WO2022100486A1 - 能量计量方法、装置、设备、系统和存储介质 - Google Patents

能量计量方法、装置、设备、系统和存储介质 Download PDF

Info

Publication number
WO2022100486A1
WO2022100486A1 PCT/CN2021/128230 CN2021128230W WO2022100486A1 WO 2022100486 A1 WO2022100486 A1 WO 2022100486A1 CN 2021128230 W CN2021128230 W CN 2021128230W WO 2022100486 A1 WO2022100486 A1 WO 2022100486A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
calorific value
natural gas
user
area
Prior art date
Application number
PCT/CN2021/128230
Other languages
English (en)
French (fr)
Inventor
丁渊明
颜莹
刘通良
Original Assignee
金卡智能集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金卡智能集团股份有限公司 filed Critical 金卡智能集团股份有限公司
Priority to GB2305208.7A priority Critical patent/GB2614834A/en
Priority to US18/249,108 priority patent/US20230394453A1/en
Priority to DE112021005957.2T priority patent/DE112021005957T5/de
Publication of WO2022100486A1 publication Critical patent/WO2022100486A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/08Payment architectures
    • G06Q20/14Payment architectures specially adapted for billing systems
    • G06Q20/145Payments according to the detected use or quantity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/04Billing or invoicing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions

Definitions

  • the present application relates to data processing technology, and in particular, to an energy metering method, apparatus, device, system and storage medium.
  • Natural gas is one of the important energy sources in daily life. The traditional way of valuing natural gas is based on the usage volume. In fact, there are many types of natural gas sources, with different compositions and different calorific values. This way of pricing by volume is not fair to users.
  • volume settlement is still used for end users.
  • Different settlement methods between upstream and downstream may lead to differences in natural gas transmission, increase the management difficulty of gas companies, and at the same time, it is also unfair to end gas users.
  • the present application provides an energy metering method, apparatus, device, system and storage medium. Realize the energy metering of natural gas used by the user to reduce the difference in natural gas transmission.
  • the present application provides an energy metering method, comprising:
  • the calorific value of the natural gas used by the user is determined according to the gas source supply structure corresponding to the user and the calorific value of various types of gas sources published in each release cycle; the gas source supply structure is used to indicate the The type and quantity of the natural gas source used by the user, and the gas supply method;
  • the energy usage of natural gas by the user in the metering period is determined.
  • the method further includes:
  • the users in the target area are divided into a plurality of charging areas; the gas source supply structure in each charging area is the same;
  • the calorific value of the natural gas used by the user is determined according to the calorific value of the natural gas in the billing area to which the user belongs.
  • Calorific value of natural gas including:
  • the billing area For each billing area, if there is a unique gas source in the billing area that directly supplies natural gas to each user, the billing area is determined according to the calorific value of the unique gas source published in each release cycle The corresponding calorific value of natural gas.
  • Calorific value of natural gas including:
  • each billing area if there are at least two gas sources in the billing area that supply natural gas to each user alternately and directly, it will be released according to the gas supply time of the at least two gas sources and each release cycle.
  • the calorific value of the at least two gas sources is determined, and the calorific value of the natural gas corresponding to the billing area is determined.
  • Calorific value of natural gas including:
  • the natural gas calorific value corresponding to the billing area is determined according to the delivery volume of the at least two gas sources in the metering period and the calorific value of the at least two gas sources published in each release period.
  • Calorific value of natural gas including:
  • each billing area if a part of the gas from at least two gas sources in the billing area jointly supplies natural gas to each user, and another part of the gas from the at least two gas sources supplies other billing separately zone, then obtain the volume usage of other billing zones supplied by another part of the gas supply of the at least two gas sources;
  • the natural gas corresponding to the billing area is determined according to the volume usage of other billing areas supplied by another part of the gas from the at least two gas sources, and the calorific value of the at least two gas sources released in each release cycle Calorific value.
  • the method before determining the calorific value of natural gas corresponding to the billing area, the method further includes:
  • the calorific value of natural gas corresponding to the charging area is determined according to the gas source supply structure corresponding to the charging area and the calorific value of various types of gas sources published in each release cycle, include:
  • the acquiring the natural gas energy usage of the industrial user in the metering period includes:
  • the natural gas energy consumption of the industrial user in the measurement period is determined.
  • an energy metering device comprising:
  • the acquisition module is used to acquire the volume usage of natural gas by the user in the metering period
  • the determination module is used to determine the calorific value of various gas sources released in each release cycle in the metering cycle
  • a processing module configured to determine the calorific value of the natural gas used by the user according to the gas source supply structure corresponding to the user and the calorific value of various types of gas sources published in each release cycle; the gas source supply structure It is used to indicate the type, quantity, and gas supply method of the natural gas source used by the user; it is determined according to the volume usage of the natural gas by the user in the metering period and the calorific value of the natural gas used by the user The natural gas energy usage of the user during the metering period.
  • the present application provides an energy metering device, comprising: a memory for storing program instructions; and a processor for calling and executing the program instructions in the memory to execute the method described in the first aspect.
  • the present application provides a computer-readable storage medium, where the storage medium stores a computer program, and when the computer program is executed by a processor, implements the method described in any one of the above.
  • the present application provides a program product, the program product includes a computer program, the computer program is stored in a readable storage medium, and a processor of an electronic device can read the computer from the readable storage medium A program, the processor executing the computer program causes an electronic device to implement the method according to the first aspect.
  • the present application provides an energy metering system, comprising: a gas metering device on the user side and a calorific value detection device on the gas source side, respectively connected to the energy metering device;
  • the gas metering device is used to measure the volume usage of natural gas at the user end;
  • the calorific value detection device is used to detect the calorific value of the gas source
  • the energy metering device may be used to perform the energy metering method as described in the first aspect.
  • the present application provides an energy metering method, apparatus, device, system and storage medium.
  • the energy metering method includes: acquiring the volume usage of natural gas by a user in a metering period; determining the calorific value of various types of gas sources published in each release period in the metering period; The calorific value of various types of gas sources released in each release cycle is used to determine the calorific value of the natural gas used by the user; the gas source supply structure is used to indicate the type and quantity of the natural gas source used by the user , and the gas supply mode; according to the volume usage of natural gas by the user in the metering period and the calorific value of the natural gas used by the user, determine the natural gas energy consumption of the user in the metering period.
  • the composition method of the gas source corresponding to the natural gas used by the user can be determined, and then the calorific value of the natural gas used by the user can be determined according to the calorific value of each gas source, and then according to the user's natural gas volume usage, energy usage. In this way, the energy metering of the natural gas used by the user can be realized. Realizing the unification of upstream and downstream billing methods can reduce the difference in natural gas transmission.
  • FIG. 1 is a schematic diagram of an application scenario provided by the present application.
  • FIG. 3 is a schematic flowchart of a server side acquiring data related to natural gas volume usage from a user side according to an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a gas source supply structure according to an embodiment of the application.
  • FIG. 5 is a schematic diagram of another gas source supply structure provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another gas source supply structure provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another gas source supply structure provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an energy metering device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an energy metering device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an energy metering system according to an embodiment of the present application.
  • the measurement methods of natural gas generally include volume measurement, mass measurement and energy measurement.
  • mass measurement is generally used for the measurement of compressed natural gas.
  • the conversion of volume measurement to energy measurement is also gradually being promoted in China.
  • the first thing to change is the upstream wholesale link. The change in the pricing method of the wholesale link will definitely push the unfair pricing to the user side.
  • the present application proposes an energy metering method, device, device and storage medium suitable for natural gas.
  • the existing meter is still used, and the volume usage of the client is collected and reported normally.
  • the energy metering process is set on the server side, and the calorific value of the natural gas used by each user is calculated according to the gas source supply structure corresponding to each user, and combined with the volume usage reported by the gas meter, the energy usage is finally determined to achieve energy metering.
  • FIG. 1 is a schematic diagram of an application scenario provided by this application.
  • gas source 1 in FIG. 1 only one gas source directly provides natural gas to users in the area.
  • the gas source calorific value detection device connected to the gas source side detects the calorific value of the natural gas output by the gas source, and uploads it to the server according to the uploading rules;
  • the terminal gas measuring instrument connected to the user side gas pipeline detects the user's natural gas volume usage, And upload it to the server according to the upload rules.
  • the calorific value of the natural gas on the gas source side is the calorific value of the natural gas on the user side.
  • the server can calculate the user's natural gas energy consumption based on the natural gas calorific value on the gas source side and the user's natural gas volume usage.
  • the scenario in FIG. 1 only reflects one of the gas supply modes, and more implementation modes will be described below.
  • FIG. 2 is a flowchart of an energy metering method provided by an embodiment of the present application.
  • the execution body of the method in this embodiment may be a terminal device such as a server.
  • the method of this embodiment may include:
  • the "metering cycle” refers to the cycle of calculating the energy usage of the natural gas used by the user, which may be one day, one week, one month, and the like.
  • the length of the cycle and the specific moment of start and end can be determined according to the actual scene, and can also be adjusted according to the actual situation.
  • the volume usage data acquired by the execution subject server of the method in this embodiment may be collected by a gas volume volume collection device on the user side, and sent directly or indirectly. After the server obtains the relevant data, it can parse and save the data.
  • the gas volume acquisition device on the user side can be a civil gas meter, an industrial and commercial gas meter, an industrial and commercial flow meter, and the like.
  • Civil meters can be ordinary membrane meters, IC card meters, micro-power wireless meters, IoT meters, NB-IoT meters and other gas meters;
  • industrial and commercial gas meters can be G6 to G40 industrial and commercial gas meters;
  • industrial and commercial flow meters can be DN25 to DN200 industrial and commercial flow meters.
  • the gas volume acquisition device measures the corresponding user's gas consumption based on its own principle, and uploads it to the server.
  • the uploaded information may include the device number corresponding to the device, the natural gas volume usage during the upload period, or the accumulated natural gas volume usage. quantity and other data.
  • Meters with communication functions can generally upload data automatically, with fixed or adjustable upload cycles; gas meters without communication functions generally do not have automatic upload functions, requiring manual uploading, and there are also manual-assisted uploading cycles. Therefore, the concept of "upload cycle” is introduced here. Similar to the above “measurement cycle", the length of the cycle can be one day, one week, one month, etc., and the specific start and end time can be determined according to the actual scene, and can also be adjusted according to the actual situation.
  • FIG. 3 is a schematic flowchart of a server side acquiring data related to natural gas volume usage from a user side according to an embodiment of the present application.
  • the server receives the data uploaded by wireless remote according to the data upload cycle of the watch, parses out the valid data, and stores it.
  • manual photos and uploads can be used to regularly transmit volume usage data to the server.
  • a device with image acquisition functions such as a camera, a smart phone, etc.
  • the collected image or video data can be sent to the server through a terminal device that can communicate with the server, so that the server can monitor the image.
  • video data for image processing to obtain the user information (meter information) contained in the natural gas volume usage information.
  • the image data is uploaded to the server through the terminal application, applet, etc. of the smartphone.
  • the server receives the photo of the front of the gas meter uploaded by the applet or the terminal application from the designated interface, parses the relevant data such as the gas meter number and volume usage in the photo, and stores it.
  • the natural gas volume usage data can be collected through a dedicated centralized meter reading device and then imported into the server.
  • the server imports the meter reading data of the handheld meter reading device from the specified data import interface, parses out the valid data and stores it.
  • measurement period and the upload period may or may not be the same.
  • a unified measurement cycle can be used for all meters, or the measurement cycle can be determined according to the upload cycle.
  • the upload cycle can be determined as the measurement cycle, which can be set to one quarter or two months.
  • the metering period of an IoT meter, an NB-Iot meter, etc. may be set to one or more days.
  • the gas source calorific value data acquired by the execution main server of the method in this embodiment may be collected and sent by the gas source calorific value detection device on the gas source side. After the server obtains the relevant data, the data can be saved.
  • the gas source calorific value detection device may be a detection device of an official supervision center, which detects and regularly publishes the gas source calorific value data.
  • the published calorific value value is the average calorific value in the publishing period, or a plurality of calorific value data obtained by multiple detections in the publishing period.
  • the "release cycle” refers to the cycle of releasing the natural gas calorific value of the gas source, which may be one hour or one day.
  • the length of the release cycle and the specific moment of start and end can be determined according to the actual scene.
  • release cycle of different gas sources may also be different.
  • S203 Determine the calorific value of the natural gas used by the user according to the gas source supply structure corresponding to the user and the calorific value of various gas sources published in each release cycle.
  • the gas source supply structure is used to indicate the type, quantity, and gas supply mode of the natural gas source used by the user. For example, which gas sources supply a certain user with natural gas; if multiple gas sources supply gas, whether the gas supply mode is combined supply or separate interval supply, etc.
  • the composition of the natural gas used by the user or the ratio of each gas source composition can be roughly determined, and then combined with the calorific value of various gas sources, the calorific value of the natural gas used by the user can be determined.
  • the update cycle of the calorific value of the natural gas used by the user can be consistent with the release cycle of the calorific value of the gas source, that is, after each release cycle, when the calorific value of the gas source is obtained, this step is performed once to determine the calorific value of the natural gas used by the user.
  • Calorific value it can also be inconsistent with the release cycle, for example, the calorific value of natural gas used by a user is calculated only after multiple release cycles.
  • S204 Determine the natural gas energy consumption of the user in the measurement period according to the volume usage of the natural gas by the user in the measurement period and the calorific value of the natural gas used by the user.
  • the energy of natural gas has a stable corresponding relationship with volume and calorific value, which can be expressed as follows:
  • E represents energy
  • H represents calorific value
  • Q represents volume.
  • this representation will also be used to indicate the corresponding quantity
  • the superscript or subscript will be used to indicate the measurement condition of the corresponding quantity.
  • the measurement period, update period, upload period, etc. respectively correspond to the above three quantities, that is, each quantity has a time condition for measurement (the time is not reflected in formula (1), and the actual default is within the same time range) quantity).
  • the release cycle, update cycle, measurement cycle, and upload cycle may or may not be consistent, and the corresponding actual algorithm formula needs to consider the time factor.
  • the energy metering method provided by this embodiment includes: acquiring the volume usage of natural gas by the user in the metering period; determining the calorific value of various types of gas sources published in each release period in the metering period; The calorific value of various gas sources released in each release cycle determines the calorific value of the natural gas used by the user; the gas source supply structure is used to indicate the type, quantity and supply method of the natural gas source used by the user; The user's volume usage of natural gas and the calorific value of the natural gas used by the user in the metering period determine the user's natural gas energy usage during the metering period.
  • the composition method of the gas source corresponding to the natural gas used by the user can be determined, and then the calorific value of the natural gas used by the user can be determined according to the calorific value of each gas source, and then according to the user's natural gas volume usage, energy usage. In this way, the energy metering of the natural gas used by the user can be realized. Realizing the unification of upstream and downstream billing methods can reduce the difference in natural gas transmission.
  • users corresponding to the same gas source supply structure use the same calorific value of natural gas. Based on this feature, users can be classified according to the gas source supply structure, and users with the same gas source supply structure can be classified into the same category to form an abstract billing area.
  • the calorific value of the natural gas used is uniformly calculated and stored for each billing area each time, so that it can be used for energy metering for users in the billing area. This can simplify the amount of computation in the server and improve processing efficiency.
  • users in the target area may be divided into multiple billing areas according to the gas source supply structure corresponding to each user in the target area.
  • the gas supply structure in each billing area is the same.
  • the above-mentioned step S203 determines the calorific value of the natural gas used by the user according to the gas source supply structure corresponding to the user and the calorific value of various gas sources published in each release cycle, which may specifically include: for each billing area , determine the calorific value of natural gas corresponding to the billing area according to the gas source supply structure corresponding to the billing area and the calorific value of various gas sources released in each release cycle; Charge area; determine the calorific value of the natural gas used by the user according to the calorific value of the natural gas in the charge area to which the user belongs.
  • the "target area” mentioned in this application may refer to the area where the user managed by the server is located. Specifically, it can be a geographical division, such as a certain city; or an area under the jurisdiction of a certain gas company; or an area supplied by a certain gas source, etc.
  • the identifier of the charging area in which it is located may be added to the volume collection device on the user side in each charging area. For example, a number is set for each charging area, and the number is stored in association with the identity of the collection device on the user side.
  • the charging area to which it belongs can be determined according to the serial number associated with its identification.
  • the calorific value data of the billing area can be directly obtained, which can be used to measure the energy of the user.
  • the calculation method of the calorific value of the natural gas used by each user or the calorific value of each billing area is also different.
  • the gas source supply structure of one or several cells may be the same, that is to say, the charging area may also be embodied as a geographic aggregation area.
  • the above-mentioned steps S203 and S204 can also realize the energy usage of natural gas by the user in the metering period in another manner, which may specifically include: according to the gas source supply structure corresponding to each user in the target area , divide the users in the target area into multiple billing areas; for each billing area, obtain the total natural gas volume usage in the billing area during the metering period; determine the user's belonging according to the gas source supply structure corresponding to the user According to the billing area to which the user belongs, the total natural gas volume usage during the metering period, the calorific value of the gas source, the volume usage of natural gas within the metering period of each user in the billing area, the The volume usage of natural gas to determine the energy usage of natural gas by the user in the metering cycle.
  • the calorific value of natural gas in the billing area is not calculated separately, but the total natural gas energy in the billing area during the metering period is calculated according to the total natural gas volume usage and gas source calorific value in the billing area to which the user belongs.
  • the proportion of the user's natural gas volume usage in the billing area is used as the proportion of the user's natural gas energy usage in the billing area to determine the user's natural gas energy usage during the metering period.
  • a flow metering device can be installed at the gas inlet of the billing area to measure the total natural gas volume usage in the billing area.
  • the calorific value of natural gas corresponding to the charging area is determined according to the gas source supply structure corresponding to the charging area and the calorific value of various types of gas sources published in each release cycle, It can include: for each billing area, if there is a unique gas source in the billing area that directly supplies natural gas to each user, determining the natural gas calorific value corresponding to the billing area according to the calorific value of the unique gas source published in each release cycle .
  • FIG. 4 is a schematic diagram of a gas source supply structure according to an embodiment of the present application.
  • the air source is fixed, the calorific value is stable, and air is directly and continuously supplied to the user side.
  • the gas composition on the gas source side is always consistent with the gas composition on the user side. Therefore, the calorific value of the gas source is the calorific value of the natural gas used by the user.
  • Users who use the same gas source supply structure can be assigned to the same billing area. Assuming that there are n release cycles in the update cycle, that is, the update cycle is n times the length of the release cycle, the calculation formula of the natural gas calorific value corresponding to the billing area is as follows:
  • H s represents the calorific value of natural gas corresponding to the billing area updated in one update cycle
  • H si represents the calorific value of the gas source released in the ith release cycle in the update cycle.
  • each billing area determine the calorific value of natural gas corresponding to the billing area according to the gas source supply structure corresponding to the billing area and the calorific value of various gas sources released in each release cycle, which may include: for each billing area If there are at least two gas sources in the billing area that alternately supply natural gas to each user, the determination is based on the respective gas supply time of the at least two gas sources and the calorific value of the at least two gas sources published in each release cycle. The calorific value of natural gas corresponding to the billing area.
  • FIG. 5 is a schematic diagram of another gas source supply structure provided by an embodiment of the present application.
  • there are two gas supply gas sources and the gas flows in the same direction.
  • a certain gas source is used to separately supply gas to the user side, and each gas source is switched between different time periods.
  • the gas composition of the gas source supplied by the gas source side is always consistent with the gas composition of the user side. Therefore, the calorific value of natural gas used on the user side is related to the calorific value of each gas source on the gas source side and the gas supply time. Users who use the same gas source supply structure can be assigned to the same billing area.
  • H s represents the calorific value of natural gas corresponding to the charging area updated in one update cycle
  • H 1si represents the gas source 1 released in the ith release cycle in the update cycle
  • the calorific value of , H 2sj represents the calorific value of the gas source 2 released in the jth release cycle in the update cycle.
  • the update period is less than the release period, and the update period can be determined according to the specific period length within which gas supply time period of the gas source falls. If a certain update period falls within the gas supply time period of the gas source 1, the calorific value of the natural gas corresponding to the billing area in the update period is the calorific value of the gas source 1 in this period of time.
  • the calorific value corresponding to the gas usage can be more accurately intercepted according to the usage time of natural gas and the supply time of each gas source.
  • the calorific value of natural gas corresponding to the charging area is determined according to the gas source supply structure corresponding to the charging area and the calorific value of various types of gas sources published in each release cycle. , which may include: for each billing area, if a part of gas from at least two gas sources in the billing area jointly supplies natural gas to each user, and another part of gas from at least two gas sources supplies other billing areas separately, Then obtain the volume usage of each other billing area supplied by another part of the gas supplied by the at least two gas sources; according to the volume usage of each other billing area supplied by the other part of the gas supplied by the at least two gas sources, release each release cycle The calorific value of at least two gas sources is determined, and the calorific value of natural gas corresponding to the billing area is determined.
  • FIG. 6 is a schematic diagram of another gas source supply structure according to an embodiment of the present application.
  • gas supply sources 1 and 2 respectively
  • gases of different quantities and qualities are transmitted to each billing area (4, 5, 6, 7), and in the charging area 6
  • the entrances converge to supply gas to the billing area 6 together.
  • the structure of the gas source in the billing areas 4, 5, and 7 is similar to that in FIG. 3 .
  • the billing area 6 is equivalent to two gas sources supplying gas to the user side at the same time, but the gas supply volume is not necessarily the same.
  • H s represents the calorific value of natural gas corresponding to the charging area updated in one update cycle
  • E represents the natural gas flowing through the charging area 6 in one update cycle.
  • Energy Q 6 represents the volume of gas flowing through the billing area 6 in one update cycle
  • Q 61 represents the volume of gas input to the billing area 6 by the gas source 1
  • Q 62 represents the gas input from the gas source 2 to the billing area 6 Volume
  • Q 1 represents the volume of gas output by gas source 1 in one update cycle
  • Q 2 represents the volume of gas output by gas source 2 in one update cycle
  • Q 4 represents the volume of gas input from gas source 1 to billing area 4
  • Q 5 represents the volume of gas input from the gas source 1 to the billing area 5
  • Q 7 represents the volume of the gas input from the gas source 2 to the billing area 7
  • H 1si represents the ith release cycle in the update cycle.
  • the calorific value of air source 1, H 2sj represents the calorific value of air source 2 released in the jth release cycle in
  • Q 4 , Q 5 , and Q 7 can be obtained through the flow meter set at the entrance of each charging area.
  • Q 6 can also be obtained by a flow meter provided at the entrance of the billing area 6 .
  • the calorific value of natural gas can be more accurate.
  • the calorific value of natural gas corresponding to the charging area is determined according to the gas source supply structure corresponding to the charging area and the calorific value of various types of gas sources published in each release cycle. , which may include: for each billing area, if there are at least two gas sources in the billing area that jointly supply natural gas to each user, obtaining the delivery volume of at least two gas sources in the metering period; according to at least two gas sources in the metering period The delivery volume of the gas source and the calorific value of at least two gas sources published in each release cycle determine the calorific value of the natural gas corresponding to the billing area.
  • the delivery volume of the gas source can be measured by the gas source volume acquisition module set on the gas source side, and the volume data is uploaded to the server according to the volume upload cycle.
  • the volume upload period can be 1 hour, 1 day, etc.
  • the standard volume of the gas source can be determined based on the working volume measured by the medium and high pressure flow meters, the temperature in the gas pipeline collected by the temperature detection device, and the pressure in the gas pipeline collected by the pressure detection device.
  • FIG. 7 is a schematic diagram of another gas source supply structure according to an embodiment of the present application.
  • there are two gas supply gas sources the gas flows in the same direction, and they jointly supply gas to the user side.
  • the mixed gas composition of the two gas sources supplied on the gas source side is always consistent with the gas composition on the user side.
  • Users who adopt the same gas supply structure can be assigned to the same charging area. Assuming that there are n release periods of gas source 1 and m release periods of gas source 2 in the volume upload period, that is, the volume upload period is n times the length of the release period of gas source 1 and m times the length of the release period of gas source 2,
  • the formula for calculating the calorific value of natural gas corresponding to the billing area is as follows:
  • H s represents the calorific value of natural gas corresponding to the charging area updated in one update cycle
  • E represents the natural gas energy flowing through the charging area in one update cycle
  • H 1si represents the calorific value of the gas source 1 released in the ith release cycle in the update cycle
  • H 2sj represents the calorific value of the gas source 2 released in the jth release cycle in the update cycle
  • Q 1 represents in one update cycle
  • Q 2 represents the volume of the gas output by the gas source 2 in one update cycle.
  • the calculation formula of the natural gas calorific value corresponding to the billing area is as follows:
  • the natural gas supplied to each user after mixing natural gas from different gas sources may not be completely uniform.
  • the above method is directly adopted, and the average calorific value of the billing area is used as the natural gas calorific value used by the user, and the error is small.
  • some billing areas may have large industrial users (eg power plants, steel mills, etc.). These large industrial users have large natural gas consumption and may have a large impact on the average calorific value of the entire billing area, so they can be handled separately.
  • the above method further includes: determining whether there is an industrial user in the charging area; if there is an industrial user in the charging area, obtaining the natural gas energy of the industrial user in the metering period Usage amount; for each billing area, determine the calorific value of natural gas corresponding to the billing area according to the gas source supply structure corresponding to the billing area and the calorific value of various gas sources released in each release cycle, including: In each billing area, if there are industrial users in the billing area, the natural gas energy consumption in the billing area is determined according to the natural gas energy consumption of the industrial users in the metering period and the calorific value of various gas sources released in each release period. Calorific value.
  • the detected calorific value and volume usage can be uploaded to the server.
  • the server can determine the natural gas energy consumption of industrial users in the measurement period according to the average daily volume usage of natural gas and the calorific value of natural gas in the measurement period, and then determine the natural gas consumption of other ordinary users in the billing area in the measurement period. Energy usage, calorific value of natural gas in the billing zone.
  • the calorific value of natural gas in the billing area refers to the average calorific value of natural gas used by ordinary users other than industrial users.
  • the calculation formula of the calorific value of other ordinary users in the charging area 6 is as follows:
  • Q k represents the daily cumulative gas consumption of industrial user k
  • H k represents the daily average calorific value of industrial user k.
  • the calculation method of the calorific value of other users in the charging area is as follows:
  • Q k represents the daily cumulative gas consumption of industrial user k
  • H k represents the daily average calorific value of industrial user k.
  • obtaining the energy usage of natural gas by industrial users in the metering period may include: acquiring the daily average volume usage of natural gas and the calorific value of natural gas within the metering period of industrial users; The energy consumption of natural gas and the calorific value of natural gas are determined to determine the energy consumption of natural gas by industrial users during the measurement period.
  • the calorific value acquisition equipment installed by industrial users can collect the daily average calorific value and gas consumption of industrial users to calculate the energy consumption of industrial users.
  • the assigned calorific value of may be an on-line gas chromatograph (TGC) and the like.
  • FIG. 8 is a schematic structural diagram of an energy metering device according to an embodiment of the present application.
  • the energy metering device 800 provided in this embodiment may include: an acquisition module 801, a determination module 802, and a processing module 803.
  • an acquisition module 801 configured to acquire the volume usage of natural gas by the user in the metering period
  • a determination module 802 configured to determine the calorific value of various types of gas sources released in each release cycle in the metering cycle
  • the processing module 803 is used to determine the calorific value of the natural gas used by the user according to the gas source supply structure corresponding to the user and the calorific value of various gas sources released in each release cycle; the gas source supply structure is used to indicate the gas source used by the user.
  • the type and quantity of natural gas sources, and the gas supply method; the user's natural gas energy consumption in the measurement period is determined according to the user's volume usage of natural gas in the measurement period and the calorific value of the natural gas used by the user.
  • the device 800 further includes: a partition module 804, configured to divide the users in the target area into multiple charging areas according to the gas source supply structure corresponding to each user in the target area;
  • the source supply structure is the same.
  • the processing module 803 determines the calorific value of the natural gas used by the user according to the gas source supply structure corresponding to the user and the calorific value of various gas sources published in each release cycle, it is specifically used for:
  • For each billing area determine the calorific value of natural gas corresponding to the billing area according to the gas source supply structure corresponding to the billing area and the calorific value of various gas sources released in each release cycle;
  • the gas supply structure corresponding to the user determine the billing area to which the user belongs;
  • the calorific value of the natural gas used by the user is determined according to the calorific value of the natural gas in the billing area to which the user belongs.
  • the processing module 803 determines the calorific value of natural gas corresponding to the charging area according to the gas source supply structure corresponding to the charging area and the calorific value of various types of gas sources published in each release cycle. , specifically for:
  • the calorific value of natural gas corresponding to the billing area is determined according to the calorific value of the unique gas source published in each release cycle.
  • the processing module 803 determines the calorific value of natural gas corresponding to the charging area according to the gas source supply structure corresponding to the charging area and the calorific value of various types of gas sources published in each release cycle. , specifically for:
  • the at least two gas sources released in each release cycle will be based on the gas supply time of the at least two gas sources. Calculate the calorific value of natural gas corresponding to the billing area.
  • the processing module 803 determines the calorific value of natural gas corresponding to the charging area according to the gas source supply structure corresponding to the charging area and the calorific value of various types of gas sources published in each release cycle. , specifically for:
  • each billing area if there are at least two gas sources in the billing area that jointly supply natural gas to each user, obtain the delivery volume of at least two gas sources in the metering period;
  • the calorific value of the natural gas corresponding to the billing area is determined according to the delivery volume of the at least two gas sources in the metering period and the calorific value of the at least two gas sources published in each release period.
  • the processing module 803 determines the calorific value of natural gas corresponding to the charging area according to the gas source supply structure corresponding to the charging area and the calorific value of various types of gas sources published in each release cycle. , specifically for:
  • each billing area if a part of the gas from at least two gas sources in the billing area jointly supplies natural gas to each user, and the other part of the gas from at least two gas sources supplies other billing areas independently, obtain at least two gas sources.
  • the calorific value of natural gas corresponding to the billing area is determined according to the volume usage of other billing areas supplied by another part of the gas from the at least two gas sources, and the calorific value of the at least two gas sources released in each release cycle.
  • the processing module 803 determines the calorific value of the natural gas corresponding to the charging area, it is also used for:
  • the processing module 803 determines the calorific value of natural gas corresponding to the charging area according to the gas source supply structure corresponding to the charging area and the calorific value of various types of gas sources published in each release cycle, specifically: Used for:
  • the natural gas in the billing area is determined according to the natural gas energy consumption of the industrial users in the metering period and the calorific value of various gas sources released in each release period. calorific value.
  • the processing module 803 acquires the natural gas energy usage of the industrial user in the metering period, it is specifically used for:
  • the natural gas energy consumption of industrial users in the measurement period is determined.
  • the device provided in this embodiment can be used to execute the energy metering method in the above-mentioned embodiment, and achieve the same technical effect, which will not be repeated here.
  • FIG. 9 is a schematic structural diagram of an energy metering device according to an embodiment of the present application.
  • the energy metering device 900 in this embodiment may include: a memory 901 and a processor 902 .
  • the memory 901 is used to store program instructions.
  • the processor 902 is configured to call and execute the program instructions in the memory 901 to execute the above-mentioned energy metering method.
  • the energy metering device of this embodiment can be used to execute the method of any one of the foregoing embodiments, and the implementation principle and technical effect thereof are similar, and are not repeated here.
  • the present application also provides a computer-readable storage medium, where a computer program is stored in the storage medium, and when the computer program is executed by a processor, the method in any of the foregoing embodiments is implemented.
  • FIG. 10 is a schematic structural diagram of an energy metering system according to an embodiment of the application.
  • the energy metering system 100 of the present application includes: a gas metering device 102 on the user side connected to the energy metering device 101 respectively. , a calorific value detection device 103 located on the gas source side;
  • the gas metering device 102 is used to measure the volume usage of natural gas at the user end;
  • the calorific value detection device 103 is used to detect the calorific value of the gas source
  • the energy metering device 101 can be used to execute the above-mentioned energy metering method, receive and store the volume usage of natural gas at the user end sent by the gas metering device 102 , receive the gas source calorific value sent by the calorific value detection device 103 , and calculate according to the settlement time of each terminal meter. Perform energy settlement.
  • the above system may further include a gas source volume acquisition device 104 located on the gas source side to send the gas source volume to the energy metering device 101 .
  • the above system may further include a calorific value collecting device 105 located at the entrance of the charging area, and sending the calorific value data and volume usage of the charging area to the energy metering device 101 .
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the above-mentioned integrated modules implemented in the form of software functional modules may be stored in a computer-readable storage medium.
  • the above-mentioned software function modules are stored in a storage medium, and include several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute some steps of the methods described in various embodiments of the present invention.
  • processor may be a central processing unit (Central Processing Unit, referred to as CPU), or other general-purpose processors, digital signal processors (Digital Signal Processor, referred to as DSP), application specific integrated circuit (Application Specific Integrated Circuit, Referred to as ASIC) and so on.
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the invention can be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may include high-speed RAM memory, and may also include non-volatile storage NVM, such as at least one magnetic disk memory, and may also be a U disk, a removable hard disk, a read-only memory, a magnetic disk or an optical disk, and the like.
  • NVM non-volatile storage
  • the above-mentioned storage medium may be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Except programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable except programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium may be located in Application Specific Integrated Circuits (ASIC for short).
  • ASIC Application Specific Integrated Circuits
  • the processor and the storage medium may also exist in the electronic device or the host device as discrete components.
  • the aforementioned program can be stored in a computer-readable storage medium.
  • the steps including the above method embodiments are executed; and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Development Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Human Resources & Organizations (AREA)
  • Public Health (AREA)
  • Primary Health Care (AREA)
  • Tourism & Hospitality (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Measuring Volume Flow (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

本申请提供一种能量计量方法、装置、设备、系统和存储介质。该能量计量方法包括:获取用户在计量周期内的天然气的体积使用量;确定计量周期内每个发布周期发布的各类气源的热值;根据所述用户对应的气源供应结构、所述每个发布周期发布的各类气源的热值,确定所述用户所使用的天然气的热值;所述气源供应结构用于指示所述用户所使用的天然气的气源的种类、数量,以及供气方式;根据所述用户在计量周期内的天然气的体积使用量、所述用户所使用的天然气的热值,确定所述用户在计量周期内的天然气能量使用量。确定用户对应的气源供应结构,可以根据各气源的热值确定用户使用的天然气的热值,再根据用户的天然气体积使用量,即可得到能量使用量。

Description

能量计量方法、装置、设备、系统和存储介质
本申请要求于2020年11月13日提交中国专利局、申请号为202011269765.7、申请名称为“能量计量方法、装置、设备、系统和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及数据处理技术,尤其涉及一种能量计量方法、装置、设备、系统和存储介质。
背景技术
天然气是日常生活中的重要能源之一。传统的天然气计价方式是以使用体积进行计价。实际上,天然气的气源种类有很多,其成分不同,热值也不相同。这种按体积计价的方式对用户来说并不公平。
因而,相关部门也制定了相关的管理办法调整计价方式。明确建立天然气能量计量计价体系,要求门站等天然气批发环节以热量作为贸易结算依据。
不过,目前针对终端用户依旧使用体积结算。上下游不同的结算方式可能造成天燃气输差,增加燃气公司的管理难度,同时对终端燃气用户来说也有失计量公平。
发明内容
本申请提供一种能量计量方法、装置、设备、系统和存储介质。实现用户端使用的天然气的能量计量,以减少天然气输差。
第一方面,本申请提供一种能量计量方法,包括:
获取用户在计量周期内的天然气的体积使用量;
确定计量周期内每个发布周期发布的各类气源的热值;
根据所述用户对应的气源供应结构、所述每个发布周期发布的各类气源的热值,确定所述用户所使用的天然气的热值;所述气源供应结构用于指示 所述用户所使用的天然气的气源的种类、数量,以及供气方式;
根据所述用户在计量周期内的天然气的体积使用量、所述用户所使用的天然气的热值,确定所述用户在计量周期内的天然气能量使用量。
可选的,所述方法还包括:
根据目标区域中各用户对应的气源供应结构,将所述目标区域中的用户划分为多个计费区;每个所述计费区中的气源供应结构相同;
所述根据所述用户对应的气源供应结构、所述每个发布周期发布的各类气源的热值,确定所述用户所使用的天然气的热值,包括:
针对每个所述计费区,根据所述计费区对应的气源供应结构、每个发布周期发布的各类气源的热值,确定所述计费区对应的天然气热值;
根据所述用户对应的气源供应结构,确定所述用户所属的计费区;
根据所述用户所属的计费区的天然气热值,确定所述用户所使用的天然气的热值。
可选的,所述针对每个所述计费区,根据所述计费区对应的气源供应结构、每个发布周期发布的各类气源的热值,确定所述计费区对应的天然气热值,包括:
针对每个所述计费区,若所述计费区内有唯一气源向各用户直接供应天然气,则根据每个发布周期发布的所述唯一气源的热值,确定所述计费区对应的天然气热值。
可选的,所述针对每个所述计费区,根据所述计费区对应的气源供应结构、每个发布周期发布的各类气源的热值,确定所述计费区对应的天然气热值,包括:
针对每个所述计费区,若所述计费区内有至少两个气源交替向各用户直接供应天然气,则根据所述至少两个气源各自的供气时间、每个发布周期发布的所述至少两个气源的热值,确定所述计费区对应的天然气热值。
可选的,所述针对每个所述计费区,根据所述计费区对应的气源供应结构、每个发布周期发布的各类气源的热值,确定所述计费区对应的天然气热值,包括:
针对每个所述计费区,若所述计费区内有至少两个气源共同向各用户供应天然气,则获取计量周期内所述至少两个气源的输送体积;
根据计量周期内所述至少两个气源的输送体积、每个发布周期发布的所述至少两个气源的热值,确定所述计费区对应的天然气热值。
可选的,所述针对每个所述计费区,根据所述计费区对应的气源供应结构、每个发布周期发布的各类气源的热值,确定所述计费区对应的天然气热值,包括:
针对每个所述计费区,若所述计费区内有至少两个气源的一部分气体共同向各用户供应天然气,且所述至少两个气源的另一部分气体各自单独供应其它计费区,则获取所述至少两个气源的另一部分气体供应的其它各计费区的体积使用量;
根据所述至少两个气源的另一部分气体供应的其它各计费区的体积使用量、每个发布周期发布的所述至少两个气源的热值,确定所述计费区对应的天然气热值。
可选的,在确定所述计费区对应的天然气热值之前,所述方法还包括:
确定所述计费区内是否存在工业用户;
若所述计费区内存在工业用户,则获取所述工业用户在计量周期内的天然气能量使用量;
所述针对每个所述计费区,根据所述计费区对应的气源供应结构、每个发布周期发布的各类气源的热值,确定所述计费区对应的天然气热值,包括:
针对每个所述计费区,若所述计费区内存在工业用户,则根据所述工业用户在计量周期内的天然气能量使用量、每个发布周期发布的所述各类气源的热值,确定所述计费区的天然气的热值。
可选的,所述获取所述工业用户在计量周期内的天然气能量使用量,包括:
获取工业用户在计量周期内的天然气日均体积使用量、天然气热值;
根据所述计量周期内的天然气日均体积使用量、天然气热值,确定所述工业用户在计量周期内的天然气能量使用量。
第二方面,本申请提供一种能量计量装置,包括:
获取模块,用于获取用户在计量周期内的天然气的体积使用量;
确定模块,用于确定计量周期内每个发布周期发布的各类气源的热值;
处理模块,用于根据所述用户对应的气源供应结构、所述每个发布周期 发布的各类气源的热值,确定所述用户所使用的天然气的热值;所述气源供应结构用于指示所述用户所使用的天然气的气源的种类、数量,以及供气方式;根据所述用户在计量周期内的天然气的体积使用量、所述用户所使用的天然气的热值,确定所述用户在计量周期内的天然气能量使用量。
第三方面,本申请提供一种能量计量设备,包括:存储器,用于存储程序指令;处理器,用于调用并执行所述存储器中的程序指令,执行第一方面所述的方法。
第四方面,本申请提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时,实现如上任一项所述的方法。
第五方面,本申请提供一种程序产品,所述程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,电子设备的处理器可以从所述可读存储介质读取所述计算机程序,所述处理器执行所述计算机程序使得电子设备实施如第一方面所述的方法。
第六方面,本申请提供一种能量计量系统,包括:分别与能量计量装置相连的位于用户侧的燃气计量装置、位于气源侧的热值检测装置;
所述燃气计量装置,用于计量用户端的天然气的体积使用量;
所述热值检测装置,用于检测气源的热值;
所述能量计量装置可用于执行如第一方面所述的能量计量方法。
本申请提供了一种能量计量方法、装置、设备、系统和存储介质。该能量计量方法,包括:获取用户在计量周期内的天然气的体积使用量;确定计量周期内每个发布周期发布的各类气源的热值;根据所述用户对应的气源供应结构、所述每个发布周期发布的各类气源的热值,确定所述用户所使用的天然气的热值;所述气源供应结构用于指示所述用户所使用的天然气的气源的种类、数量,以及供气方式;根据所述用户在计量周期内的天然气的体积使用量、所述用户所使用的天然气的热值,确定所述用户在计量周期内的天然气能量使用量。根据用户对应的气源供应结构,可以确定用户使用的天然气对应的气源的构成方式,进而可以根据各气源的热值确定用户使用的天然气的热值,再根据用户的天然气体积使用量,即可得到能量使用量。如此,即可实现用户端使用的天然气的能量计量。实现上下游计费方式的统一,可以减少天然气输差。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的一种应用场景的示意图;
图2为本申请一实施例提供的一种能量计量方法的流程图;
图3为本申请一实施例提供的服务器侧从用户侧获取天然气体积使用量相关数据的流程示意图;
图4为本申请一实施例提供的一种气源供应结构的示意图;
图5为本申请一实施例提供的另一种气源供应结构的示意图;
图6为本申请一实施例提供的另一种气源供应结构的示意图;
图7为本申请一实施例提供的另一种气源供应结构的示意图;
图8为本申请一实施例提供的一种能量计量装置的结构示意图;
图9为本申请一实施例提供的一种能量计量设备的结构示意图;
图10为本申请一实施例提供的一种能量计量系统的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
天然气的计量方式一般有体积计量、质量计量、能量计量三种。其中,质量计量一般用于压缩天然气的计量。美洲、欧洲、中东和亚洲的大多数国家都是采用能量计量的方式,国内目前还是以体积计量为主。但是,考虑到国际天然气贸易对外接轨的需要,同时也为实现交易公平,体积计量向能量计量的转化也逐步在国内推进。首先提出变更的是上游的批发环节,批发环节的计价方式变更,必定会将计价的不公平推到用户端。
而要实现用户端燃气计价方式的变更也面临着很多困难,其中燃气热值的精准测量就是一大难点。而要将燃气热值测量功能加入在用户端实现则更为困难,故当前终端用户使用的燃气表仍是通过计量燃气体积量进行计价的。即使可以实现能量计量的表具被研发出来,大批量的表具生产和更换也需要很长的周期。在这期间,终端用户的结算方式也需要得到改进。
因此,本申请提出一种适用于天然气的能量计量方法、装置、设备和存储介质。依旧沿用现有的表具,正常采集和上报用户端的体积使用量。而将能量计量的过程设置在服务器侧,根据每个用户对应的气源供应结构,计算其使用的天然气的热值,再结合燃气表上报的体积使用量,最终确定能量使用量,以实现能量计量。
图1为本申请提供的一种应用场景的示意图。如图1所示,在某个区域中,仅有一个气源(图1中的气源1)直接向该区域内的用户提供天然气。连接在气源侧的气源热值检测装置检测气源输出的天然气的热值,并按上传规则上传至服务器;连接在用户侧燃气管道上的终端燃气计量器具检测用户的天然气体积使用量,并按上传规则上传至服务器。气源侧的天然气热值即为用户侧的天然气热值,因而,服务器可以根据气源侧的天然气热值和用户的天然气体积使用量计算出用户的天然气能领使用量。作为示例,图1的场景仅体现了其中一种供气方式,更多的实现方式将在下文中进行说明。
本申请的具体实现方式可以参考以下各实施例。
图2为本申请一实施例提供的一种能量计量方法的流程图。本实施例的方法的执行主体可以为服务器等终端设备。如图2所示,本实施例的方法可以包括:
S201、获取用户在计量周期内的天然气的体积使用量。
在本申请中,“计量周期”指的是对用户使用的天然气进行能量使用量计算的周期,可以为一天、一周、一个月等。周期的长度、起止的具体时刻可以根据实际场景来决定,也可以根据实际情况进行调整。
本实施例的方法的执行主体服务器所获取的体积使用量数据可以是由用户侧的燃气体积量采集装置采集,并直接或间接发送的。服务器获取相关数据后可以对数据进行解析和保存。
用户侧的燃气体积量采集装置,可以为民用燃气表、工商业燃气表、工 商业流量计等。民用表可以为普通皮膜表、IC卡表、微功率无线表、物联网表、NB-IoT表等燃气表;工商业燃气表可以为G6至G40的工商业燃气表;工商业流量计可以为DN25至DN200的工商业流量计。
燃气体积量采集装置基于自身的原理计量所对应的用户的燃气使用量,并上传至服务器,上传的信息中可以包含装置对应的设备号、上传周期内的天然气体积使用量或累积的天然气体积使用量等数据。
具备通信功能的表具一般可以自动上传数据,有固定或可调的上传周期;不具备通信功能的燃气表一般没有自动上传的功能,需要人工辅助上传,也有人工辅助上传的周期。因此,这里引入“上传周期”这一概念。与上述的“计量周期”相似的,周期的长度可以为一天、一周、一个月等,起止的具体时刻可以根据实际场景来决定,也可以根据实际情况进行调整。
图3为本申请一实施例提供的服务器侧从用户侧获取天然气体积使用量相关数据的流程示意图。
对于具备通信功能的表具,服务器按照表具的数据上传周期接收无线远程上传的数据,解析出其中的有效数据,并进行存储。
对于基表、IC卡表等不具备通信功能的燃气表,可以采用人工拍照上传的方式,定期向服务器传输体积使用量数据。具体的,可以使用摄像机、智能手机等具有图像采集功能的设备对表具进行拍照、录像等图像采集操作,通过可与服务器通信的终端设备向服务器发送采集的图像或视频数据,以便使服务器对图像或视频数据进行图像处理,以获取其中包含的用户信息(表具信息)天然气体积使用量信息。例如,通过智能手机的终端应用、小程序等将图像数据上传至服务器。服务器从指定接口接收小程序或者终端应用上传的燃气表正面照片,并解析照片中的燃气表号和体积使用量等相关数据,并进行存储。
对于物联网表、NB-Iot表、集中抄读的微功率无线表具等,可以通过专用的集中抄表设备采集天然气体积使用量数据后导入服务器。服务器从指定的数据导入接口导入手持抄表设备的抄表数据,解析出其中的有效数据并进行存储。
需要说明的是,计量周期与上传周期可能是一样的,也可能是不一样的。可以对所有表具采用统一的计量周期,也可以根据上传周期确定计量周期。
例如,对于基表、IC卡表及手持设备集中抄表的表具,可以将上传周期确定为计量周期,设定为一个季度或者2个月等。
又例如,物联网表、NB-Iot表等的计量周期可以设置为一天或多天。
S202、确定计量周期内每个发布周期发布的各类气源的热值。
本实施例的方法的执行主体服务器所获取的气源热值数据可以是由气源侧的气源热值检测装置采集并发送的。服务器获取相关数据后可以对数据进行保存。
具体的,气源热值检测装置可以为官方的监管中心的检测装置,对气源热值数据进行检测和定期的发布。一般,发布的热值数值为发布周期内的平均热值,或者发布周期内的多次检测得到的多个热值数据。
在本申请中,“发布周期”指的是对气源的天然气热值进行发布的周期,可以是一小时或者一天等。发布周期的长度、起止的具体时刻可以根据实际场景来决定。
另外,不同气源的发布周期也可能不同。
S203、根据用户对应的气源供应结构、每个发布周期发布的各类气源的热值,确定用户所使用的天然气的热值。
其中,气源供应结构用于指示用户所使用的天然气的气源的种类、数量,以及供气方式。例如,某个用户由哪几个气源供应天然气;若多个气源供气,供气方式是合并供应还是单独间隔供应等。
可以理解的是,气源不同,其组成成分不同,对应的热值也就不同。不同气源、同样气源的不同供气方式都会影响到用户使用的天然气的成分,故其对应热值也会不同。
确定了用户对应的气源供应结构,即可大致确定用户使用的天然气的成分或各气源成分的配比,再结合各类气源的热值,即可确定用户使用的天然气的热值。
用户所使用的天然气的热值的更新周期可以与气源热值的发布周期一致,即在每个发布周期结束后,获取到气源热值时即执行一次本步骤,确定用户使用的天然气的热值;也可以与发布周期不一致,例如在多个发布周期后才计算一次用户使用的天然气的热值。
S204、根据用户在计量周期内的天然气的体积使用量、用户所使用的天 然气的热值,确定用户在计量周期内的天然气能量使用量。
天然气的能量与体积、热值有稳定的对应关系,可以用公式表示如下:
E=H×Q     (1)
式(1)中,E表示能量,H表示热值,Q表示体积。本申请中其它公式中也将采用此表示方式来指示相应的量,同时采用上标或下标来表示对应量的计量条件。如上述的,计量周期、更新周期、上传周期等分别对应于上述三个量,即每个量都带有计量的时间条件(式(1)中没有体现时间,实际默认是同样时间范围内的量)。
发布周期、更新周期、计量周期、上传周期可能一致也可能不一致,对应的实际算法公式需要考虑时间因素。
本实施例提供的能量计量方法包括:获取用户在计量周期内的天然气的体积使用量;确定计量周期内每个发布周期发布的各类气源的热值;根据用户对应的气源供应结构、每个发布周期发布的各类气源的热值,确定用户所使用的天然气的热值;气源供应结构用于指示用户所使用的天然气的气源的种类、数量,以及供气方式;根据用户在计量周期内的天然气的体积使用量、用户所使用的天然气的热值,确定用户在计量周期内的天然气能量使用量。根据用户对应的气源供应结构,可以确定用户使用的天然气对应的气源的构成方式,进而可以根据各气源的热值确定用户使用的天然气的热值,再根据用户的天然气体积使用量,即可得到能量使用量。如此,即可实现用户端使用的天然气的能量计量。实现上下游计费方式的统一,可以减少天然气输差。
根据上述的分析可以确定,对应相同气源供应结构的用户,使用的天然气的热值相同。基于这一特性,可以将用户按照气源供应结构进行分类,将气源供应结构相同的用户分入同一类,形成抽象的计费区。每次针对每个计费区统一计算使用的天然气的热值并存储,以便对计费区内的用户进行能量计量时使用。这样可以简化服务器中的计算量,提高处理效率。
具体的,可以根据目标区域中各用户对应的气源供应结构,将目标区域中的用户划分为多个计费区。其中,每个计费区中的气源供应结构相同。
相应的,上述的步骤S203根据用户对应的气源供应结构、每个发布周期发布的各类气源的热值,确定用户所使用的天然气的热值,具体可以包括:针对每个计费区,根据计费区对应的气源供应结构、每个发布周期发布的各 类气源的热值,确定计费区对应的天然气热值;根据用户对应的气源供应结构,确定用户所属的计费区;根据用户所属的计费区的天然气热值,确定用户所使用的天然气的热值。
本申请中所说的“目标区域”指的可以是服务器所管理的用户所在的区域。具体可以是地理上的分区,例如某市;或者某个燃气公司所管辖区域;或者某个气源所供应的区域等。
为了便于管理,可以在划分计费区后,针对每个计费区内的用户侧的体积量采集设备增加其所在计费区的标识。例如为每个计费区设定编号,将此编号与用户侧的采集设备的身份标识进行关联存储。
当需要对某个用户进行能量计量时,根据其身份标识关联的编号即可确定其所属计费区。直接获取该计费区的热值数据,即可用于对该用户的能量计量。
根据气源供应结构不同,每个用户使用的天然气的热值或每个计费区的热值的计算方式也有所不同。
可以理解的是,某个或某几个小区的气源供应结构可能是相同的,也就是说计费区也可能体现为地理上的聚集区域。
在另一种实现方式中,上述的步骤S203、S204还可以以另一种方式实现用户在计量周期内的天然气的能量使用量,具体可以包括:根据目标区域中各用户对应的气源供应结构,将目标区域中的用户划分为多个计费区;针对每个计费区,获取该计费区在计量周期内的总天然气体积使用量;根据用户对应的气源供应结构,确定用户所属的计费区;根据用户所属的计费区在计量周期内的总天然气体积使用量、气源热值、计费区内各用户在计量周期内的天然气的体积使用量、用户在计量周期内的天然气的体积使用量,确定用户在计量周期内的天然气的能量使用量。
即,不单独计算计费区内的天然气热值,而根据用户所属的计费区在计量周期内的总天然气体积使用量、气源热值,计算计费区在计量周期内的总天然气能量使用量,利用用户在计费区内的天然气体积使用量的占比作为用户在计费区内的天然气的能量使用量的占比,确定用户在计量周期内的天然气的能量使用量。
具体的,可以通过在计费区的燃气入口处设置流量计量装置,对计费区 的总天然气体积使用量进行计量。
在一些实施例中,上述的针对每个计费区,根据计费区对应的气源供应结构、每个发布周期发布的各类气源的热值,确定计费区对应的天然气热值,可以包括:针对每个计费区,若计费区内有唯一气源向各用户直接供应天然气,则根据每个发布周期发布的唯一气源的热值,确定计费区对应的天然气热值。
图4为本申请一实施例提供的一种气源供应结构的示意图。如图4所示的,供气气源为一个,气源固定,热值稳定,且直接持续向用户侧供气。这种气源供应结构下,气源侧的气体成分与用户侧的气体成分始终一致。因而,气源的热值即为用户侧使用的天然气热值。采用与此相同的气源供应结构的用户即可划入同一计费区。假设在更新周期内有n个发布周期,即更新周期为发布周期长度的n倍,则该计费区对应的天然气热值的计算公式如下:
Figure PCTCN2021128230-appb-000001
式(2)中,H s表示一个更新周期更新的计费区对应的天然气热值,H si表示在更新周期内第i个发布周期发布的气源热值。
针对每个计费区,根据计费区对应的气源供应结构、每个发布周期发布的各类气源的热值,确定计费区对应的天然气热值,可以包括:针对每个计费区,若计费区内有至少两个气源交替向各用户直接供应天然气,则根据至少两个气源各自的供气时间、每个发布周期发布的至少两个气源的热值,确定计费区对应的天然气热值。
图5为本申请一实施例提供的另一种气源供应结构的示意图。如图5所示的,供气气源为两个,气体流向相同,在不同的时间段分别使用某一气源单独向用户侧供气,在不同时段之间对各气源进行切换。这种气源供应结构下,在每个时间段内,气源侧供气的气源的气体成分与用户侧的气体成分始终一致。因而,用户侧使用的天然气热值与气源侧各气源的热值和供气时间相关。采用与此相同的气源供应结构的用户即可划入同一计费区。假设在更新周期内有n个气源1的发布周期、m个气源2的发布周期,即更新周期为气源1发布周期长度的n倍、气源2发布周期长度的m倍,则该计费区对应的天然气热值的计算公式如下:
Figure PCTCN2021128230-appb-000002
式(3)中,m、n均为大于1的数,H s表示一个更新周期更新的计费区对应的天然气热值,H 1si表示在更新周期内第i个发布周期发布的气源1的热值,H 2sj表示在更新周期内第j个发布周期发布的气源2的热值。
若m、n均为小于1的数,则更新周期小于发布周期,则可以根据具体的周期长度,判断更新周期落入哪个气源的供气时间段内。若某个更新周期落入气源1的供气时间段内,则该更新周期内计费区对应的天然气热值为气源1在此时间段内的热值。
或者,当上传周期较短,或可以上传用户天然气使用时间时,则可以根据使用天然气的时间、各气源的供应时间,更为精准的截取使用燃气时对应的热值。
在另一些实施例中,上述的针对每个计费区,根据计费区对应的气源供应结构、每个发布周期发布的各类气源的热值,确定计费区对应的天然气热值,可以包括:针对每个计费区,若计费区内有至少两个气源的一部分气体共同向各用户供应天然气,且至少两个气源的另一部分气体各自单独供应其它计费区,则获取至少两个气源的另一部分气体供应的其它各计费区的体积使用量;根据至少两个气源的另一部分气体供应的其它各计费区的体积使用量、每个发布周期发布的至少两个气源的热值,确定计费区对应的天然气热值。
图6为本申请一实施例提供的另一种气源供应结构的示意图。如图6所示的,供气气源为2个(分别为1和2),不同数量和质量的气体传输至各计费区(4、5、6、7),在计费区6的入口汇聚,共同向计费区6供气。计费区4、5、7的气源结构与图3类似。计费区6相当于2个气源同时向用户侧供气,但供气量不一定相同,假设在更新周期内有n个气源1的发布周期、m个气源2的发布周期,即更新周期为气源1发布周期长度的n倍、气源2发布周期长度的m倍,则计费区6对应的天然气热值的计算公式如下:
H s=E/Q 6     (4)
Figure PCTCN2021128230-appb-000003
Q 61=Q 1-Q 4-Q 5   (6)
Q 62=Q 2-Q 7   (7)
式(4)-(7)中,m、n均为大于1的数,H s表示一个更新周期更新的计费区对应的天然气热值,E表示一个更新周期流经计费区6的天然气能量,Q 6表示一个更新周期流经计费区6的燃气体积量,Q 61表示气源1输入至计费区6的气体体积量,Q 62表示气源2输入至计费区6的气体体积量,Q 1表示一个更新周期内气源1输出的气体体积量,Q 2表示一个更新周期内气源2输出的气体体积量,Q 4表示气源1输入至计费区4的气体体积量,Q 5表示气源1输入至计费区5的气体体积量,Q 7表示气源2输入至计费区7的气体体积量,H 1si表示在更新周期内第i个发布周期发布的气源1的热值,H 2sj表示在更新周期内第j个发布周期发布的气源2的热值。
其中,Q 4、Q 5、Q 7可以通过设置在各计费区入口处的流量计获取。实际上,Q 6也可以通过设置在计费区6的入口处的流量计获取。但是,这样只能获取到总流量,不能确定气源1和气源2的气体的占比,计算得到的热值误差较大。利用上述的方法分别对气源1和气源2的能量进行单独计算再确定总能量,可以使天然气热值更精确。
在另一些实施例中,上述的针对每个计费区,根据计费区对应的气源供应结构、每个发布周期发布的各类气源的热值,确定计费区对应的天然气热值,可以包括:针对每个计费区,若计费区内有至少两个气源共同向各用户供应天然气,则获取计量周期内至少两个气源的输送体积;根据计量周期内至少两个气源的输送体积、每个发布周期发布的至少两个气源的热值,确定计费区对应的天然气热值。
气源的输送体积可以通过设置在气源侧的气源体积量采集模块进行计量,并将体积数据按照体积上传周期上传至服务器。体积上传周期可以是1小时、1天等。
具体的,可以基于中、高压流量计计量的工况体积、温度检测装置采集到的输气管道内的温度、压力检测装置采集到的输气管道内的压力,确定气源的标况体积。
图7为本申请一实施例提供的另一种气源供应结构的示意图。如图7所示的,供气气源为两个,气体流向相同,共同向用户侧供气。这种气源供应结构下,气源侧供气的两气源的混合气体成分与用户侧的气体成分始终一致。采用与此相同的气源供应结构的用户即可划入同一计费区。假设在体积上传 周期内有n个气源1的发布周期、m个气源2的发布周期,即体积上传周期为气源1发布周期长度的n倍、气源2发布周期长度的m倍,则该计费区对应的天然气热值的计算公式如下:
H s=E/(Q 1+Q 2)      (8)
Figure PCTCN2021128230-appb-000004
式(8)-(9)中,m、n均为大于1的数,H s表示一个更新周期更新的计费区对应的天然气热值,E表示一个更新周期流经计费区的天然气能量,H 1si表示在更新周期内第i个发布周期发布的气源1的热值,H 2sj表示在更新周期内第j个发布周期发布的气源2的热值,Q 1表示一个更新周期内气源1输出的气体体积量,Q 2表示一个更新周期内气源2输出的气体体积量。
假设气源1的体积上传周期与发布周期相同,且气源2的体积上传周期与发布周期相同,且长度均小于计量周期的长度,则该计费区对应的天然气热值的计算公式如下:
H s=E/(Q 1+Q 2)     (10)
Figure PCTCN2021128230-appb-000005
由于气体的特性,其密度较小,流动性强。因而,不同气源的天然气混合后供应到各用户的天然气不一定完全均匀。对于普通家庭用户来说,因为天然气用量较小,直接采用上述的方法,以计费区的平均热值作为用户使用的天然气热值,误差较小。然而,某些计费区内可能会有大型的工业用户(例如电厂、钢铁厂等)。这些大型工业用户的天然气用量较大,可能对整个计费区的平均热值影响较大,因此可以单独处理。
对应的在确定计费区对应的天然气热值之前,上述的方法还包括:确定计费区内是否存在工业用户;若计费区内存在工业用户,则获取工业用户在计量周期内的天然气能量使用量;针对每个计费区,根据该计费区对应的气源供应结构、每个发布周期发布的各类气源的热值,确定该计费区对应的天然气热值,包括:针对每个计费区,若计费区内存在工业用户,则根据工业用户在计量周期内的天然气能量使用量、每个发布周期发布的各类气源的热值,确定计费区的天然气的热值。
一般,工业用户会使用热值采集设备对使用的天然气的热值、体积使用 量等进行分析检测。与普通用户的表具类似的,检测的热值和体积使用量可以上传到服务器。服务器则可以根据工业用户在计量周期内的天然气日均体积使用量、天然气热值,确定工业用户在计量周期内的天然气能量使用量,进而确定计费区内其它普通用户在计量周期内的天然气能量使用量、计费区的天然气的热值。在这里,计费区的天然气热值指的是工业用户以外的普通用户使用的天然气的平均热值。
具体的,对于图6对应的实施例,如果计费区6内存在工业用户,且安装了热值采集设备,则计费区6内其他普通用户的热值计算公式如下:
Figure PCTCN2021128230-appb-000006
Figure PCTCN2021128230-appb-000007
式(12)-(13)中,Q k表示工业用户k的日累积用气量,H k表示工业用户k的日平均热值。
而对于图7对应的实施例,如果计费区内存在工业用户,且安装了热值采集设备,则计费区内其他用户的热值计算方法如下:
Figure PCTCN2021128230-appb-000008
Figure PCTCN2021128230-appb-000009
式(14)-(15)中,Q k表示工业用户k的日累积用气量,H k表示工业用户k的日平均热值。
具体的,上述的获取工业用户在计量周期内的天然气能量使用量,可以包括:获取工业用户在计量周期内的天然气日均体积使用量、天然气热值;根据计量周期内的天然气日均体积使用量、天然气热值,确定工业用户在计量周期内的天然气能量使用量。
工业用户安装的热值采集设备,可以采集到工业用户的日平均热值和用气量,用以计算工业用户的能量消耗,对于使用混气的计费区,可以更精准计费区内其他表具的赋值热值。其中,对于大型钢铁厂、发电厂等工业用户,安装的热值采集设备可以为在线气相色谱分析仪(TGC)等。
图8为本申请一实施例提供的一种能量计量装置的结构示意图。如图8所示的,本实施例提供的能量计量装置800可以包括:获取模块801、确定 模块802、处理模块803。
获取模块801,用于获取用户在计量周期内的天然气的体积使用量;
确定模块802,用于确定计量周期内每个发布周期发布的各类气源的热值;
处理模块803,用于根据用户对应的气源供应结构、每个发布周期发布的各类气源的热值,确定用户所使用的天然气的热值;气源供应结构用于指示用户所使用的天然气的气源的种类、数量,以及供气方式;根据用户在计量周期内的天然气的体积使用量、用户所使用的天然气的热值,确定用户在计量周期内的天然气能量使用量。
可选的,装置800还包括:分区模块804,用于根据目标区域中各用户对应的气源供应结构,将目标区域中的用户划分为多个计费区;每个计费区中的气源供应结构相同。
处理模块803在根据用户对应的气源供应结构、每个发布周期发布的各类气源的热值,确定用户所使用的天然气的热值时,具体用于:
针对每个计费区,根据计费区对应的气源供应结构、每个发布周期发布的各类气源的热值,确定计费区对应的天然气热值;
根据用户对应的气源供应结构,确定用户所属的计费区;
根据用户所属的计费区的天然气热值,确定用户所使用的天然气的热值。
可选的,处理模块803在针对每个计费区,根据计费区对应的气源供应结构、每个发布周期发布的各类气源的热值,确定计费区对应的天然气热值时,具体用于:
针对每个计费区,若计费区内有唯一气源向各用户直接供应天然气,则根据每个发布周期发布的唯一气源的热值,确定计费区对应的天然气热值。
可选的,处理模块803在针对每个计费区,根据计费区对应的气源供应结构、每个发布周期发布的各类气源的热值,确定计费区对应的天然气热值时,具体用于:
针对每个计费区,若计费区内有至少两个气源交替向各用户直接供应天然气,则根据至少两个气源各自的供气时间、每个发布周期发布的至少两个气源的热值,确定计费区对应的天然气热值。
可选的,处理模块803在针对每个计费区,根据计费区对应的气源供应 结构、每个发布周期发布的各类气源的热值,确定计费区对应的天然气热值时,具体用于:
针对每个计费区,若计费区内有至少两个气源共同向各用户供应天然气,则获取计量周期内至少两个气源的输送体积;
根据计量周期内至少两个气源的输送体积、每个发布周期发布的至少两个气源的热值,确定计费区对应的天然气热值。
可选的,处理模块803在针对每个计费区,根据计费区对应的气源供应结构、每个发布周期发布的各类气源的热值,确定计费区对应的天然气热值时,具体用于:
针对每个计费区,若计费区内有至少两个气源的一部分气体共同向各用户供应天然气,且至少两个气源的另一部分气体各自单独供应其它计费区,则获取至少两个气源的另一部分气体供应的其它各计费区的体积使用量;
根据至少两个气源的另一部分气体供应的其它各计费区的体积使用量、每个发布周期发布的至少两个气源的热值,确定计费区对应的天然气热值。
可选的,在处理模块803确定计费区对应的天然气热值之前,还用于:
确定计费区内是否存在工业用户;
若计费区内存在工业用户,则获取工业用户在计量周期内的天然气能量使用量;
处理模块803在针对每个计费区,根据该计费区对应的气源供应结构、每个发布周期发布的各类气源的热值,确定该计费区对应的天然气热值时,具体用于:
针对每个计费区,若计费区内存在工业用户,则根据工业用户在计量周期内的天然气能量使用量、每个发布周期发布的各类气源的热值,确定计费区的天然气的热值。
可选的,处理模块803在获取工业用户在计量周期内的天然气能量使用量时,具体用于:
获取工业用户在计量周期内的天然气日均体积使用量、天然气热值;
根据计量周期内的天然气日均体积使用量、天然气热值,确定工业用户在计量周期内的天然气能量使用量。
本实施例提供的装置,可用于执行上述实施例中的能量计量方法,达到 相同的技术效果,此处不再赘述。
图9为本申请一实施例提供的一种能量计量设备的结构示意图,如图9所示,本实施例的能量计量设备900可以包括:存储器901、处理器902。
存储器901,用于存储程序指令。
处理器902,用于调用并执行存储器901中的程序指令,执行上述的能量计量方法。
本实施例的能量计量设备,可以用于执行上述任一实施例的方法,其实现原理和技术效果类似,此处不再赘述。
本申请还提供了一种计算机可读存储介质,存储介质存储有计算机程序,计算机程序被处理器执行时,实现如上任一实施例的方法。
图10为本申请一实施例提供的一种能量计量系统的结构示意图,如图10所示,本申请的能量计量系统100包括:分别与能量计量装置101相连的位于用户侧的燃气计量装置102、位于气源侧的热值检测装置103;
燃气计量装置102,用于计量用户端的天然气的体积使用量;
热值检测装置103,用于检测气源的热值;
能量计量装置101可用于执行上述的能量计量方法,接收并存储燃气计量装置102发送的用户端的天然气的体积使用量,接收热值检测装置103发送的气源热值,按照各终端表具的结算时间进行能量结算。
上述系统还可以包括位于气源侧的气源体积量采集装置104,向能量计量装置101发送气源体积量。
上述系统还可以包括位于计费区入口处的热值采集装置105,向能量计量装置101发送该计费区的热值数据和体积使用量。
在本发明所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
上述以软件功能模块的形式实现的集成的模块,可以存储在一个计算机可读取存储介质中。上述软件功能模块存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等) 或处理器执行本发明各个实施例所述方法的部分步骤。
应理解,上述处理器可以是中央处理单元(Central Processing Unit,简称CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合发明所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
存储器可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器,还可以为U盘、移动硬盘、只读存储器、磁盘或光盘等。
上述存储介质可以是由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。存储介质可以是通用或专用计算机能够存取的任何可用介质。
一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于专用集成电路(Application Specific Integrated Circuits,简称ASIC)中。当然,处理器和存储介质也可以作为分立组件存在于电子设备或主控设备中。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而 前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (12)

  1. 一种能量计量方法,其特征在于,包括:
    获取用户在计量周期内的天然气的体积使用量;
    确定计量周期内每个发布周期发布的各类气源的热值;
    根据所述用户对应的气源供应结构、所述每个发布周期发布的各类气源的热值,确定所述用户所使用的天然气的热值;所述气源供应结构用于指示所述用户所使用的天然气的气源的种类、数量,以及供气方式;
    根据所述用户在计量周期内的天然气的体积使用量、所述用户所使用的天然气的热值,确定所述用户在计量周期内的天然气能量使用量。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    根据目标区域中各用户对应的气源供应结构,将所述目标区域中的用户划分为多个计费区;每个所述计费区中的气源供应结构相同;
    所述根据所述用户对应的气源供应结构、所述每个发布周期发布的各类气源的热值,确定所述用户所使用的天然气的热值,包括:
    针对每个所述计费区,根据所述计费区对应的气源供应结构、每个发布周期发布的各类气源的热值,确定所述计费区对应的天然气热值;
    根据所述用户对应的气源供应结构,确定所述用户所属的计费区;
    根据所述用户所属的计费区的天然气热值,确定所述用户所使用的天然气的热值。
  3. 根据权利要求2所述的方法,其特征在于,所述针对每个所述计费区,根据所述计费区对应的气源供应结构、每个发布周期发布的各类气源的热值,确定所述计费区对应的天然气热值,包括:
    针对每个所述计费区,若所述计费区内有唯一气源向各用户直接供应天然气,则根据每个发布周期发布的所述唯一气源的热值,确定所述计费区对应的天然气热值。
  4. 根据权利要求2所述的方法,其特征在于,所述针对每个所述计费区,根据所述计费区对应的气源供应结构、每个发布周期发布的各类气源的热值,确定所述计费区对应的天然气热值,包括:
    针对每个所述计费区,若所述计费区内有至少两个气源交替向各用户直接供应天然气,则根据所述至少两个气源各自的供气时间、每个发布周期发 布的所述至少两个气源的热值,确定所述计费区对应的天然气热值。
  5. 根据权利要求2所述的方法,其特征在于,所述针对每个所述计费区,根据所述计费区对应的气源供应结构、每个发布周期发布的各类气源的热值,确定所述计费区对应的天然气热值,包括:
    针对每个所述计费区,若所述计费区内有至少两个气源的一部分气体共同向各用户供应天然气,且所述至少两个气源的另一部分气体各自单独供应其它计费区,则获取所述至少两个气源的另一部分气体供应的其它各计费区的体积使用量;
    根据所述至少两个气源的另一部分气体供应的其它各计费区的体积使用量、每个发布周期发布的所述至少两个气源的热值,确定所述计费区对应的天然气热值。
  6. 根据权利要求2所述的方法,其特征在于,所述针对每个所述计费区,根据所述计费区对应的气源供应结构、每个发布周期发布的各类气源的热值,确定所述计费区对应的天然气热值,包括:
    针对每个所述计费区,若所述计费区内有至少两个气源共同向各用户供应天然气,则获取计量周期内所述至少两个气源的输送体积;
    根据计量周期内所述至少两个气源的输送体积、每个发布周期发布的所述至少两个气源的热值,确定所述计费区对应的天然气热值。
  7. 根据权利要求2-6任一项所述的方法,其特征在于,在确定所述计费区对应的天然气热值之前,所述方法还包括:
    确定所述计费区内是否存在工业用户;
    若所述计费区内存在工业用户,则获取所述工业用户在计量周期内的天然气能量使用量;
    所述针对每个所述计费区,根据所述计费区对应的气源供应结构、每个发布周期发布的各类气源的热值,确定所述计费区对应的天然气热值,包括:
    针对每个所述计费区,若所述计费区内存在工业用户,则根据所述工业用户在计量周期内的天然气能量使用量、每个发布周期发布的所述各类气源的热值,确定所述计费区的天然气的热值。
  8. 根据权利要求7所述的方法,其特征在于,所述获取所述工业用户在计量周期内的天然气能量使用量,包括:
    获取工业用户在计量周期内的天然气日均体积使用量、天然气热值;
    根据所述计量周期内的天然气日均体积使用量、天然气热值,确定所述工业用户在计量周期内的天然气能量使用量。
  9. 一种能量计量装置,其特征在于,包括:
    获取模块,用于获取用户在计量周期内的天然气的体积使用量;
    确定模块,用于确定计量周期内每个发布周期发布的各类气源的热值;
    处理模块,用于根据所述用户对应的气源供应结构、所述每个发布周期发布的各类气源的热值,确定所述用户所使用的天然气的热值;所述气源供应结构用于指示所述用户所使用的天然气的气源的种类、数量,以及供气方式;根据所述用户在计量周期内的天然气的体积使用量、所述用户所使用的天然气的热值,确定所述用户在计量周期内的天然气能量使用量。
  10. 一种能量计量设备,其特征在于,包括:
    存储器,用于存储程序指令;
    处理器,用于调用并执行所述存储器中的程序指令,执行如权利要求1-8任一项所述的方法。
  11. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时,实现如权利要求1-8任一项所述的方法。
  12. 一种能量计量系统,其特征在于,包括:分别与能量计量装置相连的位于用户侧的燃气计量装置、位于气源侧的热值检测装置;
    所述燃气计量装置,用于计量用户端的天然气的体积使用量;
    所述热值检测装置,用于检测气源的热值;
    所述能量计量装置可用于执行权利要求1-8任一项所述的能量计量方法。
PCT/CN2021/128230 2020-11-13 2021-11-02 能量计量方法、装置、设备、系统和存储介质 WO2022100486A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB2305208.7A GB2614834A (en) 2020-11-13 2021-11-02 Energy metering method, apparatus, device and system, and storage medium
US18/249,108 US20230394453A1 (en) 2020-11-13 2021-11-02 Energy metering method, apparatus, device and system, and storage medium
DE112021005957.2T DE112021005957T5 (de) 2020-11-13 2021-11-02 Verfahren zur energiemessung, vorrichtung, gerät und system, und speichermedium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011269765.7A CN112381534A (zh) 2020-11-13 2020-11-13 能量计量方法、装置、设备、系统和存储介质
CN202011269765.7 2020-11-13

Publications (1)

Publication Number Publication Date
WO2022100486A1 true WO2022100486A1 (zh) 2022-05-19

Family

ID=74583920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128230 WO2022100486A1 (zh) 2020-11-13 2021-11-02 能量计量方法、装置、设备、系统和存储介质

Country Status (5)

Country Link
US (1) US20230394453A1 (zh)
CN (1) CN112381534A (zh)
DE (1) DE112021005957T5 (zh)
GB (1) GB2614834A (zh)
WO (1) WO2022100486A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112381534A (zh) * 2020-11-13 2021-02-19 金卡智能集团股份有限公司 能量计量方法、装置、设备、系统和存储介质
CN114399337B (zh) * 2022-01-14 2024-06-25 成都秦川物联网科技股份有限公司 一种天然气能量计量方法和系统
US12196728B2 (en) * 2021-02-04 2025-01-14 Chengdu Qinchuan Iot Technology Co., Ltd. Systems and methods for measuring energy of natural gas components
US11796528B2 (en) 2021-02-04 2023-10-24 Chengdu Qinchuan Iot Technology Co., Ltd. Method and system for measuring energy of natural gas
CN114387033B (zh) * 2022-01-14 2024-08-20 成都秦川物联网科技股份有限公司 一种基于天然气能量的计费方法和系统
CN115046656B (zh) * 2022-04-14 2025-04-18 成都秦川物联网科技股份有限公司 一种实现入户天然气能量计量的数据获取方法及系统
CN114266170B (zh) * 2021-12-31 2023-11-03 深圳市爱路恩济能源技术有限公司 一种燃气输配管网中气源供应范围识别方法和装置
CN119028487A (zh) * 2024-08-21 2024-11-26 西南交通大学 基于人工智能的天然气能量计量方法、物联网系统及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435581A (zh) * 2011-09-28 2012-05-02 中国计量学院 一种基于天然气组分光谱分析的天然气热值计算方法
US20120173444A1 (en) * 2011-01-04 2012-07-05 Ory Zik Method and system for energy efficiency and sustainability management
CN102913750A (zh) * 2012-10-17 2013-02-06 天津华迈燃气装备股份有限公司 一种天然气热值计价供气装置
CN103134619A (zh) * 2011-11-23 2013-06-05 新奥科技发展有限公司 热值分析仪、基于热值的燃气计量装置、方法和系统
CN112381534A (zh) * 2020-11-13 2021-02-19 金卡智能集团股份有限公司 能量计量方法、装置、设备、系统和存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100217549A1 (en) * 2009-02-26 2010-08-26 Galvin Brian R System and method for fractional smart metering
CN110349346A (zh) * 2019-05-25 2019-10-18 深圳市中燃科技有限公司 一种兼容在线与离线状态的物联网燃气表计费方法和系统
CN110516860A (zh) * 2019-08-16 2019-11-29 上海掌门科技有限公司 天气预测数据的处理方法、设备及计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120173444A1 (en) * 2011-01-04 2012-07-05 Ory Zik Method and system for energy efficiency and sustainability management
CN102435581A (zh) * 2011-09-28 2012-05-02 中国计量学院 一种基于天然气组分光谱分析的天然气热值计算方法
CN103134619A (zh) * 2011-11-23 2013-06-05 新奥科技发展有限公司 热值分析仪、基于热值的燃气计量装置、方法和系统
CN102913750A (zh) * 2012-10-17 2013-02-06 天津华迈燃气装备股份有限公司 一种天然气热值计价供气装置
CN112381534A (zh) * 2020-11-13 2021-02-19 金卡智能集团股份有限公司 能量计量方法、装置、设备、系统和存储介质

Also Published As

Publication number Publication date
GB2614834A (en) 2023-07-19
US20230394453A1 (en) 2023-12-07
GB202305208D0 (en) 2023-05-24
DE112021005957T5 (de) 2023-09-14
CN112381534A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
WO2022100486A1 (zh) 能量计量方法、装置、设备、系统和存储介质
CN101140320B (zh) 电能表校验台及其校验方法
CN109001528B (zh) 一种非侵入式分项计量采集系统
CN110793165A (zh) 多联式空调分户计费方法及系统
CN106382965A (zh) 一种基于无线传输的高准确度蒸汽流量计量系统以及方法
CN106569028B (zh) 一种双芯智能电能表的电量同步处理方法及系统
CN114328625A (zh) 一种电费数据的复筛方法及系统
CN202661201U (zh) 远程抄表热量分摊系统
Taufik et al. Prepaid water meter card based on internet of things
CN205246165U (zh) 明渠水位流量监测积算仪表
CN107545652A (zh) 一种用气设备的同时工作系数的测定方法和系统
CN209593483U (zh) 一种基于物联网NB-IoT集中器数据传输的家用电表
CN116186950A (zh) 燃气管网模拟仿真的处理方法、系统、装置和存储介质
RU2822676C1 (ru) Способ, прибор и устройство для учета энергии
CN112884277B (zh) 一种应用于转供电的智能用电系统及其使用方法
CN102479429A (zh) 热量表集中器
CN102768086A (zh) 远程抄表热量分摊系统及方法
TWI658350B (zh) 配水管網預警系統及其方法
KR101231697B1 (ko) 상수도 수용가 검침데이터 보정 방법
CN112683344A (zh) 一种应用于燃气用户用气规律研究的计量装置
Gokilapriya et al. Design and development of SoC based residential water meter monitoring system
CN106682849B (zh) 基于信息关联的水调系统自动计算方法
CN102928125A (zh) 一种无热计量表的温度面积法热计量分摊装置及分摊方法
Ebem et al. An optimized web-based energy billing system for electricity consumers in Nigeria
JP2003281668A (ja) 課金用の通信端末装置、外部サーバ及び通信システム、並びに課金方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891013

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202305208

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20211102

WWE Wipo information: entry into national phase

Ref document number: 112021005957

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891013

Country of ref document: EP

Kind code of ref document: A1