WO2022102193A1 - 圧縮装置 - Google Patents

圧縮装置 Download PDF

Info

Publication number
WO2022102193A1
WO2022102193A1 PCT/JP2021/030308 JP2021030308W WO2022102193A1 WO 2022102193 A1 WO2022102193 A1 WO 2022102193A1 JP 2021030308 W JP2021030308 W JP 2021030308W WO 2022102193 A1 WO2022102193 A1 WO 2022102193A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
sealing material
anode
ring
separator
Prior art date
Application number
PCT/JP2021/030308
Other languages
English (en)
French (fr)
Inventor
孝 嘉久和
洋三 喜多
修 酒井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021568583A priority Critical patent/JP7016035B1/ja
Priority to EP21891441.4A priority patent/EP4245892A1/en
Priority to CN202180074060.6A priority patent/CN116438138A/zh
Publication of WO2022102193A1 publication Critical patent/WO2022102193A1/ja
Priority to US18/302,092 priority patent/US20230313788A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This disclosure relates to a compression device.
  • hydrogen used as fuel for a fuel cell vehicle is generally stored in a hydrogen tank in the vehicle in a high pressure state compressed to several tens of MPa.
  • Such high-pressure hydrogen is generally obtained by compressing low-pressure (normal pressure) hydrogen with a mechanical compression device.
  • Non-Patent Document 1 hydrogen and oxygen are separated by electrolysis of water, and high-pressure hydrogen is generated from low-pressure hydrogen through an electrolyte membrane (hereinafter referred to as a differential pressure type high-pressure water electrolyzer).
  • Water electrolyzer has been proposed.
  • the water electrolyzer comprises a solid polymer electrolyte membrane, an anode catalyst layer and a cathode catalyst layer provided on both sides of the solid polymer electrolyte membrane, and these catalyst layers in order to generate hydrogen and oxygen by electrolyzing water.
  • An anode feeding body and a cathode feeding body provided on both sides are arranged.
  • the cathode including the cathode catalyst layer and the cathode feeder, the electrolyte membrane, and the laminate of the anode including the anode catalyst layer and the anode feeder are referred to as a membrane-electrode assembly (hereinafter referred to as MEA: Membrane Electrode Assembly).
  • the water electrolysis cell of Non-Patent Document 1 holds the MEA, an anode separator and a resin frame provided with a normal pressure flow path for supplying water, discharging excess water, and flowing oxygen, and a high pressure. It is composed of a cathode separator having a high-pressure gas flow path for hydrogen discharge.
  • a plurality of water electrolysis cells are stacked according to the amount of high-pressure hydrogen generated at the cathode, and terminals for applying a voltage are provided at both ends of the laminated body in the stacking direction.
  • a current can be passed through the water electrolysis cell, and water is supplied to the cathode feeder.
  • water is electrolyzed to generate protons.
  • Protons move to the cathode side by passing through the electrolyte membrane, and rebond with electrons at the cathode feeder to generate high-pressure hydrogen.
  • hydrogen is discharged from the water electrolyzer via the high-pressure gas flow path provided in the cathode separator.
  • oxygen generated at the anode is discharged from the water electrolyzer together with excess water via the anode separator and the normal pressure flow path provided in the resin frame.
  • the hydrogen obtained by the water electrolysis is compressed, so that the hydrogen gas pressure on the cathode feeding body side becomes high.
  • the separator or the like is deformed, which may increase the contact resistance between the members constituting the water electrolysis cell.
  • Non-Patent Document 1 proposes a structure in which a laminated body containing a plurality of water electrolysis cells is brought into close contact with an end plate (both end plates) using a fastening member (bolt) in a water electrolysis device. Further, a closed space exists between the end plate at the upper end and the separator corresponding to the upper end of the laminated body, and high-pressure hydrogen is introduced into the closed space. Further, an elastic body (spring) is provided in this enclosed space.
  • Patent Document 1 proposes an electrochemical hydrogen pump in which low-pressure hydrogen-containing gas is supplied to the anode and only protons electrochemically permeate the electrolyte membrane to purify high-pressure hydrogen at the cathode. ..
  • the configuration of the electrochemical cell of the electrochemical hydrogen pump is the same as the configuration of the water electrolysis cell of Non-Patent Document 1 except that the anode fluid is a hydrogen-containing gas, and thus the description thereof will be omitted.
  • Patent Document 1 similarly to the above, if the hydrogen gas pressure on the cathode feeder side becomes high and the separator or the like is deformed, the contact resistance between the members constituting the electrochemical cell may increase. Therefore, in Patent Document 1, the above deformation is suppressed by introducing high-pressure hydrogen generated at the cathode into the space between the upper and lower end plates (both end plates) and the adjacent separators.
  • the compression device of one aspect of the present disclosure is provided on an electrolyte membrane, an anode provided on one main surface of the electrolyte membrane, and the other main surface of the electrolyte membrane.
  • At least one compression unit comprising a cathode, an anode separator laminated on the cathode, and a cathode separator laminated on the cathode, and a voltage applyer that applies a voltage between the anode and the cathode. It is a compression device that generates compressed hydrogen by moving the protons taken out from the anode fluid supplied to the anode to the cathode via the electrolyte membrane by applying a voltage with the voltage applyer.
  • the cathode end plate provided on the anode separator located at one end in the laminated direction and the cathode provided on the cathode separator located at the other end in the laminated direction.
  • a first space for storing the compressed hydrogen which is provided between the end plate, the first sealing material surrounding the outer periphery of the cathode, and the cathode separator located at the other end of the cathode end plate.
  • a second sealing material surrounding the outer periphery is provided, and the area of the region surrounded by the second sealing material is larger than the area of the region surrounded by the first sealing material.
  • the compression device of one aspect of the present disclosure can exert an effect that the contact resistance between the members constituting the compression unit can be appropriately reduced as compared with the conventional case.
  • FIG. 1 is a diagram showing an example of an electrochemical hydrogen pump according to the first embodiment.
  • FIG. 2 is a diagram showing an example of the bipolar plate and the hydrogen pump unit of FIG.
  • FIG. 3 is a diagram showing an exploded perspective view of the bipolar plate of FIG. 2.
  • FIG. 4 is a view of the bipolar plate of FIG. 2 as viewed from above.
  • FIG. 5 is a diagram showing an example of the first pressure forming member of FIG. 1 together with the bipolar plate and the hydrogen pump unit of FIG.
  • FIG. 6 is a diagram showing an exploded perspective view of the first pressure forming member of FIG.
  • FIG. 7 is a view of the first pressure forming member of FIG. 5 as viewed from above.
  • FIG. 8 is a diagram showing an example of the second pressure forming member of FIG.
  • FIG. 9 is a diagram showing an exploded perspective view of the second pressure forming member of FIG.
  • FIG. 10 is a view of the second pressure forming member of FIG. 8 as viewed from above.
  • FIG. 11 is a diagram showing an example of a phenomenon in which a part of the O-ring protrudes into the gap due to the high-pressure cathode gas existing inside the O-ring.
  • FIG. 12 is a diagram showing an example of a first pressure forming member in the electrochemical hydrogen pump of the second embodiment.
  • FIG. 13 is a diagram showing an example of a second pressure forming member in the electrochemical hydrogen pump of the first modification of the second embodiment.
  • Non-Patent Document 1 a large cylindrical recess is formed in the center of the bottom surface of the upper end plate, and the entire separator on the upper end side is inserted into the recess, whereby the end plate and the separator have a high pressure. A closed space for introducing gas is formed.
  • the arrangement of the sealing material for sealing the sealed space has not been sufficiently studied.
  • Patent Document 1 proposes to introduce high-pressure hydrogen into the space between the upper and lower end plates and the adjacent separator, but the arrangement of the sealing material for sealing the space is sufficiently examined. It has not been.
  • the compression device of the first aspect of the present disclosure is laminated on an electrolyte membrane, an anode provided on one main surface of the electrolyte membrane, a cathode provided on the other main surface of the electrolyte membrane, and an anode.
  • a compression device that produces compressed hydrogen by moving protons extracted from the anode fluid supplied to the anode to the cathode via an electrolyte membrane, and is located at one end of the stacking direction.
  • the area of the region is larger than the area of the region surrounded by the first sealing material.
  • the compression device of this embodiment can appropriately reduce the contact resistance between the members constituting the compression unit as compared with the conventional case.
  • the gas pressure of compressed hydrogen in the region surrounded by the second sealing material is a high pressure substantially equal to the gas pressure of compressed hydrogen in the region surrounded by the first sealing material in the compression unit. ..
  • the load applied to the cathode separator by the gas pressure of the compressed hydrogen in the region surrounded by the second sealing material is caused by the gas pressure of the compressed hydrogen in the region surrounded by the first sealing material by the cathode separator. It acts to suppress bending toward the cathode end plate side. As a result, in the compression device of this embodiment, gaps between the members constituting the compression unit are less likely to occur.
  • the area of the region surrounded by the second sealing material is smaller than the area of the region surrounded by the first sealing material, in the plan view, the area surrounded by the first sealing material Part of it does not fit within the area surrounded by the second sealant. Then, the portion of the cathode separator facing a part of the above region may bend toward the cathode end plate side.
  • the area of the region surrounded by the second sealing material is made larger than the area of the region surrounded by the first sealing material, so that the former can be seen in a plan view.
  • the area can accommodate the entire area of the latter. Therefore, in the compression device of this embodiment, a load for suppressing the above-mentioned bending deformation can be applied to the entire area of the cathode separator facing the region surrounded by the first sealing material, and therefore, between the members constituting the compression unit. Contact resistance can be reduced more appropriately than before.
  • the compression device of the second aspect of the present disclosure is provided between the anode end plate and the anode separator located at one end in the compression device of the first aspect, and is provided on the outer periphery of the second space for storing compressed hydrogen.
  • the area of the region surrounded by the third sealing material may be larger than the area of the area surrounded by the first sealing material.
  • the gas pressure of compressed hydrogen in the region surrounded by the third sealing material is a high pressure substantially equal to the gas pressure of compressed hydrogen in the region surrounded by the first sealing material in the compression unit. Further, the load applied to the anode separator by the gas pressure of compressed hydrogen in the region surrounded by the third sealing material is due to the gas pressure of compressed hydrogen in the region where the anode separator is surrounded by the first sealing material. It acts to suppress bending toward the anode end plate side. As a result, in the compression device of this embodiment, gaps between the members constituting the compression unit are less likely to occur.
  • the area of the region surrounded by the third sealing material is smaller than the area of the region surrounded by the first sealing material, in the plan view, the area surrounded by the first sealing material A part does not fit in the area surrounded by the third sealing material. Then, the portion of the anode separator facing a part of the above region may bend toward the anode end plate side.
  • the area of the region surrounded by the third sealing material is made larger than the area of the region surrounded by the first sealing material, so that the former can be seen in a plan view.
  • the area can accommodate the entire area of the latter. Therefore, in the compression device of this embodiment, a load for suppressing the above-mentioned bending deformation can be applied to the entire area of the anode separator facing the region surrounded by the first sealing material, and therefore, between the members constituting the compression unit.
  • the contact resistance can be reduced more appropriately than before.
  • the area of the area surrounded by the outer edge of the second sealing material is surrounded by the outer edge of the first sealing material. It may be larger than the area of the area.
  • the outer edge of the first sealing material is assumed to be smaller than the area of the region surrounded by the outer edge of the first sealing material. A part of the area surrounded by is not contained in the area surrounded by the outer edge of the second sealing material.
  • the portion of the cathode separator facing a part of the above region may bend toward the cathode end plate side, but the compression device of this embodiment has the area of the region surrounded by the outer edge of the second sealing material.
  • the above-mentioned inconvenience can be alleviated by making the area larger than the area of the area surrounded by the outer edge of the first sealing material.
  • the area of the region surrounded by the outer edge of the third sealing material is larger than the area of the region surrounded by the outer edge of the first sealing material. May be large.
  • the outer edge of the first sealing material is assumed to be smaller than the area of the region surrounded by the outer edge of the first sealing material. A part of the area surrounded by the third sealing material does not fit in the area surrounded by the outer edge of the third sealing material.
  • the portion of the anode separator facing a part of the above region may bend toward the anode end plate side, but the compression device of this embodiment has the area of the region surrounded by the outer edge of the third sealing material.
  • the above-mentioned inconvenience can be alleviated by making the area larger than the area of the area surrounded by the outer edge of the first sealing material.
  • the compression device of the fifth aspect of the present disclosure includes a ring material adjacent to the outer edge of the second sealing material and surrounding the second sealing material in any one of the first to fourth aspects of the compression device. May be good.
  • a gap is generated between the members in contact with the second seal material due to the gas pressure of compressed hydrogen in the region surrounded by the second seal material.
  • the ring material surrounding the second sealing material is not provided, a part of the second sealing material has the above-mentioned gap due to the gas pressure of compressed hydrogen existing inside the second sealing material. There is a possibility that it will stick out. Then, the second sealing material may be damaged, and the gas sealing property of the second sealing material may be deteriorated.
  • the second sealing material may protrude into the gap by providing the ring material surrounding the second sealing material so as to be adjacent to the outer edge of the second sealing material. It is suppressed, and as a result, the damage of the second sealing material is improved.
  • the compression device of the sixth aspect of the present disclosure may include a ring material adjacent to the outer edge of the third sealing material and surrounding the third sealing material in the compression device of the second or fourth aspect.
  • the third sealing material may protrude into the gap by providing the ring material surrounding the third sealing material so as to be adjacent to the outer edge of the third sealing material. It is suppressed, and as a result, the damage of the third sealing material is improved.
  • the ring material surrounding the first sealing material may not be provided on the outer edge of the first sealing material. ..
  • the member that comes into contact with the first seal material bends toward the end plate side as compared with the member that comes into contact with the second seal material and the third seal material.
  • gaps are less likely to occur between the members that come into contact with the first sealing material. Therefore, even if the ring material surrounding the first sealing material is not provided, it is unlikely that the first sealing material will be damaged by the gas pressure of compressed hydrogen existing inside the first sealing material. Therefore, in the compression device of this embodiment, the number of parts of the ring material can be reduced by not providing the ring material surrounding the first seal material on the outer edge of the first seal material.
  • the length from the inner edge to the outer edge of the second sealing material is from the inner edge of the first sealing material. It may be longer than the length to the outer edge.
  • a gap may be created between the members that come into contact with the second sealing material due to the member bending toward the cathode end plate due to the gas pressure of compressed hydrogen in the region surrounded by the second sealing material.
  • the member that comes into contact with the first sealing material is suppressed from bending toward the cathode end plate side as compared with the member that comes into contact with the second sealing material, and as a result, between the members that come into contact with the first sealing material. Then, gaps are unlikely to occur.
  • the length from the inner edge to the outer edge of the second sealing material is made larger than the length from the inner edge to the outer edge of the first sealing material, so that the former length is the latter.
  • the durability of the second sealing material can be improved as compared with the case where the length is smaller than the length. Specifically, the larger the length from the inner edge to the outer edge of the second sealing material, the more difficult it is for the second sealing material to protrude into the above-mentioned gap, so that the damage to the second sealing material is improved. ..
  • the length from the inner edge to the outer edge of the third sealing material is the first seal. It may be longer than the length from the inner edge to the outer edge of the material.
  • a gap may be created between the members that come into contact with the third sealing material due to the member bending toward the anode end plate side due to the gas pressure of compressed hydrogen in the region surrounded by the third sealing material.
  • the member that comes into contact with the first sealing material is suppressed from bending toward the anode end plate side as compared with the member that comes into contact with the third sealing material, and as a result, between the members that come into contact with the first sealing material. Then, gaps are unlikely to occur.
  • the length from the inner edge to the outer edge of the third sealing material is made larger than the length from the inner edge to the outer edge of the first sealing material, so that the former length is the latter.
  • the durability of the third sealing material can be improved as compared with the case where the length is smaller than the length. Specifically, the larger the length from the inner edge to the outer edge of the third sealing material, the more difficult it is for the third sealing material to protrude into the above-mentioned gap, so that the damage to the third sealing material is improved. ..
  • the compression device is the first seal in any one of the first to ninth aspects when viewed from the stacking direction of the anode separator, the anode, the electrolyte membrane, the cathode and the cathode separator.
  • the outer edge of the material may be contained within the outer edge of the second sealing material.
  • the outer edge of the first sealing material is accommodated within the outer edge of the second sealing material in the plan view seen from the stacking direction, so that the outer edge of the first sealing material is accommodated.
  • a load for suppressing the above-mentioned bending deformation can be applied to the entire cathode separator facing the region surrounded by.
  • the compression device of the eleventh aspect of the present disclosure is the stacking direction of the anode separator, the anode, the electrolyte membrane, the cathode and the cathode separator in any one of the second aspect, the fourth aspect, the sixth aspect and the ninth aspect. From the viewpoint, the outer edge of the first sealing material may be contained within the outer edge of the third sealing material.
  • the outer edge of the first sealing material is accommodated within the outer edge of the third sealing material in the plan view seen from the stacking direction, so that the outer edge of the first sealing material is accommodated.
  • a load for suppressing the above-mentioned bending deformation can be applied to the entire area of the anode separator facing the region surrounded by.
  • the compression device of the twelfth aspect of the present disclosure is the second seal in any one of the first to eleventh aspects when viewed from the stacking direction of the anode separator, the anode, the electrolyte membrane, the cathode and the cathode separator.
  • the outer edge of the material may be contained within the outer edge of the cathode separator.
  • the compression device of the thirteenth aspect of the present disclosure is the anode separator, the anode, the electrolyte membrane, the cathode and the cathode in any one of the second aspect, the fourth aspect, the sixth aspect, the ninth aspect and the eleventh aspect.
  • the outer edge of the third sealing material may be contained within the outer edge of the cathode separator.
  • the first sealing material and the second sealing material may be an O-ring.
  • the compression device of the fifteenth aspect of the present disclosure is the first sealing material, the first sealant, in any one of the second aspect, the fourth aspect, the sixth aspect, the ninth aspect, the eleventh aspect and the thirteenth aspect.
  • the sealing material 2 and the sealing material 3 may be an O-ring.
  • anode fluid of the above compression device various types of gases and liquids are assumed.
  • hydrogen-containing gas can be mentioned as the anode fluid.
  • water electrolyzer liquid water can be mentioned as the anode fluid.
  • the configuration and operation of the electrochemical hydrogen pump including the hydrogen pump unit will be described as an example of the compression device including the above-mentioned compression unit.
  • FIG. 1 is a diagram showing an example of an electrochemical hydrogen pump according to the first embodiment.
  • “top” and “bottom” are taken as shown in the figure (the same applies to other drawings).
  • the electrochemical hydrogen pump 100 includes at least one hydrogen pump unit 10, a first pressure forming member 44, a second pressure forming member 46, and a voltage adapter 102.
  • a plurality of stages of hydrogen pump units 10 are laminated on the electrochemical hydrogen pump 100.
  • five hydrogen pump units 10 are stacked, but the number of hydrogen pump units 10 is not limited to this. That is, the number of hydrogen pump units 10 can be set to an appropriate number based on operating conditions such as the amount of hydrogen compressed by the electrochemical hydrogen pump 100.
  • each of the bipolar plates (bipolar plates) 29 functions as a plate that functions as a cathode separator of one of the adjacent hydrogen pump units 10 and as an anode separator of the other of the adjacent hydrogen pump units 10.
  • the uppermost bipolar plate 29 is configured to function only as a cathode separator. Specifically, the upper surface of the uppermost bipolar plate 29 is in contact with the space SC of the first pressure forming member 44, and the upper surface is not provided with an anode gas flow path through which hydrogen-containing gas flows. A space SC for storing a cathode gas containing compressed hydrogen generated at the cathode of the hydrogen pump unit 10 is formed in the first pressure forming member 44. That is, the upper surface of the uppermost bipolar plate 29 functions as a lid for sealing the space SC of the first pressure forming member 44.
  • the lowermost hydrogen pump unit 10 is composed of a plate that functions as a cathode separator of the lowermost bipolar plate 29 and a plate that functions as an anode separator of the second pressure forming member 46.
  • an anode gas flow path (not shown in FIG. 1) through which hydrogen-containing gas flows is provided on the upper surface of the second pressure forming member 46.
  • the second pressure forming member 46 is formed with a space SA for storing a cathode gas containing compressed hydrogen generated at the cathode of the hydrogen pump unit 10.
  • the electrochemical hydrogen pump 100 is fastened to a cathode end plate 15 and an anode end plate 16 provided on both ends in a stacking direction (hereinafter referred to as a stacking direction) of each of the hydrogen pump units 10. It is equipped with a vessel 17. Specifically, the anode end plate 16 is provided on the anode separator located at one end in the stacking direction of the hydrogen pump unit 10. The cathode end plate 15 is provided on the cathode separator located at the other end in the stacking direction of the hydrogen pump unit 10.
  • the fastener 17 may have any configuration as long as each member constituting the laminated body of the electrochemical hydrogen pump 100 can be fastened in the stacking direction. For example, as the fastener 17, a bolt, a nut with a disc spring, and the like can be mentioned. The detailed configuration of the fastener 17 will be described in the third embodiment.
  • a fluid collection / delivery member 11 and an insulating plate 13 are laminated in this order from above between the cathode end plate 15 and the first pressure forming member 44.
  • the order of laminating the first pressure forming member 44 and the insulating plate 13 may be reversed.
  • a fluid collection / delivery member 14, an insulating plate 12, and a sealing plate 48 are laminated in this order from the bottom between the anode end plate 16 and the second pressure forming member 46.
  • an outlet through which low-pressure (for example, normal pressure to several MPa) hydrogen-containing gas discharged from the anode of the hydrogen pump unit 10 flows out, and a hydrogen pump.
  • An outlet from which a cooling medium (for example, water) for controlling the unit 10 is controlled to an appropriate temperature and a high pressure discharged from the cathode of the hydrogen pump unit 10 (for example, about several MPa to several tens of MPa).
  • a discharge port 14A through which the cathode gas of the above passes is provided.
  • the discharge port 14A communicates with the first cathode gas lead-out manifold 35 via a gas path provided in the fluid collection / delivery member 11.
  • the first cathode gas lead-out manifold 35 includes a plurality of bipolar plates 29, a first pressure forming member 44, an insulating plate 13, a second pressure forming member 46, a sealing plate 48, and an insulating plate 12. It is composed of a series of through holes provided in. Then, in the electrochemical hydrogen pump 100, the cathode gas discharged from each cathode of the hydrogen pump unit 10 via the connecting path (see the dotted line in FIG. 1) provided in the bipolar plate 29 is the first cathode gas. It is configured to meet at the lead-out manifold 35.
  • the electrochemical hydrogen pump 100 is a space SC of the first cathode gas lead-out manifold 35 and the first pressure forming member 44 via a communication path (see the dotted line in FIG. 1) provided in the first pressure forming member 44. Is configured to communicate with. Further, the electrochemical hydrogen pump 100 has a space SA between the first cathode gas lead-out manifold 35 and the second pressure forming member 46 via a communication path (see the dotted line in FIG. 1) provided in the second pressure forming member 46. It is configured to communicate with the cathode gas. Although not shown in FIG.
  • the hydrogen-containing gas outlet and the cooling medium outlet in the fluid collection / delivery member 14 are an anode gas lead-out manifold and cooling, respectively, which are composed of a series of through holes provided in each of the above members. It communicates with each of the medium lead-out manifolds.
  • an inlet into which a low-pressure (for example, normal pressure to several MPa) hydrogen-containing gas supplied to the anode of the hydrogen pump unit 10 flows, and a hydrogen pump.
  • An inlet into which a cooling medium (for example, water) for controlling the unit 10 at an appropriate temperature flows in, and a high pressure discharged from the cathode of the hydrogen pump unit 10 (for example, about several MPa to several tens of MPa).
  • the discharge port 11A through which the cathode gas of the above passes is provided.
  • the discharge port 11A communicates with the second cathode gas lead-out manifold 36 via a gas path provided in the fluid collection / delivery member 11.
  • the second cathode gas lead-out manifold 36 includes a plurality of bipolar plates 29, a first pressure forming member 44, an insulating plate 13, a second pressure forming member 46, a sealing plate 48, and an insulating plate 12. It is composed of a series of through holes provided in. Then, in the electrochemical hydrogen pump 100, the cathode gas discharged from each cathode of the hydrogen pump unit 10 via the connecting path (see the dotted line in FIG. 1) provided in the bipolar plate 29 is the second cathode gas. It is configured to meet at the lead-out manifold 36.
  • the electrochemical hydrogen pump 100 is a space SC of the second cathode gas lead-out manifold 36 and the first pressure forming member 44 via a communication path (see the dotted line in FIG. 1) provided in the first pressure forming member 44. Is configured to communicate with. Further, the electrochemical hydrogen pump 100 has a space SA between the second cathode gas lead-out manifold 36 and the second pressure forming member 46 via a communication path (see the dotted line in FIG. 1) provided in the second pressure forming member 46. It is configured to communicate with the cathode gas. Although not shown in FIG.
  • the hydrogen-containing gas inflow port and the cooling medium inflow port in the fluid collection / delivery member 11 are an anode gas introduction manifold and cooling, respectively, which are composed of a series of through holes provided in each of the above members. It communicates with each of the medium introduction manifolds.
  • the insulating plate 13 is inserted between the first pressure forming member 44 and the fluid collecting / delivering member 11, whereby the bipolar plate 29 is between the fluid collecting / delivering member 11, the cathode end plate 15 and the fastener 17.
  • the material of the insulating plate 13 include, but are not limited to, rubber, resin (for example, PEN, PET, etc.), glass, glass epoxy material, and the like.
  • the insulating plate 12 is inserted between the sealing plate 48 and the fluid collecting / delivering member 14, whereby the bipolar plate 29 and the second pressure forming member 46, the fluid collecting / delivering member 14, the anode end plate 16 and the fastener are inserted. It is properly insulated from 17.
  • the material of the insulating plate 12 include, but are not limited to, rubber, resin (for example, PEN, PET, etc.), glass, glass epoxy material, and the like.
  • the sealing plate 48 functions as a lid for sealing the space SA of the second pressure forming member 46, whereby the high-pressure cathode gas accumulated in the space SA is sealed.
  • the material of the sealing plate 48 include, but are not limited to, stainless steel, gold, titanium, rubber, resin (for example, PEN, PET, etc.), glass, glass epoxy material, and the like.
  • stainless steel is used as the material of the sealing plate 48, it is desirable to use SUS316L which is excellent in properties such as acid resistance and hydrogen embrittlement resistance.
  • an insulating member such as resin is used as the material of the sealing plate 48, the sealing plate 48 and the insulating plate 12 may be integrated.
  • the voltage adapter 102 is a device that applies a voltage between the anode and the cathode of the hydrogen pump unit 10. Specifically, the high potential of the voltage applicator 102 is applied to the anode, and the low potential of the voltage applicator 102 is applied to the cathode.
  • the voltage adapter 102 may have any configuration as long as a voltage can be applied between the anode and the cathode.
  • the voltage applyer 102 may be a device that adjusts the voltage applied between the anode and the cathode.
  • the voltage adapter 102 includes a DC / DC converter when connected to a DC power source such as a battery, a solar cell, or a fuel cell, and AC when connected to an AC power source such as a commercial power source. It is equipped with a / DC converter.
  • the voltage adapter 102 is, for example, a power whose voltage applied between the anode and the cathode and the current flowing between the anode and the cathode are adjusted so that the power supplied to the hydrogen pump unit 10 becomes a predetermined set value. It may be a type power supply.
  • the terminal 101 on the low potential side of the voltage adapter 102 is connected to the bipolar plate 29 on the uppermost stage, and the terminal 103 on the high potential side of the voltage adapter 102 is the second pressure forming member. It is connected to 46, but is not limited to this.
  • the terminal 101 on the low potential side of the voltage applyer 102 may be connected to the first pressure forming member 44.
  • the uppermost bipolar plate 29 and the second pressure forming member 46 are also used as the current collector plate. Therefore, in the electrochemical hydrogen pump 100 of the present embodiment, the number of plates can be reduced by using the plates in combination, so that the manufacturing cost of the apparatus can be reduced.
  • the fluid collection / delivery member 11, the first pressure forming member 44, the bipolar plate 29, the second pressure forming member 46, and the fluid collection / delivery member 14 are all exposed to high-pressure compressed hydrogen.
  • These members are made of SUS316L. This is because SUS316L has excellent properties such as acid resistance and hydrogen embrittlement resistance among various types of stainless steel.
  • the cathode end plate 15, the anode end plate 16 and the fastener 17 are not exposed to hydrogen, these members are made of chrome molybdenum steel (for example, SCM45), which is cheaper than SUS316L. There is.
  • FIG. 2 is a diagram showing an example of the bipolar plate and the hydrogen pump unit of FIG.
  • FIG. 3 is a diagram showing an exploded perspective view of the bipolar plate of FIG. 2. Specifically, a view of a pair of members constituting the bipolar plate 29 viewed from the portion AA of FIG. 2 and a view in which both are integrated are shown. Note that FIG. 3 shows a diagram in which the MEA and the O-ring are omitted for convenience of explanation.
  • FIG. 4 is a view of the bipolar plate of FIG. 2 as viewed from above. Specifically, a view of the members constituting the bipolar plate 29 viewed from the BB portion of FIG. 2 in a plan view is shown.
  • the bipolar plate 29 serves as a plate that functions as an anode separator of one of the adjacent hydrogen pump units 10 and as a cathode separator of the other of the adjacent hydrogen pump units 10. With a functioning plate.
  • a part of the bipolar plate 29 on the upper stage side constitutes a cathode separator
  • a part of the bipolar plate 29 on the lower stage side constitutes an anode separator.
  • the plate that functions as the cathode separator is referred to as the cathode separator 29A
  • the plate that functions as the anode separator is referred to as the anode separator 29B.
  • the cathode separator 29A and the anode separator 29B in each of the bipolar plates 29 are integrated by surface bonding.
  • the cathode separator 29A and the anode separator 29B can be joined by diffusion joining of a pair of metal plates.
  • diffusion bonding means "atoms generated between the bonding surfaces by bringing the base metal into close contact and applying pressure to the extent that plastic deformation does not occur as much as possible under temperature conditions below the melting point of the base metal. It is defined as "a method of joining using the diffusion of.”
  • a cooling flow path 60 through which a cooling medium for adjusting the temperature of the hydrogen pump unit 10 to an appropriate temperature is provided is provided on the bonding surface of the anode separator 29B. There is. Both ends of the cooling flow path 60 communicate with each of the cooling medium introduction manifold 61 and the cooling medium lead-out manifold 62, respectively.
  • the hydrogen pump unit 10 includes an electrolyte membrane 21, an anode AN, a cathode CA, a cathode separator 29A, an anode separator 29B, a frame body 28, and a surface sealing material 40. Then, in the hydrogen pump unit 10, an electrolyte membrane 21, an anode catalyst layer 24, a cathode catalyst layer 23, an anode feeder 25, a cathode feeder 22, a cathode separator 29A and an anode separator 29B are laminated.
  • the anode AN is provided on one main surface of the electrolyte membrane 21.
  • the anode AN is an electrode including an anode catalyst layer 24 and an anode feeder 25.
  • the cathode CA is provided on the other main surface of the electrolyte membrane 21.
  • the cathode CA is an electrode including a cathode catalyst layer 23 and a cathode feeding body 22.
  • a membrane CCM Catalyst Coated Membrane
  • a catalyst layer in which the cathode catalyst layer 23 and the anode catalyst layer 24 are integrally bonded to the electrolyte membrane 21 may be used.
  • the anode feeding body 25 and the cathode feeding body 22 are provided on each of the anode catalyst layer 24 and the cathode catalyst layer 23 of the film CCM with a catalyst layer, respectively.
  • the electrolyte membrane 21 is sandwiched between the anode AN and the cathode CA.
  • the electrolyte membrane 21 is a polymer membrane having proton conductivity.
  • the electrolyte membrane 21 may have any structure as long as it has proton conductivity.
  • examples of the electrolyte membrane 21 include, but are not limited to, a fluorine-based polymer electrolyte membrane and a hydrocarbon-based polymer electrolyte membrane.
  • Nafion registered trademark, manufactured by DuPont
  • Aciplex registered trademark, manufactured by Asahi Kasei Corporation
  • the like can be used as the electrolyte membrane 21.
  • the anode catalyst layer 24 is provided so as to be in contact with one main surface of the electrolyte membrane 21.
  • the anode catalyst layer 24 includes, but is not limited to, platinum as the catalyst metal.
  • the cathode catalyst layer 23 is provided so as to be in contact with the other main surface of the electrolyte membrane 21.
  • the cathode catalyst layer 23 contains, for example, platinum as the catalyst metal, but is not limited thereto.
  • Examples of the catalyst carrier of the cathode catalyst layer 23 and the anode catalyst layer 24 include, but are not limited to, carbon particles such as carbon black and graphite, and conductive oxide particles.
  • the fine particles of the catalyst metal are supported on the catalyst carrier in a highly dispersed manner. Further, it is common to add a proton-conducting ionomer component into the cathode catalyst layer 23 and the anode catalyst layer 24 in order to increase the electrode reaction field.
  • the cathode feeding body 22 is provided on the cathode catalyst layer 23. Further, the cathode feeding body 22 is made of a porous material and has conductivity and gas diffusivity. Further, it is desirable that the cathode feeding body 22 has elasticity so as to appropriately follow the displacement and deformation of the constituent members generated by the differential pressure between the cathode CA and the anode AN during the operation of the electrochemical hydrogen pump 100.
  • a member made of carbon fiber is used as the cathode feeding body 22.
  • a porous carbon fiber sheet such as carbon paper, carbon cloth, or carbon felt may be used. It is not necessary to use the carbon fiber sheet as the base material of the cathode feeding body 22.
  • a sintered body of metal fibers made of titanium, a titanium alloy, stainless steel, or the like, a sintered body of metal particles made of these materials, or the like may be used.
  • the anode feeder 25 is provided on the anode catalyst layer 24. Further, the anode feeding body 25 is made of a porous material and has conductivity and gas diffusivity. Further, it is desirable that the anode feeding body 25 has high rigidity capable of suppressing the displacement and deformation of the constituent members generated by the differential pressure between the cathode CA and the anode AN during the operation of the electrochemical hydrogen pump 100.
  • the base material of the anode feeder 25 for example, a fiber sintered body made of titanium, a titanium alloy, stainless steel, carbon, etc., a powder sintered body, an expanded metal, a metal mesh, a punching metal, or the like is used. You may use it.
  • the anode separator 29B is a member laminated on the anode AN.
  • the cathode separator 29A is a member laminated on the cathode CA.
  • the anode feeder 25 is in contact with the central portion of the surface of the anode separator 29B on the anode AN side facing the anode AN. Then, as shown in FIG. 4, a serpentine-shaped anode gas flow path 30 is provided in the central portion thereof in a plan view. Both ends of the anode gas flow path 30 communicate with each of the anode gas introduction manifold 31 and the anode gas lead-out manifold 32, respectively.
  • a recess is provided in the center of the surface of the cathode separator 29A on the cathode CA side facing the cathode CA, and the cathode feeding body 22 is housed in the recess. That is, the recess corresponds to the space S (see FIG. 3) for storing the cathode gas containing the compressed hydrogen generated by the cathode CA of the hydrogen pump unit 10.
  • a first cathode gas lead-out manifold 35 through which the cathode gas flows a second cathode gas lead-out manifold 36 through which the cathode gas flows, and a recess (space S) of the cathode separator 29A are provided.
  • the connecting path 37 is composed of a flow path groove on the bonding surface of the anode separator 29B before the cathode separator 29A and the anode separator 29B are surface-bonded.
  • this flow path groove extends linearly so as to straddle the O-ring groove 50 and the O-ring groove 51 provided on the main surface of the cathode separator 29A on the anode AN side.
  • one end of the flow path groove communicates with the inside of the recess (space S) of the cathode separator 29A via a communication hole 70 extending vertically near the edge of the bottom surface of the recess (space S).
  • the other end of the flow path groove is connected to the first cathode gas lead-out manifold 35.
  • the connecting path 37 is appropriately gas-sealed by integrating the cathode separator 29A and the anode separator 29B by surface bonding.
  • the high-pressure cathode gas generated by the cathode CA accumulates in the recess (space S) of the cathode separator 29A, and then the cathode gas is as shown by the dotted arrow in FIG. , Flows from the space S through the communication hole 70 and the connecting path 37 in this order, and is supplied to the first cathode gas lead-out manifold 35.
  • the connecting path 38 is composed of a flow path groove on the bonding surface of the anode separator 29B before the cathode separator 29A and the anode separator 29B are surface-bonded.
  • This flow path groove extends linearly so as to straddle the O-ring groove 50 and the O-ring groove 52 provided in the cathode separator 29A in a plan view.
  • one end of the flow path groove communicates with the inside of the recess (space S) of the cathode separator 29A via a communication hole 71 extending vertically near the edge of the bottom surface of the recess (space S).
  • the other end of the flow path groove is connected to the second cathode gas lead-out manifold 36.
  • the connecting path 38 is appropriately gas-sealed by integrating the cathode separator 29A and the anode separator 29B by surface bonding.
  • the high-pressure cathode gas generated by the cathode CA accumulates in the recess (space S) of the cathode separator 29A, and then the cathode gas is as shown by the dotted arrow in FIG. , Flows from the space S through the communication hole 71 and the connecting path 38 in this order, and is supplied to the second cathode gas lead-out manifold 36.
  • the electrochemical hydrogen pump 100 of the present embodiment passes through the connecting path 37 and the connecting path 38 of the anode separator 29B, respectively, from the space S of the cathode separator 29A to the first cathode gas lead-out manifold 35 of the anode separator 29B and A high-pressure cathode gas can be appropriately supplied to each of the second cathode gas lead-out manifolds 36.
  • the communication path 37 and the communication path 38, and the communication hole 70 and the communication hole 71 are the center of the first cathode gas lead-out manifold 35 and the center of the second cathode gas lead-out manifold 36, respectively, in a plan view. It is provided on a straight line connecting the two, but is not limited to this.
  • the arrangement position and shape of the connecting path and the communication hole may be any location and shape as long as the cathode gas flowing in from the recess (space S) of the cathode separator 29A can be guided to the cathode gas out-drawing manifold.
  • the number of communication paths and communication holes may be one or three or more.
  • the above cathode separator 29A and anode separator 29B may be made of, for example, a metal sheet such as titanium, stainless steel, or gold, but the present invention is not limited thereto.
  • the base material of the cathode separator 29A and the anode separator 29B may be made of carbon or a resin having a metal film formed on the surface thereof.
  • SUS316L is desirable to use as the material of the cathode separator 29A and the anode separator 29B. This is because SUS316L has excellent properties such as acid resistance and hydrogen embrittlement resistance among various types of stainless steel.
  • the hydrogen pump unit 10 is formed by sandwiching the above MEA between the cathode separator 29A and the anode separator 29B.
  • an O-ring 45 surrounding the outer periphery of the cathode CA is provided.
  • the cathode separator 29A is provided with an O-ring groove 50 on the main surface on the cathode CA side, which surrounds a region facing the cathode CA on the main surface in a plan view, and the O-ring 45 is an O-ring. It is held in the ring groove 50.
  • the high-pressure cathode gas existing in the cathode CA is sealed by the O-ring 45, and leakage from the region surrounded by the O-ring 45 to the outside is appropriately suppressed.
  • the O-ring 45 corresponds to an example of the "first sealing material" of the present disclosure.
  • the O-ring groove 50 faces a region of the main surface of the electrolyte membrane 21 on the cathode CA side where the cathode CA is not provided.
  • the electrolyte membrane 21 is provided wide so as to straddle the side wall of the recess in which the cathode CA is housed, and the O-ring 45 is provided so as to abut on the wide portion of the electrolyte membrane 21. ..
  • a fluororubber-based O-ring can be used from the viewpoint of acid resistance and hydrogen embrittlement resistance, but is not limited thereto.
  • the frame body 28 is a member provided so as to surround the outer periphery of the electrolyte membrane 21.
  • Examples of the base material of the frame body 28 include, but are not limited to, fluororubber from the viewpoint of acid resistance and hydrogen embrittlement resistance.
  • the insulating frame 28 makes it possible to appropriately prevent a short circuit between the cathode separator 29A and the anode separator 29B in the hydrogen pump unit 10.
  • the surface sealing material 40 is provided on the outer periphery of the region of the anode separator 29B on the main surface of the anode AN side facing the anode AN. Further, the surface sealing material 40 faces a region of the main surface of the electrolyte membrane 21 on the anode AN side where the anode AN is not provided, and the main surface of the frame 28 on the anode AN side.
  • the electrolyte membrane 21 is provided wide so as to straddle the outer peripheral end of the anode AN, and the main surface of the surface sealing material 40, the wide portion of the electrolyte membrane 21, and the main surface of the frame body 28 are formed. Are in contact.
  • Examples of the base material of the surface sealing material 40 include, but are not limited to, fluororubber and fluororesin from the viewpoint of acid resistance and hydrogen embrittlement resistance.
  • the insulating surface sealing material 40 can be configured so that the cathode separator 29A and the anode separator 29B in the hydrogen pump unit 10 are not easily short-circuited appropriately.
  • the electrolyte membrane 21 and the frame body 28 are formed as separate bodies, but both may be integrated. Further, it is not necessary to provide such a frame body 28.
  • the cathode separator 29A and the anode separator 29B can be configured so as not to be short-circuited by the surface sealing material 40 without providing the frame body 28.
  • the cathode separator 29A is provided with an O-ring groove 51 surrounding the first cathode gas lead-out manifold 35.
  • the O-ring 41 is held in the O-ring groove 51.
  • the cathode separator 29A is provided with an O-ring groove 52 surrounding the second cathode gas lead-out manifold 36.
  • the O-ring 42 is held in the O-ring groove 52.
  • the O-ring 41 and the O-ring 42 are in contact with the main surface of the anode separator 29B on the anode AN side, respectively. That is, the O-ring 41 and the O-ring 42 are in contact with both the cathode separator 29A and the anode separator 29B corresponding to the bipolar plates 29 on both sides, respectively.
  • the surface sealing material 40 is not provided on the region of the main surface of the anode separator 29B on the anode AN side where the O-ring 41 and the O-ring 42 are in contact with each other. Further, the frame body 28 is not provided in the area where the O-ring 41 and the O-ring 42 are arranged.
  • the frame body 28 has through holes so that the outer shapes of the pair of through holes (circular openings) are the same as the outer shapes of the O-ring groove 51 and the O-ring groove 51. It is formed. Further, the surface sealing material 40 is formed with through holes so that the outer shapes of the pair of through holes (circular openings) are the same as the outer shapes of the O-ring groove 51 and the O-ring groove 51. ing. A columnar space composed of through holes provided in the frame body 28 and the surface sealing material 40 accommodates the O-ring 41, and the inside of the O-ring 41 provided in the columnar space leads out the first cathode gas. It constitutes a part of the manifold 35.
  • the cylindrical space composed of the through holes provided in the frame body 28 and the surface sealing material 40 accommodates the O-ring 42, and the inside of the O-ring 42 provided in the cylindrical space leads out the second cathode gas. It constitutes a part of the manifold 36.
  • FIG. 5 is a diagram showing an example of the first pressure forming member of FIG. 1 together with the bipolar plate and the hydrogen pump unit of FIG.
  • FIG. 6 is a diagram showing an exploded perspective view of the first pressure forming member of FIG. Specifically, a view is shown in which a pair of members constituting the first pressure forming member 44 are viewed from the portion AA in FIG. 5, and a view in which both are integrated is shown. In the first pressure forming member 44 of FIG. 5, only the O-ring 45C is shown for convenience of explanation. Further, in FIG. 6, a diagram in which the O-ring is omitted is shown.
  • FIG. 7 is a view of the first pressure forming member of FIG. 5 as viewed from above. Specifically, a view is shown in which the members constituting the first pressure forming member 44 are viewed in a plan view from the BB portion of FIG.
  • a space SC for storing the cathode gas is formed in the plate 44A, and the first cathode gas lead-out manifold 135 and the second cathode gas lead-out manifold through which the cathode gas flows are formed in the plate 44B.
  • 136 and a connecting path 138 for guiding the cathode gas flowing from the second cathode gas lead-out manifold 136 to the space SC are provided.
  • the cathode gas overflowing from the space SC is guided to the first cathode gas lead-out manifold 135 through the connecting path 137.
  • the configuration of the plate 44A is the same as the configuration of the cathode separator 29A except for the configurations of the O-ring 45C and the O-ring groove 50C described below.
  • the space S of the cathode separator 29A and the space SC of the plate 44A have the same shape.
  • the communication hole 70 of the cathode separator 29A and the communication hole 170 of the plate 44A have the same shape, and the communication hole 71 of the cathode separator 29A and the communication hole 171 of the plate 44A have the same shape. Therefore, a detailed description of the configuration of the plate 44A will be omitted.
  • the configuration of the plate 44B is that the cooling flow path is not provided on the surface of the plate 44B where the connecting path 137 and the connecting path 138 are provided, and the connecting path 137 and the connecting path 138 of the plate 44B are provided.
  • the configuration is the same as that of the anode separator 29B except that the anode fluid flow path is not provided on the surface opposite to the surface.
  • the connecting path 37 of the anode separator 29B and the connecting path 137 of the plate 44B have the same shape
  • the connecting path 38 of the anode separator 29B and the connecting path 138 of the plate 44B have the same shape. Therefore, a detailed description of the configuration of the plate 44B will be omitted.
  • the cathode gas branched from the second cathode gas lead-out manifold 136 is , As shown by the dotted arrow in FIG. 6, flows through the connecting path 138 and the communication hole 171 in this order, and is supplied to the recess (space SC) of the plate 44A.
  • the cathode gas overflowing from the space SC flows through the communication hole 170 and the connecting path 137 in this order as shown by the dotted line arrow in FIG. 6, and the first cathode gas lead-out manifold 135. Is guided by.
  • the electrochemical hydrogen pump 100 of the present embodiment appropriately supplies the high-pressure cathode gas from the second cathode gas lead-out manifold 136 of the plate 44B to the space SC of the plate 44A through the connecting path 138 of the plate 44B. be able to.
  • the cathode end plate 15 is provided between the cathode end plate 15 and the cathode separator 29A located at the other end to store the cathode gas.
  • An O-ring 45C surrounding the outer periphery of the space SC is provided.
  • the plate 44A surrounds the region of the space SC in a plan view on the main surface on the side where the space SC is formed (the main surface opposite to the joint surface between the plate 44A and the plate 44B).
  • An O-ring groove 50C is provided, and the O-ring 45C is held in the O-ring groove 50C.
  • the O-ring 45C corresponds to an example of the "second sealing material" of the present disclosure.
  • the area of the region surrounded by the O-ring 45C is larger than the area of the region surrounded by the O-ring 45.
  • the area of the region surrounded by the outer edge of the O-ring 45C is larger than the area of the region surrounded by the outer edge of the O-ring 45.
  • the outer edge of the O-ring 45 is formed in a plan view from the stacking direction of the anode separator 29B, the anode AN, the electrolyte membrane 21, the cathode CA, and the cathode separator 29A. It fits within the outer edge of the O-ring 45C. At this time, the outer edge of the O-ring 45C is contained within the outer edge of the cathode separator 29A in the plan view seen from the stacking direction.
  • FIG. 8 is a diagram showing an example of the second pressure forming member of FIG. 1 together with the bipolar plate and the hydrogen pump unit of FIG.
  • FIG. 9 is a diagram showing an exploded perspective view of the second pressure forming member of FIG. Specifically, a view is shown in which a pair of members constituting the second pressure forming member 46 are viewed from the portion AA in FIG. 8, and a view in which both are integrated is shown. In the second pressure forming member 46 of FIG. 8, only the O-ring 45A is shown for convenience of explanation. Further, in FIG. 9, a diagram in which the O-ring is omitted is shown.
  • FIG. 10 is a view of the second pressure forming member of FIG. 8 as viewed from above. Specifically, a view is shown in which the members constituting the second pressure forming member 46 are viewed in a plan view from the BB portion of FIG.
  • a space SA for storing the cathode gas is formed in the plate 46A, and the first cathode gas lead-out manifold 235 and the second cathode gas lead-out manifold through which the cathode gas flows are formed in the plate 46B.
  • 236 and a connecting path 237 for guiding the cathode gas flowing from the first cathode gas lead-out manifold 235 to the space SA are provided.
  • the cathode gas overflowing from the space SA is guided to the second cathode gas lead-out manifold 236 through the connecting path 238.
  • the configuration of the plate 46A is the same as the configuration of the cathode separator 29A except for the configurations of the O-ring 45A and the O-ring groove 50A described below.
  • the space S of the cathode separator 29A and the space SA of the plate 46A have the same shape.
  • the communication hole 70 of the cathode separator 29A and the communication hole 270 of the plate 46A have the same shape, and the communication hole 71 of the cathode separator 29A and the communication hole 271 of the plate 46A have the same shape. Therefore, a detailed description of the configuration of the plate 46A will be omitted.
  • the configuration of the plate 46B is the same as the configuration of the anode separator 29B.
  • the connecting path 37 of the anode separator 29B and the connecting path 237 of the plate 46B have the same shape
  • the connecting path 38 of the anode separator 29B and the connecting path 238 of the plate 46B have the same shape.
  • the plate 46B is provided with a cooling flow path 260 (see FIG. 9) on the surface of the plate 46B where the connecting path 237 and the connecting path 238 are provided, as in the anode separator 29B, and the connecting path 237 and the plate 46B are provided.
  • An anode gas flow path 230 see FIG.
  • the plate 46B corresponds to the "anode separator located at one end" of the present disclosure. Therefore, a detailed description of the configuration of the plate 46B will be omitted.
  • the cathode gas branched from the first cathode gas lead-out manifold 235 is , As shown by the dotted arrow in FIG. 9, flows through the connecting path 237 and the communication hole 270 in this order, and is supplied to the recess (space SA) of the plate 46A.
  • the space SA is filled with the cathode gas
  • the cathode gas overflowing from the space SA flows through the communication hole 271 and the connecting path 238 in this order as shown by the dotted line arrow in FIG. 9, and the second cathode gas lead-out manifold 236. Is guided by.
  • the electrochemical hydrogen pump 100 of the present embodiment appropriately supplies the high-pressure cathode gas from the first cathode gas outlet manifold 235 of the plate 46B to the space SA of the plate 46A through the connecting path 237 of the plate 46B. be able to.
  • the electrochemical hydrogen pump 100 of the present embodiment as shown in FIGS. 1 and 8, it is provided between the anode end plate 16 and the anode separator (plate 46B in this example) located at one end.
  • An O-ring 45A surrounding the outer periphery of the space SA for storing the cathode gas is provided.
  • the plate 46A surrounds the region of the space SA in a plan view on the main surface on the side where the space SA is formed (the main surface opposite to the joint surface between the plate 46A and the plate 46B).
  • An O-ring groove 50A is provided, and the O-ring 45A is held in the O-ring groove 50A.
  • the O-ring 45A corresponds to an example of the "third sealing material" of the present disclosure.
  • the area of the region surrounded by the O-ring 45A is larger than the area of the region surrounded by the O-ring 45.
  • the area of the region surrounded by the outer edge of the O-ring 45A is larger than the area of the region surrounded by the outer edge of the O-ring 45.
  • the outer edge of the O-ring 45 is formed in a plan view from the stacking direction of the anode separator 29B, the anode AN, the electrolyte membrane 21, the cathode CA, and the cathode separator 29A. It fits within the outer edge of the O-ring 45C. At this time, the outer edge of the O-ring 45A is contained within the outer edge of the cathode separator 29A in the plan view seen from the stacking direction.
  • the electrochemical hydrogen pump 100 of the present embodiment can appropriately reduce the contact resistance between the members constituting the hydrogen pump unit 10 as compared with the conventional case.
  • the gas pressure of the cathode gas in the region surrounded by the O-ring 45C is a high pressure substantially equal to the gas pressure of the cathode gas in the region surrounded by the O-ring 45 in the hydrogen pump unit 10.
  • the load applied to the cathode separator 29A by the gas pressure of the cathode gas in the region surrounded by the O-ring 45C is due to the gas pressure of the cathode gas in the region surrounded by the O-ring 45 by the cathode separator 29A. It acts to suppress bending toward the cathode end plate 15. As a result, in the electrochemical hydrogen pump 100 of the present embodiment, gaps between the members constituting the hydrogen pump unit 10 are less likely to occur.
  • the area of the region surrounded by the O-ring 45C is smaller than the area of the region surrounded by the O-ring 45, a part of the region surrounded by the O-ring 45 is an O-ring in a plan view. It does not fit in the area surrounded by 45C. Then, the portion of the cathode separator 29A facing a part of the above region may bend toward the cathode end plate 15.
  • the area of the region surrounded by the O-ring 45C is made larger than the area of the region surrounded by the O-ring 45, so that the former can be seen in a plan view.
  • the area can accommodate the entire area of the latter. Therefore, the electrochemical hydrogen pump 100 of the present embodiment can apply a load for suppressing the above-mentioned bending deformation to the entire area of the cathode separator 29A facing the region surrounded by the O-ring 45, so that the hydrogen pump unit 10 can be used.
  • the contact resistance between the constituent members can be appropriately reduced as compared with the conventional case.
  • the gas pressure of the cathode gas in the region surrounded by the O-ring 45A is a high pressure substantially equal to the gas pressure of the cathode gas in the region surrounded by the O-ring 45 in the hydrogen pump unit 10.
  • the load applied to the anode separator by the gas pressure of the cathode gas in the region surrounded by the O-ring 45A is due to the gas pressure of the cathode gas in the region surrounded by the O-ring 45 by the anode separator. It acts to suppress bending to the 16 side. As a result, in the electrochemical hydrogen pump 100 of the present embodiment, gaps between the members constituting the hydrogen pump unit 10 are less likely to occur.
  • the area of the region surrounded by the O-ring 45A is smaller than the area of the region surrounded by the O-ring 45, a part of the region surrounded by the O-ring 45 is an O-ring in a plan view. It does not fit in the area surrounded by 45A. Then, the portion of the anode separator facing a part of the above region may bend toward the anode end plate 16.
  • the area of the region surrounded by the O-ring 45A is made larger than the area of the region surrounded by the O-ring 45, so that the former can be seen in a plan view.
  • the area can accommodate the entire area of the latter. Therefore, the electrochemical hydrogen pump 100 of the present embodiment can apply a load for suppressing the bending deformation to the entire area of the anode separator facing the region surrounded by the O-ring 45, and thus constitutes the hydrogen pump unit 10.
  • the contact resistance between the members can be appropriately reduced as compared with the conventional case.
  • the O-ring 45 is viewed in a plan view. A part of the area surrounded by the outer edge does not fit in the area surrounded by the outer edge of the O-ring 45C.
  • the portion of the cathode separator 29A facing a part of the above region may bend toward the cathode end plate 15, but the electrochemical hydrogen pump 100 of the present embodiment has an O-ring as shown in FIG.
  • the outer edge of the O-ring 45 is O in a plan view seen from the stacking direction of the anode separator 29B, the anode AN, the electrolyte membrane 21, the cathode CA, and the cathode separator 29A.
  • the reason for determining the magnitude relationship of the above area area based on the outer edges of the O-ring 45 and the O-ring 45C is as follows.
  • the O-ring 45 and the O-ring 45C exert their sealing force by being crushed in the vertical direction by pressing the member in contact with them.
  • the direction (horizontal direction) from the inner edge to the outer edge with respect to the O-ring 45C (the same applies to the O-ring 45). Since the gas pressure of the cathode gas is applied to the O-ring 45C, the O-ring 45C is compressionally deformed so as to be in close contact with the side portion of the O-ring groove 50C.
  • the elastic force of the O-ring 45C acts on the member in contact with the O-ring 45C in the direction in which the wire diameter of the O-ring 45C expands in the vertical direction.
  • the above-mentioned cathode gas gas pressure and the above-mentioned cathode gas gas pressure and each of the cathode separator 29A are in contact with the O-ring 45C in the region up to the outer edge of the O-ring 45C.
  • the elastic force of the O-ring 45C caused by the sealing force acts in each of the upward and downward directions. It is appropriate to determine the magnitude relationship of the above region area based on the outer edges of the O-ring 45 and the O-ring 45C in deriving the pressing force acting on each member constituting the hydrogen pump unit 10.
  • the O-ring 45 is viewed in a plan view. A part of the area surrounded by the outer edge does not fit in the area surrounded by the outer edge of the O-ring 45A.
  • the portion of the anode separator facing a part of the above area may bend toward the anode end plate 16, but the electrochemical hydrogen pump 100 of the present embodiment has an O-ring 45A as shown in FIG.
  • the outer edge of the O-ring 45 is O in a plan view of the anode separator 29B, the anode AN, the electrolyte membrane 21, the cathode CA, and the cathode separator 29A when viewed from the stacking direction.
  • the dimension L (diameter) of the region surrounded by the outer edge of the O-ring 45 and the respective dimension LC of the region surrounded by the outer edges of the O-ring 45C and the O-ring 45A are obtained. It is the same as the electrochemical hydrogen pump 100 of the first embodiment except that the (diameter) and the dimension LA (diameter) are set as follows.
  • the dimension LC of the first pressure forming member 44 is set to 120 mm and the dimension L of each of the hydrogen pump units 10 is set to 117 mm, and the pressure P of the cathode gas is 40 MPa.
  • the load (F2-F1) on the cathode separator 29A is estimated to be 22 kN. That is, it was found that a slight dimensional difference (about 3 mm) between the dimensional LC and the dimensional L produces a pressing force corresponding to about 2 MPa with respect to the cathode separator 29A.
  • the pressing force is considered to be an appropriate value as a force for bringing the members of the hydrogen pump unit 10 into close contact with each other.
  • the pressure P of the cathode gas can be set to an appropriate value based on the specifications of the electrochemical hydrogen pump 100, operating conditions, and the like.
  • the entire separator is inserted into the cylindrical recess (in the high pressure space) formed in the center of the bottom surface of the end plate disclosed in Non-Patent Document 1. It is possible to easily realize the miniaturization and cost reduction of the device as compared with the water electrolysis device.
  • the electrochemical hydrogen pump 100 of this embodiment may be the same as the electrochemical hydrogen pump 100 of the first embodiment except for the above-mentioned features.
  • the contact resistance between the members constituting the hydrogen pump unit 10 is always set to a desired value. Must be kept below.
  • the cathode gas generated by the cathode CA has a high pressure (for example, about several tens of MPa)
  • the pressing action of the first pressure forming member 44 and the second pressure forming member 46 as described in the first embodiment Therefore, it is possible to apply a sufficient pressing force to each member constituting the hydrogen pump unit 10 to bring these members into close contact with each other.
  • each member constituting the hydrogen pump unit 10 is in close contact with each other even when the cathode gas generated by the cathode CA is at a low pressure. It is configured as follows.
  • a method of applying an initial fastening force to each member constituting the hydrogen pump unit 10 by using the fastener 17 a method of applying an axial force to the bolt of the fastener 17, a method of using a spring force, and a tightening method.
  • Examples include, but are not limited to, a method of applying an axial force by torque management.
  • the bolt of the fastener 17 is subjected to tensile stress due to the above-mentioned initial fastening force and the gas pressure of the cathode gas generated by the cathode CA of the electrochemical hydrogen pump 100. Therefore, the fastener 17 has a strength that can withstand this tensile stress. For example, about 10 bolts may be evenly provided around the end plate, but the present invention is not limited to this. Further, the bolt may be made of a steel material (for example, stainless steel) having a strength category of 10.9 (JIS B1051), but is not limited thereto.
  • the electrochemical hydrogen pump 100 of this embodiment may be the same as the electrochemical hydrogen pump 100 of the first embodiment of the first embodiment or the first embodiment except for the above-mentioned features.
  • the first pressure forming member 44 and the second pressure forming member 46 are arranged in each of the vertical directions of the laminated body in which the hydrogen pump unit 10 is laminated. Not limited to this.
  • the pressure forming member may be arranged only in one of the vertical directions of the laminated body. In this case, it is possible to face each other by making the bending rigidity of the end plate on the side where the pressure forming member is not arranged higher than the bending rigidity of the end plate on the side where the pressure forming member is arranged.
  • the electrochemical hydrogen pump 100 of this modification may be the same as the electrochemical hydrogen pump 100 of any one of the first embodiment and the first embodiment and the second embodiment except for the above-mentioned features. good.
  • the electrochemical hydrogen pump 100 of the second embodiment is the same as the electrochemical hydrogen pump 100 of the first embodiment except that the ring material 90 described below is provided on the outer edge of the O-ring 45C.
  • FIG. 11 is a diagram showing an example of a phenomenon in which a part of the O-ring protrudes into the gap due to the high-pressure cathode gas existing inside the O-ring.
  • FIG. 12 is a diagram showing an example of a first pressure forming member in the electrochemical hydrogen pump of the second embodiment.
  • the ring material 90 is a backup ring adjacent to the outer edge of the O-ring 45C and surrounding the O-ring 45C.
  • the ring material 90 is held in the O-ring groove 50C.
  • Examples of the base material of the ring material 90 include, but are not limited to, fluororesins from the viewpoint of acid resistance and hydrogen embrittlement resistance.
  • the ring material 90 surrounding the O-ring 45C is provided so as to be adjacent to the outer edge of the O-ring 45C, so that the O-ring 45C is prevented from protruding into the gap. As a result, it is improved that the O-ring 45C is damaged.
  • the electrochemical hydrogen pump 100 of the present embodiment is any of the first embodiment, the first embodiment-the second embodiment, and the modified example of the first embodiment. It may be the same as the pump 100.
  • the electrochemical hydrogen pump 100 of this modification is the same as the electrochemical hydrogen pump 100 of the first embodiment except that the ring material 91 described below is provided on the outer edge of the O-ring 45A.
  • FIG. 13 is a diagram showing an example of a second pressure forming member in the electrochemical hydrogen pump of the first modification of the second embodiment.
  • the ring material 91 is a backup ring adjacent to the outer edge of the O-ring 45A and surrounding the O-ring 45A.
  • the ring material 91 is held in the O-ring groove 50A.
  • Examples of the base material of the ring material 91 include, but are not limited to, fluororesins from the viewpoint of acid resistance and hydrogen embrittlement resistance.
  • the electrochemical hydrogen pump 100 of this modification is any of the first embodiment, the first embodiment-the second embodiment, the modification of the first embodiment, and the second embodiment, except for the above-mentioned features. It may be the same as the electrochemical hydrogen pump 100.
  • the member that abuts on the O-ring 45 is suppressed from bending toward the end plate side as compared with the member that abuts on the O-ring 45C and the O-ring 45A, and as a result.
  • Gap is unlikely to occur between the members that come into contact with the O-ring 45. Therefore, even if the ring material surrounding the O-ring 45 is not provided, it is unlikely that the O-ring 45 will be damaged by the gas pressure of the cathode gas existing inside the O-ring 45. Therefore, in the electrochemical hydrogen pump 100 of this modification, the number of parts of the ring material can be reduced by not providing the ring material surrounding the O-ring 45 on the outer edge of the O-ring 45.
  • the electrochemical hydrogen pump 100 of this modification has the first embodiment, the first embodiment-the second embodiment, the modification of the first embodiment, the second embodiment, and the first embodiment. 2 It may be the same as the electrochemical hydrogen pump 100 of any one of the first modifications of the embodiment.
  • the electrochemical hydrogen pump 100 of this modification is the first embodiment except that the type (series) and wire diameter (thickness) of the O-ring 45, the O-ring 45C and the O-ring 45A are set as follows. It is the same as the electrochemical hydrogen pump 100 of the above.
  • the length (wire diameter) from the inner edge to the outer edge of the O-ring 45C is larger than the length (wire diameter) from the inner edge to the outer edge of the O-ring 45.
  • a gap may be generated between the members in contact with the O-ring 45C due to the member bending toward the cathode end plate 15 due to the gas pressure of the cathode gas in the region surrounded by the O-ring 45C.
  • the member that abuts on the ring 45 is less likely to bend toward the cathode end plate 15 than the member that abuts on the O-ring 45C, and as a result, gaps are less likely to occur between the members that abut on the O-ring 45.
  • a gap is generated between the members in contact with the O-ring 45C, for example, a part of the O-ring 45C is formed in the gap by the high-pressure cathode gas existing inside the O-ring 45C, as shown in FIG. , May stick out. Then, the O-ring 45C may be damaged and the sealing property of the O-ring 45C may be deteriorated.
  • the wire diameter of the O-ring 45C is made larger than that of the O-ring 45, so that the former wire diameter is smaller than the latter wire diameter.
  • the durability of the O-ring 45C can be improved. Specifically, the larger the wire diameter of the O-ring 45C, the more difficult it is for the O-ring 45C to protrude into the above-mentioned gap, so that the damage to the O-ring 45C is improved.
  • the length (wire diameter) from the inner edge to the outer edge of the O-ring 45A is larger than the length (wire diameter) from the inner edge to the outer edge of the O-ring 45.
  • the wire diameter of the O-ring 45A is made larger than the wire diameter of the O-ring 45, so that the former wire diameter is smaller than the latter wire diameter.
  • the durability of the O-ring 45A can be improved. The details of the action and effect of this configuration will be omitted because they can be easily understood in the above description.
  • the O-ring 45, the O-ring 45C, and the O-ring 45A may be of any kind as long as they satisfy the magnitude relationship of the wire diameters.
  • a G standard JIS B2401; for flat surface fixing: wire diameter 3.1 mm
  • an S-standard JIS B2401; flat surface fixing: wire diameter 2.0 mm
  • the type of O-ring is not limited to the above.
  • the types of O-ring 45C and O-ring 45A are G standard (wire diameter 5.7 mm), GS standard (wire diameter 3.1 mm), V standard (wire diameter 4 mm, etc.), N standard (wire diameter 5 mm, etc.). May be. Further, it may be of a foreign standard.
  • the type of the O-ring 45 may be a G standard (wire diameter 3.1 mm) or the like, or may be a foreign standard.
  • the electrochemical hydrogen pump 100 of this modification has the first embodiment, the first embodiment-the second embodiment, the modification of the first embodiment, the second embodiment, and the first embodiment. 2 It may be the same as the electrochemical hydrogen pump 100 of any one of the first modification and the second modification of the embodiment.
  • the first embodiment, the first embodiment-the second embodiment, the modified example of the first embodiment, the second embodiment and the first modified example-the third modified example of the second embodiment are opposite to each other. May be combined with each other as long as the above are not excluded.
  • One aspect of the present disclosure can be used for a compression device capable of appropriately reducing the contact resistance between the members constituting the compression unit as compared with the conventional case.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

圧縮装置は、電解質膜、電解質膜の一方の主面上に設けられたアノード、電解質膜の他方の主面上に設けられたカソード、アノード上に積層されたアノードセパレーター、およびカソード上に積層されたカソードセパレーターを含む、少なくとも1つの圧縮ユニットと、アノードと前記カソードとの間に電圧を印加する電圧印加器と、を備え、電圧印加器により電圧を印加することで、アノードに供給されるアノード流体から取り出されたプロトンを、電解質膜を介してカソードに移動させ、圧縮水素を生成する装置である。圧縮装置は、上記積層された方向において、一方の端に位置する前記アノードセパレーター上に設けられたアノード端板と、上記積層された方向において、他方の端に位置する前記カソードセパレーター上に設けられたカソード端板と、カソードの外周を囲む第1のシール材と、カソード端板と他方の端に位置するカソードセパレーターとの間に設けられ、圧縮水素を溜めるための第1の空間の外周を囲む第2のシール材と、を備え、第2のシール材で囲まれた領域の面積は、第1のシール材で囲まれた領域の面積よりも大きい。

Description

圧縮装置
 本開示は圧縮装置に関する。
 近年、地球の温暖化などの環境問題、石油資源の枯渇などのエネルギー問題から、化石燃料に代わるクリーンな代替エネルギー源として水素が注目されている。水素は燃焼しても基本的に水しか生成せず、地球温暖化の原因となる二酸化炭素が排出されず、かつ窒素酸化物などもほとんど排出されないので、クリーンエネルギーとして期待されている。また、水素を燃料として高効率に利用する装置としては燃料電池があり、自動車用電源向け、家庭用自家発電向けに開発および普及が進んでいる。
 例えば、燃料電池車の燃料として使用される水素は、一般的に、数十MPaに圧縮された高圧状態で車内の水素タンクに貯蔵される。そして、このような高圧の水素は、一般的に、低圧(常圧)の水素を機械式の圧縮装置によって圧縮することで得られる。
 ところで、来るべき水素社会では、水素を製造することに加えて、水素を高密度で貯蔵し、小容量かつ低コストで輸送または利用し得る技術開発が求められている。特に、燃料電池の普及促進には水素供給インフラを整備する必要があり、水素を安定的に供給するために、高純度の水素を製造、精製、高密度貯蔵する様々な提案が行われている。
 そこで、例えば、非特許文献1には、水の電気分解によって水素および酸素の分離が行われ、電解質膜を介して低圧の水素から高圧の水素が生成される差圧式高圧水電解装置(以下、水電解装置)が提案されている。
 水電解装置は、水を電気分解によって水素および酸素を発生させるべく、固体高分子電解質膜と、固体高分子電解質膜の両面に設けられたアノード触媒層およびカソード触媒層と、これらの触媒層の両側に設けられた、アノード給電体およびカソード給電体と、が配設されている。なお、カソード触媒層およびカソード給電体を含むカソード、電解質膜、および、アノード触媒層およびアノード給電体を含むアノードの積層体を膜-電極接合体(以下、MEA:Membrane Electrode Assembly)という。
 そして、非特許文献1の水電解セルは、MEAと、MEAを保持するとともに、水の供給、余剰水の排出および酸素の流通のための常圧流路を備えるアノードセパレーターおよび樹脂枠と、高圧の水素排出のための高圧ガス流路を備えるカソードセパレーターと、によって構成されている。
 また、水電解装置では、カソードで生成する高圧の水素量に合わせて、水電解セルが複数積層されており、積層体の積層方向両端には電圧を印加するための端子が設けられ、これにより、水電解セルに電流を流すことができるとともに、アノード給電体に水が供給される。すると、MEAのアノード側において、水が電気分解によってプロトンが生成される。プロトンは、電解質膜を透過することでカソード側に移動し、カソード給電体で電子と再結合することで高圧の水素が生成される。そして、水素は、カソードセパレーターに設けられた高圧ガス流路を介して水電解装置から排出される。一方、アノード側では、アノードで生成された酸素が、余剰の水ととともにアノードセパレーターおよび樹脂枠に設けられた常圧流路を介して水電解装置から排出される。
 ここで、水電解装置では、水電解によって得られた水素を圧縮するので、カソード給電体側の水素ガス圧が高圧になる。これにより、セパレーターなどが変形することで、水電解セルを構成する各部材間の接触抵抗が増加する可能性がある。
 そこで、非特許文献1では、水電解装置において、締結部材(ボルト)を用いて、複数の水電解セルを含む積層体をエンドプレート(両端板)によって密着させる構造が提案されている。また、上端のエンドプレートと積層体の上端に対応するセパレーターとの間には、密閉空間が存在しており、この密閉空間には、高圧の水素が導入されている。さらに、この密閉空間には弾性体(バネ)が設けられている。
 以上の構成により、水電解セル中の高圧ガスによって、セパレーターなどが外側に膨らむように変形する応力がこれらの部材に作用しても、弾性体の反力および密閉空間の高圧水素ガス圧力によって、上記変形を抑制することができる。
 特許文献1には、低圧の水素含有ガスがアノードに供給され、電気化学的にプロトンのみが電解質膜を透過することで、カソードで高圧の水素が精製される電気化学式水素ポンプが提案されている。なお、電気化学式水素ポンプの電気化学セルの構成は、アノード流体が水素含有ガスであること以外は、非特許文献1の水電解セルの構成と同様であるので説明を省略する。
 特許文献1においても、上記と同様、カソード給電体側の水素ガス圧が高圧になることで、セパレーターなどが変形すると、電気化学セルを構成する各部材間の接触抵抗が増加する可能性がある。そこで、特許文献1では、上下端のエンドプレート(両端板)と隣接するセパレーターとの間の空間に、カソードで生成された高圧の水素を導入することで、上記変形が抑制されている。
特開2019-218624号公報
「差圧式高圧水電解セルの気密構造に関する研究」本田技研工業株式会社Honda R&D Technical Review vol.25 No.2(Oct 2013)
 本開示は、一例として、圧縮ユニットを構成する部材間の接触抵抗を従来よりも適切に低減し得る圧縮装置を提供することを課題とする。
 上記の課題を解決するため、本開示の一態様(aspect)の圧縮装置は、電解質膜、前記電解質膜の一方の主面上に設けられたアノード、前記電解質膜の他方の主面上に設けられたカソード、前記アノード上に積層されたアノードセパレーター、および前記カソード上に積層されたカソードセパレーターを含む、少なくとも1つの圧縮ユニットと、前記アノードと前記カソードとの間に電圧を印加する電圧印加器と、を備え、前記電圧印加器により電圧を印加することで、アノードに供給されるアノード流体から取り出されたプロトンを、電解質膜を介してカソードに移動させ、圧縮水素を生成する圧縮装置であって、前記積層された方向において、一方の端に位置する前記アノードセパレーター上に設けられたアノード端板と、前記積層された方向において、他方の端に位置する前記カソードセパレーター上に設けられたカソード端板と、前記カソードの外周を囲む第1のシール材と、前記カソード端板と前記他方の端に位置するカソードセパレーターとの間に設けられ、前記圧縮水素を溜めるための第1の空間の外周を囲む第2のシール材と、を備え、前記第2のシール材で囲まれた領域の面積は、前記第1のシール材で囲まれた領域の面積よりも大きい。
 本開示の一態様の圧縮装置は、圧縮ユニットを構成する部材間の接触抵抗を従来よりも適切に低減し得る、という効果を奏することができる。
図1は、第1実施形態の電気化学式水素ポンプの一例を示す図である。 図2は、図1のバイポーラプレートおよび水素ポンプユニットの一例を示す図である。 図3は、図2のバイポーラプレートの分解斜視図を示す図である。 図4は、図2のバイポーラプレートを上方から見た図である。 図5は、図1の第1圧力形成部材の一例を図1のバイポーラプレートおよび水素ポンプユニットと共に示す図である。 図6は、図5の第1圧力形成部材の分解斜視図を示す図である。 図7は、図5の第1圧力形成部材を上方から見た図である。 図8は、図1の第2圧力形成部材の一例を図1のバイポーラプレートおよび水素ポンプユニットと共に示す図である。 図9は、図8の第2圧力形成部材の分解斜視図を示す図である。 図10は、図8の第2圧力形成部材を上方から見た図である。 図11は、Oリングの内部に存在する高圧のカソードガスによってOリングの一部が隙間内にはみ出す現象の一例を示す図である。 図12は、第2実施形態の電気化学式水素ポンプにおける第1圧力形成部材の一例を示す図である。 図13は、第2実施形態の第1変形例の電気化学式水素ポンプにおける第2圧力形成部材の一例を示す図である。
 非特許文献1は、上側の端板の底面中央部に、円筒状の大きな凹部が形成されており、上端側のセパレーター全体を凹部内に挿入させ、これにより、端板とセパレーターとで、高圧ガスを導入するための密閉空間が形成されている。しかしながら、上記密閉空間をシールするためのシール材の配置については十分に検討されていない。
 また、特許文献1は、上下の両端板と隣接するセパレーターとの間の空間に高圧水素を導入することが提案されているが、上記空間のシールするためのシール材の配置については十分に検討されていない。
 そこで、本開示の第1態様の圧縮装置は、電解質膜、電解質膜の一方の主面上に設けられたアノード、電解質膜の他方の主面上に設けられたカソード、アノード上に積層されたアノードセパレーター、およびカソード上に積層されたカソードセパレーターを含む、少なくとも1つの圧縮ユニットと、アノードとカソードとの間に電圧を印加する電圧印加器と、を備え、電圧印加器により電圧を印加することで、アノードに供給されるアノード流体から取り出されたプロトンを、電解質膜を介してカソードに移動させ、圧縮水素を生成する圧縮装置であって、積層された方向において、一方の端に位置する前記アノードセパレーター上に設けられたアノード端板と、積層された方向において、他方の端に位置するカソードセパレーター上に設けられたカソード端板と、カソードの外周を囲む第1のシール材と、カソード端板と他方の端に位置するカソードセパレーターとの間に設けられ、圧縮水素を溜めるための第1の空間の外周を囲む第2のシール材と、を備え、第2のシール材で囲まれた領域の面積は、第1のシール材で囲まれた領域の面積よりも大きい。
 以上により、本態様の圧縮装置は、圧縮ユニットを構成する部材間の接触抵抗を従来よりも適切に低減し得る。
 具体的には、第2のシール材で囲まれた領域の圧縮水素のガス圧は、圧縮ユニットにおける、第1のシール材で囲まれた領域の圧縮水素のガス圧とほぼ同等の高圧である。また、第2のシール材で囲まれた領域の圧縮水素のガス圧によってカソードセパレーターに付与される荷重は、カソードセパレーターが、第1のシール材で囲まれた領域の圧縮水素のガス圧に起因してカソード端板側に撓むことを抑えるように作用する。これにより、本態様の圧縮装置は、圧縮ユニットを構成する部材間の隙間が発生しにくくなる。
 ここで、仮に、第2のシール材で囲まれた領域の面積が第1のシール材で囲まれた領域の面積よりも小さいと、平面視において、第1のシール材で囲まれた領域の一部が、第2のシール材で囲まれた領域の中に収まらない。すると、上記領域の一部に対向するカソードセパレーターの部分が、カソード端板側に撓む可能性がある。
 これに対して、本態様の圧縮装置は、第2のシール材で囲まれた領域の面積を第1のシール材で囲まれた領域の面積よりも大きくすることで、平面視において、前者の領域によって後者の領域の全体を収めることができる。このため、本態様の圧縮装置は、第1のシール材で囲まれた領域に対向するカソードセパレーター全域に上記の撓み変形を抑える荷重を付与することができるので、圧縮ユニットを構成する部材間の接触抵抗を従来よりも適切に低減し得る。
 本開示の第2態様の圧縮装置は、第1態様の圧縮装置において、アノード端板と一方の端に位置するアノードセパレーターとの間に設けられ、圧縮水素を溜めるための第2の空間の外周を囲む第3のシール材を備え、第3のシール材で囲まれた領域の面積は、第1のシール材で囲まれた領域の面積よりも大きくてもよい。
 第3のシール材で囲まれた領域の圧縮水素のガス圧は、圧縮ユニットにおける、第1のシール材で囲まれた領域の圧縮水素のガス圧とほぼ同等の高圧である。また、第3のシール材で囲まれた領域の圧縮水素のガス圧によってアノードセパレーターに付与される荷重は、アノードセパレーターが第1のシール材で囲まれた領域の圧縮水素のガス圧に起因してアノード端板側に撓むことを抑えるように作用する。これにより、本態様の圧縮装置は、圧縮ユニットを構成する部材間の隙間が発生しにくくなる。
 ここで、仮に、第3のシール材で囲まれた領域の面積が第1のシール材で囲まれた領域の面積よりも小さいと、平面視において、第1のシール材で囲まれた領域の一部が、第3のシール材で囲まれた領域の中に収まらない。すると、上記領域の一部に対向するアノードセパレーターの部分が、アノード端板側に撓む可能性がある。
 これに対して、本態様の圧縮装置は、第3のシール材で囲まれた領域の面積を第1のシール材で囲まれた領域の面積よりも大きくすることで、平面視において、前者の領域によって後者の領域の全体を収めることができる。このため、本態様の圧縮装置は、第1のシール材で囲まれた領域に対向するアノードセパレーター全域に上記の撓み変形を抑える荷重を付与することができるので、圧縮ユニットを構成する部材間の接触抵抗を従来よりも適切に低減し得る。
 本開示の第3態様の圧縮装置は、第1態様または第2態様の圧縮装置において、第2のシール材の外縁で囲まれた領域の面積が、第1のシール材の外縁で囲まれた領域の面積よりも大きくてもよい。
 ここで、仮に、第2のシール材の外縁で囲まれた領域の面積が第1のシール材の外縁で囲まれた領域の面積よりも小さいと、平面視において、第1のシール材の外縁で囲まれた領域の一部が、第2のシール材の外縁で囲まれた領域の中に収まらない。
 すると、上記領域の一部に対向するカソードセパレーターの部分が、カソード端板側に撓む可能性があるが、本態様の圧縮装置は、第2のシール材の外縁で囲まれた領域の面積を第1のシール材の外縁で囲まれた領域の面積よりも大きくすることで、以上のような不都合を軽減することができる。
 本開示の第4態様の圧縮装置は、第2態様の圧縮装置において、第3のシール材の外縁で囲まれた領域の面積が、第1のシール材の外縁で囲まれた領域の面積よりも大きくてもよい。
 ここで、仮に、第3のシール材の外縁で囲まれた領域の面積が第1のシール材の外縁で囲まれた領域の面積よりも小さいと、平面視において、第1のシール材の外縁で囲まれた領域の一部が、第3のシール材の外縁で囲まれた領域の中に収まらない。
 すると、上記領域の一部に対向するアノードセパレーターの部分が、アノード端板側に撓む可能性があるが、本態様の圧縮装置は、第3のシール材の外縁で囲まれた領域の面積を第1のシール材の外縁で囲まれた領域の面積よりも大きくすることで、以上のような不都合を軽減することができる。
 本開示の第5態様の圧縮装置は、第1態様から第4態様のいずれか一つの圧縮装置において、第2のシール材の外縁に隣接し、第2のシール材を囲むリング材を備えてもよい。
 第2のシールで第1の空間がシールされる際に、第2のシール材に当接する部材間には、第2のシール材で囲まれた領域の圧縮水素のガス圧によって隙間が発生する場合がある。この場合、第2のシール材を囲むリング材が設けられていないときは、第2のシール材の一部が、第2のシール材の内部に存在する圧縮水素のガス圧によって、上記の隙間内に、はみ出す可能性がある。すると、第2のシール材が破損することで、第2のシール材のガスシール性が低下する可能性がある。
 これに対して、本態様の圧縮装置は、第2のシール材の外縁に隣接するように第2のシール材を囲むリング材を設けることで、第2のシール材が上記隙間にはみ出すことが抑制され、その結果、第2のシール材が破損することが改善される。
 本開示の第6態様の圧縮装置は、第2態様または第4態様の圧縮装置において、第3のシール材の外縁に隣接し、第3のシール材を囲むリング材を備えてもよい。
 第3のシールで第2の空間がシールされる際に、第3のシール材に当接する部材間には、第3のシール材で囲まれた領域の圧縮水素のガス圧によって隙間が発生する場合がある。この場合、第3のシール材を囲むリング材が設けられていないときは、第3のシール材の一部が、第3のシール材の内部に存在する圧縮水素のガス圧によって、上記の隙間内に、はみ出す可能性がある。すると、第3のシール材が破損することで、第3のシール材のガスシール性が低下する可能性がある。
 これに対して、本態様の圧縮装置は、第3のシール材の外縁に隣接するように第3のシール材を囲むリング材を設けることで、第3のシール材が上記隙間にはみ出すことが抑制され、その結果、第3のシール材が破損することが改善される。
 本開示の第7態様の圧縮装置は、第5態様または第6態様の圧縮装置において、第1のシール材の外縁には、第1のシール材を囲むリング材が設けられていなくてもよい。
 第1のシールでカソードがシールされる際に、第1のシール材に当接する部材は、第2のシール材および第3のシール材に当接する部材に比べて、端板側に撓むことが抑えられ、その結果、第1のシール材に当接する部材間では隙間が発生しにくい。このため、第1のシール材を囲むリング材が設けられていない場合でも、第1のシール材の内部に存在する圧縮水素のガス圧によって第1のシール材が破損する可能性が低い。そこで、本態様の圧縮装置は、第1のシール材の外縁には第1のシール材を囲むリング材を設けないことで、リング材の部品数を削減することができる。
 本開示の第8態様の圧縮装置は、第1態様から第7態様のいずれか一つの圧縮装置において、第2のシール材の内縁から外縁までの長さは、第1のシール材の内縁から外縁までの長さよりも大きくてもよい。
 第2のシール材に当接する部材間には、第2のシール材で囲まれた領域の圧縮水素のガス圧によって、当該部材がカソード端板側に撓むことで隙間が発生する場合があるが、第1のシール材に当接する部材は、第2のシール材に当接する部材に比べてカソード端板側に撓むことが抑えられ、その結果、第1のシール材に当接する部材間では隙間が発生しにくい。
 そこで、本態様の圧縮装置は、第2のシール材の内縁から外縁までの長さを、第1のシール材の内縁から外縁までの長さよりも大きくすることで、前者の長さが後者の長さよりも小さい場合に比べて、第2のシール材の耐久性を向上させることができる。具体的には、第2のシール材の内縁から外縁までの長さが大きいほど、第2のシール材が上記の隙間にはみ出しにくくなるので、第2のシール材が破損することが改善される。
 本開示の第9態様の圧縮装置は、第2態様、第4態様および第6態様のいずれか一つの圧縮装置において、第3のシール材の内縁から外縁までの長さは、第1のシール材の内縁から外縁までの長さよりも大きくてもよい。
 第3のシール材に当接する部材間には、第3のシール材で囲まれた領域の圧縮水素のガス圧によって、当該部材がアノード端板側に撓むことで隙間が発生する場合があるが、第1のシール材に当接する部材は、第3のシール材に当接する部材に比べてアノード端板側に撓むことが抑えられ、その結果、第1のシール材に当接する部材間では隙間が発生しにくい。
 そこで、本態様の圧縮装置は、第3のシール材の内縁から外縁までの長さを、第1のシール材の内縁から外縁までの長さよりも大きくすることで、前者の長さが後者の長さよりも小さい場合に比べて、第3のシール材の耐久性を向上させることができる。具体的には、第3のシール材の内縁から外縁までの長さが大きいほど、第3のシール材が上記の隙間にはみ出しにくくなるので、第3のシール材が破損することが改善される。
 本開示の第10態様の圧縮装置は、第1態様から第9態様のいずれか一つの圧縮装置において、アノードセパレーター、アノード、電解質膜、カソードおよびカソードセパレーターの積層方向から見ると、第1のシール材の外縁は、第2のシール材の外縁内に収まっていてもよい。
 かかる構成によると、本態様の圧縮装置は、上記の積層方向から見る平面視において、第1のシール材の外縁が第2のシール材の外縁内に収まることで、第1のシール材の外縁で囲まれた領域に対向するカソードセパレーター全域に上記の撓み変形を抑える荷重を付与することができる。
 本開示の第11態様の圧縮装置は、第2態様、第4態様、第6態様および第9態様のいずれか一つの圧縮装置において、アノードセパレーター、アノード、電解質膜、カソードおよびカソードセパレーターの積層方向から見ると、第1のシール材の外縁は、第3のシール材の外縁内に収まっていてもよい。
 かかる構成によると、本態様の圧縮装置は、上記の積層方向から見る平面視において、第1のシール材の外縁が第3のシール材の外縁内に収まることで、第1のシール材の外縁で囲まれた領域に対向するアノードセパレーター全域に上記の撓み変形を抑える荷重を付与することができる。
 本開示の第12態様の圧縮装置は、第1態様から第11態様のいずれか一つの圧縮装置において、アノードセパレーター、アノード、電解質膜、カソードおよびカソードセパレーターの積層方向から見ると、第2のシール材の外縁は、カソードセパレーターの外縁内に収まっていてもよい。
 本開示の第13態様の圧縮装置は、第2態様、第4態様、第6態様、第9態様および第11態様のいずれか一つの圧縮装置において、アノードセパレーター、アノード、電解質膜、カソードおよびカソードセパレーターの積層方向から見ると、第3のシール材の外縁は、カソードセパレーターの外縁内に収まっていてもよい。
 本開示の第14態様の圧縮装置は、第1態様から第13態様のいずれか一つの圧縮装置において、第1のシール材および第2のシール材は、Oリングであってもよい。
 本開示の第15態様の圧縮装置は、第2態様、第4態様、第6態様、第9態様、第11態様および第13態様のいずれか一つの圧縮装置において、第1のシール材、第2のシール材および第3のシール材は、Oリングであってもよい。
 以下、添付図面を参照しながら、本開示の実施形態について説明する。なお、以下で説明する実施形態は、いずれも上記の各態様の一例を示すものである。よって、以下で示される形状、材料、構成要素、および、構成要素の配置位置および接続形態などは、あくまで一例であり、請求項に記載されていない限り、上記の各態様を限定するものではない。また、以下の構成要素のうち、上記の各態様の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面において、同じ符号が付いたものは、説明を省略する場合がある。図面は理解しやすくするために、それぞれの構成要素を模式的に示したもので、形状および寸法比などについては正確な表示ではない場合がある。
 (第1実施形態)
 上記の圧縮装置のアノード流体は、様々な種類のガス、液体が想定される。例えば、圧縮装置が電気化学式水素ポンプである場合、アノード流体として、水素含有ガスを挙げることができる。また、例えば、圧縮装置が水電解装置である場合、アノード流体として、液体の水を挙げることができる。
 そこで、以下の実施形態では、アノード流体が水素含有ガスである場合において、上記の圧縮ユニットを備える圧縮装置の一例として、水素ポンプユニットを備える電気化学式水素ポンプの構成および動作について説明する。
 [装置構成]
 図1は、第1実施形態の電気化学式水素ポンプの一例を示す図である。なお、説明の便宜上、「上」および「下」を同図の如く取っている(他の図面においても同じ)。
 図1に示すように、電気化学式水素ポンプ100は、少なくとも一つの水素ポンプユニット10と、第1圧力形成部材44と、第2圧力形成部材46と、電圧印加器102と、を備える。そして、電気化学式水素ポンプ100には、複数段の水素ポンプユニット10が積層されている。例えば、図1では、5個の水素ポンプユニット10が積層されているが、水素ポンプユニット10の個数はこれに限定されない。つまり、水素ポンプユニット10の個数は、電気化学式水素ポンプ100が圧縮する水素量などの運転条件をもとに適宜の数に設定することができる。
 また、図1に示す例では、アノードセパレーターとして機能するプレートおよびカソードセパレーターとして機能するプレートが一体化されている。具体的には、バイポーラプレート(双極板)29のそれぞれが、隣接する水素ポンプユニット10のうちの一方のカソードセパレーターとして機能するプレートと、隣接する水素ポンプユニット10のうちの他方のアノードセパレーターとして機能するプレートと、を備える。
 ただし、図1に示す如く、最上段のバイポーラプレート29は、カソードセパレーターとしてのみ機能するように構成されている。具体的には、最上段のバイポーラプレート29の上面は、第1圧力形成部材44の空間SCと接触しており、この上面は、水素含有ガスが流れるアノードガス流路が設けられていない。第1圧力形成部材44には、水素ポンプユニット10のカソードで生成された圧縮水素を含むカソードガスを溜めるための空間SCが形成されている。つまり、最上段のバイポーラプレート29の上面は、第1圧力形成部材44の空間SCを封止するための蓋として機能している。
 また、最下段の水素ポンプユニット10は、最下段のバイポーラプレート29のカソードセパレーターとして機能するプレートと、第2圧力形成部材46のアノードセパレーターとして機能するプレートとによって、構成されている。具体的には、第2圧力形成部材46の上面には、水素含有ガスが流れるアノードガス流路(図1では図示せず)が設けられている。第2圧力形成部材46には、水素ポンプユニット10のカソードで生成された圧縮水素を含むカソードガスを溜めるための空間SAが形成されている。
 なお、以上のバイポーラプレート29、水素ポンプユニット10、第1圧力形成部材44および第2圧力形成部材46の詳細な構成は後で説明する。
 図1に示すように、電気化学式水素ポンプ100は、水素ポンプユニット10のそれぞれが積層された方向(以下、積層方向)の両端上に設けられたカソード端板15およびアノード端板16と、締結器17と、を備える。具体的には、アノード端板16は、水素ポンプユニット10の積層方向において、一方の端に位置するアノードセパレーター上に設けられている。カソード端板15は、水素ポンプユニット10の積層方向において、他方の端に位置するカソードセパレーター上に設けられている。なお、締結器17は、電気化学式水素ポンプ100の積層体を構成する各部材を積層方向に締結することができれば、どのような構成であってもよい。例えば、締結器17として、ボルトおよび皿ばね付きナットなどを挙げることができる。締結器17の詳細な構成は第3実施例で説明する。
 図1に示すように、電気化学式水素ポンプ100は、カソード端板15と第1圧力形成部材44との間には、流体集配部材11および絶縁板13が上方からこの順に積層されている。なお、第1圧力形成部材44と絶縁板13とは、積層の順番が逆であってもよい。アノード端板16と第2圧力形成部材46との間には、流体集配部材14、絶縁板12および封止板48が下方からこの順に積層されている。
 流体集配部材14の側面の適所には、水素ポンプユニット10のアノードから排出される低圧(例えば、常圧~数MPa程度)の水素含有ガスが流出する流出口(図示せず)と、水素ポンプユニット10を適温に制御するための冷却媒体(例えば、水)が流出する流出口(図示せず)と、水素ポンプユニット10のカソードから排出される高圧(例えば、数MPa~数十MPa程度)のカソードガスが通過する排出口14Aと、が設けられている。排出口14Aは、流体集配部材11に設けられたガス経路を介して、第1カソードガス導出マニホールド35に連通している。
 第1カソードガス導出マニホールド35は、図1に示す如く、複数のバイポーラプレート29、第1圧力形成部材44、絶縁板13、第2圧力形成部材46、封止板48および絶縁板12の各部材に設けられた貫通孔の連なりによって構成されている。そして、電気化学式水素ポンプ100は、バイポーラプレート29内に設けられた連絡路(図1の点線参照)を介して、水素ポンプユニット10のそれぞれのカソードから排出されたカソードガスが、第1カソードガス導出マニホールド35で合流するように構成されている。また、電気化学式水素ポンプ100は、第1圧力形成部材44内に設けられた連絡路(図1の点線参照)を介して、第1カソードガス導出マニホールド35と第1圧力形成部材44の空間SCとが連通するように構成されている。さらに、電気化学式水素ポンプ100は、第2圧力形成部材46内に設けられた連絡路(図1の点線参照)を介して、第1カソードガス導出マニホールド35と第2圧力形成部材46の空間SAにカソードガスとが連通するように構成されている。図1では図示を省略するが、流体集配部材14における水素含有ガス流出口および冷却媒体流出口はそれぞれ、上記の各部材に設けられた貫通孔の連なりによって構成される、アノードガス導出マニホールドおよび冷却媒体導出マニホールドのそれぞれと連通している。
 流体集配部材11の側面の適所には、水素ポンプユニット10のアノードに供給される低圧(例えば、常圧~数MPa程度)の水素含有ガスが流入する流入口(図示せず)と、水素ポンプユニット10を適温に制御するための冷却媒体(例えば、水)が流入する流入口(図示せず)と、水素ポンプユニット10のカソードから排出される高圧(例えば、数MPa~数十MPa程度)のカソードガスが通過する排出口11Aと、が設けられている。排出口11Aは、流体集配部材11に設けられたガス経路を介して、第2カソードガス導出マニホールド36に連通している。
 第2カソードガス導出マニホールド36は、図1に示す如く、複数のバイポーラプレート29、第1圧力形成部材44、絶縁板13、第2圧力形成部材46、封止板48および絶縁板12の各部材に設けられた貫通孔の連なりによって構成されている。そして、電気化学式水素ポンプ100は、バイポーラプレート29内に設けられた連絡路(図1の点線参照)を介して、水素ポンプユニット10のそれぞれのカソードから排出されたカソードガスが、第2カソードガス導出マニホールド36で合流するように構成されている。また、電気化学式水素ポンプ100は、第1圧力形成部材44内に設けられた連絡路(図1の点線参照)を介して、第2カソードガス導出マニホールド36と第1圧力形成部材44の空間SCとが連通するように構成されている。さらに、電気化学式水素ポンプ100は、第2圧力形成部材46内に設けられた連絡路(図1の点線参照)を介して、第2カソードガス導出マニホールド36と第2圧力形成部材46の空間SAにカソードガスとが連通するように構成されている。図1では図示を省略するが、流体集配部材11における水素含有ガス流入口および冷却媒体流入口はそれぞれ、上記の各部材に設けられた貫通孔の連なりによって構成される、アノードガス導入マニホールドおよび冷却媒体導入マニホールドのそれぞれと連通している。
 なお、図1の点線で示された連絡路の詳細な構成は後で説明する。
 絶縁板13は、第1圧力形成部材44と流体集配部材11との間に挿入されており、これにより、バイポーラプレート29と、流体集配部材11、カソード端板15および締結器17との間が適切に絶縁されている。絶縁板13の素材として、ゴム、樹脂(例えば、PEN、PETなど)、ガラス、ガラスエポキシ材などの材料を挙げることができるが、これらに限定されない。
 絶縁板12は、封止板48と流体集配部材14との間に挿入されており、これにより、バイポーラプレート29および第2圧力形成部材46と、流体集配部材14、アノード端板16および締結器17との間が適切に絶縁されている。絶縁板12の素材として、ゴム、樹脂(例えば、PEN、PETなど)、ガラス、ガラスエポキシ材などの材料を挙げることができるが、これらに限定されない。
 封止板48は、第2圧力形成部材46の空間SAを封止するための蓋として機能しており、これにより、空間SAに溜まった高圧のカソードガスが封止される。封止板48の素材としては、ステンレス、金、チタン、ゴム、樹脂(例えば、PEN、PETなど)、ガラス、ガラスエポキシ材などの材料を挙げることができるが、これらに限定されない。ただし、封止板48の素材として、ステンレスを用いる場合は、耐酸性および耐水素脆性などの特性に優れているSUS316Lを使用することが望ましい。また、封止板48の素材として、樹脂などの絶縁部材を用いる場合は、封止板48と絶縁板12とが一体化されていてもよい。
 電圧印加器102は、水素ポンプユニット10のアノードとカソードとの間に電圧を印加する装置である。具体的には、電圧印加器102の高電位が、アノードに印加され、電圧印加器102の低電位が、カソードに印加されている。電圧印加器102は、アノードおよびカソード間に電圧を印加できれば、どのような構成であってもよい。例えば、電圧印加器102は、アノードおよびカソード間に印加する電圧を調整する装置であってもよい。このとき、電圧印加器102は、バッテリ、太陽電池、燃料電池などの直流電源と接続されているときは、DC/DCコンバータを備え、商用電源などの交流電源と接続されているときは、AC/DCコンバータを備える。
 また、電圧印加器102は、例えば、水素ポンプユニット10に供給する電力が所定の設定値となるように、アノードおよびカソード間に印加される電圧、アノードおよびカソード間に流れる電流が調整される電力型電源であってもよい。
 なお、図1に示す例では、電圧印加器102の低電位側の端子101が、最上段のバイポーラプレート29に接続され、電圧印加器102の高電位側の端子103が、第2圧力形成部材46に接続されているが、これに限定されない。電圧印加器102の低電位側の端子101は、第1圧力形成部材44に接続されていてもよい。
 ただし、図1に示す如く、電圧印加器102の低電位側の端子101を最上段のバイポーラプレート29に接続することで、最上段のバイポーラプレート29よりも上方に配された第1圧力形成部材44に対して、金メッキなどの表面処理が不要となる。これにより、第1圧力形成部材44の製造コストを低減することができる。
 さらに、図1に示す例では、最上段のバイポーラプレート29および第2圧力形成部材46が集電板と兼用されている。よって、本実施形態の電気化学式水素ポンプ100は、プレートの兼用化によりプレートの個数を削減できるので、装置の製造コストを低減することができる。
 また、電気化学式水素ポンプ100においては、流体集配部材11、第1圧力形成部材44、バイポーラプレート29、第2圧力形成部材46および流体集配部材14はいずれも、高圧の圧縮水素に曝されるので、これらの部材は、SUS316Lで構成されている。これは、SUS316Lが様々な種類のステンレスの中で耐酸性および耐水素脆性などの特性に優れているからである。これに対して、カソード端板15、アノード端板16および締結器17はいずれも、水素に曝されないので、これらの部材は、SUS316Lよりも安価なクロムモリブデン鋼(例えば、SCM45)で構成されている。
 <バイポーラプレートおよび水素ポンプユニットの構成>
 図2は、図1のバイポーラプレートおよび水素ポンプユニットの一例を示す図である。
 図3は、図2のバイポーラプレートの分解斜視図を示す図である。具体的には、バイポーラプレート29を構成する一対の部材を図2のA-A部から斜視した図、および、両者を一体化した図が示されている。なお、図3では、説明の便宜上、MEAおよびOリングを省略した図が示されている。
 図4は、図2のバイポーラプレートを上方から見た図である。具体的には、バイポーラプレート29を構成する部材を図2のB-B部から平面視した図が示されている。
 上記のとおり、水素ポンプユニット10のそれぞれにおいて、バイポーラプレート29が、隣接する水素ポンプユニット10のうちの一方のアノードセパレーターとして機能するプレートと、隣接する水素ポンプユニット10のうちの他方のカソードセパレーターとして機能するプレートと、備える。図2に示す例では、上段側のバイポーラプレート29の一部が、カソードセパレーターを構成するとともに、下段側のバイポーラプレート29の一部が、アノードセパレーターを構成している。
 以下の説明では、カソードセパレーターとして機能するプレートをカソードセパレーター29Aといい、アノードセパレーターとして機能するプレートをアノードセパレーター29Bという。
 ここで、図3に示すように、バイポーラプレート29のそれぞれにおけるカソードセパレーター29Aとアノードセパレーター29Bとは面接合により一体化されている。例えば、カソードセパレーター29Aおよびアノードセパレーター29Bは、一対の金属プレートの拡散接合などで接合することができる。なお、「拡散接合」とは、JIS規格によれば、「母材を密着させ、母材の融点以下の温度条件で、塑性変形をできるだけ生じない程度に加圧して、接合面間に生じる原子の拡散を利用して接合する方法」と定義されている。
 また、カソードセパレーター29Aおよびアノードセパレーター29Bが面接合する前における、アノードセパレーター29Bの接合面には、水素ポンプユニット10の温度を適温に調整するための冷却媒体が流れる冷却流路60が設けられている。この冷却流路60の両端はそれぞれ、冷却媒体導入マニホールド61および冷却媒体導出マニホールド62のそれぞれと連通している。
 図2に示すように、水素ポンプユニット10は、電解質膜21と、アノードANと、カソードCAと、カソードセパレーター29Aと、アノードセパレーター29Bと、枠体28と、面シール材40と、を備える。そして、水素ポンプユニット10において、電解質膜21、アノード触媒層24、カソード触媒層23、アノード給電体25、カソード給電体22、カソードセパレーター29Aおよびアノードセパレーター29Bが積層されている。
 アノードANは、電解質膜21の一方の主面上に設けられている。アノードANは、アノード触媒層24と、アノード給電体25とを含む電極である。
 カソードCAは、電解質膜21の他方の主面上に設けられている。カソードCAは、カソード触媒層23と、カソード給電体22とを含む電極である。
 ここで、一般的に、電気化学式水素ポンプ100では、カソード触媒層23およびアノード触媒層24が電解質膜21に一体的に接合された触媒層付き膜CCM(Catalyst Coated Membrane)が使用されることが多い。
 そこで、本実施形態の電気化学式水素ポンプ100では、触媒層付き膜CCMのアノード触媒層24およびカソード触媒層23のそれぞれに、上記のアノード給電体25およびカソード給電体22がそれぞれ設けられている。
 以上により、電解質膜21は、アノードANとカソードCAとによって挟持されている。
 電解質膜21は、プロトン伝導性を備える高分子膜である。電解質膜21は、プロトン伝導性を備えていれば、どのような構成であってもよい。例えば、電解質膜21として、フッ素系高分子電解質膜、炭化水素系高分子電解質膜を挙げることができるが、これらに限定されない。具体的には、例えば、電解質膜21として、Nafion(登録商標、デュポン社製)、Aciplex(登録商標、旭化成株式会社製)などを用いることができる。
 アノード触媒層24は、電解質膜21の一方の主面に接するように設けられている。アノード触媒層24は、触媒金属として、例えば、白金を含むが、これに限定されない。
 カソード触媒層23は、電解質膜21の他方の主面に接するように設けられている。カソード触媒層23は、触媒金属として、例えば、白金を含むが、これに限定されない。
 カソード触媒層23およびアノード触媒層24の触媒担体としては、例えば、カーボンブラック、黒鉛などのカーボン粒子、導電性の酸化物粒子などが挙げられるが、これらに限定されない。
 なお、カソード触媒層23およびアノード触媒層24では、触媒金属の微粒子が、触媒担体に高分散に担持されている。また、これらのカソード触媒層23およびアノード触媒層24中には、電極反応場を大きくするために、プロトン伝導性のイオノマー成分を加えることが一般的である。
 カソード給電体22は、カソード触媒層23上に設けられている。また、カソード給電体22は、多孔性材料で構成され、導電性およびガス拡散性を備える。さらに、カソード給電体22は、電気化学式水素ポンプ100の動作時にカソードCAおよびアノードAN間の差圧で発生する構成部材の変位、変形に適切に追従するような弾性を備える方が望ましい。なお、本実施形態の電気化学式水素ポンプ100では、カソード給電体22として、カーボン繊維で構成した部材が用いられている。例えば、カーボンペーパー、カーボンクロス、カーボンフェルトなどの多孔性のカーボン繊維シートでもよい。なお、カソード給電体22の基材として、カーボン繊維シートを用いなくもよい。例えば、カソード給電体22の基材として、チタン、チタン合金、ステンレスなどを素材とする金属繊維の焼結体、これらを素材とする金属粒子の焼結体などを用いてもよい。
 アノード給電体25は、アノード触媒層24上に設けられている。また、アノード給電体25は、多孔性材料で構成され、導電性およびガス拡散性を備える。さらに、アノード給電体25は、電気化学式水素ポンプ100の動作時にカソードCAおよびアノードAN間の差圧で発生する構成部材の変位、変形を抑制可能な高剛性であることが望ましい。
 具体的には、アノード給電体25の基材として、例えば、チタン、チタン合金、ステンレス、カーボンなどを素材とした繊維焼結体、粉体焼結体、エキスパンドメタル、金属メッシュ、パンチングメタルなどを用いてもよい。
 アノードセパレーター29Bは、アノードAN上に積層された部材である。カソードセパレーター29Aは、カソードCA上に積層された部材である。
 アノードセパレーター29BのアノードAN側のアノードANに対向する面の中央部は、アノード給電体25が接触している。そして、この中央部に、図4に示す如く、平面視において、サーペンタイン状のアノードガス流路30が設けられている。アノードガス流路30の両端はそれぞれ、アノードガス導入マニホールド31およびアノードガス導出マニホールド32のそれぞれと連通している。
 カソードセパレーター29AのカソードCA側のカソードCAに対向する面の中央部には、凹部が設けられ、この凹部内に、カソード給電体22が収容されている。つまり、凹部は、水素ポンプユニット10のカソードCAで生成された圧縮水素を含むカソードガスを溜めるための空間S(図3参照)に相当する。
 ここで、図3に示すように、アノードセパレーター29Bには、カソードガスが流れる第1カソードガス導出マニホールド35と、カソードガスが流れる第2カソードガス導出マニホールド36と、カソードセパレーター29Aの凹部(空間S)から流入したカソードガスを第1カソードガス導出マニホールド35および第2カソードガス導出マニホールド36のそれぞれに導くための連絡路37および連絡路38のそれぞれと、が設けられている。
 具体的には、連絡路37は、カソードセパレーター29Aおよびアノードセパレーター29Bが面接合する前におけるアノードセパレーター29Bの接合面上の流路溝で構成されている。この流路溝は、平面視において、カソードセパレーター29AのアノードAN側の主面に設けられたOリング溝50およびOリング溝51を跨ぐように直線状に延伸している。そして、流路溝の一端が、カソードセパレーター29Aの凹部(空間S)の底面の縁部近傍で上下に延伸する連通孔70を介して、当該凹部内と連通している。流路溝の他端が、第1カソードガス導出マニホールド35に接続されている。連絡路37は、カソードセパレーター29Aおよびアノードセパレーター29Bが面接合で一体化されることで適切にガスシールされる。
 電気化学式水素ポンプ100の水素圧縮動作中、カソードCAで生成された高圧のカソードガスは、カソードセパレーター29Aの凹部(空間S)内に溜まり、その後、カソードガスは、図3の点線矢印で示す如く、空間Sから連通孔70および連絡路37をこの順に流れて、第1カソードガス導出マニホールド35に供給される。
 連絡路38は、カソードセパレーター29Aおよびアノードセパレーター29Bが面接合する前におけるアノードセパレーター29Bの接合面上の流路溝で構成されている。この流路溝は、平面視において、カソードセパレーター29Aに設けられたOリング溝50およびOリング溝52を跨ぐように直線状に延伸している。そして、流路溝の一端が、カソードセパレーター29Aの凹部(空間S)の底面の縁部近傍で上下に延伸する連通孔71を介して、当該凹部内と連通している。流路溝の他端が、第2カソードガス導出マニホールド36に接続されている。連絡路38は、カソードセパレーター29Aおよびアノードセパレーター29Bが面接合で一体化されることで適切にガスシールされる。
 電気化学式水素ポンプ100の水素圧縮動作中、カソードCAで生成された高圧のカソードガスは、カソードセパレーター29Aの凹部(空間S)内に溜まり、その後、カソードガスは、図3の点線矢印で示す如く、空間Sから連通孔71および連絡路38をこの順に流れて、第2カソードガス導出マニホールド36に供給される。
 このようにして、本実施形態の電気化学式水素ポンプ100は、アノードセパレーター29Bの連絡路37および連絡路38のそれぞれを通じて、カソードセパレーター29Aの空間Sからアノードセパレーター29Bの第1カソードガス導出マニホールド35および第2カソードガス導出マニホールド36のそれぞれに高圧のカソードガスを適切に供給することができる。
 なお、本例では、連絡路37および連絡路38、および、連通孔70および連通孔71はそれぞれ、平面視において、第1カソードガス導出マニホールド35の中心と第2カソードガス導出マニホールド36の中心とを結ぶ直線上に設けられているが、これに限定されない。連絡路および連通孔の配置位置および形状は、カソードセパレーター29Aの凹部(空間S)から流入したカソードガスをカソードガス導出マニホールドに導くことができれば、どのような箇所および形状であってもよい。また、連絡路および連通孔の個数は1個であってもよいし、3個以上であってもよい。
 以上のカソードセパレーター29Aおよびアノードセパレーター29Bは、例えば、チタン、ステンレス、金などの金属シートで構成されていてもよいが、これに限定されない。例えば、カソードセパレーター29Aおよびアノードセパレーター29Bの基材は、カーボン、または、表面に金属膜が形成され樹脂などで構成されていてもよい。なお、カソードセパレーター29Aおよびアノードセパレーター29Bをステンレスで構成する場合、カソードセパレーター29Aおよびアノードセパレーター29Bの素材としてSUS316Lを使用することが望ましい。これは、SUS316Lが様々な種類のステンレスの中で耐酸性および耐水素脆性などの特性に優れているからである。
 このようにして、カソードセパレーター29Aおよびアノードセパレーター29Bによって、上記のMEAを挟むことにより、水素ポンプユニット10が形成されている。
 ここで、図2に示すように、カソードCAの外周を囲むOリング45が設けられている。具体的には、カソードセパレーター29Aには、カソードCA側の主面上に、平面視において、当該主面のカソードCAに対向する領域を囲むOリング溝50が設けられ、Oリング45が、Oリング溝50に保持されている。これにより、カソードCAに存在する高圧のカソードガスは、Oリング45によってシールされ、Oリング45で囲まれた領域内から外部に漏れることが適切に抑制される。なお、Oリング45が、本開示の「第1のシール材」の一例に対応する。
 また、Oリング溝50は、電解質膜21のカソードCA側の主面のうち、カソードCAが設けられていない領域に面している。図2に示す例では、電解質膜21は、カソードCAが収容された凹部の側壁を跨ぐように幅広に設けられ、Oリング45は、電解質膜21の幅広部に当接するように設けられている。Oリング45(他のOリングも同じ)として、例えば、耐酸性および耐水素脆性の視点からフッ素ゴム系のOリングを用いることができるが、これに限定されない。
 枠体28は、電解質膜21の外周を囲むように設けられた部材である。枠体28の基材として、例えば、耐酸性および耐水素脆性の視点からフッ素ゴムなどを挙げることができるが、これに限定されない。なお、絶縁性の枠体28により、水素ポンプユニット10内における、カソードセパレーター29Aおよびアノードセパレーター29B間を適切に短絡しにくく構成することができる。
 面シール材40は、アノードセパレーター29BのアノードAN側の主面のアノードANに対向する領域の外周上に設けられている。また、面シール材40は、電解質膜21のアノードAN側の主面のうち、アノードANが設けられていない領域、および枠体28のアノードAN側の主面に面している。図2に示す例では、電解質膜21は、アノードANの外周端を跨ぐように幅広に設けられ、面シール材40の主面と、電解質膜21の幅広部と枠体28の主面とが接触している。面シール材40の基材として、例えば、耐酸性および耐水素脆性の視点からフッ素ゴム、フッ素樹脂などを挙げることができるが、これらに限定されない。なお、絶縁性の面シール材40により、水素ポンプユニット10内における、カソードセパレーター29Aおよびアノードセパレーター29B間を適切に短絡しにくく構成することができる。
 本実施形態の電気化学式水素ポンプ100においては、電解質膜21と枠体28とを別体で構成しているが、両者を一体化してもよい。また、このような枠体28を設けなくてもよい。例えば、水素ポンプユニット10内における、カソードセパレーター29Aおよびアノードセパレーター29B間は、枠体28を設けなくても、面シール材40で短絡しにくく構成することが可能である。
 図2に示すように、カソードセパレーター29Aには、第1カソードガス導出マニホールド35を囲むOリング溝51が設けられている。そして、Oリング41が、Oリング溝51に保持されている。カソードセパレーター29Aには、第2カソードガス導出マニホールド36を囲むOリング溝52が設けられている。そして、Oリング42が、Oリング溝52に保持されている。
 ここで、本実施形態の電気化学式水素ポンプ100では、Oリング41およびOリング42はそれぞれ、アノードセパレーター29BのアノードAN側の主面に当接している。つまり、Oリング41およびOリング42はそれぞれ、両隣のバイポーラプレート29に対応する、カソードセパレーター29Aおよびアノードセパレーター29Bの両方に当接している。そして、面シール材40は、アノードセパレーター29BのアノードAN側の主面のうち、Oリング41およびOリング42が当接している領域上には設けられていない。また、枠体28は、Oリング41およびOリング42が配設されている領域には設けられていない。
 具体的には、枠体28には、一対の貫通孔(円形の開口部)のそれぞれの外形が、Oリング溝51およびOリング溝51のそれぞれの外形と同じになるように、貫通孔が形成されている。また、面シール材40には、一対の貫通孔(円形の開口部)のそれぞれの外形が、Oリング溝51およびOリング溝51のそれぞれの外形と同じになるように、貫通孔が形成されている。そして、枠体28および面シール材40に設けられた貫通孔で構成される円柱空間が、Oリング41を収容するとともに、円柱空間に設けられたOリング41の内部が、第1カソードガス導出マニホールド35の一部を構成する。また、枠体28および面シール材40に設けられた貫通孔で構成される円柱空間が、Oリング42を収容するとともに、円柱空間に設けられたOリング42の内部が、第2カソードガス導出マニホールド36の一部を構成する。
 <第1圧力形成部材の構成>
 図5は、図1の第1圧力形成部材の一例を図1のバイポーラプレートおよび水素ポンプユニットと共に示す図である。
 図6は、図5の第1圧力形成部材の分解斜視図を示す図である。具体的には、第1圧力形成部材44を構成する一対の部材を図5のA-A部から斜視した図、および、両者を一体化した図が示されている。なお、図5の第1圧力形成部材44では、説明の便宜上、Oリング45Cのみが示されている。また、図6では、Oリングを省略した図が示されている。
 図7は、図5の第1圧力形成部材を上方から見た図である。具体的には、第1圧力形成部材44を構成する部材を図5のB-B部から平面視した図が示されている。
 図5および図6に示すように、プレート44Aには、カソードガスを溜めるための空間SCが形成され、プレート44Bには、カソードガスが流れる第1カソードガス導出マニホールド135および第2カソードガス導出マニホールド136と、第2カソードガス導出マニホールド136から流入したカソードガスを空間SCに導くための連絡路138が設けられている。空間SCから溢れたカソードガスは、連絡路137を通じて第1カソードガス導出マニホールド135に導かれる。
 ここで、プレート44Aの構成は、以下に説明するOリング45CおよびOリング溝50Cの構成以外は、カソードセパレーター29Aの構成と同様である。具体的には、例えば、カソードセパレーター29Aの空間Sおよびプレート44Aの空間SCは同一形状である。また、カソードセパレーター29Aの連通孔70およびプレート44Aの連通孔170は同一形状であり、カソードセパレーター29Aの連通孔71およびプレート44Aの連通孔171は同一形状である。よって、プレート44Aの構成の詳細な説明は省略する。
 また、プレート44Bの構成は、プレート44Bの連絡路137および連絡路138が設けられた面に冷却流路が設けられていないこと、および、プレート44Bの連絡路137および連絡路138が設けられた面と反対側の面にアノード流体流路が設けられていない以外は、アノードセパレーター29Bの構成と同様である。具体的には、例えば、アノードセパレーター29Bの連絡路37およびプレート44Bの連絡路137は同一形状であり、アノードセパレーター29Bの連絡路38およびプレート44Bの連絡路138は同一形状である。よって、プレート44Bの構成の詳細な説明は省略する。
 電気化学式水素ポンプ100の水素圧縮動作開始後の適時において、カソードCAで生成されたカソードガスが第2カソードガス導出マニホールド136を通過する際に、第2カソードガス導出マニホールド136から分岐したカソードガスは、図6の点線矢印で示す如く、連絡路138および連通孔171をこの順に流れて、プレート44Aの凹部(空間SC)に供給される。なお、空間SCがカソードガスで満たされると、空間SCから溢れたカソードガスは、図6の点線矢印で示す如く、連通孔170および連絡路137をこの順に流れて、第1カソードガス導出マニホールド135に導かれる。
 このようにして、本実施形態の電気化学式水素ポンプ100は、プレート44Bの連絡路138を通じて、プレート44Bの第2カソードガス導出マニホールド136からプレート44Aの空間SCに高圧のカソードガスを適切に供給することができる。
 ここで、本実施形態の電気化学式水素ポンプ100では、図1および図5に示すように、カソード端板15と他方の端に位置するカソードセパレーター29Aとの間に設けられ、カソードガスを溜めるための空間SCの外周を囲むOリング45Cが設けられている。具体的には、プレート44Aには、空間SCが形成された側の主面(プレート44Aおよびプレート44B間の接合面と反対側の主面)上に、平面視において、空間SCの領域を囲むOリング溝50Cが設けられ、Oリング45Cが、Oリング溝50Cに保持されている。これにより、空間SCに存在する高圧のカソードガスは、Oリング45Cによってシールされ、Oリング45Cで囲まれた領域内から外部に漏れることが適切に抑制される。なお、Oリング45Cが、本開示の「第2のシール材」の一例に対応する。
 さらに、図5の寸法Lおよび寸法LCで示すように、Oリング45Cで囲まれた領域の面積は、Oリング45で囲まれた領域の面積よりも大きい。図5に示す例では、Oリング45Cの外縁で囲まれた領域の面積が、Oリング45の外縁で囲まれた領域の面積よりも大きい。
 このようにして、本実施形態の電気化学式水素ポンプ100は、アノードセパレーター29B、アノードAN、電解質膜21、カソードCA、およびカソードセパレーター29Aの積層方向から見る平面視において、Oリング45の外縁は、Oリング45Cの外縁内に収まっている。なお、このとき、上記の積層方向から見る平面視において、Oリング45Cの外縁は、カソードセパレーター29Aの外縁内に収まっている。
 <第2圧力形成部材の構成>
 図8は、図1の第2圧力形成部材の一例を図1のバイポーラプレートおよび水素ポンプユニットと共に示す図である。
 図9は、図8の第2圧力形成部材の分解斜視図を示す図である。具体的には、第2圧力形成部材46を構成する一対の部材を図8のA-A部から斜視した図、および、両者を一体化した図が示されている。なお、図8の第2圧力形成部材46では、説明の便宜上、Oリング45Aのみが示されている。また、図9では、Oリングを省略した図が示されている。
 図10は、図8の第2圧力形成部材を上方から見た図である。具体的には、第2圧力形成部材46を構成する部材を図8のB-B部から平面視した図が示されている。
 図8および図9に示すように、プレート46Aには、カソードガスを溜めるための空間SAが形成され、プレート46Bには、カソードガスが流れる第1カソードガス導出マニホールド235および第2カソードガス導出マニホールド236と、第1カソードガス導出マニホールド235から流入したカソードガスを空間SAに導くための連絡路237が設けられている。空間SAから溢れたカソードガスは、連絡路238を通じて第2カソードガス導出マニホールド236に導かれる。
 ここで、プレート46Aの構成は、以下に説明するOリング45AおよびOリング溝50Aの構成以外は、カソードセパレーター29Aの構成と同様である。具体的には、例えば、カソードセパレーター29Aの空間Sおよびプレート46Aの空間SAは同一形状である。また、カソードセパレーター29Aの連通孔70およびプレート46Aの連通孔270は同一形状であり、カソードセパレーター29Aの連通孔71およびプレート46Aの連通孔271は同一形状である。よって、プレート46Aの構成の詳細な説明は省略する。
 また、プレート46Bの構成は、アノードセパレーター29Bの構成と同様である。具体的には、例えば、アノードセパレーター29Bの連絡路37およびプレート46Bの連絡路237は同一形状であり、アノードセパレーター29Bの連絡路38およびプレート46Bの連絡路238は同一形状である。また、プレート46Bには、アノードセパレーター29Bと同様、プレート46Bの連絡路237および連絡路238が設けられた面に冷却流路260(図9参照)が設けられるとともに、プレート46Bの連絡路237および連絡路238が設けられた面と反対側の面にアノードガス流路230(図10参照)が設けられている。つまり、プレート46Bが、本開示の「一方の端に位置するアノードセパレーター」に対応する。よって、プレート46Bの構成の詳細な説明は省略する。
 電気化学式水素ポンプ100の水素圧縮動作開始後の適時において、カソードCAで生成されたカソードガスが第1カソードガス導出マニホールド235を通過する際に、第1カソードガス導出マニホールド235から分岐したカソードガスは、図9の点線矢印で示す如く、連絡路237および連通孔270をこの順に流れて、プレート46Aの凹部(空間SA)に供給される。なお、空間SAがカソードガスで満たされると、空間SAから溢れたカソードガスは、図9の点線矢印で示す如く、連通孔271および連絡路238をこの順に流れて、第2カソードガス導出マニホールド236に導かれる。
 このようにして、本実施形態の電気化学式水素ポンプ100は、プレート46Bの連絡路237を通じて、プレート46Bの第1カソードガス導出マニホールド235からプレート46Aの空間SAに高圧のカソードガスを適切に供給することができる。
 ここで、本実施形態の電気化学式水素ポンプ100では、図1および図8に示すように、アノード端板16と一方の端に位置するアノードセパレーター(本例では、プレート46B)との間に設けられ、カソードガスを溜めるための空間SAの外周を囲むOリング45Aが設けられている。具体的には、プレート46Aには、空間SAが形成された側の主面(プレート46Aおよびプレート46B間の接合面と反対側の主面)上に、平面視において、空間SAの領域を囲むOリング溝50Aが設けられ、Oリング45Aが、Oリング溝50Aに保持されている。これにより、空間SAに存在する高圧のカソードガスは、Oリング45Aによってシールされ、Oリング45Aで囲まれた領域内から外部に漏れることが適切に抑制される。なお、Oリング45Aが、本開示の「第3のシール材」の一例に対応する。
 さらに、図8の寸法Lおよび寸法LAで示すように、Oリング45Aで囲まれた領域の面積は、Oリング45で囲まれた領域の面積よりも大きい。図8に示す例では、Oリング45Aの外縁で囲まれた領域の面積が、Oリング45の外縁で囲まれた領域の面積よりも大きい。
 このようにして、本実施形態の電気化学式水素ポンプ100は、アノードセパレーター29B、アノードAN、電解質膜21、カソードCA、およびカソードセパレーター29Aの積層方向から見る平面視において、Oリング45の外縁は、Oリング45Cの外縁内に収まっている。なお、このとき、上記の積層方向から見る平面視において、Oリング45Aの外縁は、カソードセパレーター29Aの外縁内に収まっている。
 以上のとおり、本実施形態の電気化学式水素ポンプ100は、水素ポンプユニット10を構成する部材間の接触抵抗を従来よりも適切に低減し得る。
 具体的には、Oリング45Cで囲まれた領域のカソードガスのガス圧は、水素ポンプユニット10における、Oリング45で囲まれた領域のカソードガスのガス圧とほぼ同等の高圧である。また、Oリング45Cで囲まれた領域のカソードガスのガス圧によってカソードセパレーター29Aに付与される荷重は、カソードセパレーター29Aが、Oリング45で囲まれた領域のカソードガスのガス圧に起因してカソード端板15側に撓むことを抑えるように作用する。これにより、本実施形態の電気化学式水素ポンプ100は、水素ポンプユニット10を構成する部材間の隙間が発生しにくくなる。
 ここで、仮に、Oリング45Cで囲まれた領域の面積がOリング45で囲まれた領域の面積よりも小さいと、平面視において、Oリング45で囲まれた領域の一部が、Oリング45Cで囲まれた領域の中に収まらない。すると、上記領域の一部に対向するカソードセパレーター29Aの部分が、カソード端板15側に撓む可能性がある。
 これに対して、本実施形態の電気化学式水素ポンプ100は、Oリング45Cで囲まれた領域の面積をOリング45で囲まれた領域の面積よりも大きくすることで、平面視において、前者の領域によって後者の領域の全体を収めることができる。このため、本実施形態の電気化学式水素ポンプ100は、Oリング45で囲まれた領域に対向するカソードセパレーター29A全域に上記の撓み変形を抑える荷重を付与することができるので、水素ポンプユニット10を構成する部材間の接触抵抗を従来よりも適切に低減し得る。
 さらに、Oリング45Aで囲まれた領域のカソードガスのガス圧は、水素ポンプユニット10における、Oリング45で囲まれた領域のカソードガスのガス圧とほぼ同等の高圧である。また、Oリング45Aで囲まれた領域のカソードガスのガス圧によってアノードセパレーターに付与される荷重は、アノードセパレーターがOリング45で囲まれた領域のカソードガスのガス圧に起因してアノード端板16側に撓むことを抑えるように作用する。これにより、本実施形態の電気化学式水素ポンプ100は、水素ポンプユニット10を構成する部材間の隙間が発生しにくくなる。
 ここで、仮に、Oリング45Aで囲まれた領域の面積がOリング45で囲まれた領域の面積よりも小さいと、平面視において、Oリング45で囲まれた領域の一部が、Oリング45Aで囲まれた領域の中に収まらない。すると、上記領域の一部に対向するアノードセパレーターの部分が、アノード端板16側に撓む可能性がある。
 これに対して、本実施形態の電気化学式水素ポンプ100は、Oリング45Aで囲まれた領域の面積をOリング45で囲まれた領域の面積よりも大きくすることで、平面視において、前者の領域によって後者の領域の全体を収めることができる。このため、本実施形態の電気化学式水素ポンプ100は、Oリング45で囲まれた領域に対向するアノードセパレーター全域に上記の撓み変形を抑える荷重を付与することができるので、水素ポンプユニット10を構成する部材間の接触抵抗を従来よりも適切に低減し得る。
 例えば、図5に示す例においては、仮に、Oリング45Cの外縁で囲まれた領域の面積がOリング45の外縁で囲まれた領域の面積よりも小さいと、平面視において、Oリング45の外縁で囲まれた領域の一部が、Oリング45Cの外縁で囲まれた領域の中に収まらない。
 すると、上記領域の一部に対向するカソードセパレーター29Aの部分が、カソード端板15側に撓む可能性があるが、本実施形態の電気化学式水素ポンプ100は、図5に示す如く、Oリング45Cの外縁で囲まれた領域の面積をOリング45の外縁で囲まれた領域の面積よりも大きくすることで、以上のような不都合を軽減することができる。具体的には、本実施形態の電気化学式水素ポンプ100は、アノードセパレーター29B、アノードAN、電解質膜21、カソードCA、およびカソードセパレーター29Aの積層方向から見る平面視において、Oリング45の外縁がOリング45Cの外縁内に収まることで、Oリング45の外縁で囲まれた領域に対向するカソードセパレーター29A全域に上記の撓み変形を抑える荷重を付与することができる。
 なお、Oリング45およびOリング45Cのそれぞれの外縁を基準に、以上の領域面積の大小関係を定める理由は、以下のとおりである。
 Oリング45およびOリング45Cは、これらに当接する部材の押圧によって上下方向に潰れることでシール力を発揮する。ここで、電気化学式水素ポンプ100の水素圧縮動作中は、図5の拡大図の細い矢印で示す如く、Oリング45C(Oリング45も同じ)に対して内縁から外縁に向かう方向(水平方向)にカソードガスのガス圧力が付与されるので、Oリング45Cは、Oリング溝50Cの側部に密着するように圧縮変形する。すると、Oリング45Cの線径が垂直方向に拡大する方向に、Oリング45Cの弾性力が、Oリング45Cに当接する部材に作用する。換言すると、図5の拡大図の太い矢印で示すように、Oリング45Cの外縁までの領域でOリング45Cに当接するプレート44Aおよびカソードセパレーター29Aのそれぞれには、上記のカソードガスのガス圧およびシール力に起因するOリング45Cの弾性力が上向きおよび下向きのそれぞれの方向に作用する。そして、このことは、Oリング45およびOリング45Cのそれぞれの外縁に基づいて以上の領域面積の大小関係を定めることが、水素ポンプユニット10を構成する各部材に作用する押圧力の導出において適当であることを意味する。
 また、図8に示す例においては、仮に、Oリング45Aの外縁で囲まれた領域の面積がOリング45の外縁で囲まれた領域の面積よりも小さいと、平面視において、Oリング45の外縁で囲まれた領域の一部が、Oリング45Aの外縁で囲まれた領域の中に収まらない。
 すると、上記領域の一部に対向するアノードセパレーターの部分が、アノード端板16側に撓む可能性があるが、本実施形態の電気化学式水素ポンプ100は、図8に示す如く、Oリング45Aの外縁で囲まれた領域の面積をOリング45の外縁で囲まれた領域の面積よりも大きくすることで、以上のような不都合を軽減することができる。具体的には、本実施形態の電気化学式水素ポンプ100は、アノードセパレーター29B、アノードAN、電解質膜21、カソードCA、およびカソードセパレーター29Aの積層方向から見る平面視において、Oリング45の外縁がOリング45Aの外縁内に収まることで、Oリング45の外縁で囲まれた領域に対向するアノードセパレーター全域に上記の撓み変形を抑える荷重を付与することができる。
 (第1実施例)
 本実施例の電気化学式水素ポンプ100は、Oリング45の外縁で囲まれた領域の寸法L(直径)と、Oリング45CおよびOリング45Aのそれぞれの外縁で囲まれた領域のそれぞれの寸法LC(直径)および寸法LA(直径)とを、以下の如く設定すること以外は、第1実施形態の電気化学式水素ポンプ100と同様である。
 水素ポンプユニット10のそれぞれにおける、Oリング45の外縁で囲まれた領域のそれぞれには、上記のとおり、電気化学式水素ポンプ100の水素圧縮動作中、カソードガスの圧力によって、電気化学式水素ポンプ100のカソード端板15およびアノード端板16に、これらが外側に膨らむような力F1が作用する。
 ここで、Oリング45の外縁で囲まれた領域の平面視における面積をA1として、カソードガスの圧力をPとすると、上記の力F1は、以下の式(1)で表される。
    F1=P×A1・・・(1)
    式(1)において、A1=π×(L/2)
 また、第1圧力形成部材44および第2圧力形成部材46のそれぞれにおける、Oリング45CおよびOリング45Aの外縁で囲まれた領域のそれぞれには、上記のとおり、電気化学式水素ポンプ100の水素圧縮動作中、カソードガスの圧力によって、水素ポンプユニット10を構成する各部材の変形が抑えられ、これらが密着する方向の力F2およびF3がそれぞれ作用する。
 ここで、Oリング45Cの外縁で囲まれた領域の平面視における面積をA2として、カソードガスの圧力をPとすると、上記の力F2は、以下の式(2)で表される。
    F2=P×A2・・・(2)
    式(2)において、A2=π×(LC/2)
 また、Oリング45Aの外縁で囲まれた領域の平面視における面積をA3として、カソードガスの圧力をPとすると、上記の力F3は、以下の式(3)で表される。
    F3=P×A3・・・(3)
    式(3)において、A3=π×(LA/2)
 そして、本実施例の電気化学式水素ポンプ100では、LC>L、かつ、LA>Lであるので、カソードガスの圧力Pによって、電気化学式水素ポンプ100のカソード端板15およびアノード端板16に、これらが外側に膨らむような力F1よりも、カソードガスの圧力Pによって、水素ポンプユニット10を構成する各部材の変形が抑えられ、これらが密着する方向の力F2およびF3の方が大きい。これにより、水素ポンプユニット10を構成する各部材間の接触抵抗の増加を適切に抑制することができる。
 一例として、第1圧力形成部材44の上記寸法LCを120mmに設定するとともに、水素ポンプユニット10のそれぞれの上記寸法Lを117mmに設定する場合であって、カソードガスの圧力Pが40MPaである場合における、カソードセパレーター29Aに対する荷重(F2-F1)を見積ると、22kNである。つまり、寸法LCと寸法Lとの間の僅かな寸法差(3mm程度)が、カソードセパレーター29Aに対する約2MPa相当の押圧力を生み出すことが分かった。そして、この押圧力は、水素ポンプユニット10を構成する各部材間を密着させる力として適切な値であると考えられる。
 なお、以上に説明した様々な数値は、例示であって本例に限定されない。例えば、カソードガスの圧力Pは、電気化学式水素ポンプ100の仕様、運転条件などに基づいて適宜の値に設定することができる。
 以上により、本実施例の電気化学式水素ポンプ100は、例えば、非特許文献1で開示された、端板の底面中央部に形成された円筒状の凹部内(高圧空間内)にセパレーター全体を挿入させる水電解装置に比べて、装置の小型化および低コスト化を容易に実現することができる。
 本実施例の電気化学式水素ポンプ100は、上記特徴以外は、第1実施形態の電気化学式水素ポンプ100と同様であってもよい。
 (第2実施例)
 電気化学式水素ポンプ100において、カソードCAで生成されるカソードガスを常圧から数十MPaにまで高効率に圧縮するには、水素ポンプユニット10を構成する部材間の接触抵抗を常時、所望の値以下に保つ必要がある。
 ここで、カソードCAで生成されるカソードガスが高圧(例えば、数十MPa程度)であると、第1実施例で説明した通り、第1圧力形成部材44および第2圧力形成部材46の押圧作用により、水素ポンプユニット10を構成する各部材に、これらの部材を密着させるのに十分な押圧力を付与することができる。
 しかし、カソードCAで生成されるカソードガスが低圧の場合、かかる押圧力を、水素ポンプユニット10を構成する各部材に付与することが困難である。
 そこで、本実施例の電気化学式水素ポンプ100は、締結器17の締結力によって、カソードCAで生成されるカソードガスが低圧の場合であっても、水素ポンプユニット10を構成する各部材が密着するように構成されている。
 例えば、締結器17を用いて、水素ポンプユニット10を構成する各部材に初期締結力を付与する方法として、締結器17のボルトに軸力を付与する方式、バネ力を利用する方式、締付トルク管理による軸力を付与する方式などを挙げることができるが、これらに限定されない。
 なお、締結器17のボルトには、上記の初期締結力および電気化学式水素ポンプ100のカソードCAで生成されるカソードガスのガス圧に起因して、引張応力がかかる。このため、締結器17は、この引張応力に耐え得る強度を備える。例えば、約10本程度のボルトが端板の周囲に均等に設けられていてもよいが、これに限定されない。また、ボルトは、強度区分10.9(JIS B1051)の鋼材(例えば、ステンレス鋼)などで構成されていてもよいが、これに限定されない。
 本実施例の電気化学式水素ポンプ100は、上記特徴以外は、第1実施形態または第1実施形態の第1実施例の電気化学式水素ポンプ100と同様であってもよい。
 (変形例)
 第1実施形態の電気化学式水素ポンプ100では、水素ポンプユニット10が積層された積層体の上下方向のそれぞれに、第1圧力形成部材44および第2圧力形成部材46がそれぞれ配置されているが、これに限定されない。積層体の上下方向のいずれか一方にのみ、圧力形成部材が配置されていてもよい。この場合、圧力形成部材が配置されていない側の端板の撓み剛性を、圧力形成部材が配置されている側の端板の撓み剛性よりも高くすることで対向可能である。
 本変形例の電気化学式水素ポンプ100は、上記特徴以外は、第1実施形態および第1実施形態の第1実施例-第2実施例のいずれかの電気化学式水素ポンプ100と同様であってもよい。
 (第2実施形態)
 第2実施形態の電気化学式水素ポンプ100は、以下に説明するリング材90が、Oリング45Cの外縁に設けられること以外は、第1実施形態の電気化学式水素ポンプ100と同様である。
 図11は、Oリングの内部に存在する高圧のカソードガスによってOリングの一部が隙間内にはみ出す現象の一例を示す図である。
 図12は、第2実施形態の電気化学式水素ポンプにおける第1圧力形成部材の一例を示す図である。
 図12に示すように、リング材90は、Oリング45Cの外縁に隣接し、Oリング45Cを囲むバックアップリングである。リング材90は、Oリング溝50Cに保持されている。なお、リング材90の基材として、例えば、耐酸性および耐水素脆性の視点からフッ素樹脂などを挙げることができるが、これに限定されない。
 ここで、Oリング45Cで空間SCがシールされる際に、Oリング45Cに当接する部材間には、Oリング45Cで囲まれた領域のカソードガスのガス圧によって、図11に示す如く、隙間が発生する場合がある。この場合、Oリング45Cを囲むリング材が設けられていないときは、Oリング45Cの一部が、Oリング45Cの内部に存在するカソードガスのガス圧によって、上記の隙間内に、はみ出す可能性がある(図11参照)。すると、Oリング45Cが破損することで、Oリング45Cのガスシール性が低下する可能性がある。
 これに対して、本実施形態の電気化学式水素ポンプ100は、Oリング45Cの外縁に隣接するようにOリング45Cを囲むリング材90を設けることで、Oリング45Cが上記隙間にはみ出すことが抑制され、その結果、Oリング45Cが破損することが改善される。
 本実施形態の電気化学式水素ポンプ100は、上記特徴以外は、第1実施形態、第1実施形態の第1実施例-第2実施例および第1実施形態の変形例のいずれかの電気化学式水素ポンプ100と同様であってもよい。
 (第1変形例)
 本変形例の電気化学式水素ポンプ100は、以下に説明するリング材91が、Oリング45Aの外縁に設けられること以外は、第1実施形態の電気化学式水素ポンプ100と同様である。
 図13は、第2実施形態の第1変形例の電気化学式水素ポンプにおける第2圧力形成部材の一例を示す図である。
 図13に示すように、リング材91は、Oリング45Aの外縁に隣接し、Oリング45Aを囲むバックアップリングである。リング材91は、Oリング溝50Aに保持されている。なお、リング材91の基材として、例えば、耐酸性および耐水素脆性の視点からフッ素樹脂などを挙げることができるが、これに限定されない。
 なお、本変形例の電気化学式水素ポンプ100が奏する作用効果は、第2実施形態の電気化学式水素ポンプ100が奏する作用効果と同様であるので説明を省略する。
 本変形例の電気化学式水素ポンプ100は、上記特徴以外は、第1実施形態、第1実施形態の第1実施例-第2実施例、第1実施形態の変形例および第2実施形態のいずれかの電気化学式水素ポンプ100と同様であってもよい。
 (第2変形例)
 本変形例の電気化学式水素ポンプ100では、Oリング45の外縁には、Oリング45を囲むリング材が設けられていない。
 Oリング45でカソードCAがシールされる際に、Oリング45に当接する部材は、Oリング45CおよびOリング45Aに当接する部材に比べて、端板側に撓むことが抑えられ、その結果、Oリング45に当接する部材間では隙間が発生しにくい。このため、Oリング45を囲むリング材が設けられていない場合でも、Oリング45の内部に存在するカソードガスのガス圧によってOリング45が破損する可能性が低い。そこで、本変形例の電気化学式水素ポンプ100は、Oリング45の外縁にはOリング45を囲むリング材を設けないことで、リング材の部品数を削減することができる。
 本変形例の電気化学式水素ポンプ100は、上記特徴以外は、第1実施形態、第1実施形態の第1実施例-第2実施例、第1実施形態の変形例、第2実施形態および第2実施形態の第1変形例のいずれかの電気化学式水素ポンプ100と同様であってもよい。
 (第3変形例)
 本変形例の電気化学式水素ポンプ100は、Oリング45と、Oリング45CおよびOリング45Aの種類(シリーズ)および線径(太さ)を、以下の如く設定すること以外は、第1実施形態の電気化学式水素ポンプ100と同様である。
 本変形例の電気化学式水素ポンプ100では、Oリング45Cの内縁から外縁までの長さ(線径)は、Oリング45の内縁から外縁までの長さ(線径)よりも大きい。
 Oリング45Cに当接する部材間には、Oリング45Cで囲まれた領域のカソードガスのガス圧によって、当該部材がカソード端板15側に撓むことで隙間が発生する場合があるが、Oリング45に当接する部材は、Oリング45Cに当接する部材に比べてカソード端板15側に撓むことが抑えられ、その結果、Oリング45に当接する部材間では隙間が発生しにくい。そして、Oリング45Cに当接する部材間に隙間が発生すると、図11に示す如く、例えば、Oリング45Cの一部が、Oリング45Cの内部に存在する高圧のカソードガスによって、この隙間内に、はみ出す可能性がある。すると、Oリング45Cが破損することで、Oリング45Cのシール性が低下する可能性がある。
 そこで、本変形例の電気化学式水素ポンプ100は、上記の如く、Oリング45Cの線径をOリング45よりも大きくすることで、前者の線径が後者の線径よりも小さい場合に比べて、Oリング45Cの耐久性を向上させることができる。具体的には、Oリング45Cの線径が大きいほど、Oリング45Cが上記の隙間にはみ出しにくくなるので、Oリング45Cが破損することが改善される。
 また、本変形例の電気化学式水素ポンプ100では、Oリング45Aの内縁から外縁までの長さ(線径)は、Oリング45の内縁から外縁までの長さ(線径)よりも大きい。
 これにより、本変形例の電気化学式水素ポンプ100は、Oリング45Aの線径をOリング45の線径よりも大きくすることで、前者の線径が後者の線径よりも小さい場合に比べて、Oリング45Aの耐久性を向上させることができる。なお、本構成が奏する作用効果の詳細は、上記の説明で容易に理解することができるので省略する。
 ここで、Oリング45、Oリング45CおよびOリング45Aは、上記線径の大小関係を満足すれば、どのような種類であってもよい。
 一例として、Oリング45CおよびOリング45Aには、G規格(JIS B2401;平面固定用:線径3.1mm)のOリングなどを用いることができる。この場合、Oリング45には、上記G規格のOリングに比べて低コストのS規格(JIS B2401;平面固定用:線径2.0mm)のOリングなどを用いることができる。
 ただし、Oリングの種類は、上記に限定されない。例えば、Oリング45CおよびOリング45Aの種類は、G規格(線径5.7mm)、GS規格(線径3.1mm)、V規格(線径4mmなど)、N規格(線径5mmなど)であってもよい。また、外国規格のものであってもよい。Oリング45の種類は、G規格(線径3.1mm)などであってもよいし、外国規格のものであってもよい。
 本変形例の電気化学式水素ポンプ100は、上記特徴以外は、第1実施形態、第1実施形態の第1実施例-第2実施例、第1実施形態の変形例、第2実施形態および第2実施形態の第1変形例-第2変形例のいずれかの電気化学式水素ポンプ100と同様であってもよい。
 第1実施形態、第1実施形態の第1実施例-第2実施例、第1実施形態の変形例、第2実施形態および第2実施形態の第1変形例-第3変形例は互いに相手を排除しない限り、互いに組み合わせても構わない。
 また、上記説明から、当業者にとっては、本開示の多くの改良および他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本開示を実行する最良の態様を当業者に教示する目的で提供されたものである。本開示の精神を逸脱することなく、その構造および/または機能の詳細を実質的に変更することができる。例えば、電気化学式水素ポンプ100のシール構成は、水電解装置などの他の圧縮装置にも適用することができる。
 本開示の一態様は、圧縮ユニットを構成する部材間の接触抵抗を従来よりも適切に低減し得る圧縮装置に利用することができる。
10    :水素ポンプユニット
11    :流体集配部材
11A   :排出口
12    :絶縁板
13    :絶縁板
14    :流体集配部材
14A   :排出口
15    :カソード端板
16    :アノード端板
17    :締結器
21    :電解質膜
22    :カソード給電体
23    :カソード触媒層
24    :アノード触媒層
25    :アノード給電体
28    :枠体
29    :バイポーラプレート
29A   :カソードセパレーター
29B   :アノードセパレーター
30    :アノードガス流路
31    :アノードガス導入マニホールド
32    :アノードガス導出マニホールド
35    :第1カソードガス導出マニホールド
36    :第2カソードガス導出マニホールド
37    :連絡路
38    :連絡路
40    :面シール材
41    :Oリング
42    :Oリング
44    :第1圧力形成部材
44A   :プレート
44B   :プレート
45    :Oリング
45A   :Oリング
45C   :Oリング
46    :第2圧力形成部材
46A   :プレート
46B   :プレート
48    :封止板
50    :Oリング溝
50A   :Oリング溝
50C   :Oリング溝
51    :Oリング溝
52    :Oリング溝
60    :冷却流路
61    :冷却媒体導入マニホールド
62    :冷却媒体導出マニホールド
70    :連通孔
71    :連通孔
90    :リング材
91    :リング材
100   :電気化学式水素ポンプ
101   :端子
102   :電圧印加器
103   :端子
135   :第1カソードガス導出マニホールド
136   :第2カソードガス導出マニホールド
137   :連絡路
138   :連絡路
170   :連通孔
171   :連通孔
230   :アノードガス流路
235   :第1カソードガス導出マニホールド
236   :第2カソードガス導出マニホールド
237   :連絡路
238   :連絡路
260   :冷却流路
270   :連通孔
271   :連通孔
AN    :アノード
CA    :カソード
CCM   :触媒層付き膜
S     :空間
SA    :空間
SC    :空間

Claims (15)

  1.  電解質膜、前記電解質膜の一方の主面上に設けられたアノード、前記電解質膜の他方の主面上に設けられたカソード、前記アノード上に積層されたアノードセパレーター、および前記カソード上に積層されたカソードセパレーターを含む、少なくとも1つの圧縮ユニットと、
     前記アノードと前記カソードとの間に電圧を印加する電圧印加器と、を備え、
     前記電圧印加器により電圧を印加することで、アノードに供給されるアノード流体から取り出されたプロトンを、電解質膜を介してカソードに移動させ、圧縮水素を生成する圧縮装置であって、
     前記積層された方向において、一方の端に位置する前記アノードセパレーター上に設けられたアノード端板と、
     前記積層された方向において、他方の端に位置する前記カソードセパレーター上に設けられたカソード端板と、
     前記カソードの外周を囲む第1のシール材と、
     前記カソード端板と前記他方の端に位置するカソードセパレーターとの間に設けられ、前記圧縮水素を溜めるための第1の空間の外周を囲む第2のシール材と、を備え、
     前記第2のシール材で囲まれた領域の面積は、前記第1のシール材で囲まれた領域の面積よりも大きい、圧縮装置。
  2.  前記アノード端板と前記一方の端に位置するアノードセパレーターとの間に設けられ、前記圧縮水素を溜めるための第2の空間の外周を囲む第3のシール材を備え、
     前記第3のシール材で囲まれた領域の面積は、前記第1のシール材で囲まれた領域の面積よりも大きい、請求項1に記載の圧縮装置。
  3.  前記第2のシール材の外縁で囲まれた領域の面積が、第1のシール材の外縁で囲まれた領域の面積よりも大きい、請求項1または2に記載の圧縮装置。
  4.  前記第3のシール材の外縁で囲まれた領域の面積が、第1のシール材の外縁で囲まれた領域の面積よりも大きい、請求項2に記載の圧縮装置。
  5.  前記第2のシール材の外縁に隣接し、当該第2のシール材を囲むリング材を備える、請求項1-4のいずれか1項に記載の圧縮装置。
  6.  前記第3のシール材の外縁に隣接し、当該第3のシール材を囲むリング材を備える、請求項2または4に記載の圧縮装置。
  7.  前記第1のシール材の外縁には、当該第1のシール材を囲むリング材が設けられていない、請求項5または6に記載の圧縮装置。
  8.  前記第2のシール材の内縁から外縁までの長さは、前記第1のシール材の内縁から外縁までの長さよりも大きい、請求項1-7のいずれか1項に記載の圧縮装置。
  9.  前記第3のシール材の内縁から外縁までの長さは、前記第1のシール材の内縁から外縁までの長さよりも大きい、請求項2、4または6に記載の圧縮装置。
  10.  前記アノードセパレーター、前記アノード、前記電解質膜、前記カソード、および前記カソードセパレーターの積層方向から見ると、前記第1のシール材の外縁は、前記第2のシール材の外縁内に収まっている、請求項1-9のいずれか1項に記載の圧縮装置。
  11.  前記アノードセパレーター、前記アノード、前記電解質膜、前記カソード、および前記カソードセパレーターの積層方向から見ると、前記第1のシール材の外縁は、前記第3のシール材の外縁内に収まっている、請求項2、4、6または9に記載の圧縮装置。
  12.  前記アノードセパレーター、前記アノード、前記電解質膜、前記カソード、および前記カソードセパレーターの積層方向から見ると、前記第2のシール材の外縁は、前記カソードセパレーターの外縁内に収まっている、請求項1-11のいずれか1項に記載の圧縮装置。
  13.  前記アノードセパレーター、前記アノード、前記電解質膜、前記カソード、および前記カソードセパレーターの積層方向から見ると、前記第3のシール材の外縁は、前記カソードセパレーターの外縁内に収まっている、請求項2、4、6、9または11に記載の圧縮装置。
  14.  前記第1のシール材および前記第2のシール材は、Oリングである、請求項1-13に記載の圧縮装置。
  15.  前記第1のシール材、前記第2のシール材および前記第3のシール材は、Oリングである、請求項2、4、6、9、11または13に記載の圧縮装置。
PCT/JP2021/030308 2020-11-10 2021-08-19 圧縮装置 WO2022102193A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021568583A JP7016035B1 (ja) 2020-11-10 2021-08-19 圧縮装置
EP21891441.4A EP4245892A1 (en) 2020-11-10 2021-08-19 Compression device
CN202180074060.6A CN116438138A (zh) 2020-11-10 2021-08-19 压缩装置
US18/302,092 US20230313788A1 (en) 2020-11-10 2023-04-18 Compression apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020186994 2020-11-10
JP2020-186994 2020-11-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/302,092 Continuation US20230313788A1 (en) 2020-11-10 2023-04-18 Compression apparatus

Publications (1)

Publication Number Publication Date
WO2022102193A1 true WO2022102193A1 (ja) 2022-05-19

Family

ID=81601095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030308 WO2022102193A1 (ja) 2020-11-10 2021-08-19 圧縮装置

Country Status (1)

Country Link
WO (1) WO2022102193A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7281656B1 (ja) * 2021-12-23 2023-05-26 パナソニックIpマネジメント株式会社 圧縮装置
WO2023120042A1 (ja) * 2021-12-23 2023-06-29 パナソニックIpマネジメント株式会社 圧縮装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196133A (ja) * 2009-02-26 2010-09-09 Honda Motor Co Ltd 電気化学装置
JP2015504116A (ja) * 2012-01-18 2015-02-05 エイチ−テック システムズ ゲー.エム.ベー.ハー.H−Tec Systems Gmbh 電解槽
US20160102410A1 (en) * 2014-09-30 2016-04-14 Reinz-Dichtungs-Gmbh Unknown
JP2019218624A (ja) 2018-06-14 2019-12-26 パナソニックIpマネジメント株式会社 電気化学式水素ポンプ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196133A (ja) * 2009-02-26 2010-09-09 Honda Motor Co Ltd 電気化学装置
JP2015504116A (ja) * 2012-01-18 2015-02-05 エイチ−テック システムズ ゲー.エム.ベー.ハー.H−Tec Systems Gmbh 電解槽
US20160102410A1 (en) * 2014-09-30 2016-04-14 Reinz-Dichtungs-Gmbh Unknown
JP2019218624A (ja) 2018-06-14 2019-12-26 パナソニックIpマネジメント株式会社 電気化学式水素ポンプ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Honda R&D Technical Review", vol. 25, October 2013, HONDA MOTOR CO., LTD., article "Study of Seal Structure of High-differential-pressure Water Electrolysis Cell"

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7281656B1 (ja) * 2021-12-23 2023-05-26 パナソニックIpマネジメント株式会社 圧縮装置
WO2023120042A1 (ja) * 2021-12-23 2023-06-29 パナソニックIpマネジメント株式会社 圧縮装置

Similar Documents

Publication Publication Date Title
JP7249588B2 (ja) 電気化学式水素ポンプ
US9194048B2 (en) Electrochemical device
JP6928921B1 (ja) 圧縮装置
WO2022102193A1 (ja) 圧縮装置
JP7336703B2 (ja) 電気化学式水素ポンプ
US20230227987A1 (en) Compression apparatus
JP6928922B1 (ja) 圧縮装置
JP7016035B1 (ja) 圧縮装置
WO2022064818A1 (ja) 圧縮装置
JP6979634B1 (ja) 圧縮装置
JP7281656B1 (ja) 圧縮装置
WO2023120042A1 (ja) 圧縮装置
CN113454817A (zh) 电化学装置
JP6979636B1 (ja) 圧縮装置
JP7281646B1 (ja) 圧縮装置
JP7002045B1 (ja) 圧縮機および圧縮機の制御方法
JP6895626B1 (ja) 電気化学デバイス
WO2022149301A1 (ja) 圧縮機および圧縮機の制御方法
JP2022178797A (ja) 圧縮装置
CN117425749A (zh) 氢泵用的电化学单元和压缩装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021568583

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021891441

Country of ref document: EP

Effective date: 20230612