップST240)。
 紫外線UVが照射されている最中に、カメラ40の撮影画像に人が写った場合(ステップST230でNO、ステップST250でYES)、図9で示したように、紫外線源制御部80の制御の下、紫外線源38による紫外線UVの照射が停止される(ステップST260)。撮影画像に人が写っている間(ステップST270でYES)、紫外線UVの照射が停止され続ける。撮影画像に人が写らなくなった場合(ステップST270でNO)、紫外線源制御部80の制御の下、紫外線源38による紫外線UVの照射が再開される(ステップST210)。なお、AP機能により放射線照射部10が今回の放射線撮影の撮影メニューに対応する設定位置に移動し、紫外線源38に紫外線UVの照射を開始させる際に、カメラ40の撮影画像に人が写っていた場合、紫外線源38による紫外線UVの照射は行われない。
 第1設定時間TS1が経過して紫外線UVの照射が停止された後、オペレータは、放射線撮影室に患者Pを入室させ、立位撮影台25Sの前に患者Pを立たせたり、臥位撮影台25Lの天板35に患者Pを仰臥させたりする。また、ホルダ30またはホルダ36の位置を調整したりして、ポジショニングを行う。
 制御装置51においては、照射条件取得部75により、コンソール52からの照射条件が取得される。照射条件は、照射条件取得部75から放射線源制御部76に出力され、放射線源制御部76によって電圧発生器50に設定される。
 照射スイッチ53を介して放射線Rの照射開始指示が入力された場合、放射線源制御部76の制御の下、放射線Rが放射線管13から患者Pに向けて照射される。これにより、カセッテ制御部77の制御の下、電子カセッテ26から放射線画像RIが出力される。放射線画像RIは、電子カセッテ26からカセッテ制御部77に出力され、さらにカセッテ制御部77から画像転送部78に出力される。放射線画像RIは、画像転送部78によってコンソール52に転送される。
 コンソール52においては、画像処理部102によって放射線画像RIに各種画像処理が施される。各種画像処理が施された放射線画像RIは、画像処理部102から表示制御部103に出力される。そして、表示制御部103の制御の下、ディスプレイ93に表示され、オペレータの閲覧に供される。
 以上説明したように、放射線診断装置2は、放射線Rを出射する1台の放射線源11と、放射線撮影室内において放射線源11の位置を移動させる移動機構55、および移動機構55の動作を制御することで、放射線撮影室に設置された撮影台25に対応した設定位置に放射線源11を自動的に移動させるAP機能を実行するAP制御部79を含むAP装置85と、紫外線UVを出射する紫外線源38であり、移動機構55によって放射線源11とともに移動される紫外線源38と、AP機能を実行する場合に、撮影台25への紫外線UVの照射を紫外線源38に行わせる紫外線源制御部80と、を備える。このため、AP機能と連動せずに紫外線UVを照射する場合と比べて、撮影台25を効率的に殺菌することが可能となる。
 紫外線源制御部80は、AP機能により放射線源11が設定位置に移動し、放射線源11から放射線Rが出射される前に、紫外線源38に紫外線UVの照射を行わせる。このため、今から放射線撮影に用いる撮影台25に対して、確実に紫外線UVによる殺菌を行うことができる。患者Pとの接触によって撮影台25に付着した細菌および/またはウイルスによる感染のリスクを、大いに低減することができる。
 紫外線源制御部80は、カメラ40の撮影画像に人が写った場合、紫外線源38に紫外線UVの照射を停止させる。このため、人に紫外線UVが照射されることを防止することができる。
 カメラ40は、人がいる環境下でAP機能を実行させないために、AP装置85に設けられている。そして、カメラ40は、人がいる環境下で紫外線UVの照射を行わせないために流用される。このため、既存の設備を活用することができ、装置コストの増大を抑えることができる。
 紫外線源制御部80は、オペレータからの指示に応じてAP制御部79がAP機能を実行する場合に、紫外線源38に紫外線UVの照射を行わせる。オペレータがAP機能の実行を指示するのは、まさにこれから放射線撮影が行われようとするタイミングである。このため、適切なタイミングで紫外線UVによる殺菌を行うことができる。
 紫外線源38は、照射野限定器12の外面に設けられている。このため、撮影台25に紫外線UVを効率的に照射することができる。
 なお、紫外線源38を設ける箇所は、照射野限定器12の外面に限らない。一例として図12に示すように、照射野限定器12の内部に紫外線源38を設けてもよい。より詳しくは、照射野ランプ63と並んで紫外線源38を設ける。紫外線源38から発せられた紫外線UVは、照射野ランプ63から発せられた可視光Lと同様に、ミラー64で反射され、出射開口61を通じて撮影台25に向けて照射される。この際、遮蔽板62は、紫外線UVの照射範囲が最大となるよう、照射開口の大きさが最大となる位置に移動される。
 このように、照射野限定器12の内部に紫外線源38を設ければ、患者Pおよびオペレータに触れられることがないので、ぶつかって破損するおそれがない。また、照射野ランプ63と並んで紫外線源38を設ければ、照射野ランプ63からの可視光Lと同じ機構を利用して紫外線UVを照射することができる。ただし、照射開口の大きさが最大となる位置に遮蔽板62を移動させる必要があるので、そうした制御をする必要がないという点では、照射野限定器12の外面に紫外線源38を設けるほうが好ましい。
 紫外線源38の設置箇所は、照射野限定器12の外面または内部に限らず、紫外線源38の設置個数も1個に限らない。例えば放射線源11の外面に設けてもよいし、支柱15に設けてもよい。要するに、撮影台25に対して紫外線UVを照射可能な箇所であれば、どこでも構わない。紫外線源38に首振り機能をもたせ、1台で広範な照射範囲をカバーする構成としてもよい。
 一例として図13に示すように、カメラ40に代えて、動体検知センサ110によって放射線撮影室内に人がいるか否かを検知してもよい。動体検知センサ110は、赤外線の変化、反射超音波の変化、あるいは可視光の遮光等を利用して動体を検知するセンサであり、一般的には人感センサと呼ばれる。動体検知センサ110は、カメラ40と同様、例えば天井16に取り付けられており、AP制御部79等とともにAP装置112を構成する。動体検知センサ110は、放射線撮影室内の動体を検知する。動体検知センサ110は、動体を検知した場合、その旨の信号をAP制御部79に出力する。
 一例として図14に示すように、AP制御部79は、AP機能を実行している最中に、動体検知センサ110が動体を検知した場合、AP機能を停止させる。AP制御部79は、動体検知センサ110が動体を検知している間、AP機能を停止させる。AP制御部79は、動体検知センサ110が動体を検知しなくなった場合、AP機能の実行を再開する。また、AP制御部79は、AP機能の実行を開始させる際に、動体検知センサ110が動体を検知した場合、AP機能を実行しない。
 また、一例として図15に示すように、紫外線源制御部80は、紫外線源38に紫外線UVの照射を行わせている最中に、動体検知センサ110が動体を検知した場合、紫外線源38に紫外線UVの照射を停止させる。紫外線源制御部80は、動体検知センサ110が動体を検知している間、紫外線UVの照射を停止させる。紫外線源制御部80は、動体検知センサ110が動体を検知しなくなった場合、紫外線UVの照射を再開する。また、紫外線源制御部80は、AP機能により放射線照射部10が今回の放射線撮影の撮影メニューに対応する設定位置に移動し、紫外線源38に紫外線UVの照射を開始させる際に、動体検知センサ110が動体を検知した場合、紫外線源38に紫外線UVの照射を指示しない、または紫外線源38に紫外線UVの照射を禁止する信号を出力する。
 このように、紫外線源制御部80は、動体検知センサ110が動体を検知した場合、紫外線源38に紫外線UVの照射を停止させる。このため、カメラ40を用いた場合と同じく、人に紫外線UVが照射されることを防止することができる。また、動体検知センサ110は、人がいる環境下でAP機能を実行させないために、AP装置112に設けられている。そして、動体検知センサ110は、人がいる環境下で紫外線UVの照射を行わせないために流用される。このため、カメラ40を用いた場合と同じく、既存の設備を活用することができ、装置コストの増大を抑えることができる。さらに、カメラ40よりも動体検知センサ110は安価であり、そのうえ、動体検知センサ110によれば、カメラ40のように撮影画像を解析して人が写っているか否かを検出する必要がない。
 AP機能により放射線源11が設定位置に移動し、放射線源11から放射線Rが出射される前に、紫外線源38に紫外線UVの照射を行わせる態様に代えて、あるいは加えて、以下の態様を実施してもよい。
 一例として図16に示すように、紫外線源制御部80は、放射線源11から放射線Rが出射され、AP機能により放射線照射部10が設定位置に移動する前に、紫外線源38に紫外線UVの照射を行わせる。具体的には、紫外線源制御部80は、前回の放射線撮影において放射線源11から放射線Rが出射されて、予め設定された第2設定時間TS2が経過した後、紫外線源38に紫外線UVの照射を開始させる。そして、予め設定された第3設定時間TS3の間、紫外線源38に紫外線UVの照射を行わせる。オペレータは、第3設定時間TS3が経過して紫外線UVの照射が停止されるのを待って、リモートコントローラ57を操作して今回の放射線撮影に係るAP機能実行指示を入力する。
 第2設定時間TS2には、前回の放射線撮影が終了して、患者Pが放射線撮影室から退室するまでに要する平均的な時間(例えば3分)が設定される。第3設定時間TS3は、第1設定時間TS1と同じく、細菌および/またはウイルスを殺菌するために十分な時間が設定される。
 このように、紫外線源制御部80は、放射線源11から放射線Rが出射され、AP機能により放射線照射部10が設定位置に移動する前に、紫外線源38に紫外線UVの照射を行わせてもよい。こうすることで、前回の放射線撮影で用いられて、細菌および/またはウイルスが付着したおそれのある撮影台25に対して、紫外線UVによる殺菌を行うことができる。細菌および/またはウイルスによる感染のリスクを、より低減することができる。
 なお、前回の放射線撮影において放射線源11から放射線Rが出射されて、第2設定時間TS2が経過した後、紫外線源38に紫外線UVの照射を開始させているが、これに限らない。前回の放射線撮影の終了後、カメラ40または動体検知センサ110によって放射線撮影室に人がいないことを検知した場合に、紫外線源38に紫外線UVの照射を開始させてもよい。
 一例として図17に示すように、紫外線源制御部80は、AP機能により放射線照射部10が設定位置に移動する最中に、紫外線源38に紫外線UVの照射を行わせる。具体的には、紫外線源制御部80は、リモートコントローラ57からAP機能実行指示が入力された場合に、紫外線源38に紫外線UVの照射を開始させる。そして、AP機能が実行されている間、紫外線UVの照射を継続させる。また、紫外線源制御部80は、図7で示した例と同様に、AP機能により放射線照射部10が今回の設定位置に移動してからの紫外線UVの照射時間が第1設定時間TS1に達した場合、紫外線源38に紫外線UVの照射を停止させる。
 このように、紫外線源制御部80は、AP機能により放射線照射部10が設定位置に移動する最中に、紫外線源38に紫外線UVの照射を行わせてもよい。こうすることで、立位撮影台25Sのホルダ30および臥位撮影台25Lの天板35だけでなく、立位撮影台25Sのスタンド28、臥位撮影台25Lの台座33、あるいは放射線撮影室の床面等に対しても紫外線UVによる殺菌を行うことができる。細菌および/またはウイルスによる感染のリスクを、さらに低減することができる。
 図18は、図16で示した、放射線源11から放射線Rが出射され、AP機能により放射線照射部10が設定位置に移動する前に、紫外線源38に紫外線UVの照射を行わせる態様と、図17で示した、AP機能により放射線照射部10が設定位置に移動する最中に、紫外線源38に紫外線UVの照射を行わせる態様とを複合して実施した例を示す。これにより、図16で示した態様と図17で示した態様の効果を併せた効果を発揮することができる。
 図16~図18で示した態様においても、AP制御部79は、カメラ40の撮影画像に人が写った場合、または、動体検知センサ110が動体を検知した場合、AP機能を実行しない。また、紫外線源制御部80は、カメラ40の撮影画像に人が写った場合、または、動体検知センサ110が動体を検知した場合、紫外線源38に紫外線UVの照射を指示しない、または紫外線源38に紫外線UVの照射を禁止する信号を出力する。
 [第2実施形態]
 一例として図19に示すように、第2実施形態では、紫外線源制御部80は、前回の放射線撮影と今回の放射線撮影の患者Pが同じで、かつ前回の放射線撮影と今回の放射線撮影で使用する撮影台25が同じ場合、今回の放射線撮影の前に紫外線源38に紫外線UVの照射を指示しない、または紫外線源38に紫外線UVの照射を禁止する信号を出力する。こうすることで、前回の放射線撮影と今回の放射線撮影の患者Pが同じで、かつ前回の放射線撮影と今回の放射線撮影で使用する撮影台25が同じ場合は、今回の放射線撮影の前に紫外線源38による紫外線UVの照射を行わない。図19においては、前回の放射線撮影と今回の放射線撮影の患者Pの患者ID(Identification Data)が「P0001」と同じで、かつ前回の放射線撮影と今回の放射線撮影の撮影メニューの撮影姿勢が「立位」で、ともに立位撮影台25Sを使用する場合を例示している。
 前回の放射線撮影と今回の放射線撮影の患者Pが同じで、かつ前回の放射線撮影と今回の放射線撮影で使用する撮影台25が同じであれば、他の患者Pからの細菌および/またはウイルスによる感染のリスクはない。こうした場合に、今回の放射線撮影の前に紫外線源38による紫外線UVの照射を行わなくすれば、意味のない紫外線UVの照射を行わないで済む。紫外線UVの照射に掛かる時間および消費電力を省くことができる。
 [第3実施形態]
 図20に示す第3実施形態では、放射線源11と撮影台25との距離に応じて、紫外線UVの殺菌能力を変更する。ここで、放射線源11と撮影台25との距離とは、具体的にはSIDである。
 一例として図20の表115に示すように、紫外線源制御部80は、紫外線UVの強度および照射時間を変更することで、SIDに応じて紫外線UVの殺菌能力を変更する。より詳しくは、紫外線源制御部80は、SIDが長くなるにつれて、紫外線UVの強度を強くし、かつ照射時間を長くする。例えばSIDが80cmの場合は、紫外線UVの強度を15W/m、照射時間を3分とする。一方、SIDが180cmの場合は、紫外線UVの強度を40W/m、照射時間を8分とする。照射時間は、第1設定時間TS1または第3設定時間TS3として設定する時間である。なお、紫外線UVの強度は、紫外線源38への印加電圧および/または印加電流を増減することで変更する。
 このように、第3実施形態では、紫外線源制御部80は、放射線源11と撮影台25との距離に応じて、紫外線UVの殺菌能力を変更する。具体的には、紫外線源制御部80は、紫外線UVの強度および照射時間を変更することで、紫外線UVの殺菌能力を変更する。このため、放射線源11と撮影台25との距離に応じた殺菌を行うことができる。
 なお、紫外線UVの強度および照射時間の両方を変更する例を示したが、紫外線UVの強度および照射時間のうちの少なくとも1つを変更すればよい。また、放射線源11と撮影台25との距離が長い場合は殺菌能力が相対的に高い中心波長254nmの紫外線UVを照射し、放射線源11と撮影台25との距離が短い場合は殺菌能力が相対的に低い中心波長222nmの紫外線UVを照射する等、紫外線UVの波長を変更することで、紫外線UVの殺菌能力を変更してもよい。
 [第4実施形態]
 上記各実施形態では、オペレータからの指示に応じてAP制御部79がAP機能を実行する場合に、紫外線源38に紫外線UVの照射を行わせる態様を例示したが、本開示の技術はこれに限らない。図21および図22に示す第4実施形態のように、予め設定された設定時刻にAP制御部79がAP機能を実行する場合に、紫外線源38に紫外線UVの照射を行わせてもよい。
 一例として図21に示すように、第4実施形態のAP制御部79には、設定時刻情報120が入力される。設定時刻情報120は、ストレージ70に記憶されている。設定時刻情報120には、予め設定された設定時刻が登録されている。設定時刻は、オペレータからの指示を待たずに、AP制御部79がAP機能を自動的に実行する時刻である。設定時刻は、オペレータあるいは医療施設の管理者等が設定する。AP制御部79は、設定時刻情報120に登録された設定時刻に、AP機能を実行する。図21においては、医療施設の午前の診療開始時刻の「09:00」、午後の診療開始時刻の「13:00」、および午後の診療終了時刻の「17:00」が設定時刻として設定された例を示している。
 一例として図22に示すように、AP制御部79は、設定時刻に、例えば、放射線撮影室内に定められたホームポジションから、立位撮影台25Sのホルダ30と対向する位置に放射線照射部10を移動させる。そして、AP制御部79は、臥位撮影台25Lの天板35と対向する位置に放射線照射部10を移動させ、最後に元のホームポジションに戻させる。紫外線源制御部80は、設定時刻にAP制御部79がAP機能を実行する場合に、紫外線源38に紫外線UVの照射を行わせる。
 このように、第4実施形態では、紫外線源制御部80は、予め設定された設定時刻にAP制御部79がAP機能を実行する場合に、紫外線源38に紫外線UVの照射を行わせる。このため、診療開始時刻等、殺菌が特に必要と思われる時刻に殺菌を行うことができる。
 なお、紫外線源38に紫外線UVの照射を行わせている最中に、放射線撮影室に人が立ち入って、紫外線源38に紫外線UVの照射を停止させた場合に、放射線撮影室から人がいなくなるまでに一定時間(例えば3分)掛かった場合は、紫外線源38による紫外線UVの照射を再開させなくてもよい。この場合は、紫外線UVによる殺菌が十分でないおそれがあるため、紫外線UVの照射を中断した旨のメッセージを含む警告画面を、コンソール52のディスプレイ93に表示する等してもよい。
 中心波長222nmの紫外線UVは、例えば特許第6306097号の段落[0028]~[0031]、および図7、図8に記載されているように、中心波長254nmの紫外線UVと比べて人体への影響が少ない。このため、中心波長222nmの紫外線UVを照射する場合は、放射線撮影室に人が立ち入った場合においても、敢えて紫外線源38に紫外線UVの照射を停止させなくてもよい。
 紫外線源38の電源をオンオフするスイッチを設けておき、オペレータの手動操作により紫外線源38に紫外線UVの照射を行わせてもよい。
 紫外線源38は、連続的に紫外線UVを照射してもよいし、パルス状に紫外線UVを照射してもよい。パルス状に紫外線UVを照射する場合は、上記第3実施形態の強度の変更を、パルスのデューティ比を変更することで行う。
 撮影台25として、立位撮影台25Sおよび臥位撮影台25Lを例示したが、これに限らない。立位撮影台25Sおよび臥位撮影台25Lのうちの少なくとも1つが備えられていればよい。
 リモートコントローラ57の操作によりAP制御部79にAP機能実行指示を発する例を示したが、これに限らない。コンソール52の入力デバイス92を介して撮影メニューが入力された場合に、併せてAP制御部79にAP機能実行指示を発してもよい。
 撮影部位が胸部である場合は立位撮影台25Sのホルダ30の全面に紫外線UVを照射し、撮影部位が片足首である場合はホルダ30の中央部分にのみ紫外線UVを照射する等、撮影部位に応じて紫外線UVの照射範囲を変更してもよい。
 電子カセッテ26に代えて、イメージングプレートが可搬型の筐体に収納されたCR(Computed Radiography)カセッテを用いてもよい。
 上記各実施形態では、放射線照射部10が支柱15によって放射線撮影室の天井16から吊り下げられた、いわゆる天井吊り下げ式を例示したが、これに限らない。放射線撮影室の床面にレールを巡らせ、床面から高さ方向に延びる支柱の先端に放射線照射部10を取り付けた方式でもよい。
 上記各実施形態において、例えば、照射条件取得部75、放射線源制御部76、カセッテ制御部77、画像転送部78、AP制御部79、紫外線源制御部80、計測部81、撮影メニュー受付部100、照射条件設定部101、画像処理部102、並びに表示制御部103といった各種の処理を実行する処理部(Processing Unit)のハードウェア的な構造としては、次に示す各種のプロセッサ(Processor)を用いることができる。各種のプロセッサには、上述したように、ソフトウェア(作動プログラム72および94)を実行して各種の処理部として機能する汎用的なプロセッサであるCPU71および91に加えて、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。
 1つの処理部は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせ、および/または、CPUとFPGAとの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。
 複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントおよびサーバ等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサの1つ以上を用いて構成される。
 さらに、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子等の回路素子を組み合わせた電気回路(circuitry)を用いることができる。
 本開示の技術は、上述の種々の実施形態および/または種々の変形例を適宜組み合わせることも可能である。また、上記各実施形態に限らず、要旨を逸脱しない限り種々の構成を採用し得ることはもちろんである。例えば、電子カセッテ26は、放射線撮影室に複数台用意されていてもよい。
 以上に示した記載内容および図示内容は、本開示の技術に係る部分についての詳細な説明であり、本開示の技術の一例に過ぎない。例えば、上記の構成、機能、作用、および効果に関する説明は、本開示の技術に係る部分の構成、機能、作用、および効果の一例に関する説明である。よって、本開示の技術の主旨を逸脱しない範囲内において、以上に示した記載内容および図示内容に対して、不要な部分を削除したり、新たな要素を追加したり、置き換えたりしてもよいことはいうまでもない。また、錯綜を回避し、本開示の技術に係る部分の理解を容易にするために、以上に示した記載内容および図示内容では、本開示の技術の実施を可能にする上で特に説明を要しない技術常識等に関する説明は省略されている。
 本明細書において、「Aおよび/またはB」は、「AおよびBのうちの少なくとも1つ」と同義である。つまり、「Aおよび/またはB」は、Aだけであってもよいし、Bだけであってもよいし、AおよびBの組み合わせであってもよい、という意味である。また、本明細書において、3つ以上の事柄を「および/または」で結び付けて表現する場合も、「Aおよび/またはB」と同様の考え方が適用される。
 本明細書に記載された全ての文献、特許出願および技術規格は、個々の文献、特許出願および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (12)

  1.  放射線を出射する1台の放射線源と、
     放射線撮影室内において前記放射線源の位置を移動させる移動機構、および前記移動機構の動作を制御することで、前記放射線撮影室に設置された撮影台に対応した設定位置に前記放射線源を自動的に移動させるオートポジショニング機能を実行するオートポジショニング制御部を含むオートポジショニング装置と、
     紫外線を出射する紫外線源であり、前記移動機構によって前記放射線源とともに移動される紫外線源と、
     前記オートポジショニング機能を実行する場合に、前記撮影台への前記紫外線の照射を前記紫外線源に行わせる紫外線源制御部と、
    を備える放射線診断装置。
  2.  前記紫外線源制御部は、前記オートポジショニング機能により前記放射線源が前記設定位置に移動し、前記放射線源から前記放射線が出射される前に、前記紫外線源に前記照射を行わせる請求項1に記載の放射線診断装置。
  3.  前記紫外線源制御部は、前記放射線源から前記放射線が出射され、前記オートポジショニング機能により前記放射線源が前記設定位置に移動する前、および前記オートポジショニング機能により前記放射線源が前記設定位置に移動する最中のうちの少なくともいずれか1つの場合に、前記紫外線源に前記照射を行わせる請求項2に記載の放射線診断装置。
  4.  前回の放射線撮影と今回の放射線撮影の患者が同じで、かつ前回の放射線撮影と今回の放射線撮影で使用する前記撮影台が同じ場合、今回の放射線撮影の前に前記紫外線源による前記照射を行わない請求項1から請求項3のいずれか1項に記載の放射線診断装置。
  5.  前記紫外線源制御部は、前記放射線源と前記撮影台との距離に応じて、前記紫外線の殺菌能力を変更する請求項1から請求項4のいずれか1項に記載の放射線診断装置。
  6.  前記紫外線源制御部は、前記紫外線の強度および照射時間のうちの少なくとも1つを変更することで、前記殺菌能力を変更する請求項5に記載の放射線診断装置。
  7.  カメラまたは動体検知センサを備え、
     前記カメラの撮影画像に人が写った場合、または、前記動体検知センサが動体を検知した場合、前記紫外線源による前記照射を行わない請求項1から請求項6のいずれか1項に記載の放射線診断装置。
  8.  前記オートポジショニング装置は、人がいる環境下で前記オートポジショニング機能を実行させないために設けられたカメラまたは動体検知センサを含み、
     前記オートポジショニング装置に含まれる前記カメラまたは前記動体検知センサが流用される請求項7に記載の放射線診断装置。
  9.  前記紫外線源制御部は、オペレータからの指示に応じて前記オートポジショニング制御部が前記オートポジショニング機能を実行する場合に、前記紫外線源に前記照射を行わせる請求項1から請求項8のいずれか1項に記載の放射線診断装置。
  10.  前記紫外線源制御部は、予め設定された設定時刻に前記オートポジショニング制御部が前記オートポジショニング機能を実行する場合に、前記紫外線源に前記照射を行わせる請求項1から請求項9のいずれか1項に記載の放射線診断装置。
  11.  前記放射線源には、前記放射線の照射野を規定する照射野限定器が取り付けられており、
     前記紫外線源は前記照射野限定器に設けられている請求項1から請求項10のいずれか1項に記載の放射線診断装置。
  12.  放射線を出射する1台の放射線源と、放射線撮影室内において前記放射線の位置を移動させる移動機構を含むオートポジショニング装置とを備える放射線診断装置の作動方法であって、
     前記移動機構の動作を制御することで、前記放射線撮影室に設置された撮影台に対応した設定位置に前記放射線源を自動的に移動させるオートポジショニング機能を実行すること、および、
     前記オートポジショニング機能を実行する場合に、前記撮影台への紫外線の照射を、前記移動機構によって前記放射線源とともに移動される紫外線源に行わせること、
    を含む放射線診断装置の作動方法。
PCT/JP2021/039310 2020-11-20 2021-10-25 放射線診断装置、放射線診断装置の作動方法 WO2022107555A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022563658A JPWO2022107555A1 (ja) 2020-11-20 2021-10-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020193548 2020-11-20
JP2020-193548 2020-11-20

Publications (1)

Publication Number Publication Date
WO2022107555A1 true WO2022107555A1 (ja) 2022-05-27

Family

ID=81708970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039310 WO2022107555A1 (ja) 2020-11-20 2021-10-25 放射線診断装置、放射線診断装置の作動方法

Country Status (2)

Country Link
JP (1) JPWO2022107555A1 (ja)
WO (1) WO2022107555A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136028A (ja) * 2009-12-28 2011-07-14 Fujifilm Corp 放射線画像撮影装置
US20140294142A1 (en) * 2013-03-28 2014-10-02 Samsung Electronics Co., Ltd. X-ray imaging device and method of controlling the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136028A (ja) * 2009-12-28 2011-07-14 Fujifilm Corp 放射線画像撮影装置
US20140294142A1 (en) * 2013-03-28 2014-10-02 Samsung Electronics Co., Ltd. X-ray imaging device and method of controlling the same

Also Published As

Publication number Publication date
JPWO2022107555A1 (ja) 2022-05-27

Similar Documents

Publication Publication Date Title
US9072440B2 (en) Radiographic system and control method thereof
JP5460666B2 (ja) 放射線撮影システムおよび放射線撮影システムの長尺撮影方法
WO2013154179A1 (ja) 放射線撮影システム及びその作動方法
US12036053B2 (en) Radiodiagnostic apparatus and method of operating radiodiagnostic apparatus
US7502439B2 (en) Radiographic apparatus and method of using the same
JP2017127388A (ja) X線診断装置及びx線検出器
WO2022107555A1 (ja) 放射線診断装置、放射線診断装置の作動方法
US11684263B2 (en) Radiodiagnostic apparatus and method of operating radiodiagnostic apparatus
JP7325943B2 (ja) 医用画像診断システム及びパラメータ選択方法
US11617547B2 (en) Medical image diagnostic system and medical image diagnostic apparatus
JP7307033B2 (ja) 処理装置、処理装置の作動方法、処理装置の作動プログラム
WO2022107556A1 (ja) 放射線診断装置
JP7307042B2 (ja) 放射線診断装置、および放射線診断装置の作動方法
JP7307041B2 (ja) 放射線診断装置、および放射線診断装置の作動方法
JP7262960B2 (ja) 医用画像診断装置及び撮影計画装置
WO2022138575A1 (ja) 医療機器
JP2021191388A (ja) 処理装置、処理装置の作動方法、処理装置の作動プログラム
WO2022113542A1 (ja) 医療診断装置、医療診断装置の制御方法、及びプログラム
JP2021040903A (ja) 放射線撮影装置および放射線撮影システム
WO2022107496A1 (ja) 放射線診断装置
US20230293124A1 (en) Imaging support apparatus, operation method of imaging support apparatus, and operation program of imaging support apparatus
JP2022161280A (ja) 医用画像診断装置及び制御方法
JP2023160535A (ja) 滅菌システム
JP7412952B2 (ja) 医用画像診断装置
JP7269823B2 (ja) X線ct装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022563658

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894429

Country of ref document: EP

Kind code of ref document: A1