WO2022091863A1 - 搬送装置 - Google Patents

搬送装置 Download PDF

Info

Publication number
WO2022091863A1
WO2022091863A1 PCT/JP2021/038565 JP2021038565W WO2022091863A1 WO 2022091863 A1 WO2022091863 A1 WO 2022091863A1 JP 2021038565 W JP2021038565 W JP 2021038565W WO 2022091863 A1 WO2022091863 A1 WO 2022091863A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport
zone
control device
transported
transported object
Prior art date
Application number
PCT/JP2021/038565
Other languages
English (en)
French (fr)
Inventor
一夫 伊東
俊之 橘
明 高永
三夫 井上
真 浅田
Original Assignee
伊東電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊東電機株式会社 filed Critical 伊東電機株式会社
Priority to US18/033,686 priority Critical patent/US20230416011A1/en
Priority to CN202180073433.8A priority patent/CN116583471A/zh
Priority to EP21885982.5A priority patent/EP4234454A1/en
Priority to JP2022559032A priority patent/JPWO2022091863A1/ja
Publication of WO2022091863A1 publication Critical patent/WO2022091863A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/10Sequence control of conveyors operating in combination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/08Control devices operated by article or material being fed, conveyed or discharged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G37/00Combinations of mechanical conveyors of the same kind, or of different kinds, of interest apart from their application in particular machines or use in particular manufacturing processes
    • B65G37/02Flow-sheets for conveyor combinations in warehouses, magazines or workshops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/52Devices for transferring articles or materials between conveyors i.e. discharging or feeding devices
    • B65G47/53Devices for transferring articles or materials between conveyors i.e. discharging or feeding devices between conveyors which cross one another
    • B65G47/54Devices for transferring articles or materials between conveyors i.e. discharging or feeding devices between conveyors which cross one another at least one of which is a roller-way
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a transport device such as a conveyor device.
  • a distributed control type transport device is known as a form of the transport device (Patent Document 1).
  • Distributed control is a system in which a plurality of conveyor units called zone conveyors are arranged in series or in a branched manner to form a series of conveyors, and each conveyor unit has an independent drive motor (drive device). There is.
  • each transport unit is provided with a load sensor.
  • the load sensor is a sensor that detects whether or not there is a transported object on the transport unit.
  • Each transport unit comes with a control device called a zone controller.
  • the control device has a built-in CPU and storage means, and the storage means stores a computer program constituting a logic circuit (control circuit).
  • each transport unit constitutes one zone, and each zone is connected. Then, for example, when predetermined drive conditions such as the presence of the conveyed object in the own zone (conveyed unit) and the absence of the conveyed object in the downstream zone are satisfied, the drive motor of the own zone (conveyed unit) is started and the conveyed object is conveyed. Send things to the downstream zone.
  • the load sensor in the own zone detects the transported object on the own zone (hereinafter, may be referred to as the load sensor ON), and the load sensor in the downstream zone detects the transported object.
  • the load sensor OFF When the condition that the load sensor is not turned off (hereinafter, may be referred to as the load sensor OFF) is satisfied, the drive motor of the own zone (conveying unit) is started and the conveyed object is sent to the downstream zone.
  • the driving conditions are not limited to the above-mentioned operation logic.
  • the conventional transfer device has a problem that the operation may be stopped for a long time. For example, if there is a transported object in its own zone, the load sensor is ON, and the downstream zone is the load sensor OFF, the own zone (transport unit) is driven, but the transported object is in its own zone. However, if the load sensor erroneously detects and the load sensor is OFF, the zone is not driven. If the load sensor failure is the cause of the outage, the zone will be permanently stopped. When one zone is stopped, the zone on the upstream side of the zone is congested, and as a result, the entire transport device is stopped. In addition, the transport device may be forced to stop for other reasons. It is an object of the present invention to pay attention to the above-mentioned problems of the prior art and to provide a transport device capable of reducing the frequency of stopping.
  • a plurality of transport units are connected to form a transport path, and the transport units include a drive device for driving the transport unit and an individual control device for controlling the transport unit.
  • the individual control device has a higher-level control device in the transfer device that drives the transfer unit when a specific drive condition is satisfied, and the higher-level control device communicates with the individual control device.
  • the higher-level control device has a movement status monitoring means for monitoring the actual movement status of the transported object on the transport path, and the transported object can be moved from the state around the specific transported object.
  • the correction operation for driving the transport unit is executed by the command of the host control device regardless of the drive conditions. It is a transport device to be used.
  • information regarding the destination of the transported object is exchanged between the individual control devices, and the transported object is transported to a predetermined transport destination, and the higher-level control device assumes a movement route of the transported object.
  • the movement is prioritized over the information regarding the destination exchanged between the individual control devices. It is desirable to perform a correction operation in which the transported object is guided to the route assumed by the route assumption means.
  • the frequency of erroneous delivery of transported items is reduced.
  • a plurality of transport units are connected to form a transport path, and the transport unit is a drive device for driving the transport unit and an individual controlling the transport unit. It has a control device, and the individual control device drives the transfer unit when a specific drive condition is satisfied. Information on the destination of the transported object is exchanged between the individual control devices, and the transfer is performed.
  • the host control device has a superior control device, the superior control device communicates with the individual control device, and the superior control device assumes a movement route of the transported object.
  • the transport device has a movement route imagining means for monitoring a movement status of an actual transported object on a transport path, and a specific transported object is about to deviate from the movement route assumed by the travel route imagining means.
  • the transport device is characterized in that a correction operation in which the transport object is guided to the route assumed by the movement route assumption means is executed in preference to the information regarding the destination exchanged between the individual control devices. ..
  • the frequency of erroneous delivery of transported items is reduced.
  • a plurality of transport units are connected to form a transport path, and the transport unit includes a drive device for driving the transport unit and transport according to a certain operation logic.
  • the upper control device has a higher-level control device, and the higher-level control device communicates with the individual control device to check the operating state of each transfer unit.
  • the transport device has an operation status monitoring means for individually monitoring, a desired motion storage means for storing the desired motion of the transport device, and / or a desired motion assumption means for virtually executing the desired motion of the transport device.
  • any of the transfer units is a roller conveyor and the tangential force of the rollers is 100 Newtons or less.
  • the transport device has a confluence portion where a plurality of transport paths merge, and when there are a plurality of transport paths and the transport unit in front of the confluence section has objects to be transported at the same time, from any of the transport units to the confluence portion. It is desirable that the priority order for carrying in the goods is predetermined.
  • the upper control device stores the transport order of each transported object.
  • the transport device of the present invention is stopped less frequently than in the past.
  • A is an explanatory diagram showing a transport path of the transported object A
  • (b) is an explanatory diagram showing a transport path of the transported object B.
  • (A) is an explanatory diagram showing a state in which the conveyed object A has stopped in the zone 7 and has stopped moving, and (b) is an explanatory diagram showing a state in which the stop has been forcibly released.
  • (A) is an explanatory diagram showing a state in which the transported object A is about to deviate from the original transport path, and (b) is an explanatory diagram showing a state in which the transport path has been corrected.
  • (A) is an explanatory diagram showing a state in which the conveyed object A and the conveyed object B are stopped in front of the confluence and have stopped moving, and (b) and (c) are explanatory views showing a state in which the stop is forcibly released.
  • It is a block diagram of the layout of the conveyor apparatus of the 2nd Embodiment of this invention, and the upper control apparatus. It is a block diagram of the layout of the conveyor device and the upper control device of the third embodiment of the present invention.
  • the transport device 1 of the present embodiment is a conveyor having a layout as shown in FIG. 1, and is a conveyor device in which a transport path 7 is branched and a plurality of destinations and routes for transporting a transported object exist. Further, the transfer device 1 has an upper control device 46.
  • the transport path 7 of the transport device 1 is divided into a plurality of short zones in a straight line portion. That is, in the transport device 1, the straight portion of the transport path 7 is configured by connecting a plurality of straight transport zones in series. Further, the transport device 1 includes a plurality of transport direction changing zones and constitutes a branched transport path 7.
  • the transport device 1 is intended to transport a transported object having a substantially constant size such as a pallet, a container, and a tray, and each zone has a length capable of mounting at least one transported object. ing.
  • One transport unit 2 and 20 are arranged in each zone.
  • the transport units 2 and 20 are integrated with a mechanical structure and a zone controller 10.
  • the transport unit 2 installed in the linear transport zone is a zone conveyor as shown in FIG.
  • the transport unit 20 installed in the transport direction conversion zone is a transfer device as shown in FIG.
  • the conveyor unit 2 is a short roller conveyor, and the conveyor roller 5 includes a driven roller 5b that rotates freely and a roller 5a with a built-in motor.
  • the conveyor roller 5 includes a driven roller 5b that rotates freely and a roller 5a with a built-in motor.
  • a drive motor 15 is built in the motor built-in roller 5a as a drive device.
  • the drive motor 15 has a function of outputting a pulse signal according to rotation. The same applies to the drive motors of other rollers with built-in motors.
  • the transport unit 2 is provided with a load sensor S.
  • the load sensor S is provided on the side frame 3.
  • the load sensor S detects whether or not the transported object is on the transport unit 2.
  • a photoelectric sensor can be used as the load sensor S, and a light emitting element (not shown) such as a light emitting diode or an infrared diode is provided on the facing side frame 3.
  • a light emitting element such as a light emitting diode or an infrared diode
  • the load sensor S is turned on / off, and it is possible to detect that the conveyed object has been conveyed to a predetermined position.
  • the load sensor is not indispensable, and for example, a configuration in which a part or all of the transport device 1 is photographed by a camera and the position of the transport object and the transport status are detected by video analysis can be considered.
  • the transport unit 20 installed in the transport direction conversion zone is a transfer device as shown in FIG.
  • the transport unit 20 has a direction changing mechanism for switching the transport direction or the carry-in direction.
  • the transfer unit 20 includes a main transfer conveyor 21, a sub transfer conveyor 22, and an elevating device (not shown).
  • the main conveyor 21 of the conveyor unit 20 is a belt conveyor in which a plurality of thin belts 25 are arranged at regular intervals.
  • the main conveyor 21 is driven by a drive motor (drive device) (not shown).
  • the main transfer conveyor 21 is projected above the sub-conveyor 22 by an elevating device (not shown), and the motor built-in roller of the main transfer conveyor 21 is used. 28 is driven and the belt 25 is driven.
  • the conveyed object M mounted on the transfer unit 20 is discharged in the lateral direction, after the conveyed object is drawn into the main conveyor 21, the sub-conveyor 22 is raised by an elevating device (not shown) and the main conveyor 21 is moved. It descends, causes the sub-conveyor 22 to project above the main conveyor 21, drives the motor-embedded rollers of the sub-conveyor 22, and rotates each conveyor 26.
  • the motor built-in roller of the sub-conveyor 22 also has a drive motor (drive device).
  • the transport unit 20 is also provided with a load sensor S (not shown).
  • a zone controller (not shown) is also attached to the transport unit 20.
  • the transfer units 2 and 20 are all low load specifications, and the maximum tangential force of the transfer roller 5, the transfer roller 26, and the belt 25 is 100 Newton or less. Therefore, even if the worker's body is pinched, it does not lead to a serious accident.
  • a plurality of transport units 2 and 20 are connected to form a transport path 7.
  • the layout of the transport device 1 is as shown in FIG. 1, and has a branched transport path 7.
  • Each zone has its own unique address.
  • the addresses 1 to 19 are assigned as shown in FIG.
  • the address of the first zone is 1, and the address of the second zone is 2.
  • the addresses are sequentially attached.
  • the address of each zone is stored in the zone controller 10 of each zone.
  • the arrows attached to each zone model the functions of the transport units 2 and 20 in each zone, and the meanings of the arrows indicate the transport direction.
  • the transfer device 1 only the transfer unit 2 for straight travel and the transfer unit 20 for branching are used.
  • the straight arrow indicates the zone conveyor which is the transport unit 2 of the straight transport zone.
  • the branching arrow indicates the transfer device which is the transfer unit 20 in the transfer direction conversion zone.
  • the fifth zone and the ninth zone are the transfer unit (transfer device) 20, and the other zones are the transfer unit 2 for straight travel.
  • each zone has a zone controller 10 and a load sensor S.
  • the zone controller 10 supplies electric power to the drive motors 15 (drive devices) of the transport units 2 and 20 in each zone, and drives and stops the drive motors 15 of the transport units 2 and 20 in each zone. ..
  • the zone controller 10 is an individual control device having a control circuit 40 that individually controls the transfer units 2 and 20. That is, the zone controller 10 has a built-in drive circuit 42 that drives the drive motor 15 as shown in FIG.
  • the zone controller 10 has a control circuit 40 (control means) that controls the drive circuit 42.
  • the control circuit 40 has a memory (not shown), and an individual program for operating the drive device according to a certain operation logic is stored in the memory.
  • the control circuit 40 operates the drive circuit 42 according to a predetermined control logic to drive / stop the drive motor 15 (drive device). That is, the transport units 2 and 20 are driven when specific drive conditions are satisfied according to a predetermined control logic.
  • the driving conditions are not limited, there are cases where the conveyed material is discharged from the own zone to the downstream zone and cases where the conveyed material is introduced from the upstream zone.
  • the driving conditions for discharging the transported material from the own zone to the downstream zone are not limited, but for example, the own zone is in the load sensor ON state and the downstream side is in the load sensor OFF state. A case is assumed. Further, even when the own zone is in the load sensor ON state and the downstream zone is driven, the own zone is driven.
  • the driving conditions for introducing the transported object from the upstream zone are not limited, but for example, the own zone may be in the load sensor OFF state and the upstream side may be in the load sensor ON state. is assumed.
  • the zone controller 10 has a built-in transport destination storage member (transport destination storage means) 47 and a transmission / reception unit (communication means) 41.
  • the transport destination storage member 47 is a memory, and functions as a transport destination storage means for temporarily storing transport destination information.
  • the "transport destination information" is the transfer destination on the transfer device 1, and is information including the above-mentioned address.
  • the transmission / reception unit 41 transmits / receives a signal to / from the zone controller 10 in the adjacent zone, and has a function as an information receiving means for receiving transport destination information from the upstream zone and the downstream zone. It has a function as an information transmission means for transmitting destination information.
  • the zone controller (individual control device) 10 can also perform mutual communication with the host control device 46 by the transmission / reception unit (communication means) 41.
  • the zone controller (individual control device) 10 also operates according to a command from the host control device 46. That is, the drive circuit 42 can be operated by the signal from the host control device 46 to drive / stop the drive motor 15 (drive device).
  • Zone controllers 10 are provided in all zones, and adjacent zone controllers 10 are connected to each other by a signal line 43. Further, the signal of the load sensor S of each zone is input to each zone controller 10. Further, all the zone controllers 10 and the upper control device 46 are connected by a communication network 27 and communicate with each other.
  • one zone controller (individual control device) 10 is provided for each zone, but one zone controller (individual control device) may control a plurality of zones.
  • the transport object specifying device 45 is installed in the first zone, which is the start position.
  • the transported object specifying device 45 is a bar code reader.
  • the upper control device 46 includes an operation instruction unit 30, a transfer destination selection unit 31, a transfer destination instruction unit 32, a movement route estimation unit 33, a transfer order storage unit 48, a movement status monitoring unit 35, a peripheral information confirmation unit 36, and a route comparison unit. It has 37, a priority order determining means 58, a forced drive / stop means 38, a history recording means 50, and a communication means 56. Further, the upper control device 46 includes a display device 60.
  • the operation instruction means 30 instructs the start / stop of the entire transfer device 1 and the start / stop of the transfer units 2 and 20 to be controlled to the individual zone controllers 10.
  • the transport destination selection means 31 determines the transport destination of each transported object.
  • the information read from the transported object specifying device 45 described above is sent to the host control device 46.
  • the transport destination selection means 31 of the upper control means identifies the transported object from the information described in the bar code, and inquires about the transport destination (destination location) of the transported object. Further, the movement route assuming means 33 determines the movement route of the transported object, and the transfer route is stored for each transported object. Then, the destination indicating means 32 transmits the address of the destination to the zone controller 10 in the second zone, and inputs the address to the transport destination storage member 47 of the zone controller 10 in the second zone.
  • the transport destination information input to the transport destination storage member 47 is sequentially fed to the zone controller 10 on the downstream side together with the transport of the transported object.
  • the transport order storage means 48 stores the order in which each transported object is transported.
  • each zone controller 10 and the upper control device 46 are coupled by a communication network 27 to communicate with each other, and information is exchanged.
  • Information on the cargo sensor S and information on the transported object on the zone are input to the upper control device 46 from each zone controller 10 via the communication network 27.
  • the movement status monitoring means 35 monitors the current operating status of the transport device 1 based on the information obtained by the communication network 27. That is, whether or not there is a transported object in each zone, what the transported object is, the operating state of each zone, and the like are monitored by the movement status monitoring means 35.
  • the movement status monitoring means 35 displays the layout of the transport device 1 on the display device 60, and further displays in which zone the transport object M is located. Further, the moving status of the conveyed object M is displayed as a moving image on the display device 60.
  • the peripheral information confirmation means 36 confirms the driving state of the zone in which the conveyed object is placed and the zones before and after the conveyed object, and the presence or absence of the conveyed object when the conveyed object is stopped due to some abnormality.
  • the route comparison means 37 compares the movement route determined by the movement route assumption means 33 with the route on which the transported object is actually going to move.
  • the priority order determining means 58 determines the priority order from which the transport unit to carry the transport material to the confluence portion when the transport unit in front of the confluence portion has the transport material at the same time.
  • the forced drive / stop means 38 sends a signal to a specific zone via a communication means to forcibly drive or stop the specific zone. That is, even if the drive conditions are not satisfied, the specific zone is forcibly driven by the signal from the forced drive / stop means 38. On the contrary, even if the driving conditions are satisfied, the specific zone is forcibly stopped by the signal from the forced driving / stopping means 38.
  • the forced drive / stop means 38 transmits a signal from the host control device 46 to perform an operation (correction operation) different from the control logic of the individual program of each zone controller 10.
  • the history recording means 50 records the history when the forced drive / stop means 38 functions and the operation of the zone is corrected. That is, when the correction operation is executed, the history recording means 50 records the situation before and after the correction.
  • the transport object is placed in the first zone, which is the start position.
  • a barcode or the like (not shown) is attached to the transported object.
  • the bar code attached to the transported object is read by the transported object specifying device 45, and the signal is sent to the host control device 46.
  • the upper control means identifies the transported object from the information described in the barcode, inquires about the transport destination (destination location) of the transported object, transmits the address of the destination location to the zone controller 10 in the second zone, and the second Input to the transport destination storage member 47 of the zone controller 10 of the two zones.
  • the load sensor is turned on in the first zone. If there is no object to be transported in the second zone, the zone controller in the first zone is driven with the drive conditions satisfied. Further, the zone controller in the second zone is also driven by satisfying the driving conditions. As a result, the second zone is also driven, and the conveyed material moves from the first zone to the second zone. The subsequent third zone is also driven when the driving conditions are satisfied. The transported material moves from the second zone to the third zone.
  • the information regarding the destination of the transported object is also inherited from the second zone to the third zone. After that, the transported items are sequentially moved to the downstream side, and the information on the transported destination is also sequentially forwarded. Then, the transported object moves to a predetermined transport destination.
  • the conveyed object is sequentially moved to the first zone, the second zone, the third zone, and the like by the communication network 27 is notified to the upper control device 46, and each of them is notified by the movement status monitoring means 35.
  • the movement status of the transported object and the current operating status of the transport device 1 are monitored.
  • the peripheral information confirmation means 36 is used to drive the zone in which the transported object is placed and the zones before and after the transported object, and the transported object.
  • the presence or absence of is automatically confirmed (hereinafter referred to as the status confirmation operation).
  • the status confirmation operation is automatically executed.
  • the forced drive / stop means 38 sends a signal to the stopped zone or the zone on the downstream side thereof to forcibly drive the zone (hereinafter, referred to as “)”. Forced drive operation).
  • the stopped zone and the zone on the downstream side thereof are forcibly driven by the signal from the forced drive / stop means 38.
  • the history recording means 50 records the situation before and after the correction.
  • the upper control device 46 is provided with a transport order storage means 48 and a priority order determination means 58.
  • the transport order storage means 48 stores the order in which each transported object is transported. When the conveyed objects arrive at the zone in front of the confluence at the same time, and the two conveyed objects stop in this state and become immobile, the preceding conveyed objects stored in the transport order storage means 48 merge first. It is brought into the department.
  • the priority order determining means 58 issues a command to introduce one of the conveyed objects into the merging section and then to bring the other conveyed object into the merging section regardless of the destination of the conveyed objects or the order of the conveyed objects. It is emitted to the transport unit in front of it.
  • the transport order storage means 48 When the conveyed items arrive at the zone in front of the confluence at the same time, and the two conveyed items stop and stop moving in this state, or when the transferred items are stored in the transport order storage means 48.
  • the items to be conveyed in the above-mentioned transfer order are first delivered to the confluence.
  • the transport order storage means 48 does not store the transport order of the transported objects, the transport units are driven in the order determined by the priority order determining means 58 by a command from the higher control device 46.
  • the movement route assuming means 33 of the upper control device 46 determines the movement route of the conveyed object, and the transferred object is stored for each conveyed object. Further, in the present embodiment, the movement status monitoring means 35 monitors the driving state of each zone and predicts the zone in which each transported object will move next. Then, the direction to be moved next and the route determined by the movement route assuming means 33 are compared by the route comparison means 37.
  • the transport destination based on the information of the transport destination that has been sequentially forwarded and the discharge destination according to the record of the movement route assuming means 33 may differ depending on some circumstances. If they are different, the forced drive / stop means 38 sends a signal to the zone on which the transported object is placed or the zone on the downstream side thereof, and forcibly stops or drives the zone. That is, the destination is corrected by the signal from the forced drive / stop means 38. When the destination of the conveyed object is corrected by the higher control device 46, the history recording means 50 records the situation before and after the correction.
  • FIG. 5A shows the original transport path of the transported object A. That is, the conveyed object A is an conveyed object to be conveyed linearly from the first zone to the tenth zone.
  • FIG. 5B shows the original transport path of the transported object B. That is, the transported object B is a transported object that should change its course in the 5th zone to reach the 11th zone to the 19th zone and join the straight line portion in the 9th zone.
  • the transported object A moves from the first zone to the tenth zone without stopping as shown by the arrow in FIG. 5 (a).
  • the conveyed object A may stop in the seventh zone and may not move any further.
  • the peripheral information confirmation means 36 performs a status confirmation operation, and the transported object is placed. It is confirmed whether or not there is a transported object in the 8th zone, which is downstream of the 7th zone. If there is no transported object in the eighth zone downstream as shown in FIG. 6 (a), the seventh zone stopped by the forced drive / stop means 38 as shown in FIG.
  • a signal is sent from the host control device 46 to the zone 8 to forcibly drive the zone. That is, even if the correction operation is executed and the drive conditions are not satisfied, the seventh zone and the eighth zone are driven by the signal from the forced drive / stop means 38, and the conveyed object A moves to the downstream side.
  • the conveyed object A is an conveyed object to be conveyed linearly from the first zone to the tenth zone. Therefore, when the conveyed object A reaches the fifth zone, the sixth zone on the downstream side thereof must be driven, and the eleventh zone of the detour must be stopped. However, as shown in FIG. 7A, for example, when the conveyed object A reaches the fifth zone, the sixth zone to be advanced may be stopped and the eleventh zone to be advanced may be driven.
  • the peripheral information confirmation means 36 moves the transported object to the sixth zone, which is downstream of the fifth zone in which the conveyed object is placed. It is confirmed whether or not there is.
  • the forced drive / stop means 38 as shown in FIG. 7 (b) is used to bring the downstream zone into the sixth zone and the detour into the eleventh zone.
  • a signal is sent to the zone to drive the sixth zone and stop the eleventh zone. That is, even if the drive conditions are not satisfied, the sixth zone is driven by the signal from the upper control device 46 by the forced drive / stop means 38. Further, even if the drive conditions are satisfied, the eleventh zone is stopped by the signal from the forced drive / stop means 38.
  • the transport device 1 shown in FIG. 1 there are a straight road that goes to the 5th, 6th, 7th, 8th, and 9th zones, and a detour that goes to the 5th, 11th, 12th, .... 9th zones, and the 9th zone merges. It is a department.
  • FIG. 8A when the transported material A and the transported material B arrive at the 8th and 19th zones in front of the confluence at the same time, one of them is programmed to pass first.
  • the transport device 1 may stop in the state shown in 8 (a).
  • the peripheral information confirming means 36 transports the transported object to the 9th zone downstream of the 8th and 19th zones where the transported object is placed. It is confirmed whether or not there is an object.
  • the preceding transported object stored in the transport order storage means 48 is first carried into the confluence portion.
  • the conveyed object A is passed first, and as shown in FIG. 8B, a signal is sent to the eighth zone in which the conveyed object A is stopped and the ninth zone on the downstream side thereof by the forced drive / stop means 38. Is sent to force the zone to be driven. That is, even if the drive conditions are not satisfied, the eighth zone and the ninth zone are driven by the signal from the forced drive / stop means 38, and the conveyed object A moves to the downstream side.
  • a signal is sent to the 19th zone in which the conveyed object B is stopped and the 9th zone on the downstream side thereof, and the zone is forcibly driven. That is, even if the drive conditions are not satisfied, the 19th zone and the 9th zone are driven by the signal from the forced drive / stop means 38, and the conveyed object B moves to the downstream side.
  • the transport units are driven in the order determined by the priority order determining means 58 by a command from the higher control device 46. For example, a signal is sent to the eighth zone and the ninth zone on the downstream side thereof to forcibly drive the zone.
  • the history recording means 50 records the situation before and after the correction. Therefore, it is possible to verify the cause of the problem.
  • the upper control device 46 has the movement status monitoring means 35, and the movement status monitoring means 35 monitors the current position and the movement status of each transported object, and the state around the transported object is used.
  • the transport unit on which the transport was placed was stopped even though the transport was movable, a forced drive operation was performed to eject the transport from the zone.
  • the current position and movement status of each transported object are monitored, but the overall movement of the transport device 1 is monitored from a bird's-eye view, and if there is a problem, a zone is provisionally monitored. The driving condition of may be changed.
  • the transport device 1 of the present embodiment adopts the distributed control system, the first to fourth zones are always stopped, and only the zones satisfying the drive conditions are driven.
  • the load sensor S there is a problem in the load sensor S, and the transported object may be stagnant in a specific zone. In such a case, it is also recommended to change the driving condition itself of the zone.
  • the upper control device 57 adopted in the transport device 100 of the present embodiment includes an operation instruction means 30, a transport destination selection means 31, a transport destination instruction means 32, a desired operation storage means 51, and an operation status monitoring means. It has 52, an operation comparison means 53, a program rewriting means 55, a history recording means 50, and a communication means 56.
  • the functions of the operation instructing means 30, the transport destination selecting means 31, the transport destination instructing means 32, the history recording means 50, and the communication means 56 are the same as those in the above-described embodiment.
  • the desired operation storage means 51 stores the desired operation of the transfer device 100. For example, as described above, when the transported object is carried into the first zone, it is stored as a desirable operation that the conveyed object is carried into the fourth zone without delay.
  • the operation status monitoring means 52 monitors the operation status of each zone from the information obtained by the communication means 56.
  • the operation comparison means 53 compares the current operation state of the transfer device 100 obtained by the operation state monitoring means 52 with the desired operation of the transfer device 100 stored in the desired operation storage means 51. As a result of comparison, if a predetermined discrepancy occurs between the two, the program of the zone controller 10 is rewritten or replaced by the program rewriting means 55, and an operation close to the desired operation is executed in preference to the individual programs so far. Let me.
  • the load sensor is OFF on the downstream side of a specific zone, the load sensor is not turned off, and the load sensor is ON on the upstream side of the zone.
  • the zone on the side may remain stopped.
  • Such a state can be detected by the operation status monitoring means 52.
  • the above situation is different from the desired operation of the transfer device 100 stored in the desired operation storage means 51 by a certain amount or more.
  • the program of the zone controller 10 is changed by the program rewriting means 55.
  • the drive motor 15 drive device in the own zone
  • the control logic is changed to a program that constantly rotates the drive motor 15.
  • the program is changed so that the start / stop of the drive motor 15 is adjusted to the front and rear zones. As a result, the operation of the transport device 100 becomes close to the desired operation.
  • the desirable motion stored in the desired motion storage means 51 described above exemplifies a rough motion such as "when the transported object is carried into the first zone, it is carried into the fourth zone without delay".
  • a rough motion such as "when the transported object is carried into the first zone, it is carried into the fourth zone without delay".
  • simulation software simulation software
  • the desired operation of the transport device 100 by moving the transport object A or the transport object B is assumed on the software, and this is used. It may be stored in the desired motion storage means 51.
  • the simulation software stores the layout of the transport device 100, the length of each zone, the mechanical structure, the rotation speed of the drive motor, the generated torque, the position of the load sensor, and the like. Further, the simulation software also stores the control circuit 40 of the zone controller 10, individual programs, various settings, and the like, so that the operations of the transfer devices 1 and 100 can be faithfully realized in the virtual space.
  • a large number of conveyed objects A and a large number of conveyed objects including the conveyed object B are simultaneously conveyed by the conveyor device on the virtual space of the simulation software, the desired operation of the transfer device 100 is executed on the virtual space, and the situation at that time is desired. It is stored in the operation storage means 51. Then, the current operation status of the transport device 100 obtained by the operation status monitoring means 52 and the desired operation of the transport device 100 stored in the desired motion storage means 51 are compared, and there is a certain difference or more between the two. In that case, the program of the zone controller 10 is changed by the program rewriting means 55.
  • the operation executed by the simulation software is stored in the desired operation storage means 51, but as shown in FIG. 10, the desired operation assuming means 70 equipped with the simulation software is provided in the upper control device 57, and is actually used.
  • the program of the zone controller 10 may be changed by the program rewriting means 55 when the transfer device 100 is operated in the virtual space in parallel with the transfer device 100 of the above and there is a difference of a certain value or more between the two. ..
  • the desired operation assuming means 70 operates the transport device 100 in the virtual space independently of the actual transport device 100, and virtually moves the transported object.
  • the virtual load sensor is turned on and off, and it is input to each zone controller in the virtual space to control the drive motor in the virtual space and move the transported object in the virtual space.
  • the simulation software and the desired operation assuming means 70 can also be adopted in the embodiment shown in FIG. That is, when the desired operation assumption means 70 is adopted in place of the peripheral information confirmation means 36 or in addition to the peripheral information confirmation means 36, and it is detected that the transported object stays in the same zone for a certain period of time, it is detected.
  • the desired operation assuming means 70 confirms whether or not there is a transported object in the surrounding zone. Assuming that the transport device 1 has been operating normally up to that point, the desired operation presuming means 70 determines the drive state of the zone on which the transport object is placed and the zones before and after it, and the presence or absence of the transport object. Can be estimated.
  • the actual movement status of the individual transported object confirmed by the movement status monitoring means 35 may be compared with the virtual movement status assumed by the desired operation estimation means 70 or the simulation software.
  • Transport device 10 Zone controller (individual control device) 15 Drive motor (drive device) 20 Transport unit 30 Operation instruction means 31 Transport destination selection means 32 Transport destination instruction means 33 Movement route assumption means 35 Movement status monitoring means 36 Peripheral information confirmation means 37 Route comparison means 38 Forced drive / stop means 40 Control circuit 41 Transmission / reception unit 42 Drive Circuits 46, 57 Upper control device 47 Transport destination storage member 48 Transport order storage means 50 History recording means 51 Desired operation storage means 52 Operation status monitoring means 53 Operation comparison means 55 Program rewriting means 58 Priority determination means 60 Display device 100 Transport device S Load sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Conveyors (AREA)

Abstract

停止する頻度を少なくすることができる搬送装置を提供することを課題とする。 複数の搬送ユニットが接続されて搬送路7が構成され、前記搬送ユニットは、当該搬送ユニットを駆動する駆動装置と、当該搬送ユニットを制御する個別制御装置を有し、当該個別制御装置は、特定の駆動条件を充足した場合に前記搬送ユニットを駆動させる搬送装置において、上位制御装置46を有し、当該上位制御装置46は、前記個別制御装置と通信が行われ、前記上位制御装置46は、前記搬送路7上の現実の搬送物の移動状況を監視する移動状況監視手段35を有し、特定の搬送物の周囲の状態から当該搬送物が移動可能な状況であるにも関わらず当該搬送物が載置された搬送ユニットが停止している場合、前記駆動条件にかかわらず、前記搬送ユニットを駆動させる修正動作が実行される。

Description

搬送装置
 本発明は、コンベヤ装置等の搬送装置に関するものである。
 搬送装置の一形態として、分散制御式の搬送装置が知られている(特許文献1)。分散制御とは、複数のゾーンコンベヤと称される搬送ユニットを直列状や枝分かれ状に並べて一連の搬送路を形成するものであり、各搬送ユニットはそれぞれ独立した駆動モータ(駆動装置)を持っている。また各搬送ユニットには在荷センサーが設けられている。在荷センサーは搬送ユニット上に搬送物があるか否かを検知するセンサーである。各搬送ユニットには、ゾーンコントローラと称される制御装置が付属している。制御装置には、CPUと記憶手段が内蔵されており、記憶手段に、論理回路(制御回路)を構成するコンピュータプログラムが格納されている。
 分散制御式の搬送装置では、各搬送ユニットが一つのゾーンを構成し、各ゾーンがつながれている。
 そして例えば自己のゾーン(搬送ユニット)に搬送物が存在し、下流側のゾーンに搬送物が存在しないといった所定の駆動条件が揃うと、自己のゾーン(搬送ユニット)の駆動モータを起動し、搬送物を下流側のゾーンに送る。
 具体的には、自己のゾーンの在荷センサーが自己のゾーン上の搬送物を検知し(以下 在荷センサーONと称する場合がある)、下流側のゾーンの在荷センサーが、搬送物を検知していない(以下 在荷センサーOFFと称する場合がある)という条件が揃うと、自己のゾーン(搬送ユニット)の駆動モータを起動し、搬送物を下流側のゾーンに送る。
 駆動条件は、上記した動作論理に限られない。
特開2005-231745号公報 特開2013-230914号公報
 従来技術の搬送装置は、長時間に渡って動作が停止してしまうことがあるという問題がある。
 例えば、自己のゾーンに搬送物があって、在荷センサーONであり、下流側のゾーンが在荷センサーOFFであれば、自己のゾーン(搬送ユニット)が駆動するが、自己のゾーンに搬送物があるにも関わらず、在荷センサーが誤検知して在荷センサーOFFの状態であるならば、当該ゾーンは駆動しない。
 在荷センサーの故障が停止の原因であるならば、当該ゾーンは恒久的に停止してしまう。一つのゾーンが停止すると、当該ゾーンよりも上流側のゾーンが渋滞し、結果的に搬送装置全体が停止してしまう。
 また他の理由によって、搬送装置を停止させることを余儀なくされる場合もある。
 本発明は、従来技術の上記した問題に注目し、停止する頻度を少なくすることができる搬送装置を提供することを課題とするものである。
 上記した課題を解決するための態様は、複数の搬送ユニットが接続されて搬送路が構成され、前記搬送ユニットは、当該搬送ユニットを駆動する駆動装置と、当該搬送ユニットを制御する個別制御装置とを有し、当該個別制御装置は、特定の駆動条件を充足した場合に前記搬送ユニットを駆動させる搬送装置において、上位制御装置を有し、当該上位制御装置は、前記個別制御装置と通信が行われ、前記上位制御装置は、前記搬送路上の現実の搬送物の移動状況を監視する移動状況監視手段を有し、特定の搬送物の周囲の状態から当該搬送物が移動可能な状況であるにも関わらず当該搬送物が載置された搬送ユニットが停止している場合、前記駆動条件にかかわらず、前記上位制御装置の指令によって前記搬送ユニットを駆動させる修正動作が実行されることを特徴とする搬送装置である。
 個別制御装置は、搬送ユニットごとに設けられている場合が多いが、一つの個別制御装置で複数の搬送ユニットを制御する場合もある。
 上記した態様において、前記個別制御装置間で搬送物の行き先に関する情報が交換され、搬送物が所定の搬送先に搬送されるものであり、前記上位制御装置は、搬送物の移動経路を想定する移動経路想定手段を有し、特定の搬送物が、前記移動経路想定手段で想定された移動経路から外れようとしている場合、前記個別制御装置間で交換された行き先に関する情報に優先して前記移動経路想定手段で想定された経路に搬送物が誘導される修正動作が実行されることが望ましい。
 本態様によると、搬送物の誤配送の頻度が低減される。
 同様の課題を解決するためのもう一つの態様は、複数の搬送ユニットが接続されて搬送路が構成され、前記搬送ユニットは、当該搬送ユニットを駆動する駆動装置と、当該搬送ユニットを制御する個別制御装置とを有し、当該個別制御装置は、特定の駆動条件を充足した場合に前記搬送ユニットを駆動させるものであり、前記個別制御装置間で搬送物の行き先に関する情報が交換され、前記搬送物が所定の搬送先に搬送される搬送装置において、上位制御装置を有し、当該上位制御装置は、前記個別制御装置と通信が行われ、前記上位制御装置は、搬送物の移動経路を想定する移動経路想定手段と、搬送路上の現実の搬送物の移動状況を監視する移動状況監視手段を有し、特定の搬送物が、前記移動経路想定手段で想定された移動経路から外れようとしている場合、前記個別制御装置間で交換された行き先に関する情報に優先して前記移動経路想定手段で想定された経路に搬送物が誘導される修正動作が実行されることを特徴とする搬送装置である。
 本態様によると、搬送物の誤配送の頻度が低減される。
 同様の課題を解決するためのもう一つの態様は、複数の搬送ユニットが接続されて搬送路が構成され、前記搬送ユニットには、当該搬送ユニットを駆動する駆動装置と、一定の動作論理に従って搬送ユニットを動作させる個別プログラムが格納された個別制御装置とを有する搬送装置において、上位制御装置を有し、当該上位制御装置は、前記個別制御装置と通信が行われ、各搬送ユニットの動作状態を個別に監視する動作状況監視手段と、前記搬送装置の望ましい動作を記憶する希望動作記憶手段及び/又は前記搬送装置の望ましい動作を仮想的に実行する希望動作想定手段とを有し、前記搬送装置の望ましい動作と、動作状況監視手段によって得られた前記搬送装置の現実の動作を比較し、両者の間に所定の乖離が生じた場合に、前記個別プログラムに優先して望ましい動作に近い動作を実行させる修正動作が実行されることを特徴とする搬送装置である。
 上記した各態様において、いずれかの前記修正動作が実行された場合、その際の状況が記録されることが望ましい。
 上記した各態様において、前記搬送ユニットのいずれかは、ローラコンベヤであり、ローラの接線力が、100ニュートン以下であることが望ましい。
 前記搬送装置は、複数の搬送路が合流する合流部を有し、複数の搬送路であって、前記合流部の手前の搬送ユニットに同時に搬送物がある場合、いずれの搬送ユニットから合流部に搬送物を搬入するかの優先順位が予め決められていることが望ましい。
 前記上位制御装置に、各搬送物の搬送順序が記憶されていることが望ましい。
 本発明の搬送装置は、従来に比べて、停止する頻度が少ない。
本発明の第一実施形態のコンベヤ装置のレイアウト及び上位制御装置のブロック図である。 直線搬送ゾーンを構成する搬送ユニットの斜視図である。 搬送方向変換装置によって構成された搬送方向変換ゾーン近傍の斜視図である。 ゾーンコントローラのブロック図及び各ゾーンコントローラと上位制御装置の関係を示す回路図である (a)は、搬送物Aの搬送経路を示す説明図であり、(b)は、搬送物Bの搬送経路を示す説明図である。 (a)は、搬送物Aがゾーン7で停止し、動かなくなった状態を示し、(b)は、停止が強制解除された状態を示す説明図である。 (a)は、搬送物Aが本来の搬送経路から外れようとした状態を示し、(b)は、搬送経路が修正された状態を示す説明図である。 (a)は、搬送物Aと搬送物Bが合流部の手前で停止し、動かなくなった状態を示し、(b)(c)は、停止が強制解除された状態を示す説明図である。 本発明の第二実施形態のコンベヤ装置のレイアウト及び上位制御装置のブロック図である。 本発明の第三実施形態のコンベヤ装置のレイアウト及び上位制御装置のブロック図である。
 以下、本発明の実施形態について説明する。
 本実施形態の搬送装置1は、図1に示す様なレイアウトのコンベヤであり、搬送路7が分岐されていて、搬送物を搬送する目的場所やルートが複数存在するコンベヤ装置である。また搬送装置1は、上位制御装置46を有している。
 搬送装置1の搬送路7は、直線部分が複数の短いゾーンに分割されている。即ち搬送装置1では、搬送路7の直線部分は、複数の直線搬送ゾーンが直列に連結されて構成されている。また搬送装置1は、複数の搬送方向変換ゾーンを含んでおり、枝分かれした搬送路7を構成するものである。
 搬送装置1は、パレット、コンテナ、トレイといった概ね一定の大きさの搬送物を搬送することを目的としており、各ゾーンの長さは、少なくとも一個の搬送物を載置可能な長さを有している。
 各ゾーンにはそれぞれ一台ずつ搬送ユニット2、20が配置されている。搬送ユニット2、20は、機械的構造部分とゾーンコントローラ10が一体化されたものである。
 直線搬送ゾーンに設置される搬送ユニット2は、図2に示す様なゾーンコンベヤである。搬送方向変換ゾーンに設置された搬送ユニット20は、図3に示す様な移載装置である。
 搬送ユニット2は、短尺のローラコンベヤであり、搬送ローラ5は、自由に回転する従動ローラ5bと、モータ内蔵ローラ5aとからなる。本実施形態では、モータ内蔵ローラ5aは1本だけであり、他はすべて伝動ベルト6で繋がれて回転する従動ローラ5bである。モータ内蔵ローラ5aには駆動装置として、駆動モータ15が内蔵されている。駆動モータ15は、回転に応じてパルス信号を出力する機能を有している。他のモータ内蔵ローラの駆動モータについても同様である。
 また図2に示すように、搬送ユニット2には在荷センサーSが設けられている。在荷センサーSは、サイドフレーム3上に設けられている。
 在荷センサーSは、搬送物が、当該搬送ユニット2上にあるか否かを検知するものである。
 在荷センサーSとしては、光電センサーを用いることができ、対向するサイドフレーム3に発光ダイオードや赤外線ダイオード等の発光素子(図示せず)が設けられている。これにより、搬送物が搬送されてくると、発光素子からの光が遮られてオン(Hレベル)信号を出力し、被搬送物が存在しない場合にはオフ(Lレベル)信号を出力する。この様に在荷センサーSがオン/オフされ、搬送物が所定位置まで搬送されたことを検知することが可能である。
 なお在荷センサーは、必須ではなく、例えばカメラで搬送装置1の一部又は全部を撮影し、映像解析によって搬送物の位置や、搬送状況を検知する様な構成も考えられる。
 次に搬送方向変換ゾーンについて説明する。搬送方向変換ゾーンに設置された搬送ユニット20は、図3に示す様な移載装置である。搬送ユニット20は、搬送方向又は搬入方向を切り換える方向変換機構を有している。
 搬送ユニット20は、図3の様に主搬送コンベヤ21と、副搬送コンベヤ22及び図示しない昇降装置によって構成されている。
 搬送ユニット20の主搬送コンベヤ21は、複数の細いベルト25が一定の間隔を設けて配されたベルトコンベヤである。主搬送コンベヤ21は、図示しない駆動モータ(駆動装置)によって駆動される。
 搬送ユニット20に載置された搬送物Mを直進させる場合には、昇降装置(図示せず)によって主搬送コンベヤ21を副搬送コンベヤ22よりも上に突出させ、主搬送コンベヤ21のモータ内蔵ローラ28を駆動し、ベルト25を走行させる。
 搬送ユニット20に載置された搬送物Mを横方向に排出する場合は、主搬送コンベヤ21に搬送物を引き入れた後に、図示しない昇降装置によって副搬送コンベヤ22を上昇させると共に主搬送コンベヤ21を降下し、副搬送コンベヤ22を主搬送コンベヤ21よりも上に突出させ、副搬送コンベヤ22のモータ内蔵ローラを駆動し、各搬送ローラ26を回転させる。副搬送コンベヤ22のモータ内蔵ローラにも駆動モータ(駆動装置)がある。
 搬送ユニット20にも在荷センサーSが設けられている(図示せず)。また搬送ユニット20にもゾーンコントローラ(図示せず)が取り付けられている。
 搬送ユニット2、20は、いずれも低荷重仕様であり、搬送ローラ5、搬送ローラ26、ベルト25の最大接線力は、100ニュートン以下である。従って、仮に作業者の身体が挟まれても、重篤な事故には至らない。
 搬送装置1では、複数の搬送ユニット2、20が接続されて搬送路7が構成されている。搬送装置1のレイアウトは、図1の通りであり、枝分かれした搬送路7を有している。
 各ゾーンには、それぞれ固有のアドレスが設定されている。便宜上、図1の様に1番から19番のアドレスが付されたものとする。本実施形態では、第1ゾーンのアドレスが1であり、第2ゾーンのアドレスは2である。以下、順次アドレスが付されている。
 各ゾーンのアドレスは、各ゾーンのゾーンコントローラ10に記憶されている。
 図1において、各ゾーンに付された矢印は、各ゾーンの搬送ユニット2、20の機能をモデル化したものであり、矢印の意味は、搬送方向を示している。搬送装置1では、直進用の搬送ユニット2と分岐用の搬送ユニット20だけを使用している。即ち直線の矢印は、直線搬送ゾーンの搬送ユニット2たるゾーンコンベヤを示している。
 矢印が分岐しているものは、搬送方向変換ゾーンの搬送ユニット20たる移載装置を示している。第5ゾーンと、第9ゾーンが搬送ユニット(移載装置)20であり、他のゾーンは、直進用の搬送ユニット2である。
 前記した様に、各ゾーンには、ゾーンコントローラ10と在荷センサーSがある。ゾーンコントローラ10は、各ゾーンの搬送ユニット2、20の駆動モータ15(駆動装置)に電力を供給するものであり、各ゾーンの搬送ユニット2、20の駆動モータ15を駆動、停止するものである。
 ゾーンコントローラ10は、図4の様に、搬送ユニット2、20を個別に制御する制御回路40を有する個別制御装置である。
 即ちゾーンコントローラ10には、図4の様に駆動モータ15を駆動する駆動回路42が内蔵されている。
 ゾーンコントローラ10には、駆動回路42を制御する制御回路40(制御手段)がある。制御回路40は、図示しないメモリーを有し、当該メモリーに、一定の動作論理に従って駆動機器を動作させる個別プログラムが格納されている。当該制御回路40は、所定の制御論理に則って駆動回路42を動作させ、駆動モータ15(駆動装置)を駆動・停止するものである。
 即ち、搬送ユニット2、20は、所定の制御論理に則り、特定の駆動条件を充足した場合に駆動する。
 駆動条件限定されるものではないが、大きく分けて自己のゾーンから下流側のゾーンに搬送物を排出する場合と、上流側のゾーンから、搬送物を導入する場合がある。
 自己のゾーンから下流側のゾーンに搬送物を排出する場合の駆動条件は限定されるものではないが、例えば、自己のゾーンが在荷センサーON状態であり、下流側が在荷センサーOFF状態である場合が想定される。
 また自己のゾーンが在荷センサーON状態であり、下流側のゾーンが駆動している場合も、自己のゾーンが駆動される。
 上流側のゾーンから、搬送物を導入する場合の駆動条件は、限定されるものではないが、例えば、自己のゾーンが在荷センサーOFF状態であり、上流側が在荷センサーON状態である場合が想定される。
 またゾーンコントローラ10には、搬送先記憶部材(搬送先記憶手段)47と、送受信部(通信手段)41が内蔵されている。
 搬送先記憶部材47はメモリーであり、搬送先情報を一時的に記憶する搬送先記憶手段として機能する。なおここで「搬送先情報」とは、搬送装置1上の搬送先であり、前記したアドレスを含む情報である。また送受信部41は、隣接するゾーンのゾーンコントローラ10との間で信号の授受を行うものであり、上流側のゾーンから搬送先情報を受けとる情報受入れ手段としての機能と、下流側のゾーンに前記搬送先情報を発信する情報発信手段としての機能を備えている。
 またゾーンコントローラ(個別制御装置)10は、送受信部(通信手段)41によって上位制御装置46とも相互通信を行うことができる。ゾーンコントローラ(個別制御装置)10は、上位制御装置46の指令によっても動作する。即ち、上位制御装置46からの信号によって、駆動回路42を動作させ、駆動モータ15(駆動装置)を駆動・停止することができる。
 ゾーンコントローラ10は、全てのゾーンに設けられており、隣接するゾーンコントローラ10同士の間は、信号線43で相互に接続されている。また、各ゾーンコントローラ10には、それぞれのゾーンの在荷センサーSの信号が入力される。
 さらにすべてのゾーンコントローラ10と、上位制御装置46は、通信ネットワーク27で結ばれており、相互通信される。
 本実施形態では、一つのゾーンに一つずつゾーンコントローラ(個別制御装置)10が設けられているが、一つのゾーンコントローラ(個別制御装置)で複数のゾーンを制御してもよい。
 本実施形態の搬送装置1では、スタート位置たる第1ゾーンに、搬送物特定装置45が設置されている。搬送物特定装置45は、具体的にはバーコードリーダである。
 上位制御装置46は、動作指示手段30、搬送先選定手段31、搬送先指示手段32、移動経路想定手段33、搬送順序記憶手段48、移動状況監視手段35、周辺情報確認手段36、経路比較手段37、優先順位決定手段58、強制駆動・停止手段38、履歴記録手段50、及び通信手段56を有している。また上位制御装置46は、表示装置60を備えている。
 動作指示手段30は、搬送装置1全体の起動・停止や、個別のゾーンコントローラ10に対して、制御対象の搬送ユニット2、20の起動・停止を指示するものである。
 搬送先選定手段31は、各搬送物の搬送先を決定するものである。
 前記した搬送物特定装置45から読み取られた情報は、上位制御装置46に送られる。上位制御手段の搬送先選定手段31は、バーコードに記載された情報から、搬送物を特定し、搬送物の搬送先(目的場所)を照会する。
 また移動経路想定手段33によって、搬送物の移動経路が決定され、当該搬送経路が搬送物ごとに記憶される。
 そして搬送先指示手段32によって、目的場所のアドレスを第2ゾーンのゾーンコントローラ10に送信し、第2ゾーンのゾーンコントローラ10の搬送先記憶部材47に入力する。
 搬送先記憶部材47に入力された搬送先情報は、搬送物の搬送と共に、下流側のゾーンコントローラ10に順送りされる。
 搬送順序記憶手段48は、各搬送物が搬送されていく順序を記憶するものである。
 また本実施形態では、各ゾーンコントローラ10と上位制御装置46とが通信ネットワーク27で結合されて相互通信され、情報が交換される。
 通信ネットワーク27を経由して、各ゾーンコントローラ10からは在荷センサーSの情報と、当該ゾーン上に搬送物の情報が上位制御装置46に入力される。
 移動状況監視手段35は、通信ネットワーク27で得られた情報に基づき、現状の搬送装置1の動作状況を監視するものである。
 即ち、各ゾーン上に搬送物があるか否か、当該搬送物が何であるか、個々のゾーンの動作状態等が、移動状況監視手段35によって監視される。
 本実施形態では、移動状況監視手段35によって、表示装置60に、搬送装置1のレイアウトが表示され、さらにどのゾーンに搬送物Mがあるかが表示される。また表示装置60に、搬送物Mの移動状況が、動画表示される。
 周辺情報確認手段36は、搬送物が何らかの異常で停止した際、当該搬送物が載置されているゾーン及びその前後のゾーンの駆動状態や、搬送物の有無を確認するものである。
 経路比較手段37は、移動経路想定手段33で決定された移動経路と、実際に搬送物が移動しようとしている経路を比較するものである。
 優先順位決定手段58は、合流部の手前の搬送ユニットに同時に搬送物がある場合、いずれの搬送ユニットから合流部に搬送物を搬入するかの優先順位を決定するものである。
 強制駆動・停止手段38は、通信手段を経由して特定のゾーンに信号を送り、特定のゾーンを強制的に駆動させたり、停止させるものである。即ち、駆動条件が充足されていなくても、強制駆動・停止手段38による信号によって、特定のゾーンが強制的に駆動される。逆に、駆動条件が充足されていても、強制駆動・停止手段38による信号によって、特定のゾーンが強制的に停止される。
 強制駆動・停止手段38は、上位制御装置46から信号を発信し、各ゾーンコントローラ10の個別プログラムの制御論理とは異なる動作(修正動作)を行わせるものである。
 履歴記録手段50は、強制駆動・停止手段38が機能して、ゾーンの動作が修正された場合に、その履歴を記録するものである。即ち、修正動作が実行された場合、履歴記録手段50によって、修正の前後の状況が記録される。
 次に搬送装置1の動作について説明する。
 本実施形態の搬送装置1では、スタート位置たる第1ゾーンに、搬送物が載せられる。搬送物には、図示しないバーコード等が付されている。
 搬送物に付されたバーコードが、搬送物特定装置45で読みだされ、その信号が、上位制御装置46に送られる。
 上位制御手段ではバーコードに記載された情報から、搬送物を特定し、搬送物の搬送先(目的場所)が照会されて、目的場所のアドレスを第2ゾーンのゾーンコントローラ10に送信し、第2ゾーンのゾーンコントローラ10の搬送先記憶部材47に入力する。
 一方、第1ゾーンに搬送物が置かれることによって、第一ゾーンが在荷センサーONとなる。また第2ゾーンに搬送物が無いならば、第1ゾーンのゾーンコントローラは、駆動条件が充足されて、駆動される。また第2ゾーンのゾーンコントローラについても、駆動条件が充足されて、駆動される。その結果、第2ゾーンも駆動され、搬送物は、第1ゾーンから第2ゾーンに移動する。
 続く第3ゾーンも駆動条件が充足されることとなって駆動される。搬送物は、第2ゾーンから第3ゾーンに移動してゆく。
 ここで、本実施形態では、搬送物の搬送先に関する情報も、第2ゾーンから第3ゾーンに引き継がれてゆく。
 その後は、搬送物が順次下流側に移動し、搬送先の情報についても、順送りされてゆく。そして、搬送物は、所定の搬送先まで移動してゆく。
 一方、通信ネットワーク27によって、搬送物が第1ゾーン、第2ゾーン、第3ゾーン・・・と順次移動してゆく事実が、上位制御装置46に通知され、移動状況監視手段35によって、個々の搬送物の移動状況と、現状の搬送装置1の動作状況が監視される。
 そして、何らかの事情によって、搬送物が停止し、動かなくなってしまった場合には、周辺情報確認手段36によって、当該搬送物が載置されているゾーン及びその前後のゾーンの駆動状態や、搬送物の有無が自動的に確認される(以下、状況確認動作)。例えば、一定時間にわたって搬送物が同一のゾーンにとどまっていることが、検知されると、自動的に、状況確認動作が実行される。
 その結果、搬送物を移動させてもよい場合には、強制駆動・停止手段38によって、停止しているゾーンやその下流側のゾーンに信号を送り、当該ゾーンを強制的に駆動させる(以下、強制駆動動作)。即ち、駆動条件が充足されていなくても、強制駆動・停止手段38による信号によって、停止しているゾーンやその下流側のゾーンを強制的に駆動させる。
 停止しているゾーンやその下流側のゾーンが、上位制御装置46によって、強制的に駆動された場合には、履歴記録手段50によって、修正の前後の状況が記録される。
 仮に、合流部の手前のゾーンに同時に搬送物が到達し、この状態で二つの搬送物が停止し、動かなくなってしまった場合、二つのゾーンの搬送ユニットを同時に駆動すると、合流部で衝突してしまう。
 本実施形態では、衝突を回避する手段として、上位制御装置46に、搬送順序記憶手段48と、優先順位決定手段58が設けられている。
 搬送順序記憶手段48には、各搬送物が搬送されていく順序が記憶されている。
 合流部の手前のゾーンに同時に搬送物が到達し、この状態で二つの搬送物が停止し、動かなくなってしまった場合、搬送順序記憶手段48に記憶された先行する搬送物が、先に合流部に搬入される。
 また優先順位決定手段58は、搬送物の行き先や、搬送順序にかかわらず、いずれか一方の搬送物を合流部に導入し、続いて他方の搬送物を合流部に搬入する指令を合流部及びその手前の搬送ユニットに発するものである。
 合流部の手前のゾーンに同時に搬送物が到達し、この状態で二つの搬送物が停止し、動かなくなってしまった場合、搬送順序記憶手段48に搬送物の搬送順序が記憶されている場合には、上位制御装置46からの指令によって、前記した搬送順序が先の搬送物が先に合流部に搬入される。
 搬送順序記憶手段48に搬送物の搬送順序が記憶されていない場合には、上位制御装置46からの指令によって、優先順位決定手段58で定められた順に搬送ユニットが駆動される。
 また本実施形態では、各ゾーンコントローラの動きとは別に、上位制御装置46の移動経路想定手段33によって、搬送物の移動経路が決定され、当該搬送経路が搬送物ごとに記憶されている。
 さらに本実施形態では、移動状況監視手段35が、各ゾーンの駆動状態を監視し、個々の搬送物が次に移動するであろうゾーンを予想している。そして次に移動するであろう方向と、移動経路想定手段33によって決定された経路が、経路比較手段37で比較される。
 ここで、隣接するゾーン間の通信によって、順送りされてきた搬送先の情報に基づく搬送先と、移動経路想定手段33の記録に従う排出先が何らかの事情によって異なる場合がある。
 両者が異なっている場合には、強制駆動・停止手段38によって、当該搬送物が載置されているゾーンやその下流側のゾーンに信号を送り、当該ゾーンを強制的に停止や駆動させる。即ち、強制駆動・停止手段38による信号によって、移動先が修正される。
 上位制御装置46によって、搬送物の搬送先が修正された場合には、履歴記録手段50によって、修正の前後の状況が記録される。
 以下、具体的に上記した機能を説明する。
 図5(a)は、搬送物Aの本来の搬送経路を示している。即ち搬送物Aは、第1ゾーンから第10ゾーンまで、直線的に搬送されるべき搬送物である。図5(b)は、搬送物Bの本来の搬送経路を示している。即ち搬送物Bは、第5ゾーンで進路を変えて第11ゾーンから第19ゾーンに至り、第9ゾーンで直線部に合流するべき搬送物である。
 搬送物Aは、現状のゾーンの下流側ゾーンが空き状態であるならば、図5(a)の矢印の様に、停止することなく、第1ゾーンから第10ゾーンまで移動する。
 しかしながら、図6(a)の様に、例えば搬送物Aが第7ゾーンで停止して、それ以上動かなくなってしまう場合がある。
 この様な状況に至り、この状態が一定時間にわたって続いたことが移動状況監視手段35で検知されると、周辺情報確認手段36によって状況確認動作が実施され、当該搬送物が載置されている第7ゾーンの下流たる第8ゾーンに搬送物が有るか否かが確認される。
 図6(a)の様に下流たる第8ゾーンに搬送物が無いならば、図6(b)の様に強制駆動・停止手段38によって停止している第7ゾーンと、その下流側の第8ゾーンに上位制御装置46から信号を送り、当該ゾーンを強制的に駆動させる。即ち、修正動作が実行され、駆動条件が充足されていなくても、強制駆動・停止手段38による信号によって、第7ゾーンと、第8ゾーンが駆動され、搬送物Aが下流側に移動する。
 前記した様に、搬送物Aは、第1ゾーンから第10ゾーンまで、直線的に搬送されるべき搬送物である。
 従って、搬送物Aが第5ゾーンに到達すると、その下流側の第6ゾーンが駆動し、迂回路の第11ゾーンは、停止しなければならない。
 しかしながら、図7(a)の様に、例えば搬送物Aが第5ゾーンに至ったとき、進むべき第6ゾーンが停止し、進むべきでない第11ゾーンが駆動してしまう場合がある。
 この様な状況に至ったことが、移動状況監視手段35で検知されると、周辺情報確認手段36によって、当該搬送物が載置されている第5ゾーンの下流たる第6ゾーンに搬送物が有るか否かが確認される。
 図7(a)の様に下流たる第6ゾーンに搬送物が無いならば、図7(b)の様に強制駆動・停止手段38によって、下流ゾーンたる第6ゾーンと、迂回路たる第11ゾーンに信号を送り、当第6ゾーンを駆動させ、第11ゾーンを停止する。即ち、駆動条件が充足されていなくても、上位制御装置46からの強制駆動・停止手段38による信号によって、第6ゾーンが駆動される。また駆動条件が充足されていても、強制駆動・停止手段38による信号によって、第11ゾーンが停止される。
 図1に示す搬送装置1では、第5、6、7、8、9ゾーンと進む直線路と、第5、11、12・・・・9ゾーンと進む迂回路があり、第9ゾーンが合流部となっている。
 図8(a)の様に、合流部の手前の第8、19ゾーンに、搬送物Aと搬送物Bが同時に到着した場合、いずれか一方を先に通す様にプログラムされているが、図8(a)に示す状態で搬送装置1が停止してしまう場合がある。
 この様な状況に至ったことが、移動状況監視手段35で検知されると、周辺情報確認手段36によって、当該搬送物が載置されている第8、19ゾーンの下流たる第9ゾーンに搬送物が有るか否かが確認される。
 図8(a)の様に下流たる第9ゾーンに搬送物が無いならば、搬送順序記憶手段48に記憶された先行する搬送物が、先に合流部に搬入される。
 例えば搬送物Aを先に通過させることとし、図8(b)の様に強制駆動・停止手段38によって、搬送物Aが停止している第8ゾーンと、その下流側の第9ゾーンに信号を送り、当該ゾーンを強制的に駆動させる。即ち、駆動条件が充足されていなくても、強制駆動・停止手段38による信号によって、第8ゾーンと、第9ゾーンが駆動され、搬送物Aが下流側に移動する。
 続いて、搬送物Bが停止している第19ゾーンと、その下流側の第9ゾーンに信号を送り、当該ゾーンを強制的に駆動させる。即ち、駆動条件が充足されていなくても、強制駆動・停止手段38による信号によって、第19ゾーンと、第9ゾーンが駆動され、搬送物Bが下流側に移動する。
 搬送順序記憶手段48に搬送物の搬送順序が記憶されていない場合には、上位制御装置46からの指令によって、優先順位決定手段58で定められた順に搬送ユニットが駆動される。
 例えば、第8ゾーンと、その下流側の第9ゾーンに信号を送り、当該ゾーンを強制的に駆動させる。
 図6、図7、図8で説明した修正動作が実施された場合には、履歴記録手段50によって、修正の前後の状況が記録される。そのため、不具合が発生した原因を検証することができる。
 以上説明した実施形態では、上位制御装置46が、移動状況監視手段35を有し、当該移動状況監視手段35によって各搬送物の現在位置や移動状況を監視し、搬送物の周囲の状態から当該搬送物が移動可能な状況であるにも関わらず搬送物が載置された搬送ユニットが停止している場合に、強制駆動動作を実施して搬送物を当該ゾーンから排出した。
 以上説明した実施形態では、個々の搬送物の現在位置や移動状況を監視しているが、搬送装置1の全体的な動きを俯瞰的に監視し、不具合がある場合には、暫定的にゾーンの駆動条件を変更してもよい。
 例えば図1の第1ゾーンから第4ゾーンには分岐部がない。そのため、第1ゾーンに搬送物が搬入されると、滞ることなく、第4ゾーンまで搬入されるべきである。
 本実施形態の搬送装置1は、分散制御方式を採用するので、第1ゾーンから第4ゾーンは常時は停止しており、駆動条件を満足するゾーンだけが駆動する。
 しかし、例えば、在荷センサーSに不具合があり、特定のゾーンで搬送物が滞る場合がある。このような場合に、当該ゾーンの駆動条件自体を変更する構成とすることも推奨される。
 以下、この構成について説明する。
 図9に示すように、本実施形態の搬送装置100で採用する上位制御装置57は、動作指示手段30、搬送先選定手段31、搬送先指示手段32、希望動作記憶手段51、動作状況監視手段52、動作比較手段53、プログラム書き換え手段55、履歴記録手段50、及び通信手段56を有している。
 ここで、動作指示手段30、搬送先選定手段31、搬送先指示手段32、履歴記録手段50、及び通信手段56の機能は、前記した実施形態と同一である。
 本実施形態では、希望動作記憶手段51に搬送装置100の望ましい動作が記憶されている。例えば前記した様に、第1ゾーンに搬送物が搬入されると、滞ることなく、第4ゾーンまで搬入されるのが望ましい動作として記憶されている。
 動作状況監視手段52は、通信手段56によって入手される情報から、各ゾーンの動作状況を監視するものである。
 動作比較手段53は、動作状況監視手段52によって得られた現在の搬送装置100の動作状況と、希望動作記憶手段51に記憶された搬送装置100の望ましい動作とを比較する。
 比較した結果、両者の間に所定の乖離が生じた場合は、プログラム書き換え手段55によってゾーンコントローラ10のプログラムが書き換え、または置き換えられ、今までの個別プログラムに優先して望ましい動作に近い動作を実行させる。
 例えば、特定のゾーンの下流側が在荷センサーOFFであるにも関わらず、当該ゾーンが在荷センサーOFFにならず、当該ゾーンの上流側のゾーンが在荷センサーONであるにも関わらず、上流側のゾーンが停止したままの状態となっている場合がある。動作状況監視手段52によってこのような状態を検知することができる。
 上記した状況は、希望動作記憶手段51に記憶された搬送装置100の望ましい動作とは一定以上の相違がある。
 このような場合には、プログラム書き換え手段55によってゾーンコントローラ10のプログラムが変更される。
 例えば、今までの個別プログラムが、自己のゾーンが在荷センサーONであり、下流側のゾーンが在荷センサーOFFという条件が揃うと、自己のゾーンの駆動モータ15(駆動装置)を起動するという制御論理であったものを、駆動モータ15を常時回転させるプログラムに変更する。あるいは、駆動モータ15の起動・停止を前後のゾーンに合わせるプログラムに変更する。
 その結果、搬送装置100の動作が、望ましい動作に近いものとなる。
 前述した希望動作記憶手段51に記憶される望ましい動作は、例えば「第1ゾーンに搬送物が搬入されると、滞ることなく、第4ゾーンまで搬入される」というような、おおざっぱなものを例示したが、より詳細かつ具体的なものであってもよい。
 例えば、搬送装置100の動作を忠実にシミュレーションするソフトウェア(シミュレーションソフト)を使用し、当該ソフトウェア上で搬送物Aや、搬送物Bを移動させての搬送装置100の望ましい動作を想定させ、これを希望動作記憶手段51に記憶してもよい。
 限定するものではないが、シミュレーションソフトには、搬送装置100のレイアウト、各ゾーンの長さ、機械的構造、駆動モータの回転速度、発生トルク、在荷センサーの位置等が記憶されている。またシミュレーションソフトには、ゾーンコントローラ10の制御回路40、個別プログラム、各種の設定等も記憶されており、搬送装置1、100の動作を仮想空間上において忠実に実現することができる。
 例えば、搬送物Aや、搬送物Bを含む多数の搬送物を同時にシミュレーションソフトの仮想空間上のコンベヤ装置で搬送し、搬送装置100の望ましい動作を仮想空間上で実行させ、その時の状況を希望動作記憶手段51に記憶させる。
 そして動作状況監視手段52によって得られた現在の搬送装置100の動作状況と、希望動作記憶手段51に記憶された搬送装置100の望ましい動作とを比較し、両者の間に一定以上の相違があった場合に、プログラム書き換え手段55によってゾーンコントローラ10のプログラムが変更される。
上記した実施形態では、シミュレーションソフトで実行した動作を希望動作記憶手段51に記憶させたが、図10に示すように、シミュレーションソフトを搭載した希望動作想定手段70を上位制御装置57に設け、現実の搬送装置100と同時並行的に仮想空間上で搬送装置100を動作させ、両者の間に一定以上の相違があった場合に、プログラム書き換え手段55によってゾーンコントローラ10のプログラムを変更してもよい。
 希望動作想定手段70は、実際の搬送装置100から独立して仮想空間上で搬送装置100を動作させ、搬送物を仮想的に移動させる。
 仮想空間上においては、仮想上の在荷センサーがオンオフし、それが仮想空間上の各ゾーンコントローラに入力されて、仮想空間上の駆動モータが制御され、仮想空間上の搬送物が移動する。
 シミュレーションソフトや、希望動作想定手段70は、図1に示す実施形態で採用することもできる。
 即ち、周辺情報確認手段36に代わって、或いは周辺情報確認手段36に加えて、希望動作想定手段70を採用し、一定時間にわたって搬送物が同一のゾーンにとどまっていることが検知されると、希望動作想定手段70によって、周囲のゾーンに搬送物があるか否かを確認する。搬送装置1が、それまで正常に動作していたことを前提とすると、希望動作想定手段70によって、搬送物が載置されているゾーン及びその前後のゾーンの駆動状態や、搬送物の有無を推定することができる。
 あるいは、移動状況監視手段35によって確認された、現実の個々の搬送物の移動状況と、希望動作想定手段70やシミュレーションソフトで想定される仮想上の移動状況を比較してもよい。
1   搬送装置
10  ゾーンコントローラ(個別制御装置)
15  駆動モータ(駆動装置)
20  搬送ユニット
30  動作指示手段
31  搬送先選定手段
32  搬送先指示手段
33  移動経路想定手段
35  移動状況監視手段
36  周辺情報確認手段
37  経路比較手段
38  強制駆動・停止手段
40  制御回路
41  送受信部
42  駆動回路
46,57 上位制御装置
47  搬送先記憶部材
48  搬送順序記憶手段
50  履歴記録手段
51  希望動作記憶手段
52  動作状況監視手段
53  動作比較手段
55  プログラム書き換え手段
58  優先順位決定手段
60  表示装置
100 搬送装置
S   在荷センサー

Claims (8)

  1.  複数の搬送ユニットが接続されて搬送路が構成され、前記搬送ユニットは、当該搬送ユニットを駆動する駆動装置と、当該搬送ユニットを制御する個別制御装置とを有し、当該個別制御装置は、特定の駆動条件を充足した場合に前記搬送ユニットを駆動させる搬送装置において、
     上位制御装置を有し、当該上位制御装置は、前記個別制御装置と通信が行われ、
     前記上位制御装置は、前記搬送路上の現実の搬送物の移動状況を監視する移動状況監視手段を有し、
     特定の搬送物の周囲の状態から当該搬送物が移動可能な状況であるにも関わらず当該搬送物が載置された搬送ユニットが停止している場合、前記駆動条件にかかわらず、前記上位制御装置の指令によって前記搬送ユニットを駆動させる修正動作が実行されることを特徴とする搬送装置。
  2.  前記個別制御装置間で搬送物の行き先に関する情報が交換され、搬送物が所定の搬送先に搬送されるものであり、
     前記上位制御装置は、搬送物の移動経路を想定する移動経路想定手段を有し、
     特定の搬送物が、前記移動経路想定手段で想定された移動経路から外れようとしている場合、前記個別制御装置間で交換された行き先に関する情報に優先して前記移動経路想定手段で想定された経路に搬送物が誘導される修正動作が実行されることを特徴とする請求項1に記載の搬送装置。
  3.  複数の搬送ユニットが接続されて搬送路が構成され、前記搬送ユニットは、当該搬送ユニットを駆動する駆動装置と、当該搬送ユニットを制御する個別制御装置とを有し、当該個別制御装置は、特定の駆動条件を充足した場合に前記搬送ユニットを駆動させるものであり、前記個別制御装置間で搬送物の行き先に関する情報が交換され、前記搬送物が所定の搬送先に搬送される搬送装置において、
     上位制御装置を有し、当該上位制御装置は、前記個別制御装置と通信が行われ、
     前記上位制御装置は、搬送物の移動経路を想定する移動経路想定手段と、搬送路上の現実の搬送物の移動状況を監視する移動状況監視手段を有し、
     特定の搬送物が、前記移動経路想定手段で想定された移動経路から外れようとしている場合、前記個別制御装置間で交換された行き先に関する情報に優先して前記移動経路想定手段で想定された経路に搬送物が誘導される修正動作が実行されることを特徴とする搬送装置。
  4.  複数の搬送ユニットが接続されて搬送路が構成され、前記搬送ユニットには、当該搬送ユニットを駆動する駆動装置と、一定の動作論理に従って搬送ユニットを動作させる個別プログラムが格納された個別制御装置とを有する搬送装置において、
     上位制御装置を有し、当該上位制御装置は、前記個別制御装置と通信が行われ、各搬送ユニットの動作状態を個別に監視する動作状況監視手段と、前記搬送装置の望ましい動作を記憶する希望動作記憶手段及び/又は前記搬送装置の望ましい動作を仮想的に実行する希望動作想定手段とを有し、
     前記搬送装置の望ましい動作と、動作状況監視手段によって得られた前記搬送装置の現実の動作を比較し、両者の間に所定の乖離が生じた場合に、前記個別プログラムに優先して望ましい動作に近い動作を実行させる修正動作が実行されることを特徴とする搬送装置。
  5.  いずれかの前記修正動作が実行された場合、その際の状況が記録されることを特徴とする請求項1乃至4のいずれかに記載の搬送装置。
  6.  前記搬送ユニットのいずれかは、ローラコンベヤであり、ローラの接線力が、100ニュートン以下であることを特徴とする請求項1乃至5のいずれかに記載の搬送装置。
  7.  前記搬送装置は、複数の搬送路が合流する合流部を有し、複数の搬送路であって、前記合流部の手前の搬送ユニットに同時に搬送物がある場合、いずれの搬送ユニットから合流部に搬送物を搬入するかの優先順位が予め決められていることを特徴とする請求項1乃至6のいずれかに記載の搬送装置。
  8.  前記上位制御装置に、各搬送物の搬送順序が記憶されていることを特徴とする請求項1乃至7のいずれかに記載の搬送装置。
PCT/JP2021/038565 2020-10-26 2021-10-19 搬送装置 WO2022091863A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/033,686 US20230416011A1 (en) 2020-10-26 2021-10-19 Conveyance device
CN202180073433.8A CN116583471A (zh) 2020-10-26 2021-10-19 搬送装置
EP21885982.5A EP4234454A1 (en) 2020-10-26 2021-10-19 Conveyance device
JP2022559032A JPWO2022091863A1 (ja) 2020-10-26 2021-10-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-178773 2020-10-26
JP2020178773 2020-10-26

Publications (1)

Publication Number Publication Date
WO2022091863A1 true WO2022091863A1 (ja) 2022-05-05

Family

ID=81383842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038565 WO2022091863A1 (ja) 2020-10-26 2021-10-19 搬送装置

Country Status (5)

Country Link
US (1) US20230416011A1 (ja)
EP (1) EP4234454A1 (ja)
JP (1) JPWO2022091863A1 (ja)
CN (1) CN116583471A (ja)
WO (1) WO2022091863A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226403A (ja) * 1989-02-28 1990-09-10 Toshiba Corp 搬送制御装置
JPH04260101A (ja) * 1991-02-15 1992-09-16 Nissan Motor Co Ltd ワーク管理装置
JP2003039283A (ja) * 2001-07-24 2003-02-12 Honda Motor Co Ltd ワーク移送方法
JP2005231745A (ja) 2001-06-27 2005-09-02 Ito Denki Kk ゾーンコントローラ
WO2006120783A1 (ja) * 2005-05-06 2006-11-16 National University Corporation Kumamoto University ワーク搬送システム、経路設定方法及び経路設定プログラム
JP2013203532A (ja) * 2012-03-29 2013-10-07 Ito Denki Kk 搬送装置、並びに、物品保管装置
JP2013230914A (ja) 2012-04-27 2013-11-14 Ito Denki Kk 移載装置
WO2016080362A1 (ja) * 2014-11-18 2016-05-26 伊東電機株式会社 コンベヤ装置、コンベヤシステム、ゾーンコントローラ、cad装置及びコンベヤ装置の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226403A (ja) * 1989-02-28 1990-09-10 Toshiba Corp 搬送制御装置
JPH04260101A (ja) * 1991-02-15 1992-09-16 Nissan Motor Co Ltd ワーク管理装置
JP2005231745A (ja) 2001-06-27 2005-09-02 Ito Denki Kk ゾーンコントローラ
JP2003039283A (ja) * 2001-07-24 2003-02-12 Honda Motor Co Ltd ワーク移送方法
WO2006120783A1 (ja) * 2005-05-06 2006-11-16 National University Corporation Kumamoto University ワーク搬送システム、経路設定方法及び経路設定プログラム
JP2013203532A (ja) * 2012-03-29 2013-10-07 Ito Denki Kk 搬送装置、並びに、物品保管装置
JP2013230914A (ja) 2012-04-27 2013-11-14 Ito Denki Kk 移載装置
WO2016080362A1 (ja) * 2014-11-18 2016-05-26 伊東電機株式会社 コンベヤ装置、コンベヤシステム、ゾーンコントローラ、cad装置及びコンベヤ装置の製造方法

Also Published As

Publication number Publication date
JPWO2022091863A1 (ja) 2022-05-05
EP4234454A1 (en) 2023-08-30
CN116583471A (zh) 2023-08-11
US20230416011A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
JP7045101B2 (ja) コンベヤ装置の製造方法、コンベヤ装置及びコンベヤシステム
US7035714B2 (en) Integrated conveyor bed
US8284993B2 (en) Decentralized tracking of packages on a conveyor
US7360638B2 (en) Integrated control card for conveying systems
EP0463878B1 (en) Modular conveyor system
US6827202B2 (en) Methods and apparatus for controlling conveyor zones
EP2727862B1 (en) A buffer conveyor having parallel tracks
JP5921024B2 (ja) 物品保管装置及びコンベア装置
US20120004766A1 (en) Locally controlled material transport
JP4345665B2 (ja) 荷合流設備
JPH10279047A (ja) コンベアシステム及びその制御方法
KR20000057155A (ko) 장치 제어방법, 장치 제어기 및 운반 시스템
KR20120116967A (ko) 어큐뮬레이션 컨베이어
JP5404734B2 (ja) コンベア装置、集合型ゾーンコントローラ、並びにゾーンコントローラ
WO2015046337A1 (ja) 移載装置用コントローラ及び搬送装置
WO2022091863A1 (ja) 搬送装置
JP5217084B2 (ja) コンベアシステムにおける合流制御装置及び合流制御方法
JP2021095244A (ja) 搬送システム
JP6019313B2 (ja) 搬送装置、並びに、物品保管装置
JP5170754B2 (ja) コンベア装置
JP5170756B2 (ja) コンベア装置
JP5882810B2 (ja) 搬送装置、並びに、物品保管装置
JP2003212334A (ja) 搬送システム
JP2002240926A (ja) ローラーコンベア及びローラーコンベアの制御方法
JP4471059B2 (ja) 物品収納システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559032

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18033686

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180073433.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021885982

Country of ref document: EP

Effective date: 20230526