WO2022088269A1 - 一种石榴石结构的全光谱荧光转换材料及其制备方法 - Google Patents

一种石榴石结构的全光谱荧光转换材料及其制备方法 Download PDF

Info

Publication number
WO2022088269A1
WO2022088269A1 PCT/CN2020/128592 CN2020128592W WO2022088269A1 WO 2022088269 A1 WO2022088269 A1 WO 2022088269A1 CN 2020128592 W CN2020128592 W CN 2020128592W WO 2022088269 A1 WO2022088269 A1 WO 2022088269A1
Authority
WO
WIPO (PCT)
Prior art keywords
full
conversion material
fluorescence conversion
garnet structure
ions
Prior art date
Application number
PCT/CN2020/128592
Other languages
English (en)
French (fr)
Inventor
张乐
邵岑
康健
王忠英
黄国灿
姚庆
李明
费宾
邱凡
赵超
陈浩
Original Assignee
新沂市锡沂高新材料产业技术研究院有限公司
徐州凹凸光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新沂市锡沂高新材料产业技术研究院有限公司, 徐州凹凸光电科技有限公司 filed Critical 新沂市锡沂高新材料产业技术研究院有限公司
Publication of WO2022088269A1 publication Critical patent/WO2022088269A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the invention relates to the technical field of preparation of fluorescent conversion materials for LEDs, in particular to a full-spectrum fluorescent conversion material with a garnet structure and a preparation method thereof.
  • white LED lighting devices need to continuously achieve breakthroughs in technical fields such as color rendering index and blue light utilization.
  • color rendering index is far lower than that of the multi-chip three-primary LED white light source.
  • the fundamental reason for this phenomenon is that the red light component is missing in the white light output spectrum of the excitation light source of a single blue LED chip.
  • the Chinese patent proposes the modification technology of silicate system red phosphors to achieve high-quality white light output; the Chinese patent (application number 201610749624.2) prepares a full-spectrum phosphor that can meet the requirements of different lighting fields. High-efficiency white light for application needs. Although these fluorescent conversion materials achieve high-quality white light output, the white light LED devices prepared in this way cannot effectively utilize blue light.
  • One of the objectives of the present invention is to overcome the deficiencies of the prior art and provide a full-spectrum fluorescence conversion material with a garnet structure for white LEDs with high blue light utilization, good chemical stability and temperature quenching properties, and wide excitation and emission ranges.
  • the second object of the present invention is to provide a preparation method of the above-mentioned full-spectrum fluorescence conversion material of garnet structure.
  • the preparation method is simple, easy to operate, low in equipment cost, and enterprises can realize large-scale production on the existing production line.
  • the technical scheme adopted in the present invention is as follows: a full-spectrum fluorescence conversion material of garnet structure, the general chemical formula of which is Ba a Y b Luc Ced Al e Ga f Si g O 12 ,
  • a is the mole percent of Ba ions
  • b is the mole percent of Y 3+ ions
  • c is the mole percent of Lu 3+ ions
  • d is the mole percent of Ce 3+ ions
  • e is the mole percent of Al 3+ ions Percentage
  • f is the mole percentage of Ga 3+ ions
  • the present invention also provides a method for preparing the full-spectrum fluorescence conversion material with the above-mentioned garnet structure.
  • the specific steps are as follows:
  • the raw material powder prepared in step (1) is based on the stoichiometry of each element in Y 3-d Ced Al 5 O 12 and Ba a Lu 3-ad C d Al 5-fg Ga f Sig O 12
  • step (3) drying the ball-milled slurry in step (2), respectively, and grinding and sieving the dried powder;
  • step (3) (4) calcining the mixed powder after sieving in step (3), the calcining temperature is 800-1100°C, and the holding time is 2-4h;
  • Y 3-d C d Al 5 O 12 powder and Ba a Lu 3-ad C d Al 5-fg Ga f Sig O 12 powder calcined in step (4) according to the chemical formula Ba a Y b Luc Ced Al e Ga f Si g O 12 is proportioned and weighed, then placed in absolute ethanol, stirred in vacuum for 15-40 min, and the stirring speed is 1800-2500 r/min; dried after stirring;
  • step (6) placing the dried powder in step (5) in a crucible, calcining in a reducing atmosphere, the calcination temperature is 1200-1500°C, and the holding time is 3-8h; after natural cooling to room temperature, the garnet structure is obtained
  • the full spectrum fluorescence conversion material Ba a Y b Luc Ce d Al e Ga f Si g O 12 .
  • the ball milling method described in step (2) is planetary ball milling, the ball milling speed is 120-150 r/min, and the ball milling time is 30-60 min.
  • the dispersant described in step (2) is one or more of herring oil, fish oil, castor oil, polyetherimide, NP-10, and the amount of dispersant added is the quality of the raw material powder in the ball mill. 0.5-1.5wt.%.
  • the mesh number of the sieved mesh is 80-200 mesh, and the sieve is sieved 3-5 times.
  • the reducing atmosphere in step (6) is a mixture of nitrogen and hydrogen with a volume ratio of 95-85:5-15 or a mixture of argon and hydrogen with a volume ratio of 95-85:5-15.
  • the present invention has the following beneficial effects:
  • the preparation method of the present invention is simple, easy to operate, and has low equipment cost and no pollution.
  • the garnet-structured full-spectrum fluorescence conversion material prepared by the present invention has high light conversion efficiency, good chemical stability, and wide excitation and emission spectral ranges.
  • the maximum content of blue light can be realized. Absorption can effectively avoid the blue light hazard existing in the white light LED lighting device prepared by a single blue light chip.
  • FIG. 1 is the XRD pattern of BaYLu 0.97 Ce 0.03 Al 2 Ga 2 SiO 12 prepared in Example 1.
  • FIG. 1 is the XRD pattern of BaYLu 0.97 Ce 0.03 Al 2 Ga 2 SiO 12 prepared in Example 1.
  • FIG. 2 is a photoluminescence spectrum diagram of the BaYLu 0.97 Ce 0.03 Al 2 Ga 2 SiO 12 fluorescence conversion material prepared in Example 1.
  • FIG. 2 is a photoluminescence spectrum diagram of the BaYLu 0.97 Ce 0.03 Al 2 Ga 2 SiO 12 fluorescence conversion material prepared in Example 1.
  • Example 3 is a photoluminescence spectrum diagram of the BaY 0.85 LuCe 0.15 Al 2 Ga 2 SiO 12 fluorescence conversion material prepared in Example 2.
  • the raw materials used are all high-purity raw materials.
  • step (2) The raw material powder prepared in step (1) is weighed according to the stoichiometric ratio of BaLu 1.97 Ce 0.03 Al 2 Ga 2 SiO 12 and Y 2.97 Ce 0.03 Al 5 O 12 , and placed in two oxidized In the aluminum ball mill tank, each ball mill tank was added with 1 wt.% of the raw material powder mass of the dispersant PEI, and anhydrous ethanol was used as a solvent to prepare the slurry respectively, and the planetary ball mill was carried out. The ball milling speed was 120r/min, and the ball milling time was 60min. .
  • step (3) Drying the two slurries prepared in step (2) in a 55° C. oven, and grinding the dried powder through an 80-mesh sieve and sieving for 5 times.
  • step (3) (4) calcining the mixed powder after sieving in step (3) respectively, the calcination temperature is 1100° C., and the holding time is 4h.
  • step (6) Place the dried powder in step (5) in a crucible, and calcine in a reducing atmosphere (90% N 2 +10% H 2 ), the calcination temperature is 1200° C., and the holding time is 5h; At room temperature, a full-spectrum fluorescence conversion material BaYLu 0.97 Ce 0.03 Al 2 Ga 2 SiO 12 with a garnet structure is obtained.
  • FIG. 1 is an XRD pattern of BaYLu 0.97 Ce 0.03 Al 2 Ga 2 SiO 12 prepared in this example, and it can be seen from the figure that the prepared material is a garnet phase without any impurity phase.
  • FIG. 2 is a photoluminescence spectrum diagram of the BaYLu 0.97 Ce 0.03 Al 2 Ga 2 SiO 12 fluorescence conversion material prepared in the present embodiment. The results in the figure show that the fluorescence conversion material with a garnet structure can achieve full-spectrum luminescence.
  • step (2) Weigh the raw material powder prepared in step (1) according to the stoichiometric ratio of BaLu 1.85 Ce 0.15 Al 2 Ga 2 SiO 12 and Y 2.85 Ce 0.15 Al 5 O 12 , and place them in two nylon ball mill jars respectively. 1 wt.% dispersant PEI was added, and slurries were prepared with absolute ethanol as a solvent, respectively, and subjected to planetary ball milling. The ball milling speed was 150 r/min and the ball milling time was 30 min.
  • step (3) The slurry prepared in step (2) is placed in a 55° C. oven to dry, and the dried powder is ground and passed through a 100-mesh sieve and sieved three times.
  • step (3) The mixed powders sieved in step (3) were calcined respectively, the calcination temperature was 900°C, and the holding time was 4h.
  • step (6) Place the dried powder in step (5) in a crucible, and in a reducing atmosphere (95% N 2 +5% H 2 ), the calcination temperature is 1500°C, and the holding time is 5h; At room temperature, a full-spectrum fluorescence conversion material BaY 0.85 LuCe 0.15 Al 2 Ga 2 SiO 12 with a garnet structure is obtained.
  • FIG. 3 is a photoluminescence spectrum diagram of the BaY 0.85 LuCe 0.15 Al 2 Ga 2 SiO 12 fluorescence conversion material prepared in the present embodiment. The results in the figure show that the fluorescence conversion material with a garnet structure can achieve full-spectrum luminescence.
  • the raw material powders are respectively prepared according to the stoichiometric ratio of the YAG-based and LuAG-based fluorescent materials.
  • the YAG-based and LuAG-based fluorescent conversion materials can be phase-formed at the same sintering temperature, and single-doped rare earth ions can be realized.
  • Ce 3+ emits light in the full spectrum under the garnet crystal structure, and its photoconversion efficiency is much higher than that of a single host material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

一种石榴石结构的全光谱荧光转换材料及其制备方法,该荧光转换材料的化学通式是Ba aY bLu cCe dAl eGa fSi gO 12,0.85≤a≤1.15,0<b≤2.0,0.2≤c≤2.0,0.03≤d≤0.15,0.5≤e≤2.5,0.5≤f≤2.5,0.8≤g≤1.2,a+b+c+d=3,e+f+g=5;首先分别配制Y 3-dCe dAl 5O 12以及Ba aLu 3-a-dCe dAl 5-f-gGa fSi gO 12原料粉体,再分别球磨、干燥、过筛、煅烧,再将煅烧后的Y 3-dCe dAl 5O 12粉体以及Ba aLu 3-a-dCe dAl 5-f-gGa fSi gO 12粉体按照化学式Ba aY bLu cCe dAl eGa fSi gO 12进行配比称量,真空搅拌,干燥后置于还原气氛下煅烧,即得到目标产物。制备的全光谱荧光转换材料光转换效率高、化学稳定性好、激发和发射光谱范围宽,制备方法简单,易于工业化生产。

Description

一种石榴石结构的全光谱荧光转换材料及其制备方法 技术领域
本发明涉及LED用荧光转换材料制备技术领域,具体涉及一种石榴石结构的全光谱荧光转换材料及其制备方法。
背景技术
自蓝光LED芯片问世以来,利用低成本的LED芯片实现高品质的白光照明输出成为众多科研学者不断追求的目标。当今世界,采用荧光转换材料实现高品质白光照明输出的白光LED器件以其制备成本低、能耗低、寿命长、环境友好等优势已经成为应用最为广泛的照明灯具。
但是,随着人们对高品质健康生活的不断追求以及对蓝光危害潜在风险的担忧,使得白光LED照明器件需要在显色指数、蓝光利用率等技术领域不断实现突破。然而,对于单一蓝光LED芯片的白光光源来说,其显色指数远远低于多芯片三基色LED白光照明光源。造成这种现象的根本原因在于,单一蓝光LED芯片的激发光源的白光输出光谱中,缺少红光成分。
为此,国内学者通过采用引入单一红光成分的方式来提升单一蓝光LED芯片照明器件的显色指数。中国专利(申请号201910313255.6)提出对硅酸盐体系红光荧光粉的改性技术实现高品质的白光输出;中国专利(申请号201610749624.2)制备了一种全光谱荧光粉获得了能够满足不同照明领域应用需求的高效白光。虽然,这些荧光转换材料实现了高品质的白光输出,但是通过该方式制备的白光LED器件无法对蓝光进行有效的利用。
因此,对于现有的荧光转换材料基质改进与开发,以得到能够与蓝光激发LED芯片相匹配的荧光粉对单一蓝光芯片的白光LED照明器件的发展具有重要的意义。
发明内容
本发明目的之一是克服现有技术的不足,提供一种蓝光利用率高、化学稳定性和温度猝灭特性好、激发和发射范围宽的白光LED用石榴石结构的全光谱荧光转换材料。
本发明目的之二是提供一种上述石榴石结构的全光谱荧光转换材料的制备 方法。该制备方法简单、易于操作、设备成本低并且企业能够在现有的产线上实现大规模生产。
为实现上述目的,本发明采用的技术方案如下:一种石榴石结构的全光谱荧光转换材料,其化学通式是Ba aY bLu cCe dAl eGa fSi gO 12
其中,a为Ba 2+离子的摩尔百分数,b为Y 3+离子的摩尔百分数,c为Lu 3+离子的摩尔百分数,d为Ce 3+离子的摩尔百分数,e为Al 3+离子的摩尔百分数,f为Ga 3+离子的摩尔百分数,g为Si 4+离子的摩尔百分数,分别满足0.85≤a≤1.15,0<b≤2.0,0.2≤c≤2.0,0.03≤d≤0.15,0.5≤e≤2.5,0.5≤f≤2.5,0.8≤g≤1.2,并且满足a+b+c+d=3,e+f+g=5。
本发明还提供上述石榴石结构的全光谱荧光转换材料的制备方法,具体步骤如下:
(1)按照化学式Ba aY bLu cCe dAl eGa fSi gO 12选取SiO 2、Al 2O 3、CeO 2、Lu 2O 3、Ga 2O 3以及BaCO 3粉体作为原料粉体;
(2)将步骤(1)准备好的原料粉体按照Y 3-dCe dAl 5O 12以及Ba aLu 3-a-dCe dAl 5-f-gGa fSi gO 12中各元素的化学计量比进行称量,其中0.85≤a≤1.15,0<b≤2.0,0.2≤c≤2.0,0.03≤d≤0.15,0.5≤e≤2.5,0.5≤f≤2.5,0.8≤g≤1.2,a+b+c+d=3,e+f+g=5,将称量好的原料粉体分别置于两个球磨罐中,然后分别加入分散剂,以无水乙醇作为溶剂配制浆料,进行球磨;
(3)将步骤(2)球磨后的浆料分别进行干燥,并将干燥后的粉体研磨过筛;
(4)将步骤(3)过筛后的混合粉体分别进行煅烧,煅烧温度为800-1100℃,保温时间为2-4h;
(5)将步骤(4)煅烧后的Y 3-dCe dAl 5O 12粉体以及Ba aLu 3-a-dCe dAl 5-f-gGa fSi gO 12粉体按照化学式Ba aY bLu cCe dAl eGa fSi gO 12进行配比称量,然后置于无水乙醇中,真空搅拌15-40min,搅拌转速为1800-2500r/min;搅拌结束后干燥;
(6)将步骤(5)干燥后的粉体置于坩埚中,在还原气氛下煅烧,煅烧温度为1200-1500℃,保温时间为3-8h;待自然冷却至室温,即得到石榴石结构的全光谱荧光转换材料Ba aY bLu cCe dAl eGa fSi gO 12
优选的,步骤(2)中所述的球磨方式为行星式球磨,球磨转速为120-150r/min,球磨时间为30-60min。
优选的,步骤(2)中所述分散剂为鲱鱼油、鱼油、蓖麻油、聚醚酰亚胺、NP-10中的一种或多种,分散剂添加量为球磨罐中原料粉体质量的0.5-1.5wt.%。
优选的,步骤(2)中所述过筛的筛网目数为80-200目,过筛3-5次。
优选的,步骤(6)所述的还原气氛是体积比为95-85:5-15的氮气和氢气混合体或者体积比为95-85:5-15的氩气和氢气混合体。
与现有技术相比,本发明具有如下有益效果:
(1)本发明制备方法简单、易于操作、设备成本低且无污染。
(2)本发明所制备的石榴石结构的全光谱荧光转换材料光转换效率高、化学稳定性好、激发和发射光谱范围宽,在与蓝光芯片组成的LED器件中,能够实现最大含量的蓝光吸收,能够有效避免单一蓝光芯片制备的白光LED照明器件存在的蓝光危害。
附图说明
图1为实施例1制得的BaYLu 0.97Ce 0.03Al 2Ga 2SiO 12的XRD图。
图2为实施例1制得的BaYLu 0.97Ce 0.03Al 2Ga 2SiO 12荧光转换材料光致发光光谱图。
图3为实施例2制得的BaY 0.85LuCe 0.15Al 2Ga 2SiO 12荧光转换材料光致发光光谱图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。以下实施例中,所用的原料均为高纯原料。
实施例1
一种石榴石结构全光谱BaYLu 0.97Ce 0.03Al 2Ga 2SiO 12荧光转换材料的制备方法,具体步骤如下:
(1)按照化学式BaLu 1.97Ce 0.03Al 2Ga 2SiO 12以及Y 2.97Ce 0.03Al 5O 12涉及的原料种类进行准备,使用的原料分别为:SiO 2、Al 2O 3、CeO 2、Lu 2O 3、Ga 2O 3、Y 2O 3以及BaCO 3粉体。
(2)将步骤(1)准备好的原料粉体,按照BaLu 1.97Ce 0.03Al 2Ga 2SiO 12与Y 2.97Ce 0.03Al 5O 12中的化学计量比进行称量,分别置于两个氧化铝球磨罐中,每个球磨罐中加入原料粉体质量1wt.%的分散剂PEI,以无水乙醇作为溶剂分别配制 浆料,进行行星式球磨,球磨转速为120r/min,球磨时间为60min。
(3)将步骤(2)所制备的两种浆料置于55℃烘箱中干燥,并将干燥后的粉体研磨过80目筛,过筛5次。
(4)将步骤(3)过筛后的混合粉体分别煅烧,煅烧温度为1100℃,保温时间为4h。
(5)将步骤(4)煅烧后的BaLu 1.97Ce 0.03Al 2Ga 2SiO 12粉体与Y 2.97Ce 0.03Al 5O 12粉体按照化学式BaYLu 0.97Ce 0.03Al 2Ga 2SiO 12进行配比称量,然后置于无水乙醇中,真空搅拌25min,搅拌转速为2000r/min;然后在55℃干燥。
(6)将步骤(5)所干燥后的粉体置于坩埚中,在还原气氛(90%N 2+10%H 2)下煅烧,煅烧温度为1200℃,保温时间为5h;待自然冷却到室温,即得到石榴石结构的全光谱荧光转换材料BaYLu 0.97Ce 0.03Al 2Ga 2SiO 12
图1为本实施例制得的BaYLu 0.97Ce 0.03Al 2Ga 2SiO 12的XRD图,从图中可以看出所制备的材料为石榴石相,无任何的杂相。
图2为本实施例制得的BaYLu 0.97Ce 0.03Al 2Ga 2SiO 12荧光转换材料光致发光光谱图,图中结果表明根据所制备的石榴石结构的荧光转换材料能够实现全光谱的发光。
实施例2
一种石榴石结构全光谱BaY 0.85LuCe 0.15Al 2Ga 2SiO 12荧光转换材料的制备方法,具体步骤如下:
(1)按照化学式BaLu 1.85Ce 0.15Al 2Ga 2SiO 12与Y 2.85Ce 0.15Al 5O 12涉及的原料种类进行准备,使用的原料分别为:SiO 2、Al 2O 3、CeO 2、Y 2O 3、Ga 2O 3、Lu 2O 3以及BaCO 3粉体。
(2)将步骤(1)准备好的原料粉体,按照化学计量比BaLu 1.85Ce 0.15Al 2Ga 2SiO 12与Y 2.85Ce 0.15Al 5O 12进行称量,分别置于两个尼龙球磨罐中,加入粉体质量1wt.%的分散剂PEI,以无水乙醇作为溶剂分别配制浆料,进行行星式球磨,球磨转速为150r/min,球磨时间为30min。
(3)将步骤(2)所制备的浆料置于55℃烘箱干燥,并将干燥后的粉体研磨过100目筛,过筛3次。
(4)将步骤(3)过筛后的混合粉体分别煅烧,煅烧温度为900℃,保温时间为 4h。
(5)将步骤(4)煅烧后的BaLu 1.85Ce 0.15Al 2Ga 2SiO 12粉体与Y 2.85Ce 0.15Al 5O 12粉体按照化学式BaY 0.85LuCe 0.15Al 2Ga 2SiO 12进行配比称量,然后置于无水乙醇中,真空搅拌25min,搅拌转速为2000r/min;然后在55℃干燥。
(6)将步骤(5)所干燥后的粉体置于坩埚中,在还原气氛(95%N 2+5%H 2)下,煅烧温度为1500℃,保温时间为5h;待自然冷却到室温,即得到石榴石结构的全光谱荧光转换材料BaY 0.85LuCe 0.15Al 2Ga 2SiO 12
图3为本实施例制得的BaY 0.85LuCe 0.15Al 2Ga 2SiO 12荧光转换材料光致发光光谱图,图中结果表明根据所制备的石榴石结构的荧光转换材料能够实现全光谱的发光。
将荧光粉和5W蓝光COB芯片封装在一起,经积分球测试(I=350mA,U=14V,型号:SIS-3_1.0m_R98,杭州远方光电信息股份有限公司,室温条件),光效结果如表1所示。
表1
类型 光效(lm/W)
商用Ce:YAG荧光粉 297
商用Ce:LuAG荧光粉 319
BaYLu 0.97Ce 0.03Al 2Ga 2SiO 12 343
BaY 0.85LuCe 0.15Al 2Ga 2SiO 12 338
本发明按照YAG基与LuAG基的荧光材料的化学计量比分别配制原料粉体,通过本发明能够实现YAG基与LuAG基的荧光转换材料在同一烧结温度下成相,能够实现单掺杂稀土离子Ce 3+在石榴石晶体结构下全光谱发光,且其光转化效率远高于单一基质材料。

Claims (6)

  1. 一种石榴石结构的全光谱荧光转换材料,其特征在于,其化学通式是Ba aY bLu cCe dAl eGa fSi gO 12
    其中,a为Ba 2+离子的摩尔百分数,b为Y 3+离子的摩尔百分数,c为Lu 3+离子的摩尔百分数,d为Ce 3+离子的摩尔百分数,e为Al 3+离子的摩尔百分数,f为Ga 3+离子的摩尔百分数,g为Si 4+离子的摩尔百分数,分别满足0.85≤a≤1.15,0<b≤2.0,0.2≤c≤2.0,0.03≤d≤0.15,0.5≤e≤2.5,0.5≤f≤2.5,0.8≤g≤1.2,并且满足a+b+c+d=3,e+f+g=5。
  2. 一种权利要求1所述的石榴石结构的全光谱荧光转换材料的制备方法,其特征在于,具体步骤如下:
    (1)按照化学式Ba aY bLu cCe dAl eGa fSi gO 12选取SiO 2、Al 2O 3、CeO 2、Lu 2O 3、Ga 2O 3以及BaCO 3粉体作为原料粉体;
    (2)将步骤(1)准备好的原料粉体按照Y 3-dCe dAl 5O 12以及Ba aLu 3-a-dCe dAl 5-f-gGa fSi gO 12中各元素的化学计量比进行称量,其中0.85≤a≤1.15,0<b≤2.0,0.2≤c≤2.0,0.03≤d≤0.15,0.5≤e≤2.5,0.5≤f≤2.5,0.8≤g≤1.2,a+b+c+d=3,e+f+g=5,将称量好的原料粉体分别置于两个球磨罐中,然后分别加入分散剂,以无水乙醇作为溶剂配制浆料,进行球磨;
    (3)将步骤(2)球磨后的浆料分别进行干燥,并将干燥后的粉体研磨过筛;
    (4)将步骤(3)过筛后的混合粉体分别进行煅烧,煅烧温度为800-1100℃,保温时间为2-4h;
    (5)将步骤(4)煅烧后的Y 3-dCe dAl 5O 12粉体以及Ba aLu 3-a-dCe dAl 5-f-gGa fSi gO 12粉体按照化学式Ba aY bLu cCe dAl eGa fSi gO 12进行配比称量,然后置于无水乙醇中,真空搅拌15-40min,搅拌转速为1800-2500r/min;搅拌结束后干燥;
    (6)将步骤(5)干燥后的粉体置于坩埚中,在还原气氛下煅烧,煅烧温度为1200-1500℃,保温时间为3-8h;待自然冷却至室温,即得到石榴石结构的全光谱荧光转换材料Ba aY bLu cCe dAl eGa fSi gO 12
  3. 根据权利要求2所述的石榴石结构的全光谱荧光转换材料的制备方法,其特征在于,步骤(2)中所述的球磨方式为行星式球磨,球磨转速为120-150r/min,球磨时间为30-60min。
  4. 根据权利要求2所述的石榴石结构的全光谱荧光转换材料的制备方法, 其特征在于,步骤(2)中所述分散剂为鲱鱼油、鱼油、蓖麻油、聚醚酰亚胺、NP-10中的一种或多种,分散剂添加量为球磨罐中原料粉体质量的0.5-1.5wt.%。
  5. 根据权利要求2所述的石榴石结构的全光谱荧光转换材料的制备方法,其特征在于,步骤(2)中所述过筛的筛网目数为80-200目,过筛3-5次。
  6. 根据权利要求2所述的石榴石结构的全光谱荧光转换材料的制备方法,其特征在于,步骤(6)所述的还原气氛是体积比为95-85:5-15的氮气和氢气混合体或者体积比为95-85:5-15的氩气和氢气混合体。
PCT/CN2020/128592 2020-10-30 2020-11-13 一种石榴石结构的全光谱荧光转换材料及其制备方法 WO2022088269A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011189489.3A CN112251227A (zh) 2020-10-30 2020-10-30 一种石榴石结构的全光谱荧光转换材料及其制备方法
CN202011189489.3 2020-10-30

Publications (1)

Publication Number Publication Date
WO2022088269A1 true WO2022088269A1 (zh) 2022-05-05

Family

ID=74269037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128592 WO2022088269A1 (zh) 2020-10-30 2020-11-13 一种石榴石结构的全光谱荧光转换材料及其制备方法

Country Status (2)

Country Link
CN (1) CN112251227A (zh)
WO (1) WO2022088269A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115305088A (zh) * 2022-08-22 2022-11-08 杭州爱视芙健康科技有限公司 基于石榴石结构衍生的荧光粉材料及其制备方法和应用
CN115678557A (zh) * 2022-11-04 2023-02-03 昆明理工大学 一种抗热猝灭上转换发光热增强材料及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113150783B (zh) * 2021-04-27 2022-11-01 中国科学院长春应用化学研究所 一种颜色可调余辉发光材料及其制备方法和照明产品

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109293358A (zh) * 2018-12-05 2019-02-01 广东省稀有金属研究所 一种下转换发光透明陶瓷及其制备方法
CN111100639A (zh) * 2019-12-30 2020-05-05 江西理工大学 一种绿光发射荧光材料

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111285682A (zh) * 2018-12-07 2020-06-16 上海航空电器有限公司 用于激光照明与显示的全光谱复相荧光陶瓷及制备方法
CN112126433B (zh) * 2020-09-08 2024-04-26 江西理工大学 一种能够发射青绿光的硅铝酸盐荧光材料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109293358A (zh) * 2018-12-05 2019-02-01 广东省稀有金属研究所 一种下转换发光透明陶瓷及其制备方法
CN111100639A (zh) * 2019-12-30 2020-05-05 江西理工大学 一种绿光发射荧光材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIANG, YAOCHUN ET AL.: "BaY1.95A12Ga2Si012:0.05Ce3+: A novel green-emitting phosphor with extra-high quantum yield, small thermal quenching and excellent water resistance for high-color-rendering white LEDs", OURNAL OF LUMINESCENCE, vol. 224, 14 April 2020 (2020-04-14), pages 1 - 8, XP086180267, DOI: 10.1016/j.jlumin.2020.117293 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115305088A (zh) * 2022-08-22 2022-11-08 杭州爱视芙健康科技有限公司 基于石榴石结构衍生的荧光粉材料及其制备方法和应用
CN115305088B (zh) * 2022-08-22 2024-05-14 杭州爱视芙健康科技有限公司 基于石榴石结构衍生的荧光粉材料及其制备方法和应用
CN115678557A (zh) * 2022-11-04 2023-02-03 昆明理工大学 一种抗热猝灭上转换发光热增强材料及其制备方法和应用
CN115678557B (zh) * 2022-11-04 2023-10-03 昆明理工大学 一种抗热猝灭上转换发光热增强材料及其制备方法和应用

Also Published As

Publication number Publication date
CN112251227A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
WO2022088269A1 (zh) 一种石榴石结构的全光谱荧光转换材料及其制备方法
CN103756674B (zh) 氮氧化物橙-红色荧光物质,包括其的发光膜或发光片及发光器件
WO2012088788A1 (zh) 一种氮氧化合物发光材料、其制备方法以及由其制成的照明光源
CN112094645A (zh) 一种掺杂Eu2+的蓝光荧光材料及其制备方法和白光LED发光装置
CN116083082B (zh) 一种超高显色荧光粉组合物以及全光谱led器件
CN101412911B (zh) 一种铝硅酸盐蓝色荧光粉及其制备方法
CN114106830B (zh) 一种全光谱led用荧光粉组合物及其应用和制备方法、含其的全光谱led光源
CN101899304B (zh) 一种掺铕的锶铝硅系氮氧化物复合荧光粉及其制备方法
CN1952039A (zh) 一种用于白光led的塞隆荧光粉及其所制成的电光源
CN110484251B (zh) 一种磷铝酸锶锂钠荧光粉及其制备方法
CN101899302B (zh) 一种近紫外激发白光荧光粉及其制备方法
CN102093887A (zh) 一种低色温白光led用氮化硅橙红光发光材料及其制备方法
CN106281313B (zh) 一种硅酸盐荧光粉及其制备方法和应用
CN105969355A (zh) 一种黄绿色荧光粉及其制备方法
CN113322063A (zh) 一种红光荧光粉及其在背光显示白光led灯中的应用
CN115650725B (zh) 一种具有多波段荧光发射的荧光陶瓷材料及其制备方法
CN110055066A (zh) 一种红色荧光粉及其制备方法
CN111410959A (zh) 一种稀土磷酸盐基橙红色荧光粉及其制备方法
CN113845912B (zh) 一种紫外光激发的宽带绿光荧光粉及其制备方法
CN111088048B (zh) 一种Eu3+掺杂的氟钽酸盐荧光陶瓷及其合成方法与应用
CN108441213A (zh) 一种红色荧光粉及其制备方法
CN102002362A (zh) 一种白光led用荧光粉及制备方法和应用
CN115261017B (zh) 一种能够被紫光激发的蓝光发光材料及其制备方法
CN112745846B (zh) 适用于大功率器件的绿色荧光粉及其制备方法
KR20120072547A (ko) 칼슘-보레이트-실리케이트계 녹색 발광 형광체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959429

Country of ref document: EP

Kind code of ref document: A1