WO2022080479A1 - 有機質肥料の製造方法、植物の栽培方法、土壌の改良方法、及び有機質肥料の製造装置 - Google Patents

有機質肥料の製造方法、植物の栽培方法、土壌の改良方法、及び有機質肥料の製造装置 Download PDF

Info

Publication number
WO2022080479A1
WO2022080479A1 PCT/JP2021/038171 JP2021038171W WO2022080479A1 WO 2022080479 A1 WO2022080479 A1 WO 2022080479A1 JP 2021038171 W JP2021038171 W JP 2021038171W WO 2022080479 A1 WO2022080479 A1 WO 2022080479A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic fertilizer
nitrogen
plasma
nitrogen content
organic
Prior art date
Application number
PCT/JP2021/038171
Other languages
English (en)
French (fr)
Inventor
パンカジ アタリ
一憲 古閑
正治 白谷
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to EP21880214.8A priority Critical patent/EP4230709A1/en
Publication of WO2022080479A1 publication Critical patent/WO2022080479A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C3/00Fertilisers containing other salts of ammonia or ammonia itself, e.g. gas liquor
    • C05C3/005Post-treatment
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C9/00Fertilisers containing urea or urea compounds
    • C05C9/005Post-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2101/00Agricultural use

Definitions

  • the present invention relates to a method for producing an organic fertilizer, a method for cultivating a plant, a method for improving soil, and an apparatus for producing an organic fertilizer.
  • the present application claims priority based on Japanese Patent Application No. 2020-174739 filed in Japan on October 16, 2020, the contents of which are incorporated herein by reference.
  • Non-Patent Document 1 organic fertilizers may lack nitrogen content, resulting in insufficient growth of crops.
  • the Haber-Bosch method has been used as a method for fixing nitrogen.
  • methane is reacted with water and oxygen to synthesize hydrogen, and the hydrogen is reacted with nitrogen to synthesize ammonia.
  • the Haber-Bosch method uses methane contained in natural gas, etc., and reacts under high temperature and high pressure conditions, so it consumes a large amount of fossil fuel. Therefore, the Haber-Bosch method has a problem of high environmental load.
  • chemical fertilizer is added to organic fertilizer to fortify nitrogen content, chemical fertilizer is used, which does not meet the definition of organic farming.
  • Patent Document 1 proposes that water is irradiated with nitrogen plasma to produce a nutrient solution containing a nitrogen source and used in a plant cultivation system.
  • the plant cultivation system of Patent Document 1 is a hydroponic cultivation system and cannot be applied to organic farming. For use in organic farming, it is required to improve the composition of organic fertilizers without adding chemical fertilizers.
  • an object of the present invention is to provide a method and an apparatus for producing an organic fertilizer having an enhanced nitrogen content, which can enhance the nitrogen content of the organic fertilizer without using a chemical fertilizer.
  • Another object of the present invention is to provide a method for cultivating a plant and a method for improving soil using the organic fertilizer produced by the production method or the production apparatus.
  • the present invention includes the following aspects.
  • a method for producing an organic fertilizer having an enhanced nitrogen content which comprises a step of treating the organic fertilizer with nitrogen plasma.
  • the step of producing an organic fertilizer having an enhanced nitrogen content by the production method according to any one of [1] to [3], and the soil to which the organic fertilizer having an enhanced nitrogen content has been applied.
  • a method of cultivating a plant including the process of cultivating a plant.
  • [5] The step of producing an organic fertilizer with an enhanced nitrogen content by the production method according to any one of [1] to [3] and the application of the organic fertilizer with an enhanced nitrogen content to the soil. And how to improve the soil, including.
  • a plasma generator, a nitrogen-containing gas supply unit for supplying a nitrogen-containing gas to the plasma generation space of the plasma generator, and an organic fertilizer holding unit for holding an organic fertilizer are provided and generated by the plasma generator.
  • the apparatus for producing an organic fertilizer having an enhanced nitrogen content according to [6] further comprising a mixing mechanism for mixing the organic fertilizer.
  • a method and an apparatus for producing an organic fertilizer having an enhanced nitrogen content which can enhance the nitrogen content of the organic fertilizer without using a chemical fertilizer. Further, a method for cultivating a plant and a method for improving soil using the organic fertilizer produced by the production method or the production apparatus are provided.
  • FIG. 5 It is a schematic diagram which shows an example of the manufacturing apparatus of the organic fertilizer with enhanced nitrogen content. It is a schematic diagram which shows the modification of the organic fertilizer production apparatus with enhanced nitrogen content. It is a schematic diagram which shows the modification of the organic fertilizer production apparatus with enhanced nitrogen content.
  • the schematic diagram of the organic fertilizer production apparatus used in Example 1 is shown.
  • the schematic diagram of the organic fertilizer production apparatus used in Example 2 is shown.
  • the principle diagram of the organic fertilizer production apparatus of FIG. 5 is shown.
  • the results of the cultivation test of radish sprouts in the examples are shown.
  • the present invention provides a method for producing an organic fertilizer having an enhanced nitrogen content, which comprises a step of treating the organic fertilizer with nitrogen plasma.
  • Organic fertilizer means fertilizer made from organic matter.
  • the organic fertilizer contains an organic substance, preferably having an organic substance as a main component (for example, an organic substance content of 50% by mass or more, preferably 60% by mass or more).
  • Organic fertilizers include organic fertilizers and sludge compost stipulated in the official standards of the Fertilizer Control Law, special fertilizers stipulated in the Fertilizer Control Law that use organic substances as raw materials, and agricultural waste and livestock waste. Examples include fertilizers produced by farmers using organic materials as raw materials.
  • Specific examples of organic fertilizers include fish fertilizers such as fish residue powder, fish rough powder, dried fish fertilizer powder, and fish boiled fish; oil residue such as rapeseed oil residue and soybean oil residue; animal bone to fat.
  • Bone powder obtained by removing gelatin and crushing the remaining bone; dried bacterial cell fertilizer; cow manure compost, pig manure compost, chicken manure compost, fermented chicken manure, dried chicken manure and other poultry manure; methane fermentation residue; rice husk compost, pruned branch compost , Rice straw compost, park compost, vegetable compost such as leaf mold; sludge compost, garbage compost, etc., but are not limited thereto.
  • the organic fertilizer it is preferable to use a fertilizer having a lower nitrogen content than other nutrients (phosphorus, potassium).
  • a fertilizer having a lower nitrogen content than other nutrients for example, vegetable compost is preferable, and humus is more preferable.
  • Veetable compost means compost made from plant-derived organic materials.
  • Compost means fertilizer in which easily decomposable organic matter is decomposed by microorganisms.
  • Human means compost made from litter.
  • Neitrogen plasma treatment means that the object to be treated is brought into contact with nitrogen plasma.
  • “Plasma” includes a group of charged particles in which the molecules constituting the gas are divided into positive (cations) and negative (electrons) by ionization, and is a group of particles (ionization) that are almost electrically neutral as a whole. It means gas).
  • “Nitrogen plasma” means a plasma generated by ionizing nitrogen gas (N 2 ).
  • Nitrogen plasma can be generated by applying a voltage to a gas containing nitrogen.
  • the nitrogen plasma may be one generated under atmospheric pressure (atmospheric pressure plasma) or may be generated under a pressure lower than atmospheric pressure (low pressure plasma).
  • the method of generating atmospheric pressure plasma is not particularly limited, and a known method can be used.
  • methods for generating atmospheric pressure plasma include dielectric barrier discharge (DBD), inductively coupled plasma discharge (ICP), capacitively coupled plasma discharge (CCP), hollow cathode discharge, corona discharge, streamer discharge, glow discharge, and arc discharge. And so on.
  • the gas to which the voltage is applied may be a gas containing nitrogen (N 2 ) (nitrogen-containing gas).
  • the nitrogen-containing gas may be a nitrogen gas or a mixed gas of a nitrogen gas and another gas.
  • the mixed gas may be, for example, a mixed gas of nitrogen (N 2 ) and oxygen (O 2 ).
  • the ratio of nitrogen in the mixed gas of nitrogen and oxygen is preferably 70 to 90% as a volume fraction.
  • Air may be used as the nitrogen-containing gas.
  • the amount of nitrogen-containing gas supplied is not particularly limited, but is preferably 0.1 to 1000 mL / min, more preferably 1 to 500 mL / min, and even more preferably 10 to 100 mL / min.
  • a known plasma generator can be used to generate nitrogen plasma without particular limitation.
  • nitrogen plasma can be generated by using a nitrogen-containing gas as a gas to which a voltage is applied.
  • the voltage application conditions are not particularly limited and can be selected according to the type of plasma generator.
  • low-pressure plasma for example, atmospheric pressure 20 to 200 Pa, frequency 50 to 500,000 kHz, electric power 10 W to 100 W, and the like can be mentioned.
  • atmospheric pressure plasma for example, a frequency of 5 to 20000 kHz, a voltage of 5 to 20 kV, and the like can be mentioned.
  • the method of bringing the organic fertilizer into contact with the nitrogen plasma is not particularly limited.
  • a method of bringing the organic fertilizer into contact with the nitrogen plasma for example, a method of blowing a plasma jet of the nitrogen plasma into the organic fertilizer; the organic fertilizer is put into a chamber in which an electrode is arranged, and a voltage is applied while supplying a nitrogen-containing gas.
  • a method of generating nitrogen plasma in the chamber and the like can be mentioned.
  • the treatment time of the organic fertilizer by nitrogen plasma is not particularly limited, and may be appropriately adjusted depending on the type of plasma generator, the nitrogen concentration in the nitrogen-containing gas, the type and treatment amount of the organic fertilizer, and the like.
  • the treatment time is 1 to 30 minutes, 2 to 15 minutes, 2 to 10 minutes, 3 to 5 minutes, or the like.
  • the treatment time is 1 to 30 minutes, 2 to 20 minutes, 3 to 15 minutes, 5 to 10 minutes, or the like.
  • Organic fertilizer with increased nitrogen content means an organic fertilizer with an increased nitrogen content as compared to untreated organic fertilizer.
  • the enhanced nitrogen content is usually an inorganic nitrogen compound, urea or the like. Examples of the inorganic nitrogen compound include ammonia, nitric acid, nitrite, and ions thereof.
  • Organic fertilizers with enhanced nitrogen content for example, have a molar concentration of 1.1 times or more, 1.2 times or more, 1.3 times or more, 1.4 times or more, or 1.5 times the molar concentration of untreated organic fertilizers. It may contain more than twice as much nitric acid and nitrate ions.
  • Organic fertilizers with enhanced nitrogen content for example, have a molar concentration of 1.1 times or more, 1.2 times or more, 1.3 times or more, 1.4 times or more, and 1.5 times that of untreated organic fertilizers. It may contain 1.6 times or more, 1.8 times or more, or 2 times or more, or 2.3 times or more of nitrite and nitrite ion.
  • the organic fertilizer reacts with nitrogen plasma to generate an inorganic nitrogen compound and a nitrogen compound such as urea. Therefore, the organic fertilizer preferably contains water.
  • the water content in the organic fertilizer to be subjected to the nitrogen plasma treatment is, for example, preferably 1 to 5000 mg / g, more preferably 1 to 2000 mg / g, still more preferably 1 to 1000 mg / g. If the organic fertilizer has a low water content, water may be added to the organic fertilizer before the plasma treatment.
  • the organic fertilizer may be mixed or stirred so that the nitrogen content in the organic fertilizer becomes uniform.
  • the production method of the present embodiment it is possible to obtain an organic fertilizer having an enhanced nitrogen content by a simple method without using a chemical fertilizer.
  • the obtained organic fertilizer can be used for organic farming. Since the obtained organic fertilizer has an enhanced nitrogen content, the crop can grow well.
  • the present invention uses the production method to apply a step of producing an organic fertilizer having an enhanced nitrogen content (hereinafter, also referred to as “step A1”) and the organic fertilizer having an enhanced nitrogen content.
  • a method for cultivating a plant which comprises a step of cultivating a plant on the soil (hereinafter, also referred to as “step B1”).
  • Step A1 is the same as the manufacturing method.
  • step A1 an organic fertilizer with an enhanced nitrogen content can be obtained.
  • step B1 plants are cultivated in the soil fertilized with the organic fertilizer with enhanced nitrogen content produced in step A1.
  • the soil to which organic fertilizer is applied is not particularly limited.
  • the soil may be a paddy field, a field, an orchard, or a horticultural soil.
  • the fertilizer application method is not particularly limited and can be applied in the same manner as ordinary organic fertilizer.
  • the timing of applying organic fertilizer is not particularly limited. Fertilization can be appropriately applied according to the type of plant, growing condition, soil condition and the like.
  • Plants cultivated in soil fertilized with organic fertilizer are not particularly limited. It may be selected as appropriate according to the type of soil. Examples of plants include, but are not limited to, grains, vegetables, fruit trees, flowers and the like. The plant can be cultivated by a known method depending on the type of plant.
  • the plant is cultivated using an organic fertilizer with an enhanced nitrogen content, so that the plant grows well. Moreover, since no chemical fertilizer is used, it can be applied to organic farming.
  • the present invention uses the production method to produce an organic fertilizer with an enhanced nitrogen content (hereinafter, also referred to as “step A2”), and the organic fertilizer with an enhanced nitrogen content in soil.
  • step A2 an organic fertilizer with an enhanced nitrogen content
  • step B2 a method for improving soil, including a step of fertilizing the soil
  • Step A2 is the same as the manufacturing method.
  • step A2 an organic fertilizer with an enhanced nitrogen content can be obtained.
  • Step B2 the nitrogen-enriched organic fertilizer produced in step A2 is applied to the soil.
  • the soil is not particularly limited as long as it is soil for plant cultivation, and may be a paddy field, a field, an orchard, or a horticultural soil.
  • the fertilizer application method is not particularly limited and can be applied in the same manner as ordinary organic fertilizer.
  • the soil improvement method of the present embodiment uses an organic fertilizer with an enhanced nitrogen content, it is possible to supply an appropriate nitrogen content to the soil together with other nutrients contained in the organic fertilizer. Therefore, it is possible to prepare soil in which plants grow well.
  • step A1 or step A2 the nitrogen content in the organic fertilizer produced in step A1 or step A2 is released from the organic fertilizer with the passage of time, and the nitrogen content of the organic fertilizer may decrease. Therefore, it is preferable that the time from the step A1 or the step A2 until the fertilizer is applied to the soil is short.
  • the time from step A1 or step A2 to fertilizing the soil is, for example, preferably 10 days or less, more preferably 5 days or less, further preferably 3 days or less, and particularly preferably 1 day or less.
  • step A1 or step A2 near the soil to be fertilized.
  • step A1 or step A2 can be performed on the same farm site as the soil to be fertilized.
  • the present invention includes a plasma generating unit, a nitrogen gas supply unit that supplies nitrogen gas to the plasma generating unit, and an organic fertilizer holding unit that holds organic fertilizer, and is generated by the plasma generating unit.
  • a plasma generating unit a nitrogen gas supply unit that supplies nitrogen gas to the plasma generating unit
  • an organic fertilizer holding unit that holds organic fertilizer, and is generated by the plasma generating unit.
  • an apparatus for producing an organic fertilizer having an enhanced nitrogen content hereinafter, also referred to as “organic fertilizer producing apparatus”
  • the nitrogen plasma produced is irradiated to the organic fertilizer held by the organic fertilizer holding unit.
  • FIG. 1 shows an example of the organic fertilizer production apparatus of this embodiment.
  • the organic fertilizer production apparatus 100 shown in FIG. 1 includes a plasma generating electrode 110, an upper belt conveyor 120, a lower belt conveyor 130, and a bucket conveyor 140 in a housing 101.
  • the plasma generation electrode 110 is connected to a power source (not shown) outside the housing 101, and constitutes a plasma generation device together with the power source.
  • a known plasma generator such as copper or tungsten can be used as the plasma generator electrode 110, and a pulse power supply or a high frequency power supply can be used as the power source.
  • a known DBD plasma dielectric can be used as the plasma generating electrode 110, and a high voltage power source can be used as the power source.
  • a nitrogen-containing gas is supplied into the housing 101 from a nitrogen-containing gas supply unit composed of a nitrogen-containing gas supply path (not shown), and the nitrogen-containing gas is supplied to the plasma generation space P.
  • the nitrogen-containing gas supply unit includes a nitrogen-containing gas supply source (nitrogen-containing gas cylinder, etc.) installed outside the housing 101, a nitrogen-containing gas supply port installed inside the housing 101, and a nitrogen-containing gas supply source and nitrogen-containing unit. It may be composed of a nitrogen-containing gas supply pipe connected to a gas supply port.
  • the organic fertilizer production apparatus 100 may include an exhaust device for discharging the gas in the housing 101 and adjusting the air pressure in the housing 101.
  • the upper belt conveyor 120 is installed below the plasma generation space P of the plasma generator.
  • the upper belt conveyor 120 is composed of an endless belt 121 and rollers 122 and 123.
  • the portion facing the plasma generating electrode 110 constitutes the organic fertilizer holding portion H (nitrogen plasma irradiation region).
  • the upper belt conveyor 120 conveys the organic fertilizer F in the direction of the white arrow in the figure.
  • the organic fertilizer F conveyed to the organic fertilizer holding unit H is irradiated with nitrogen plasma generated in the plasma generation space P.
  • the organic fertilizer F irradiated with nitrogen plasma is conveyed to the end (right end in the figure) of the upper belt conveyor 120 and dropped onto the lower belt conveyor 130.
  • the lower belt conveyor 130 is installed below the upper belt conveyor 120.
  • the lower belt conveyor 130 is composed of an endless belt 131 and rollers 132, 133.
  • the lower belt conveyor 130 is arranged so that the end portion (right end portion in the drawing) of the upper belt conveyor 120 on which the organic fertilizer F falls is located above the belt of the lower belt conveyor 130.
  • the organic fertilizer F falling from the end of the upper belt conveyor 120 is received by the lower belt conveyor 130.
  • the lower belt conveyor 130 conveys the organic fertilizer F in the direction indicated by the white arrow in the figure (in the direction opposite to the conveying direction of the upper belt conveyor 120).
  • the organic fertilizer F is conveyed to the end of the lower belt conveyor 130 (the left end in the figure) and transferred into the bucket 142 of the bucket conveyor 140.
  • the bucket conveyor 140 is installed on the side of the upper belt conveyor 120 and the lower belt conveyor 130.
  • the bucket conveyor 140 is composed of a plurality of buckets 142 and an endless belt 141 that conveys the bucket 142.
  • the bucket conveyor 140 receives the organic fertilizer F falling from the end portion (left end portion in the drawing) of the lower belt conveyor 130 in the bucket 142, conveys it upward, and makes the organic fertilizer on the endless belt 121 of the upper belt conveyor 120. Drop fertilizer F.
  • the organic fertilizer F is charged into the housing 101 from the organic fertilizer input port (not shown).
  • the organic fertilizer F may be charged so as to be placed on the endless belt 121 of the upper belt conveyor 120 or on the endless belt 131 of the lower belt conveyor 130, and is charged into a plurality of buckets 142 of the lower belt conveyor 130. May be done.
  • the nitrogen-containing gas is supplied into the housing 101 from a nitrogen-containing gas supply path (not shown).
  • the gas in the housing 101 may be discharged by an exhaust device (not shown) to adjust the air pressure in the housing 101.
  • the atmospheric pressure in the housing 101 is preferably adjusted to 20 to 200 Pa.
  • the plasma generator is an atmospheric pressure plasma device, it is preferable that the pressure inside the housing 101 is adjusted to the atmospheric pressure.
  • the upper belt conveyor 120 is operated to convey the organic fertilizer F placed on the endless belt 121 of the upper belt conveyor 120 to the organic fertilizer holding unit H.
  • nitrogen plasma is generated in the plasma generation space P and is irradiated on the organic fertilizer F existing in the organic fertilizer holding portion H.
  • the ionized nitrogen molecules in the nitrogen plasma react with water ( H2O ) in the organic fertilizer F, and the inorganic nitrogen compounds (ammonia, nitric acid, nitrite, and their ions, etc.) and the organic nitrogen compounds Nitrogen compounds such as (urea and its ions, etc.) are produced.
  • the produced nitrogen compound remains in the organic fertilizer F, and the nitrogen content of the organic fertilizer F is enhanced.
  • the organic fertilizer F irradiated with nitrogen plasma in the organic fertilizer holding portion H is conveyed to the end portion (right end portion in the figure) of the upper belt conveyor 120, it is dropped onto the endless belt 131 of the lower belt conveyor 130. ..
  • the organic fertilizer F that has fallen on the lower belt conveyor 130 is conveyed to the end portion (left end portion in the drawing) of the lower belt conveyor 130, it is dropped into a plurality of buckets 142 of the bucket conveyor 140.
  • the bucket conveyor 140 may be temporarily stopped until a certain amount of the organic fertilizer F is accumulated in the bucket 142.
  • the bucket conveyor 140 may be controlled by a contact sensor or the like installed on the bucket 142. Alternatively, it may be stopped and operated repeatedly at regular intervals.
  • the bucket 142 that has received the organic fertilizer F is conveyed upward by the bucket conveyor 140, and when it reaches the upper belt conveyor 120, the organic fertilizer F is released on the endless belt 121.
  • the organic fertilizer F released on the endless belt 121 is again conveyed to the organic fertilizer holding portion H and irradiated with nitrogen plasma.
  • the upper belt conveyor 120, the lower belt conveyor 130, and the bucket conveyor 140 constitute an organic fertilizer transport unit.
  • the organic fertilizer transport section composed of the upper belt conveyor 120, the lower belt conveyor 130, and the bucket conveyor 140 forms a circulation path, and the organic fertilizer F circulates in this circulation path.
  • the organic fertilizer F is irradiated with nitrogen plasma when passing through the organic fertilizer holding portion H on the circulation path, and the nitrogen content is strengthened. Further, since the organic fertilizer F is mixed during circulation, the concentration of the nitrogen compound produced in the organic fertilizer holding portion H becomes uniform. Therefore, the upper belt conveyor 120, the lower belt conveyor 130, and the bucket conveyor 140 constitute a mixing mechanism for mixing the organic fertilizer F.
  • the number of circulations of the organic fertilizer F is not particularly limited, and can be appropriately set according to the amount of the organic fertilizer and the target amount of nitrogen content enhancement. The number of circulations can be, for example, about 1 to 20 times.
  • the organic fertilizer with an enhanced nitrogen content can be obtained by taking out the organic fertilizer from the organic fertilizer outlet (not shown).
  • FIG. 2 shows a modified example of the organic fertilizer producing apparatus of this embodiment.
  • the organic fertilizer production apparatus 200 shown in FIG. 2 includes a plasma generating electrode 210, a rotating body 220, a flight conveyor 230, and a tank 240 in a housing 201.
  • the plasma generation electrode 210 is connected to a power source outside the housing 201 (not shown), and constitutes a plasma generation device together with the power source.
  • the plasma generator is the same as the plasma generator in the organic fertilizer production apparatus 100. In FIG. 2, three plasma generating electrodes 210 are shown, but the number is not limited to this, and any number can be installed.
  • a nitrogen-containing gas is supplied into the housing 201 from a nitrogen-containing gas supply unit composed of a nitrogen-containing gas supply path (not shown), and the nitrogen-containing gas is supplied to the plasma generation space P. When applied to the plasma generation electrode 210 in this state, nitrogen plasma is generated in the plasma generation space P.
  • the organic fertilizer production apparatus 200 may include an exhaust device for discharging the gas in the housing 201 and adjusting the air pressure in the housing 201.
  • the rotating body 220 is installed so as to face the plasma generating electrode 210.
  • the rotating body 220 has a plurality of plates 221 and can hold the organic fertilizer F by the plates 221.
  • the portion facing the plasma generating electrode 210 constitutes the organic fertilizer holding portion H (nitrogen plasma irradiation region).
  • the rotating body 220 rotates counterclockwise, receives the organic fertilizer F discharged from the opening 241 of the tank 240, and conveys it to the organic fertilizer holding unit H.
  • the organic fertilizer F conveyed to the organic fertilizer holding unit H is irradiated with nitrogen plasma generated in the plasma generation space P.
  • the organic fertilizer F irradiated with nitrogen plasma is conveyed downward by the rotation of the rotating body 220 and dropped onto the flight conveyor 230.
  • the flight conveyor 230 receives the organic fertilizer F falling from the rotating body 220 and conveys it to the tank 240.
  • the flight conveyor 230 is composed of an endless belt 231, rollers 232, 233, and a plurality of flights 234.
  • the flight conveyor 230 has a horizontal transport section that receives the organic fertilizer F falling from the rotating body 220 and horizontally transports the organic fertilizer F, and a vertical transport section that vertically transports the organic fertilizer F to the tank 240 installed above the rotating body 220. ..
  • the flight 234 is bent so that the tip portion of the flight 234 faces upward in the vertical transport portion, so that the organic fertilizer can be sufficiently held in the vertical transport portion.
  • the flight conveyor 230 conveys the organic fertilizer F in the direction of the white arrow in the figure.
  • the flight conveyor 230 receives the organic fertilizer F that has fallen from the rotating body 220, conveys it to the tank 240, and discharges the organic fertilizer F into the tank 240.
  • the tank 240 is located above the rotating body 220 and has an opening 241 at the bottom.
  • the bottom of the tank 240 is inclined towards the opening 241.
  • the organic fertilizer F released from the flight conveyor 230 into the tank 240 moves toward the opening 241 by its own weight along the inclination of the bottom of the tank 240, and is discharged from the opening 241 onto the rotating body 220.
  • the tank 240 may be provided with an opening / closing plate that allows the opening 241 to be opened / closed. In this case, when a certain amount of organic fertilizer is stored in the tank 240, the opening 241 may be opened to release the organic fertilizer F onto the rotating body 220.
  • the organic fertilizer F is charged into the housing 201 from the organic fertilizer input port (not shown).
  • the organic fertilizer F is preferably charged into the tank 240.
  • the opening 241 of the tank 240 may be closed by an opening / closing plate (not shown).
  • the nitrogen-containing gas is supplied into the housing 201 from a nitrogen-containing gas supply path (not shown).
  • the gas in the housing 201 may be discharged by an exhaust device (not shown) to adjust the air pressure in the housing 201.
  • the organic fertilizer F is released from the opening 241 onto the rotating body 220.
  • the rotating body 220 is rotated to transport the organic fertilizer F to the organic fertilizer holding portion H.
  • nitrogen plasma is generated in the plasma generation space P and is irradiated on the organic fertilizer F existing in the organic fertilizer holding portion H.
  • the ionized nitrogen molecules in the nitrogen plasma react with water ( H2O ) in the organic fertilizer F, and the inorganic nitrogen compounds (ammonia, nitric acid, nitrite, and their ions, etc.) and the organic nitrogen compounds Nitrogen compounds such as (urea and its ions, etc.) are produced.
  • the produced nitrogen compound remains in the organic fertilizer F, and the nitrogen content of the organic fertilizer F is enhanced.
  • the rotating body 220, the flight conveyor 230, and the tank 240 constitute an organic fertilizer transport unit.
  • the organic fertilizer transport section composed of the rotating body 220, the flight conveyor 230, and the tank 240 forms a circulation path, and the organic fertilizer F circulates in this circulation path.
  • the organic fertilizer F is irradiated with nitrogen plasma when passing through the organic fertilizer holding portion H on the circulation path, and the nitrogen content is strengthened. Since the organic fertilizer F is mixed during circulation, the concentration of the nitrogen compound produced in the organic fertilizer holding portion H becomes uniform. Therefore, the rotating body 220, the flight conveyor 230, and the tank 240 constitute a mixing mechanism for mixing the organic fertilizer F.
  • the number of circulations of the organic fertilizer F is not particularly limited, and can be appropriately set according to the amount of the organic fertilizer and the target amount of nitrogen content enhancement. The number of circulations can be, for example, about 1 to 20 times.
  • the organic fertilizer F with an enhanced nitrogen content can be obtained by taking out the organic fertilizer F from an organic fertilizer outlet (not shown).
  • FIG. 3 shows another modification of the organic fertilizer production apparatus of this embodiment.
  • the organic fertilizer manufacturing apparatus 300 shown in FIG. 3 includes a plasma generating electrode 310, a stirring fin 320, and a stirring baffle plate 330 in a housing 301 provided with a lid 302.
  • An exhaust pipe 360 and a supply pipe 370 are provided so as to penetrate the lid 302.
  • the housing 301 is provided with a lid 302 so that the organic fertilizer F can be held inside.
  • the housing 301 constitutes the organic fertilizer holding portion H (nitrogen plasma irradiation region).
  • the organic fertilizer F can be put in and taken out with the lid 302 open.
  • the housing 301 may be provided with a lift or the like (not shown) so that the organic fertilizer F can be easily put in and taken out.
  • the plasma generation electrode 310 is installed on the housing 301 side of the lid 302.
  • the plasma generating electrode 310 is connected to a power source outside the housing 301 (not shown) via the electric wire 311 and constitutes a plasma generating device together with the power source and the electric wire 311.
  • the plasma generator is the same as the plasma generator in the organic fertilizer production apparatus 100. In FIG. 3, two plasma generating electrodes 310 are shown, but the present invention is not limited to this, and any number can be installed.
  • the electric wire 311 is inserted into the housing 301 from the electric wire insertion portion 312 provided on the lid 302, and is connected to the plasma generation electrode 310.
  • the supply pipe 370 is connected to a nitrogen-containing gas supply source (nitrogen-containing gas cylinder, etc.) (not shown), and supplies nitrogen-containing gas into the housing 301.
  • a nitrogen-containing gas supply source nitrogen-containing gas cylinder, etc.
  • the supply pipe 370 constitutes a nitrogen-containing gas supply unit.
  • the nitrogen-containing gas supplied from the supply pipe 370 into the housing 301 also reaches the plasma generation space P near the plasma generation electrode 310, and the nitrogen-containing gas is supplied to the plasma generation space P.
  • nitrogen plasma is generated in the plasma generation space P.
  • the supply pipe 370 may be connected to a water supply source (water tank or the like) (not shown) to supply water into the housing 301, if necessary.
  • the exhaust pipe 360 exhausts the gas in the housing 301 to adjust the air pressure in the housing 301.
  • the exhaust pipe 360 includes a pressure adjusting valve 340. The displacement from the exhaust pipe 360 is adjusted by the pressure adjusting valve 340.
  • the stirring fin 320 is connected to the rotary motor 321 via the rotary shaft 322.
  • the rotation is transmitted to the stirring fin 320 via the rotating shaft 322, and the stirring fin 320 rotates.
  • the stirring fin 320, the rotary shaft 322, and the rotary motor 321 together with the baffle plate 330 constitute a mixing mechanism for mixing the organic fertilizer F.
  • a hindrance plate 330 is installed on the inner wall of the housing 301.
  • the obstruction plate 330 improves the stirring efficiency of the organic fertilizer F by the stirring fin 320.
  • Two obstruction plates 330 are shown in the figure, but the number is not limited to this, and any number of obstruction plates 330 can be installed.
  • the lid 302 is opened and the organic fertilizer F is put into the housing 301. After loading, the lid 302 is closed to seal the housing 301.
  • the nitrogen-containing gas is supplied into the housing 301 from the supply pipe 370.
  • water may be supplied from the supply pipe 370.
  • the gas in the housing 301 is exhausted from the exhaust pipe 360 while adjusting the exhaust amount by the pressure adjusting valve 340. As a result, the inside of the housing 301 is adjusted so as to have a desired atmospheric pressure.
  • the rotary motor 321 is driven to rotate the stirring fin 320.
  • the organic fertilizer F is agitated.
  • nitrogen plasma is generated in the plasma generation space P and is irradiated to the organic fertilizer F.
  • the ionized nitrogen molecules in the nitrogen plasma react with the water ( H2O ) in the organic fertilizer F, and the inorganic nitrogen compounds (ammonia, nitric acid, nitrite, and their ions, etc.) and the organic nitrogen compounds (these ions, etc.) and the organic nitrogen compounds (these ions, etc.) and the organic nitrogen compounds (H2O).
  • Nitrogen compounds such as urea and its ions
  • the produced nitrogen compound remains in the organic fertilizer F, and the nitrogen content of the organic fertilizer F is enhanced.
  • the application time of the plasma generating electrode 310 is not particularly limited, and may be appropriately set according to the types of the organic fertilizer F and the plasma generating electrode 310. Further, the nitrogen content of the organic fertilizer F may be monitored over time, and the application of the plasma generating electrode 310 may be stopped when the nitrogen content reaches an appropriate level. At the same time as the application to the plasma generating electrode 310 is stopped, the rotary motor 321 is stopped to stop the rotation of the stirring fin 320. Alternatively, after an arbitrary time has elapsed from the stop of application to the plasma generation electrode 310, the rotary motor 321 is stopped to stop the rotation of the stirring fin 320.
  • the organic fertilizer production apparatus of the present embodiment can be suitably used for the method for producing an organic fertilizer having an enhanced nitrogen content according to the above embodiment. By using the organic fertilizer producing apparatus of the present embodiment, it is possible to easily produce an organic fertilizer having an enhanced nitrogen content.
  • Nitrogen plasma treatment of the organic fertilizer was performed using the organic fertilizer production apparatus 400 equipped with the low-pressure plasma generator shown in FIG. 4 (a custom-made product, a self-made plasma source was installed in a reaction vessel manufactured by Kenix Co., Ltd.). Humus was used as the organic fertilizer. 4 g of leaf mold was put into the chamber of the plasma generator, and nitrogen plasma was generated while supplying nitrogen gas. The amount of nitrogen gas supplied was 0.5 mL / min. The plasma generation conditions were an atmospheric pressure of 200 Pa, a frequency of 143000 kHz, and a power of 40 W. The nitrogen plasma treatment time was 3 minutes.
  • the organic fertilizer manufacturing apparatus 400 includes a plasma generating electrode 410 connected to the power supply 430 and an organic fertilizer holding container 420 in the housing 401. Further, it is provided with an exhaust pipe 460, a pressure adjusting valve 440, and an exhaust rotary pump 450 for exhausting the gas in the housing 401 and keeping the pressure low.
  • a pulse power supply or a high frequency power supply was used as the power supply 430. While supplying nitrogen gas from a nitrogen supply path (not shown), nitrogen plasma was generated in the plasma generation space P by applying it to the plasma generation electrode 410, and the organic fertilizer F in the organic fertilizer holding container 420 was irradiated.
  • Nitrogen plasma treatment of the organic fertilizer was performed using the organic fertilizer production apparatus 500 (own work) equipped with the dielectric barrier discharge (DBD) plasma generator shown in FIG. Humus was used as the organic fertilizer. 4 g of humus to which 4 g of pure water was added was put into the chamber of the plasma generator, and nitrogen plasma was generated while supplying nitrogen gas. Irradiation was performed in an air gas atmosphere. The plasma generation conditions were atmospheric pressure, frequency 14 kHz, and voltage 7 kV. The nitrogen plasma treatment time was 10 minutes.
  • DBD dielectric barrier discharge
  • the organic fertilizer production apparatus 500 includes a plasma generating electrode 510 connected to a power source 530 and an organic fertilizer holding container 520.
  • a high voltage power supply was used as the power supply 530.
  • the principle diagram of the organic fertilizer production apparatus 500 is shown in FIG.
  • the plasma generating electrode 510 is composed of a pair of dielectrics 511, 512. While supplying nitrogen gas from a nitrogen supply path (not shown), nitrogen gas was applied to the dielectrics 511 and 512 to generate nitrogen plasma in the plasma generation space P, and the organic fertilizer F in the organic fertilizer holding container 520 was irradiated.
  • Example 3 The nitrogen plasma treatment of the organic fertilizer was carried out in the same manner as in Example 1 except that the irradiation time of the nitrogen plasma was set to 10 minutes.
  • the nitric acid (NO 3- ) concentration and the nitrite (NO 2- ) concentration in the leaf mold were measured.
  • the measurement method is as follows. About 1 g of the organic fertilizer treated in each of the above examples was collected, and about 1 cc of water was added thereto. The organic fertilizer was squeezed to collect the solution, and a filter was used to remove small debris. The concentrations of nitric acid and nitrite were measured using NO 2 / NO 3 Assay Kit-C II (DOJINDO).
  • Table 1 shows the measurement results of nitric acid.
  • the measurement results of nitrite are shown in Table 2.
  • the germination rate was 85 to 95%.
  • the germination rate was 50 to 65%. From this result, it was shown that the germination rate was improved by using the organic fertilizer treated with nitrogen plasma.
  • Bud length is 2 cm (1.5 cm or more and less than 2.5 cm), 3 cm (2.5 cm or more and less than 3.5 cm), 4 cm (3.5 cm or more and less than 4.5 cm), 5 cm (4.5 cm or more and 5.5 cm) Less than), 6 cm (5.5 cm or more and less than 6.5 cm), and 7 cm (6.5 cm or more and less than 7.5 cm) were counted respectively. The results are shown in FIG.
  • the count number was larger as a whole as compared with the cultivation pot fertilized with the organic fertilizer of the comparative example. It is considered that this is because the germination rate was improved in the cultivation pot fertilized with the organic fertilizer of the example.
  • the length of the buds tended to be longer in the organic fertilizer of the example than in the organic fertilizer of the comparative example. Further, in Example 1 and Example 3, the bud length tended to be longer in Example 1. From this result, it was shown that the growth of plants was improved by using the organic fertilizer treated with nitrogen plasma.
  • a method and an apparatus for producing an organic fertilizer having an enhanced nitrogen content Further, a method for cultivating a plant and a method for improving soil using the organic fertilizer produced by the above-mentioned production method are provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Fertilizers (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Plasma Technology (AREA)

Abstract

有機質肥料を窒素プラズマ処理する工程を含む、窒素分が増強された有機質肥料の製造方法。また、前記製造方法により窒素分が増強された有機質肥料を製造する工程と、前記有機質肥料が施肥された土壌で、植物を栽培する工程と、を含む、植物の栽培方法。また、前記製造方法により窒素分が増強された有機質肥料を製造する工程と、前有機質肥料を、土壌に施肥する工程と、を含む、土壌の改良方法。プラズマ発生部と、前記プラズマ発生部に窒素ガスを供給する窒素ガス供給部と、有機質肥料を保持する有機質肥料保持部と、を備え、前記プラズマ発生部により発生される窒素プラズマが、前記有機質肥料保持部により保持される有機質肥料に照射される、窒素分が増強された有機質肥料の製造装置。

Description

有機質肥料の製造方法、植物の栽培方法、土壌の改良方法、及び有機質肥料の製造装置
 本発明は、有機質肥料の製造方法、植物の栽培方法、土壌の改良方法、及び有機質肥料の製造装置に関する。
 本願は、2020年10月16日に、日本に出願された特願2020-174739号に基づき優先権を主張し、その内容をここに援用する。
 近年、環境負荷の小さい農業として、有機農業に対する関心が高まっている。有機農業では、化学肥料を使用せず、有機質肥料が用いられる。有機質肥料中の無機窒素は、時間の経過とともに環境中に放出されることが報告されている(非特許文献1)。そのため、有機質肥料では窒素分が不足し、作物の生育が不十分となる場合がある。
 従来、窒素固定の方法としては、ハーバー・ボッシュ法が用いられてきた。ハーバー・ボッシュ法では、メタンに水及び酸素を反応させて水素を合成し、前記水素に窒素を反応させてアンモニアを合成する。ハーバー・ボッシュ法では、天然ガス等に含まれるメタンを使用し、高温、高圧の条件下で反応を行うため、化石燃料を大量に消費する。そのため、ハーバー・ボッシュ法は、環境負荷が高いという問題がある。
 また、有機質肥料に、窒素分を強化するために化学肥料を添加した場合、化学肥料を使用することになるため、有機農業の定義には当てはまらなくなる。
 ハーバー・ボッシュ法を用いない窒素固定の方法として、窒素プラズマを水に照射する方法が提案されている。例えば、特許文献1には、水に窒素プラズマを照射して窒素源を含む養液を製造し、植物栽培システムに用いることが提案されている。
特開2017-228423号公報
Jana E Compton and Richard D. Boone, Soil nitrogen transformation and the role of light fraction organic mater in forest soils. Soil Biology and Biochemistry 34(7):933-943.
 特許文献1の植物栽培システムは、水耕栽培システムであり、有機農業に適用することはできない。有機農業に用いるためには、化学肥料を添加することなく、有機質肥料の成分組成を改善することが求められる。
 そこで、本発明は、化学肥料を用いることなく、有機質肥料の窒素分を増強することが可能な、窒素分が増強された有機質肥料の製造方法及び製造装置を提供することを目的とする。また、前記製造方法又は製造装置で製造された有機質肥料を用いた、植物の栽培方法及び土壌の改良方法を提供することを目的とする。
 本発明は以下の態様を含む。
[1]有機質肥料を窒素プラズマ処理する工程を含む、窒素分が増強された有機質肥料の製造方法。
[2]前記増強される窒素分が、アンモニア、硝酸、亜硝酸、尿素、及びこれらのイオンからなる群より選択される少なくとも一種である、[1]に記載の製造方法。
[3]前記有機質肥料が、植物性堆肥を含む、[1]又は[2]に記載の製造方法。
[4][1]~[3]のいずれか1つに記載の製造方法により、窒素分が増強された有機質肥料を製造する工程と、前記窒素分が増強された有機質肥料が施肥された土壌で、植物を栽培する工程と、を含む、植物の栽培方法。
[5][1]~[3]のいずれか1つに記載の製造方法により、窒素分が増強された有機質肥料を製造する工程と、前記窒素分が増強された有機質肥料を、土壌に施肥する工程と、を含む、土壌の改良方法。
[6]プラズマ発生装置と、前記プラズマ発生装置のプラズマ発生空間に窒素含有ガスを供給する窒素含有ガス供給部と、有機質肥料を保持する有機質肥料保持部と、を備え、前記プラズマ発生装置により発生される窒素プラズマが、前記有機質肥料保持部により保持される有機質肥料に照射される、窒素分が増強された有機質肥料の製造装置。
[7]前記有機質肥料を混合する混合機構をさらに備える、[6]に記載の窒素分が増強された有機質肥料の製造装置。
 本発明によれば、化学肥料を用いることなく有機質肥料の窒素分を増強することが可能な、窒素分が増強された有機質肥料の製造方法及び製造装置が提供される。また、前記製造方法又は製造装置で製造された有機質肥料を用いた、植物の栽培方法及び土壌の改良方法が提供される。
窒素分が増強された有機質肥料の製造装置の一例を示す模式図である。 窒素分が増強された有機質肥料の製造装置の変形例を示す模式図である。 窒素分が増強された有機質肥料の製造装置の変形例を示す模式図である。 実施例1で用いた有機質肥料製造装置の模式図を示す。 実施例2で用いた有機質肥料製造装置の模式図を示す。 図5の有機質肥料製造装置の原理図を示す。 実施例におけるカイワレ大根の栽培試験の結果を示す。
 以下、場合により図面を参照しつつ、本発明の実施形態について詳細に説明する。図面中、同一又は相当部分には同一又は対応する符号を付し、重複する説明は省略する。各図における寸法比は、説明のため誇張している部分があり、必ずしも実際の寸法比とは一致しない。
[有機質肥料の製造方法]
 1実施形態において、本発明は、有機質肥料を窒素プラズマ処理する工程を含む、窒素分が増強された有機質肥料の製造方法を提供する。
<窒素プラズマ処理工程>
 「有機質肥料」とは、有機物を原料とする肥料を意味する。有機質肥料は、有機物を含有し、好ましくは有機物を主成分(例えば、有機物含量50質量%以上、好ましくは60質量%以上)とする。有機質肥料としては、肥料取締法の公定規格に定められた有機質肥料及び汚泥堆肥等、肥料取締法に定められた特殊肥料のうち有機物を原料とするもの、並びに農業廃棄物及び畜産廃棄物等の有機資材を原料として農家が生産した肥料等が挙げられる。有機質肥料の具体例としては、例えば、魚かす粉末、魚荒かす粉末、干魚肥料粉末、魚節煮かす等の魚肥;ナタネ油かす、ダイズ油かす等の油かす類;獣骨から脂肪・ゼラチン等を取り除いて残った骨を粉砕した骨粉類;乾燥菌体肥料;牛糞堆肥、豚糞堆肥、鶏糞堆肥、醗酵鶏糞、乾燥鶏糞等の家禽糞肥料;メタン醗酵残渣;籾殻堆肥、剪定枝堆肥、稲わら堆肥、パーク堆肥、腐葉土等の植物性堆肥;汚泥堆肥、生ゴミ堆肥等が挙げられるが、これらに限定されない。
 有機質肥料としては、他の養分(リン、カリウム)と比較して窒素含有量が低いものを用いることが好ましい。有機質肥料としては、例えば、植物性堆肥が好ましく、腐葉土がより好ましい。「植物性堆肥」とは、植物由来有機資材を原料とする堆肥を意味する。「堆肥」とは、易分解性有機物が微生物によって分解された肥料を意味する。「腐葉土」とは、落葉落枝を原料とする堆肥を意味する。
 「窒素プラズマ処理」とは、被処理物を窒素プラズマに接触さることを意味する。「プラズマ」とは、気体を構成する分子が電離により正(陽イオン)と負(電子)とに分かれている荷電粒子群を含み、全体として電気的にほぼ中性である粒子の集団(電離気体)を意味する。「窒素プラズマ」とは、窒素ガス(N)を電離して発生させたプラズマを意味する。
 窒素プラズマは、窒素を含むガスに電圧を印加することにより発生することができる。窒素プラズマは、大気圧下で発生させるもの(大気圧プラズマ)であってもよく、大気圧より低い圧力下で発生させるもの(低圧プラズマ)であってもよい。
 大気圧プラズマの発生方法は、特に限定されず、公知の方法を用いることができる。大気圧プラズマの発生方法としては、例えば、誘電体バリア放電(DBD)、誘導結合プラズマ放電(ICP)、容量結合プラズマ放電(CCP)、ホローカソード放電、コロナ放電、ストリーマ放電、グロー放電、アーク放電等が挙げられる。
 電圧を印加するガスは、窒素(N)を含むガス(窒素含有ガス)であればよい。窒素含有ガスは、窒素ガスであってもよく、窒素ガスと他の気体との混合ガスであってもよい。混合ガスは、例えば、窒素(N)及び酸素(O)の混合ガスであってもよい。窒素と酸素との混合ガス中の窒素の割合は、体積分率として70~90%が好ましい。窒素含有ガスとしては、空気を用いてもよい。
 窒素含有ガスの供給量は、特に限定されないが、例えば、0.1~1000mL/分が好ましく、1~500mL/分がより好ましく、10~100mL/分がさらに好ましい。
 窒素プラズマの発生には、公知のプラズマ発生装置を特に制限なく用いることができる。公知のプラズマ発生装置において、電圧を印加するガスとして窒素含有ガスを用いることにより窒素プラズマを発生することができる。電圧の印加条件は、特に限定されず、プラズマ発生装置の種類に応じて選択することができる。低圧プラズマの場合、例えば、気圧20~200Pa、周波数50~500000kHz、電力 10W~100W等が挙げられる。大気圧プラズマの場合、例えば、周波数5~20000kHz、電圧5~20kV等が挙げられる。
 有機質肥料を窒素プラズマに接触させる方法は、特に限定されない。有機質肥料を窒素プラズマに接触させる方法としては、例えば、有機質肥料に窒素プラズマのプラズマジェットを吹き込む方法;電極を配したチャンバー内に有機質肥料を投入し、窒素含有ガスを供給しながら電圧を印加し、前記チャンバー内で窒素プラズマを発生させる方法等が挙げられる。
 窒素プラズマによる有機質肥料の処理時間は、特に限定されず、プラズマ発生装置の種類、窒素含有ガス中の窒素濃度、並びに有機質肥料の種類及び処理量等により、適宜調整すればよい。例えば、1~200gの有機質肥料(例えば、腐葉土)を低圧プラズマによる窒素プラズマで処理する場合、処理時間としては、1~30分、2~15分、2~10分、又は3~5分等が挙げられる。例えば、1~10gの有機質肥料(例えば、腐葉土)をDBDプラズマによる窒素プラズマで処理する場合、処理時間としては、1~30分、2~20分、3~15分、又は5~10分等が挙げられる。
 有機質肥料を窒素プラズマ処理することにより、電離した窒素分子が有機質肥料中の水(HO)と反応し、無機窒素化合物(アンモニア、硝酸、亜硝酸、及びこれらのイオン等)、及び有機窒素化合物(尿素、及びそのイオン等)等の窒素化合物が生成される。そのため、窒素分が増強された有機質肥料を得ることができる。「窒素分が増強された有機質肥料」とは、未処理の有機質肥料と比較して、窒素含有量が増加した有機質肥料を意味する。増強される窒素分は、通常、無機窒素化合物及び尿素等である。無機窒素化合物としては、アンモニア、硝酸、亜硝酸、及びこれらのイオン等が挙げられる。窒素分の増加量は、窒素プラズマ処理時間により調整することができる。窒素分が増強された有機質肥料は、例えば、モル濃度として、未処理の有機質肥料の1.1倍以上、1.2倍以上、1.3倍以上、1.4倍以上、又は1.5倍以上の硝酸及び硝酸イオンを含み得る。窒素分が増強された有機質肥料は、例えば、モル濃度として、未処理の有機質肥料の1.1倍以上、1.2倍以上、1.3倍以上、1.4倍以上、1.5倍以上、1.6倍以上、1.8倍以上、又は2倍以上、又は2.3倍以上の亜硝酸及び亜硝酸イオンを含み得る。
 本実施形態の製造方法では、有機質肥料中の水が、窒素プラズマと反応して、無機窒素化合物及び尿素等の窒素化合物が生成される。そのため、有機質肥料は、水分を含んでいることが好ましい。窒素プラズマ処理に供する有機質肥料中の水分含有量は、例えば、1~5000mg/gが好ましく、1~2000mg/gがより好ましく、1~1000mg/gがさらに好ましい。有機質肥料が水分含有量の低いものである場合、プラズマ処理前に、有機質肥料に水を添加してもよい。
 窒素プラズマ処理後、有機質肥料中の窒素分が均一となるように、有機質肥料の混合又は撹拌等を行ってもよい。
 本実施形態の製造方法によれば、化学肥料を用いることなく、簡易な方法で窒素分が増強された有機質肥料を得ることができる。得られた有機質肥料は、有機農業に用いることができる。得られた有機質肥料は、窒素分が増強されているため、作物を良好に生育させることができる。
[植物の栽培方法]
 1実施形態において、本発明は、前記製造方法により、窒素分が増強された有機質肥料を製造する工程(以下、「工程A1」ともいう)と、前記窒素分が増強された有機質肥料が施肥された土壌で、植物を栽培する工程(以下、「工程B1」ともいう)と、を含む、植物の栽培方法を提供する。
<窒素分が増強された有機質肥料を製造する工程:工程A1>
 工程A1は、前記製造方法と同様である。工程A1により、窒素分が増強された有機質肥料を得ることができる。
<植物を栽培する工程:工程B1>
 工程B1では、工程A1で製造された窒素分が増強された有機質肥料が施肥された土壌で、植物を栽培する。有機質肥料を施肥する土壌は特に限定されない。土壌は、水田であってもよく、畑であってもよく、果樹園であってもよく、園芸用土壌であってもよい。施肥方法は、特に限定されず、通常の有機質肥料と同様に行うことができる。有機質肥料を施肥する時期も特に限定されない。植物の種類、生育状況、土壌の状態等に応じて、適宜施肥することができる。
 有機質肥料を施肥された土壌で栽培する植物は、特に限定されない。土壌の種類に応じて、適宜選択すればよい。植物としては、例えば、穀物類、野菜類、果樹類、花卉類等が挙げられるが、これらに限定されない。植物は、植物の種類に応じて、公知の方法で栽培することができる。
 本実施形態の植物の栽培方法では、窒素分が増強された有機質肥料を用いて植物を栽培するため、植物の生育が良好となる。また、化学肥料を用いないため、有機農業に適用することができる。
[土壌の改良方法]
 1実施形態において、本発明は、前記製造方法により、窒素分が増強された有機質肥料を製造する工程(以下、「工程A2」ともいう)と、前記窒素分が増強された有機質肥料を、土壌に施肥する工程(以下、「工程B2」ともいう)と、を含む、土壌の改良方法を提供する。
<窒素分が増強された有機質肥料を製造する工程:工程A2>
 工程A2は、前記製造方法と同様である。工程A2により、窒素分が増強された有機質肥料を得ることができる。
<土壌に施肥する工程:工程B2>
 工程B2では、工程A2で製造された窒素分が増強された有機質肥料を土壌に施肥する。土壌は、植物栽培用の土壌であれば特に限定されず、水田であってもよく、畑であってもよく、果樹園であってもよく、園芸用土壌であってもよい。施肥方法は、特に限定されず、通常の有機質肥料と同様に行うことができる。
 本実施形態の土壌改良方法では、窒素分が増強された有機質肥料を用いるため、有機質肥料に含まれる他の養分と共に、土壌に適度な窒素分を供給することができる。そのため、植物の生育が良好な土壌を調製することができる。
 上記の植物栽培方法又は土壌改良方法において、工程A1又は工程A2で製造した有機質肥料中の窒素分は、時間の経過とともに有機質肥料から放出され、有機質肥料の窒素分が低下し得る。そのため、工程A1又は工程A2の後、土壌に施肥するまでの時間は、短い方が好ましい。工程A1又は工程A2の後、土壌に施肥するまでの時間としては、例えば、10日以内が好ましく、5日以内がより好ましく、3日以内がさらに好ましく、1日以内が特に好ましい。工程A1又は工程A2の後、土壌に施肥するまでの時間を短くするためには、工程A1又は工程A2を施肥対象の土壌の近くで行うことが好ましい。例えば、施肥予定の土壌と同じ農場の敷地内等で、工程A1又は工程A2を行うことができる。
[窒素分が増強された有機質肥料の製造装置]
 1実施形態において、本発明は、プラズマ発生部と、前記プラズマ発生部に窒素ガスを供給する窒素ガス供給部と、有機質肥料を保持する有機質肥料保持部と、を備え、前記プラズマ発生部により発生される窒素プラズマが、前記有機質肥料保持部により保持される有機質肥料に照射される、窒素分が増強された有機質肥料の製造装置(以下、「有機質肥料製造装置」ともいう)を提供する。
 本実施形態の有機質肥料製造装置について、図1を参照して説明する。図1は、本実施形態の有機質肥料製造装置の一例を示す。
 図1に示す有機質肥料製造装置100は、筐体101内に、プラズマ発生電極110、上部ベルトコンベア120、下部ベルトコンベア130、及びバケットコンベア140を備えている。
 プラズマ発生電極110は、筐体101外の図示しない電源に接続されており、当該電源とともにプラズマ発生装置を構成している。プラズマ発生装置は、公知のものを特に制限なく用いることができる。例えば、プラズマ発生装置が低圧プラズマ発生装置である場合、プラズマ発生電極110としては銅、タングステン等の公知のプラズマ電極を用いることができ、電源としてはパルス電源又は高周波電源を用いることができる。プラズマ発生装置が大気圧プラズマ発生装置である場合、プラズマ発生電極110としては公知のDBDプラズマ用誘電体を用いることができ、電源としては高圧電源を用いることができる。
 筐体101内には、図示しない窒素含有ガス供給路により構成される窒素含有ガス供給部から窒素含有ガスが供給され、プラズマ発生空間Pに窒素含有ガスが供給される。この状態でプラズマ発生電極110に印加すると、プラズマ発生空間Pに窒素プラズマが発生する。窒素含有ガス供給部は、筐体101外に設置される窒素含有ガス供給源(窒素含有ガスボンベ等)、筐体101内に設置される窒素含有ガス供給口、及び窒素含有ガス供給源と窒素含有ガス供給口とを接続する窒素含有ガス供給管により構成されてもよい。有機質肥料製造装置100は、筐体101内の気体を排出し、筐体101内の気圧を調整するための排気装置を備えていてもよい。
 上部ベルトコンベア120は、プラズマ発生装置のプラズマ発生空間Pの下方に設置されている。上部ベルトコンベア120は、無端ベルト121、及びローラー122,123により構成される。上部ベルトコンベア120において、プラズマ発生電極110と対向する部分は、有機質肥料保持部H(窒素プラズマ照射領域)を構成している。上部ベルトコンベア120は、有機質肥料Fを図中の白抜矢印方向に搬送する。有機質肥料保持部Hに搬送された有機質肥料Fには、プラズマ発生空間Pで発生する窒素プラズマが照射される。窒素プラズマが照射された有機質肥料Fは、上部ベルトコンベア120の端部(図中の右端部)まで搬送され、下部ベルトコンベア130へと落下される。
 下部ベルトコンベア130は、上部ベルトコンベア120の下方に設置されている。下部ベルトコンベア130は、無端ベルト131、及びローラー132,133により構成される。下部ベルトコンベア130は、有機質肥料Fが落下する上部ベルトコンベア120の端部(図中の右端部)が、下部ベルトコンベア130のベルトの上方に位置するように配置される。これにより、上部ベルトコンベア120の端部から落下する有機質肥料Fが、下部ベルトコンベア130により受け止められるようになっている。下部ベルトコンベア130は、有機質肥料Fを図中の白抜矢印方向(上部ベルトコンベア120の搬送方向とは逆向き)に搬送する。有機質肥料Fは、下部ベルトコンベア130の端部(図中の左端部)まで搬送され、バケットコンベア140のバケット142内に移される。
 バケットコンベア140は、上部ベルトコンベア120及び下部ベルトコンベア130の側方に設置されている。バケットコンベア140は、複数のバケット142と、バケット142を搬送する無端ベルト141とにより構成される。バケットコンベア140は、下部ベルトコンベア130の端部(図中の左端部)から落下する有機質肥料Fを、バケット142で受け取って、上方へと搬送し、上部ベルトコンベア120の無端ベルト121上に有機質肥料Fを落下させる。
 上記のような構成を備える有機質肥料製造装置100の動作の一例について説明する。
 まず、図示しない有機質肥料投入口から、筐体101内に有機質肥料Fを投入する。有機質肥料Fは、上部ベルトコンベア120の無端ベルト121上、又は下部ベルトコンベア130の無端ベルト131上に載置されるように投入されてもよく、下部ベルトコンベア130の複数のバケット142内に投入されてもよい。
 次に、図示しない窒素含有ガス供給路から筐体101内に窒素含有ガスが供給される。このとき、図示しない排気装置により筐体101内の気体を排出し、筐体101内の気圧を調整してもよい。例えば、プラズマ発生電極110及び電源を含むプラズマ発生装置が低圧プラズマ装置である場合、筐体101内の気圧は、20~200Paに調整されることが好ましい。プラズマ発生装置が大気圧プラズマ装置である場合、筐体101内の気圧は、大気圧に調整されることが好ましい。
 次に、上部ベルトコンベア120を稼働させて、上部ベルトコンベア120の無端ベルト121上に載置される有機質肥料Fを有機質肥料保持部Hに搬送する。ここで、プラズマ発生電極110を印加すると、プラズマ発生空間Pに窒素プラズマが発生し、有機質肥料保持部Hに存在する有機質肥料Fに照射される。この際に、窒素プラズマ中の電離した窒素分子が有機質肥料F中の水(HO)と反応し、無機窒素化合物(アンモニア、硝酸、亜硝酸、及びこれらのイオン等)、及び有機窒素化合物(尿素、及びそのイオン等)等の窒素化合物が生成される。生成した窒素化合物は、有機質肥料F中に留まり、有機質肥料Fの窒素分が増強される。
 有機質肥料保持部Hで窒素プラズマが照射された有機質肥料Fは、上部ベルトコンベア120の端部(図中の右端部)まで搬送されると、下部ベルトコンベア130の無端ベルト131上に落下される。下部ベルトコンベア130上に落下した有機質肥料Fは、下部ベルトコンベア130の端部(図中の左端部)まで搬送されると、バケットコンベア140の複数のバケット142内に落下される。下部ベルトコンベア130からバケットコンベア140が有機質肥料Fを受け取る際に、バケット142内に有機質肥料Fが一定量溜まるまでバケットコンベア140を一時的に停止してもよい。バケットコンベア140の制御は、バケット142に設置される接触センサ等により行ってもよい。あるいは、一定間隔で、停止と稼働を繰り返すようにしてもよい。
 有機質肥料Fを受け取ったバケット142は、バケットコンベア140により上方に搬送され、上部ベルトコンベア120に到達すると、無端ベルト121上に有機質肥料Fを放出する。無端ベルト121上に放出された有機質肥料Fは、再度、有機質肥料保持部Hまで搬送されて、窒素プラズマを照射される。
 有機質肥料製造装置100において、上部ベルトコンベア120、下部ベルトコンベア130、及びバケットコンベア140は、有機質肥料搬送部を構成している。上部ベルトコンベア120、下部ベルトコンベア130、及びバケットコンベア140により構成される有機質肥料搬送部は、循環経路を形成しており、有機質肥料Fは、この循環経路を循環する。有機質肥料Fは、循環経路上の有機質肥料保持部Hを通る際に窒素プラズマを照射され、窒素分が強化される。また、有機質肥料Fは、循環の際に混合されるため、有機質肥料保持部Hで生成した窒素化合物の濃度が均一になる。したがって、上部ベルトコンベア120、下部ベルトコンベア130、及びバケットコンベア140は、有機質肥料Fを混合する混合機構を構成する。有機質肥料Fの循環回数は、特に限定されず、有機質肥料の量、及び目的の窒素分増強量に応じて、適宜設定することができる。循環回数は、例えば、1~20回程度とすることができる。
 有機質肥料Fを所望の回数循環させた後、図示しない有機質肥料取出し口から有機質肥料を取出すことにより、窒素分が増強された有機質肥料を得ることができる。
<変形例1>
 図2は、本実施形態の有機質肥料製造装置の変形例を示す。
 図2に示す有機質肥料製造装置200は、筐体201内に、プラズマ発生電極210、回転体220、フライトコンベア230、及びタンク240を備えている。
 プラズマ発生電極210は、図示しない筐体201外の電源に接続されており、当該電源とともにプラズマ発生装置を構成している。プラズマ発生装置は、上記有機質肥料製造装置100におけるプラズマ発生装置と同様である。図2において、プラズマ発生電極210は、3個が図示されているが、これに限定されず、任意の数を設置可能である。
 筐体201内には、図示しない窒素含有ガス供給路により構成される窒素含有ガス供給部から窒素含有ガスが供給され、プラズマ発生空間Pに窒素含有ガスが供給される。この状態でプラズマ発生電極210に印加すると、プラズマ発生空間Pに窒素プラズマが発生する。有機質肥料製造装置200は、筐体201内の気体を排出し、筐体201内の気圧を調整するための排気装置を備えていてもよい。
 回転体220は、プラズマ発生電極210と対向するように設置されている。回転体220は、複数のプレート221を有し、当該プレート221により有機質肥料Fを保持することができる。回転体220において、プラズマ発生電極210と対向する部分は有機質肥料保持部H(窒素プラズマ照射領域)を構成している。回転体220は、半時計回りに回転し、タンク240の開口部241から排出される有機質肥料Fを受け止め、有機質肥料保持部Hに搬送する。有機質肥料保持部Hに搬送された有機質肥料Fには、プラズマ発生空間Pで発生する窒素プラズマが照射される。窒素プラズマが照射された有機質肥料Fは、回転体220の回転により下方に搬送され、フライトコンベア230へと落下される。
 フライトコンベア230は、回転体220から落下する有機質肥料Fを受け止め、タンク240まで搬送する。フライトコンベア230は、無端ベルト231、ローラー232,233、及び複数のフライト234により構成される。フライトコンベア230は、回転体220から落下する有機質肥料Fを受け止めて水平搬送する水平搬送部と、回転体220の上部に設置されるタンク240まで有機質肥料Fを垂直搬送する垂直搬送部とを有する。フライト234は、垂直搬送部において先端部が上方を向くように屈曲しており、垂直搬送部において有機質肥料を十分に保持できるようになっている。フライトコンベア230は、有機質肥料Fを図中の白抜矢印方向に搬送する。フライトコンベア230は、回転体220から落下した有機質肥料Fを受け止めてタンク240まで搬送し、タンク240内に有機質肥料Fを放出する。
 タンク240は、回転体220の上方に位置し、底部に開口部241を有している。タンク240の底部は、開口部241に向かって傾斜している。フライトコンベア230からタンク240内に放出された有機質肥料Fは、タンク240の底部の傾斜に沿って、自重により開口部241方向に移動し、開口部241から回転体220上に放出される。タンク240は、開口部241を開閉可能にする開閉板を備えていてもよい。この場合、タンク240内に有機質肥料が一定量貯留された時点で、開口部241を開き、回転体220上に有機質肥料Fを放出するようにしてもよい。
 上記のような構成を備える有機質肥料製造装置200の動作の一例について説明する。
 まず、図示しない有機質肥料投入口から、筐体201内に有機質肥料Fを投入する。有機質肥料Fは、好ましくは、タンク240内に投入される。有機質肥料Fの投入時、タンク240の開口部241は、図示しない開閉板により、閉鎖されていてもよい。
 次に、図示しない窒素含有ガス供給路から筐体201内に窒素含有ガスが供給される。このとき、前記有機質肥料製造装置100と同様に、図示しない排気装置により筐体201内の気体を排出し、筐体201内の気圧を調整してもよい。
 次に、開口部241から回転体220上に有機質肥料Fを放出する。次いで、回転体220を回転させて、有機質肥料Fを有機質肥料保持部Hまで搬送する。ここで、プラズマ発生電極210を印加すると、プラズマ発生空間Pに窒素プラズマが発生し、有機質肥料保持部Hに存在する有機質肥料Fに照射される。この際に、窒素プラズマ中の電離した窒素分子が有機質肥料F中の水(HO)と反応し、無機窒素化合物(アンモニア、硝酸、亜硝酸、及びこれらのイオン等)、及び有機窒素化合物(尿素、及びそのイオン等)等の窒素化合物が生成される。生成した窒素化合物は、有機質肥料F中に留まり、有機質肥料Fの窒素分が増強される。
 有機質肥料保持部Hで窒素プラズマが照射された有機質肥料Fは、回転体220の下部まで搬送されると、フライトコンベア230上に落下される。フライトコンベア230上に落下した有機質肥料Fは、フライトコンベア230によりタンク240まで搬送され、再度、タンク240内に放出される。
 有機質肥料製造装置200において、回転体220、フライトコンベア230、及びタンク240は、有機質肥料搬送部を構成している。回転体220、フライトコンベア230、及びタンク240により構成される有機質肥料搬送部は、循環経路を形成しており、有機質肥料Fは、この循環経路を循環する。有機質肥料Fは、循環経路上の有機質肥料保持部Hを通る際に窒素プラズマを照射され、窒素分が強化される。有機質肥料Fは、循環の際に混合されるため、有機質肥料保持部Hで生成した窒素化合物の濃度が均一になる。したがって、回転体220、フライトコンベア230、及びタンク240は、有機質肥料Fを混合する混合機構を構成する。有機質肥料Fの循環回数は、特に限定されず、有機質肥料の量、及び目的の窒素分増強量に応じて、適宜設定することができる。循環回数は、例えば、1~20回程度とすることができる。
 有機質肥料Fを所望の回数循環させた後、図示しない有機質肥料取出し口から有機質肥料Fを取出すことにより、窒素分が増強された有機質肥料を得ることができる。
<変形例2>
 図3は、本実施形態の有機質肥料製造装置の別の変形例を示す。
 図3に示す有機質肥料製造装置300は、蓋302を備えた筐体301内に、プラズマ発生電極310、撹拌用フィン320、及び撹拌用じゃま板330を備えている。蓋302を貫通するように、排気管360及び供給管370が設けられている。
 筐体301は、蓋302を備えており、内部に有機質肥料Fを保持できるようになっている。有機質肥料製造装置300において、筐体301は、有機質肥料保持部H(窒素プラズマ照射領域)を構成する。有機質肥料Fの投入及び取出しは、蓋302を開けた状態で行うことができる。筐体301は、有機質肥料Fの投入及び取出しが容易に行えるように、図示しないリフト等を備えていてもよい。
 プラズマ発生電極310は、蓋302の筐体301側に設置されている。プラズマ発生電極310は、電線311を介して、図示しない筐体301外の電源に接続されており、当該電源及び電線311とともにプラズマ発生装置を構成している。プラズマ発生装置は、上記有機質肥料製造装置100におけるプラズマ発生装置と同様である。図3において、プラズマ発生電極310は、2個が図示されているが、これに限定されず、任意の数を設置可能である。電線311は、蓋302に設けられた電線挿入部312から筐体301内に挿入され、プラズマ発生電極310に接続している。
 供給管370は、図示しない窒素含有ガス供給源(窒素含有ガスボンベ等)に接続しており、筐体301内に窒素含有ガスを供給する。有機質肥料製造装置300において、供給管370は、窒素含有ガス供給部を構成する。供給管370から筐体301内に供給される窒素含有ガスは、プラズマ発生電極310近傍のプラズマ発生空間Pにも到達し、プラズマ発生空間Pに窒素含有ガスが供給される。この状態でプラズマ発生電極310に印加すると、プラズマ発生空間Pに窒素プラズマが発生する。供給管370は、図示しない水分供給源(水タンク等)に接続し、必要に応じて、筐体301内に水分を供給するようにしてもよい。
 排気管360は、筐体301内の気体を排気して、筐体301内の気圧を調整する。排気管360は、圧力調整バルブ340を備えている。排気管360からの排気量は、圧力調整バルブ340により調整される。
 撹拌用フィン320は、回転軸322を介して回転モータ321に接続している。回転モータ321が稼働すると、回転が回転軸322を介して撹拌用フィン320に伝わり、撹拌用フィン320が回転する。撹拌用フィン320は、2枚が図示されているが、これに限定されず、任意の枚数を設置可能である。撹拌用フィン320、回転軸322、及び回転モータ321は、じゃま板330とともに、有機質肥料Fを混合する混合機構を構成する。
 筐体301の内壁にはじゃま板330が設置されている。じゃま板330により、撹拌用フィン320による有機質肥料Fの撹拌効率が向上する。じゃま板330は、2枚が図示されているが、これに限定されず、任意の枚数を設置可能である。
 上記のような構成を備える有機質肥料製造装置300の動作の一例について説明する。
 まず、蓋302を開けて、筐体301内に有機質肥料Fを投入する。投入後、蓋302を閉じて、筐体301を密閉する。
 次に、供給管370から、筐体301内に窒素含有ガスを供給する。有機質肥料Fの水分含有量が低い場合には、供給管370から水分が供給されてもよい。このとき、必要に応じて、圧力調整バルブ340により排気量を調節しながら、排気管360から筐体301内の気体を排気する。これにより、筐体301内を所望の気圧となるように調整する。
 次に、回転モータ321を駆動して、撹拌用フィン320を回転させる。これにより、有機質肥料Fが撹拌される。ここで、プラズマ発生電極310に印加すると、プラズマ発生空間Pに窒素プラズマが発生し、有機質肥料Fに照射される。この際に、窒素プラズマ中の電離した窒素分子が有機質肥料F中の水(HO)と反応し、無機窒素化合物(アンモニア、硝酸、亜硝酸、及びこれらのイオン等)及び有機窒素化合物(尿素、及びそのイオン等)等の窒素化合物が生成される。生成した窒素化合物は、有機質肥料F中に留まり、有機質肥料Fの窒素分が増強される。
撹拌用フィン320による有機質肥料Fの撹拌及び混合により、有機質肥料Fにおける窒素化合物の濃度は均一になる。
 プラズマ発生電極310の印加時間は、特に限定されず、有機質肥料F及びプラズマ発生電極310の種類に応じて、適宜設定すればよい。また、経時的に、有機質肥料Fの窒素含有量をモニタリングし、適切な窒素含有量となったところで、プラズマ発生電極310の印加を停止してもよい。プラズマ発生電極310への印加の停止と共に、回転モータ321を停止して、撹拌用フィン320の回転を停止する。あるいは、プラズマ発生電極310への印加停止から任意の時間経過後に、回転モータ321を停止して、撹拌用フィン320の回転を停止する。
 次いで、蓋302を開けて、有機質肥料Fを取り出すことにより、窒素分が増強された有機質肥料を得ることができる。
 本実施形態の有機質肥料製造装置は、上記実施形態にかかる窒素分が増強された有機質肥料の製造方法に好適に用いることができる。本実施形態の有機質肥料製造装置を用いることにより、窒素分が増強された有機質肥料を簡易に製造することができる。
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。
[有機質肥料の製造]
<実施例1>
 図4に示す、低圧プラズマ発生装置を備える有機質肥料製造装置400(特注品、ケニックス株式会社製反応容器に自作のプラズマ源を設置)を用いて、有機質肥料の窒素プラズマ処理を行った。有機質肥料としては腐葉土を用いた。プラズマ発生装置のチャンバー内に4gの腐葉土を投入し、窒素ガスを供給しながら窒素プラズマを発生させた。窒素ガスの供給量は、0.5mL/分とした。プラズマの発生条件は、気圧200Pa、周波数143000kHz、電力40Wとした。窒素プラズマ処理時間は、3分とした。
 有機質肥料製造装置400は、筐体401内に、電源430に接続されるプラズマ発生電極410、及び有機質肥料保持容器420を備えている。また、筐体401内の気体を排気して低圧に保つための、排気管460、圧力調整バルブ440、及び排気用ロータリーポンプ450を備えている。電源430には、パルス電源又は高周波電源を用いた。図示しない窒素供給路から窒素ガスを供給しながら、プラズマ発生電極410に印加してプラズマ発生空間Pに窒素プラズマを発生させ、有機質肥料保持容器420内の有機質肥料Fに照射した。
<実施例2>
 図5に示す、誘電体バリア放電(DBD)プラズマ発生装置を備える有機質肥料製造装置500(自作品)を用いて、有機質肥料の窒素プラズマ処理を行った。有機質肥料としては腐葉土を用いた。プラズマ発生装置のチャンバー内に4gの純水を添加した4gの腐葉土を投入し、窒素ガスを供給しながら窒素プラズマを発生させた。空気ガス雰囲気での照射とした。プラズマの発生条件は、大気圧、周波数14kHz、電圧7kVとした。窒素プラズマ処理時間は、10分とした。
 有機質肥料製造装置500は、電源530に接続されるプラズマ発生電極510、有機質肥料保持容器520を備えている。電源530には、高圧電源を用いた。有機質肥料製造装置500の原理図を図6に示す。プラズマ発生電極510は、1対の誘電体511,512より構成されている。図示しない窒素供給路から窒素ガスを供給しながら、誘電体511,512に印加してプラズマ発生空間Pに窒素プラズマを発生させ、有機質肥料保持容器520内の有機質肥料Fに照射した。
<実施例3>
 窒素プラズマの照射時間を10分としたこと以外は、実施例1と同様の方法で有機質肥料の窒素プラズマ処理を行った。
<比較例1>
 窒素プラズマ処理を行っていない腐葉土を、比較例1の有機質肥料として用いた。
[窒素化合物の測定]
 腐葉土中の硝酸(NO )濃度及び亜硝酸(NO )濃度を測定した。測定方法は、以下のとおりである。
 上記各例の処理を行った有機質肥料を1g程度採取し、これに1cc程度の水を添加した。有機質肥料を絞って溶液を採取し、フィルタにより小さなゴミを除去した。NO/NO Assay Kit-C II(DOJINDO)を用いて、硝酸及び亜硝酸の濃度を測定した。
 硝酸の測定結果を表1に示す。亜硝酸の測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示す結果から、実施例1~2では、比較例1に対して硝酸濃度及び亜硝酸濃度が上昇することが確認された。この結果から、窒素プラズマ処理を行うことにより、窒素分が増強された有機質肥料を製造できることが示された。
[発芽試験]
 容量1Lの栽培ポットに、実施例1又は比較例1の有機質肥料を42g施肥した。次いで、栽培ポットに2.1gのカイワレ大根の種子を均一に播種した。栽培ポットの数は、各有機質肥料について3個ずつとした。栽培温度は25℃で管理し、1日に2回水やりを行った。播種から5日後に、発芽数をカウントし、発芽率を算出した。
 実施例1の有機質肥料を施肥した栽培ポットでは、発芽率は85~95%であった。一方、比較例1の有機質肥料を施肥した栽培ポットでは、発芽率は50~65%であった。この結果から、窒素プラズマ処理した有機質肥料を用いることにより、発芽率が向上することが示された。
[カイワレ大根の栽培試験]
 実施例1、実施例3、及び比較例1の有機質肥料を用いて、カイワレ大根の栽培試験を行った。実施例1、実施例3、又は比較例1の有機質肥料を用いたこと以外は、上記発芽試験と同様の方法で、カイワレ大根を播種して栽培した。栽培ポットの数は、実施例1では2個(実施例1-1、実施例1-2)、実施例3では1個、比較例1では2個(比較例1-1、比較例1-2)とした。播種から5日後に、芽の長さを測定した。芽の長さが2cm(1.5cm以上2.5cm未満)、3cm(2.5cm以上3.5cm未満)、4cm(3.5cm以上4.5cm未満)、5cm(4.5cm以上5.5cm未満)、6cm(5.5cm以上6.5cm未満)、及び7cm(6.5cm以上7.5cm未満)のものをそれぞれカウントした。図7に結果を示した。
 図7に示すように、実施例の有機質肥料を施肥した栽培ポットでは、比較例の有機質肥料を施肥した栽培ポットと比較して、全体的にカウント数が多くなった。これは、実施例の有機質肥料を施肥した栽培ポットでは、発芽率が向上したためと考えられる。
 芽の長さは、実施例の有機質肥料の方が、比較例の有機質肥料と比較して、長くなる傾向があった。また、実施例1と実施例3とでは、実施例1の方が、芽の長さが長くなる傾向があった。
 この結果から、窒素プラズマ処理した有機質肥料を用いることにより、植物の生育が向上することが示された。
 本発明によれば、窒素分が増強された有機質肥料の製造方法及び製造装置が提供される。また、前記製造方法により製造された有機質肥料を用いた植物の栽培方法及び土壌の改良方法が提供される。
 以上、本発明の好ましい実施形態を説明および図示してきたが、これらは本発明を例示するものであり、限定的なものとみなされるべきではないことを理解すべきである。本発明の精神または範囲から逸脱することなく、追加、省略、置換、およびその他の変更を行うことができる。したがって、本発明は、前述の説明によって限定されるものとはみなされず、添付の請求項の範囲によってのみ限定される。
 100,200,300,400,500 有機質肥料製造装置
 101,201,301,401 筐体
 110,210,310,410,510 プラズマ発生電極
 120 上部ベルトコンベア
 121,131,141,231 無端ベルト
 130 下部ベルトコンベア
 122,123,132,133,232,233 ローラー
 140 バケットコンベア
 142 バケット
 220 回転体
 221 プレート
 230 フライトコンベア
 234 フライト
 240 タンク
 241 開口部
 302 蓋
 311 電線
 312 電線挿入部
 320 撹拌用フィン
 321 回転モータ
 322 回転軸
 330 じゃま板
 370 供給管
 371 排気口
 420,520 有機質肥料保持容器
 430,530 電源
 340,440 圧力調整バルブ
 450 排気用ロータリーポンプ
 360,460 排気管
 511,512 誘電体

Claims (7)

  1.  有機質肥料を窒素プラズマ処理する工程を含む、窒素分が増強された有機質肥料の製造方法。
  2.  前記増強される窒素分が、アンモニア、硝酸、亜硝酸、尿素、及びこれらのイオンからなる群より選択される少なくとも一種である、請求項1に記載の製造方法。
  3.  前記有機質肥料が、植物性堆肥を含む、請求項1又は2に記載の製造方法。
  4.  請求項1~3のいずれか一項に記載の製造方法により、窒素分が増強された有機質肥料を製造する工程と、
     前記窒素分が増強された有機質肥料が施肥された土壌で、植物を栽培する工程と、
     を含む、植物の栽培方法。
  5.  請求項1~3のいずれか一項に記載の製造方法により、窒素分が増強された有機質肥料を製造する工程と、
     前記窒素分が増強された有機質肥料を、土壌に施肥する工程と、
     を含む、土壌の改良方法。
  6.  プラズマ発生装置と、
     前記プラズマ発生装置のプラズマ発生空間に窒素含有ガスを供給する窒素含有ガス供給部と、
     有機質肥料を保持する有機質肥料保持部と、を備え、
     前記プラズマ発生装置により発生される窒素プラズマが、前記有機質肥料保持部により保持される有機質肥料に照射される、
     窒素分が増強された有機質肥料の製造装置。
  7.  前記有機質肥料を混合する混合機構をさらに備える、
     請求項6に記載の窒素分が増強された有機質肥料の製造装置。
PCT/JP2021/038171 2020-10-16 2021-10-15 有機質肥料の製造方法、植物の栽培方法、土壌の改良方法、及び有機質肥料の製造装置 WO2022080479A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21880214.8A EP4230709A1 (en) 2020-10-16 2021-10-15 Method for manufacturing organic fertilizer, method for cultivating plant, method for improving soil, and apparatus for manufacturing organic fertilizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020174739A JP2022065924A (ja) 2020-10-16 2020-10-16 有機質肥料の製造方法、植物の栽培方法、土壌の改良方法、及び有機質肥料の製造装置
JP2020-174739 2020-10-16

Publications (1)

Publication Number Publication Date
WO2022080479A1 true WO2022080479A1 (ja) 2022-04-21

Family

ID=81208097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038171 WO2022080479A1 (ja) 2020-10-16 2021-10-15 有機質肥料の製造方法、植物の栽培方法、土壌の改良方法、及び有機質肥料の製造装置

Country Status (3)

Country Link
EP (1) EP4230709A1 (ja)
JP (1) JP2022065924A (ja)
WO (1) WO2022080479A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104692959A (zh) * 2015-01-29 2015-06-10 成都新柯力化工科技有限公司 一种生态功能型复合肥及制备方法
US20150299056A1 (en) * 2011-12-08 2015-10-22 N2 Applied As Processes and plants for reducing ammonia loss and odor from organic material or waste to the atmosphere
JP2017228423A (ja) 2016-06-22 2017-12-28 学校法人東京理科大学 プラズマ発生装置、窒素源製造装置、養液供給装置、育成システム、植物栽培システム、窒素源を製造する方法及び二酸化炭素を還元する方法
US20190062231A1 (en) * 2017-08-24 2019-02-28 Bio-Flex Labs, LLC Apparatus and Methods for Fertilizer Production
CN109627054A (zh) * 2019-01-18 2019-04-16 华中科技大学 一种等离子体制备绿色氮肥方法及系统
JP2020174739A (ja) 2019-04-15 2020-10-29 ニプロ株式会社 細胞外液量標準化装置、これを備える細胞外液量評価装置及び細胞外液量を標準化するためのコンピュータプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150299056A1 (en) * 2011-12-08 2015-10-22 N2 Applied As Processes and plants for reducing ammonia loss and odor from organic material or waste to the atmosphere
CN104692959A (zh) * 2015-01-29 2015-06-10 成都新柯力化工科技有限公司 一种生态功能型复合肥及制备方法
JP2017228423A (ja) 2016-06-22 2017-12-28 学校法人東京理科大学 プラズマ発生装置、窒素源製造装置、養液供給装置、育成システム、植物栽培システム、窒素源を製造する方法及び二酸化炭素を還元する方法
US20190062231A1 (en) * 2017-08-24 2019-02-28 Bio-Flex Labs, LLC Apparatus and Methods for Fertilizer Production
CN109627054A (zh) * 2019-01-18 2019-04-16 华中科技大学 一种等离子体制备绿色氮肥方法及系统
JP2020174739A (ja) 2019-04-15 2020-10-29 ニプロ株式会社 細胞外液量標準化装置、これを備える細胞外液量評価装置及び細胞外液量を標準化するためのコンピュータプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JANA E COMPTONRICHARD D. BOONE: "Soil nitrogen transformation and the role of light fraction organic matter in forest soils", SOIL BIOLOGY AND BIOCHEMISTRY, vol. 34, no. 7, pages 933 - 943

Also Published As

Publication number Publication date
EP4230709A1 (en) 2023-08-23
JP2022065924A (ja) 2022-04-28

Similar Documents

Publication Publication Date Title
US6596273B2 (en) Biological fertilizer compositions comprising swine manure
US6979444B2 (en) Method for preparing a biological fertilizer composition comprising poultry manure
Gunnarsson et al. Use efficiency of nitrogen from biodigested plant material by ryegrass
US8034148B2 (en) Methods and compositions for soil amendments and organic waste management
Kontopoulou et al. Impact of rhizobial inoculation and reduced N supply on biomass production and biological N2 fixation in common bean grown hydroponically
Zai et al. Effects of compost and green manure of pea and their combinations with chicken manure and rapeseed oil residue on soil fertility and nutrient uptake in wheat-rice cropping system
EP0536149A1 (en) Method of manufacturing sterilized organic fertilizer and apparatus therefor
RU2360893C1 (ru) Биоорганическое удобрение
RU2299543C2 (ru) Способ обработки семян сельскохозяйственных культур, устройство для его реализации
WO2022080479A1 (ja) 有機質肥料の製造方法、植物の栽培方法、土壌の改良方法、及び有機質肥料の製造装置
CN111533589A (zh) 一种快速连续生产有机肥的方法
Jaga et al. Response of wheat (Triticum aestivum) to Azotobacter inoculation and nitrogen in soils of vidisha, madhya pradesh
JP6901091B2 (ja) 発酵処理物の製造方法
Banerjee et al. Effect of integrated nutrient management on growth, yield, quality and soil health of spring planted sugarcane (Saccharum officinarum) in West Bengal
KR101068701B1 (ko) 중금속을 제거한 축산분뇨를 이용하는 친환경 퇴비의 제조방법 및 그로부터 제조한 친환경 퇴비
Kishor et al. Use of uprooted Parthenium before flowering as compost: a way to reduce its hazards worldwide
KR20060006993A (ko) 방사선조사기술을 이용한 축산분뇨의 첨단처리 및 이를이용한 환경친화적인 육묘상토의 제조방법
Lan et al. Application of biosolids (sewage sludge) in agricultural soils: a case study for corn seed LVN10
Egbuna et al. Production of biofertilizer by composting sawdust, sewage sludge and succulent tissue of green plants using an accelerator
US10266456B2 (en) Wet milled organic fertilizer and feed product
RO122198B1 (ro) Procedeu şi instalaţie pentru obţinerea de îngrăşăminte solide şi lichide din dejecţii de pasăre
CN109180237A (zh) 一种水葫芦生态有机肥的制作方法
JP2001151585A (ja) 肥料の製造方法
Vasudevan et al. EXOGENOUS SILICON FERTILIZATION AMELIORATE SALINE STRESS BY IMPROVING SOIL PROPERTIES AND EFFICIENCY OF RICE
Al-Khalidi et al. The Effect of Organic and Biofertilizers on Carbon and Nitrogen of Biomass in Soil Seasoned with Broccoli

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880214

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317033085

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021880214

Country of ref document: EP

Effective date: 20230516