WO2022095283A1 - 基于工作磁场谐波定向的永磁电机拓扑构造方法及电机 - Google Patents

基于工作磁场谐波定向的永磁电机拓扑构造方法及电机 Download PDF

Info

Publication number
WO2022095283A1
WO2022095283A1 PCT/CN2021/072999 CN2021072999W WO2022095283A1 WO 2022095283 A1 WO2022095283 A1 WO 2022095283A1 CN 2021072999 W CN2021072999 W CN 2021072999W WO 2022095283 A1 WO2022095283 A1 WO 2022095283A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnetic field
harmonic
working magnetic
magnet motor
Prior art date
Application number
PCT/CN2021/072999
Other languages
English (en)
French (fr)
Inventor
李大伟
房莉
任翔
曲荣海
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to US17/606,737 priority Critical patent/US20220216777A1/en
Publication of WO2022095283A1 publication Critical patent/WO2022095283A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/021Means for mechanical adjustment of the excitation flux
    • H02K21/022Means for mechanical adjustment of the excitation flux by modifying the relative position between field and armature, e.g. between rotor and stator
    • H02K21/023Means for mechanical adjustment of the excitation flux by modifying the relative position between field and armature, e.g. between rotor and stator by varying the amount of superposition, i.e. the overlap, of field and armature
    • H02K21/024Radial air gap machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the invention belongs to the technical field of permanent magnet motors, and more particularly relates to a permanent magnet motor topology construction method and a motor based on the harmonic orientation of the working magnetic field.
  • the vernier permanent magnet motor is similar in structure to the traditional motor, but it is based on the principle of magnetic field modulation, using two working magnetic fields to convert electromechanical energy to generate torque, thus obtaining a larger torque density.
  • the design of the permanent magnet rotor, stator, armature winding and other structures in the motor has always been restricted to the traditional topology structure. The improvement of performance needs to be achieved through repeated optimization of structural parameters, and the design process is irregular. , there is a strong chance, and it is difficult to achieve the topology innovation of the motor and the improvement of the torque density.
  • the present invention provides a permanent magnet motor topology construction method and motor based on the harmonic orientation of the working magnetic field, the purpose of which is to combine the harmonic characteristics of the windings with the initial phase and polar arc of the target working magnetic field.
  • Coefficients and other parameters quantitatively design the geometric size of the motor modulation tooth array, so that the phase of each permeance harmonic is consistent with the given value, and through further structural optimization to maximize the effective working magnetic field, so as to solve the problem of the permanent magnet motor in the prior art.
  • the design is irregular, and it is difficult to realize the motor topology innovation and torque density improvement.
  • a topological construction method of a permanent magnet motor based on the harmonic orientation of the working magnetic field includes a stator wound with windings, a permanent magnet array, a rotor and a modulation tooth.
  • the method includes: S1, according to the winding coefficient k wv of each winding harmonic v th in the design target, the initial phase ⁇ sv and the rotation direction sgn calculate the initial air gap working magnetic field B gv required to generate the positive and negative EMF Phase ⁇ gv , the air-gap working magnetic field B gv is generated by the permanent magnet array; S2, with generating the air-gap working magnetic field B gv as the design goal, calculate the corresponding permeance harmonics of each order.
  • phase ⁇ mv ; and with the design goal of maximizing the sum of the equivalent air-gap magnetic density amplitudes B eqv of the air-gap working magnetic fields B gv , calculate the polar arc coefficient ⁇ v of the permeance harmonics , the permeance harmonics are generated by the modulation tooth array; S3, according to the phase ⁇ mv and the pole arc coefficient ⁇ v of the permeance harmonics, design the modulation teeth corresponding to the permeance harmonics The number, position and length along the circumferential direction make the generated permeability model consistent with the phase ⁇ mv of each permeability harmonic designed in S2; S4, for the modulation teeth corresponding to each permeability harmonic The radial dimension is optimized so that the sum of the equivalent air-gap magnetic density amplitudes B eqv of the air-gap working magnetic fields B gv is the largest.
  • the S3 includes: designing the lengths of the modulation teeth corresponding to the permeance harmonics along the circumferential direction according to the phase ⁇ mv and the pole arc coefficient ⁇ v of the permeance harmonics; The modulation teeth corresponding to the harmonics are superimposed, so that the overlapping area of all the modulation teeth is maximized, so as to determine the number and position of the modulation teeth corresponding to the harmonics of each magnetic permeability.
  • the step S4 includes: optimizing the radial dimension of the modulating teeth in the non-overlapping region, so that the sum of the equivalent air-gap magnetic density amplitudes B eqv of the air-gap working magnetic fields B gv of each time is maximized.
  • phase of the back EMF generated in the S1 according to the air gap working magnetic field B gv same to calculate the initial phase ⁇ gv , the back EMF phase for:
  • sgn(v) is the rotation direction of the air gap working magnetic field B gv .
  • the method further includes: S5 , optimizing the stator so that the teeth of the stator are alternately composed of two sets of stator teeth of different widths, and the windings are wound outside the wider stator teeth.
  • winding coefficient k wv is:
  • k yv is the pitch coefficient
  • k dv is the distribution coefficient
  • k sv is the notch coefficient
  • the rotation direction sgn is determined by the number of winding phases and the number of winding harmonics v.
  • the number of the air-gap working magnetic fields B gv is one or more, forming a corresponding single-harmonic working magnetic field or a multi-harmonic working magnetic field.
  • a permanent magnet motor comprising a rotor, a stator and a rotating shaft that are coaxially sleeved, and a modulation tooth array is provided on the side of the stator opposite to the rotor, or the rotor is The opposite side of the stator is provided with a modulated tooth array, and the modulated tooth array is formed by the above-mentioned topological construction method of the permanent magnet motor based on the harmonic orientation of the working magnetic field.
  • the permanent magnet motor further includes a permanent magnet array, the permanent magnet array and the modulation tooth array are arranged opposite to each other, an air gap is formed between the two, and the permanent magnet array is radially magnetized and adjacent to each other. The magnetization direction of the permanent magnets is opposite.
  • the permanent magnet array is a stator structure or a rotor structure, and each magnet in the array is of equal or unequal width.
  • the motor constructed by this method has uneven modulation teeth.
  • a directional designed target working magnetic field can be generated.
  • the target working magnetic field can be either a single working magnetic field or multiple harmonics.
  • the working magnetic field has a wide range of applications, and the multi-harmonic working magnetic field can enable the motor to obtain a stronger torque generation capability and further improve the torque density of the motor.
  • Fig. 1 is the flow chart of the permanent magnet motor topology construction method based on the harmonic orientation of the working magnetic field in the embodiment of the present invention
  • Figure 2 is a schematic diagram of the initial structure of the modulation tooth array
  • FIG. 3 is a schematic diagram of an optimized structure of a modulating tooth array with a directional structure in an embodiment of the present invention
  • FIG. 4 is a schematic diagram of the overall structure of the stator in a permanent magnet motor with an directional structure in an embodiment of the present invention
  • FIG. 5 is a schematic diagram of the overall structure of the rotor in the permanent magnet motor with the directional structure in the embodiment of the present invention
  • FIG. 6 is a schematic diagram of the overall structure of a permanent magnet motor with a directional structure in an embodiment of the present invention.
  • 1 is the modulation tooth array
  • 2 is the winding
  • 3 is the stator
  • 4 is the rotor
  • 5 is the permanent magnet array
  • 6 is the rotating shaft.
  • FIG. 1 is a flowchart of a method for constructing a permanent magnet motor topology based on the harmonic orientation of the working magnetic field in an embodiment of the present invention. Referring to FIG. 1 , in conjunction with FIGS. 2 to 6 , the topology construction method of the permanent magnet motor based on the harmonic orientation of the working magnetic field in this embodiment will be described in detail.
  • the method includes operations S1-operation S4.
  • the permanent magnet motor includes a stator 3 wound with windings 2 , a permanent magnet array 5 , a rotor 4 , a modulation tooth array 1 and a rotating shaft 6 .
  • the rotor, the stator, and the rotating shaft are coaxially sleeved sequentially from the outside to the inside, or the stator and the rotor rotating shaft are sequentially sleeved coaxially from the outside to the inside.
  • An air gap is formed between the rotor and the stator, a permanent magnet array is embedded on the surface near the air gap of the rotor, and a modulation tooth array is arranged on the surface near the air gap of the stator; or, a permanent magnet array is embedded on the surface near the air gap of the stator, and the surface near the air gap of the rotor is An array of modulating teeth is provided.
  • the stator teeth are wound with coils, and specific coils are further connected in series or in parallel to form phase windings.
  • the central axis of a certain phase winding is used as the initial position, and information such as winding coefficient k wv , initial phase ⁇ sv and rotation direction sgn of each sub-winding harmonic v th are determined according to the structural characteristics of the winding.
  • the number of pole pairs is 1 as the fundamental wave
  • the winding harmonic v th corresponds to the number of v pole pairs.
  • the winding coefficient k wv is:
  • k yv is the pitch coefficient
  • k dv is the distribution coefficient
  • k sv is the notch coefficient.
  • the winding coefficient k wv , the initial phase ⁇ sv and the rotation direction sgn of the single-layer concentrated winding harmonic are shown in Table 1.
  • Harmonic pole logarithm v k wv ⁇ sv sgn Harmonic pole logarithm v k wv ⁇ sv sgn 2 0.5 0° +1 14 0.5 180° +1 4 0.867 0° -1 16 0.867 180° -1 8 0.867 0° +1 20 0.867 180° +1 10 0.5 0° -1 twenty two 0.5 180° -1
  • the initial phase ⁇ gv of each air-gap working magnetic field B gv required to generate positive and negative EMFs is reversed.
  • the no-load back EMF E1 of the motor is:
  • D g is the diameter corresponding to the air gap of the motor; L is the effective shaft length of the motor; N s is the number of turns of the phase winding in series; ⁇ m is the mechanical rotational angular velocity of the rotor; ; P r is the number of pole pairs of the permanent magnet array; t is the time; v is the number of air-gap working flux density; B eqv is an equivalent flux density amplitude obtained in the process of simplifying the expression of no - load back EMF E1 value, including the amplitude of the v-th air-gap flux density, the v-th winding coefficient, and the constant term P r /v.
  • the back EMF phase contributed by each air gap working magnetic field B gv is reflected in the formula of no-load back EMF E 1 same. Therefore, in the embodiment of the present invention, in operation S1, the phase of the back EMF generated according to each air gap working magnetic field B gv same to calculate the initial phase ⁇ gv , the back EMF phase for:
  • sgn(v) is the rotation direction of the air gap working magnetic field B gv .
  • Table 1 the obtained initial phase ⁇ gv of each air-gap working magnetic field B gv is shown in Table 2.
  • the air-gap working magnetic field of the vernier permanent magnet motor can be obtained by the product of the magnetic potential function and the permeability function.
  • the air-gap working magnetic field B is:
  • the air-gap working magnetic field B is:
  • ⁇ gv sgn1(v)( ⁇ r1 - ⁇ mj )
  • F 1 is the fundamental excitation magnetic potential of the permanent magnet
  • ⁇ s0 is the constant component of the air-gap permeability function
  • is the mechanical angle position in space
  • ⁇ r1 is the initial electrical angle of the fundamental excitation magnetic potential of the permanent magnet
  • ⁇ sj is the gas
  • ⁇ mj is the initial electrical angle of ⁇ sj .
  • the corresponding phase ⁇ mv of each magnetic permeability harmonic can be deduced; further, using simulation software, for each magnetic permeability harmonic
  • the pole arc coefficient ⁇ v is simulated and optimized, and the optimization goal is to make the sum of the equivalent air gap magnetic density amplitudes B eqv of each air gap working magnetic field B gv maximum, the optimal polar arc coefficient ⁇ v is obtained.
  • the obtained phase ⁇ mv and pole arc coefficient ⁇ v are shown in Table 3.
  • a specific modulated tooth array structure is constructed according to the phase ⁇ mv and the pole arc coefficient ⁇ v of each permeance harmonic, which is the initial structure of the modulated tooth array. Taking the information obtained in Table 3 as an example, the initial structure of the constructed modulated tooth array is shown in Figure 2.
  • operation S3 includes sub-operation S31 and sub-operation S32.
  • the lengths of the modulation teeth corresponding to the permeance harmonics in the circumferential direction are designed according to the phase ⁇ mv and the pole arc coefficient ⁇ v of the permeance harmonics.
  • sub-operation S32 the modulation teeth corresponding to the permeance harmonics are superimposed, so that the overlapping area of all the modulation teeth is maximized, so as to determine the number and position of the modulation teeth corresponding to the permeance harmonics.
  • the initial structure of the modulated tooth array is further optimized for detail size, so as to maximize the amplitude of the working magnetic field.
  • the optimization object is the radial length of the modulated tooth array.
  • the optimization goal is to maximize the sum of the equivalent air-gap magnetic density amplitudes B eqv of the air-gap working magnetic field B gv .
  • the structure of the modulated tooth array is obtained. As shown in Figure 3.
  • the radial dimension of the modulation teeth in the non-overlapping region in sub-operation S32 is optimized, so that the sum of the equivalent air-gap magnetic density amplitudes B eqv of the air-gap working magnetic fields B gv of each time maximum.
  • the permanent magnet motor topology construction method based on the harmonic orientation of the working magnetic field further includes operation S5, optimizing the stator, so that the teeth of the stator are alternately composed of two sets of stator teeth of different widths, and the windings are wound on Outside the wider stator teeth.
  • the narrower main teeth provide a larger slot space for the winding coil and improve the slot filling rate of the winding coil.
  • the optimized modulation tooth array is integrated with the stator to form the final stator structure.
  • the stator teeth are wound with windings, and the optimized structure formed is shown in Figure 4.
  • the structure of the rotor and the permanent magnet array inside the rotor is shown in FIG. 5
  • the structure of the permanent magnet motor finally formed by nesting is shown in FIG. 6 , for example.
  • the widths of the magnets in the permanent magnet array can be equal or unequal, the equal-width magnets form a single excitation harmonic, and the unequal-width magnets form multiple excitation harmonics.
  • each modulating tooth in the modulating tooth array can be consistent and evenly distributed along the circumference to form a single-harmonic working magnetic field, and the number of air-gap working magnetic field B gv is one; The number of the working magnetic field and the air gap working magnetic field B gv is multiple.
  • the embodiment of the present invention also provides a permanent magnet motor, which includes a rotor 4, a stator 3 and a rotating shaft 6 that are coaxially sleeved.
  • a modulation tooth array 1 is provided on the side of the stator 3 opposite to the rotor 4, or the rotor 4 is provided with a modulating tooth array 1.
  • the opposite side of the stator 3 is provided with a modulated tooth array 1 , and the modulated tooth array 1 is formed by a permanent magnet motor topology construction method based on the harmonic orientation of the working magnetic field as shown in FIGS. 1-6 .
  • the permanent magnet motor further includes a permanent magnet array 5, which is arranged opposite to the modulation tooth array 1 with an air gap formed therebetween.
  • the permanent magnet array 5 is magnetized radially and adjacent permanent magnets are magnetized in opposite directions.
  • the permanent magnet array 5 is a stator structure or a rotor structure, and each magnet in the array is of equal or unequal width.
  • the permanent magnet motor further includes a winding 2, and the winding 2 is wound around the teeth of the stator.
  • the stator is alternately composed of two sets of stator teeth with different widths, and the winding 2 is wound on the outside of the wider stator teeth.
  • the permanent magnet motor in this embodiment is the same as the permanent magnet motor formed by the permanent magnet motor topology construction method based on the harmonic orientation of the working magnetic field shown in FIG. 1 to FIG. 6 , and details are not repeated here.

Abstract

本发明公开了一种基于工作磁场谐波定向的永磁电机拓扑构造方法及电机,属于永磁电机技术领域,方法包括:根据设计目标中各次绕组谐波vth的参数计算产生正反电势所需要的各次气隙工作磁场Bgv的初始相位θgv;分别以产生Bgv、使Bgv的等效气隙磁密幅值Beqv之和最大为设计目标,计算相应的各次磁导谐波的相位θmv和极弧系数αv;根据θmv和αv设计各次磁导谐波对应的调制齿的个数、位置以及沿圆周方向的长度,使得生成的磁导模型与S2中设计所得到的各次磁导谐波的相位θmv一致;对各次磁导谐波对应的调制齿的径向尺寸进行优化,使得各次气隙工作磁场Bgv的等效气隙磁密幅值Beqv之和最大。实现电机调制齿阵列的定向构造,电机能够产生多工作磁场,有效提升其转矩输出能力。

Description

基于工作磁场谐波定向的永磁电机拓扑构造方法及电机 【技术领域】
本发明属于永磁电机技术领域,更具体地,涉及一种基于工作磁场谐波定向的永磁电机拓扑构造方法及电机。
【背景技术】
自19世纪第一台电机问世以来,电机已成为支撑人类现代社会不可或缺的工业门类。从大到单机容量数千兆瓦的水轮发电机,到小至几个微瓦的微特电机,电机广泛应用在国民经济的各个方面。随着交替电气化浪潮高涨,工业机器人、芯片制造、数控机床等制造业持续发展,电机扮演着更加重要的作用,同时也对电机的转矩密度、响应速度、转矩脉动等性能品质提出更高的要求。其中,高转矩密度一直是电机发展的主要目标,其对于缩减驱动系统体积、成本、提升响应速度等都具有重要的意义。
传统电机普遍依靠单一工作磁场实现转矩的产生,转矩密度的提升受到材料性能的限制。游标永磁电机与传统电机结构相似,但其基于磁场调制原理,利用两个工作磁场进行机电能量转化产生转矩,因此获得更大的转矩密度。但是,目前在设计电机时,电机中永磁体转子、定子、电枢绕组等结构的设计一直拘泥于传统的拓扑结构框架中,性能的改善需要通过结构参数的反复优化来实现,设计过程无规律,存在很强的偶然性,很难实现电机的拓扑创新、转矩密度的提升。
【发明内容】
针对现有技术的缺陷和改进需求,本发明提供了一种基于工作磁场谐波定向的永磁电机拓扑构造方法及电机,其目的在于结合绕组谐波特征和 目标工作磁场的初始相位、极弧系数等参量,定量设计电机调制齿阵列的几何尺寸,实现各次磁导谐波相位与给定值一致,并通过进一步结构优化实现有效工作磁场最大化,从而解决现有技术中永磁电机定性设计无规律、很难实现电机拓扑创新、转矩密度提升的问题。
为实现上述目的,按照本发明的一个方面,提供了一种基于工作磁场谐波定向的永磁电机拓扑构造方法,所述永磁电机包括缠绕有绕组的定子、永磁体阵列、转子以及调制齿阵列,方法包括:S1,根据设计目标中各次绕组谐波v th的绕组系数k wv、初始相位θ sv和旋转方向sgn计算产生正反电势所需要的各次气隙工作磁场B gv的初始相位θ gv,所述各次气隙工作磁场B gv由所述永磁体阵列产生;S2,以产生所述各次气隙工作磁场B gv为设计目标,计算相应的各次磁导谐波的相位θ mv;并以使所述各次气隙工作磁场B gv的等效气隙磁密幅值B eqv之和最大为设计目标,计算所述各次磁导谐波的极弧系数α v,所述各次磁导谐波由所述调制齿阵列产生;S3,根据所述各次磁导谐波的相位θ mv和极弧系数α v设计各次磁导谐波对应的调制齿的个数、位置以及沿圆周方向的长度,使得生成的磁导模型与S2中设计所得到的各次磁导谐波的相位θ mv一致;S4,对各次磁导谐波对应的调制齿的径向尺寸进行优化,使得所述各次气隙工作磁场B gv的等效气隙磁密幅值B eqv之和最大。
更进一步地,所述S3包括:根据所述各次磁导谐波的相位θ mv和极弧系数α v设计各次磁导谐波对应的调制齿沿圆周方向的长度;对各次磁导谐波对应的调制齿进行叠加,使得所有调制齿的重合区域最大,以确定各次磁导谐波对应的调制齿的个数和位置。
更进一步地,所述S4包括:对未重叠区域的调制齿的径向尺寸进行优化,使得所述各次气隙工作磁场B gv的等效气隙磁密幅值B eqv之和最大。
更进一步地,所述S1中根据所述各次气隙工作磁场B gv产生的反电势 相位
Figure PCTCN2021072999-appb-000001
相同来计算所述初始相位θ gv,所述反电势相位
Figure PCTCN2021072999-appb-000002
为:
Figure PCTCN2021072999-appb-000003
其中,sgn(v)为气隙工作磁场B gv的旋转方向。
更进一步地,方法还包括:S5,对定子进行优化,使得所述定子的齿部由两组不同宽度的定子齿部交替组成,所述绕组缠绕在较宽的定子齿部外侧。
更进一步地,所述绕组系数k wv为:
k wv=k yv·k dv·k sv
其中,k yv为节距系数,k dv为分布系数,k sv为槽口系数;所述旋转方向sgn由绕组相数和绕组谐波次数v确定。
更进一步地,所述各次气隙工作磁场B gv的数量为一个或多个,形成相应的单谐波工作磁场或多谐波工作磁场。
按照本发明的另一个方面,提供了一种永磁电机,包括同轴套设的转子、定子和转轴,所述定子中与转子相对的一侧设置有调制齿阵列,或者所述转子中与定子相对的一侧设置有调制齿阵列,所述调制齿阵列由如上所述的基于工作磁场谐波定向的永磁电机拓扑构造方法形成。
更进一步地,所述永磁电机还包括永磁体阵列,所述永磁体阵列与所述调制齿阵列相对设置,二者之间形成有气隙,所述永磁体阵列径向充磁且相邻永磁体充磁方向相反。
更进一步地,所述永磁体阵列为定子结构或转子结构,阵列中各磁钢等宽或不等宽。
总体而言,通过本发明所构思的以上技术方案,能够取得以下有益效果:
(1)结合绕组谐波特征分析产生电机正反电势所需要的气隙工作磁场,并反推气隙磁导函数的谐波成分,从而定量设计各次磁导谐波对应调制齿 的尺寸,实现各次磁导谐波幅值、相位都和给定分析值一致,并通过进一步结构优化实现有效工作磁场最大化,从而充分发挥永磁体及绕组的机电能量转化能力,提升电机的转矩输出能力;
(2)对缠绕绕组的定子进行优化,主齿宽窄交替设置,较宽的主齿上缠有绕组线圈,较窄的主齿为绕组线圈提供更大的槽部空间,提高绕组线圈的槽满率;
(3)该方法构造的电机具有不均匀调制齿,该调制齿与永磁体阵列相互作用时,可以产生定向设计的目标工作磁场,该目标工作磁场既可以是单一工作磁场也可以是多谐波工作磁场,适用范围广,并且多谐波工作磁场可以使电机获得更强的转矩产生能力,进一步提升电机的转矩密度。
【附图说明】
图1为本发明实施例中基于工作磁场谐波定向的永磁电机拓扑构造方法的流程图;
图2为调制齿阵列初始结构示意图;
图3为本发明实施例中定向构造的调制齿阵列优化结构示意图;
图4为本发明实施例中定向构造的永磁电机中定子整体结构示意图;
图5为本发明实施例中定向构造的永磁电机中转子整体结构示意图;
图6为本发明实施例中定向构造的永磁电机的整体结构示意图。
在所有附图中,相同的附图标记用来表示相同的元件或者结构,其中:
1为调制齿阵列,2为绕组,3为定子,4为转子,5为永磁体阵列,6为转轴。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体 实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
在本发明中,本发明及附图中的术语“第一”、“第二”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
图1为本发明实施例中基于工作磁场谐波定向的永磁电机拓扑构造方法的流程图。参阅图1,结合图2-图6,对本实施例中基于工作磁场谐波定向的永磁电机拓扑构造方法进行详细说明。方法包括操作S1-操作S4。
操作S1,根据设计目标中各次绕组谐波v th的绕组系数k wv、初始相位θ sv和旋转方向sgn计算产生正反电势所需要的各次气隙工作磁场B gv的初始相位θ gv,各次气隙工作磁场B gv由永磁体阵列产生。
永磁电机包括缠绕有绕组2的定子3、永磁体阵列5、转子4、调制齿阵列1以及转轴6。具体地,例如转子、定子、转轴从外到内依次同轴套设,或者定子、转子转轴从外到内依次同轴套设。转子与定子之间形成有气隙,转子近气隙面嵌有永磁体阵列,定子近气隙面设置有调制齿阵列;或者,定子近气隙面嵌有永磁体阵列,转子近气隙面设置有调制齿阵列。定子齿部缠绕有线圈,特定线圈间进一步串联或并联构成相绕组。本实施例中,以图2-图6中示出的转子、定子、转轴从外到内依次同轴套设,转子近气隙面嵌有永磁体阵列,定子近气隙面设置有调制齿阵列为例,说明该基于工作磁场谐波定向的永磁电机拓扑构造方法的具体操作过程。
在执行操作S1之前,以某相绕组中轴线作为初始位置,根据绕组的结构特征判定各次绕组谐波v th的绕组系数k wv、初始相位θ sv和旋转方向sgn等信息。本实施例中,定义极对数为1为基波,则绕组谐波v th对应v个极对数。绕组系数k wv为:
k wv=k yv·k dv·k sv
其中,k yv为节距系数,k dv为分布系数,k sv为槽口系数。旋转方向sgn由绕组相数m和谐波次数v决定,本实施例中指定逆时针为正旋转方向,sgn=+1;顺时针为负旋转方向,sgn=-1。
本实施例中,将转子永磁体极对数设定为单谐波P r1=20,绕组采用单层集中绕组,A相绕组中轴线作为初始位置0,将单个线圈的跨距机械角度θ 0设定为15°,以上述设定为例,则该单层集中绕组谐波的绕组系数k wv、初始相位θ sv和旋转方向sgn如表1所示。
表1
谐波极对数v k wv θ sv sgn 谐波极对数v k wv θ sv sgn
2 0.5 +1 14 0.5 180° +1
4 0.867 -1 16 0.867 180° -1
8 0.867 +1 20 0.867 180° +1
10 0.5 -1 22 0.5 180° -1
进一步地,根据得到的绕组系数k wv、初始相位θ sv和旋转方向sgn等信息,反推产生正反电势所需要的各次气隙工作磁场B gv的初始相位θ gv。本实施例中,电机空载反电势E 1为:
Figure PCTCN2021072999-appb-000004
其中,D g为电机气隙对应的直径;L为电机有效轴长;N s为相绕组串联匝数;ω m为转子机械旋转角速度;sgn(v)为气隙工作磁场B gv的旋转方向;P r为永磁体阵列的极对数;t为时间;v为气隙工作磁密的次数;B eqv是简化空载反电势E 1的表达式的过程中得到的一个等效磁密幅值,包含了第v次的气隙磁密的幅值、第v次绕组系数、以及常数项P r/v。
为了使所有工作磁场都贡献正反电势,在空载反电势E 1公式中体现为各次气隙工作磁场B gv贡献的反电势相位
Figure PCTCN2021072999-appb-000005
相同。由此,本发明实施例中, 操作S1中根据各次气隙工作磁场B gv产生的反电势相位
Figure PCTCN2021072999-appb-000006
相同来计算初始相位θ gv,反电势相位
Figure PCTCN2021072999-appb-000007
为:
Figure PCTCN2021072999-appb-000008
其中,sgn(v)为气隙工作磁场B gv的旋转方向。对于表1中的示例而言,根据
Figure PCTCN2021072999-appb-000009
来计算各初始相位θ gv,得到的各次气隙工作磁场B gv的初始相位θ gv如表2所示。
表2
谐波极对数v θ gv 谐波极对数v θ gv
2 90° 14 -90°
4 -90° 16 -90°
8 90° 20 90°
10 -90° 22 -90°
操作S2,以产生各次气隙工作磁场B gv为设计目标,计算相应的各次磁导谐波的相位θ mv;并以使各次气隙工作磁场B gv的等效气隙磁密幅值B eqv之和最大为设计目标,计算各次磁导谐波的极弧系数α v,各次磁导谐波由所述调制齿阵列产生。
游标永磁电机气隙工作磁场可以由磁势函数与磁导函数的乘积得到,本实施例中,气隙工作磁场B为:
Figure PCTCN2021072999-appb-000010
进一步展开后,气隙工作磁场B为:
Figure PCTCN2021072999-appb-000011
θ gv=sgn1(v)(θ r1mj)
Figure PCTCN2021072999-appb-000012
其中,F 1为永磁体基波励磁磁势,Λ s0为气隙磁导函数的常数分量,θ为空间机械角位置,θ r1为永磁体基波励磁磁势初始电角度,Λ sj为气隙磁导函数的第j次谐波分量,θ mj为Λ sj的初始电角度。结合操作S1中得到的各次气隙工作磁场B gv的初始相位θ gv,可以推导得到相应的各次磁导谐波的相位θ mv;进一步地,利用仿真软件,对各次磁导谐波的极弧系数α v进行仿真优化,优化目标为使各次气隙工作磁场B gv的等效气隙磁密幅值B eqv之和
Figure PCTCN2021072999-appb-000013
最大,得到最优极弧系数α v。仍以表1和表2中的永磁电机为例,得到的相位θ mv和极弧系数α v如表3所示。
表3
磁导谐波极对数 θ mv α v
6(1 st) 0.8
12(2 nd) 180° 0.8
18(3 rd) 180° 1
24(4 th) 180° 1
30(5 th) 180° 由1 st磁导谐波决定
36(6 th) 由1 st、2 nd、3 rd磁导谐波决定
42(7 th) 1 st磁导谐波决定
操作S3,根据各次磁导谐波的相位θ mv和极弧系数α v设计各次磁导谐波对应的调制齿的个数、位置以及沿圆周方向的长度,使得生成的磁导模型与S2中设计所得到的各次磁导谐波的相位θ mv一致。
操作S3中,根据各次磁导谐波的相位θ mv和极弧系数α v构建具体的调制齿阵列结构,该结构即为调制齿阵列的初始结构。以表3中得到的信息为例,构建的调制齿阵列的初始结构如图2所示。
根据本发明实施例,操作S3包括子操作S31和子操作S32。
在子操作S31中,根据各次磁导谐波的相位θ mv和极弧系数α v设计各次磁导谐波对应的调制齿沿圆周方向的长度。
在子操作S32中,对各次磁导谐波对应的调制齿进行叠加,使得所有调制齿的重合区域最大,以确定各次磁导谐波对应的调制齿的个数和位置。
操作S4,对各次磁导谐波对应的调制齿的径向尺寸进行优化,使得各次气隙工作磁场B gv的等效气隙磁密幅值B eqv之和最大。
对调制齿阵列的初始结构进一步进行细节尺寸优化,从而实现工作磁场幅值最大化。优化对象为调制齿阵列的径向长度,结合仿真软件,优化目标为使得各次气隙工作磁场B gv的等效气隙磁密幅值B eqv之和最大,优化后得到调制齿阵列的结构如图3所示。
根据本发明实施例,操作S4中,对子操作S32中未重叠区域的调制齿的径向尺寸进行优化,使得各次气隙工作磁场B gv的等效气隙磁密幅值B eqv之和最大。
根据本发明实施例,该基于工作磁场谐波定向的永磁电机拓扑构造方法还包括操作S5,对定子进行优化,使得定子的齿部由两组不同宽度的定子齿部交替组成,绕组缠绕在较宽的定子齿部外侧。较窄的主齿为绕组线圈提供更大的槽部空间,提高绕组线圈的槽满率。
优化后的调制齿阵列与定子集成构成最终的定子结构,定子齿部缠绕有绕组,形成的优化结构如图4所示,该绕组结构与设计目标中θ 0=15°是相吻合的,也验证了该构造方法的有效性。进一步地,转子以及转子内侧的永磁体阵列的结构如图5所示,最终嵌套形成的永磁电机的结构例如如图6所示。永磁体阵列中各磁钢的宽度既可以相等也可以不等,等宽磁钢形成单一励磁谐波,不等宽磁钢形成多励磁谐波。调制齿阵列中各调制齿的尺寸可以一致,沿圆周均匀分布,形成单谐波工作磁场,气隙工作磁场B gv的数量为一个;各调制齿的尺寸也可以不完全一致,形成多谐波工作磁场,气隙工作磁场B gv的数量为多个。
本发明实施例还提供了一种永磁电机,包括同轴套设的转子4、定子3和转轴6,定子3中与转子4相对的一侧设置有调制齿阵列1,或者转子4中与定子3相对的一侧设置有调制齿阵列1,调制齿阵列1由如图1-图6所示基于工作磁场谐波定向的永磁电机拓扑构造方法形成。
永磁电机还包括永磁体阵列5,永磁体阵列5与调制齿阵列1相对设置,二者之间形成有气隙,永磁体阵列5径向充磁且相邻永磁体充磁方向相反。永磁体阵列5为定子结构或转子结构,阵列中各磁钢等宽或不等宽。永磁电机还包括绕组2,绕组2缠绕在定子齿部。定子由两组不同宽度的定子齿部交替组成,绕组2缠绕在较宽的定子齿部外侧。
本实施例中的永磁电机与图1-图6所示基于工作磁场谐波定向的永磁电机拓扑构造方法形成的永磁电机相同,此处不再赘述。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于工作磁场谐波定向的永磁电机拓扑构造方法,所述永磁电机包括缠绕有绕组的定子、永磁体阵列、转子以及调制齿阵列,其特征在于,方法包括:
    S1,根据设计目标中各次绕组谐波v th的绕组系数k wv、初始相位θ sv和旋转方向sgn计算产生正反电势所需要的各次气隙工作磁场B gv的初始相位θ gv,所述各次气隙工作磁场B gv由所述永磁体阵列产生;
    S2,以产生所述各次气隙工作磁场B gv为设计目标,计算相应的各次磁导谐波的相位θ mv;并以使所述各次气隙工作磁场B gv的等效气隙磁密幅值B eqv之和最大为设计目标,计算所述各次磁导谐波的极弧系数α v,所述各次磁导谐波由所述调制齿阵列产生;
    S3,根据所述各次磁导谐波的相位θ mv和极弧系数α v设计各次磁导谐波对应的调制齿的个数、位置以及沿圆周方向的长度,使得生成的磁导模型与S2中设计所得到的各次磁导谐波的相位θ mv一致;
    S4,对各次磁导谐波对应的调制齿的径向尺寸进行优化,使得所述各次气隙工作磁场B gv的等效气隙磁密幅值B eqv之和最大。
  2. 如权利要求1所述的基于工作磁场谐波定向的永磁电机拓扑构造方法,其特征在于,所述S3包括:
    根据所述各次磁导谐波的相位θ mv和极弧系数α v设计各次磁导谐波对应的调制齿沿圆周方向的长度;
    对各次磁导谐波对应的调制齿进行叠加,使得所有调制齿的重合区域最大,以确定各次磁导谐波对应的调制齿的个数和位置。
  3. 如权利要求2所述的基于工作磁场谐波定向的永磁电机拓扑构造方法,其特征在于,所述S4包括:
    对未重叠区域的调制齿的径向尺寸进行优化,使得所述各次气隙工作 磁场B gv的等效气隙磁密幅值B eqv之和最大。
  4. 如权利要求1所述的基于工作磁场谐波定向的永磁电机拓扑构造方法,其特征在于,所述S1中根据所述各次气隙工作磁场B gv产生的反电势相位
    Figure PCTCN2021072999-appb-100001
    相同来计算所述初始相位θ gv,所述反电势相位
    Figure PCTCN2021072999-appb-100002
    为:
    Figure PCTCN2021072999-appb-100003
    其中,sgn(v)为气隙工作磁场B gv的旋转方向。
  5. 如权利要求1所述的基于工作磁场谐波定向的永磁电机拓扑构造方法,其特征在于,方法还包括:
    S5,对定子进行优化,使得所述定子的齿部由两组不同宽度的定子齿部交替组成,所述绕组缠绕在较宽的定子齿部外侧。
  6. 如权利要求1所述的基于工作磁场谐波定向的永磁电机拓扑构造方法,其特征在于,所述绕组系数k wv为:
    k wv=k yv·k dv·k sv
    其中,k yv为节距系数,k dv为分布系数,k sv为槽口系数;所述旋转方向sgn由绕组相数和绕组谐波次数v确定。
  7. 如权利要求1-6任一项所述的基于工作磁场谐波定向的永磁电机拓扑构造方法,其特征在于,所述各次气隙工作磁场B gv的数量为一个或多个,形成相应的单谐波工作磁场或多谐波工作磁场。
  8. 一种永磁电机,包括同轴套设的转子、定子和转轴,其特征在于,所述定子中与转子相对的一侧设置有调制齿阵列,或者所述转子中与定子相对的一侧设置有调制齿阵列,所述调制齿阵列由如权利要求1-7任一项所述的基于工作磁场谐波定向的永磁电机拓扑构造方法形成。
  9. 如权利要求8所述的永磁电机,其特征在于,所述永磁电机还包括永磁体阵列,所述永磁体阵列与所述调制齿阵列相对设置,二者之间形成有气隙,所述永磁体阵列径向充磁且相邻永磁体充磁方向相反。
  10. 如权利要求9所述的永磁电机,其特征在于,所述永磁体阵列为定子结构或转子结构,阵列中各磁钢等宽或不等宽。
PCT/CN2021/072999 2020-11-09 2021-01-21 基于工作磁场谐波定向的永磁电机拓扑构造方法及电机 WO2022095283A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/606,737 US20220216777A1 (en) 2020-11-09 2021-01-21 Permanent magnet motor topological construction method based on working magnetic field harmonic orientation and motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011227688.9 2020-11-09
CN202011227688.9A CN112421919B (zh) 2020-11-09 2020-11-09 基于工作磁场谐波定向的永磁电机拓扑构造方法及电机

Publications (1)

Publication Number Publication Date
WO2022095283A1 true WO2022095283A1 (zh) 2022-05-12

Family

ID=74827729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072999 WO2022095283A1 (zh) 2020-11-09 2021-01-21 基于工作磁场谐波定向的永磁电机拓扑构造方法及电机

Country Status (3)

Country Link
US (1) US20220216777A1 (zh)
CN (1) CN112421919B (zh)
WO (1) WO2022095283A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113595276B (zh) * 2021-07-28 2022-08-02 华中科技大学 一种永磁电机齿槽转矩削减方法及装置
CN113746385B (zh) * 2021-07-28 2023-10-24 华中科技大学 一种基于离散磁导模型的永磁电机拓扑构造方法
CN113890289B (zh) * 2021-09-10 2022-09-20 华中科技大学 一种多磁动势永磁体阵列的设计方法及磁通反向电机
CN114204711B (zh) * 2021-12-07 2023-09-26 江苏大学 磁场调制永磁电机永磁-电枢双谐波协同优化设计方法
CN116317233A (zh) * 2023-02-27 2023-06-23 江苏大学 一种表嵌永磁式双定子混合励磁电机及其设计分析方法、气隙磁场谐波的性能优化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255598A (zh) * 2011-06-27 2011-11-23 浙江大学 一种基于矢量控制的多相感应电机电子变极控制方法
CN105680652A (zh) * 2016-04-20 2016-06-15 山东大学 混合磁路双定子弱磁扩速实心转子永磁同步电机及其方法
CN105958762A (zh) * 2016-04-26 2016-09-21 江苏大学 一种新型高转矩密度高功率因数容错永磁游标电机及其调制方法
CN107579606A (zh) * 2017-09-20 2018-01-12 江苏大学 一种低振噪性能的分数槽集中绕组永磁电机及设计方法
US10594179B2 (en) * 2017-05-15 2020-03-17 Wisconsin Alumni Research Foundation Alternating flux barrier air gap in a spoke type machine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0624286B1 (en) * 1992-01-29 1997-04-02 Stridsberg Innovation Ab Brushless dc motors/generators
US7723888B2 (en) * 2004-05-25 2010-05-25 Marko Petek Synchronous electromechanical transformer
US9595858B2 (en) * 2013-09-09 2017-03-14 Wisconsin Alumni Research Foundation Double air gap, spoke type vernier machine
KR102503949B1 (ko) * 2017-12-19 2023-02-28 엘지전자 주식회사 모터
CN108900055A (zh) * 2018-09-06 2018-11-27 无锡力必特自动化设备有限公司 一种非均匀排列的裂齿定转子永磁游标电机
CN110581632B (zh) * 2019-09-20 2020-10-23 哈尔滨工业大学(深圳) 非均匀齿拓扑结构永磁游标电机及其磁场调制方法
CN110690770B (zh) * 2019-11-04 2021-04-20 郑州轻工业学院 定子开槽永磁电机复数气隙相对磁导及其磁场的求解方法
CN110880821A (zh) * 2019-11-29 2020-03-13 西安交通大学 一种混合励磁的转子永磁游标电机
CN111082626B (zh) * 2020-01-09 2021-12-07 东华大学 一种漏磁可调式无刷混合励磁同步发电机
CN111509941B (zh) * 2020-03-24 2021-05-25 江苏大学 一种磁场调制混合励磁电机及其多工作波设计方法
CN111525713B (zh) * 2020-04-22 2021-12-28 东南大学 一种集中绕组外转子磁场调制电机的转矩脉动削弱方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255598A (zh) * 2011-06-27 2011-11-23 浙江大学 一种基于矢量控制的多相感应电机电子变极控制方法
CN105680652A (zh) * 2016-04-20 2016-06-15 山东大学 混合磁路双定子弱磁扩速实心转子永磁同步电机及其方法
CN105958762A (zh) * 2016-04-26 2016-09-21 江苏大学 一种新型高转矩密度高功率因数容错永磁游标电机及其调制方法
US10594179B2 (en) * 2017-05-15 2020-03-17 Wisconsin Alumni Research Foundation Alternating flux barrier air gap in a spoke type machine
CN107579606A (zh) * 2017-09-20 2018-01-12 江苏大学 一种低振噪性能的分数槽集中绕组永磁电机及设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU ZHILONG, LI GENSHENG, ZHU YUAN: "Simulation on Flux Harmonic Compensation Control of Permanent Magnet Synchronous Motor", TONGJI-DAXUE-XUEBAO = JOURNAL OF TONGJI UNIVERSITY, SHANGHAI, CN, vol. 40, no. 3, 31 March 2012 (2012-03-31), CN , pages 468 - 472, XP055927454, ISSN: 0253-374X, DOI: 10.3969/j.issn.0253-374x.2012.03.023 *

Also Published As

Publication number Publication date
CN112421919A (zh) 2021-02-26
US20220216777A1 (en) 2022-07-07
CN112421919B (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
WO2022095283A1 (zh) 基于工作磁场谐波定向的永磁电机拓扑构造方法及电机
US11356005B2 (en) Rotor, stator and multi-working-harmonic permanent magnet motor
WO2022110274A1 (zh) 一种磁场调制永磁电机损耗分析与抑制方法
JP4089527B2 (ja) 永久磁石式回転電機
JP6139353B2 (ja) 回転電機、電動機、機械、発電機及び発電装置
CN113094911B (zh) 一种磁场调制永磁容错电机高功率因数设计方法
CN113890289B (zh) 一种多磁动势永磁体阵列的设计方法及磁通反向电机
Singh et al. Sinusoidal shaped surface permanent magnet motor using cold spray additive manufacturing
Shen et al. Optimization design and research on vibration and noise of permanent magnet synchronous motor for vehicle
Sulaiman et al. Skewing and notching configurations for torque pulsation minimization in spoke-type interior permanent magnet motors
CN104868672A (zh) 一种无铁芯双定子电机
Sato et al. Cogging torque reduction by using double skew of permanent magnets in axial gap motor
Cao et al. Cogging torque reduction for outer rotor interior permanent magnet synchronous motor
Zhang et al. A novel dual-rotor permanent magnet synchronous reluctance machine with high electromagnetic performance
Nam et al. A study on stator shape to reduce cogging torque and torque ripple of Double-Layer spoke type PMSM
JP5413919B2 (ja) 発電装置
Fang et al. Analysis and reduction of cogging torque for magnetic-gear PMSG used in wave energy conversion
Kim et al. Study on performance improvement by rotating working bar of double-cage induction motor
Lu et al. Pole-slot combination design and investigation of spoke-type in-wheel motor considering flux modulation
Ruuskanen Design Aspects of Megawatt-Range Direct-Driven Permanent MagnetWind Generators
Jiang et al. Segmented permanent magnet synchronous machines for wind energy conversion system
CN113746385B (zh) 一种基于离散磁导模型的永磁电机拓扑构造方法
Niguchi et al. Dynamic simulation method of a magnetic gear using its torque map
Zhao et al. Optimization Modeling of Single-Degree-of-Freedom Magnetic Suspension Force for Single-winding Bearingless Brushless DC Motor
CN116599261A (zh) 一种高转矩性能永磁轮毂电机及其分区设计方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21887989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21887989

Country of ref document: EP

Kind code of ref document: A1