WO2022105189A1 - 改性聚轮烷嵌段共聚物及其制备方法、固态聚合物电解质 - Google Patents

改性聚轮烷嵌段共聚物及其制备方法、固态聚合物电解质 Download PDF

Info

Publication number
WO2022105189A1
WO2022105189A1 PCT/CN2021/097991 CN2021097991W WO2022105189A1 WO 2022105189 A1 WO2022105189 A1 WO 2022105189A1 CN 2021097991 W CN2021097991 W CN 2021097991W WO 2022105189 A1 WO2022105189 A1 WO 2022105189A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyrotaxane
block
polymer
modified
modified polyrotaxane
Prior art date
Application number
PCT/CN2021/097991
Other languages
English (en)
French (fr)
Inventor
邓永红
徐洪礼
王庆荣
彭雯静
谢晶冰
Original Assignee
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学 filed Critical 南方科技大学
Publication of WO2022105189A1 publication Critical patent/WO2022105189A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/024Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
    • C08G81/027Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G containing polyester or polycarbonate sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2387/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of polymer materials, in particular to a modified polyrotaxane block copolymer and a preparation method thereof, and a solid polymer electrolyte.
  • Electrochemical batteries especially lithium-ion batteries, have many advantages and have entered the energy fields such as smart electronic products, electric vehicles, and large-scale energy storage grids on a large scale.
  • the further development of secondary electrochemical cells with higher specific energy and higher safety is of great significance and value to the secondary development of the new energy industry.
  • Solid-state batteries based on polymer electrolytes have great room for improvement in terms of battery energy density, high temperature operating temperature range, and cycle life.
  • Solid-state electrochemical batteries using solid-state polymer electrolytes instead of organic small molecule electrolytes can improve energy density At the same time, it is also expected to completely solve the safety concerns of the battery.
  • solid polymer electrolytes generally have problems such as low ionic conductivity at room temperature, need to be heated to a certain temperature to improve their ionic conductivity, and poor mechanical properties, resulting in a very narrow application field of solid polymer electrolytes. Therefore, there is an urgent need for a solid polymer electrolyte with good ionic conductivity and mechanical properties.
  • the purpose of the present invention is to provide a kind of modified polyrotaxane block copolymer and its preparation method, solid polymer electrolyte, aims to solve the technical problems of low ionic conductivity and poor mechanical properties in the existing solid polymer electrolyte .
  • one aspect of the present invention provides a modified polyrotaxane block copolymer, which comprises at least one modified polyrotaxane block and at least one polymer block, the modified polyrotaxane block
  • the alkane blocks and the polymer blocks are alternately connected by covalent bonds; wherein, the modified polyrotaxane blocks are obtained by modifying the polyrotaxane by a polymer with ion transport capability, and the polymer blocks
  • the Young's modulus is greater than or equal to 0.01GPa.
  • the modified polyrotaxane block copolymer provided by the present invention comprises at least one modified polyrotaxane block and at least one polymer block, wherein the modified polyrotaxane block is a polyrotaxane having ion transport ability after passing through the modified polyrotaxane block.
  • the modified polymer has a low molecular weight and has little or no entanglement in the copolymer.
  • the polyrotaxane host molecule can freely rotate and slide on the guest molecule, so as to greatly improve the mobility of the chain segment.
  • the modified polyrotaxane block copolymer provided by the present invention has higher ionic conductivity.
  • the Young's modulus of the polymer block is greater than or equal to 0.01GPa, which can provide high mechanical toughness and strength for the modified polyrotaxane copolymer.
  • the two types of blocks are covalently bonded together, and nano-scale microphase separation can occur, so the two-phase transport of lithium ions and the function of providing mechanical support do not interfere with each other, and at the same time have excellent ionic conductivity and mechanical properties. The application prospect is good.
  • Another aspect of the present invention provides a method for preparing a modified polyrotaxane block copolymer, comprising the steps of:
  • a polymer with ion transport capability is provided, and the polymer is reacted with the polyrotaxane block copolymer to obtain a modified polyrotaxane block copolymer.
  • the prepared polyrotaxane block is modified with a polymer with ion transport ability, so that the obtained modified polyrotaxane block is It has higher ion transport ability, thereby improving the ionic conductivity of the obtained modified polyrotaxane block copolymer; at the same time, by combining the polymer block with a Young's modulus greater than or equal to 0.01GPa with the modified polyrotaxane block.
  • the reaction is carried out so that the two types of blocks are covalently bonded together, and nano-scale microphase separation can occur, so that the two-phase lithium ion transport and mechanical support functions do not interfere with each other, and the modified polyrotaxane can be obtained.
  • Block copolymers not only have high ionic conductivity, but also have high mechanical strength.
  • a polyrotaxane block copolymer can also be obtained by first reacting a polyrotaxane block and a polymer block with a Young's modulus greater than or equal to 0.01 GPa, and then using a polyrotaxane block copolymer with ion transport ability
  • the modified polyrotaxane block copolymer is prepared by modifying the obtained polyrotaxane block copolymer by the polymer, which has the advantages of flexible method and easy implementation.
  • a solid polymer electrolyte which comprises the modified polyrotaxane block copolymer provided by the present invention or the modified polyrotaxane block copolymer prepared by the method for preparing the modified polyrotaxane block copolymer provided by the present invention.
  • Modified polyrotaxane block copolymers, and electrolyte salts are provided, which comprises the modified polyrotaxane block copolymer provided by the present invention or the modified polyrotaxane block copolymer prepared by the method for preparing the modified polyrotaxane block copolymer provided by the present invention.
  • the solid polymer electrolyte provided by the present invention has high enough electrical conductivity and excellent film-forming performance, and can form a self-supporting electrolyte membrane with high mechanical strength.
  • the room temperature conductivity of the solid polymer electrolyte provided by the invention can reach 4.5 ⁇ 10 -4 S/cm, the electrochemical window can reach 5.3V, the lithium ion migration number can reach 0.45, and the breaking strength can reach 16MPa.
  • Fig. 1 is the structural representation of the modified polyrotaxane diblock copolymer (BA) provided in the embodiment of the present invention
  • Fig. 2 is the structural representation of the modified polyrotaxane triblock copolymer (BAB) provided in the embodiment of the present invention
  • Fig. 3 is the structural representation of the modified polyrotaxane triblock copolymer (ABA) provided in the embodiment of the present invention
  • BA polyrotaxane multi-block copolymer
  • Fig. 5 is the molecular structure schematic diagram of the modified polyrotaxane block provided by the embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a polyrotaxane main body in a modified polyrotaxane block provided in an embodiment of the present invention
  • Example 7 is a schematic diagram of the microphase separation structure of the modified polyrotaxane block copolymer obtained in Example 2 of the present invention.
  • Fig. 8 is the nuclear magnetic spectrum of the modified polyrotaxane block copolymer obtained in Example 2 of the present invention.
  • Fig. 9 is the mechanical property test result diagram of the solid electrolyte membrane obtained in Example 2 of the present invention.
  • Example 10 is a graph showing the test results of the ionic conductivity of the solid polymer electrolyte membrane obtained in Example 2 by the experimental example of the present invention.
  • Example 11 is a graph showing the test results of the electrochemical stability window of the solid polymer electrolyte membrane obtained in Example 2 by the experimental example of the present invention.
  • FIG. 12 is a graph showing the test results of the lithium ion migration number of the solid polymer electrolyte membrane obtained in Example 2 in the experimental example of the present invention.
  • the term "and/or”, which describes the association relationship between related objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate that A exists alone, A and B exist simultaneously, and the individual There is a case of B. where A and B can be singular or plural.
  • the character "/" generally indicates that the associated objects are an "or" relationship.
  • At least one refers to one or more, and "a plurality” refers to two or more.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one (one) of a, b, or c or “at least one (one) of a, b, and c” can mean: a, b, c, a-b ( That is, a and b), a-c, b-c, or a-b-c, wherein a, b, and c may be single or multiple, respectively.
  • the weight of the relevant components mentioned in the embodiments of the present invention can not only refer to the specific content of each component, but also can represent the proportional relationship between the weights of the components. Therefore, as long as the implementation of the present invention is carried out It is within the scope of the disclosure of the present invention that the content of the relevant components is enlarged or reduced in proportion.
  • the weight described in the embodiments of the present invention may be a mass unit known in the chemical industry, such as ⁇ g, mg, g, and kg.
  • An embodiment of the present invention provides a modified polyrotaxane block copolymer, which includes at least one modified polyrotaxane block and at least one polymer block, and the modified polyrotaxane block and the polymer block pass through The covalent bonds are alternately connected; wherein, the modified polyrotaxane block is obtained by modifying the polyrotaxane with a polymer with ion transport capability, and the Young's modulus of the polymer block is greater than or equal to 0.01GPa.
  • the modified polyrotaxane block copolymer provided in the embodiment of the present invention includes at least one modified polyrotaxane block and at least one polymer block, wherein the modified polyrotaxane block is a It can be obtained by polymer modification with high molecular weight, with low molecular weight and little or no entanglement in the copolymer. Using the characteristics that the host molecule of polyrotaxane can freely rotate and slide on the guest molecule, the chain segment can be greatly improved. For the purpose of mobility and lithium ion transmission efficiency, the modified polyrotaxane block copolymer provided in the embodiment of the present invention has higher ionic conductivity.
  • the Young's modulus of the polymer block is greater than or equal to 0.01 GPa, which can provide higher mechanical toughness and strength for the modified polyrotaxane copolymer.
  • the two types of blocks are covalently bonded together, and nano-scale microphase separation can occur, so the two-phase transport of lithium ions and the function of providing mechanical support do not interfere with each other, and at the same time have excellent ionic conductivity and mechanical properties. The application prospect is good.
  • the number of modified polyrotaxane blocks and polymer blocks in the modified polyrotaxane block copolymer provided in the embodiment of the present invention can theoretically be infinite.
  • the mechanical strength of the rotaxane block copolymer is higher.
  • the number of modified polyrotaxane blocks and the number of polymer blocks are both greater than or equal to 1 and less than or equal to 100, and the number of modified polyrotaxane blocks and the number of polymer blocks may be equal can also be unequal.
  • the modified polyrotaxane diblock copolymer, modified polyrotaxane triblock copolymer, and modified polyrotaxane multiblock copolymer provided in the embodiments of the present invention will be described in detail, respectively.
  • the modified polyrotaxane block is represented by B
  • the polymer block is represented by A.
  • Figure 1 shows the structure of a modified polyrotaxane diblock copolymer (BA). It can be seen from FIG. 1 that the modified polyrotaxane diblock copolymer includes a modified polyrotaxane block B and a polymer block A, and the modified polyrotaxane block B and the polymer The blocks A are connected by covalent bonds.
  • Figure 2 shows the structure of a modified polyrotaxane triblock copolymer (BAB). It can be seen from FIG. 2 that the modified polyrotaxane triblock copolymer includes two modified polyrotaxane blocks B and one polymer block A, and the modified polyrotaxane block B and the polymer The blocks A are alternately linked by covalent bonds.
  • Figure 3 shows the structure of another modified polyrotaxane triblock copolymer (ABA). It can be seen from FIG. 3 that the modified polyrotaxane triblock copolymer includes one modified polyrotaxane block B and two polymer blocks A, and the modified polyrotaxane block B and the polymerized The blocks A are alternately linked by covalent bonds.
  • BAB modified polyrotaxane triblock copolymer
  • Figure 4 shows the structure of a modified polyrotaxane multiblock copolymer (BA) 2 .
  • the modified polyrotaxane multi-block copolymer includes 2 modified polyrotaxane blocks B and 2 polymer blocks A, and the modified polyrotaxane blocks B and the polymer The blocks A are alternately linked by covalent bonds.
  • FIG. 4 is only a simple schematic diagram of the structure of the modified polyrotaxane multi-block copolymer (BA) n , and does not represent a limitation on the value of n.
  • one modified polyrotaxane block B and one polymer block A can be used as one unit, and the modified polyrotaxane multi-block copolymer can be n such units (n is greater than Integer equal to 1), it can also be a modified polyrotaxane block B added to the side of the polymer block A at the end of the n units, or it can be a modified polyrotaxane at the end of the n units.
  • One polymer block A is added to the B side of the alkane block.
  • the modification of the polyrotaxane block with a polymer with ion transport capability is specifically to modify the hydroxyl group of the main cyclodextrin on the polyrotaxane, and the modification method may be to modify the cyclodextrin
  • the hydroxyl group of cyclodextrin can be partially modified, or all the hydroxyl groups of cyclodextrin can be modified.
  • the ionic conductivity of the obtained modified polyrotaxane block can be significantly improved, thereby improving the ionic conductivity of the modified polyrotaxane block copolymer.
  • this modification method can effectively destroy the hydrogen bond interaction between cyclodextrin molecules, and significantly increase the solubility and solution processability of the polyrotaxane block copolymer.
  • the modified polyrotaxane block will be described in detail below with reference to FIG. 5 and FIG. 6 .
  • the structure of the polyrotaxane should include a cyclic host and a linear guest, and the linear guest acts as an axis to pass through the hollow region of the cyclic body, and the cyclic bodies are strung together to form a polyrotaxane.
  • the cyclodextrin which is a cyclic main body, is partially or completely modified with a polymer with ion transport ability (R in Fig.
  • Cyclodextrin as the cyclic main body can be selected from any of ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin Structural formulas of ⁇ -cyclodextrin and ⁇ -cyclodextrin are shown in Figure 6.
  • the polymer with ion transport capability can be selected from at least one of polyether, polyester, polycarbonate, polyurethane, polyamide, polyimide, polysiloxane, polynitrile, and polyphosphazene , comb polymers with main chain and side chain groups can also be selected.
  • the repeating unit in at least one of polyether, polyester, polycarbonate, polyurethane, polyamide, polyimide, polysiloxane, polynitrile, and polyphosphazene, the repeating unit may be 1-100, preferably 1-50, to achieve higher segment mobility and higher ionic conductivity;
  • the main chain in the comb polymer with main chain and side chain groups is selected from polysiloxane, At least one of polyphosphazene, polynitrile, polyether, polyolefin, polyacrylate, polymethacrylate; side chain is selected from oligoether, nitrile group, sulfone group, thiol, polyether,
  • At least one of polyester, polycarbonate, polyurethane, polyamide, polyimide, polynitrile, and its repeating unit may be 1-100, preferably 1-50, in order to achieve higher segment mobility and more High ionic conductivity.
  • the polyrotaxane guest is selected from polyether, polyester, polycarbonate, polyurethane, polyamide, polyimide, polysiloxane, polynitrile, polyphosphazene, At least one of polyolefins.
  • the chain end of the polyrotaxane is capped by a base capping agent with a relatively large volume, so as to prevent the cyclic host from falling off from the chain guest.
  • a base capping agent with a relatively large volume, so as to prevent the cyclic host from falling off from the chain guest.
  • the Young's modulus of the polymer block is 5 GPa or less.
  • the polymer block is selected from the group consisting of polystyrene, hydrogenated polystyrene, polyvinylcyclohexane, polyvinylpyridine, polyalkylacrylate, polyalkylmethacrylate, polyphenylene Ethers, polyimides, polyamides, polyesters, polyolefins, polyalkyl vinyl ethers, polycyclohexyl vinyl ethers, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymers, styrene- At least one of alkyl methacrylate copolymer, styrene-vinylpyridine copolymer, alkyl methacrylate-vinylpyridine copolymer, styrene-alkyl methacrylate-vinylpyridine copolymer kind.
  • polymer blocks all have high molecular weight and rigidity in molecular structure, and there are a large number of intramolecular and intermolecular chain entanglements in their structure, which endow the modified polyrotaxane block copolymer with better performance. mechanical toughness and strength.
  • the polymer block is usually a linear structure.
  • the polymer block may also have a branched structure and/or a comb-shaped structure, which can prevent the cyclic host from being separated from the chain-like guest. If the upper part falls off, the step of capping the modified polyrotaxane block can be omitted.
  • the modified polyrotaxane block copolymer provided in the embodiment of the present invention can be prepared by the following preparation method.
  • an embodiment of the present invention provides a method for preparing a modified polyrotaxane block copolymer, which comprises the following steps:
  • the prepared polyrotaxane block is modified with a polymer with ion transport capability, so that the obtained modified polyrotaxane is obtained.
  • the block has higher ion transport ability, thereby improving the ionic conductivity of the obtained modified polyrotaxane block copolymer; at the same time, by combining the polymer block with a Young's modulus greater than or equal to 0.01GPa with the modified polyrotaxane
  • the block reacts so that the two types of blocks are covalently bonded together, and nano-scale microphase separation can occur, so the two-phase lithium ion transport and mechanical support functions do not interfere with each other, which can make the obtained modified polymer.
  • Rotaxane block copolymers not only have high ionic conductivity, but also have high mechanical strength.
  • the polyrotaxane block and the polymer block with Young's modulus greater than or equal to 0.01 GPa may be reacted first to obtain the polyrotaxane block copolymer, and then the polyrotaxane block copolymer can be obtained by reacting the polyrotaxane block with the polymer block with Young's modulus greater than or equal to 0.01 GPa.
  • the modified polyrotaxane block copolymer is prepared in the manner of modifying the obtained polyrotaxane block copolymer by a capable polymer, which has the advantages of flexible method and easy implementation.
  • the preparation method provided by the above S11-S13 is to first modify the polyrotaxane block, and then copolymerize with the polymer block to obtain a modified polyrotaxane block copolymer; the preparation method provided by S21-S23 is to first The alkane block and the polymer block are copolymerized to obtain a polyrotaxane block copolymer, and then the polyrotaxane block copolymer is modified to obtain a modified polyrotaxane block copolymer.
  • the preparation method provided by S21-S23 is preferably used for preparation; when the chain of the polyrotaxane has a comb-shaped or branched structure When the end is capped, it can be prepared by either the preparation method provided by S11-S13 or the preparation method provided by S21-S23.
  • At least one end group of the polyrotaxane guest may need to be functionalized.
  • Functionalization refers to the modification of the functional groups located at the end groups of the polyrotaxane guest into other functional groups that are easily covalently linked to the polymer block or functional groups that can initiate the polymer block. By functionalizing at least one end group of the polyrotaxane guest, it can be rendered covalently attached to the polymer block.
  • different end-group functionalization modes can be selected for the polyrotaxane guest.
  • the obtained modified polyrotaxane copolymer is a diblock copolymer, it is sufficient to functionalize one of the end groups of the polyrotaxane guest.
  • the obtained modified polyrotaxane copolymer is a triblock copolymer, it can be divided into two cases: the first one is that the modified polyrotaxane triblock copolymer is a BAB structure, and at this time, the polyrotaxane guest of which One end group can be functionalized; the second is that the modified polyrotaxane triblock copolymer has an ABA structure. At this time, both end groups of the polyrotaxane guest should be functionalized so that the two ends can be respectively The polymer blocks are covalently linked.
  • both end groups of the polyrotaxane guest are functionalized.
  • the polyrotaxane guest can either be purchased directly from commercial polymers or prepared in-house. There is no particular limitation on the preparation method of the polyrotaxane guest in the embodiments of the present invention, and the polyrotaxane guest selected actually can be prepared according to a conventional method in the art.
  • the polyrotaxane guest is selected from at least one of polyethers, polyesters, polycarbonates, polyurethanes, polyamides, polyimides, polysiloxanes, polynitriles, polyphosphazenes, and polyolefins
  • the functional group after end-group functionalization treatment is selected from at least one of hydroxyl group, amine group, carboxyl group, mercapto group, aldehyde group, alkenyl group, alkynyl group, azide group, cyanate group, isocyanate group, halogen group .
  • the polyrotaxane guest (at least one end-functionalized polyrotaxane guest) is reacted with the polyrotaxane host to give a polyrotaxane block.
  • the main body of the polyrotaxane is cyclodextrin, and specifically, any one of ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin and ⁇ -cyclodextrin can be selected.
  • the chain ends of the polyrotaxane blocks obtained by S11 are capped with a bulky capping agent to prevent the cyclic host from falling off the chain guest.
  • a polymer with ion transport capability is provided, and the polyrotaxane block is modified by using the polymer to obtain a modified polyrotaxane block.
  • polymers with ion transport capabilities are either purchased directly or obtained by polymerizing the monomers that form these polymers during the modification process of the polyrotaxane blocks.
  • the polymer with ion transport capability is at least selected from the group consisting of polyether, polyester, polycarbonate, polyurethane, polyamide, polyimide, polysiloxane, polynitrile, and polyphosphazene One, or select a comb polymer with main chain and side chain groups; wherein, the main chain is selected from polysiloxane, polyphosphazene, polynitrile, polyether, polyolefin, polyacrylate, polymethyl At least one of acrylates; side chains are selected from oligoethers, nitrile groups, sulfone groups, thiols, polyethers, polyesters, polycarbonates, polyurethanes, polyamides, polyimides, polynitrile at least one of.
  • the functionalization here refers to modifying the terminal functional group of the polymer with ion transport capability into other functional groups that are easily reacted with the functional groups on the cyclodextrin host molecule to form covalent bonds.
  • the hydroxyl group of cyclodextrin can be selected to be modified to be easily compatible with the modified polymer with ion transport capability.
  • the terminal functional group of the polymer can be efficiently bonded to the functional group to achieve the purpose of improving the modification effect of the polyrotaxane block.
  • the modified functional group is selected from at least a hydroxyl group, an amine group, a carboxyl group, a mercapto group, an aldehyde group, an alkenyl group, an alkynyl group, an azide group, a cyanate group, an isocyanate group, and a halogen group.
  • the modification of the polyrotaxane block is specifically the modification of some or all of the hydroxyl groups on the host cyclodextrin in the polyrotaxane.
  • a polymer block having a Young's modulus of 0.01 GPa or more is provided, and a modified polyrotaxane block copolymer is obtained by reacting the polymer block with a modified polyrotaxane block. Since the Young's modulus of the polymer block is greater than or equal to 0.01GPa, it has high mechanical toughness and strength, so the obtained modified polyrotaxane block copolymer can have high mechanical toughness and strength, and at the same time have good mechanical toughness and strength.
  • the polymer blocks are either purchased directly or obtained by polymerizing the monomers that form these polymer blocks at the same time as the reaction process with the modified polyrotaxane blocks.
  • At least one end group of the polymer block may need to be functionalized.
  • Functionalization refers to the modification of functional groups located at the end groups of the polymer blocks into other functional groups that are easily covalently linked to the modified polyrotaxane blocks. Among them, according to the number of blocks in the obtained modified polyrotaxane copolymer, different end-group functionalization modes can be selected for the polymer blocks. When the obtained modified polyrotaxane copolymer is a diblock copolymer, it is sufficient to functionalize one of the end groups of the polymer blocks.
  • the obtained modified polyrotaxane copolymer is a triblock copolymer, it can be divided into two cases: the first one is that the modified polyrotaxane triblock copolymer has a BAB structure. Each end group is functionalized, so that the two ends can be covalently connected to the modified polyrotaxane block; the second, the modified polyrotaxane triblock copolymer has an ABA structure, and the polymer block should be One of the end groups is functionalized.
  • the resulting modified polyrotaxane copolymer is a multi-block copolymer (BA) n structure, both end groups of the polymer blocks are functionalized.
  • BA multi-block copolymer
  • the functional group after end-group functionalization is selected from hydroxyl, amine, carboxyl, mercapto, aldehyde, alkenyl, alkynyl, azide, cyanate, isocyanate, halogen at least one of them.
  • the preparation method provided by S21-S23 is to firstly copolymerize the polyrotaxane block and the polymer block to obtain the polyrotaxane block copolymer, and then modify the polyrotaxane block copolymer to obtain the modified polyrotaxane. block copolymer.
  • S21 is the same as S11, and in order to save space, details are not repeated here.
  • the chain ends of the polyrotaxane blocks obtained by S21 are capped with a bulky capping agent to prevent the cyclic host from falling off the chain guest.
  • the polymer block and the polyrotaxane block are reacted to obtain a polyrotaxane block copolymer.
  • the Young's modulus of the polymer block is greater than or equal to 0.01 GPa, and has high mechanical toughness and strength, so that the obtained polyrotaxane block copolymer can have high mechanical toughness and strength.
  • the specific selection of the polymer block, whether it is end-functionalized or not, and the specific selection of the functional group after the end-group functionalization treatment are all related to the specific selection of the polymer block in S13, whether it is end-functionalized or not, and the specific selection of the end-group functionalized treatment
  • the specific selection of the latter functional group is the same, and in order to save space, details are not repeated here.
  • a polymer with ion transport capability is used to react with the polyrotaxane block copolymer to improve its ionic conductivity, so that the obtained modified polyrotaxane block copolymer not only has good mechanical toughness and strength, but also has good mechanical properties. Has good ion-conducting properties.
  • the specific selection of the polymer with ion transport capability, whether it is end-group functionalized or not, and the specific selection of the functional group after the end-group functionalization treatment are all the same as the specific selection of the polymer with transport capability in S12, whether the end-group functionalized
  • the specific selection of the functional groups after the denaturation and end-group functionalization treatment is the same, and in order to save space, the details are not repeated here.
  • the embodiment of the present invention also provides a solid polymer electrolyte, which comprises the modified polyrotaxane block copolymer provided by the embodiment of the present invention or the preparation method of the modified polyrotaxane block copolymer provided by the embodiment of the present invention The prepared modified polyrotaxane block copolymer, and electrolyte salt.
  • the solid polymer electrolyte provided in the embodiment of the present invention has high enough electrical conductivity and excellent film-forming performance, and can form a self-supporting electrolyte membrane with high mechanical strength.
  • the room temperature conductivity of the solid polymer electrolyte provided by the embodiment of the present invention can reach 4.5 ⁇ 10 -4 S/cm
  • the electrochemical window can reach 5.3V
  • the lithium ion migration number can reach 0.45
  • the breaking strength can reach 16MPa.
  • electrolyte salts with better ion-carrying properties in the art and large dissociation constants in polymer electrolytes are preferred, including but not limited to lithium, sodium, potassium, silver, barium, lead, calcium, ruthenium, Chlorides, bromides, sulfates, nitrates, sulfides, hydrides, nitrides, phosphides, sulfonamides, triflates, tantalum, rhodium, iridium, cobalt, nickel, molybdenum, tungsten or vanadium Thiocyanate, perchlorate, borate or selenide.
  • LiCF 3 SO 3 , LiB(C 2 O 4 ) 2 , LiN(CF 3 SO 2 ) 2 , LiC(CF 3 SO 2 ) 3 , LiC(CH 3 )(CF 3 SO 2 are selected ) 2 , LiCH(CF 3 SO 2 ) 2 , LiCH 2 (CF 3 SO 2 ), LiC 2 F 5 SO 3 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 , LiB( CF 3 SO 2 ) 2 , LiPF 6 , LiSbF 6 , LiClO 4 , LiSCN, LiAsF 6 , NaCF 3 SO 3 , NaPF 6 , NaClO 4 , NaI, NaBF 4 , NaAsF 6 , KCF 3 SO 3 , KPF 6 , KI, At least one of LiCF 3 CO 3 , NaClO 3 , NaSCN, KBF 4 , KPF 6 , Mg(C
  • This embodiment provides a method for preparing a modified polyrotaxane diblock copolymer (BA), wherein the Young's modulus of polyethylene terephthalate as another polymer block is 2GPa. Proceed as follows:
  • caprolactone monomer 100g of caprolactone monomer, 2g of 9-anthracene methanol and 10g of stannous octoate were added to a 500mL three-necked round-bottomed flask, vacuumed and back flushed with nitrogen, and the reactant was placed at 80°C for 24h reaction. The mixture was poured into methanol for precipitation, washed three times with methanol to obtain a white solid, and dried to obtain PCL;
  • Get step (33) gained pseudorotaxane pPR 10g, molecular weight is 500g/mol of methacrylate end-capped ethylene glycol terephthalate 50g and pentamethyldiethylenetriamine (PMDETA) 2g are added in 50mL of DMF , after three cycles of freezing-pumping-thawing and deoxygenation, Cu(I)Cl was added quickly, placed in a nitrogen atmosphere at 60 °C for 24 h, the solution was precipitated in cold methanol, and the supernatant was centrifuged to remove the remaining solid.
  • PMDETA pentamethyldiethylenetriamine
  • PCL-g-PR Polycaprolactone graft modified polyrotaxane
  • step (34) Take 10 g of the polyrotaxane diblock copolymer obtained in step (34) and dissolve it in 40 mL of DMF, then add 40 g of ⁇ -caprolactone monomer, add 12.2 g of 4-dimethylaminopyridine, pass nitrogen protection and The reaction was stirred at 160°C for 24 hours. The product was precipitated with cold methanol, washed three times, and dried to obtain a white solid. The molecular weight test showed that its number average molecular weight was 26,000 g/mol, and the obtained white solid was a modified polyrotaxane diblock copolymer. thing.
  • This embodiment provides a method for preparing a modified polyrotaxane triblock copolymer (ABA), wherein the Young's modulus of polystyrene as another polymer block is 3GPa. Proceed as follows:
  • step (41) Take 20g of pseudorotaxane pPR obtained in step (41) and add it to 150mL of DMF, then add 2.50g of 3-(2-bromoisobutyryloxy)adamantyl methacrylate and 2.5g of triethylamine successively , the above mixture was stirred at room temperature for 24h in a nitrogen atmosphere, and the solid obtained after centrifugation was washed twice with a mixture of DMF and methanol with a volume ratio of 1:1, and then twice with anhydrous methanol, and then the solid was dissolved in 50mL of In DMSO, precipitation in deionized water, after centrifugation, the obtained solid was washed twice with deionized water, and polyrotaxane PR was obtained after freeze-drying;
  • step (42) Take 10 g of polyrotaxane PR obtained in step (42) and add it to 150 g of ⁇ -caprolactone monomer, add 50 mL of DMF and 2.5 g of 1,5,7-triazabicyclo[4.4.0]decane-5 After -ene, the reaction was stirred at 60 °C for 48 h, the product was washed three times with anhydrous methanol, centrifuged, and dried to obtain a white solid that was a PCL graft-modified polyrotaxane;
  • the peaks at 6.2-7.2 ppm are assigned to hydrogen on the benzene ring in polystyrene
  • the peaks at 1.4, 2.3 and 4.1 ppm are assigned to hydrogen on polycaprolactone
  • the peaks at 3.9, 4.4 and 5.0 ppm are assigned to hydrogen on polycaprolactone.
  • the small peaks at etc. were assigned to the hydrogen on the cyclodextrin, and the assignment of these NMR peaks confirmed that the molecular structure of the obtained polymer was consistent with the designed molecular structure.
  • the molecular weight test shows that its number average molecular weight is 51000g/mol.
  • This embodiment provides a method for preparing a modified polyrotaxane triblock copolymer (BAB), wherein the Young's modulus of polystyrene as another polymer block is 3 GPa. Proceed as follows:
  • caprolactone monomer 100g of caprolactone monomer, 2g of 9-anthracene methanol, 200mL of toluene and 4g of 1,5,7-triazabicyclo[4.4.0]dec-5-ene were added to a 500mL three-necked round bottom flask, After vacuuming and back flushing with nitrogen, the reactant was placed at 60 °C for 24 hours. After the reaction, the mixture was poured into methanol for precipitation, washed three times with methanol to obtain a white solid, and dried to obtain PCL guest;
  • PCL guest obtained in step (51) Take 20 g of PCL guest obtained in step (51) and add it to 180 mL of dry tetrahydrofuran, then add 4 g of bromopropyne and 0.8 g of sodium hydride in sequence, stir the above mixture at room temperature for 24 h in a nitrogen atmosphere, filter after the reaction is complete, The filtrate was concentrated and precipitated in 500 mL of methanol, washed three times with methanol, and dried in vacuo to obtain the end-group functionalized PCL guest;
  • Mn monoazide-terminated polystyrene
  • PMDETA pentamethyldiethylenetriamine
  • the solid was redissolved in dichloromethane, passed through a silica gel column to remove the copper salt, the filtrate was reprecipitated in methanol, and washed with methanol three times to obtain a white solid which was a polyrotaxane triblock copolymer.
  • This embodiment provides a method for preparing a modified polyrotaxane multi-block copolymer (BA) n , wherein the Young's modulus of polystyrene as another polymer block is 3 GPa. Proceed as follows:
  • step (62) Take 10 g of polyrotaxane obtained in step (62) and add it to 150 g of ⁇ -caprolactone monomer, add 50 mL of DMF and 2.5 g of 1,5,7-triazabicyclo[4.4.0]decane-5- After alkene (TBD), the reaction was stirred at 60 °C for 48 h, the product was washed three times with methanol, centrifuged, and dried to obtain a white solid. The molecular weight test shows that the number average molecular weight is 92000 g/mol, and the finally obtained modified polyrotaxane multi-block copolymer is (BA) 2 .
  • the present embodiment provides a method for preparing a copolymer film, and the steps are as follows:
  • the modified polyrotaxane block copolymer prepared in Examples 1-4 was dissolved in toluene to obtain a 10w/v% solution, filtered with a 5 ⁇ m filter membrane, and poured into a flat glass watch dish to slowly evaporate the solvent , and heated to 150°C for vacuum drying to ensure complete evaporation of the solvent, and a flat polymer film was obtained.
  • the white area (modified polyrotaxane phase) and the gray area (polystyrene phase) are respectively formed into phases, and the size is about 20-50 nm.
  • the structural characteristics of the microphase separation give The non-interfering properties of the two phases of transporting lithium ions and providing mechanical support can make the obtained modified polyrotaxane block copolymer not only have higher ionic conductivity, but also higher mechanical strength.
  • the copolymer film obtained in Example 2 was cut into long strips, and its mechanical strength was tested using a universal testing machine, and the tensile speed was 0.01/s.
  • Example 2 The detailed test results of Example 2 are shown in FIG. 9 . It can be seen from Figure 9 that when the modified polyrotaxane block copolymer obtained in Example 2 of the present invention is made into a copolymer film, its mechanical properties are excellent, its breaking strength is 13MPa, its elongation at break is 19%, and its Young's modulus is 19%. is 0.29GPa.
  • the mechanical property data of Examples 1-4 are summarized in Table 1.
  • This embodiment provides a method for preparing a solid polymer electrolyte membrane, and the steps are as follows:
  • This comparative example is basically the same as Example 3, except that the monoazide-terminated polystyrene in step (54) of Example 3 is replaced by a monoazide-terminated polystyrene with a molecular weight of 10,000 g/mol Ethylene glycol monomethyl ether (Young's modulus below 0.01 GPa).
  • the polymer solid electrolyte prepared in this comparative example is a wax-like substance, and the strength cannot achieve self-supporting and independent use as a polymer solid electrolyte.
  • Ionic conductivity sandwich the solid polymer electrolyte membrane with two pieces of stainless steel and place it in a 2025 battery case.
  • Ion migration number The solid polymer electrolyte membrane is sandwiched by two lithium sheets and placed in a 2025 battery case.
  • the lithium ion migration number is often measured by the steady-state current method, and is calculated by the following formula:
  • R 0 and R ss are the impedance before and after polarization, measured by the AC impedance method; I 0 and I ss are the initial current and steady-state current before polarization, respectively; ⁇ V refers to the polarization voltage, which is the value in this experiment. is 10mV.
  • Electrochemical window The solid polymer electrolyte membrane is clamped by a stainless steel sheet and a lithium sheet, and placed in a 2025 battery case.
  • the electrochemical working window is measured by linear voltammetry with an electrochemical workstation. The initial potential is -2.5V, the highest The potential was 6V and the scan rate was 1mV/s.
  • Example 2 The detailed test results of Example 2 are shown in Figures 7-12. It can be seen from Figures 7-12 that the room temperature conductivity of the solid polymer electrolyte provided by the embodiment of the present invention can reach 3.2 ⁇ 10 -4 S/cm, the conductivity increases steadily with the increase of temperature, and the electrochemical window can reach 5.2 V, the lithium ion migration number reaches 0.45.
  • the electrochemical data of Examples 1-4 are summarized in Table 2.
  • the modified polyrotaxane block copolymer obtained in the embodiment of the present invention is used as a solid polymer electrolyte, and after it is made into an electrolyte membrane, it has good mechanical properties and high room temperature ionic conductivity, and can be used as a solid state battery. It has good application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Conductive Materials (AREA)

Abstract

本申请属于高分子材料技术领域,具体涉及一种改性聚轮烷嵌段共聚物及其制备方法、固态聚合物电解质。本申请提供的改性聚轮烷嵌段共聚物包括至少一个改性聚轮烷嵌段和至少一个聚合物嵌段,其中,改性聚轮烷嵌段是聚轮烷经过具备离子传输能力的聚合物改性得到,具有更高的链段运动能力和离子电导率;聚合物嵌段的杨氏模量大于等于0.01GPa,将两者聚合所得改性聚轮烷嵌段共聚物同时具备优异的离子电导率性能和机械性能,应用前景良好。

Description

改性聚轮烷嵌段共聚物及其制备方法、固态聚合物电解质
本申请要求于2020年11月17日在中国专利局提交的、申请号为202011284405.4的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于高分子材料技术领域,具体涉及一种改性聚轮烷嵌段共聚物及其制备方法,以及一种固态聚合物电解质。
背景技术
电化学电池特别是锂离子电池具有诸多优点,已大规模进入智能电子产品、电动汽车和大规模储能电网等能源领域。进一步发展更高比能量、更高安全性的二次电化学电池对新能源产业二次大发展具有重要的意义和价值。但近几年频频爆出电化学电池安全事故表明安全问题已成为制约其更广泛深入应用的技术瓶颈。基于聚合物电解质的固态电池在电池能量密度、高温工作温度区间、循环寿命等方面均有较大的提升空间,以固态聚合物电解质替代有机小分子电解液的固态电化学电池在提高能量密度的同时,也有望彻底解决电池的安全性忧虑。
然而,固态聚合物电解质普遍存在室温离子电导率较低、需加热至一定温度方能提高其离子电导率,以及机械性能较差等问题,导致目前固态聚合物电解质的应用领域十分狭窄。因此,亟需一种兼具良好离子电导率和机械性能的固态聚合物电解质。
技术问题
本发明的目的是提供一种改性聚轮烷嵌段共聚物及其制备方法、固态聚合物电解质,旨在解决现有固态聚合物电解质存在的离子电导率低和机械性能较差的技术问题。
技术解决方案
为了实现上述发明目的,本发明一方面,提供了一种改性聚轮烷嵌段共聚物,其包括至少一个改性聚轮烷嵌段和至少一个聚合物嵌段,所述改性聚轮烷嵌段与所述聚合物嵌段通过共价键交替连接;其中,所述改性聚轮烷嵌段由聚轮烷经具备离子传输能力的聚合物改性得到,所述聚合物嵌段的杨氏模量大于等于0.01GPa。
本发明提供的改性聚轮烷嵌段共聚物包括至少一个改性聚轮烷嵌段和至少一个聚合物嵌段,其中,改性聚轮烷嵌段是聚轮烷经过具备离子传输能力的聚合物改性得到,分子量较低,在共聚物中具有很少的缠结或无缠结,利用聚轮烷主体分子可在客体分子上自由旋转和滑动的特性,达到大幅提高链段运动能力和锂离子传输效率的目的,使本发明提供的改性聚轮烷嵌段共聚物具有更高的离子电导率。同时,聚合物嵌段的杨氏模量大于等于 0.01GPa,可为改性聚轮烷共聚物提供较高的机械韧性和强度。该两类嵌段共价键合在一起,可发生纳米尺度的微相分离,因而其两相的传输锂离子和提供机械支撑功能互不干扰,同时具备优异的离子电导率性能和机械性能,应用前景良好。
本发明另一方面,提供了一种改性聚轮烷嵌段共聚物的制备方法,其包括如下步骤:
提供聚轮烷客体和聚轮烷主体,将所述聚轮烷客体与所述聚轮烷主体进行反应,得到聚轮烷嵌段;
提供具备离子传输能力的聚合物,将所述聚合物与所述聚轮烷嵌段进行反应,得到改性聚轮烷嵌段;
提供杨氏模量大于等于0.01GPa的聚合物嵌段,将所述聚合物嵌段与所述改性聚轮烷嵌段进行反应,得到改性聚轮烷嵌段共聚物;
提供聚轮烷客体和聚轮烷主体,将所述聚轮烷客体与所述聚轮烷主体进行反应,得到聚轮烷嵌段;
提供杨氏模量大于等于0.01GPa的聚合物嵌段,将所述聚合物嵌段与所述聚轮烷嵌段进行反应,得到聚轮烷嵌段共聚物;
提供具备离子传输能力的聚合物,将所述聚合物与所述聚轮烷嵌段共聚物进行反应,得到改性聚轮烷嵌段共聚物。
本发明提供的改性聚轮烷嵌段共聚物的制备方法中,通过以具备离子传输能力的聚合物对制备得到的聚轮烷嵌段进行改性处理,使所得改性聚轮烷嵌段具有更高的离子传输能力,进而提升所得改性聚轮烷嵌段共聚物的离子电导率;同时,通过将杨氏模量大于等于0.01GPa的聚合物嵌段与改性聚轮烷嵌段进行反应,使该两类嵌段共价键合在一起,可发生纳米尺度的微相分离,因而其两相的传输锂离子和提供机械支撑功能互不干扰,可使所得改性聚轮烷嵌段共聚物不仅具有较高的离子电导率,还具有较高的机械强度。此外,本发明提供的制备方法中,还可以先将聚轮烷嵌段和杨氏模量大于等于0.01GPa的聚合物嵌段反应得到聚轮烷嵌段共聚物,再以具备离子传输能力的聚合物对所得聚轮烷嵌段共聚物进行改性的方式制备得到改性聚轮烷嵌段共聚物,具有方法灵活,容易执行的优点。
本发明最后一方面,提供了一种固态聚合物电解质,其包括本发明提供的改性聚轮烷嵌段共聚物或本发明提供的改性聚轮烷嵌段共聚物的制备方法制备得到的改性聚轮烷嵌段共聚物,以及电解质盐。
本发明提供的固态聚合物电解质在具备足够高的电导率的同时,成膜性能优异,可形成机械强度较高的自支撑电解质膜。本发明提供的固态聚合物电解质的室温电导率可达4.5 ×10 -4S/cm,电化学窗口可达5.3V,锂离子迁移数达0.45,断裂强度可达16MPa。作为全固态电池的电解质时,不存在液态电解液可能存在的易燃的安全性问题,能够极大提高电池的安全性能。
附图说明
图1为本发明实施例提供的改性聚轮烷双嵌段共聚物(BA)的结构示意图;
图2为本发明实施例提供的改性聚轮烷三嵌段共聚物(BAB)的结构示意图;
图3为本发明实施例提供的改性聚轮烷三嵌段共聚物(ABA)的结构示意图;
图4为本发明实施例提供的改性聚轮烷多嵌段共聚物(BA) 2的结构示意图;
图5为本发明实施例提供的改性聚轮烷嵌段的分子结构示意图;
图6为本发明实施例提供的改性聚轮烷嵌段中的聚轮烷主体的结构示意图;
图7为本发明实施例2所得改性聚轮烷嵌段共聚物的微相分离结构示意图;
图8为本发明实施例2所得改性聚轮烷嵌段共聚物的核磁谱图;
图9为本发明实施例2所得固态电解质膜的机械性能测试结果图;
图10为本发明实验例对实施例2所得固态聚合物电解质膜的离子电导率测试结果图;
图11为本发明实验例对实施例2所得固态聚合物电解质膜的电化学稳定窗口测试结果图;
图12为本发明实验例对实施例2所得固态聚合物电解质膜的锂离子迁移数测试结果图。
本发明的实施方式
为使本发明实施例的目的、技术方案和技术效果更加清楚,对本发明实施例中的技术方案进行清楚、完整地描述,以下所描述的实施例是本发明一部分实施例,而不是全部的实施例。结合本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行;所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本发明的描述中,术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本发明的描述中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b,或c中的至少一项(个)”,或,“a,b,和c中 的至少一项(个)”,均可以表示:a、b、c、a-b(即a和b)、a-c、b-c、或a-b-c,其中a、b、c分别可以是单个,也可以是多个。
需要理解的是,本发明实施例中所提到的相关成分的重量不仅仅可以指代各组分的具体含量,也可以表示各组分间重量的比例关系,因此,只要是按照本发明实施例相关组分的含量按比例放大或缩小均在本发明公开的范围之内。具体地,本发明实施例中所述的重量可以是μg、mg、g、kg等化工领域公知的质量单位。
另外,除非上下文另外明确地使用,否则词的单数形式的表达应被理解为包含该词的复数形式。术语“包括”或“具有”旨在指定特征、数量、步骤、操作、元件、部分或者其组合的存在,但不用于排除存在或可能添加一个或多个其它特征、数量、步骤、操作、元件、部分或者其组合。
本发明实施例提供了一种改性聚轮烷嵌段共聚物,其包括至少一个改性聚轮烷嵌段和至少一个聚合物嵌段,改性聚轮烷嵌段与聚合物嵌段通过共价键交替连接;其中,改性聚轮烷嵌段由聚轮烷经具备离子传输能力的聚合物改性得到,聚合物嵌段的杨氏模量大于等于0.01GPa。
本发明实施例提供的改性聚轮烷嵌段共聚物包括至少一个改性聚轮烷嵌段和至少一个聚合物嵌段,其中,改性聚轮烷嵌段是聚轮烷经过具备离子传输能力的聚合物改性得到,分子量较低,在共聚物中具有很少的缠结或无缠结,利用聚轮烷主体分子可在客体分子上自由旋转和滑动的特性,达到大幅提高链段运动能力和锂离子传输效率的目的,使本发明实施例提供的改性聚轮烷嵌段共聚物具有更高的离子电导率。同时,聚合物嵌段的杨氏模量大于等于0.01GPa,可为改性聚轮烷共聚物提供较高的机械韧性和强度。该两类嵌段共价键合在一起,可发生纳米尺度的微相分离,因而其两相的传输锂离子和提供机械支撑功能互不干扰,同时具备优异的离子电导率性能和机械性能,应用前景良好。
本发明实施例提供的改性聚轮烷嵌段共聚物中的改性聚轮烷嵌段和聚合物嵌段各自的数量理论上可以是无限多个,总嵌段数越多,所得改性聚轮烷嵌段共聚物的机械强度越高。在一些实施例中,改性聚轮烷嵌段的数量和聚合物嵌段的数量均大于等于1且小于等于100,并且改性聚轮烷嵌段的数量与聚合物嵌段的数量可以相等也可以不相等。
以下结合图1-4,对本发明实施例提供的改性聚轮烷双嵌段共聚物、改性聚轮烷三嵌段共聚物、改性聚轮烷多嵌段共聚物分别进行详细说明,其中,改性聚轮烷嵌段表示为B,聚合物嵌段表示为A。图1展示了一种改性聚轮烷双嵌段共聚物(BA)的结构。通过图1可以看出,该改性聚轮烷双嵌段共聚物包括1个改性聚轮烷嵌段B,以及1个聚合物嵌段A,且改性聚轮烷嵌段B与聚合物嵌段A通过共价键连接。图2展示了一种改性聚轮烷三嵌段 共聚物(BAB)的结构。通过图2可以看出,该改性聚轮烷三嵌段共聚物包括2个改性聚轮烷嵌段B,以及1个聚合物嵌段A,且改性聚轮烷嵌段B与聚合物嵌段A通过共价键交替连接。图3展示了另一种改性聚轮烷三嵌段共聚物(ABA)的结构。通过图3可以看出,该改性聚轮烷三嵌段共聚物包括1个改性聚轮烷嵌段B,以及2个聚合物嵌段A,且改性聚轮烷嵌段B与聚合物嵌段A通过共价键交替连接。图4展示了一种改性聚轮烷多嵌段共聚物(BA) 2的结构。通过图4可以看出,该改性聚轮烷多嵌段共聚物包括2个改性聚轮烷嵌段B,以及2个聚合物嵌段A,且改性聚轮烷嵌段B与聚合物嵌段A通过共价键交替连接。需要说明的是,图4仅作为对改性聚轮烷多嵌段共聚物(BA) n结构的简单示意,并不表示对n取值的限定。根据实际需要,可将1个改性聚轮烷嵌段B和1个聚合物嵌段A作为1个单元,改性聚轮烷多嵌段共聚物既可以是n个该单元(n为大于等于1的整数),也可以是在n个该单元端部的聚合物嵌段A侧增加1个改性聚轮烷嵌段B,还可以是在n个该单元端部的改性聚轮烷嵌段B侧增加1个聚合物嵌段A。
在一些实施例中,以具备离子传输能力的聚合物对聚轮烷嵌段的改性具体是对聚轮烷上的主体环糊精的羟基进行改性,改性方式可以是将环糊精的羟基部分改性,也可以是将环糊精的羟基全部改性。通过该改性方式,可显著提升所得改性聚轮烷嵌段的离子电导率,进而提升改性聚轮烷嵌段共聚物的导离子性能。此外,通过该改性方式,可有效破坏环糊精分子间的氢键相互作用,显著增加聚轮烷嵌段共聚物的溶解性和溶液加工性能。以下结合图5和图6,对该改性聚轮烷嵌段进行具体说明。聚轮烷的结构中,应包括环状的主体,以及线性的客体,且线性的客体作为轴穿过环状的主体的中空区域,将环状的主体串起来,形成聚轮烷。其中,作为环状主体的环糊精,其上的羟基部分或全部被具备离子传输能力的聚合物(图5中的R)改性,由原本的-OH变为-OR。环糊精作为环状主体,具体可以选自α-环糊精、β-环糊精、γ-环糊精、δ-环糊精中任一种,α-环糊精、β-环糊精、γ-环糊精的结构式如图6所示。
进一步地,具备离子传输能力的聚合物既可以选自聚醚、聚酯、聚碳酸酯、聚氨酯、聚酰胺、聚酰亚胺、聚硅氧烷、聚腈、聚磷腈中的至少一种,还可以选择具有主链和侧链基团的梳形聚合物。在一些具体实施例中,聚醚、聚酯、聚碳酸酯、聚氨酯、聚酰胺、聚酰亚胺、聚硅氧烷、聚腈、聚磷腈中的至少一种中,其重复单元可以是1-100,优选1-50,以实现更高的链段运动能力和更高的离子电导率;具有主链和侧链基团的梳形聚合物中的主链选自聚硅氧烷、聚磷腈、聚腈、聚醚、聚烯烃、聚丙烯酸酯、聚甲基丙烯酸酯中的至少一种;侧链选自低聚醚、腈基团、砜基团、硫醇、聚醚、聚酯、聚碳酸酯、聚氨酯、聚酰胺、聚酰亚胺、聚腈中的至少一种,其重复单元可以是1-100,优选1-50,以实现更高 的链段运动能力和更高的离子电导率。
进一步地,改性聚轮烷嵌段中,聚轮烷客体选自聚醚、聚酯、聚碳酸酯、聚氨酯、聚酰胺、聚酰亚胺、聚硅氧烷、聚腈、聚磷腈、聚烯烃中的至少一种。
进一步地,改性聚轮烷嵌段中,聚轮烷的链末端由具有较大体积的封基剂进行封端处理,以防止环状的主体从链状的客体上脱落。其中,当聚合物嵌段的结构具有支化结构和/或梳形结构时,已经可以防止环状的主体从链状的客体上脱落,此时可不进行封端处理。
在一些实施例中,聚合物嵌段的杨氏模量小于等于5GPa。
在一些实施例中,聚合物嵌段选自聚苯乙烯、氢化的聚苯乙烯、聚乙烯基环己烷、聚乙烯基吡啶、聚丙烯酸烷基酯、聚甲基丙烯酸烷基酯、聚苯醚、聚酰亚胺、聚酰胺、聚酯、聚烯烃、聚烷基乙烯基醚、聚环己基乙烯基醚、聚偏二氟乙烯、聚偏氟乙烯-六氟丙烯共聚物、苯乙烯-甲基丙烯酸烷基酯共聚物、苯乙烯-乙烯基吡啶共聚物、甲基丙烯酸烷基酯-乙烯基吡啶共聚物、苯乙烯-甲基丙烯酸烷基酯-乙烯基吡啶共聚物中的至少一种。这些聚合物嵌段均具有较高的分子量和分子结构上的刚性,其结构中存在大量分子内和分子间的链缠结,这些链缠结赋予了改性聚轮烷嵌段共聚物较好的机械韧性和强度。
可以理解的是,聚合物嵌段通常为线性结构,在本发明实施例中,聚合物嵌段还可以具有支化结构和/或梳形结构,这样可以防止环状的主体从链状的客体上脱落,可省略对改性聚轮烷嵌段进行封端处理的步骤。
本发明实施例提供的改性聚轮烷嵌段共聚物可通过以下制备方法制备得到。
相应地,本发明实施例提供了一种改性聚轮烷嵌段共聚物的制备方法,其包括如下步骤:
S11、提供聚轮烷客体和聚轮烷主体,将聚轮烷客体与聚轮烷主体进行反应,得到聚轮烷嵌段;
S12、提供具备离子传输能力的聚合物,将聚合物与聚轮烷嵌段进行反应,得到改性聚轮烷嵌段;
S13、提供杨氏模量大于等于0.01GPa的聚合物嵌段,将聚合物嵌段与改性聚轮烷嵌段进行反应,得到改性聚轮烷嵌段共聚物。
或者
S21、提供聚轮烷客体和聚轮烷主体,将聚轮烷客体与聚轮烷主体进行反应,得到聚轮烷嵌段;
S22、提供杨氏模量大于等于0.01GPa的聚合物嵌段,将聚合物嵌段与聚轮烷嵌段进行反应,得到聚轮烷嵌段共聚物;
S23、提供具备离子传输能力的聚合物,将聚合物与聚轮烷嵌段共聚物进行反应,得到改性聚轮烷嵌段共聚物。
本发明实施例提供的改性聚轮烷嵌段共聚物的制备方法中,通过以具备离子传输能力的聚合物对制备得到的聚轮烷嵌段进行改性处理,使所得改性聚轮烷嵌段具有更高的离子传输能力,进而提升所得改性聚轮烷嵌段共聚物的离子电导率;同时,通过将杨氏模量大于等于0.01GPa的聚合物嵌段与改性聚轮烷嵌段进行反应,使该两类嵌段共价键合在一起,可发生纳米尺度的微相分离,因而其两相的传输锂离子和提供机械支撑功能互不干扰,可使所得改性聚轮烷嵌段共聚物不仅具有较高的离子电导率,还具有较高的机械强度。此外,本发明实施例提供的制备方法中,还可以先将聚轮烷嵌段和杨氏模量大于等于0.01GPa的聚合物嵌段反应得到聚轮烷嵌段共聚物,再以具备离子传输能力的聚合物对所得聚轮烷嵌段共聚物进行改性的方式制备得到改性聚轮烷嵌段共聚物,具有方法灵活,容易执行的优点。
上述S11-S13提供的制备方法是先将聚轮烷嵌段进行改性,然后与聚合物嵌段共聚得到改性聚轮烷嵌段共聚物;S21-S23提供的制备方法是先将聚轮烷嵌段与聚合物嵌段共聚得到聚轮烷嵌段共聚物,然后再对聚轮烷嵌段共聚物进行改性,得到改性聚轮烷嵌段共聚物。在一些实施例中,当聚轮烷的链末端未经封端处理且聚合物嵌段具有梳形或支化结构时,优选采用S21-S23提供的制备方法进行制备;当聚轮烷的链末端经过封端处理时,既可以采用S11-S13提供的制备方法进行制备,也可以采用S21-S23提供的制备方法进行制备。
具体地,S11中,根据实际制备过程中聚轮烷客体和聚合物嵌段的具体选择,可能需要对聚轮烷客体的至少一个端基进行官能化处理。此处的官能化是指将位于聚轮烷客体端基的官能团改性成其他易于与聚合物嵌段共价连接的官能团或可引发聚合物嵌段的单体聚合物的官能团。通过将聚轮烷客体的至少一个端基官能化,可以使其具备与聚合物嵌段共价连接的能力。其中,根据所得改性聚轮烷共聚物中的嵌段数量,可对聚轮烷客体选择不同的端基官能化方式。当所得改性聚轮烷共聚物为双嵌段共聚物时,将聚轮烷客体的其中一个端基官能化即可。当所得改性聚轮烷共聚物为三嵌段共聚物时,分为两种情况:第一种,改性聚轮烷三嵌段共聚物为BAB结构,此时将聚轮烷客体的其中一个端基官能化即可;第二种,改性聚轮烷三嵌段共聚物为ABA结构,此时应将聚轮烷客体的两个端基均官能化,使其两端分别可与聚合物嵌段共价连接。当所得改性聚轮烷共聚物为多嵌段共聚物(BA) n结构时,将聚轮烷客体的两个端基均官能化。聚轮烷客体既可以直接购买商用聚合物,也可以自行制备。本发明实施例对于聚轮烷客体的制备方法没有特别限制,根据实际选择的 聚轮烷客体,按照本领域常规方法制备即可。在一些实施例中,聚轮烷客体选自聚醚、聚酯、聚碳酸酯、聚氨酯、聚酰胺、聚酰亚胺、聚硅氧烷、聚腈、聚磷腈、聚烯烃中的至少一种;端基官能化处理后的官能团选自羟基、胺基、羧基、巯基、醛基、烯基、炔基、叠氮基、氰酸酯基、异氰酸酯基、卤素基团中的至少一种。
聚轮烷客体(至少一个端基官能化的聚轮烷客体)与聚轮烷主体进行反应,得到聚轮烷嵌段。在一些实施例中,聚轮烷主体为环糊精,具体可以选择α-环糊精、β-环糊精、γ-环糊精、δ-环糊精中任一种。
在一些实施例中,S11所得聚轮烷嵌段的链末端由具有较大体积的封基剂进行封端处理,以防止环状的主体从链状的客体上脱落。
S12中,提供具备离子传输能力的聚合物,使用该聚合物对聚轮烷嵌段进行改性,得到改性聚轮烷嵌段。在一些实施例中,具备离子传输能力的聚合物既可以直接购买得到,也可以通过形成这些聚合物的单体在对聚轮烷嵌段进行改性过程的同时聚合得到。在一些具体实施例中,具备离子传输能力的聚合物选自聚醚、聚酯、聚碳酸酯、聚氨酯、聚酰胺、聚酰亚胺、聚硅氧烷、聚腈、聚磷腈中的至少一种,或者选择具有主链和侧链基团的梳形聚合物;其中,主链选自聚硅氧烷、聚磷腈、聚腈、聚醚、聚烯烃、聚丙烯酸酯、聚甲基丙烯酸酯中的至少一种;侧链选自低聚醚、腈基团、砜基团、硫醇、聚醚、聚酯、聚碳酸酯、聚氨酯、聚酰胺、聚酰亚胺、聚腈中的至少一种。
在一些实施例中,需要对具备离子传输能力的聚合物的至少一个端基进行官能化处理。此处的官能化是指将位于具备离子传输能力的聚合物的端基官能团改性成其它易于与环糊精主体分子上的官能团反应成共价键的官能团。通过将具备离子传输能力的聚合物的至少一个端基官能化,可以使其具备与环糊精主体分子共价连接的能力。在一些具体实施例中,根据所得改性后的具备离子传输能力的聚合物的端基官能团种类,可选择将环糊精的羟基改性为易于与所述改性后的具备离子传输能力的聚合物的端基官能团可高效键合的官能团,达到提高对聚轮烷嵌段改性效果的目的。在一些具体实施例中,改性后的官能团选自羟基、胺基、羧基、巯基、醛基、烯基、炔基、叠氮基、氰酸酯基、异氰酸酯基、卤素基团中的至少一种。
在一些实施例中,对聚轮烷嵌段的改性具体是对聚轮烷中的主体环糊精上的部分或全部羟基进行改性。
S13中,提供杨氏模量大于等于0.01GPa的聚合物嵌段,通过将该聚合物嵌段与改性聚轮烷嵌段反应得到改性聚轮烷嵌段共聚物。由于聚合物嵌段的杨氏模量大于等于0.01GPa,具有较高的机械韧性和强度,因此可使所得改性聚轮烷嵌段共聚物的机械韧性和 强度较高,同时兼具良好的导电性能。在一些实施例中,聚合物嵌段既可以直接购买得到,也可以通过形成这些聚合物嵌段的单体在与改性聚轮烷嵌段反应过程的同时聚合得到。
根据实际制备过程中聚轮烷客体和聚合物嵌段的具体选择,可能需要对聚合物嵌段的至少一个端基进行官能化处理。此处的官能化是指将位于聚合物嵌段端基的官能团改性成其他易于与改性聚轮烷嵌段共价连接的官能团。其中,根据所得改性聚轮烷共聚物中的嵌段数量,可对聚合物嵌段选择不同的端基官能化方式。当所得改性聚轮烷共聚物为双嵌段共聚物时,将聚合物嵌段的其中一个端基官能化即可。当所得改性聚轮烷共聚物为三嵌段共聚物时,分为两种情况:第一种,改性聚轮烷三嵌段共聚物为BAB结构,此时将聚合物嵌段的两个端基官能化,使其两端分别可与改性聚轮烷嵌段共价连接;第二种,改性聚轮烷三嵌段共聚物为ABA结构,此时应将聚合物嵌段的其中一个端基官能化。当所得改性聚轮烷共聚物为多嵌段共聚物(BA) n结构时,将聚合物嵌段的两个端基均官能化。在一些具体实施例中,端基官能化处理后的官能团选自羟基、胺基、羧基、巯基、醛基、烯基、炔基、叠氮基、氰酸酯基、异氰酸酯基、卤素基团中的至少一种。
S21-S23提供的制备方法是先将聚轮烷嵌段与聚合物嵌段共聚得到聚轮烷嵌段共聚物,然后再对聚轮烷嵌段共聚物进行改性,得到改性聚轮烷嵌段共聚物。其中,S21与S11相同,为了节约篇幅,此处不再赘述。在一些实施例中,S21所得聚轮烷嵌段的链末端由具有较大体积的封基剂进行封端处理,以防止环状的主体从链状的客体上脱落。
S22中,将聚合物嵌段与聚轮烷嵌段进行反应,得到聚轮烷嵌段共聚物。其中,聚合物嵌段的杨氏模量大于等于0.01GPa,具有较高的机械韧性和强度,可使所得聚轮烷嵌段共聚物具有较高的机械韧性和强度。聚合物嵌段的具体选择、是否端基官能化、端基官能化处理后的官能团的具体选择,均与S13中的聚合物嵌段的具体选择、是否端基官能化、端基官能化处理后的官能团的具体选择相同,为了节约篇幅,此处不再赘述。
S23中,采用具备离子传输能力的聚合物与聚轮烷嵌段共聚物进行反应,以提升其离子电导率,使所得改性聚轮烷嵌段共聚物既具有良好的机械韧性和强度,又具备良好的导离子性能。其中,具备离子传输能力的聚合物的具体选择、是否端基官能化、端基官能化处理后的官能团的具体选择,均与S12中的具备传输能力的聚合物的具体选择、是否端基官能化、端基官能化处理后的官能团的具体选择相同,为了节约篇幅,此处不再赘述。
本发明实施例还提供了一种固态聚合物电解质,其包括本发明实施例提供的改性聚轮烷嵌段共聚物或本发明实施例提供的改性聚轮烷嵌段共聚物的制备方法制备得到的改性聚轮烷嵌段共聚物,以及电解质盐。
本发明实施例提供的固态聚合物电解质在具备足够高的电导率的同时,成膜性能优异, 可形成机械强度较高的自支撑电解质膜。本发明实施例提供的固态聚合物电解质的室温电导率可达4.5×10 -4S/cm,电化学窗口可达5.3V,锂离子迁移数达0.45,断裂强度可达16MPa。作为全固态电池的电解质时,不存在液态电解液可能存在的易燃的安全性问题,能够极大提高电池的安全性能。
本发明实施例提供的固态聚合物电解质中,对于其中的电解质盐的选择没有特别限制,只要是本领域中可用的电解质盐均适用于本发明实施例。在一些实施例中,优选本领域中载离子性能较好、在聚合物电解质中具有大解离常数的电解质盐,包括但不限于锂、钠、钾、银、钡、铅、钙、钌、钽、铑、铱、钴、镍、钼、钨或钒的氯化物、溴化物、硫酸盐、硝酸盐、硫化物、氢化物、氮化物、磷化物、磺酰胺、三氟甲磺酸盐、硫代氰酸盐、高氯酸盐、硼酸盐或硒化物。在一些具体实施例中,选择LiCF 3SO 3、LiB(C 2O 4) 2、LiN(CF 3SO 2) 2、LiC(CF 3SO 2) 3、LiC(CH 3)(CF 3SO 2) 2、LiCH(CF 3SO 2) 2、LiCH 2(CF 3SO 2)、LiC 2F 5SO 3、LiN(C 2F 5SO 2) 2、LiN(CF 3SO 2) 2、LiB(CF 3SO 2) 2、LiPF 6、LiSbF 6、LiClO 4、LiSCN、LiAsF 6、NaCF 3SO 3、NaPF 6、NaClO 4、NaI、NaBF 4、NaAsF 6、KCF 3SO 3、KPF 6、KI、LiCF 3CO 3、NaClO 3、NaSCN、KBF 4、KPF 6、Mg(ClO 4) 2和Mg(BF 4) 2中的至少一种作为电解质盐。
为使本发明上述实施细节和操作能清楚地被本领域技术人员理解,以及本发明实施例改性聚轮烷嵌段共聚物及其制备方法、固态聚合物电解质的进步性能显著的体现,以下通过多个实施例来举例说明上述技术方案。
实施例1
本实施例提供了一种改性聚轮烷二嵌段共聚物(BA)的制备方法,其中作为其他聚合物嵌段的聚对苯二甲酸乙二醇酯的杨氏模量为2GPa。步骤如下:
(31)PCL(聚己内酯)客体的制备
在500mL的三口圆底烧瓶中加入100g的己内酯单体、2g的9-蒽甲醇及10g的辛酸亚锡,抽真空并回冲氮气后将反应物置于80℃下反应24h,反应结束后将混合物倾倒于甲醇中沉淀,使用甲醇洗涤3次后得到白色固体,干燥后即得到PCL;
(32)PCL(聚己内酯)客体端基官能化
取步骤(31)所得PCL 20g加入至180mL的干燥氯仿中,再依次加入2.5g的溴代异丁酰溴、1.1g的三乙胺、0.5g的4-二甲氨基吡啶,在氮气氛围中将上述混合物室温下搅拌24h,待反应结束后过滤,将滤液浓缩后沉淀于500mL甲醇中,并使用甲醇洗涤3次,真空干燥后得到端基改性为溴基的PCL客体;
(33)准轮烷pPR的制备
首先准备40g的α-环糊精与300mL去离子水的混合溶液,将该混合溶液加热至60℃, 然后逐滴加入5g步骤(32)所得产物与50mL丙酮的混合溶液,然后将该混合物室温下超声2h后继续置于室温下搅拌24h得到浑浊糊状物,加入200mL水稀释后离心得到乳白色固体,干燥后即得到准轮烷pPR;
(34)聚轮烷二嵌段共聚物的制备
取步骤(33)所得准轮烷pPR 10g、分子量为500g/mol的甲基丙烯酸酯封端的对苯二甲酸乙二醇50g以及五甲基二乙烯三胺(PMDETA)2g加入到50mL的DMF中,冷冻-抽气-解冻除氧循环处理三次后,快速加入Cu(I)Cl,置于60℃下氮气氛围中反应24h,将溶液沉淀于冷甲醇中,离心出去上清液,将存留固体重新溶解于二氯甲烷中,过硅胶柱除去铜盐,滤液再次沉淀于甲醇中,甲醇洗涤三次得到白色固体为聚轮烷二嵌段共聚物;
(35)聚己内酯接枝修饰聚轮烷(PCL-g-PR)
取步骤(34)所得聚轮烷二嵌段共聚物10g溶解于40mL的DMF中,然后加入40g的ε-己内酯单体,加入12.2g的4-二甲氨基吡啶后,通氮气保护并置于160℃下搅拌反应24h,产物使用冷甲醇沉淀后洗涤三次后,干燥得到白色固体,经过分子量测试可知其数均分子量为26000g/mol,所得白色固体为改性聚轮烷二嵌段共聚物。
实施例2
本实施例提供了一种改性聚轮烷三嵌段共聚物(ABA)的制备方法,其中作为其他聚合物嵌段的聚苯乙烯的杨氏模量为3GPa。步骤如下:
(41)准轮烷pPR的制备
在1000mL的三口圆底烧瓶中加入10g的α,ω-巯基化的PEO(Mn=20000g/mol),加入20mL去离子水溶解,然后加入含有70g的α-环糊精与500mL去离子水的溶液,置于室温下搅拌48h后得到浑浊糊状物。加入200mL水稀释后离心得到乳白色固体,干燥后即得到准轮烷pPR;
(42)聚轮烷PR封端
取步骤(41)所得准轮烷pPR 20g加入至150mL的DMF中,再依次加入2.50g的3-(2-溴异丁酰氧基)金刚烷基甲基丙烯酸酯与2.5g的三乙胺,在氮气氛围中将上述混合物室温下搅拌24h,离心后所得固体使用体积比为1:1的DMF、甲醇混合液洗涤两次,继而使用无水甲醇洗涤两次,然后将固体溶解于50mL的DMSO中,沉淀于去离子水中,离心后所得固体使用去离子水洗涤两次,冷冻干燥后得到聚轮烷PR;
(43)聚己内酯接枝修饰聚轮烷(PCL-g-PR)的制备
取步骤(42)所得聚轮烷PR 10g加入至150g的ε-己内酯单体中,加入50mL的DMF与2.5g的1,5,7-三氮杂双环[4.4.0]癸-5-烯后,置于60℃下搅拌反应48h,产物使用 无水甲醇洗涤三次后离心,干燥得到白色固体为PCL接枝修饰的聚轮烷;
(44)改性聚轮烷三嵌段共聚物的制备
取步骤(43)所得的PCL接枝修饰的聚轮烷10g、苯乙烯单体20g以及五甲基二乙烯三胺(PMDETA)2g加入到150mL的THF中,氮气鼓泡1h后快速加入Cu(I)Cl,置于60℃下氮气氛围中反应24h,将溶液沉淀于甲醇中,离心出去上清液,将存留固体重新溶解于二氯甲烷中,过硅胶柱除去铜盐,滤液再次沉淀于甲醇中,甲醇洗涤三次得到白色固体为改性聚轮烷三嵌段共聚物,其核磁谱图如图8所示。通过图8可以看出,其中6.2-7.2ppm的峰归属为聚苯乙烯中苯环上的氢,1.4、2.3和4.1ppm的峰归属为聚己内酯上的氢,3.9、4.4和5.0ppm等处的小峰归属为环糊精上的氢,这些核磁共振峰的归属证实了所得聚合物的分子结构与设计的分子结构相符。经过分子量测试可知其数均分子量为51000g/mol。
实施例3
本实施例提供了一种改性聚轮烷三嵌段共聚物(BAB)的制备方法,其中作为其他聚合物嵌段的聚苯乙烯的杨氏模量为3GPa。步骤如下:
(51)PCL客体的制备
在500mL的三口圆底烧瓶中加入100g的己内酯单体、2g的9-蒽甲醇、200mL甲苯及4g的1,5,7-三氮杂双环[4.4.0]癸-5-烯,抽真空并回冲氮气后将反应物置于60℃下反应24h,反应结束后将混合物倾倒于甲醇中沉淀,使用甲醇洗涤3次后得到白色固体,干燥后即得到PCL客体;
(52)PCL客体端基官能化
取步骤(51)所得PCL客体20g加入至180mL的干燥四氢呋喃中,再依次加入4g的溴丙炔、0.8g的氢化纳,在氮气氛围中将上述混合物室温下搅拌24h,待反应结束后过滤,将滤液浓缩后沉淀于500mL甲醇中,并使用甲醇洗涤3次,真空干燥后得到端基官能化的PCL客体;
(53)准轮烷pPR的制备
首先准备40g的α-环糊精与300mL去离子水的混合溶液,将上述溶液加热至60℃,然后逐滴加入5g步骤(52)所得端基官能化的PCL客体与50mL丙酮的混合溶液,将该混合物超声2h后继续置于室温下搅拌24h得到浑浊糊状物,加入200mL水稀释后离心得到乳白色固体,干燥后即得到准轮烷pPR;
(54)聚轮烷三嵌段共聚物的制备
取步骤(53)所得的准轮烷pPR 10g、20g的单叠氮基团封端的聚苯乙烯(Mn=10000g/mol)以及五甲基二乙烯三胺(PMDETA)2.5g加入到150mL的THF中,采用冷冻-抽气-解冻除去 氧气后快速加入3.1g的Cu(I)Cl,置于60℃下氩气氛围中反应24h,将溶液沉淀于甲醇中,离心出去上清液,将存留固体重新溶解于二氯甲烷中,过硅胶柱出去铜盐,滤液再次沉淀于甲醇中,甲醇洗涤三次得到白色固体为聚轮烷三嵌段共聚物。
(55)改性聚轮烷三嵌段共聚物BAB的制备
取步骤(54)所得的聚轮烷三嵌段共聚物10g、12g的单羧基封端的聚乙二醇单甲醚(Mn=200g/mol)、3.5g的BOP试剂和2.5mL的N,N-二异丙基乙胺加入到150mL的THF中,将混合物在4℃下氮气氛围中反应24h,随后沉淀于DMF/甲醇(1:1)的混合液并离心两次,再用甲醇离心两次洗涤,得到的白色固体,经过分子量测试可知其数均分子量为47000g/mol,所得白色固体为改性聚轮烷三嵌段共聚物。
实施例4
本实施例提供了一种改性聚轮烷多嵌段共聚物(BA) n的制备方法,其中作为其他聚合物嵌段的聚苯乙烯的杨氏模量为3GPa。步骤如下:
(61)准轮烷pPR的制备
在1000mL的三口圆底烧瓶中加入10g的α,ω-炔基官能化的PEO(Mn=20000g/mol),加入20mL去离子水溶解,然后加入含有70g的α-环糊精与500mL去离子水的溶液,置于室温下搅拌48h后得到浑浊糊状物。加入200mL水稀释后离心得到乳白色固体,干燥后即得到准轮烷pPR;
(62)改性聚轮烷多嵌段共聚物的制备
取步骤61所得的准轮烷pPR10g、α,ω-叠氮基官能化的聚苯乙烯(Mn=2000g/mol)20g以及五甲基二乙烯三胺(PMDETA)2.2g加入到150mL的THF中,氮气鼓泡1h后快速加入3.1g的Cu(I)Cl,置于60℃下氮气氛围中反应24h,将溶液沉淀于甲醇中,离心出去上清液,将存留固体重新溶解于二氯甲烷中,过硅胶柱出去铜盐,滤液再次沉淀于甲醇中,甲醇洗涤三次得到白色固体为聚轮烷/聚苯乙烯多嵌段共聚物。
(63)改性聚轮烷多嵌段共聚物(BA) n的制备
取步骤(62)所得聚轮烷10g加入至150g的ε-己内酯单体中,加入50mL的DMF与2.5g的1,5,7-三氮杂双环[4.4.0]癸-5-烯(TBD)后,置于60℃下搅拌反应48h,产物使用甲醇洗涤三次后离心,干燥得到白色固体。经过分子量测试可知其数均分子量为92000g/mol,最终得到的改性聚轮烷多嵌段共聚物为(BA) 2
实施例5
本实施例提供了一种共聚物薄膜的制备方法,步骤如下:
将实施例1-4中所制备的改性聚轮烷嵌段共聚物溶解于甲苯中得到10w/v%的溶液,使 用5μm的滤膜过滤后,倒入平整的玻璃表面皿中缓慢挥发溶剂,并加热至150℃真空干燥,以保证溶剂挥发完全,得到一张平整的聚合物膜。
取该膜冷冻切片并染色,使用TEM进行观察实施例2所得共聚物薄膜的微相分离结构,结果如图7所示,实施例1、实施例3-4所得共聚物薄膜的微相分离结构与图7类似;
通过图7可以看出,其中的白色区域(改性聚轮烷相)和灰色区域(聚苯乙烯相)分别成相,尺寸大约在20-50nm左右,该微相分离的结构特点,赋予了两相的传输锂离子和提供机械支撑功能互不干扰的属性,可使所得改性聚轮烷嵌段共聚物不仅具有较高的离子电导率,还具有较高的机械强度。
将实施例2所得共聚物薄膜裁剪为长条形,使用万能试验机测试其机械强度,拉伸速度为0.01/s。
实施例2的详细测试结果如图9所示。通过图9可以看出,本发明实施例2所得改性聚轮烷嵌段共聚物制成共聚物薄膜时,其机械性能优异,其断裂强度13MPa,断裂伸长率19%,杨氏模量为0.29GPa。实施例1-4的机械性能数据汇总见表1所示。
表1实施例1-4获得的改性聚轮烷嵌段共聚物的机械性能汇总表
Figure PCTCN2021097991-appb-000001
实施例6
本实施例提供了一种固态聚合物电解质膜的制备方法,步骤如下:
(71)将实施例1-4所得的改性聚轮烷嵌段共聚物1g溶解于10mL的THF中得到均一的聚合物溶液,并向上述均一的聚合物溶液中加入0.5g锂盐LiFSI,加入后继续搅拌至完全溶解;
(72)将上述完全溶解的溶液在四氟乙烯模具中浇筑制膜,真空干燥,得到固态聚合物电解质膜。
对比例
本对比例与实施例3基本相同,不同之处在于将实施例3步骤(54)中的单叠氮基团 封端的聚苯乙烯替换为分子量为10000g/mol的单叠氮基团封端的聚乙二醇单甲醚(杨氏模量低于0.01GPa)。经检测,本对比例制备所得的聚合物固态电解质呈蜡状物,强度无法实现自支撑和独立作为聚合物固态电解质使用。
实验例
对实施例6所得固态聚合物电解质膜的电化学性能(离子电导率、锂离子迁移数、电化学窗口)进行测试,测试方法如下:
离子电导率:用两片不锈钢夹住固态聚合物电解质膜,放在2025型电池壳中,锂离子电导率采用电化学交流阻抗谱来测量,采用公式:σ=L/AR b,其中L为固态聚合物电解质膜的厚度,A为不锈钢片面积,R b为阻抗仪测量得出的阻抗。
离子迁移数:以两片锂片夹住固态聚合物电解质膜,放在2025型电池壳中,锂离子迁移数常通过稳态电流法来测试,采用如下公式计算:
Figure PCTCN2021097991-appb-000002
其中R 0和R ss分别是极化前后的阻抗,交流阻抗法测得;I 0和I ss分别是极化前的初始电流和稳态电流;ΔV是指极化电压,本实验中其值为10mV。
电化学窗口:以不锈钢片和锂片夹住固态聚合物电解质膜,放在2025型电池壳中,电化学工作窗口以电化学工作站进行线性伏安扫描测量,起始电位为-2.5V,最高电位为6V,扫描速度为1mV/s。
其中,实施例2的详细测试结果如图7-12所示。通过图7-12可以看出,本发明实施例提供的固态聚合物电解质的室温电导率可达3.2×10 -4S/cm,电导率随温度升高而稳步上升,电化学窗口可达5.2V,锂离子迁移数达0.45。实施例1-4的电化学数据汇总见表2。
表2实施例1-4获得的聚合物固态电解质的电化学数据汇总表
Figure PCTCN2021097991-appb-000003
通过上述结果可以看出,本发明实施例所得改性聚轮烷嵌段共聚物作为固态聚合物电解质,制成电解质膜后,具有良好的机械性能和较高的室温离子电导率,作为固态电池的 电解质时,具有良好的应用前景。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种改性聚轮烷嵌段共聚物,其特征在于,所述改性聚轮烷嵌段共聚物包括至少一个改性聚轮烷嵌段和至少一个聚合物嵌段,所述改性聚轮烷嵌段与所述聚合物嵌段通过共价键交替连接;其中,所述改性聚轮烷嵌段由聚轮烷经具备离子传输能力的聚合物改性得到,所述聚合物嵌段的杨氏模量大于等于0.01GPa。
  2. 根据权利要求1所述的改性聚轮烷嵌段共聚物,其特征在于,所述聚合物嵌段的杨氏模量小于等于5GPa。
  3. 根据权利要求1所述的改性聚轮烷嵌段共聚物,其特征在于,所述改性聚轮烷嵌段包括聚轮烷主体和聚轮烷客体,所述聚轮烷主体为环糊精,所述环糊精上的羟基部分或全部被具备离子传输能力的聚合物改性。
  4. 根据权利要求3所述的改性聚轮烷嵌段共聚物,其特征在于,所述具备离子传输能力的聚合物选自聚醚、聚酯、聚碳酸酯、聚氨酯、聚酰胺、聚酰亚胺、聚硅氧烷、聚腈、聚磷腈中的至少一种;或
    所述具备离子传输能力的聚合物为具有主链和侧链基团的梳形聚合物,所述主链选自聚硅氧烷、聚磷腈、聚腈、聚醚、聚烯烃、聚丙烯酸酯、聚甲基丙烯酸酯中的至少一种;所述侧链选自低聚醚、腈基团、砜基团、硫醇、聚醚、聚酯、聚碳酸酯、聚氨酯、聚酰胺、聚酰亚胺、聚腈中的至少一种。
  5. 根据权利要求3所述的改性聚轮烷嵌段共聚物,其特征在于,所述聚轮烷客体选自聚醚、聚酯、聚碳酸酯、聚氨酯、聚酰胺、聚酰亚胺、聚硅氧烷、聚腈、聚磷腈、聚烯烃中的至少一种。
  6. 根据权利要求1-5任一项所述的改性聚轮烷嵌段共聚物,其特征在于,所述聚合物嵌段选自聚苯乙烯、氢化的聚苯乙烯、聚乙烯基环己烷、聚乙烯基吡啶、聚丙烯酸烷基酯、聚甲基丙烯酸烷基酯、聚苯醚、聚酰亚胺、聚酰胺、聚酯、聚烯烃、聚烷基乙烯基醚、聚环己基乙烯基醚、聚偏二氟乙烯、聚偏氟乙烯-六氟丙烯共聚物、苯乙烯-甲基丙烯酸烷基酯共聚物、苯乙烯-乙烯基吡啶共聚物、甲基丙烯酸烷基酯-乙烯基吡啶共聚物、苯乙烯-甲基丙烯酸烷基酯-乙烯基吡啶共聚物中的至少一种。
  7. 根据权利要求6所述的改性聚轮烷嵌段共聚物,其特征在于,所述聚合物嵌段具有支化结构和/或梳形结构。
  8. 一种改性聚轮烷嵌段共聚物的制备方法,其特征在于,包括如下步骤:
    提供聚轮烷客体和聚轮烷主体,将所述聚轮烷客体与所述聚轮烷主体进行反应,得到聚轮烷嵌段;
    提供具备离子传输能力的聚合物,将所述聚合物与所述聚轮烷嵌段进行反应,得到改性聚轮烷嵌段;
    提供杨氏模量大于等于0.01GPa的聚合物嵌段,将所述聚合物嵌段与所述改性聚轮烷嵌段进行反应,得到改性聚轮烷嵌段共聚物;
    提供聚轮烷客体和聚轮烷主体,将所述聚轮烷客体与所述聚轮烷主体进行反应,得到聚轮烷嵌段;
    提供杨氏模量大于等于0.01GPa的聚合物嵌段,将所述聚合物嵌段与所述聚轮烷嵌段进行反应,得到聚轮烷嵌段共聚物;
    提供具备离子传输能力的聚合物,将所述聚合物与所述聚轮烷嵌段共聚物进行反应,得到改性聚轮烷嵌段共聚物。
  9. 根据权利要求8所述改性聚轮烷嵌段共聚物的制备方法,其特征在于,所述聚轮烷嵌段经过封端处理。
  10. 一种固态聚合物电解质,其特征在于,包括权利要求1-7任一项所述的改性聚轮烷嵌段共聚物或权利要求8-9任一项所述改性聚轮烷嵌段共聚物的制备方法制备得到的改性聚轮烷嵌段共聚物,以及电解质盐。
PCT/CN2021/097991 2020-11-17 2021-06-02 改性聚轮烷嵌段共聚物及其制备方法、固态聚合物电解质 WO2022105189A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011284405.4A CN112480418A (zh) 2020-11-17 2020-11-17 改性聚轮烷嵌段共聚物及其制备方法、固态聚合物电解质
CN202011284405.4 2020-11-17

Publications (1)

Publication Number Publication Date
WO2022105189A1 true WO2022105189A1 (zh) 2022-05-27

Family

ID=74930922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097991 WO2022105189A1 (zh) 2020-11-17 2021-06-02 改性聚轮烷嵌段共聚物及其制备方法、固态聚合物电解质

Country Status (2)

Country Link
CN (1) CN112480418A (zh)
WO (1) WO2022105189A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112480418A (zh) * 2020-11-17 2021-03-12 南方科技大学 改性聚轮烷嵌段共聚物及其制备方法、固态聚合物电解质
CN113773539B (zh) * 2021-09-18 2022-05-03 华东理工大学 一种准聚轮烷薄膜的制备方法及其制备的准聚轮烷薄膜
CN115882061A (zh) * 2022-12-29 2023-03-31 北京工业大学 一种聚轮烷基聚合物电解质的制备及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996000968A1 (en) * 1994-06-29 1996-01-11 Arthur D. Little, Inc. Molecular complexes for use as electrolyte components
WO2006090819A1 (ja) * 2005-02-24 2006-08-31 The University Of Tokyo ポリロタキサン及びポリマー並びにイオン性液体を有する材料、及びその製造方法
CN102391445A (zh) * 2011-08-28 2012-03-28 山东理工大学 聚丙烯酸酯类聚合物封端环糊精聚轮烷及其制备方法
WO2014080981A1 (ja) * 2012-11-22 2014-05-30 国立大学法人 東京大学 新規ポリロタキサン及びその製造方法
CN111261822A (zh) * 2020-02-11 2020-06-09 福建师范大学 一种热稳定性电池隔膜及其在电池中应用
CN111542961A (zh) * 2017-10-27 2020-08-14 于利奇研究中心有限公司 无溶剂的固体电解质
CN112480418A (zh) * 2020-11-17 2021-03-12 南方科技大学 改性聚轮烷嵌段共聚物及其制备方法、固态聚合物电解质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5470246B2 (ja) * 2008-05-07 2014-04-16 アドバンスト・ソフトマテリアルズ株式会社 ポリロタキサン、及びポリロタキサンとポリマーとの架橋体、並びにこれらの製造方法
WO2014090178A1 (en) * 2012-12-13 2014-06-19 Toray Advanced Materials Research Laboratories (China) Co., Ltd. Multi-block copolymer and polymer electrolyte
CN111234240B (zh) * 2020-01-15 2022-03-08 南方科技大学 聚己内酯基超支化聚合物全固态电解质及锂离子电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996000968A1 (en) * 1994-06-29 1996-01-11 Arthur D. Little, Inc. Molecular complexes for use as electrolyte components
WO2006090819A1 (ja) * 2005-02-24 2006-08-31 The University Of Tokyo ポリロタキサン及びポリマー並びにイオン性液体を有する材料、及びその製造方法
CN102391445A (zh) * 2011-08-28 2012-03-28 山东理工大学 聚丙烯酸酯类聚合物封端环糊精聚轮烷及其制备方法
WO2014080981A1 (ja) * 2012-11-22 2014-05-30 国立大学法人 東京大学 新規ポリロタキサン及びその製造方法
CN111542961A (zh) * 2017-10-27 2020-08-14 于利奇研究中心有限公司 无溶剂的固体电解质
CN111261822A (zh) * 2020-02-11 2020-06-09 福建师范大学 一种热稳定性电池隔膜及其在电池中应用
CN112480418A (zh) * 2020-11-17 2021-03-12 南方科技大学 改性聚轮烷嵌段共聚物及其制备方法、固态聚合物电解质

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHUN WEN ET AL.: "Reducible polyrotaxane-based pseudo-comb polycations via consecutive ATRP processes for gene delivery", ACTA BIOMATERIALIA, vol. 32, 19 December 2015 (2015-12-19), XP029415675, ISSN: 1742-7061, DOI: 10.1016/j.actbio.2015.12.033 *
LAURA IMHOLT, DöRR TOBIAS S., ZHANG PENG, IBING LUKAS, CEKIC-LASKOVIC ISIDORA, WINTER MARTIN, BRUNKLAUS GUNTHER: "Grafted polyrotaxanes as highly conductive electrolytes for lithium metal batteries", JOURNAL OF POWER SOURCES, ELSEVIER, AMSTERDAM, NL, vol. 409, AMSTERDAM, NL, pages 148 - 158, XP055529949, ISSN: 0378-7753, DOI: 10.1016/j.jpowsour.2018.08.077 *
VERÓNICA SAN-MIGUEL ET AL.: "Synthesis of novel nanoreinforcements for polymer matrices by ATRP: Triblock poly(rotaxan)s based in polyethyleneglycol end-caped with poly(methyl methacrylate)", POLYMER, vol. 50, no. 25, 25 October 2009 (2009-10-25), XP026771112, ISSN: 0032-3861, DOI: 10.1016/j.polymer.2009.10.052 *
YAN ZHI, GUO AIJU, YE LIN, ZHANG AIYING, FENG ZENGGUO: "The synthesis and characterization of a processable polyrotaxane-based triblock copolymer via a "two steps" strategy", RSC ADVANCES, vol. 6, no. 39, 1 January 2016 (2016-01-01), pages 33221 - 33230, XP055931203, DOI: 10.1039/C5RA27178A *

Also Published As

Publication number Publication date
CN112480418A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
WO2022105189A1 (zh) 改性聚轮烷嵌段共聚物及其制备方法、固态聚合物电解质
Goujon et al. Organic batteries based on just redox polymers
Wang et al. Siloxane-based polymer electrolytes for solid-state lithium batteries
Hu et al. Poly (ethylene oxide)-based composite polymer electrolytes embedding with ionic bond modified nanoparticles for all-solid-state lithium-ion battery
Aydın et al. A polythiophene derivative bearing TEMPO as a cathode material for rechargeable batteries
Imholt et al. Grafted polyrotaxanes as highly conductive electrolytes for lithium metal batteries
Zhang et al. Strategies toward improving the performance of organic electrodes in rechargeable lithium (sodium) batteries
US10000606B2 (en) Polymer compositions based on PXE
Song et al. A quinone-based oligomeric lithium salt for superior Li–organic batteries
Hernández et al. Redox-active polyimide–polyether block copolymers as electrode materials for lithium batteries
TW320784B (zh)
Rohan et al. A high performance polysiloxane-based single ion conducting polymeric electrolyte membrane for application in lithium ion batteries
CN104704668B (zh) 混杂电解质
Chen et al. A solid polymer electrolyte based on star-like hyperbranched β-cyclodextrin for all-solid-state sodium batteries
KR102184530B1 (ko) 가교형 공중합체, 이를 포함하는 고분자막, 상기 고분자막을 포함하는 음이온 교환막, 상기 음이온 교환막을 포함하는 연료전지 및 상기 가교형 공중합체의 제조방법
Xu et al. An in situ photopolymerized composite solid electrolyte from halloysite nanotubes and comb-like polycaprolactone for high voltage lithium metal batteries
Zhijiang et al. Study on the electrochemical properties of zinc/polyindole secondary battery
Dimitrov et al. Proton conducting graft copolymers with tunable length and density of phosphonated side chains for fuel cell membranes
Liu et al. Recent development in topological polymer electrolytes for rechargeable lithium batteries
Zuo et al. Enhanced performance of a novel gel polymer electrolyte by dual plasticizers
Kawazoe et al. A Polymer electrolyte containing solvate ionic liquid with increased mechanical strength formed by self-assembly of ABA-type ionomer triblock copolymer
CN112352335B (zh) N,n’-二(杂)芳基-5,10-二氢吩嗪的低聚物、其阴极活性材料、阴极、电池及其制备方法
Fei et al. New single lithium ion conducting polymer electrolyte derived from delocalized tetrazolate bonding to polyurethane
Vereshchagin et al. Novel highly conductive cathode material based on stable-radical organic framework and polymerized nickel complex for electrochemical energy storage devices
Kim et al. Accelerated ion conduction by co-grafting of poly (ethylene glycol) and nitrile-terminated ionic liquid on poly (arylene ether sulfone) for solid electrolyte membranes for lithium ion battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893343

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21893343

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/01/2024).