WO2022088960A1 - 显示面板和具有其的显示装置 - Google Patents

显示面板和具有其的显示装置 Download PDF

Info

Publication number
WO2022088960A1
WO2022088960A1 PCT/CN2021/116035 CN2021116035W WO2022088960A1 WO 2022088960 A1 WO2022088960 A1 WO 2022088960A1 CN 2021116035 W CN2021116035 W CN 2021116035W WO 2022088960 A1 WO2022088960 A1 WO 2022088960A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
reflection
display panel
display
sensor
Prior art date
Application number
PCT/CN2021/116035
Other languages
English (en)
French (fr)
Inventor
石博
黄炜赟
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/922,475 priority Critical patent/US20230189618A1/en
Publication of WO2022088960A1 publication Critical patent/WO2022088960A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/13Active-matrix OLED [AMOLED] displays comprising photosensors that control luminance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation
    • G06V40/166Detection; Localisation; Normalisation using acquisition arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel and a display device having the same.
  • TOF device is placed under the display panel, that is, a high light transmission area is set on the display panel, and the emission sensor and the receiving sensor of the time of flight device are arranged under the display panel and opposite to the high light transmission area, but due to the time of flight device
  • the reflection effect of the infrared rays emitted by the transmitting sensor inside the display panel causes the receiving sensor of the time-of-flight device to be easily interfered by the infrared rays reflected inside the display panel, resulting in inaccurate ranging of the measured object.
  • the present application aims to solve at least one of the technical problems existing in the prior art. To this end, the present application proposes a display panel, which can improve the ranging accuracy of the time-of-flight device.
  • the present application also proposes a display device having the above-mentioned display panel.
  • the display panel has a preset area, and the non-display side of the preset area is suitable for setting the emission sensor and the reception sensor of the time-of-flight device, and the light emitted by the emission sensor It is suitable for being emitted from the preset area to the display side of the display panel, and reflected by the detected object on the display side back to the non-display side of the display panel to be received by the receiving sensor, and the display panel includes : base layer; organic light-emitting device layer, the organic light-emitting device layer is arranged on the display side of the base layer; anti-reflection and anti-reflection layer, the anti-reflection and anti-reflection layer is at least one layer and is arranged on the base layer and the Between the organic light emitting device layers, at least a part of the anti-reflection and anti-reflection layer is disposed opposite to the preset area along the thickness direction of the display panel.
  • At least one anti-reflection and anti-reflection layer is disposed between the base layer and the organic light-emitting device layer, and at least part of the anti-reflection and anti-reflection layer is disposed opposite to the preset area, so that the emission can be reduced
  • the light emitted by the sensor is reflected inside the display panel, thereby improving the interference caused by these reflected light to the light received by the receiving sensor, that is, the interference light reflected from the interior of the display panel and entering the receiving sensor can be effectively reduced, thereby improving the time of flight device. ranging accuracy.
  • one of the anti-reflection and anti-reflection layers is a predetermined thin film layer, and the predetermined thin film layer is disposed adjacent to the base layer.
  • the display panel only includes the predetermined film layer, the anti-reflection and anti-reflection layer, and the display panel further includes a buffer layer disposed adjacent to the display side of the predetermined film layer .
  • the wavelength of the light emitted by the emission sensor is 940 nm
  • the base layer is a polyimide layer with a refractive index of 1.945
  • the buffer layer has a refractive index of 1.467
  • the predetermined thin film layer The refractive index is 1.625 or 1.691
  • the thickness of the preset thin film layer is 235 nm.
  • the projection of at least one layer of the anti-reflection and anti-reflection layer along the thickness direction of the display panel completely covers the base layer.
  • the projection of at least one layer of the anti-reflection and anti-reflection layer along the thickness direction of the display panel just covers the predetermined area.
  • the extinction coefficient k of the anti-reflection and anti-reflection layer satisfies: k ⁇ 1.
  • the material of at least one layer of the anti-reflection and anti-reflection layer is polyimide.
  • the organic light emitting device layer includes an electron transport layer, and the material of at least one anti-reflection and anti-reflection layer is the same as the material of the electron transport layer.
  • a display device includes: a display panel, the display panel is the display panel according to the embodiment of the first aspect of the present application; and a time-of-flight device, the time-of-flight device includes a transmitting sensor and a receiving sensor , the emission sensor and the reception sensor are both arranged on the non-display side of the preset area, the light emitted by the emission sensor is emitted from the preset area to the display side of the display panel, and the light emitted by the emission sensor is emitted from the display side by the preset area.
  • the detected object is reflected back to the non-display side of the display panel to be received by the receiving sensor.
  • the display device of the embodiment of the present application by disposing the display panel of the above-mentioned embodiment of the first aspect, the face recognition function of the display device is improved.
  • FIG. 1 is a partial schematic diagram of a display device according to an embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional view of a display device according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of light interference of a display panel according to an embodiment of the present application.
  • FIG. 4 is a schematic cross-sectional view of a display device according to another embodiment of the present application.
  • organic light-emitting device layer 12 anode layer 121; organic light-emitting layer 122; cathode layer 123;
  • anti-reflection and anti-reflection layer 13 preset film layer 130;
  • buffer layer 14 thin film encapsulation layer 15;
  • Time of flight device 200 transmit sensor 201; receive sensor 202.
  • More and more electronic devices in related technologies have the function of face recognition.
  • the function of face recognition is generally realized by 3D structured light technology or TOF (abbreviation of Time of flight) technology.
  • TOF abbreviation of Time of flight
  • the sensor emits A large distance is required between the receiver and the receiving sensor, which will reduce the screen ratio and cause a wide notch on the head of the display device.
  • TOF technology is a technology that uses the time of flight of light to measure distance. Compared with 3D structured light technology, it has the advantages of long detection distance and simple structure, and the distance between the transmitting sensor and the receiving sensor can be very small, for example, it can reach the millimeter level. It is beneficial to the optimization of the mechanism design of electronic equipment.
  • one solution is to punch holes on the display panel, and set the transmitting sensor and the receiving sensor under the hole, which makes it impossible to achieve a full-screen display.
  • Another way is to set a high light transmission area on the display panel, and set the emission sensor and the receiving sensor under the display panel and opposite to the high light transmission area, but due to the reflection effect of the infrared rays emitted by the emission sensor inside the display panel, As a result, the receiving sensor is easily interfered by the infrared rays reflected inside the display panel, resulting in inaccurate ranging, and even the phenomenon of distance reversal.
  • the present application proposes a display panel 100 and a display device 1000, which will be described below with reference to the accompanying drawings.
  • the display panel 100 has a preset area 101 , and the non-display side of the preset area 101 is suitable for setting the time-of-flight device 200 (that is, the TOF device, the TOF is The abbreviation of Time of flight, namely the time of flight, is the transmitting sensor 201 and the receiving sensor 202.
  • the light (such as infrared rays, etc.) emitted by the transmitting sensor 201 is suitable for being emitted from the preset area 101 to the display side of the display panel 100, and from the display side
  • the detected object 2000 is reflected back to the non-display side of the display panel 100 to be received by the receiving sensor 202, wherein the display panel 100 may include: a substrate layer 11, an organic light-emitting device layer 12 (ie an OLED device layer, OLED is Organic Light-Emitting Abbreviation of Diode) and anti-reflection and anti-reflection layer 13, the organic light-emitting device layer 12 is provided on the display side of the base layer 11, and the anti-reflection and anti-reflection layer 13 is at least one layer and is disposed between the base layer 11 and the organic light-emitting device layer 12. , at least part of the anti-reflection and anti-reflection layer 13 is disposed opposite to the preset area 101 along the thickness direction of the display panel 100 .
  • the preset area 101 refers to the high light transmission area of the display panel 100.
  • the display panel 100 further includes a circuit driving layer disposed between the base layer 11 and the organic light emitting device layer 12.
  • the driving layer can be detoured at the high light transmittance area, so as to ensure high light transmittance of the high light transmittance area, so that the light emitted by the emission sensor 201 can exit the display panel 100, and can also be reflected back to the display panel 100 by the detected object 2000 to received by the receiving sensor 202 .
  • the “display layer” and the “non-display side” described herein refer to the two sides in the thickness direction of the display panel 100 , and the display panel 100 is used for display and faces the user during use. is the display side, and the opposite side is the non-display side.
  • At least one anti-reflection and anti-reflection layer 13 is disposed between the base layer 11 and the organic light emitting device layer 12, and at least part of the anti-reflection and anti-reflection layer 13 is guaranteed to be close to the height of the
  • the relative arrangement of the light-transmitting preset areas 101 can reduce the reflection of the light emitted by the emission sensor 201 inside the display panel 100, thereby improving the interference of the reflected light on the light received by the receiving sensor 202, that is, the display can be effectively reduced.
  • the panel 100 internally reflects the interfering light entering the receiving sensor 202 , so that the accuracy of the distance measurement of the time-of-flight device 200 can be improved, and the phenomenon of distance reversal can be avoided.
  • the display panel 100 of the embodiment of the present application by disposing at least one anti-reflection and anti-reflection layer 13 between the base layer 11 and the organic light emitting device layer 12, it is not necessary to increase the distance between the emission sensor 201 and the receiving sensor 202, which is in compliance with TOF In addition, the display panel 100 between the transmitting sensor 201 and the receiving sensor 202 does not need to be cut, so that the sudden change of the refractive index of the display panel 100 and the disappearance of the waveguide effect can be avoided.
  • a high light transmission area is set on the display panel, and the transmitting sensor and receiving sensor of the time of flight device are arranged under the display panel and opposite to the high light transmission area, but due to the reflection of infrared rays emitted by the transmitting sensor of the time of flight device inside the display panel As a result, the receiving sensor of the time-of-flight device is easily interfered by the infrared rays reflected from the display panel, resulting in inaccurate ranging of the measured object, and even the phenomenon of distance reversal.
  • the anti-reflection and anti-reflection layer 13 with anti-reflection and anti-reflection function is arranged inside the display panel 100 to reduce or eliminate the interference of the receiving sensor 202 by the reflected light (such as infrared rays, etc.) inside the display panel 100, thereby improving the time-of-flight device 200.
  • the accuracy of distance measurement shortens the distance between the transmitting sensor 201 and the receiving sensor 202 , and avoids the sudden change of the refractive index of the display panel 100 .
  • one of the anti-reflection and anti-reflection layers 13 is a predetermined thin film layer 130 , and the predetermined thin film layer 130 is disposed adjacent to the base layer 11 . That is to say, the preset thin film layer 130 is directly disposed on the base layer 11 , or in other words, there is no other film layer between the preset thin film layer 130 and the base layer 11 .
  • one of the anti-reflection and anti-reflection layers 13 is the predetermined thin film layer 130 and is directly disposed on the base layer 11, and the other anti-reflection and anti-reflection layers 13 are disposed on the predetermined thin film The side of the layer 130 remote from the base layer 11 .
  • the anti-reflection and anti-reflection layer 13 is only one layer, the anti-reflection and anti-reflection layer 13 is the predetermined thin film layer 130 .
  • the reflection problem of the light emitted by the emission sensor 201 inside the display panel 100 caused by the base layer 11 can be effectively reduced, thereby improving the accuracy of the distance measurement of the time-of-flight device 200 , the distance between the transmitting sensor 201 and the receiving sensor 202 is shortened, so as to avoid the sudden change of the refractive index of the display panel 100 .
  • the reflectivity of the cathode layer in the organic light emitting device layer in the display panel to infrared rays is about 63%, and the reflectivity of the cathode layer in the display panel is about 63%.
  • the base layer is a polyimide layer (ie, Polyimide, abbreviated as PI).
  • the reflectivity of the polyimide layer to infrared rays is about 15%.
  • the anti-reflection and anti-reflection methods for the cathode layer are currently mainly thinning and patterning. However, the thinning of the cathode layer will be limited by the coating process. When the thickness of the cathode layer is less than 90nm, the problem of uneven coating will occur, and the patterning involves equipment modification and new process development, which is difficult to introduce into mass production in the short term.
  • the anti-reflection and anti-reflection design is carried out for the base layer (such as the polyimide layer), that is, by disposing the predetermined anti-reflection and anti-reflection thin film layer 130 on the base layer, the base layer can be effectively reduced in anti-reflection and anti-reflection.
  • the improvement of transparency reduces the reflection of light (such as infrared rays, etc.) inside the display panel 100 , and reduces the interference light entering the receiving sensor 202 .
  • the base layer 11 according to the embodiment of the present application is not limited to being a polyimide layer, and may also be a layer of other materials, for example, a base layer 11 of a hard material and the like.
  • the display panel 100 only includes a predetermined film layer 130 which is an anti-reflection and anti-reflection layer 13 , and the display panel 100 further includes a display panel disposed adjacent to the predetermined film layer 130 .
  • side buffer layer 14 That is to say, a preset thin film layer 130 is disposed between the base layer 11 and the buffer layer 14 , and there is no other film layer between the preset thin film layer 130 and the base layer 11 , and the gap between the preset thin film layer 130 and the buffer layer 14 is There are no other layers in between.
  • the structure of the display panel 100 can be simplified, the processing difficulty is reduced, the production efficiency is improved, the economy is good, and the mass production requirements can be met under the premise of ensuring the improvement of the anti-reflection and anti-reflection effect of the base layer 11 .
  • the projection of at least one anti-reflection and anti-reflection layer 13 along the thickness direction of the display panel 100 completely covers the base layer 11 . Thereby, processing is facilitated.
  • the present application is not limited to this.
  • the projection of at least one anti-reflection and anti-reflection layer 13 along the thickness direction of the display panel 100 just covers the preset area 101 , that is, the preset area 101 can be The anti-reflection and anti-reflection layer 13 is locally provided in the area 101 , so as to reduce the cost and ensure that the thickness of the remaining areas of the display panel 100 is not affected.
  • the equidistant interference between the film layers can be used to make the light interfere constructively to achieve anti-reflection and anti-reflection, thereby effectively reducing or eliminating the interference of the receiving sensor 202 by the light reflected from the display panel 100, thereby improving the time-of-flight device 200. Accuracy of ranging.
  • the "closely adjacent" mentioned in this article means that there are no other film layers between the two adjacent film layers, that is, one anti-reflection and anti-reflection layer 13 and the film layer below it are immediately adjacent to the two film layers. There is no other film layer in between, and an anti-reflection and anti-reflection layer 13 is immediately adjacent to the film layer above it, which means that there is no other film layer between the two film layers.
  • the base layer 11 is the lower film layer immediately adjacent to the predetermined film layer 130
  • the buffer layer 14 is the upper film layer adjacent to the predetermined film layer 130
  • n 1 is the refractive index of the base layer 11
  • n 2 is the buffer layer Refractive index of layer 14 .
  • anti-reflection and anti-reflection layers 13 there may also be several anti-reflection and anti-reflection layers 13 adjacent to each other, such as the first anti-reflection and anti-reflection layer, the third anti-reflection and anti-reflection layer, and the second anti-reflection and anti-reflection layer along the direction from the non-display side to the The directions of the display side are set next to each other.
  • the refractive index n x of the third anti-reflection and anti-reflection layer is n 1
  • the refractive index of the second anti-reflection and anti-reflection layer is n 2 . I won't go into details here.
  • the equidistant interference between the film layers can be better utilized to make the light interference constructive to achieve anti-reflection and anti-reflection, thereby effectively reducing or eliminating the receiving sensor 202 from being displayed
  • the interference of reflected light inside the panel 100 improves the accuracy of the distance measurement of the time-of-flight device 200 .
  • the optical path difference after reflection is shifted by one-half wavelength, the interference cancellation of reflection is achieved, and the transmission part achieves constructive interference, so that the receiving sensor 202 can be effectively reduced or eliminated by the light reflected from the display panel 100. interference, and improve the accuracy of the distance measurement of the time-of-flight device 200.
  • the thickness of the anti-reflection and anti-reflection layer 13 may be 235 nm.
  • the optical path difference after reflection is shifted by one-half wavelength, the interference cancellation of reflection is achieved, and the transmission part achieves constructive interference, so that the receiving sensor 202 can be effectively reduced or eliminated by the light reflected from the display panel 100. interference, and improve the accuracy of the time-of-flight device 200 ranging.
  • the wavelength of the light emitted by the emission sensor 201 is not limited, for example, it may be 920 nm ⁇ 960 nm, etc., which will not be repeated here.
  • the extinction coefficient k of the anti-reflection and anti-reflection layer 13 satisfies: k ⁇ 1, for example, k is 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4 and so on. Therefore, the accuracy of the distance measurement of the time-of-flight device 200 can be better improved. In some specific examples of the present application, k ⁇ 0.5, thus, the accuracy of ranging of the time-of-flight device 200 can be better improved.
  • a preset thin film layer 130 is disposed between the base layer 11 and the buffer layer 14 , the wavelength of the light emitted by the emission sensor 201 is 940 nm, and the base layer 11 is
  • the polyimide layer has a refractive index of 1.945 (that is, the refractive index of the polyimide layer to the light with a wavelength of 940 nm is 1.945), and the refractive index of the buffer layer 14 is 1.467 (that is, the refractive index of the buffer layer 14 to the light with a wavelength of 940 nm is 1.467).
  • the refractive index is 1.467).
  • the predetermined refractive index n x of the thin film layer 130 is 1.689, and the predetermined thickness d x of the thin film layer 130 is 235 nm.
  • a material with a refractive index close to 1.689 can be used, for example, the refractive index of the preset thin film layer 130 can be selected as 1.625 (such as polyimide material) or 1.691 (such as electron transport layer) material) and so on.
  • the equidistant interference between the film layers can be used to make the light interfere constructively to achieve anti-reflection and anti-reflection.
  • the optical path difference is shifted by one-half wavelength to achieve the interference cancellation of reflection, and the transmission part achieves
  • the interference is constructive, so that the total anti-reflection effect can be achieved, that is, the anti-reflection and anti-reflection effect can be achieved to a greater extent, effectively reducing or eliminating the interference of the receiving sensor 202 by the light reflected from the display panel 100, and improving the distance measurement of the time-of-flight device 200 of accuracy.
  • the material of at least one anti-reflection and anti-reflection layer 13 is polyimide, thus, the material is easy to obtain and easy to process, and the refractive index of polyimide is close to 1.689, which can effectively In this way, the interference of the receiving sensor 202 by the light reflected from the display panel 100 is reduced or eliminated, and the accuracy of the distance measurement of the time-of-flight device 200 is improved.
  • the wavelength of the light emitted by the emission sensor 201 is 940 nm
  • the base layer 11 is a polyimide layer
  • a polyimide layer is coated on the polyimide layer as the preset thin film layer 130
  • the refractive index of the imide layer is 1.625 and the thickness is 235nm.
  • the organic light emitting device layer 12 includes an electron transport layer, and the material of at least one anti-reflection and anti-reflection layer 13 is the same as that of the electron transport layer. Therefore, the material is easy to obtain and easy to process, and the refractive index of the material of the electron transport layer is close to 1.689, which can effectively reduce or eliminate the interference of the receiving sensor 202 by the reflected light inside the display panel 100, and improve the distance measurement capability of the time-of-flight device 200. Accuracy.
  • the organic light-emitting device layer 12 includes: an organic light-emitting layer 122, a cathode layer 123 and an anode layer 121 located on both sides of the thickness of the organic light-emitting layer 122, and the organic light-emitting layer 122 may include a light-emitting layer, an electron transport layer, and an electron injection layer. , hole transport layer, hole injection layer, etc., which will not be repeated here.
  • the organic light-emitting layer 122 can be designed with a local digging hole (for example, the position A shown in FIG. 4 ), so as to improve the light transmission effect of the preset area 101 and further improve the accuracy of the distance measurement of the time-of-flight device 200 sex.
  • the wavelength of the light emitted by the emission sensor 201 is 940 nm
  • the base layer 11 is a polyimide layer
  • the material of the electron transport layer is vapor-deposited on the polyimide layer as the preset thin film layer 130
  • the refractive index of the material of the transmission layer is 1.691 and the thickness is 235nm.
  • the display device 1000 according to some embodiments of the present application is described.
  • the display device 1000 may include: a display panel 100 and a time-of-flight device 200 , the display panel 100 is the display panel 100 according to any embodiment of the present application, and the time-of-flight device 200 includes a transmitting sensor 201 and a receiving The sensor 202 , the emission sensor 201 and the reception sensor 202 are all arranged on the non-display side of the preset area 101 , and the light emitted by the emission sensor 201 is emitted from the preset area 101 to the display side of the display panel 100 , and is emitted by the detected object on the display side. 2000 is reflected back to the non-display side of the display panel 100 to be received by the receiving sensor 202 .
  • the display device 1000 of the embodiment of the present application by disposing the anti-reflection and anti-reflection layer 13 with anti-reflection and anti-reflection function inside the display panel 100, the interference of the receiving sensor 202 by the light reflected from the inside of the display panel 100 is reduced or eliminated, The accuracy of the distance measurement of the time-of-flight device 200 is improved, the distance between the transmitting sensor 201 and the receiving sensor 202 is shortened, and a sudden change in the refractive index of the display panel 100 is avoided, so that the face recognition function of the display device 1000 can be improved to meet the development of full-screen display Require.
  • the specific setting position, shape, and size of the preset area 101 on the display panel 100 can be set according to actual requirements, which are not limited in this application.
  • the specific type of the display device 1000 according to the embodiment of the present application is not limited, and the function of the display device 1000 is not limited to display, as long as it has at least the functions of display and face recognition, for example, it may also have the function of photographing function, voice call function, Internet access function, etc., for example, it can be a smart phone, a smart wearable device, and the like.
  • other structures and operations of the display device 1000 according to the embodiments of the present application are known to those of ordinary skill in the art, and will not be described in detail here.
  • the specific structure of the display panel 100 according to the embodiment of the present application is not limited, for example, it may further include a thin film encapsulation layer 15, a pixel definition layer, and the like.
  • the display panel 100 shown in FIG. 2 of the specification is only a schematic diagram, and there may be other functional film layers between the organic light emitting device layer 12 and the buffer layer 14 , such as a flat layer, etc., which are omitted here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Human Computer Interaction (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板(100)和具有其的显示装置(1000),所述显示面板(100)具有预设区域(101),预设区域(101)的非显示侧适于设置飞行时间装置(200)的发射传感器(201)和接收传感器(202),发射传感器(201)发出的光线适于由预设区域(101)射出到显示面板(100)的显示侧,并由显示侧的被检测物反射回显示面板(100)的非显示侧,以被接收传感器(202)接收,显示面板(100)包括:基底层(11)、有机发光器件层(12)和减反增透层(13),有机发光器件层(12)设于基底层(11)的显示侧,减反增透层(13)为至少一层且设于基底层(11)和有机发光器件层(12)之间,减反增透层(13)的至少部分与预设区域(101)沿显示面板(100)的厚度方向相对设置。

Description

显示面板和具有其的显示装置
相关申请的交叉引用
本申请基于申请号为202011197835.2、申请日为2020-10-30的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及显示技术领域,尤其是涉及一种显示面板和具有其的显示装置。
背景技术
相关技术中的电子设备,越来越多的具有人脸识别功能,人脸识别功能可以利用TOF(Time of flight的缩写,飞行时间)技术实现,随着全面屏的发展,飞行时间装置(即TOF装置)被放置在显示面板下方,即在显示面板上设置高透光区,将飞行时间装置的发射传感器和接收传感器设置在显示面板下方且与高透光区相对,但由于飞行时间装置的发射传感器发射出的红外线在显示面板内部的反射效应,造成飞行时间装置的接收传感器容易受到显示面板内部反射的红外线的干扰,造成被测物体的测距不准。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请在于提出一种显示面板,所述显示面板可以提高飞行时间装置的测距准确性。
本申请还提出一种具有上述显示面板的显示装置。
根据本申请第一方面实施例的显示面板,所述显示面板具有预设区域,所述预设区域的非显示侧适于设置飞行时间装置的发射传感器和接收传感器,所述发射传感器发出的光线适于由所述预设区域射出到所述显示面板的显示侧,并由显示侧的被检测物反射回所述显示面板的非显示侧,以被所述接收传感器接收,所述显示面板包括:基底层;有机发光器件层,所述有机发光器件层设于所述基底层的显示侧;减反增透层,所述减反增透层为至少一层且设于所述基底层和所述有机发光器件层之间,所述减反增透层的至少部分与所述预设区域沿所述显示面板的厚度方向相对设置。
根据本申请实施例的显示面板,通过在基底层和有机发光器件层之间设置至少一层减反增透层,且减反增透层的至少部分与预设区域相对设置,从而可以降低发射传感器发射出的光线在显示面板内部发生的反射,进而改善这些反射的光线对接收传感器接收的光线造 成干扰,即可以有效地减少显示面板内部反射进入接收传感器的干扰光线,从而可以提高飞行时间装置的测距准确性。
在一些实施例中,其中一层所述减反增透层为预设薄膜层,所述预设薄膜层紧邻所述基底层设置。
在一些实施例中,所述显示面板仅包括所述预设薄膜层这一层所述减反增透层,所述显示面板还包括紧邻设置在所述预设薄膜层的显示侧的缓冲层。
在一些实施例中,所述发射传感器发出的光线的波长为940nm,所述基底层为聚酰亚胺层且折射率为1.945,所述缓冲层的折射率为1.467,所述预设薄膜层的折射率为1.625或1.691,所述预设薄膜层的厚度为235nm。
在一些实施例中,至少一层所述减反增透层沿所述显示面板的厚度方向的投影完全覆盖所述基底层。
在一些实施例中,至少一层所述减反增透层沿所述显示面板的厚度方向的投影恰好覆盖所述预设区域。
在一些实施例中,所述减反增透层的折射率n x满足:n-0.2≤n x≤n+0.2,其中,n=(n 1×n 2)^(1/2),n 1为紧邻在相应的所述减反增透层的非显示侧的膜层的折射率,n 2为紧邻在相应的所述减反增透层的显示侧的膜层的折射率。
在一些实施例中,所述减反增透层的厚度d x满足:d-50nm≤d x≤d+50nm,其中,d x=λ/4,λ为所述发射传感器发出的光线的波长。
在一些实施例中,所述减反增透层的消光系数k满足:k≤1。
在一些实施例中,至少一层所述减反增透层的材料为聚酰亚胺。
在一些实施例中,所述有机发光器件层包括电子传输层,至少一层减反增透层的材料与所述电子传输层的材料相同。
根据本申请第二方面实施例的显示装置,包括:显示面板,所述显示面板为根据本申请第一方面实施例的显示面板;和飞行时间装置,所述飞行时间装置包括发射传感器和接收传感器,所述发射传感器和所述接收传感器均设在所述预设区域的非显示侧,所述发射传感器发出的光线由所述预设区域射出到所述显示面板的显示侧,并由显示侧的被检测物反射回所述显示面板的非显示侧,以被所述接收传感器接收。
根据本申请实施例的显示装置,通过设置上述第一方面实施例的显示面板,从而提高了显示装置的人脸识别功能。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明 显,或通过本申请的实践了解到。
附图说明
图1是根据本申请一个实施例的显示装置的局部示意图;
图2是根据本申请一个实施例的显示装置的剖视示意图;
图3是根据本申请一个实施例的显示面板的光线干涉示意图;
图4是根据本申请另一个实施例的显示装置的剖视示意图。
附图标记:
显示装置1000;被检测物2000;
显示面板100;预设区域101;
基底层11;
有机发光器件层12;阳极层121;有机发光层122;阴极层123;
减反增透层13;预设薄膜层130;
缓冲层14;薄膜封装层15;
飞行时间装置200;发射传感器201;接收传感器202。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下文的公开提供了许多不同的实施例或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。
相关技术中的电子设备,越来越多的具有人脸识别功能,人脸识别功能一般通过3D结构光技术或TOF(Time of flight的缩写)技术实现,当采用3D结构光技术时,发射传感器和接收传感器之间需要较大的间距,会降低屏占比,造成显示设备的头部预留很宽的刘海。TOF技术是利用光的飞行时间来测量距离的技术,相比于3D结构光技术,具有探测距离远, 结构简单的优点,且发射传感器和接收传感器的间距可以很小,例如可以达到毫米级别,有利于电子设备的机构设计优化。
在采用TOF技术时,一种方案是在显示面板上打孔,将发射传感器和接收传感器设于孔下,导致无法实现全面屏显示。另一种方式是在显示面板上设置高透光区,将发射传感器和接收传感器设置在显示面板下方且与高透光区相对,但由于发射传感器发射出的红外线在显示面板内部的反射效应,造成接收传感器容易受到到显示面板内部反射的红外线的干扰,造成测距不准,甚至出现距离反转的现象。
为了至少解决上述技术问题之一,本申请提出了一种显示面板100和显示装置1000,下面参照附图进行介绍。
如图1和图2所示,根据本申请实施例的显示面板100,显示面板100具有预设区域101,预设区域101的非显示侧适于设置飞行时间装置200(即TOF装置,TOF为Time of flight的缩写,即飞行时间)的发射传感器201和接收传感器202,发射传感器201发出的光线(例如红外线等)适于由预设区域101射出到显示面板100的显示侧,并由显示侧的被检测物2000反射回显示面板100的非显示侧,以被接收传感器202接收,其中,显示面板100可以包括:基底层11、有机发光器件层12(即OLED器件层,OLED为OrganicLight-Emitting Diode的缩写)和减反增透层13,有机发光器件层12设于基底层11的显示侧,减反增透层13为至少一层且设于基底层11和有机发光器件层12之间,减反增透层13的至少部分与预设区域101沿显示面板100的厚度方向相对设置。
可以理解的是,预设区域101指的是显示面板100的高透光区,可以理解的是,显示面板100还包括设于基底层11和有机发光器件层12之间的电路驱动层,电路驱动层可以在高透光区处绕行,从而保证高透光区的高透光性,使得发射传感器201发出的光线能够射出显示面板100,还能够由被检测物2000反射回显示面板100以被接收传感器202接收。此外,如图2所示,本文所述的“显示层”和“非显示侧”指的是显示面板100的厚度方向上的两侧,显示面板100使用时用于显示且朝向用户的一侧为显示侧,其相反的一侧为非显示侧。
由此,根据本申请实施例的显示面板100,通过在基底层11和有机发光器件层12之间设置至少一层减反增透层13,且保证减反增透层13的至少部分与高透光的预设区域101相对设置,可以降低发射传感器201发射出的光线在显示面板100内部发生的反射,进而改善这些反射的光线对接收传感器202接收的光线造成干扰,即可以有效地减少显示面板100内部反射进入接收传感器202的干扰光线,从而可以提高飞行时间装置200测距准确性, 避免出现距离反转的现象。
另外,为了解决上述技术问题,相关技术中有人指出可以将发射传感器和接收传感器的间距加大,这样虽然可以改善反射串扰问题,但是却与TOF技术的优势背道而驰。另外,还有人想到将发射传感器和接收传感器之间的显示面板剪断,这样虽然可以使得串扰小时,但是显示面板的折射率会发生突变,波导效应消失,也是不现实的。而根据本申请实施例的显示面板100,通过在基底层11和有机发光器件层12之间设置至少一层减反增透层13,无需增大发射传感器201和接收传感器202的间距,符合TOF技术的优势,而且无需剪断发射传感器201和接收传感器202之间的显示面板100,从而可以避免显示面板100的折射率发生突变,避免波导效应消失。
综上,相关技术中的电子设备,越来越多的具有人脸识别功能,人脸识别功能可以利用TOF技术实现,随着全面屏的发展,飞行时间装置被放置在显示面板下方,即在显示面板上设置高透光区,将飞行时间装置的发射传感器和接收传感器设置在显示面板下方且与高透光区相对,但由于飞行时间装置的发射传感器发射出的红外线在显示面板内部的反射效应,造成飞行时间装置的接收传感器容易受到显示面板内部反射的红外线的干扰,造成被测物体的测距不准,甚至出现距离反转的现象。
而本申请通过在显示面板100内部设置具有减反增透作用的减反增透层13,减少或消除接收传感器202受到显示面板100内部反射光线(如红外线等)的干扰,提高飞行时间装置200测距的精准性,缩短发射传感器201和接收传感器202之间的间距,避免显示面板100的折射率发生突变。
在本申请的一些实施例中,其中一层减反增透层13为预设薄膜层130,预设薄膜层130紧邻基底层11设置。也就是说,预设薄膜层130直接设置在基底层11上,或者说,预设薄膜层130与基底层11之间不具有其他膜层。另外,当减反增透层13为多层时,其中一层减反增透层13为预设薄膜层130且直接设置在基底层11上,其他减反增透层13设于预设薄膜层130的远离基底层11的一侧。而当减反增透层13仅为一层时,该层减反增透层13即为预设薄膜层130。
由此,通过在基底层11上设置预设薄膜层130,可以有效地减少基底层11造成发射传感器201射出的光线在显示面板100内部的反射问题,从而提高飞行时间装置200测距的精准性,缩短发射传感器201和接收传感器202之间的间距,避免显示面板100的折射率发生突变。
申请人创造性地发现,造成接收传感器容易受到显示面板内部反射的红外线的干扰的主 要原因在于,显示面板中的有机发光器件层中的阴极层对红外线的反射率约为63%,显示面板中的基底层为聚酰亚胺层(即Polyimide,简写为PI),聚酰亚胺层对红外线的反射率约为15%,针对阴极层的减反增透方法目前主要是减薄和图形化,但减薄阴极层会受到镀膜工艺的限制,当阴极层的厚度低于90nm会出现镀膜不均的问题,而图形化则涉及设备改造和全新工艺开发,短期内很难导入量产。
因此本申请针对基底层(如聚酰亚胺层)进行减反增透设计,即通过在基底层上设置减反增透的预设薄膜层130,从而可以有效对基底层起到减反增透的改善,降低显示面板100内部的光线(如红外线等)反射,减少进入接收传感器202的干扰光线。此外,需要说明的是,根据本申请实施例的基底层11不限于是聚酰亚胺层,还可以为其他材质的层,例如也可以是硬质材料的基底层11等等。
在本申请的一些实施例中,如图2所示,显示面板100仅包括预设薄膜层130这一层减反增透层13,显示面板100还包括紧邻设置在预设薄膜层130的显示侧的缓冲层14。也就是说,在基底层11和缓冲层14之间设置一层预设薄膜层130,且预设薄膜层130与基底层11之间无其他膜层,预设薄膜层130与缓冲层14之间也无其他膜层。由此,可以在保证改善基底层11的减反增透效果的前提下,简化显示面板100的结构,降低加工难度,提高生产效率,经济性好,符合量产要求。
在本申请的一些实施例中,至少一层减反增透层13沿显示面板100的厚度方向的投影完全覆盖基底层11。由此,方便加工。当然,本申请不限于此,在本申请的其他实施例中,至少一层减反增透层13沿显示面板100的厚度方向的投影恰好覆盖预设区域101,也就是说,可以针对预设区域101局部设置减反增透层13,从而可以降低成本,并保证对显示面板100其余区域的厚度无影响。
在本申请的一些实施例中,如图2和图3所示,减反增透层13的折射率n x满足:n-0.2≤n x≤n+0.2,例如n x=n-0.2、或者n x=n-0.1、或者n x=n、或者n x=n+0.1、或者n x=n+0.2等等,其中,n=(n 1×n 2)^(1/2),n 1为紧邻在相应的减反增透层13的非显示侧的膜层(记为下方膜层1a)的折射率,n 2为紧邻在相应的减反增透层13的显示侧的膜层(记为上方膜层1b)的折射率。由此,可以利用膜层间的等倾干涉,使光线干涉相长,实现减反增透,从而可以有效地减少或消除接收传感器202受到显示面板100内部反射光线的干扰,提高飞行时间装置200测距的精准性。
需要说明的是,本文所述的“紧邻”指的是相邻的两膜层之间无其他膜层,即一个减反增透层13与其下方膜层紧邻指的是这两个膜层之间无其他膜层,一个减反增透层13与其 上方膜层紧邻指的是这两个膜层之间无其他膜层,例如,当在基底层11和缓冲层14之间设置一层预设薄膜层130时,基底层11为紧邻预设薄膜层130的下方膜层,缓冲层14为紧邻预设薄膜层130的上方膜层,n 1为基底层11的折射率,n 2为缓冲层14的折射率。此外,可以理解的是,还可以是若干减反增透层13紧邻,例如第一减反增透层、第三减反增透层、第二减反增透层沿着从非显示侧到显示侧的方向依次紧邻设置,当计算第三减反增透层的折射率n x时,第一减反增透层的折射率为n 1,第二减反增透层的折射率为n 2。这里不作赘述。
在本申请的一些具体示例中,n-0.05≤n x≤n+0.05,例如n x=n-0.05、或者n x=n-0.025、或者n x=n、或者n x=n+0.025、或者n x=n+0.05等等,由此,可以更好地利用膜层间的等倾干涉,使光线干涉相长,实现减反增透,从而可以有效地减少或消除接收传感器202受到显示面板100内部反射光线的干扰,提高飞行时间装置200测距的精准性。
在本申请的一些具体示例中,减反增透层13的厚度d x满足:d-50nm≤d x≤d+50nm,例如d x=d-50nm、或者d x=d-25nm、或者d x=d、或者d x=d+25nm、或者d x=d+50nm等等,其中,d x=λ/4,λ为发射传感器201发出的光线的波长。由此,反射后光程差偏移二分之一个波长,实现反射的干涉相消,透射部分则实现干涉相长,从而可以有效地减少或消除接收传感器202受到显示面板100内部反射光线的干扰,提高飞行时间装置200测距的精准性。
例如,当发射传感器201发出的光线为波长为940nm的红外线,此时,减反增透层13的厚度可以为235nm。由此,反射后光程差偏移二分之一个波长,实现反射的干涉相消,透射部分则实现干涉相长,从而可以有效地减少或消除接收传感器202受到显示面板100内部反射光线的干扰,提高飞行时间装置200测距的精准性。需要说明的是,发射传感器201发出的光线的波长可选不限,例如还可以为920nm~960nm等等,这里不作赘述。
在本申请的一些实施例中,减反增透层13的消光系数k满足:k≤1,例如,k为1、0.9、0.8、0.7、0.6、0.5、0.4等等。由此,可以更好地提高飞行时间装置200测距的精准性。在本申请的一些具体示例中,k≤0.5,由此,可以更好地提高飞行时间装置200测距的精准性。
例如在本申请的一个具体示例中,如图2所示,在基底层11和缓冲层14之间设置一层预设薄膜层130,发射传感器201发出的光线的波长为940nm,基底层11为聚酰亚胺层且折射率为1.945(即聚酰亚胺层对波长为940nm的光线的折射率为1.945),缓冲层14的折射率为1.467(即缓冲层14对波长为940nm的光线的折射率为1.467),按照上述公式计算,预设薄膜层130的折射率n x为1.689,预设薄膜层130的厚度d x为235nm。需要说明的是,为了便于材料的选用,可以采用折射率接近1.689的材料,例如可以将预设薄膜层130的折 射率选定为1.625(如聚酰亚胺材料)或1.691(如电子传输层的材料)等等。
由此,可以利用膜层间的等倾干涉,使光线干涉相长,实现减反增透,反射后光程差偏移二分之一个波长,实现反射的干涉相消,透射部分则实现干涉相长,从而可以实现全增透效果,即可实现较大程度的减反增透效果,有效地减少或消除接收传感器202受到显示面板100内部反射光线的干扰,提高飞行时间装置200测距的精准性。
在本申请的一些实施例中,至少一层减反增透层13的材料为聚酰亚胺,由此,材料便于获得,而且便于加工,而且聚酰亚胺的折射率接近1.689,可以有效地减少或消除接收传感器202受到显示面板100内部反射光线的干扰,提高飞行时间装置200测距的精准性。
例如在具体示例一中,发射传感器201发出的光线的波长为940nm,基底层11为聚酰亚胺层,在聚酰亚胺层上方涂覆聚酰亚胺层作为预设薄膜层130,聚酰亚胺层的折射率为1.625、厚度为235nm,通过仿真结果(如下表一)可知,设置该聚酰亚胺层后,940nm的红外光线的反射率由14.95%降至2.42%,透过率由85.05%增至97.51%,可以极大程度地缩减发射传感器201和接收传感器202的间距。
表一:
Figure PCTCN2021116035-appb-000001
在本申请的一些实施例中,有机发光器件层12包括电子传输层,至少一层减反增透层13的材料与电子传输层的材料相同。由此,材料便于获得,而且便于加工,而且电子传输层的材料的折射率接近1.689,可以有效地减少或消除接收传感器202受到显示面板100内部反射光线的干扰,提高飞行时间装置200测距的精准性。
可以理解的是,有机发光器件层12包括:有机发光层122和位于有机发光层122厚度两侧的阴极层123和阳极层121,有机发光层122可以包括发光层、电子传输层、电子注入层、空穴输运层、空穴注入层等,这里不作赘述。另外,值得说的是,可以对有机发光层122进行局部挖孔(例如图4中所示的A处)设计,从而提高预设区域101的透光效果, 进一步提高飞行时间装置200测距准确性。
例如在具体示例二中,发射传感器201发出的光线的波长为940nm,基底层11为聚酰亚胺层,在聚酰亚胺层上方蒸镀电子传输层的材料作为预设薄膜层130,电子传输层的材料的折射率为1.691、厚度为235nm,通过仿真结果(如下表二)可知,设置该预设薄膜层130后,940nm的红外光线的反射率由14.95%降至3.69%,透过率由85.05%增至96.33%,可以极大程度地缩减发射传感器201和接收传感器202的间距。
表二:
Figure PCTCN2021116035-appb-000002
下面,描述根据本申请一些实施例的显示装置1000。
如图1和图2所示,显示装置1000可以包括:显示面板100和飞行时间装置200,显示面板100为根据本申请任一实施例的显示面板100,飞行时间装置200包括发射传感器201和接收传感器202,发射传感器201和接收传感器202均设在预设区域101的非显示侧,发射传感器201发出的光线由预设区域101射出到显示面板100的显示侧,并由显示侧的被检测物2000反射回显示面板100的非显示侧,以被接收传感器202接收。
由此,根据本申请实施例的显示装置1000,通过在显示面板100内部设置具有减反增透作用的减反增透层13,减少或消除接收传感器202受到显示面板100内部反射光线的干扰,提高飞行时间装置200测距的精准性,缩短发射传感器201和接收传感器202之间的间距,避免显示面板100的折射率发生突变,从而可以提高显示装置1000的人脸识别功能,满足全面屏发展要求。
需要说明的是,预设区域101在显示面板100上的具体设置位置、以及形状、大小均可以根据实际要求设置,本申请不作限定。此外,需要说明的是,根据本申请实施例的显示装置1000的具体类型不限,且显示装置1000的功能不限于显示,只要至少具有显示和人脸识别功能即可,例如还可以具有照相拍摄功能、语音通话功能、上网功能等等,例如可以是智能手机、智能穿戴设备等等。此外,在显示装置1000的具体类型确定后,根据本申 请实施例的显示装置1000的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
此外,根据本申请实施例的显示面板100的具体构成也不限,例如还可以包括薄膜封装层15、像素界定层等等。另外,说明书附图2中所示的显示面板100仅为示意图,在有机发光器件层12和缓冲层14之间还可以具有其他功能膜层,例如平坦层等,这里省略不画。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (12)

  1. 一种显示面板,其中,所述显示面板具有预设区域,所述预设区域的非显示侧适于设置飞行时间装置的发射传感器和接收传感器,所述发射传感器发出的光线适于由所述预设区域射出到所述显示面板的显示侧,并由显示侧的被检测物反射回所述显示面板的非显示侧,以被所述接收传感器接收,所述显示面板包括:
    基底层;
    有机发光器件层,所述有机发光器件层设于所述基底层的显示侧;
    减反增透层,所述减反增透层为至少一层且设于所述基底层和所述有机发光器件层之间,所述减反增透层的至少部分与所述预设区域沿所述显示面板的厚度方向相对设置。
  2. 根据权利要求1所述的显示面板,其中,其中一层所述减反增透层为预设薄膜层,所述预设薄膜层紧邻所述基底层设置。
  3. 根据权利要求2所述的显示面板,其中,所述显示面板仅包括所述预设薄膜层这一层所述减反增透层,所述显示面板还包括紧邻设置在所述预设薄膜层的显示侧的缓冲层。
  4. 根据权利要求3所述的显示面板,其中,所述发射传感器发出的光线的波长为940nm,所述基底层为聚酰亚胺层且折射率为1.945,所述缓冲层的折射率为1.467,所述预设薄膜层的折射率为1.625或1.691,所述预设薄膜层的厚度为235nm。
  5. 根据权利要求1-4中任一项所述的显示面板,其中,至少一层所述减反增透层沿所述显示面板的厚度方向的投影完全覆盖所述基底层。
  6. 根据权利要求1-4中任一项所述的显示面板,其中,至少一层所述减反增透层沿所述显示面板的厚度方向的投影恰好覆盖所述预设区域。
  7. 根据权利要求1-6中任一项所述的显示面板,其中,所述减反增透层的折射率n x满足:
    n-0.2≤n x≤n+0.2,其中,n=(n 1×n 2)^(1/2),n 1为紧邻在相应的所述减反增透层的非显示侧的膜层的折射率,n 2为紧邻在相应的所述减反增透层的显示侧的膜层的折射率。
  8. 根据权利要求1-7中任一项所述的显示面板,其中,所述减反增透层的厚度d x满足:
    d-50nm≤d x≤d+50nm,其中,d x=λ/4,λ为所述发射传感器发出的光线的波长。
  9. 根据权利要求1-8中任一项所述的显示面板,其中,所述减反增透层的消光系数k满足:k≤1。
  10. 根据权利要求1-9中任一项所述的显示面板,其中,至少一层所述减反增透层的材 料为聚酰亚胺。
  11. 根据权利要求1-9中任一项所述的显示面板,其中,所述有机发光器件层包括电子传输层,至少一层减反增透层的材料与所述电子传输层的材料相同。
  12. 一种显示装置,其中,包括:
    显示面板,所述显示面板为根据权利要求1-11中任一项所述的显示面板;和
    飞行时间装置,所述飞行时间装置包括发射传感器和接收传感器,所述发射传感器和所述接收传感器均设在所述预设区域的非显示侧,所述发射传感器发出的光线由所述预设区域射出到所述显示面板的显示侧,并由显示侧的被检测物反射回所述显示面板的非显示侧,以被所述接收传感器接收。
PCT/CN2021/116035 2020-10-30 2021-09-01 显示面板和具有其的显示装置 WO2022088960A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/922,475 US20230189618A1 (en) 2020-10-30 2021-09-01 Display panels and display apparatuses having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011197835.2 2020-10-30
CN202011197835.2A CN112331710A (zh) 2020-10-30 2020-10-30 显示面板和具有其的显示装置

Publications (1)

Publication Number Publication Date
WO2022088960A1 true WO2022088960A1 (zh) 2022-05-05

Family

ID=74323889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116035 WO2022088960A1 (zh) 2020-10-30 2021-09-01 显示面板和具有其的显示装置

Country Status (3)

Country Link
US (1) US20230189618A1 (zh)
CN (1) CN112331710A (zh)
WO (1) WO2022088960A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048556A1 (ja) * 2022-08-30 2024-03-07 ソニーセミコンダクタソリューションズ株式会社 発光装置およびアイウェアデバイス

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112331710A (zh) * 2020-10-30 2021-02-05 京东方科技集团股份有限公司 显示面板和具有其的显示装置
CN113253459A (zh) * 2021-05-20 2021-08-13 深圳市光舟半导体技术有限公司 一种光波导片与透镜集成镜片、集成方法及ar显示模组
CN114420873A (zh) * 2022-01-20 2022-04-29 武汉天马微电子有限公司 显示模组和显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103793A (ja) * 2007-10-22 2009-05-14 Nikon Corp プロジェクタ装置
CN107422511A (zh) * 2017-07-04 2017-12-01 京东方科技集团股份有限公司 显示面板、显示装置和显示面板的制造方法
CN111754876A (zh) * 2020-06-28 2020-10-09 昆山国显光电有限公司 一种显示面板以及显示装置
CN112331710A (zh) * 2020-10-30 2021-02-05 京东方科技集团股份有限公司 显示面板和具有其的显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205319159U (zh) * 2016-01-21 2016-06-15 京东方科技集团股份有限公司 显示基板、显示面板以及显示装置
KR20200082763A (ko) * 2018-12-31 2020-07-08 엘지디스플레이 주식회사 투명 표시 장치
CN111370457B (zh) * 2020-03-20 2022-09-13 昆山国显光电有限公司 显示面板
CN111223912B (zh) * 2020-03-20 2022-08-26 昆山国显光电有限公司 显示面板
CN111490081B (zh) * 2020-04-17 2023-02-07 京东方科技集团股份有限公司 显示面板及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103793A (ja) * 2007-10-22 2009-05-14 Nikon Corp プロジェクタ装置
CN107422511A (zh) * 2017-07-04 2017-12-01 京东方科技集团股份有限公司 显示面板、显示装置和显示面板的制造方法
CN111754876A (zh) * 2020-06-28 2020-10-09 昆山国显光电有限公司 一种显示面板以及显示装置
CN112331710A (zh) * 2020-10-30 2021-02-05 京东方科技集团股份有限公司 显示面板和具有其的显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048556A1 (ja) * 2022-08-30 2024-03-07 ソニーセミコンダクタソリューションズ株式会社 発光装置およびアイウェアデバイス

Also Published As

Publication number Publication date
CN112331710A (zh) 2021-02-05
US20230189618A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
WO2022088960A1 (zh) 显示面板和具有其的显示装置
CN109904347B (zh) 发光器件及其制造方法、显示装置
US10825881B2 (en) Array substrate, display device and pattern recognition method thereof
US11387297B2 (en) Organic light-emitting diode display substrate, manufacturing method thereof and display device
WO2016062240A1 (zh) 一种顶发射oled器件及其制作方法、显示设备
TWI674525B (zh) 抗反射整合觸控顯示面板
US20200020737A1 (en) Display Screen, Display Module, and Terminal
US11322568B2 (en) Display panel and display device having a micro-cavity structure with transflective layers
US8884280B2 (en) Organic light emitting diode display and manufacturing method thereof
WO2020224088A1 (zh) 阵列基板及其制作方法
WO2016082358A1 (zh) 有机发光二极管阵列基板及其制备方法、显示装置
US9269925B2 (en) Array substrate including wavy transflective layer
US20210336231A1 (en) Display panel and electronic device
WO2019223652A1 (zh) 一种显示面板及其制作方法、显示装置
US20210336226A1 (en) Display panel and display device
WO2016000334A1 (zh) 一种有机发光二极管、阵列基板及其制备方法、显示装置
WO2022183767A1 (zh) Oled显示基板及其制作方法、显示装置
WO2021233229A1 (zh) 显示面板及显示装置
US20240049575A1 (en) Display panel and mobile terminal
CN112259571B (zh) 柔性背板及显示装置
WO2020156286A1 (zh) 电子设备及显示装置
WO2020143025A1 (zh) 柔性基板及其制作方法、显示面板
US10468465B1 (en) Display panel and fabrication method, and display device thereof
WO2020155590A1 (zh) 显示面板、其制备方法及显示终端
US10665822B2 (en) Display screen and manufacturing method thereof and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 11/08/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21884691

Country of ref document: EP

Kind code of ref document: A1