WO2022085605A1 - ワイヤ放電加工機、及び、ワイヤ放電加工機の制御方法 - Google Patents

ワイヤ放電加工機、及び、ワイヤ放電加工機の制御方法 Download PDF

Info

Publication number
WO2022085605A1
WO2022085605A1 PCT/JP2021/038338 JP2021038338W WO2022085605A1 WO 2022085605 A1 WO2022085605 A1 WO 2022085605A1 JP 2021038338 W JP2021038338 W JP 2021038338W WO 2022085605 A1 WO2022085605 A1 WO 2022085605A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire electrode
electric discharge
discharge machine
wire
unit
Prior art date
Application number
PCT/JP2021/038338
Other languages
English (en)
French (fr)
Inventor
初福晨
川原章義
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to EP21882746.7A priority Critical patent/EP4234143A1/en
Priority to US18/032,542 priority patent/US20230390843A1/en
Priority to CN202180070197.4A priority patent/CN116367946A/zh
Priority to JP2022557503A priority patent/JP7469503B2/ja
Priority to KR1020237012735A priority patent/KR20230091884A/ko
Publication of WO2022085605A1 publication Critical patent/WO2022085605A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/06Control of the travel curve of the relative movement between electrode and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/14Electric circuits specially adapted therefor, e.g. power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H2500/00Holding and positioning of tool electrodes
    • B23H2500/20Methods or devices for detecting wire or workpiece position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/04Apparatus for supplying current to working gap; Electric circuits specially adapted therefor

Definitions

  • the present invention relates to a wire electric discharge machine that applies a voltage between a wire electrode and an installation object installed on a work table to detect the position of an end face of the installation object, and a control method for the wire electric discharge machine.
  • Japanese Patent Application Laid-Open No. 2004-314191 discloses a wire electric discharge machine.
  • This wire electric discharge machine detects the position of the workpiece installed on the work table by the following method.
  • the wire electric discharge machine brings the wire electrode closer to the workpiece while a voltage is applied between the wire electrode and the workpiece installed on the work table. Then, the position of the workpiece is detected based on the position of the wire electrode when the voltage between the wire electrode and the workpiece drops.
  • An oil film, sludge, etc. may adhere to the surface of an installed object such as a work piece installed on a work table.
  • the wire electrode may be bent due to winding habits, vibrations, etc. of the wire electrode. Therefore, as in the technique of Japanese Patent Application Laid-Open No. 2004-314191, when the wire electrode is brought into contact with the installation object to obtain the position of the installation object, there is a problem that the detection accuracy of the position of the installation object is lowered.
  • the present invention has been made to solve the above problems, and is a wire electric discharge machine capable of detecting the position of an installed object installed on a work table with higher accuracy, and a wire electric discharge machine. It is intended to provide a control method for.
  • the first aspect of the present invention is a wire discharge processing machine that detects the position of the end face of the installation object by applying a voltage between the wire electrode and the installation object installed on the work table.
  • the voltage detection unit that detects the voltage between the installation object, the determination unit that determines whether or not the wire electrode has come into contact with the installation object based on the detected voltage, and the wire electrode are the above.
  • the detection operation is performed once, or the wire electrode moves relative to the installation object so as to be separated from the installation object from the state where the wire electrode is in contact with the installation object, and the wire electrode is separated from the installation object.
  • the end face detection operation in which the wire electrode moves to the movement start position is performed once, and the relative movement control unit that performs the end face detection operation a predetermined number of times, and the wire electrode is installed in the end face detection operation each time.
  • a storage control unit that stores in the storage unit the relative position of the wire electrode with respect to the work table when it is determined that the wire electrode is in contact with an object or when the wire electrode is determined to be separated from the installation object, and a plurality of storage units.
  • a data extraction unit that extracts a plurality of the relative positions located in the middle predetermined range as valid data and an end face position of the installation object are determined based on the valid data. It is provided with an end face position determining unit.
  • a second aspect of the present invention is a control method for a wire discharge processing machine that detects the position of the end face of the installation object by applying a voltage between the wire electrode and the installation object installed on the work table.
  • the wire discharge processing machine has a voltage detection unit that detects a voltage between the wire electrode and the installation object, and the wire electrode comes into contact with the installation object from a state where the wire electrode is separated from the installation object.
  • the end face detection operation in which the wire electrode moves to the movement start position is performed once, or the wire electrode moves to the installation object.
  • a storage control step for storing the relative position of the wire electrode with respect to the work table when it is determined to be separated from the installation object in the storage unit, and a predetermined range in the middle when the plurality of the relative positions are arranged in ascending order. It includes a data extraction step for extracting a plurality of relative positions located in order as valid data, and an end face position determination step for determining the end face position of the installation object based on the valid data.
  • the position of the installed object installed on the work table can be detected with higher accuracy.
  • FIG. 1 is a block diagram of a wire electric discharge machine.
  • FIG. 2 is a diagram illustrating extraction of valid data.
  • FIG. 3 is a flowchart showing the flow of the end face position detection process performed in the control device.
  • FIG. 4 is a configuration diagram of a wire electric discharge machine.
  • FIG. 5 is a flowchart showing the flow of the end face position detection process performed in the control device.
  • FIG. 6 is a block diagram of a wire electric discharge machine.
  • FIG. 7 is a flowchart showing the flow of the end face position detection process performed in the control device.
  • FIG. 8 is a diagram showing an example of an image for evaluating the accuracy of the end face position of the work displayed on the notification unit.
  • FIG. 9 is a flowchart showing the flow of the end face position detection process performed in the control device.
  • FIG. 1 is a configuration diagram of a wire electric discharge machine 10.
  • the wire electric discharge machine 10 performs machining by generating electric discharge between the poles of the wire electrode 12 and the work (installed object) 14 while moving the wire electrode 12 relative to the work 14.
  • the work 14 is installed on a work table (not shown). As the work table moves in the X-axis direction and the Y-axis direction, the wire electrode 12 moves relative to the work 14.
  • the wire electric discharge machine 10 has a voltage detection unit 16, a voltage supply circuit 18, a traveling mechanism 20, a moving mechanism 22, a storage unit 24, and a control device 26.
  • the control device 26 includes a voltage control unit 28, a travel control unit 30, a contact determination unit 32, a relative movement control unit 34, a number setting unit 36, a storage control unit 38, a data extraction unit 40, a range setting unit 42, a statistics unit 44, and the like. It has an end face positioning unit 46.
  • the voltage detection unit 16 detects the voltage between the poles (hereinafter, also referred to as the pole-to-pole voltage).
  • the voltage supply circuit 18 supplies a voltage between the poles.
  • the traveling mechanism 20 travels the wire electrode 12 from the upper wire guide (not shown) toward the lower wire guide.
  • the moving mechanism 22 moves the work table in the X-axis direction and the Y-axis direction, and moves the wire electrode 12 relative to the work 14.
  • the storage unit 24 is, for example, a recording medium such as a hard disk or a solid state drive (SSD).
  • the work table is located between the upper wire guide and the lower wire guide in the Z-axis direction (vertical direction).
  • the Z-axis direction is a direction orthogonal to the X-axis direction and the Y-axis direction.
  • the voltage control unit 28 controls the voltage supply circuit 18 to apply the end face detection voltage between the poles.
  • the end face detection voltage is set to a voltage lower than the voltage applied between the poles in order to generate a discharge between the poles when the work 14 is machined.
  • the travel control unit 30 controls the travel mechanism 20 to drive the wire electrode 12.
  • the contact determination unit 32 determines whether or not the wire electrode 12 has contacted the work 14 based on the pole-to-pole voltage detected by the voltage detection unit 16. The contact determination unit 32 determines whether or not the wire electrode 12 has contacted the work 14 when the end face detection voltage is applied between the electrodes. The contact determination unit 32 determines that the wire electrode 12 has contacted the work 14 when the electrode voltage is less than the predetermined voltage, and the wire electrode 12 is from the work 14 when the electrode voltage is equal to or higher than the predetermined voltage. It is determined that they are separated.
  • the relative movement control unit 34 controls the movement mechanism 22 to perform the end face detection operation of the wire electrode 12 a predetermined number of times (for example, N times).
  • the end face detection operation means that the wire electrode 12 moves from a position separated from the work 14 (movement start position) to a position in contact with the work 14, and then the wire electrode 12 moves from a position in contact with the work 14 to a movement start position. It means one round trip operation. This one round trip operation is counted as one end face detection operation.
  • the number of times setting unit 36 sets a predetermined number of times.
  • the predetermined number of times is set based on at least one of the diameter of the wire electrode 12, the resistivity of the work 14, and the surface roughness of the work 14.
  • the resistivity of the work 14 increases, the predetermined number of times is set more.
  • the storage control unit 38 determines that the wire electrode 12 has come into contact with the work 14 in each end face detection operation, and the coordinate values of the X-axis and the Y-axis indicating the relative positions of the wire electrode 12 with respect to the work table (hereinafter referred to as).
  • the storage unit 24 simply stores the coordinate values of the wire electrodes 12).
  • the data extraction unit 40 extracts valid data from the coordinate values of the wire electrodes 12 acquired in each end face detection operation.
  • FIG. 2 is a diagram illustrating extraction of valid data.
  • the extraction of valid data for the X-axis coordinate value will be described, but the extraction of valid data for the Y-axis coordinate value is also performed in the same manner.
  • the data extraction unit 40 arranges the coordinate values of the wire electrodes 12 acquired in each of the end face detection operations performed a predetermined number of times in ascending order.
  • the predetermined number of times is N times
  • the coordinate value having the first rank is the minimum value X (1)
  • the coordinate value having the Nth rank is the maximum value X (N).
  • X (a) ⁇ X (a + 1) [a 1 to N-1].
  • the data extraction unit 40 considers each of the coordinate values of the first to nth rank and the coordinate values of the (Nn + 1) th to the Nth rank as invalid data. On the other hand, the data extraction unit 40 extracts each of the coordinate values from the (n + 1) th to the (Nn) th rank as valid data.
  • the range setting unit 42 sets a range (hereinafter referred to as a predetermined range) of the order of the coordinate values to be valid data.
  • the range setting unit 42 may set a range of ranks of coordinate values to be invalid data.
  • the predetermined range is set based on at least one of the diameter of the wire electrode 12, the resistivity of the work 14, and the surface roughness of the work 14. The smaller the diameter of the wire electrode 12, the narrower the predetermined range is set. The larger the resistivity of the work 14, the narrower the predetermined range is set. The rougher the surface roughness of the work 14, the narrower the predetermined range is set.
  • the statistics unit 44 calculates the difference between the maximum value and the minimum value of valid data. This difference is used as the degree of variability in the valid data.
  • the variance or standard deviation of the valid data may be used as the degree of variation in the valid data.
  • the end face position determination unit 46 determines the end face position of the work 14 based on valid data.
  • the end face position determination unit 46 determines the coordinate value of the end face position of the work 14 based on, for example, the average of valid data.
  • the control device 26 has a computer equipped with an arithmetic processing unit (not shown) and storage.
  • the arithmetic processing unit has, for example, a processor such as a central processing unit (CPU) and a microprocessing unit (MPU), and a memory including a ROM, a RAM, and the like.
  • the storage is, for example, a recording medium such as a hard disk or a solid state drive (SSD).
  • FIG. 3 is a flowchart showing the flow of the end face position detection process performed in the control device 26.
  • step S1 the number of times setting unit 36 sets the number of times (predetermined number of times) to perform the end face detection operation. After that, the process proceeds to step S2.
  • step S2 the range setting unit 42 sets a predetermined range of the order to be extracted as valid data. After that, the process proceeds to step S3.
  • step S3 the relative movement control unit 34 controls the movement mechanism 22 to move the wire electrode 12 relative to the work 14 from a position separated from the work 14.
  • the voltage control unit 28 controls the voltage supply circuit 18 to apply the end face detection voltage between the poles.
  • the travel control unit 30 controls the travel mechanism 20 to drive the wire electrode 12.
  • step S4 the contact determination unit 32 determines whether or not the wire electrode 12 has come into contact with the work 14. If the wire electrode 12 is in contact with the work 14, the process proceeds to step S5, and if the wire electrode 12 is not in contact with the work 14, the process returns to step S3.
  • step S5 the relative movement control unit 34 controls the movement mechanism 22 to move the wire electrode 12 to the movement start position. After that, the process proceeds to step S6.
  • step S6 the relative movement control unit 34 determines whether or not the number of end face detection operations is a predetermined number or more. If the number of end face detection operations is equal to or greater than the predetermined number of times, the process proceeds to step S7, and if the number of end face detection operations is less than the predetermined number of times, the process returns to step S3.
  • step S7 the data extraction unit 40 extracts valid data. After that, the process proceeds to step S8.
  • step S8 the statistics unit 44 calculates the difference between the maximum value and the minimum value of the valid data. After that, the process proceeds to step S9.
  • step S9 the statistics unit 44 determines whether or not the difference between the maximum value and the minimum value of the valid data is equal to or greater than a predetermined value. If the difference between the maximum value and the minimum value of the valid data is greater than or equal to the predetermined value, the process proceeds to step S10, and if the difference between the maximum value and the minimum value of the valid data is less than the predetermined value, the process proceeds to step S11.
  • the predetermined value corresponds to the predetermined degree of the present invention.
  • step S10 the number-of-times setting unit 36 sets the predetermined number of times to be larger than the predetermined number of times set last time. After that, the process returns to step S3. As a result, the relative movement control unit 34 performs the end face detection operation a predetermined number of times newly set.
  • step S11 the end face position determining unit 46 determines the end face position of the work 14 based on valid data. After that, the end face position detection process ends.
  • the contact determination unit 32 determines that the wire electrode 12 is in contact with the work 14.
  • the end face position of the work 14 obtained based on the coordinate values of the wire electrode 12 at this time is a position outside the work 14 with respect to the actual end face position of the work 14.
  • the contact determination unit 32 may determine that the wire electrode 12 is separated from the work 14. After that, after the time when the wire electrode 12 comes into contact with the work 14, the contact determination unit 32 determines that the wire electrode 12 has come into contact with the work 14. While it is determined that the wire electrode 12 is separated from the work 14, the wire electrode 12 further tries to move toward the work 14. Therefore, when the contact determination unit 32 determines that the wire electrode 12 has come into contact with the work 14, the wire electrode 12 is pressed by the work 14 and has a bent shape.
  • the end face position of the work 14 obtained based on the coordinate values of the wire electrode 12 at this time is a position inside the work 14 with respect to the actual end face position of the work 14.
  • the wire electrode 12 may have a winding habit when it is wound around a bobbin. Further, when the wire electrode 12 is traveling, the wire electrode 12 vibrates. Therefore, when the wire electrode 12 comes into contact with the work 14, the wire electrode 12 may have a curved shape.
  • the end face position of the work 14 obtained based on the coordinate values of the wire electrode 12 at this time may be a position outside or inside the work 14 with respect to the actual end face position of the work 14.
  • the end face position of the work 14 obtained based on the coordinate values of the wire electrode 12 when the contact determination unit 32 determines that the wire electrode 12 has come into contact with the work 14 is the actual end face position.
  • a large error may occur.
  • the relative movement control unit 34 controls the movement mechanism 22 to perform the end face detection operation a predetermined number of times.
  • the storage control unit 38 stores the coordinate value of the wire electrode 12 in the storage unit 24 when it is determined that the wire electrode 12 has come into contact with the work 14 in each end face detection operation.
  • the data extraction unit 40 arranges a plurality of coordinate values of the wire electrodes 12 stored in the storage unit 24 in ascending order, and extracts each of the coordinate values whose rank is within a predetermined range as valid data.
  • the end face position determining unit 46 determines the end face position of the work 14 based on the extracted valid data. As a result, coordinate values having a relatively small error with respect to the actual end face position of the work 14 are extracted as valid data, so that the accuracy of the end face position of the work 14 is improved.
  • the relative movement control unit 34 controls the movement mechanism 22 so as to perform the end face detection operation while the wire electrode 12 is running. Thereby, sludge, oil film and the like adhering to the surface of the work 14 for which the end face position is to be detected can be removed.
  • the number-of-times setting unit 36 sets a predetermined number of times.
  • the predetermined number of times is set based on at least one of the diameter of the wire electrode 12, the resistivity of the work 14, and the surface roughness of the work 14.
  • the resistivity of the work 14 increases, the predetermined number of times is set more.
  • the surface roughness of the work 14 becomes coarser, the predetermined number of times is set more.
  • the predetermined number of times is set more. Therefore, the coordinate value of the wire electrode 12 stored in the storage unit 24 is set. The distribution of can be made closer to the normal distribution. Since the coordinate value at the center of the coordinate value of the distribution close to the normal distribution is extracted as valid data, the accuracy of the end face position of the work 14 is improved.
  • the range setting unit 42 sets a predetermined range.
  • the predetermined range is set based on at least one of the diameter of the wire electrode 12, the resistivity of the work 14, and the surface roughness of the work 14.
  • the relative movement control unit 34 controls the movement mechanism 22 to perform the end face detection operation again. Do it many times.
  • the difference between the maximum and minimum values of valid data is calculated as the degree of variation in valid data.
  • the end face position of the work 14 is determined based on the effective data with small variation, so that the accuracy of the end face position of the work 14 is improved.
  • the number-of-times setting unit 36 sets the predetermined number of times to be larger than the predetermined number of times currently set. Set.
  • the number of end face detection operations increases, so that the distribution of the coordinate values stored in the storage unit 24 can be brought closer to the normal distribution. Since the coordinate value at the center of the coordinate value of the distribution close to the normal distribution is extracted as valid data, the accuracy of the end face position of the work 14 is improved.
  • FIG. 4 is a block diagram of the wire electric discharge machine 10.
  • the wire electric discharge machine 10 of the present embodiment has a partially different configuration from the wire electric discharge machine 10 of the first embodiment.
  • the wire electric discharge machine 10 of the present embodiment has a notification unit 48 and a notification control unit 50 of the control device 26 in addition to the configuration of the wire electric discharge machine 10 of the first embodiment.
  • the notification unit 48 is a display device that displays characters, images, etc., an audio device that emits voice, etc., an indicator light that turns on and blinks light, and the like.
  • the notification control unit 50 controls the notification unit 48 to notify the user.
  • FIG. 5 is a flowchart showing the flow of the end face position detection process performed in the control device 26.
  • step S21 the number of times setting unit 36 sets the number of times (predetermined number of times) to perform the end face detection operation. After that, the process proceeds to step S22.
  • step S22 the range setting unit 42 sets a predetermined range of the order to be extracted as valid data. After that, the process proceeds to step S23.
  • step S23 the relative movement control unit 34 controls the movement mechanism 22 to relatively move the wire electrode 12 in the direction of contact with the work 14.
  • the voltage control unit 28 controls the voltage supply circuit 18 to apply the end face detection voltage between the poles.
  • the travel control unit 30 controls the travel mechanism 20 to drive the wire electrode 12.
  • step S24 the contact determination unit 32 determines whether or not the wire electrode 12 has come into contact with the work 14. If the wire electrode 12 is in contact with the work 14, the process proceeds to step S25, and if the wire electrode 12 is not in contact with the work 14, the process returns to step S23.
  • step S25 the relative movement control unit 34 controls the movement mechanism 22 to move the wire electrode 12 to the movement start position. After that, the process proceeds to step S26.
  • step S26 the relative movement control unit 34 determines whether or not the number of end face detection operations is a predetermined number or more. If the number of end face detection operations is the predetermined number or more, the process proceeds to step S27, and if the number of end face detection operations is less than the predetermined number, the process returns to step S23.
  • step S27 the data extraction unit 40 extracts valid data. After that, the process proceeds to step S28.
  • step S28 the statistics unit 44 calculates the difference between the maximum value and the minimum value of the valid data. After that, the process proceeds to step S29.
  • step S29 the statistics unit 44 determines whether or not the difference between the maximum value and the minimum value of the valid data is equal to or greater than a predetermined value. If the difference between the maximum value and the minimum value of the valid data is greater than or equal to the predetermined value, the process proceeds to step S30, and if the difference between the maximum value and the minimum value of the valid data is less than the predetermined value, the process proceeds to step S31.
  • step S30 the notification control unit 50 controls the notification unit 48 to notify the user.
  • the process proceeds to step S31.
  • the notification control unit 50 controls the notification unit 48, which is a display device, to display characters, images, and the like indicating that the accuracy of the detected end face position of the work 14 is low on the notification unit 48.
  • the notification control unit 50 controls, for example, the notification unit 48, which is an audio device, to output a sound, a voice, or the like indicating that the accuracy of the detected end face position of the work 14 is low from the notification unit 48.
  • the notification control unit 50 controls the notification unit 48, which is an LED, to turn on the notification unit 48, blink the notification unit 48, or the like, and the detected end face position of the work 14. Indicates that the accuracy of the LED is low.
  • step S31 the end face position determining unit 46 determines the end face position of the work 14 based on valid data. After that, the end face position detection process ends.
  • the notification control unit 50 controls the notification unit 48 to notify the user when the difference between the maximum value and the minimum value of the valid data is equal to or larger than a predetermined value. As a result, it is possible to inform the user that the accuracy of the detected end face position of the work 14 is low.
  • FIG. 6 is a block diagram of the wire electric discharge machine 10.
  • the wire electric discharge machine 10 of the present embodiment has a partially different configuration from the wire electric discharge machine 10 of the first embodiment.
  • the wire electric discharge machine 10 of the present embodiment has a notification unit 48, a notification control unit 50 of the control device 26, and an evaluation unit 52, in addition to the configuration of the wire electric discharge machine 10 of the first embodiment.
  • the notification unit 48 is a display device that displays characters, images, etc., an audio device that emits voice, etc., an indicator light that turns on and blinks light, and the like.
  • the notification control unit 50 controls the notification unit 48 to notify the user.
  • the evaluation unit 52 evaluates the accuracy of the end face position of the work 14 determined by the end face position determination unit 46 based on the variation of the valid data.
  • FIG. 7 is a flowchart showing the flow of the end face position detection process performed in the control device 26.
  • step S41 the number of times setting unit 36 sets the number of times (predetermined number of times) to perform the end face detection operation. After that, the process proceeds to step S42.
  • step S42 the range setting unit 42 sets a predetermined range of the order to be extracted as valid data. After that, the process proceeds to step S43.
  • step S43 the relative movement control unit 34 controls the movement mechanism 22 to relatively move the wire electrode 12 in the direction of contact with the work 14.
  • the voltage control unit 28 controls the voltage supply circuit 18 to apply the end face detection voltage between the poles.
  • the travel control unit 30 controls the travel mechanism 20 to drive the wire electrode 12.
  • step S44 the contact determination unit 32 determines whether or not the wire electrode 12 has come into contact with the work 14. If the wire electrode 12 is in contact with the work 14, the process proceeds to step S45, and if the wire electrode 12 is not in contact with the work 14, the process returns to step S43.
  • step S45 the relative movement control unit 34 controls the movement mechanism 22 to move the wire electrode 12 to the movement start position. After that, the process proceeds to step S46.
  • step S46 it is determined whether or not the number of end face detection operations is equal to or greater than a predetermined number of times. If the number of end face detection operations is the predetermined number or more, the process proceeds to step S47, and if the number of end face detection operations is less than the predetermined number, the process returns to step S43.
  • step S47 the data extraction unit 40 extracts valid data. After that, the process proceeds to step S48.
  • step S48 the end face position determining unit 46 determines the end face position of the work 14 based on valid data. After that, the process proceeds to step S49.
  • step S49 the statistics unit 44 calculates the difference between the maximum value and the minimum value of the valid data. After that, the process proceeds to step S50.
  • step S50 the evaluation unit 52 evaluates the accuracy of the end face position of the work 14 determined in step S48 based on the difference between the maximum value and the minimum value of the valid data. After that, the process proceeds to step S51.
  • the evaluation unit 52 evaluates the accuracy of the end face position of the work 14 lower as the difference between the maximum value and the minimum value of the valid data becomes larger. Even if the accuracy of the end face position of the work 14 is evaluated based on the difference between the maximum value and the minimum value of all the coordinate values stored in the storage unit 24 instead of the difference between the maximum value and the minimum value of the valid data. good.
  • the accuracy of the end face position of the work 14 may be evaluated based on the variance or standard deviation of the valid data.
  • the accuracy of the end face position of the work 14 may be evaluated based on the variance or standard deviation of all the coordinate values stored in the storage unit 24.
  • step S51 the notification control unit 50 controls the notification unit 48 to notify the user of the evaluation of the accuracy of the end face position of the work 14.
  • the notification control unit 50 controls, for example, the notification unit 48, which is a display device, to display characters, images, and the like indicating the evaluation of the accuracy of the end face position of the work 14 on the notification unit 48.
  • FIG. 8 is a diagram showing an example of an image for evaluating the accuracy of the end face position of the work 14 displayed on the notification unit 48. As shown in FIG. 8, the evaluation may be shown by the ratio of the colored range in the rectangular figure. In FIG. 8, the colored range is shown by hatching.
  • the notification control unit 50 may control the notification unit 48, which is an audio device, to output a sound, a voice, or the like indicating an evaluation of the accuracy of the detected end face position of the work 14 from the notification unit 48.
  • the notification control unit 50 controls the notification unit 48, which is an LED, to turn on the notification unit 48, blink the notification unit 48, or the like, and the detected end face position of the work 14. Indicates that the accuracy of the LED is low. For example, if the evaluation is high, the notification unit 48 may be turned off, if the evaluation is low, the notification unit 48 may be blinked, and if the evaluation is medium, the notification unit 48 may be turned on.
  • the wire electric discharge machine 10 of the present embodiment has the same configuration as the wire electric discharge machine 10 of the first embodiment, the end face detection operation is different from that of the first embodiment.
  • the relative movement control unit 34 controls the movement mechanism 22 to perform the end face detection operation a predetermined number of times (for example, N times).
  • the wire electrode 12 moves from the position in contact with the work 14 (movement start position) to the position separated from the work 14, and then the wire electrode 12 is separated from the work 14. It refers to one round-trip operation from the moved position to the movement start position. This one round trip operation is counted as one end face detection operation.
  • FIG. 9 is a flowchart showing the flow of the end face position detection process performed in the control device 26.
  • step S61 the number of times setting unit 36 sets the number of times (predetermined number of times) to perform the end face detection operation. After that, the process proceeds to step S62.
  • step S62 the range setting unit 42 sets a predetermined range of the order to be extracted as valid data. After that, the process proceeds to step S63.
  • step S63 the relative movement control unit 34 controls the movement mechanism 22 to move the wire electrode 12 relative to the work 14 from the position where the wire electrode 12 is in contact with the work 14.
  • the voltage control unit 28 controls the voltage supply circuit 18 to apply the end face detection voltage between the poles.
  • the travel control unit 30 controls the travel mechanism 20 to drive the wire electrode 12.
  • step S64 the contact determination unit 32 determines whether or not the wire electrode 12 is separated from the work 14. If the wire electrode 12 is separated from the work 14, the process proceeds to step S65, and if the wire electrode 12 is not separated from the work 14, the process returns to step S63.
  • step S65 the relative movement control unit 34 controls the movement mechanism 22 to move the wire electrode 12 to the movement start position. After that, the process proceeds to step S66.
  • step S66 the relative movement control unit 34 determines whether or not the number of end face detection operations is a predetermined number or more. If the number of end face detection operations is the predetermined number or more, the process proceeds to step S67, and if the number of end face detection operations is less than the predetermined number, the process returns to step S63.
  • step S67 the data extraction unit 40 extracts valid data. After that, the process proceeds to step S68.
  • step S68 the statistics unit 44 calculates the difference between the maximum value and the minimum value of the valid data. After that, the process proceeds to step S69.
  • step S69 the statistics unit 44 determines whether or not the difference between the maximum value and the minimum value of the valid data is equal to or greater than a predetermined value. If the difference between the maximum value and the minimum value of the valid data is greater than or equal to the predetermined value, the process proceeds to step S70, and if the difference between the maximum value and the minimum value of the valid data is less than the predetermined value, the process proceeds to step S71.
  • step S70 the number-of-times setting unit 36 sets the predetermined number of times to a number larger than the predetermined number of times set last time. After that, the process returns to step S63. As a result, the relative movement control unit 34 performs the end face detection operation a predetermined number of times newly set.
  • step S71 the end face position determining unit 46 determines the end face position of the work 14 based on valid data. After that, the end face position detection process is terminated.
  • the relative movement control unit 34 controls the movement mechanism 22 to perform the end face detection operation a predetermined number of times.
  • the storage control unit 38 stores the coordinate value of the wire electrode 12 in the storage unit 24 when it is determined that the wire electrode 12 is separated from the work 14 in each end face detection operation.
  • the data extraction unit 40 arranges a plurality of coordinate values of the wire electrodes 12 stored in the storage unit 24 in ascending order, and extracts each of the coordinate values whose rank is within a predetermined range as valid data.
  • the end face position determining unit 46 determines the end face position of the work 14 based on the extracted valid data. As a result, coordinate values having a relatively small error with respect to the actual end face position of the work 14 are extracted as valid data, so that the accuracy of the end face position of the work 14 is improved.
  • the end face position of the work 14 is detected on the work table, but the end face position of the jig installed on the work table is not limited to the work 14. It may be detected.
  • a wire discharge processing machine (10) that applies a voltage between the wire electrode (12) and the installation object (14) installed on the work table to detect the end face position of the installation object, and is the same as the wire electrode.
  • a voltage detection unit (16) that detects a voltage between the installation object and a determination unit (32) that determines whether or not the wire electrode has come into contact with the installation object based on the detected voltage. From the state where the wire electrode is separated from the installation object, the wire electrode moves relative to the installation object, and when it is determined that the wire electrode is in contact with the installation object, the wire electrode moves.
  • the end face detection operation to move to the start position is performed once, or the wire electrode moves relative to the installation object from the state where the wire electrode is in contact with the installation object, and the wire electrode moves relative to the installation object.
  • the end face detection operation in which the wire electrode moves to the movement start position is performed once, and the relative movement control unit (34) that performs the end face detection operation a predetermined number of times, and the end face detection each time.
  • the relative position of the wire electrode with respect to the work table is stored in the storage unit ( A storage control unit (38) to be stored in 24) and a data extraction unit (38) that extracts a plurality of the relative positions located in the order of a predetermined range in the middle as valid data when the plurality of the relative positions are arranged in ascending order. 40) and an end face position determination unit (46) that determines the end face position of the installation object based on the valid data.
  • the relative movement control unit may perform the end face detection operation while the wire electrode is running.
  • the smaller the diameter of the wire electrode is the smaller the diameter of the wire electrode is based on at least one of the diameter of the wire electrode, the resistivity of the installed object, and the surface roughness of the installed object.
  • the number setting unit (36) may be provided so that the predetermined number of times increases as the resistivity of the installed object increases and the surface roughness of the installed object increases.
  • a range setting unit (42) for setting the predetermined range may be provided so that the range becomes narrower as the resistivity of the installed object increases and the surface roughness of the installed object becomes coarser.
  • the statistical unit (44) for calculating the degree of variation of the plurality of valid data is provided, and when the calculated degree of variation of the valid data is equal to or higher than a predetermined degree, The relative movement control unit may perform the end face detection operation again the predetermined number of times.
  • the predetermined number of times is set so that the number of times is larger than the predetermined number of times.
  • a unit for setting the number of times to be performed may be provided.
  • the statistical unit that calculates the degree of variation of the plurality of valid data and the user is notified when the calculated degree of variation of the valid data is equal to or higher than a predetermined degree.
  • a notification control unit (50) that controls the notification unit (48) may be provided.
  • the statistical unit that calculates the degree of variation of at least one of the plurality of valid data and the plurality of the relative positions stored in the storage unit, and the calculated degree.
  • An evaluation unit (52) that evaluates the accuracy of the end face position of the installation object determined based on the above, and a notification control unit that controls the notification unit to notify the user of the evaluation of the accuracy of the end face position of the installation object. And may be provided.
  • a control method for a wire discharge processing machine (10) that applies a voltage between a wire electrode (12) and an installation object (14) installed on a work table to detect the end face position of the installation object.
  • the wire discharge processing machine has a voltage detection unit (16) for detecting a voltage between the wire electrode and the installation object, and the wire electrode is installed from the state where the wire electrode is separated from the installation object.
  • the end face detection operation is performed once, in which the wire electrodes move relative to each other so as to come into contact with the object, and when it is determined that the wire electrodes have come into contact with the object, the wire electrodes move to the movement start position, or the wire electrodes move to the movement start position.
  • the wire electrode moves relative to the installation object so as to be separated from the installation object, and when it is determined that the wire electrode is separated from the installation object, the wire electrode moves to the movement start position.
  • the relative movement control step in which the detection operation is performed once and the end face detection operation is performed a predetermined number of times, and in each of the end face detection operations, or the wire.
  • a storage control step for storing the relative position of the wire electrode with respect to the work table when it is determined that the electrode is separated from the installation object in the storage unit (24), and when a plurality of the relative positions are arranged in ascending order.
  • a data extraction step for extracting a plurality of the relative positions located in the order of a predetermined range in the middle as valid data, and an end face position determination step for determining the end face position of the installation based on the valid data.
  • the end face detection operation may be performed while the wire electrode is running.
  • the diameter of the wire electrode is determined based on at least one of the diameter of the wire electrode, the resistivity of the installed object, and the surface roughness of the installed object.
  • the number setting step may be provided so that the predetermined number of times is set so that the smaller the number, the larger the resistivity of the installed object, and the coarser the surface roughness of the installed object, the larger the number of times.
  • the diameter of the wire electrode is determined based on at least one of the diameter of the wire electrode, the resistivity of the installed object, and the surface roughness of the installed object.
  • a range setting step may be provided for setting the predetermined range so that the smaller the value, the higher the resistivity of the installation object, and the coarser the surface roughness of the installation object, the narrower the range.
  • the control method of the wire electric discharge machine is provided with a statistical step for calculating the degree of variation of the plurality of valid data, and when the calculated degree of variation of the valid data is equal to or higher than a predetermined degree, The relative movement control step may be returned to, and the end face detection operation may be performed again the predetermined number of times.
  • the predetermined number of times is set to be larger than the predetermined number of times.
  • a second number setting step for setting the number of times may be provided.
  • the user when the statistical step for calculating the degree of variation of the plurality of valid data and the calculated degree of variation of the valid data are equal to or more than a predetermined degree, the user It may be provided with a notification control step for controlling the notification unit so as to notify the user.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

ワイヤ放電加工機(10)は、端面検出動作を所定回数行わせる相対移動制御部(34)と、各回の端面検出動作において、ワイヤ電極(12)がワーク(14)に接触したと判定されたときのワークテーブルに対するワイヤ電極の相対位置を記憶部(24)に記憶させる記憶制御部(38)と、複数の相対位置を小さい順に並べた場合に、中間の所定範囲の順位に位置する複数の相対位置を有効データとして抽出するデータ抽出部(40)と、有効データに基づいてワークの端面位置を決定する端面位置決定部(46)と、を備える。

Description

ワイヤ放電加工機、及び、ワイヤ放電加工機の制御方法
 本発明は、ワイヤ電極とワークテーブルに設置された設置物との間に電圧を印加して設置物の端面位置を検出するワイヤ放電加工機、及び、ワイヤ放電加工機の制御方法に関する。
 特開2004-314191号公報には、ワイヤ放電加工機が開示されている。このワイヤ放電加工機は、以下の方法により、ワークテーブルに設置された被加工物の位置を検出する。ワイヤ放電加工機は、ワイヤ電極とワークテーブルに設置された被加工物との間に電圧を印加させた状態で、ワイヤ電極を被加工物に近づける。その後、ワイヤ電極と被加工物との間の電圧が降下したときのワイヤ電極の位置に基づいて被加工物の位置を検出する。
 ワークテーブルに設置された被加工物等の設置物は、その表面に油膜、スラッジ等が付着していることがある。また、ワイヤ電極の巻癖、振動等により、ワイヤ電極が撓んでいることがある。そのため、特開2004-314191号公報の技術のように、ワイヤ電極を設置物に接触させて設置物の位置を求めようとする場合、設置物の位置の検出精度が低下するという問題がある。
 本発明は、上記の問題を解決するためになされたものであり、ワークテーブルに設置された設置物の位置を、より高精度に検出することができるワイヤ放電加工機、及び、ワイヤ放電加工機の制御方法を提供することを目的とする。
 本発明の第1の態様は、ワイヤ電極とワークテーブルに設置された設置物との間に電圧を印加して前記設置物の端面位置を検出するワイヤ放電加工機であって、前記ワイヤ電極と前記設置物との間の電圧を検出する電圧検出部と、検出された前記電圧に基づいて、前記ワイヤ電極が前記設置物に接触したか否かを判定する判定部と、前記ワイヤ電極が前記設置物から離間した状態から、前記ワイヤ電極が前記設置物に接触するように相対移動し、前記ワイヤ電極が前記設置物に接触したと判定されると前記ワイヤ電極が移動開始位置に移動する端面検出動作を1回とし、又は、前記ワイヤ電極が前記設置物に接触した状態から、前記ワイヤ電極が前記設置物から離間するように相対移動し、前記ワイヤ電極が前記設置物から離間したと判定されると前記ワイヤ電極が移動開始位置に移動する端面検出動作を1回とし、該端面検出動作を所定回数行わせる相対移動制御部と、各回の前記端面検出動作において、前記ワイヤ電極が前記設置物に接触したと判定されたとき、又は、前記ワイヤ電極が前記設置物から離間したと判定されたときの前記ワークテーブルに対するワイヤ電極の相対位置を記憶部に記憶させる記憶制御部と、複数の前記相対位置を小さい順に並べた場合に、中間の所定範囲の順位に位置する複数の前記相対位置を有効データとして抽出するデータ抽出部と、前記有効データに基づいて前記設置物の端面位置を決定する端面位置決定部と、を備える。
 本発明の第2の態様は、ワイヤ電極とワークテーブルに設置された設置物との間に電圧を印加して前記設置物の端面位置を検出するワイヤ放電加工機の制御方法であって、前記ワイヤ放電加工機は、前記ワイヤ電極と前記設置物との間の電圧を検出する電圧検出部を有し、前記ワイヤ電極が前記設置物から離間した状態から、前記ワイヤ電極が前記設置物に接触するように相対移動し、前記ワイヤ電極が前記設置物に接触したと判定されると前記ワイヤ電極が移動開始位置に移動する端面検出動作を1回とし、又は、前記ワイヤ電極が前記設置物に接触した状態から、前記ワイヤ電極が前記設置物から離間するように相対移動し、前記ワイヤ電極が前記設置物から離間したと判定されると前記ワイヤ電極が移動開始位置に移動する端面検出動作を1回とし、該端面検出動作を所定回数行わせる相対移動制御ステップと、各回の前記端面検出動作において、前記ワイヤ電極が前記設置物に接触したと判定されたとき、又は、前記ワイヤ電極が前記設置物から離間したと判定されたときの前記ワークテーブルに対する前記ワイヤ電極の相対位置を記憶部に記憶させる記憶制御ステップと、複数の前記相対位置を小さい順に並べた場合に、中間の所定範囲の順位に位置する複数の前記相対位置を有効データとして抽出するデータ抽出ステップと、前記有効データに基づいて前記設置物の端面位置を決定する端面位置決定ステップと、を備える。
 本発明により、ワークテーブルに設置された設置物の位置を、より高精度に検出することができる。
図1は、ワイヤ放電加工機の構成図である。 図2は、有効データの抽出について説明する図である。 図3は、制御装置において行われる端面位置検出処理の流れを示すフローチャートである。 図4は、ワイヤ放電加工機の構成図である。 図5は、制御装置において行われる端面位置検出処理の流れを示すフローチャートである。 図6は、ワイヤ放電加工機の構成図である。 図7は、制御装置において行われる端面位置検出処理の流れを示すフローチャートである。 図8は、報知部に表示されたワークの端面位置の精度の評価の画像の例を示す図である。 図9は、制御装置において行われる端面位置検出処理の流れを示すフローチャートである。
 〔第1実施形態〕
 [ワイヤ放電加工機の構成]
 図1はワイヤ放電加工機10の構成図である。ワイヤ放電加工機10は、ワイヤ電極12をワーク14に対して相対移動させながら、ワイヤ電極12とワーク(設置物)14との極間において放電を生じさせて加工を行う。ワーク14は、図示しないワークテーブルに設置されている。ワークテーブルがX軸方向及びY軸方向に移動することにより、ワイヤ電極12はワーク14に対して相対移動する。
 ワイヤ放電加工機10は、電圧検出部16、電圧供給回路18、走行機構20、移動機構22、記憶部24、及び、制御装置26を有している。制御装置26は、電圧制御部28、走行制御部30、接触判定部32、相対移動制御部34、回数設定部36、記憶制御部38、データ抽出部40、範囲設定部42、統計部44及び端面位置決定部46を有する。
 電圧検出部16は、極間の電圧(以下、極間電圧ともいう)を検出する。電圧供給回路18は、極間に電圧を供給する。走行機構20は、ワイヤ電極12を図示しない上ワイヤガイドから下ワイヤガイドに向かって走行させる。移動機構22は、ワークテーブルをX軸方向及びY軸方向に移動させて、ワイヤ電極12をワーク14に対して相対移動させる。記憶部24は、例えば、ハードディスク、ソリッドステートドライブ(SSD)等の記録媒体である。ワークテーブルは、Z軸方向(上下方向)に関して、上ワイヤガイドと下ワイヤガイドとの間に位置する。Z軸方向は、X軸方向及びY軸方向と直交する方向である。
 電圧制御部28は、電圧供給回路18を制御して、端面検出電圧を極間に印加させる。端面検出電圧は、ワーク14の加工時に極間に放電を生じさせるために極間に印加される電圧に比べて低い電圧に設定されている。
 走行制御部30は、走行機構20を制御して、ワイヤ電極12を走行させる。
 接触判定部32は、電圧検出部16が検出した極間電圧に基づいてワイヤ電極12がワーク14に接触したか否かを判定する。接触判定部32には、極間に端面検出電圧が印加されているときに、ワイヤ電極12がワーク14に接触したか否か判定を行う。接触判定部32は、極間電圧が所定電圧未満である場合にはワイヤ電極12がワーク14に接触したと判定し、極間電圧が所定電圧以上である場合にはワイヤ電極12がワーク14から離間していると判定する。
 相対移動制御部34は、移動機構22を制御して、ワイヤ電極12の端面検出動作を所定回数(例えばN回)行う。端面検出動作とは、ワイヤ電極12が、ワーク14から離間した位置(移動開始位置)からワーク14に接触する位置まで移動し、その後、ワイヤ電極12が、ワーク14に接触した位置から移動開始位置まで戻る1往復の動作のことをいう。この1往復の動作が、1回の端面検出動作としてカウントされる。
 回数設定部36は、所定回数を設定する。所定回数は、ワイヤ電極12の径、ワーク14の抵抗率及びワーク14の表面粗さの少なくともいずれか1つに基づいて設定される。ワイヤ電極12の径が小さくなるほど、所定回数は多く設定される。ワーク14の抵抗率が大きくなるほど、所定回数は多く設定される。ワーク14の表面粗さが粗くなるほど、所定回数が多く設定される。
 記憶制御部38は、各回の端面検出動作においてワイヤ電極12がワーク14に接触したと判定されたときの、ワークテーブルに対するワイヤ電極12の相対位置を示すX軸及びY軸の座標値(以下、単に、ワイヤ電極12の座標値ともいう)を記憶部24に記憶させる。
 データ抽出部40は、各回の端面検出動作において取得されたワイヤ電極12の座標値から有効データを抽出する。図2は、有効データの抽出について説明する図である。以下では、X軸の座標値に対する有効データの抽出について説明するが、Y軸の座標値に対する有効データの抽出についても同様に行われる。
 データ抽出部40は、所定回数行われた端面検出動作のそれぞれにおいて取得されたワイヤ電極12の座標値を小さい順に並べる。図2の示す例では、所定回数がN回であって、順位が1番である座標値が最小値X(1)であり、順位がN番である座標値が最大値X(N)となる。また、X(a)≦X(a+1)[a=1~N-1]の関係を有する。
 データ抽出部40は、順位が1番目からn番目までの座標値、及び、順位が(N-n+1)番目からN番目までの座標値のそれぞれを無効データとする。一方、データ抽出部40は、順位が(n+1)番目から(N-n)番目までの座標値のそれぞれを有効データとして抽出する。
 範囲設定部42は、有効データとする座標値の順位の範囲(以下、所定範囲という)を設定する。範囲設定部42は、無効データとする座標値の順位の範囲を設定してもよい。所定範囲は、ワイヤ電極12の径、ワーク14の抵抗率及びワーク14の表面粗さの少なくともいずれか1つに基づいて設定される。ワイヤ電極12の径が小さくなるほど、所定範囲は狭く設定される。ワーク14の抵抗率が大きくなるほど、所定範囲は狭く設定される。ワーク14の表面粗さが粗くなるほど、所定範囲は狭く設定される。
 統計部44は、有効データの最大値と最小値との差を算出する。この差は、有効データのばらつきの度合として用いられる。なお、有効データのばらつきの度合として、有効データの分散又は標準偏差を用いてもよい。有効データの最大値と最小値との差をDとして、図2に示す例を用いると、差Dは次の式により求められる。
 D=X(N-n)-X(n+1)
 端面位置決定部46は、有効データに基づいてワーク14の端面位置を決定する。端面位置決定部46は、例えば、有効データの平均に基づいて、ワーク14の端面位置の座標値を決定する。
 制御装置26は、図示しない演算処理装置及びストレージを備えるコンピュータを有する。演算処理装置は、例えば、中央処理装置(CPU)、マイクロプロセッシングユニット(MPU)等のプロセッサ、及び、ROM、RAM等からなるメモリを有している。ストレージは、例えば、ハードディスク、ソリッドステートドライブ(SSD)等の記録媒体である。電圧制御部28、走行制御部30、接触判定部32、相対移動制御部34、回数設定部36、記憶制御部38、データ抽出部40、範囲設定部42、統計部44及び端面位置決定部46は、ストレージに記憶されたプログラムを演算処理装置が実行することにより実現される。
 [端面位置検出処理]
 図3は、制御装置26において行われる端面位置検出処理の流れを示すフローチャートである。
 ステップS1において、回数設定部36は、端面検出動作を行う回数(所定回数)を設定する。その後、ステップS2へ移行する。
 ステップS2において、範囲設定部42は、有効データとして抽出する順位の所定範囲を設定する。その後、ステップS3へ移行する。
 ステップS3において、相対移動制御部34は、移動機構22を制御し、ワイヤ電極12をワーク14から離間させた位置から、ワイヤ電極12をワーク14に接触させる方向に相対移動させる。電圧制御部28は、電圧供給回路18を制御して、端面検出電圧を極間に印加させる。走行制御部30は、走行機構20を制御して、ワイヤ電極12を走行させる。その後、ステップS4へ移行する。
 ステップS4において、接触判定部32は、ワイヤ電極12がワーク14に接触したか否かを判定する。ワイヤ電極12がワーク14に接触した場合にはステップS5へ移行し、ワイヤ電極12がワーク14に接触していない場合にはステップS3へ戻る。
 ステップS5において、相対移動制御部34は、移動機構22を制御して、ワイヤ電極12を移動開始位置に移動させる。その後、ステップS6へ移行する。
 ステップS6において、相対移動制御部34は、端面検出動作の回数が所定回数以上であるか否かを判定する。端面検出動作の回数が所定回数以上である場合にはステップS7へ移行し、端面検出動作の回数が所定回数未満である場合にはステップS3へ戻る。
 ステップS7において、データ抽出部40は、有効データを抽出する。その後、ステップS8へ移行する。
 ステップS8において、統計部44は、有効データの最大値と最小値の差を算出する。その後、ステップS9へ移行する。
 ステップS9において、統計部44は、有効データの最大値と最小値の差が所定値以上であるか否かを判定する。有効データの最大値と最小値の差が所定値以上である場合にはステップS10へ移行し、有効データの最大値と最小値の差が所定値未満である場合にはステップS11へ移行する。所定値は、本発明の所定度合に相当する。
 ステップS10において、回数設定部36は、所定回数を、前回設定した所定回数よりも多い回数に設定する。その後、ステップS3へ戻る。これにより、相対移動制御部34により、新たに設定された所定回数、端面検出動作が行われる。
 ステップS11において、端面位置決定部46は、有効データに基づいて、ワーク14の端面位置を決定する。その後、端面位置検出処理は終了する。
 [作用効果]
 ワイヤ電極12がワーク14と接触したと接触判定部32が判定したときの、ワイヤ電極12の座標値に基づいてワーク14の端面位置を求める場合、以下のような理由により、実際の端面位置に対して大きなズレが生じることがある。
 ワーク14に付着したスラッジ等にワイヤ電極12が接触した場合、極間電圧が低下する。この場合、ワイヤ電極12がワーク14に直接接触していないにも関わらず、接触判定部32は、ワイヤ電極12がワーク14と接触したと判定する。このときのワイヤ電極12の座標値に基づいて求められたワーク14の端面位置は、実際のワーク14の端面位置よりもワーク14の外側の位置となる。
 ワーク14に油膜が付着している場合、油膜の導電性はワーク14の導電性よりも低いため、ワイヤ電極12がワーク14と接触しても極間電圧が安定しない。そのため、ワイヤ電極12がワーク14に接触した瞬間には、接触判定部32は、ワイヤ電極12がワーク14から離間していると判定する場合がある。その後、ワイヤ電極12がワーク14に接触した時点から遅れて、接触判定部32は、ワイヤ電極12がワーク14に接触したと判定する。ワイヤ電極12がワーク14から離間していると判定されている間は、ワイヤ電極12はさらにワーク14に向かって移動しようとする。そのため、接触判定部32が、ワイヤ電極12がワーク14に接触したと判定した時点では、ワイヤ電極12がワーク14に押圧されて屈曲した形状となる。このときのワイヤ電極12の座標値に基づいて求められたワーク14の端面位置は、実際のワーク14の端面位置よりもワーク14の内側の位置となる。
 ワイヤ電極12は、ボビンに巻回されているときに巻癖がつくことがある。また、ワイヤ電極12が走行しているときに、ワイヤ電極12は振動する。そのため、ワイヤ電極12がワーク14に接触するときに、ワイヤ電極12が湾曲した形状となっていることがある。このときのワイヤ電極12の座標値に基づいて求められたワーク14の端面位置は、実際のワーク14の端面位置よりもワーク14の外側又は内側の位置となることがある。
 上記のような理由により、ワイヤ電極12がワーク14に接触したと接触判定部32が判定したときのワイヤ電極12の座標値に基づいて求められたワーク14の端面位置は、実際の端面位置に対して大きな誤差が生じることがある。
 そこで、本実施形態では、相対移動制御部34は、移動機構22を制御して、端面検出動作を所定回数行う。記憶制御部38は、各回の端面検出動作においてワイヤ電極12がワーク14に接触したと判定されたときの、ワイヤ電極12の座標値を記憶部24に記憶させる。さらに、データ抽出部40は、記憶部24に記憶されているワイヤ電極12の複数の座標値を小さい順に並べて、順位が所定範囲内である座標値のそれぞれを有効データとして抽出する。端面位置決定部46は、抽出された有効データに基づいてワーク14の端面位置を決定する。これにより、実際のワーク14の端面位置に対して比較的誤差が小さい座標値が有効データとして抽出されるため、ワーク14の端面位置の精度が向上する。
 また、本実施形態では、相対移動制御部34は、ワイヤ電極12を走行させた状態で、端面検出動作を行うように移動機構22を制御する。これにより、端面位置を検出しようとするワーク14の表面に付着したスラッジ、油膜等を除去することができる。
 また、本実施形態では、回数設定部36は、所定回数を設定する。所定回数は、ワイヤ電極12の径、ワーク14の抵抗率及びワーク14の表面粗さの少なくともいずれか1つに基づいて設定される。ワイヤ電極12の径が小さくなるほど、所定回数は多く設定される。ワーク14の抵抗率が大きくなるほど、所定回数は多く設定される。ワーク14の表面粗さが粗くなるほど、所定回数は多く設定される。
 ワイヤ電極12の径が小さくなるほどワイヤ電極12の振動の振幅が大きくなる。また、ワーク14の抵抗率が大きくなるほど、ワイヤ電極12がワーク14に接触したときの極間電圧が安定しなくなる。また、ワーク14の表面粗さが粗くなるほど、各回の端面検出動作においてワイヤ電極12がワーク14に接触する位置が大きく変化する。すなわち、ワイヤ電極12の径が小さくなるほど、ワーク14の抵抗率が大きくなるほど、ワーク14の表面粗さが粗くなるほど、各回の端面検出動作において、ワイヤ電極12がワーク14に接触したと判定されたときのワイヤ電極12の座標値のばらつきが大きくなる。
 ワイヤ電極12の径が小さくなるほど、ワーク14の抵抗率が大きくなるほど、ワーク14の表面粗さが粗くなるほど、所定回数は多く設定されるため、記憶部24に記憶されるワイヤ電極12の座標値の分布を正規分布に近づけることができる。正規分布に近い分布の座標値の中央部の座標値が、有効データとして抽出されるため、ワーク14の端面位置の精度が向上する。
 また、本実施形態では、範囲設定部42は、所定範囲を設定する。所定範囲は、ワイヤ電極12の径、ワーク14の抵抗率及びワーク14の表面粗さの少なくともいずれか1つに基づいて設定される。ワイヤ電極12の径が小さくなるほど、所定範囲は範囲が狭く設定される。ワーク14の抵抗率が大きくなるほど、所定範囲は範囲が狭く設定される。ワーク14の表面粗さが粗くなるほど、、所定範囲は範囲が狭く設定される。これにより、実際のワーク14の端面位置に対して比較的誤差が小さい座標値が有効データとして抽出されるため、ワーク14の端面位置の精度が向上する。
 また、本実施形態では、有効データの最大値と最小値との差が所定値以上である場合には、相対移動制御部34は、移動機構22を制御して、再度、端面検出動作を所定回数行う。有効データの最大値と最小値との差は、有効データのばらつきの度合として算出される。これにより、ばらつきが小さい有効データに基づいてワーク14の端面位置が決定されるため、ワーク14の端面位置の精度が向上する。
 また、本実施形態では、有効データの最大値と最小値との差が所定値以上である場合には、回数設定部36は、所定回数を、現在設定されている所定回数よりも多い回数に設定する。これにより、端面検出動作の回数が増加するため、記憶部24に記憶されている座標値の分布を正規分布に近づけることができる。正規分布に近い分布の座標値の中央部の座標値が、有効データとして抽出されるため、ワーク14の端面位置の精度が向上する。
 〔第2実施形態〕
 図4はワイヤ放電加工機10の構成図である。本実施形態のワイヤ放電加工機10は、第1実施形態のワイヤ放電加工機10に対して構成が一部相違する。本実施形態のワイヤ放電加工機10は、第1実施形態のワイヤ放電加工機10の構成に加え、報知部48、及び、制御装置26の報知制御部50を有している。
 報知部48は、文字、画像等を表示する表示装置、音声等を発する音響装置、光を点灯、点滅させる表示灯等である。報知制御部50は、報知部48を制御して、ユーザに報知する。
 [端面位置検出処理]
 図5は、制御装置26において行われる端面位置検出処理の流れを示すフローチャートである。
 ステップS21において、回数設定部36は、端面検出動作を行う回数(所定回数)を設定する。その後、ステップS22へ移行する。
 ステップS22において、範囲設定部42は、有効データとして抽出する順位の所定範囲を設定する。その後、ステップS23へ移行する。
 ステップS23において、相対移動制御部34は、移動機構22を制御して、ワイヤ電極12をワーク14に接触させる方向に相対移動させる。電圧制御部28は、電圧供給回路18を制御して、端面検出電圧を極間に印加させる。走行制御部30は、走行機構20を制御して、ワイヤ電極12を走行させる。その後、ステップS24へ移行する。
 ステップS24において、接触判定部32は、ワイヤ電極12がワーク14に接触したか否かを判定する。ワイヤ電極12がワーク14に接触した場合にはステップS25へ移行し、ワイヤ電極12がワーク14に接触していない場合にはステップS23へ戻る。
 ステップS25において、相対移動制御部34は、移動機構22を制御して、ワイヤ電極12を移動開始位置に移動させる。その後、ステップS26へ移行する。
 ステップS26において、相対移動制御部34は、端面検出動作の回数が所定回数以上であるか否かを判定する。端面検出動作の回数が所定回数以上である場合にはステップS27へ移行し、端面検出動作の回数が所定回数未満である場合にはステップS23へ戻る。
 ステップS27において、データ抽出部40は、有効データを抽出する。その後、ステップS28へ移行する。
 ステップS28において、統計部44は、有効データの最大値と最小値の差を算出する。その後、ステップS29へ移行する。
 ステップS29において、統計部44は、有効データの最大値と最小値の差が所定値以上であるか否かを判定する。有効データの最大値と最小値の差が所定値以上である場合にはステップS30へ移行し、有効データの最大値と最小値の差が所定値未満である場合にはステップS31へ移行する。
 ステップS30において、報知制御部50は、報知部48を制御して、ユーザに報知する。その後、ステップS31へ移行する。報知制御部50は、例えば、表示装置である報知部48に、報知部48を制御して、検出されたワーク14の端面位置の精度が低いことを示す文字、画像等を報知部48に表示させる。報知制御部50は、例えば、音響装置である報知部48を制御して、検出されたワーク14の端面位置の精度が低いことを示す音、音声等を報知部48から出力させる。例えば、報知部48がLEDである場合には、報知制御部50は、LEDである報知部48を制御して、報知部48を点灯、点滅等をさせて、検出されたワーク14の端面位置の精度が低いことを示す。
 ステップS31において、端面位置決定部46は、有効データに基づいて、ワーク14の端面位置を決定する。その後、端面位置検出処理は終了する。
 [作用効果]
 本実施形態では、報知制御部50は、有効データの最大値と最小値との差が所定値以上である場合には、報知部48を制御して、ユーザに報知する。これにより、検出されたワーク14の端面位置の精度が低いことをユーザに知らせることができる。
 〔第3実施形態〕
 図6はワイヤ放電加工機10の構成図である。本実施形態のワイヤ放電加工機10は、第1実施形態のワイヤ放電加工機10に対して構成が一部相違する。本実施形態のワイヤ放電加工機10は、第1実施形態のワイヤ放電加工機10の構成に加え、報知部48、及び、制御装置26の報知制御部50並びに評価部52を有している。
 報知部48は、文字、画像等を表示する表示装置、音声等を発する音響装置、光を点灯、点滅させる表示灯等である。報知制御部50は、報知部48を制御して、ユーザに報知する。評価部52は、有効データのばらつきに基づいて、端面位置決定部46により決定されたワーク14の端面位置の精度を評価する。
 [端面位置検出処理]
 図7は、制御装置26において行われる端面位置検出処理の流れを示すフローチャートである。
 ステップS41において、回数設定部36は、端面検出動作を行う回数(所定回数)を設定する。その後、ステップS42へ移行する。
 ステップS42において、範囲設定部42は、有効データとして抽出する順位の所定範囲を設定する。その後、ステップS43へ移行する。
 ステップS43において、相対移動制御部34は、移動機構22を制御して、ワイヤ電極12をワーク14に接触させる方向に相対移動させる。電圧制御部28は、電圧供給回路18を制御して、端面検出電圧を極間に印加させる。走行制御部30は、走行機構20を制御して、ワイヤ電極12を走行させる。その後、ステップS44へ移行する。
 ステップS44において、接触判定部32は、ワイヤ電極12がワーク14に接触したか否かを判定する。ワイヤ電極12がワーク14に接触した場合にはステップS45へ移行し、ワイヤ電極12がワーク14に接触していない場合にはステップS43へ戻る。
 ステップS45において、相対移動制御部34は、移動機構22を制御して、ワイヤ電極12を移動開始位置に移動させる。その後、ステップS46へ移行する。
 ステップS46において、端面検出動作の回数が所定回数以上であるか否かを判定する。端面検出動作の回数が所定回数以上である場合にはステップS47へ移行し、端面検出動作の回数が所定回数未満である場合にはステップS43へ戻る。
 ステップS47において、データ抽出部40は、有効データを抽出する。その後、ステップS48へ移行する。
 ステップS48において、端面位置決定部46は、有効データに基づいて、ワーク14の端面位置を決定する。その後、ステップS49へ移行する。
 ステップS49において、統計部44は、有効データの最大値と最小値の差を算出する。その後、ステップS50へ移行する。
 ステップS50において、評価部52は、有効データの最大値と最小値の差に基づいて、ステップS48で決定されたワーク14の端面位置の精度を評価する。その後、ステップS51へ移行する。評価部52は、有効データの最大値と最小値の差が大きいほど、ワーク14の端面位置の精度を低く評価する。有効データの最大値と最小値の差に代えて、記憶部24に記憶されているすべての座標値の最大値と最小値の差に基づいて、ワーク14の端面位置の精度が評価されてもよい。有効データの最大値と最小値の差に代えて、有効データの分散又は標準偏差に基づいて、ワーク14の端面位置の精度が評価されてもよい。有効データの最大値と最小値の差に代えて、記憶部24に記憶されているすべての座標値の分散又は標準偏差に基づいて、ワーク14の端面位置の精度が評価されてもよい。
 ステップS51において、報知制御部50は、報知部48を制御して、ユーザにワーク14の端面位置の精度の評価を報知する。その後、端面位置検出処理は終了する。報知制御部50は、例えば、表示装置である報知部48を制御して、ワーク14の端面位置の精度の評価を示す文字、画像等を報知部48に表示させる。図8は、報知部48に表示されたワーク14の端面位置の精度の評価の画像の例を示す図である。図8に示すように、長方形の図形のうち着色された範囲の割合で、評価を示すようにしてもよい。図8では、着色された範囲をハッチングで示している。報知制御部50は、例えば、音響装置である報知部48を制御して、検出されたワーク14の端面位置の精度の評価を示す音、音声等を報知部48から出力させてもよい。例えば、報知部48がLEDである場合には、報知制御部50は、LEDである報知部48を制御して、報知部48を点灯、点滅等をさせて、検出されたワーク14の端面位置の精度が低いことを示す。例えば、評価が高い場合には報知部48を消灯させ、評価が低い場合には報知部48を点滅させ、評価が中程度の場合には報知部48の点灯させるようにしてもよい。
 〔第4実施形態〕
 本実施形態のワイヤ放電加工機10は、第1実施形態のワイヤ放電加工機10と構成が同一であるものの、端面検出動作が第1実施形態と異なる。
 相対移動制御部34は、移動機構22を制御して、端面検出動作を所定回数(例えばN回)行わせる。本実施形態における端面検出動作とは、ワイヤ電極12が、ワーク14に接触している位置(移動開始位置)からワーク14から離間する位置まで移動し、その後、ワイヤ電極12が、ワーク14から離間した位置から移動開始位置まで1往復の動作のことをいう。この1往復の動作が、1回の端面検出動作としてカウントされる。
 [端面位置検出処理]
 図9は、制御装置26において行われる端面位置検出処理の流れを示すフローチャートである。
 ステップS61において、回数設定部36は、端面検出動作を行う回数(所定回数)を設定する。その後、ステップS62へ移行する。
 ステップS62において、範囲設定部42は、有効データとして抽出する順位の所定範囲を設定する。その後、ステップS63へ移行する。
 ステップS63において、相対移動制御部34は、移動機構22を制御して、ワイヤ電極12をワーク14に接触させた位置から、ワイヤ電極12をワーク14から離間させる方向に相対移動させる。電圧制御部28は、電圧供給回路18を制御して、端面検出電圧を極間に印加させる。走行制御部30は、走行機構20を制御して、ワイヤ電極12を走行させる。その後、ステップS64へ移行する。
 ステップS64において、接触判定部32は、ワイヤ電極12がワーク14から離間しているか否かを判定する。ワイヤ電極12がワーク14から離間している場合にはステップS65へ移行し、ワイヤ電極12がワーク14から離間していない場合にはステップS63へ戻る。
 ステップS65において、相対移動制御部34は、移動機構22を制御して、ワイヤ電極12を移動開始位置に移動させる。その後、ステップS66へ移行する。
 ステップS66において、相対移動制御部34は、端面検出動作の回数が所定回数以上であるか否かを判定する。端面検出動作の回数が所定回数以上である場合にはステップS67へ移行し、端面検出動作の回数が所定回数未満である場合にはステップS63へ戻る。
 ステップS67において、データ抽出部40は、有効データを抽出する。その後、ステップS68へ移行する。
 ステップS68において、統計部44は、有効データの最大値と最小値の差を算出する。その後、ステップS69へ移行する。
 ステップS69において、統計部44は、有効データの最大値と最小値の差が所定値以上であるか否かを判定する。有効データの最大値と最小値の差が所定値以上である場合にはステップS70へ移行し、有効データの最大値と最小値の差が所定値未満である場合にはステップS71へ移行する。
 ステップS70において、回数設定部36は、所定回数を、前回設定した所定回数よりも多い回数に設定する。その後、ステップS63へ戻る。これにより、相対移動制御部34により、新たに設定された所定回数、端面検出動作が行われる。
 ステップS71において、端面位置決定部46は、有効データに基づいて、ワーク14の端面位置を決定する。その後、端面位置検出処理を終了する。
 [作用効果]
 本実施形態では、相対移動制御部34は、移動機構22を制御して、端面検出動作を所定回数行う。記憶制御部38は、各回の端面検出動作においてワイヤ電極12がワーク14から離間したと判定されたときの、ワイヤ電極12の座標値を記憶部24に記憶させる。さらに、データ抽出部40は、記憶部24に記憶されているワイヤ電極12の複数の座標値を小さい順に並べて、順位が所定範囲内である座標値のそれぞれを有効データとして抽出する。端面位置決定部46は、抽出された有効データに基づいてワーク14の端面位置を決定する。これにより、実際のワーク14の端面位置に対して比較的誤差が小さい座標値が有効データとして抽出されるため、ワーク14の端面位置の精度が向上する。
 〔他の実施形態〕
 第1実施形態~第4実施形態のワイヤ放電加工機10では、ワークテーブルにワーク14の端面位置を検出していたが、ワーク14に限らず、ワークテーブルに設置された治具の端面位置を検出してもよい。
 〔実施形態から得られる発明〕
 上記実施形態から把握しうる発明について、以下に記載する。
 ワイヤ電極(12)とワークテーブルに設置された設置物(14)との間に電圧を印加して前記設置物の端面位置を検出するワイヤ放電加工機(10)であって、前記ワイヤ電極と前記設置物との間の電圧を検出する電圧検出部(16)と、検出された前記電圧に基づいて、前記ワイヤ電極が前記設置物に接触したか否かを判定する判定部(32)と、前記ワイヤ電極が前記設置物から離間した状態から、前記ワイヤ電極が前記設置物に接触するように相対移動し、前記ワイヤ電極が前記設置物に接触したと判定されると前記ワイヤ電極が移動開始位置に移動する端面検出動作を1回とし、又は、前記ワイヤ電極が前記設置物に接触した状態から、前記ワイヤ電極が前記設置物から離間するように相対移動し、前記ワイヤ電極が前記設置物から離間したと判定されると前記ワイヤ電極が移動開始位置に移動する端面検出動作を1回とし、該端面検出動作を所定回数行わせる相対移動制御部(34)と、各回の前記端面検出動作において、前記ワイヤ電極が前記設置物に接触したと判定されたとき、又は、前記ワイヤ電極が前記設置物から離間したと判定されたときの前記ワークテーブルに対するワイヤ電極の相対位置を記憶部(24)に記憶させる記憶制御部(38)と、複数の前記相対位置を小さい順に並べたときに、中間の所定範囲の順位に位置する複数の前記相対位置を有効データとして抽出するデータ抽出部(40)と、前記有効データに基づいて前記設置物の端面位置を決定する端面位置決定部(46)と、を備える。
 上記のワイヤ放電加工機であって、前記相対移動制御部は、前記ワイヤ電極を走行させた状態で、前記端面検出動作を行わせてもよい。
 上記のワイヤ放電加工機であって、前記ワイヤ電極の径、前記設置物の抵抗率、及び、前記設置物の表面粗さのうち少なくとも1つに基づいて、前記ワイヤ電極の径が小さくなるほど、前記設置物の抵抗率が大きくなるほど、前記設置物の表面粗さが粗くなるほど、回数が多くなるように前記所定回数を設定する回数設定部(36)を備えてもよい。
 上記のワイヤ放電加工機であって、前記ワイヤ電極の径、前記設置物の抵抗率、及び、前記設置物の表面粗さのうち少なくとも1つに基づいて、前記ワイヤ電極の径が小さくなるほど、前記設置物の抵抗率が大きくなるほど、前記設置物の表面粗さが粗くなるほど、範囲が狭くなるように前記所定範囲を設定する範囲設定部(42)を備えてもよい。
 上記のワイヤ放電加工機であって、複数の前記有効データのばらつきの度合を算出する統計部(44)を備え、算出された前記有効データのばらつきの度合が所定度合以上である場合には、前記相対移動制御部は、再度、前記端面検出動作を前記所定回数行わせてもよい。
 上記のワイヤ放電加工機であって、算出された前記有効データのばらつきの度合が所定度合以上である場合には、設定されている前記所定回数よりも回数が多くなるように前記所定回数を設定する回数設定部を備えてもよい。
 上記のワイヤ放電加工機であって、複数の前記有効データのばらつきの度合を算出する統計部と、算出された前記有効データのばらつきの度合が所定度合以上である場合には、ユーザに報知するように報知部(48)を制御する報知制御部(50)と、を備えてもよい。
 上記のワイヤ放電加工機であって、複数の前記有効データ、及び、前記記憶部に記憶されている複数の前記相対位置の少なくとも一方のばらつきの度合を算出する統計部と、算出された前記度合に基づいて、決定された前記設置物の端面位置の精度を評価する評価部(52)と、前記設置物の端面位置の精度の評価をユーザに報知するように報知部を制御する報知制御部と、を備えてもよい。
 ワイヤ電極(12)とワークテーブルに設置された設置物(14)との間に電圧を印加して前記設置物の端面位置を検出するワイヤ放電加工機(10)の制御方法であって、前記ワイヤ放電加工機は、前記ワイヤ電極と前記設置物との間の電圧を検出する電圧検出部(16)を有し、前記ワイヤ電極が前記設置物から離間した状態から、前記ワイヤ電極が前記設置物に接触するように相対移動し、前記ワイヤ電極が前記設置物に接触したと判定されると前記ワイヤ電極が移動開始位置に移動する端面検出動作を1回とし、又は、前記ワイヤ電極が前記設置物に接触した状態から、前記ワイヤ電極が前記設置物から離間するように相対移動し、前記ワイヤ電極が前記設置物から離間したと判定されると前記ワイヤ電極が移動開始位置に移動する端面検出動作を1回とし、該端面検出動作を所定回数行わせる相対移動制御ステップと、各回の前記端面検出動作において、前記ワイヤ電極が前記設置物に接触したと判定されたとき、又は、前記ワイヤ電極が前記設置物から離間したと判定されたときの前記ワークテーブルに対する前記ワイヤ電極の相対位置を記憶部(24)に記憶させる記憶制御ステップと、複数の前記相対位置を小さい順に並べたときに、中間の所定範囲の順位に位置する複数の前記相対位置を有効データとして抽出するデータ抽出ステップと、前記有効データに基づいて前記設置物の端面位置を決定する端面位置決定ステップと、を備える。
 上記のワイヤ放電加工機の制御方法であって、前記相対移動制御ステップは、前記ワイヤ電極を走行させた状態で、前記端面検出動作を行わせてもよい。
 上記のワイヤ放電加工機の制御方法であって、前記ワイヤ電極の径、前記設置物の抵抗率、及び、前記設置物の表面粗さのうち少なくとも1つに基づいて、前記ワイヤ電極の径が小さくなるほど、前記設置物の抵抗率が大きくなるほど、前記設置物の表面粗さが粗くなるほど、回数が多くなるように前記所定回数を設定する回数設定ステップを備えてもよい。
 上記のワイヤ放電加工機の制御方法であって、前記ワイヤ電極の径、前記設置物の抵抗率、及び、前記設置物の表面粗さのうち少なくとも1つに基づいて、前記ワイヤ電極の径が小さくなるほど、前記設置物の抵抗率が大きくなるほど、前記設置物の表面粗さが粗くなるほど、範囲が狭くなるように前記所定範囲を設定する範囲設定ステップを備えてもよい。
 上記のワイヤ放電加工機の制御方法であって、複数の前記有効データのばらつきの度合を算出する統計ステップを備え、算出された前記有効データのばらつきの度合が所定度合以上である場合には、相対移動制御ステップに戻り、再度、前記端面検出動作を前記所定回数行わせてもよい。
 上記のワイヤ放電加工機の制御方法であって、算出された前記有効データのばらつきの度合が所定度合以上である場合には、設定されている前記所定回数よりも回数が多くなるように前記所定回数を設定する第2の回数設定ステップを備えてもよい。
 上記のワイヤ放電加工機の制御方法であって、複数の前記有効データのばらつきの度合を算出する統計ステップと、算出された前記有効データのばらつきの度合が所定度合以上である場合には、ユーザに報知するように報知部を制御する報知制御ステップと、を備えてもよい。

Claims (15)

  1.  ワイヤ電極(12)とワークテーブルに設置された設置物(14)との間に電圧を印加して前記設置物の端面位置を検出するワイヤ放電加工機(10)であって、
     前記ワイヤ電極と前記設置物との間の電圧を検出する電圧検出部(16)と、
     検出された前記電圧に基づいて、前記ワイヤ電極が前記設置物に接触したか否かを判定する判定部(32)と、
     前記ワイヤ電極が前記設置物から離間した状態から、前記ワイヤ電極が前記設置物に接触するように相対移動し、前記ワイヤ電極が前記設置物に接触したと判定されると前記ワイヤ電極が移動開始位置に移動する端面検出動作を1回とし、又は、前記ワイヤ電極が前記設置物に接触した状態から、前記ワイヤ電極が前記設置物から離間するように相対移動し、前記ワイヤ電極が前記設置物から離間したと判定されると前記ワイヤ電極が移動開始位置に移動する端面検出動作を1回とし、該端面検出動作を所定回数行わせる相対移動制御部(34)と、
     各回の前記端面検出動作において、前記ワイヤ電極が前記設置物に接触したと判定されたとき、又は、前記ワイヤ電極が前記設置物から離間したと判定されたときの前記ワークテーブルに対する前記ワイヤ電極の相対位置を記憶部(24)に記憶させる記憶制御部(38)と、
     複数の前記相対位置を小さい順に並べた場合に、中間の所定範囲の順位に位置する複数の前記相対位置を有効データとして抽出するデータ抽出部(40)と、
     前記有効データに基づいて前記設置物の端面位置を決定する端面位置決定部(46)と、
     を備える、ワイヤ放電加工機。
  2.  請求項1に記載のワイヤ放電加工機であって、
     前記相対移動制御部は、前記ワイヤ電極を走行させた状態で、前記端面検出動作を行わせる、ワイヤ放電加工機。
  3.  請求項1又は2に記載のワイヤ放電加工機であって、
     前記ワイヤ電極の径、前記設置物の抵抗率、及び、前記設置物の表面粗さのうち少なくとも1つに基づいて、前記ワイヤ電極の径が小さくなるほど、前記設置物の抵抗率が大きくなるほど、前記設置物の表面粗さが粗くなるほど、回数が多くなるように前記所定回数を設定する回数設定部(36)を備える、ワイヤ放電加工機。
  4.  請求項1~3のいずれか1項に記載のワイヤ放電加工機であって、
     前記ワイヤ電極の径、前記設置物の抵抗率、及び、前記設置物の表面粗さのうち少なくとも1つに基づいて、前記ワイヤ電極の径が小さくなるほど、前記設置物の抵抗率が大きくなるほど、前記設置物の表面粗さが粗くなるほど、範囲が狭くなるように前記所定範囲を設定する範囲設定部(42)を備える、ワイヤ放電加工機。
  5.  請求項1~4のいずれか1項に記載のワイヤ放電加工機であって、
     複数の前記有効データのばらつきの度合を算出する統計部(44)を備え、
     算出された前記有効データのばらつきの度合が所定度合以上である場合には、前記相対移動制御部は、再度、前記端面検出動作を前記所定回数行わせる、ワイヤ放電加工機。
  6.  請求項5に記載のワイヤ放電加工機であって、
     算出された前記有効データのばらつきの度合が所定度合以上である場合には、設定されている前記所定回数よりも回数が多くなるように前記所定回数を設定する回数設定部を備える、ワイヤ放電加工機。
  7.  請求項1~6のいずれか1項に記載のワイヤ放電加工機であって、
     複数の前記有効データのばらつきの度合を算出する統計部と、
     算出された前記有効データのばらつきの度合が所定度合以上である場合には、ユーザに報知するように報知部(48)を制御する報知制御部(50)と、
     を備える、ワイヤ放電加工機。
  8.  請求項1~7のいずれか1項に記載のワイヤ放電加工機であって、
     複数の前記有効データ、及び、前記記憶部に記憶されている複数の前記相対位置の少なくとも一方のばらつきの度合を算出する統計部と、
     算出された前記度合に基づいて、決定された前記設置物の端面位置の精度を評価する評価部(52)と、
     前記設置物の端面位置の精度の評価をユーザに報知するように報知部を制御する報知制御部と、
     を備える、ワイヤ放電加工機。
  9.  ワイヤ電極(12)とワークテーブルに設置された設置物(14)との間に電圧を印加して前記設置物の端面位置を検出するワイヤ放電加工機(10)の制御方法であって、
     前記ワイヤ放電加工機は、前記ワイヤ電極と前記設置物との間の電圧を検出する電圧検出部(16)を有し、
     前記ワイヤ電極が前記設置物から離間した状態から、前記ワイヤ電極が前記設置物に接触するように相対移動し、前記ワイヤ電極が前記設置物に接触したと判定されると前記ワイヤ電極が移動開始位置に移動する端面検出動作を1回とし、又は、前記ワイヤ電極が前記設置物に接触した状態から、前記ワイヤ電極が前記設置物から離間するように相対移動し、前記ワイヤ電極が前記設置物から離間したと判定されると前記ワイヤ電極が移動開始位置に移動する端面検出動作を1回とし、該端面検出動作を所定回数行わせる相対移動制御ステップと、
     各回の前記端面検出動作において、前記ワイヤ電極が前記設置物に接触したと判定されたとき、又は、前記ワイヤ電極が前記設置物から離間したと判定されたときの前記ワークテーブルに対する前記ワイヤ電極の相対位置を記憶部(24)に記憶させる記憶制御ステップと、
     複数の前記相対位置を小さい順に並べた場合に、中間の所定範囲の順位に位置する複数の前記相対位置を有効データとして抽出するデータ抽出ステップと、
     前記有効データに基づいて前記設置物の端面位置を決定する端面位置決定ステップと、
     を備える、ワイヤ放電加工機の制御方法。
  10.  請求項9に記載のワイヤ放電加工機の制御方法であって、
     前記相対移動制御ステップは、前記ワイヤ電極を走行させた状態で、前記端面検出動作を行わせる、ワイヤ放電加工機の制御方法。
  11.  請求項9又は10に記載のワイヤ放電加工機の制御方法であって、
     前記ワイヤ電極の径、前記設置物の抵抗率、及び、前記設置物の表面粗さのうち少なくとも1つに基づいて、前記ワイヤ電極の径が小さくなるほど、前記設置物の抵抗率が大きくなるほど、前記設置物の表面粗さが粗くなるほど、回数が多くなるように前記所定回数を設定する回数設定ステップを備える、ワイヤ放電加工機の制御方法。
  12.  請求項9~11のいずれか1項に記載のワイヤ放電加工機の制御方法であって、
     前記ワイヤ電極の径、前記設置物の抵抗率、及び、前記設置物の表面粗さのうち少なくとも1つに基づいて、前記ワイヤ電極の径が小さくなるほど、前記設置物の抵抗率が大きくなるほど、前記設置物の表面粗さが粗くなるほど、範囲が狭くなるように前記所定範囲を設定する範囲設定ステップを備える、ワイヤ放電加工機の制御方法。
  13.  請求項9~12のいずれか1項に記載のワイヤ放電加工機の制御方法であって、
     複数の前記有効データのばらつきの度合を算出する統計ステップを備え、
     算出された前記有効データのばらつきの度合が所定度合以上である場合には、相対移動制御ステップに戻り、再度、前記端面検出動作を前記所定回数行わせる、ワイヤ放電加工機の制御方法。
  14.  請求項13に記載のワイヤ放電加工機の制御方法であって、
     算出された前記有効データのばらつきの度合が所定度合以上である場合には、設定されている前記所定回数よりも回数が多くなるように前記所定回数を設定する第2の回数設定ステップを備える、ワイヤ放電加工機の制御方法。
  15.  請求項9~14のいずれか1項に記載のワイヤ放電加工機の制御方法であって、
     複数の前記有効データのばらつきの度合を算出する統計ステップと、
     算出された前記有効データのばらつきの度合が所定度合以上である場合には、ユーザに報知するように報知部を制御する報知制御ステップと、
     を備える、ワイヤ放電加工機の制御方法。
PCT/JP2021/038338 2020-10-23 2021-10-18 ワイヤ放電加工機、及び、ワイヤ放電加工機の制御方法 WO2022085605A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21882746.7A EP4234143A1 (en) 2020-10-23 2021-10-18 Wire electric discharge machine and method of controlling wire electric discharge machine
US18/032,542 US20230390843A1 (en) 2020-10-23 2021-10-18 Wire electric discharge machine and method of controlling wire electric discharge machine
CN202180070197.4A CN116367946A (zh) 2020-10-23 2021-10-18 线放电加工机以及线放电加工机的控制方法
JP2022557503A JP7469503B2 (ja) 2020-10-23 2021-10-18 ワイヤ放電加工機、及び、ワイヤ放電加工機の制御方法
KR1020237012735A KR20230091884A (ko) 2020-10-23 2021-10-18 와이어 방전 가공기, 및, 와이어 방전 가공기의 제어 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020177914 2020-10-23
JP2020-177914 2020-10-23

Publications (1)

Publication Number Publication Date
WO2022085605A1 true WO2022085605A1 (ja) 2022-04-28

Family

ID=81290441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038338 WO2022085605A1 (ja) 2020-10-23 2021-10-18 ワイヤ放電加工機、及び、ワイヤ放電加工機の制御方法

Country Status (7)

Country Link
US (1) US20230390843A1 (ja)
EP (1) EP4234143A1 (ja)
JP (1) JP7469503B2 (ja)
KR (1) KR20230091884A (ja)
CN (1) CN116367946A (ja)
TW (1) TW202216330A (ja)
WO (1) WO2022085605A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263017A (ja) * 1985-09-13 1987-03-19 Mitsubishi Electric Corp ワイヤ放電加工の位置決め方法
JPH0481908A (ja) * 1990-07-25 1992-03-16 Mitsubishi Electric Corp 位置決め方法及び位置決め装置
JPH08300225A (ja) * 1995-04-30 1996-11-19 Sodick Co Ltd ワイヤ放電加工機の位置決め方法及びその装置
JPH09136220A (ja) * 1995-11-11 1997-05-27 Sodick Co Ltd ワイヤ放電加工装置の基準接触位置の位置決め方法及びその装置
JP2004314191A (ja) 2003-04-11 2004-11-11 Sodick Co Ltd ワイヤカット放電加工における位置決め方法
JP2017019029A (ja) * 2015-07-08 2017-01-26 ファナック株式会社 位置決め・形状測定機能を有するワイヤ放電加工機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263017A (ja) * 1985-09-13 1987-03-19 Mitsubishi Electric Corp ワイヤ放電加工の位置決め方法
JPH0481908A (ja) * 1990-07-25 1992-03-16 Mitsubishi Electric Corp 位置決め方法及び位置決め装置
JPH08300225A (ja) * 1995-04-30 1996-11-19 Sodick Co Ltd ワイヤ放電加工機の位置決め方法及びその装置
JPH09136220A (ja) * 1995-11-11 1997-05-27 Sodick Co Ltd ワイヤ放電加工装置の基準接触位置の位置決め方法及びその装置
JP2004314191A (ja) 2003-04-11 2004-11-11 Sodick Co Ltd ワイヤカット放電加工における位置決め方法
JP2017019029A (ja) * 2015-07-08 2017-01-26 ファナック株式会社 位置決め・形状測定機能を有するワイヤ放電加工機

Also Published As

Publication number Publication date
EP4234143A1 (en) 2023-08-30
KR20230091884A (ko) 2023-06-23
JP7469503B2 (ja) 2024-04-16
JPWO2022085605A1 (ja) 2022-04-28
CN116367946A (zh) 2023-06-30
US20230390843A1 (en) 2023-12-07
TW202216330A (zh) 2022-05-01

Similar Documents

Publication Publication Date Title
US10101815B2 (en) Eccentric rotating mass actuator optimization for haptic effects
JP2006226964A (ja) 試料の表面形状の測定方法及び装置
KR20150127536A (ko) 동적 햅틱 효과 수정
WO2022085605A1 (ja) ワイヤ放電加工機、及び、ワイヤ放電加工機の制御方法
KR102206137B1 (ko) 와이어 방전 가공기
JP6526364B1 (ja) ワイヤ放電加工機および真直度算出方法
JP2018015830A (ja) ワイヤ放電加工機及びワイヤ放電加工方法
JP4135612B2 (ja) ワイヤ放電加工機およびワイヤ放電加工機の加工基準位置決定方法
JP7068565B1 (ja) ワイヤ放電加工機、及び、ワイヤ放電加工機の制御方法
JP3330779B2 (ja) ワイヤ放電加工機の位置決め方法及びその装置
JP4027834B2 (ja) ワイヤカット放電加工における位置決め方法
JP2023017534A (ja) 操作検出装置
US11458554B2 (en) Wire electrical discharge machine and endface position determining method
JP2002154014A (ja) 放電加工装置
JP7068564B1 (ja) ワイヤ放電加工機、及び、ワイヤ放電加工機の制御方法
TWI726450B (zh) 金屬線放電加工機及放電加工方法
EP1410865A2 (en) Electric discharge apparatus
JP2000015524A (ja) 放電加工機の制御方法および装置
JPH02298432A (ja) ワイヤカット放電加工機のワイヤ電極垂直出し方法および装置
JPH06310704A (ja) Mos用モンテカルロ・デバイス・シミュレーション方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557503

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021882746

Country of ref document: EP

Effective date: 20230523