WO2022071100A1 - Plant growing member and plant growing method - Google Patents

Plant growing member and plant growing method Download PDF

Info

Publication number
WO2022071100A1
WO2022071100A1 PCT/JP2021/035023 JP2021035023W WO2022071100A1 WO 2022071100 A1 WO2022071100 A1 WO 2022071100A1 JP 2021035023 W JP2021035023 W JP 2021035023W WO 2022071100 A1 WO2022071100 A1 WO 2022071100A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
plant growing
plant
growing member
member according
Prior art date
Application number
PCT/JP2021/035023
Other languages
French (fr)
Japanese (ja)
Inventor
一馬 本田
大智 山上
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2022553890A priority Critical patent/JPWO2022071100A1/ja
Publication of WO2022071100A1 publication Critical patent/WO2022071100A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general

Definitions

  • the present invention relates to a plant growing member and a plant growing method.
  • Patent Document 1 describes a technique for irradiating the surface side of a plant leaf with a color converter having a translucent body having a phosphor on the surface or inside (claim 1). Item 1, FIGS. 1 to 3 etc.).
  • FIG. 2 of Patent Document 1 shows a method for growing a plant by converting the wavelength of the input light emitted from the light source by a phosphor while passing through the translucent body and irradiating the surface side of the leaf of the plant. Has been done.
  • Patent Document 1 As a general plant growing method, there is a method of irradiating light from the surface side of the leaf. This is because most of the chloroplasts are present on the surface side of the leaves of the plant. The technique of Patent Document 1 is also classified into this method.
  • a plant growing member having a laminated structure having a light-impermeable substrate and a wavelength converter was created in order to irradiate the back surface of the leaf with light. Then, at least a part of the light emitted from above the plant is converted to an appropriate leaf length by a plant growing member installed on the lower side of the leaf of the plant, reflected and scattered, and the leaves are reflected from below the plant. By irradiating the back surface of the plant with light, it was found that the ability to promote the growth of plants was improved, and the present invention was completed.
  • a plant growing member comprising a laminated structure having a light-impermeable resin base material and a wavelength converter formed on the light-impermeable resin base material.
  • the wavelength converter is composed of a light-transmitting resin layer containing a phosphor and a polyurethane resin. Members for growing plants are provided.
  • a method for growing plants is provided.
  • a plant growing member having an excellent ability to promote plant growth by irradiating light from the back surface side of a plant leaf, and a plant growing method using the same.
  • FIG. 1 It is a side schematic diagram schematically showing an example of the plant growing member of 1st Embodiment.
  • (A) is a side schematic view schematically showing an example of a plant growing member of the second embodiment, and (b) is a top surface schematic view thereof.
  • the plant growing member of the first embodiment includes a laminated structure having a light-impermeable resin base material and a wavelength converter formed on the light-impermeable resin base material.
  • This wavelength converter is composed of a light-transmitting resin layer containing a phosphor.
  • the plant growing member is used to irradiate the back surface of the leaf with light.
  • a plant growing member may be installed on the ground such as the soil where the plant is cultivated.
  • the plant growing member When light is emitted from the upper side of the plant from a light source such as sunlight or lighting, a part of the light is reflected by the plant growing member and is emitted toward the back surface of the leaf of the plant. Then, the light is converted into an appropriate wavelength by the wavelength converter in the plant growing member, and the light is diffusely reflected or scattered by the light opaque substrate made of resin. As described above, the plant growing member can irradiate the back surface of the leaf with light having an appropriate wavelength diffused or scattered, so that the ability to promote the growing of the plant can be enhanced.
  • the plant growing member of the second embodiment has a structure in which a laminated structure having a light-impermeable base material and a wavelength converter is sealed with a light-transmitting encapsulant.
  • durability may be required for the plant growing member. For example, durability is required not only indoors but also outdoors, when used while supplying liquid fertilizer or water to plants, or when used in a relatively high humidity environment.
  • the durability against moisture and dirt can be improved by sealing the laminated structure with a light-transmitting encapsulant. Further, since the encapsulant is made of an appropriate light-transmitting material, the above-mentioned ability to promote plant growth can be maintained.
  • FIG. 1 is a side schematic diagram schematically showing an example of a plant growing member of the first embodiment.
  • FIG. 2A is a side schematic view schematically showing an example of the plant growing member of the second embodiment, and
  • FIG. 2B is a top surface schematic view.
  • FIG. 2A is a cross-sectional view taken along the line AA of FIG. 2B.
  • the plant growing member 100 of the first embodiment is formed on a light impermeable resin base material (light impermeable base material 10 made of resin) and a light impermeable resin base material, and is a phosphor.
  • the laminated structure 50 including the wavelength converter 20 including the above is provided.
  • the plant growing member 110 of the second embodiment may include a light transmitting sealing body 30 that seals the laminated structure 50.
  • the plant growing member 110 is laminated with a laminated structure 50 having a light opaque base material 10 and a wavelength converter 20 formed on the light opaque base material 10 and containing a phosphor.
  • a light transmissive sealing body 30 for sealing the structure 50 is provided.
  • the light-impermeable base material 10 is not limited as long as it reflects light without transmitting it, and reflects light effective for photosynthesis of plants.
  • the reflected light includes sunlight, illumination light, excitation light of a phosphor, and the like.
  • the light impermeable base material 10 may have a mechanical strength sufficient to be used as a member.
  • the shape of the light-impermeable base material 10 is not particularly limited, but it may be in the form of a sheet, or may have a curved structure or a bent structure in a part thereof.
  • the sheet-shaped light impermeable base material 10 may be composed of a single layer, or may be composed of a plurality of layers.
  • the plurality of layers may be made of the same material, or at least a part of the layers may be made of different materials.
  • the lower limit of the thickness of the light opaque substrate 10 is, for example, 0.01 mm or more, preferably 0.1 mm or more, and more preferably 0.3 mm or more. Thereby, the mechanical strength can be increased.
  • the upper limit of the thickness of the light-impermeable substrate 10 is, for example, 10 mm or less, preferably 5 mm or less, and more preferably 3 mm or less. This makes it possible to reduce the weight and the manufacturing cost.
  • the light-impermeable base material 10 may be composed of one or more selected from the group consisting of a resin material, a paper material, and an inorganic material.
  • a light impermeable base material 10 (light impermeable resin base material) made of a resin material is used
  • a group consisting of a resin material, a paper material, and an inorganic material is used.
  • a light impermeable base material 10 composed of one or more selected from the above may be used.
  • the light-impermeable base material 10 made of resin may be composed of a resin material containing at least one selected from the group consisting of Teflon, polyethylene, polyester, polypropylene, and polyvinyl chloride. These may be used alone or in combination of two or more.
  • the resin material may contain various additives, if necessary.
  • the light-impermeable base material 10 made of resin may be made of white resin.
  • the white resin a resin in which the resin itself is white or a resin in which a white pigment or a white dye is mixed is used.
  • Specific examples of the white resin include Teflon and the like.
  • the light-impermeable base material 10 made of a sheet-shaped resin may be made of a white resin sheet.
  • the white resin sheet may have one layer or may be composed of a plurality of layers.
  • the light-impermeable base material 10 may have a light-reflecting layer on the surface or inside.
  • the light reflecting layer may be a light scattering layer or a specular reflecting layer.
  • the light scattering layer may include a layer that scatters light or a layer that diffusely reflects light.
  • the light scattering layer is configured by appropriately selecting a resin material, a paper material, and an inorganic material.
  • a fine uneven structure may be formed on the surface of the light-impermeable base material 10 by surface treatment.
  • the paper material for example, blank paper may be used.
  • the specular reflection layer is formed of a mirror plate using a known inorganic material.
  • the light-impermeable base material 10 preferably has a light scattering layer as a light-reflecting layer from the viewpoint of promoting plant growth.
  • Red light and blue light are generally known as light colors effective for photosynthesis of plants. These lights are included in the light emitted from a light source used for growing plants, such as sunlight and illumination light.
  • the ability to promote plant growth can be further enhanced when red light or blue light is diffusely reflected or scattered rather than specularly reflected by the light opaque substrate 10. There was found.
  • FIG. 3A is a diagram showing an outline of an optical path when the light-impermeable base material 10 includes a light-reflecting layer (specular reflection layer), and FIG. 3B is a view showing an outline of a light-transmitting base material.
  • 10 is a diagram showing an outline of an optical path when 10 includes a light scattering layer.
  • the phosphor contained in the wavelength converter 20 uses a red phosphor that emits red light, and the phosphor contained in the wavelength converter 20 does not use a blue phosphor.
  • a configuration example was examined.
  • the red phosphor is excited by the light emitted from the light source, and the red light is emitted from the red phosphor. Since the light emitted from the phosphor is highly dispersed, it is possible to enhance the plant growing ability.
  • the blue light contained in the light emitted from the light source is mirror-reflected without being dispersed by the mirror-reflecting layer of FIG. .. That is, only a part of the blue light contained in the light source can be used for growing plants.
  • the blue light contained in the light emitted from the light source is dispersed (scattered or diffusely reflected) by the light scattering layer of FIG. 3 (b), so that the reflection direction is not limited and the plant is affected. More light is emitted. That is, as compared with the case of the specular reflection layer of FIG. 3A, much of the blue light contained in the light source can be used for growing plants.
  • the light opaque base material 10 made of resin in FIG. 1 and the light opaque base material 10 in FIG. 2 include a light scattering layer to emit light emitted from a phosphor and light contained in a light source. Since it can be diffused, many of the light components that can be used for growing plants can be used more effectively. Therefore, the plant growing members 100 and 110 of the present embodiment can exhibit good plant growing promoting ability.
  • the wavelength converter 20 is provided on at least one of the main surface and the back surface of the sheet-shaped light opaque substrate 10.
  • the wavelength converter 20 may be provided on both the main surface and the back surface.
  • the wavelength converter 20 may be formed on at least a part of the surface of the main surface or the back surface of the light opaque substrate 10, or the wavelength converter 20 may be formed on the entire surface thereof.
  • One or two or more wavelength converters 20 may be formed in the plane of the surface of the light opaque substrate 10.
  • the surface provided with the wavelength converter 20 may be formed of a flat surface or a part thereof may be formed of an uneven surface.
  • the wavelength converter 20 may be in close contact with the surface of the light impermeable base material 10 via an intermediate layer such as an adhesive layer, or may be in direct contact with the surface.
  • the intermediate layer may be composed of a transparent material. From the viewpoint of luminous flux efficiency, a laminated structure 50 in which the wavelength converter 20 and the light opaque substrate 10 are directly bonded may be adopted.
  • the wavelength converter 20 contains a phosphor inside or on the surface.
  • the phosphor may be in the form of a sheet or in the form of particles.
  • the phosphor is not particularly limited as long as it emits light that can be used for growing plants, but may include a red phosphor that emits red light.
  • red phosphor a visible light excitable red phosphor having an excitation peak intensity in the visible light region may be used.
  • the red phosphor excited only by ultraviolet light is not sufficiently excited by the photons of sunlight having a wide wavelength from near-ultraviolet to visible light, and there is a possibility that sufficient red light cannot be emitted under sunlight.
  • the red phosphor that can be excited by visible light is sufficiently excited in a wide range of wavelengths. Therefore, the ability to promote plant growth can be further enhanced.
  • the red phosphor may contain one or more selected from the group consisting of oxide phosphors, nitride phosphors, sulfide phosphors, and fluoride phosphors. Among these, one or more selected from the group consisting of oxide phosphors and nitride phosphors is preferable. This makes it possible to increase the durability of the plant growing member when it is used for a long time or when a large amount of fluorescent material is used. Oxide fluorophores are excellent in cost, and nitride phosphors are excellent in intensity.
  • the red phosphor may contain one or more selected from the group consisting of Mn and Eu as the activating element, but may also contain inexpensive Mn. From the viewpoint of durability and manufacturing cost, the red phosphor may contain an oxide phosphor containing the activating element Mn, and specifically, an oxide phosphor activating Mn 4+ (Mn 4+ activated oxide fluorescence). Body) may be included.
  • the red phosphor composed of the oxide phosphor may contain CaTIO 3 : Pr 3+ .
  • the Mn 4+ activated oxide phosphor may contain an element having a large Clarke number. This makes it possible to stably manufacture a large-area plant growing member.
  • the Mn 4+ activated oxide phosphor may contain Ca, Al, and Mn.
  • the Mn 4+ activated oxide phosphor containing Ca, Al, and Mn can excite visible light and bring about the maximum photosynthetic rate of plants in the wavelength range of 600 nm to 700 nm. It was found that a red phosphor having an emission peak can be realized only.
  • the red phosphor may contain a manganese-activated calcium-aluminate-based red phosphor as the Mn 4 + activated oxide phosphor containing Ca, Al, and Mn.
  • the manganese-activated calcium aluminate-based red fluorescent substance is represented by the chemical formula of CaAl 12 O 19 : a phosphor represented by Mn 4+ corresponding to the CA phase and CaAl 4 O 7 : Mn 4+ corresponding to the CA 2 phase. It may contain one or more fluorescent substances selected from the group consisting of the above-mentioned fluorescent substances.
  • FIG. 4A shows the excitation / emission spectrum of CaAl 12 O 19 : Mn 4+
  • FIG. 4B shows the excitation / emission spectrum of CaAl 4 O 7 : Mn 4+
  • FIG. 5A shows a diagram in which the wavelength-dependent spectrum of plant photosynthesis efficiency and the emission spectrum of CaAl 12 O 19 : Mn 4+ are superimposed
  • FIG. 5B shows the wavelength of plant photosynthesis efficiency.
  • the figure which superposed the spectrum of the dependence and the emission spectrum of CaAl 4 O 7 : Mn 4+ is shown.
  • the thick line shows the wavelength-dependent spectrum and the thin line shows the emission spectrum.
  • FIG. 6 shows a superposed diagram of the wavelength-dependent spectrum of plant photosynthesis efficiency and the emission spectrum of CaAlSiN 3 : Eu 2+ .
  • CaAlSiN 3 : Eu 2+ is a typical example of a europium-activated nitride fluorophore that emits visible light-excited red light.
  • the peak of red emission emitted from CaAlSiN 3 : Eu 2+ which is a nitride phosphor, has a wide range and extends beyond the wavelength region of 600 nm to 700 nm, which is the highest efficiency of photosynthesis. Therefore, even if the red light of CaAlSiN 3 : Eu 2+ is used, it may not be sufficiently enhanced to improve the photosynthesis efficiency.
  • the range of the red emission peaks of CaAl 12 O 19 : Mn 4+ and CaAl 4 O 7 : Mn 4+ is in the region of the highest photosynthetic efficiency. .. Therefore, by using CaAl 12 O 19 : Mn 4+ and / or CaAl 4 O 7 : Mn 4+ , the photosynthesis efficiency can be sufficiently improved.
  • red phosphor is a nitride phosphor
  • (Ca, Sr) AlSiN 3 : Eu or (Sr, Ba) 2 Si 5 N 8 : Eu is relatively preferable because it can increase the red luminous flux.
  • (Ca, Sr) AlSiN 3 : Eu and (Sr, Ba) 2 Si 5 N 8 : Eu for example, strontium nitride, calcium nitride, silicon nitride, aluminum nitride, europium nitride, and barium salt are mixed and fired. Obtained by
  • the molar ratio of Mn 4+ to Ca is, for example, 0.002 to 0.4, preferably 0.005 to 0.1. In either case, different elements may be substituted within a range of 3 mol% with respect to Ca within a range in which the excitation / emission characteristics do not change significantly.
  • organic acid salts such as manganese and aluminum carbonates, oxides, nitrates, halides and oxalates are used.
  • similar compounds other than carbonate can be used as raw materials.
  • Carbonates, oxides, and nitrates can be used from the viewpoint of ease of handling and versatility of decomposition products during firing.
  • a normal method can be used in which the raw material powder can be sufficiently and evenly mixed after being crushed using a dry crusher such as a hammer mill, a roll mill, a ball mill, or a jet mill.
  • a dry crusher such as a hammer mill, a roll mill, a ball mill, or a jet mill.
  • Examples of the mixing method include a method using a dispersed medium such as a ball mill, a pearl mill, and a vibrating ball mill, a method using gravity such as a V-type blender, and a method using a mixer having a stirring blade such as a ribbon blender and a Henshell mixer. Can be mentioned.
  • the mixture of raw materials may be calcined under air, nitrogen, or a gas in which oxygen and nitrogen are mixed at an appropriate ratio, for example, in the range of 1200 ° C to 1500 ° C. It may be fired under pressurized or reduced pressure gas, but it is preferable to fire under normal pressure gas because it is convenient.
  • the firing time is, for example, 1 hour to 12 hours, more preferably 2 hours to 6 hours.
  • the composite after firing may be lightly pulverized. The pulverization may be performed so that the average particle size is 0.1 ⁇ m or more and 20 ⁇ m or less.
  • the Sr / (Ca + Sr) molar ratio in Eu is usually 0 to 1, but from the viewpoint of emission wavelength promoting plant growth and stability, 0 to 0.8 is more suitable. Preferably, 0 to 0.3 is even more preferable, and 0 is most preferable.
  • the molar ratio of Eu to Al is preferably 0.004 to 0.02, more preferably 0.01 to 0.2.
  • Eu 2 + activated red inorganic phosphor emission peak wavelength: 600 nm to 700 nm
  • AlSiN 3 Eu
  • calcium, strontium, aluminum, silicon nitride, metal, or alloy is used as a raw material. Is preferable.
  • a hammer mill For mixing raw materials, it is preferable to use a hammer mill, roll mill, ball mill, jet mill, pearl mill, vibration ball mill, V-type blender, ribbon blender, Henschel mixer, or the like.
  • the apparatus When firing the mixture of raw materials, the apparatus is preferably a resistance heating type vacuum pressurized atmosphere heat treatment furnace, a normal pressure atmosphere furnace, a hot or the like pressure device (HIP), or the like.
  • the firing gas is preferably high-purity nitrogen gas, hydrogen-containing nitrogen gas, ammonia or the like.
  • the firing temperature is preferably 1450 ° C. or higher and 1900 ° C. or lower.
  • the firing time is preferably 1 hour to 24 hours, more preferably 2 hours to 8 hours.
  • the composite after firing may be lightly pulverized. The pulverization may be performed so that the average particle size is 0.1 ⁇ m or more and 20 ⁇ m or less.
  • the average particle size is preferably a value of 50% diameter (D50) in a volume-based integrated fraction obtained by measuring the particle size distribution by a laser diffraction / scattering method using a particle size distribution measuring device.
  • the fluorescent substance may contain a fluorescent substance other than the red fluorescent substance, and may include, for example, a blue fluorescent substance that emits blue light. These may be used alone or in combination of two or more.
  • a small amount of a luminescent substance having a luminescent color other than the red phosphor may be added.
  • the wavelength converter 20 may include a phosphorescent material in addition to the phosphor.
  • the phosphorescent material absorbs and stores the light when it is irradiated, and continues to emit light for a predetermined time even after the light irradiation is stopped, for example, at night.
  • the phosphorescent material has an afterglow persistence of about several minutes to several tens of hours after the completion of photoexcitation.
  • a phosphorescent material By using a phosphorescent material, it is possible to promote the growth of plants by emitting the light necessary for growing plants, preferably red light, even at night by the phosphorescence during the day.
  • the phosphorescent material may contain a phosphorescent material that emits red light, but may also contain a phosphorescent material that emits excitation light of a phosphor.
  • a red phosphorescent body may be used as the phosphorescent material that emits red light. This red phosphor is excited only by ultraviolet light, and can generate only faint red light during the daytime and at night when it is exposed to sunlight.
  • the phosphor and the phosphorescent material that emits the excitation light of the phosphor are used in combination.
  • Specific examples include a combination of a visible light-excited red phosphor and a blue-yellow-green phosphorescent material.
  • As the blue to yellow-green phosphorescent material Eu, Dy-activated strontium aluminate, which exhibits high phosphorescent intensity, can be used.
  • the visible light-excited red phosphor emits red light
  • Eu, Dy-activated strontium aluminate stores the ultraviolet light of sunlight.
  • the energy stored by Eu, Dy-activated strontium aluminate is emitted as blue to yellow-green light.
  • a visible light-excited red phosphor existing in the vicinity of the phosphorescent material can emit red light by using its emission as excitation light. Therefore, even at night, the relatively strong red light can promote the growth of plants.
  • the Eu, Dy-activated strontium aluminate is preferably at least one selected from the group consisting of green to yellowish green SrAl 2 O 4 : Eu, Dy or blue Sr 4 Al 14 O 25 : Eu, Dy.
  • the molar ratio of Eu, Dy-activated strontium aluminate used to the visible light-excited fluorophore is preferably 0.3 to 40, more preferably 1 to 20.
  • the wavelength converter 20 includes a plurality of phosphor particles and a light-transmitting resin layer. A plurality of phosphor particles are dispersed inside the light-transmitting resin layer. Such a wavelength converter 20 can suppress variations in light emission characteristics due to the phosphor throughout. Since the light-transmitting resin layer is made of resin, it is easy to handle.
  • the resin material constituting the light-transmitting resin layer a material having excellent processability and / or weather resistance as well as transparency can be used, and examples thereof include polyurethane resin.
  • the transparency of the resin constituting the light-transmitting resin layer means, for example, that the lower limit of the maximum transmittance is, for example, 50% or more, preferably 70% or more, in the wavelength region of 400 nm or more and 700 nm or less, which is visible light. It means that it is preferably 90% or more.
  • the upper limit of the maximum transmittance is not particularly limited, but may be 100% or less.
  • the polyurethane resin is, for example, a polymer obtained by a polymerization reaction between a polyol compound containing two or more hydroxyl groups in the molecule and an isocyanate compound containing an isocyanate group in the molecule.
  • the diol compound and the isocyanate compound one or more known compounds can be used, respectively. From the viewpoint of enhancing the light resistance to ultraviolet light, at least one of the diol compound and the isocyanate compound may have an alicyclic structure in the molecule.
  • a polycarbonate polyol is preferable.
  • a diol compound is preferable.
  • polycarbonate polyol polycarbonate diol is preferable.
  • polycarbonate diol a condensate of glycol and diethyl carbonate is preferable.
  • the number average molecular weight of glycol is preferably 500 to 2,000.
  • the number average molecular weight is, for example, a number average molecular weight in terms of polyethylene glycol, and is measured by GPC (gel permeation chromatography).
  • GPC gel permeation chromatography
  • the number average molecular weight is determined by using water as a solvent, using a GPC system (SC-8010 manufactured by Tosoh Corporation), and preparing a calibration curve with commercially available standard polyethylene glycol.
  • the isocyanate compound a polyisocyanate compound is preferable.
  • the polyisocyanate compound an aliphatic polyisocyanate is preferable.
  • the aliphatic polyisocyanate for example, polyisocyanurate based on HDI (hexamethylene diisocyanate) is preferable.
  • Examples of the polyisocyanate include nurate, allophanate, burette, adduct and the like.
  • the polyurethane resin may contain one or more additives such as a catalyst, a dispersant, a film-forming auxiliary, a thickener, an antifoaming agent, and an ultraviolet absorber as long as the effects of the present invention are not impaired. good.
  • the elongation rate of the polyurethane resin is, for example, 50% to 1500%, preferably 100% to 1200%.
  • the elongation rate is based on JIS A 602 and means the elongation at break measured under the condition of 23 ° C. Since such a polyurethane resin has excellent extensibility and flexibility as compared with an epoxy resin having an elongation rate of usually 2 to 10%, the processability of the excellent plant growing members 100 and 110 is improved. can.
  • the term "workability" as used herein means that the member is less likely to be damaged and that the member is easily bent and / or cut.
  • the thickness of the light-transmitting resin layer is, for example, 0.05 mm to 5 mm, preferably 0.1 mm to 3 mm, and more preferably 0.8 mm to 2 mm.
  • An example of the light-transmitting resin layer may be configured to contain a resin having an elongation rate of 50% to 1500%.
  • An example of the light-transmitting resin layer may be configured to contain a polyurethane resin, or may be configured to contain a polyurethane resin as a main component.
  • the main component means that the content of the polyurethane resin is, for example, 50% by mass or more, preferably 80% by mass or more, and more preferably 90% by mass or more in 100% by mass of the light-transmitting resin layer.
  • the light-transmitting resin layer may be composed of a single layer or multiple layers, or may be configured to include at least a polyurethane resin layer.
  • the layer other than the polyurethane resin layer may be a layer containing, for example, an epoxy resin, a silicone resin, a vinyl resin, or the like.
  • the content of the phosphor in the wavelength converter 20 is not particularly limited in 100% by mass of the light transmissive resin layer made of the resin material, but is, for example, 0.1% by mass or more and 40% by mass or less, preferably 0. It may be 3% by mass or more and 8% by mass or less.
  • the molding method of the wavelength converter 20 is not particularly limited, and known methods such as extrusion molding using a roll, compression press molding, cast molding, and molding method using a mold can be appropriately adopted.
  • the plant growing members 100 and 110 may be in the form of a sheet, or may have a curved or bent structure in part.
  • the shape of the sheet can be multi-film or plate, and can be arranged according to the application.
  • the plate-shaped one can be installed directly under the first leaf of the plant, and the installation location and installation angle can be adjusted according to the growing condition of the plant.
  • the plant growing members 100 and 110 may be configured to be self-supporting. This makes it easier to handle during installation.
  • the plant growing members 100 and 110 may be placed flat on the ground, or may be installed with a part thereof pierced into the soil.
  • the lower limit of the thickness of the plant growing members 100 and 110 is, for example, 0.1 mm or more, preferably 0.5 mm or more, and more preferably 1 mm or more. As a result, the mechanical strength can be increased.
  • the upper limit of the thickness of the plant growing members 100 and 110 is, for example, 10 mm or less, preferably 5 mm or less, and more preferably 3 mm or less. This makes it possible to reduce the weight and the manufacturing cost.
  • the plant growing member 110 of FIGS. 2A and 2B includes a light transmitting encapsulating body 30.
  • the light transmissive sealing body 30 may be configured to cover at least a part of the laminated structure 50, may be configured to cover the surface or side surface of the wavelength converter 20, and is the main of the laminated structure 50. The entire surface, side surface, and back surface may be covered. As a result, the durability and handleability of the plant growing member 110 can be improved.
  • the light-transmitting encapsulant 30 is not particularly limited as long as it is made of a transparent material that transmits light necessary for growing plants, excitation light of a fluorescent substance, or light emission from the fluorescent substance.
  • the light transmissive encapsulant 30 may contain one or more selected from the group consisting of polyethylene, polyester, polypropylene, and polyvinyl chloride.
  • a coating method, a film laminating method, or the like using a transparent material may be used as a method for molding the light-transmitting encapsulant 30, a coating method, a film laminating method, or the like using a transparent material may be used. Heat / pressure treatment may be applied at the time of molding.
  • the plant growing member 110 may have a margin portion 32 formed of the light transmissive sealing body 30 formed around the laminated structure 50. Since the side surface of the laminated structure 50 is protected by the margin portion 32, the long-term durability of the plant growing member 110 can be enhanced.
  • the plant growing member 110 When the laminated structure 50 is viewed from the laminated direction, the plant growing member 110 has a structure in which all the ends located around the laminated structure 50 are covered with the light transmissive sealing body 30. May be good. As a result, it is possible to prevent water from entering from the end portion, so that the waterproof property can be improved.
  • margin portion 32 can be processed into various shapes according to the purpose.
  • FIGS. 7 (a) and 7 (b) show a modified example of the second embodiment.
  • 7 (a) and 7 (b) are top views schematically showing an example of a plant growing member 114 and a plant growing member 116.
  • the plant growing member 114 may have a notch 36 formed in the margin portion 32 of the light transmissive sealing body 30.
  • the plant may be placed in the recess formed by the notch 36. As a result, the plant growing member 114 is spread over the area where the plant is cultivated.
  • a plurality of plant growing members 114 may be connected by combining the concave portion and the convex portion formed by the notch portion 36.
  • the plant growing member 116 may have a notch 38 having a shape capable of piercing the soil in the margin portion 32 of the light transmissive sealing body 30. As a result, the plant growing member 116 can be stably installed in the soil while maintaining a predetermined angle.
  • FIG. 8A is a side view schematically showing an example of the plant growing member 112, and FIG. 8B is a top view thereof.
  • FIG. 8A is a cross-sectional view taken along the line BB.
  • the plant growing member 112 When the laminated structure 50 is viewed from the laminated direction, the plant growing member 112 is provided with a plurality of laminated structures 50 in the in-plane direction orthogonal to the laminated direction, and the laminated structure 50 is provided between the adjacent laminated structures 50. It has a structure in which a separation portion 34 composed of a light-transmitting sealing body 30 is formed.
  • the plant growing member 112 may have a plurality of laminated structures 50 arranged in the in-plane direction.
  • the laminated structure 50 can be appropriately arranged depending on the purpose such as the cultivation position of the plant.
  • the durability of the plant growing member 112 can be enhanced.
  • the light transmissive encapsulant 30 may be formed of a material that is more flexible than the light transmissive base material 10. Thereby, the shape of the plant growing member 112 can be deformed by the separating portion 34.
  • the pattern of the separating portion 34 is not particularly limited, but may extend in the vertical, horizontal, and diagonal directions, or these may intersect. A plurality of patterns of the separation portion 34 may be formed in each direction.
  • the separating portion 34 may be made of a material that can be cut. Thereby, when it is desired to increase the strength of the light-impermeable base material 10, the separation portion 34 can be cut, the plant growing member 112 can be processed into an appropriate size and shape, and can be installed in the soil. At the plant cultivation site, the plant growing member 112 can be processed into an appropriate shape.
  • the plant growing member of the present embodiment can be suitably used for growing plants.
  • the plant growing method includes a step of arranging the above-mentioned plant growing member below or to the side of the plant, and a step of irradiating the plant growing member with excitation light.
  • the plant is not particularly limited, but may be a plant having leaves or an agricultural plant.
  • Example 1 A transparent polyurethane resin 9 . 84 g was added, a kneading device (ARV-310, manufactured by Shinky Co., Ltd.) was introduced, and the mixture was vacuum defoamed and stirred under the conditions of a rotation speed of 1000 rpm, a pressure of 0.7 Pa, and a stirring time of 3 minutes to obtain a mixture.
  • the average molecular weight is 1,000.
  • Coronate HX is a nurate, which is a trimer of hexamethylene diisocyanate.
  • Coronate 2770 is an allophanate made from 1,6-hexamethylene diisocyanate and monoalcohol.
  • Ca 0.99 Eu 0.01 AlSiN 3 was obtained by mixing calcium nitride, silicon nitride, aluminum nitride and europium nitride and firing.
  • the spectroscopic measuring instrument is used as the spectroscopic measuring instrument, the angle between the light receiving axis of the measuring instrument and each surface is set to 60 degrees diagonally upward, and the distance from the surface center to the measuring instrument is 16 cm.
  • the spectroscopic spectrum was measured. The results of the spectral spectrum are shown in FIG. In the plant growing member e of Example 1, the luminous flux in the near-ultraviolet, blue, and green regions is significantly reduced, and the luminous flux in the red region is significantly increased, as compared with the plant growing member d of Comparative Example 1. The results are shown.
  • FIG. 10 shows a layout drawing of the plant growing member.
  • FIG. 10A shows a diagram in which the plant growing member is arranged so that the back surface of the Komatsuna leaf is irradiated with the light reflected by the surface of the plant growing member. After arranging the plant growing members, Komatsuna was grown for 2 weeks under the test conditions of the following cultivation tests 1 to 3. The cultivated Japanese mustard spinach is shown in FIG. 10 (b).
  • the above-ground part of Komatsuna was harvested.
  • the mass of the leaves after drying by the method was measured, and the chlorophyll content (SPAD value) contained in the leaves was measured using SPAD-502Plus manufactured by Konica Minolta.
  • Table 1 shows 5 strains
  • Table 2 shows 4 strains
  • Table 3 shows the mean value (Mean) and standard deviation (SD) based on the measured values of 4 strains.
  • the above plant tests (cultivation tests 1 to 3) were carried out without arranging the plant growing members (control).
  • Example 1 Comparative Example 1 and the control, the chlorophyll content contained in the leaves of the plant was about the same within the experimental error range, but by using the plant growing member e of Example 1. It was shown that an excellent plant growth promoting effect can be obtained as compared with the case where the plant growth member is not used (control) or the plant growth member d is used (Comparative Example 1).
  • Example 2 A light-transmitting polypropylene film having a thickness of 0.2 mm, a length of 30 cm, and a width of 30 cm was heat-laminated on both sides of the plant growing member e obtained in Example 1, and a white Teflon sheet and a white Teflon sheet were formed by the upper and lower polypropylene films.
  • the red phosphor film was sealed to obtain a plant growing member h (Example 2).
  • the plant growing member h of Example 2 was excellent in waterproofness and durability during repeated use.
  • the margin portion of the polypropylene film provided around the white tephron coat can be easily processed, so that it is easy to handle.
  • each of the plant growing members h of Example 2 showed the same level of plant growth promoting effect as the plant growing member e of Example 1.
  • a manganese-activated calcium-aluminate-based red fluorescent substance was used as the red fluorescent substance, it showed an effect of promoting plant growth.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Environmental Sciences (AREA)
  • Cultivation Of Plants (AREA)
  • Protection Of Plants (AREA)

Abstract

A plant growing member according to the present invention comprises a laminated structure that has: a light non-transmitting resin substrate; and a wavelength converter formed on the light non-transmitting resin substrate and containing a fluorescent material.

Description

植物育成用部材及び植物育成方法Plant growing materials and plant growing methods
 本発明は、植物育成用部材及び植物育成方法に関する。 The present invention relates to a plant growing member and a plant growing method.
 これまで植物の育成方法について様々な開発がなされてきた。この種の技術として、例えば、特許文献1に記載の技術が知られている。特許文献1には、植物の葉の表面側に光を照射する技術について、表面又は内部に蛍光体を有する透光体を備える色変換器を用いることが記載されている(特許文献1の請求項1、図1~3など)。特許文献1の図2には、光源から照射した投入光を、透光体の通過中に蛍光体によって波長変換し、植物の葉の表面側に照射することにより、植物を育成する方法が示されている。 Various developments have been made on plant growing methods. As this kind of technique, for example, the technique described in Patent Document 1 is known. Patent Document 1 describes a technique for irradiating the surface side of a plant leaf with a color converter having a translucent body having a phosphor on the surface or inside (claim 1). Item 1, FIGS. 1 to 3 etc.). FIG. 2 of Patent Document 1 shows a method for growing a plant by converting the wavelength of the input light emitted from the light source by a phosphor while passing through the translucent body and irradiating the surface side of the leaf of the plant. Has been done.
特開2008-181771号公報Japanese Unexamined Patent Publication No. 2008-181771
 しかしながら、本発明者が検討した結果、上記特許文献1に記載の色変換器において、植物の葉の裏面側からの光照射による植物の育成促進能の点で改善の余地があることが判明した。 However, as a result of the study by the present inventor, it has been found that there is room for improvement in the ability of the color converter described in Patent Document 1 to promote the growth of plants by irradiating light from the back surface side of the leaves of the plants. ..
 一般的な植物育成方法には、葉の表面側から光照射する方法がある。植物の葉の表面側に葉緑体の多くが存在するためである。上記特許文献1の技術も、この方法に分類される。 As a general plant growing method, there is a method of irradiating light from the surface side of the leaf. This is because most of the chloroplasts are present on the surface side of the leaves of the plant. The technique of Patent Document 1 is also classified into this method.
 本発明者は、植物の育成方法について、葉数、最大葉長、葉の新鮮重量、乾燥重量などの具体的な植物の成長評価指標を用いて検討を重ねた結果、葉の裏面側からも適当な光照射することによって、このような成長評価指標を改善し、良好な植物育成促進効果を示すことを見出した。 As a result of repeated studies on the method of growing plants using specific plant growth evaluation indexes such as the number of leaves, maximum leaf length, fresh weight of leaves, and dry weight, the present inventor also studied from the back surface side of the leaves. It was found that such a growth evaluation index was improved by irradiating with appropriate light, and a good effect of promoting plant growth was exhibited.
 このような知見に基づきさらに鋭意研究したところ、葉の裏面に光照射するために、光不透過性基材と波長変換体とを有する積層構造体を備える植物育成用部材を作成した。そして、植物の上方から照射された光の少なくとも一部を、植物の葉の下方側に設置した植物育成用部材により、適当な葉長に変換し反射・散乱させて、植物の下方から、葉の裏面に光照射することで、植物の育成促進能が改善されることを見出し、本発明を完成するに至った。 As a result of further diligent research based on such findings, a plant growing member having a laminated structure having a light-impermeable substrate and a wavelength converter was created in order to irradiate the back surface of the leaf with light. Then, at least a part of the light emitted from above the plant is converted to an appropriate leaf length by a plant growing member installed on the lower side of the leaf of the plant, reflected and scattered, and the leaves are reflected from below the plant. By irradiating the back surface of the plant with light, it was found that the ability to promote the growth of plants was improved, and the present invention was completed.
 本発明によれば、
 光不透過性樹脂基材と、前記光不透過性樹脂基材の上に形成された波長変換体とを有する、積層構造体を備える、植物育成用部材であって、
 前記波長変換体が、蛍光体とポリウレタン樹脂とを含む光透過性樹脂層で構成される、
植物育成用部材が提供される。
According to the present invention
A plant growing member comprising a laminated structure having a light-impermeable resin base material and a wavelength converter formed on the light-impermeable resin base material.
The wavelength converter is composed of a light-transmitting resin layer containing a phosphor and a polyurethane resin.
Members for growing plants are provided.
 また本発明によれば、
 植物の下方又は側方に、上記の植物育成用部材を配置する工程と、
 前記植物育成用部材に励起光を照射する工程と、を含む、
植物育成方法が提供される。
Further, according to the present invention.
The step of arranging the above-mentioned plant growing member below or to the side of the plant,
A step of irradiating the plant growing member with excitation light, and the like.
A method for growing plants is provided.
 本発明によれば、植物の葉の裏面側からの光照射による植物の育成促進能に優れた植物育成用部材、及びそれを用いた植物育成方法が提供される。 According to the present invention, there is provided a plant growing member having an excellent ability to promote plant growth by irradiating light from the back surface side of a plant leaf, and a plant growing method using the same.
第一実施形態の植物育成用部材の一例を模式的に示す側面概要図である。It is a side schematic diagram schematically showing an example of the plant growing member of 1st Embodiment. (a)第二実施形態の植物育成用部材の一例を模式的に示す側面概要図、(b)その上面概要図である。(A) is a side schematic view schematically showing an example of a plant growing member of the second embodiment, and (b) is a top surface schematic view thereof. (a)光反射層(鏡面反射層)の場合の光路、(b)光散乱層の場合の光路の概要を示す図である。It is a figure which shows the outline of the optical path in the case of (a) a light reflection layer (specular reflection layer), and (b) the light path in the case of a light scattering layer. (a)CaAl1219:Mn4+の励起・発光スペクトル、(b)CaAl:Mn4+の励起・発光スペクトルを示す図である。It is a figure which shows the excitation / emission spectrum of (a) CaAl 12 O 19 : Mn 4+ , and (b) the excitation / emission spectrum of CaAl 4 O 7 : Mn 4+ . (a)植物光合成効率の波長依存性のスペクトルとCaAl1219:Mn4+の発光スペクトルとを重ね合わせた図、(b)植物光合成効率の波長依存性のスペクトルとCaAl:Mn4+の発光スペクトルとを重ね合わせた図である。(A) Wavelength-dependent spectrum of plant photosynthesis efficiency and CaAl 12 O 19 : Mn 4+ emission spectrum superimposed, (b) Wavelength-dependent spectrum of plant photosynthesis efficiency and CaAl 4 O 7 : Mn 4+ . It is the figure which overlapped with the emission spectrum of. 植物光合成効率の波長依存性のスペクトルとCaAlSiN:Eu2+の発光スペクトルとを重ね合わせた図である。It is the figure which superposed the spectrum of the wavelength dependence of the plant photosynthesis efficiency, and the emission spectrum of CaAlSiN 3 : Eu 2+ . 本実施形態の植物育成用部材の変形例の一例を模式的に示す上面図である。It is a top view schematically showing an example of the modification of the plant growing member of this embodiment. (a)本実施形態の植物育成用部材の変形例の一例を模式的に示す側面概要図、(b)その上面概要図である。(A) A side schematic view schematically showing an example of a modification of the plant growing member of the present embodiment, and (b) a top surface schematic view thereof. 実施例1、比較例1の分光スペクトルの結果を示す図である。It is a figure which shows the result of the spectroscopic spectrum of Example 1 and Comparative Example 1. 植物育成用部材の配置図を示す図である。It is a figure which shows the arrangement drawing of the member for plant growth.
 以下、本発明の実施の形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは一致していない。
 なお、本実施の形態では図示するように前後左右上下の方向を規定して説明する。しかし、これは構成要素の相対関係を簡単に説明するために便宜的に規定するものである。したがって、本発明を実施する製品の製造時や使用時の方向を限定するものではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all drawings, similar components are designated by the same reference numerals, and description thereof will be omitted as appropriate. Further, the figure is a schematic view and does not match the actual dimensional ratio.
In this embodiment, the front-back, left-right, up-down directions are defined and described as shown in the figure. However, this is provided for convenience in order to briefly explain the relative relationships of the components. Therefore, it does not limit the direction in which the product according to the present invention is manufactured or used.
 本実施形態の植物育成用部材の概要について説明する。 The outline of the plant growing member of this embodiment will be described.
 第一実施形態の植物育成用部材は、光不透過性樹脂基材と、光不透過性樹脂基材の上に形成された波長変換体とを有する積層構造体を備える。この波長変換体は、蛍光体を含む光透過性樹脂層で構成される。 The plant growing member of the first embodiment includes a laminated structure having a light-impermeable resin base material and a wavelength converter formed on the light-impermeable resin base material. This wavelength converter is composed of a light-transmitting resin layer containing a phosphor.
 本発明者の知見によれば、葉の裏面に適当な光照射をすることによって、葉数、最大葉長、葉の新鮮重量、乾燥重量などの成長評価指標が改善し、良好な植物育成促進効果が得られることが見出された。 According to the findings of the present inventor, by appropriately irradiating the back surface of leaves with appropriate light, growth evaluation indexes such as the number of leaves, maximum leaf length, fresh weight of leaves, and dry weight are improved, and good plant growth is promoted. It was found that the effect was obtained.
 植物育成用部材は、葉の裏面に光照射するために用いられるものである。
 植物の側方側あるいは下方側に植物育成用部材を設置する。例えば、植物を栽培する土壌などの地面に植物育成用部材を設置してもよい。
The plant growing member is used to irradiate the back surface of the leaf with light.
Install plant growing members on the side or bottom of the plant. For example, a plant growing member may be installed on the ground such as the soil where the plant is cultivated.
 太陽光や照明などの光源より、植物の上方側から光が照射されたとき、その光の一部は、植物育成用部材によって反射され、植物の葉の裏面に向かって照射される。そして、植物育成用部材中の波長変換体によって、光が適切な波長に変換され、樹脂製の光不透過性基材によって、光が拡散反射又は散乱される。
 このように植物育成用部材は、適切な波長の光を、拡散又は散乱したものを葉の裏面に照射できるために、植物の育成促進能を高めることができる。
When light is emitted from the upper side of the plant from a light source such as sunlight or lighting, a part of the light is reflected by the plant growing member and is emitted toward the back surface of the leaf of the plant. Then, the light is converted into an appropriate wavelength by the wavelength converter in the plant growing member, and the light is diffusely reflected or scattered by the light opaque substrate made of resin.
As described above, the plant growing member can irradiate the back surface of the leaf with light having an appropriate wavelength diffused or scattered, so that the ability to promote the growing of the plant can be enhanced.
 また、第二実施形態の植物育成用部材は、光不透過性基材と波長変換体とを有する積層構造体を、光透過性封止体で封止した構造を備える。 Further, the plant growing member of the second embodiment has a structure in which a laminated structure having a light-impermeable base material and a wavelength converter is sealed with a light-transmitting encapsulant.
 本発明者の知見によれば、植物育成用部材に耐久性が要求されるときがある。例えば、屋内だけでなく、屋外で使用するときや、液体肥料や水を植物に供給する最中に使用するとき、比較的に高めの湿度環境で使用するときなどに耐久性が要求される。 According to the knowledge of the present inventor, durability may be required for the plant growing member. For example, durability is required not only indoors but also outdoors, when used while supplying liquid fertilizer or water to plants, or when used in a relatively high humidity environment.
 このような事情を踏まえさらに検討を進めた結果、積層構造体を光透過性封止体で封止することで、水分や汚れなどに対する耐久性を高められることが判明した。また、封止体が適当な光透過性材料で構成されるため、上述の植物育成促進能を維持できる。 As a result of further studies based on such circumstances, it was found that the durability against moisture and dirt can be improved by sealing the laminated structure with a light-transmitting encapsulant. Further, since the encapsulant is made of an appropriate light-transmitting material, the above-mentioned ability to promote plant growth can be maintained.
 以下、本実施形態の植物育成用部材の各構成について説明する。 Hereinafter, each configuration of the plant growing member of the present embodiment will be described.
 図1は、第一実施形態の植物育成用部材の一例を模式的に示す側面概要図である。図2(a)は、第二実施形態の植物育成用部材の一例を模式的に示す側面概要図で、図2(b)は上面概要図である。図2(a)は、図2(b)のA-A矢視断面図である。 FIG. 1 is a side schematic diagram schematically showing an example of a plant growing member of the first embodiment. FIG. 2A is a side schematic view schematically showing an example of the plant growing member of the second embodiment, and FIG. 2B is a top surface schematic view. FIG. 2A is a cross-sectional view taken along the line AA of FIG. 2B.
 第一実施形態の植物育成用部材100は、光不透過性樹脂基材(樹脂製の光不透過性基材10)と、光不透過性樹脂基材の上に形成されており、蛍光体を含む波長変換体20とを有する積層構造体50を備える。 The plant growing member 100 of the first embodiment is formed on a light impermeable resin base material (light impermeable base material 10 made of resin) and a light impermeable resin base material, and is a phosphor. The laminated structure 50 including the wavelength converter 20 including the above is provided.
 第二実施形態の植物育成用部材110は、積層構造体50を封止する光透過性封止体30を備えてもよい。この植物育成用部材110は、光不透過性基材10と、光不透過性基材10の上に形成されており、蛍光体を含む波長変換体20とを有する積層構造体50と、積層構造体50を封止する光透過性封止体30と、を備える。 The plant growing member 110 of the second embodiment may include a light transmitting sealing body 30 that seals the laminated structure 50. The plant growing member 110 is laminated with a laminated structure 50 having a light opaque base material 10 and a wavelength converter 20 formed on the light opaque base material 10 and containing a phosphor. A light transmissive sealing body 30 for sealing the structure 50 is provided.
 光不透過性基材10は、光を透過させずに反射するものであれば限定されず、植物の光合成に有効な光を反射するものである。反射される光には、太陽光や照明光、蛍光体の励起光などが含まれる。 The light-impermeable base material 10 is not limited as long as it reflects light without transmitting it, and reflects light effective for photosynthesis of plants. The reflected light includes sunlight, illumination light, excitation light of a phosphor, and the like.
 光不透過性基材10は、部材として使用できる程度の機械的強度を有してもよい。 The light impermeable base material 10 may have a mechanical strength sufficient to be used as a member.
 光不透過性基材10の形状は、特に限定されないが、シート状でもよく、一部に湾曲構造や屈曲構造を有してもよい。 The shape of the light-impermeable base material 10 is not particularly limited, but it may be in the form of a sheet, or may have a curved structure or a bent structure in a part thereof.
 シート状の光不透過性基材10は、単層で構成されてもよいが、複数の層で構成されてもよい。この複数層は、同じ材料で構成されてもよく、少なくとも一部の層が異なる材料で構成されてもよい。 The sheet-shaped light impermeable base material 10 may be composed of a single layer, or may be composed of a plurality of layers. The plurality of layers may be made of the same material, or at least a part of the layers may be made of different materials.
 光不透過性基材10の厚みの下限は、例えば、0.01mm以上、好ましくは0.1mm以上、より好ましくは0.3mm以上である。これにより、機械的強度を高めることができる。一方、光不透過性基材10の厚みの上限は、例えば、10mm以下、好ましくは5mm以下、より好ましくは3mm以下である。これにより、軽量化や、製造コストの低減を実現できる。 The lower limit of the thickness of the light opaque substrate 10 is, for example, 0.01 mm or more, preferably 0.1 mm or more, and more preferably 0.3 mm or more. Thereby, the mechanical strength can be increased. On the other hand, the upper limit of the thickness of the light-impermeable substrate 10 is, for example, 10 mm or less, preferably 5 mm or less, and more preferably 3 mm or less. This makes it possible to reduce the weight and the manufacturing cost.
 光不透過性基材10は、樹脂材料、紙材料、及び無機材料からなる群から選ばれる1種以上で構成されてもよい。第一実施形態では、樹脂材料で構成された光不透過性基材10(光不透過性樹脂基材)を使用し、第二実施形態では、樹脂材料、紙材料、及び無機材料からなる群から選ばれる1種以上で構成された光不透過性基材10を使用してもよい。 The light-impermeable base material 10 may be composed of one or more selected from the group consisting of a resin material, a paper material, and an inorganic material. In the first embodiment, a light impermeable base material 10 (light impermeable resin base material) made of a resin material is used, and in the second embodiment, a group consisting of a resin material, a paper material, and an inorganic material. A light impermeable base material 10 composed of one or more selected from the above may be used.
 樹脂製の光不透過性基材10は、テフロン、ポリエチレン、ポリエステル、ポリプロピレン、及びポリ塩化ビニルからなる群から選ばれる1種以上を含む樹脂材料で構成されてもよい。これらを単独で用いても2種以上を組み合わせて用いてもよい。樹脂材料は、必要に応じて、各種の添加剤を含んでもよい。 The light-impermeable base material 10 made of resin may be composed of a resin material containing at least one selected from the group consisting of Teflon, polyethylene, polyester, polypropylene, and polyvinyl chloride. These may be used alone or in combination of two or more. The resin material may contain various additives, if necessary.
 樹脂材料の中でも、光合成に有効な光の反射の観点から、白色を示す材料を示してもよい。すなわち、樹脂製の光不透過性基材10は、白色樹脂で構成され得る。白色樹脂として、樹脂自体が白色のもの、樹脂に白色顔料又は白色染料を混合したものが用いられる。白色樹脂の具体例として、例えば、テフロンなどが挙げられる。 Among the resin materials, a material showing white color may be shown from the viewpoint of light reflection effective for photosynthesis. That is, the light-impermeable base material 10 made of resin may be made of white resin. As the white resin, a resin in which the resin itself is white or a resin in which a white pigment or a white dye is mixed is used. Specific examples of the white resin include Teflon and the like.
 シート状の樹脂製の光不透過性基材10は、白色樹脂シートで構成されてもよい。白色樹脂シートは、1層でもよく、複数層で構成されてもよい。 The light-impermeable base material 10 made of a sheet-shaped resin may be made of a white resin sheet. The white resin sheet may have one layer or may be composed of a plurality of layers.
 光不透過性基材10は、表面又は内部に、光反射層を有していればよい。光反射層が、光散乱層でもよく、鏡面反射層であってもよい。ここで、光散乱層とは、光を散乱するものや光を拡散反射するものを含んでもよい。 The light-impermeable base material 10 may have a light-reflecting layer on the surface or inside. The light reflecting layer may be a light scattering layer or a specular reflecting layer. Here, the light scattering layer may include a layer that scatters light or a layer that diffusely reflects light.
 光散乱層は、樹脂材料、紙材料、無機材料を適切に選択して構成される。表面処理によって光不透過性基材10の表面に微細凹凸構造を形成してもよい。紙材料として、例えば、白紙を使用してもよい。
 鏡面反射層は、公知の無機材料を用いた鏡板で形成される。
The light scattering layer is configured by appropriately selecting a resin material, a paper material, and an inorganic material. A fine uneven structure may be formed on the surface of the light-impermeable base material 10 by surface treatment. As the paper material, for example, blank paper may be used.
The specular reflection layer is formed of a mirror plate using a known inorganic material.
 光不透過性基材10は、植物育成促進の観点から、光反射層として光散乱層を有することが好ましい。 The light-impermeable base material 10 preferably has a light scattering layer as a light-reflecting layer from the viewpoint of promoting plant growth.
 植物の光合成に有効な光色として、赤色光や青色光が一般的に知られている。
 これらの光は、太陽光や照明光などの、植物の育成に利用される光源から照射される光に含まれる。
Red light and blue light are generally known as light colors effective for photosynthesis of plants.
These lights are included in the light emitted from a light source used for growing plants, such as sunlight and illumination light.
 本発明者の知見によれば、赤色光や青色光を、光不透過性基材10により鏡面反射する場合よりも、拡散反射又は散乱させる場合の方が、より植物育成促進能を高められることが判明した。 According to the findings of the present inventor, the ability to promote plant growth can be further enhanced when red light or blue light is diffusely reflected or scattered rather than specularly reflected by the light opaque substrate 10. There was found.
 図3(a)は、光不透過性基材10が光反射層(鏡面反射層)を含む場合の光路の概要を示した図であり、図3(b)は、光不透過性基材10が光散乱層を含む場合の光路の概要を示した図である。 FIG. 3A is a diagram showing an outline of an optical path when the light-impermeable base material 10 includes a light-reflecting layer (specular reflection layer), and FIG. 3B is a view showing an outline of a light-transmitting base material. 10 is a diagram showing an outline of an optical path when 10 includes a light scattering layer.
 青色光よりも赤色光が光合成に有効である点から、波長変換体20が含む蛍光体が赤色光を発光する赤色蛍光体を用い、波長変換体20が含む蛍光体が青色蛍光体を用いない構成例を検討した。 Since red light is more effective for photosynthesis than blue light, the phosphor contained in the wavelength converter 20 uses a red phosphor that emits red light, and the phosphor contained in the wavelength converter 20 does not use a blue phosphor. A configuration example was examined.
 光源から照射された光によって赤色蛍光体が励起され、赤色蛍光体から赤色光が発光される。蛍光体から発光された光は、高度に分散されるため、植物育成能を高めることが可能である。 The red phosphor is excited by the light emitted from the light source, and the red light is emitted from the red phosphor. Since the light emitted from the phosphor is highly dispersed, it is possible to enhance the plant growing ability.
 一方、光源から照射された光に含まれる青色光は、図3(a)の鏡面反射層によって、分散されずに鏡面反射するため、反射方向が限定的となり、植物に照射されない光が多くなる。すなわち、光源に含まれる青色光の一部しか、植物の育成に利用できない。 On the other hand, the blue light contained in the light emitted from the light source is mirror-reflected without being dispersed by the mirror-reflecting layer of FIG. .. That is, only a part of the blue light contained in the light source can be used for growing plants.
 これに対して、光源から照射された光に含まれる青色光は、図3(b)の光散乱層によって、光が分散(散乱又は拡散反射)するため、反射方向が限定されず、植物に照射される光が多くなる。すなわち、図3(a)の鏡面反射層の場合と比較して、光源に含まれる青色光の多くを、植物の育成に利用できる。 On the other hand, the blue light contained in the light emitted from the light source is dispersed (scattered or diffusely reflected) by the light scattering layer of FIG. 3 (b), so that the reflection direction is not limited and the plant is affected. More light is emitted. That is, as compared with the case of the specular reflection layer of FIG. 3A, much of the blue light contained in the light source can be used for growing plants.
 したがって、図1の樹脂製の光不透過性基材10や図2の光不透過性基材10が、光散乱層を備えることで、蛍光体から発光する光や、光源に含まれる光を拡散できるために、植物の育成に利用できる光成分の多くを、より有効に活用することが可能になる。
 よって、本実施形態の植物育成用部材100、110は、良好な植物の育成促進能を発揮できる。
Therefore, the light opaque base material 10 made of resin in FIG. 1 and the light opaque base material 10 in FIG. 2 include a light scattering layer to emit light emitted from a phosphor and light contained in a light source. Since it can be diffused, many of the light components that can be used for growing plants can be used more effectively.
Therefore, the plant growing members 100 and 110 of the present embodiment can exhibit good plant growing promoting ability.
 シート状の光不透過性基材10の主面又は裏面のうち少なくとも一方に、波長変換体20が設けられている。主面及び裏面の両面のそれぞれに、波長変換体20が設けられていてもよい。 The wavelength converter 20 is provided on at least one of the main surface and the back surface of the sheet-shaped light opaque substrate 10. The wavelength converter 20 may be provided on both the main surface and the back surface.
 光不透過性基材10の主面又は裏面の表面の少なくとも一部の領域に、波長変換体20が形成されてもよく、その表面全体に波長変換体20が形成されていてもよい。光不透過性基材10の表面の平面内において、1又は2以上の波長変換体20が形成されていてもよい。 The wavelength converter 20 may be formed on at least a part of the surface of the main surface or the back surface of the light opaque substrate 10, or the wavelength converter 20 may be formed on the entire surface thereof. One or two or more wavelength converters 20 may be formed in the plane of the surface of the light opaque substrate 10.
 光不透過性基材10の表面のうち、波長変換体20が設けられた面は、平面で構成されてもよく、一部が凹凸面で構成されていてもよい。 Of the surface of the light opaque substrate 10, the surface provided with the wavelength converter 20 may be formed of a flat surface or a part thereof may be formed of an uneven surface.
 波長変換体20は、光不透過性基材10の表面に、接着層などの中間層を介して密着してもよいが、直接密着してもよい。中間層は透明性材料で構成され得る。光束効率の観点から、波長変換体20と光不透過性基材10とが直接結合した積層構造体50を採用してもよい。 The wavelength converter 20 may be in close contact with the surface of the light impermeable base material 10 via an intermediate layer such as an adhesive layer, or may be in direct contact with the surface. The intermediate layer may be composed of a transparent material. From the viewpoint of luminous flux efficiency, a laminated structure 50 in which the wavelength converter 20 and the light opaque substrate 10 are directly bonded may be adopted.
 波長変換体20は、内部又は表面に蛍光体を含む。蛍光体は、シート状でもよく、粒子状でもよい。 The wavelength converter 20 contains a phosphor inside or on the surface. The phosphor may be in the form of a sheet or in the form of particles.
 蛍光体は、植物の育成に利用できる光を発光するものであれば特に限定されないが、赤色光を発光する赤色蛍光体を含んでもよい。 The phosphor is not particularly limited as long as it emits light that can be used for growing plants, but may include a red phosphor that emits red light.
 赤色蛍光体として、可視光領域に励起ピーク強度を有する可視光励起可能な赤色蛍光体を用いてもよい。
 紫外光だけで励起される赤色蛍光体は、太陽光の、近紫外~可視光にかけての幅広い波長のフォトンにより十分励起されず、太陽光下で十分な赤色光を発光できない恐れがある。これに対して、可視光励起可能な赤色蛍光体は、幅広い波長で十分に励起される。このため、より植物育成促進能を高められる。
As the red phosphor, a visible light excitable red phosphor having an excitation peak intensity in the visible light region may be used.
The red phosphor excited only by ultraviolet light is not sufficiently excited by the photons of sunlight having a wide wavelength from near-ultraviolet to visible light, and there is a possibility that sufficient red light cannot be emitted under sunlight. On the other hand, the red phosphor that can be excited by visible light is sufficiently excited in a wide range of wavelengths. Therefore, the ability to promote plant growth can be further enhanced.
 赤色蛍光体は、酸化物蛍光体、窒化物蛍光体、硫化物蛍光体、及びフッ化物蛍光体からなる群から選ばれる1種以上を含んでもよい。これらの中では、酸化物蛍光体、窒化物蛍光体からなる群から選ばれる1種以上が好ましい。これにより、長時間使用したときや大量の蛍光体を使用したときにおいて、植物育成用部材の耐久性を高めることが可能である。酸化物蛍光体はコストに優れ、窒化物蛍光体は強度に優れる。 The red phosphor may contain one or more selected from the group consisting of oxide phosphors, nitride phosphors, sulfide phosphors, and fluoride phosphors. Among these, one or more selected from the group consisting of oxide phosphors and nitride phosphors is preferable. This makes it possible to increase the durability of the plant growing member when it is used for a long time or when a large amount of fluorescent material is used. Oxide fluorophores are excellent in cost, and nitride phosphors are excellent in intensity.
 赤色蛍光体は、賦活元素として、Mn、Euからなる群から選ばれる1種又は2種以上を含んでもよいが、安価なMnを含んでもよい。耐久性及び製造コストの観点から、赤色蛍光体は、賦活元素のMnを含む酸化物蛍光体を含んでもよく、具体的には、Mn4+を賦活した酸化物蛍光体(Mn4+賦活酸化物蛍光体)を含んでもよい。
 酸化物蛍光体からなる赤色蛍光体としては、CaTiO:Pr3+を含んでもよい。
The red phosphor may contain one or more selected from the group consisting of Mn and Eu as the activating element, but may also contain inexpensive Mn. From the viewpoint of durability and manufacturing cost, the red phosphor may contain an oxide phosphor containing the activating element Mn, and specifically, an oxide phosphor activating Mn 4+ (Mn 4+ activated oxide fluorescence). Body) may be included.
The red phosphor composed of the oxide phosphor may contain CaTIO 3 : Pr 3+ .
 Mn4+賦活酸化物蛍光体は、クラーク数が大きい元素を含んでもよい。これにより、大面積の植物育成用部材を安定的に製造することが可能となる。具体的には、Mn4+賦活酸化物蛍光体は、Ca、Al、及びMnを含んでもよい。 The Mn 4+ activated oxide phosphor may contain an element having a large Clarke number. This makes it possible to stably manufacture a large-area plant growing member. Specifically, the Mn 4+ activated oxide phosphor may contain Ca, Al, and Mn.
 本発明者の知見によれば、Ca、Al、及びMnを含むMn4+賦活酸化物蛍光体によって、可視光励起ができ、かつ、植物の最大の光合成速度をもたらす波長範囲600nm~700nmの光の領域だけに発光ピークを有する赤色蛍光体を実現できることが分かった。 According to the findings of the present inventor, the Mn 4+ activated oxide phosphor containing Ca, Al, and Mn can excite visible light and bring about the maximum photosynthetic rate of plants in the wavelength range of 600 nm to 700 nm. It was found that a red phosphor having an emission peak can be realized only.
 赤色蛍光体は、Ca、Al、及びMnを含むMn4+賦活酸化物蛍光体として、マンガンを賦活したカルシウムアルミネート系赤色蛍光体を含んでもよい。マンガンを賦活したカルシウムアルミネート系赤色蛍光体としては、CA相に対応するCaAl1219:Mn4+で表された蛍光体、CA相に対応するCaAl:Mn4+の化学式で表された蛍光体からなる群から選ばれる1種以上の蛍光体を含んでもよい。 The red phosphor may contain a manganese-activated calcium-aluminate-based red phosphor as the Mn 4 + activated oxide phosphor containing Ca, Al, and Mn. The manganese-activated calcium aluminate-based red fluorescent substance is represented by the chemical formula of CaAl 12 O 19 : a phosphor represented by Mn 4+ corresponding to the CA phase and CaAl 4 O 7 : Mn 4+ corresponding to the CA 2 phase. It may contain one or more fluorescent substances selected from the group consisting of the above-mentioned fluorescent substances.
 図4(a)には、CaAl1219:Mn4+の励起・発光スペクトルを示し、図4(b)には、CaAl:Mn4+の励起・発光スペクトルを示す。
 図5(a)には、植物光合成効率の波長依存性のスペクトルとCaAl1219:Mn4+の発光スペクトルとを重ね合わせた図を示し、図5(b)には、植物光合成効率の波長依存性のスペクトルとCaAl:Mn4+の発光スペクトルとを重ね合わせた図を示す。図5~6において、太線は波長依存性のスペクトルを示し、細線は発光スペクトルを示す。
FIG. 4A shows the excitation / emission spectrum of CaAl 12 O 19 : Mn 4+ , and FIG. 4B shows the excitation / emission spectrum of CaAl 4 O 7 : Mn 4+ .
FIG. 5A shows a diagram in which the wavelength-dependent spectrum of plant photosynthesis efficiency and the emission spectrum of CaAl 12 O 19 : Mn 4+ are superimposed, and FIG. 5B shows the wavelength of plant photosynthesis efficiency. The figure which superposed the spectrum of the dependence and the emission spectrum of CaAl 4 O 7 : Mn 4+ is shown. In FIGS. 5-6, the thick line shows the wavelength-dependent spectrum and the thin line shows the emission spectrum.
 比較のために、図6には、植物光合成効率の波長依存性のスペクトルとCaAlSiN:Eu2+の発光スペクトルとを重ね合わせた図を示す。CaAlSiN:Eu2+は、可視光励起赤色発光のユウロピウム賦活窒化物蛍光体の典型例である For comparison, FIG. 6 shows a superposed diagram of the wavelength-dependent spectrum of plant photosynthesis efficiency and the emission spectrum of CaAlSiN 3 : Eu 2+ . CaAlSiN 3 : Eu 2+ is a typical example of a europium-activated nitride fluorophore that emits visible light-excited red light.
 図6に示すように、窒化物蛍光体であるCaAlSiN:Eu2+から発光された赤色発光のピークは範囲が広く、光合成最高効率の600nm~700nmの波長領域からはみ出している。このため、CaAlSiN:Eu2+の赤色光を用いても、光合成効率向上に十分に高められない恐れがある。 As shown in FIG. 6, the peak of red emission emitted from CaAlSiN 3 : Eu 2+ , which is a nitride phosphor, has a wide range and extends beyond the wavelength region of 600 nm to 700 nm, which is the highest efficiency of photosynthesis. Therefore, even if the red light of CaAlSiN 3 : Eu 2+ is used, it may not be sufficiently enhanced to improve the photosynthesis efficiency.
 これに対して、図5(a)、(b)に示すように、CaAl1219:Mn4+、及びCaAl:Mn4+の赤色発光ピークの範囲は、光合成最高効率の領域にある。このため、CaAl1219:Mn4+、及び/又はCaAl:Mn4+を用いることで、光合成効率向上に十分に高められる。 On the other hand, as shown in FIGS. 5 (a) and 5 (b), the range of the red emission peaks of CaAl 12 O 19 : Mn 4+ and CaAl 4 O 7 : Mn 4+ is in the region of the highest photosynthetic efficiency. .. Therefore, by using CaAl 12 O 19 : Mn 4+ and / or CaAl 4 O 7 : Mn 4+ , the photosynthesis efficiency can be sufficiently improved.
 ただし、赤色蛍光体が窒化物蛍光体の場合には、(Ca,Sr)AlSiN:Eu又は(Sr,Ba)Si:Euは赤色光束を強くできるので、比較的好ましい。(Ca,Sr)AlSiN:Euや(Sr,Ba)Si:Euは、例えば、窒化ストロンチウム、窒化カルシウム、窒化珪素、窒化アルミニウム、窒化ユーロピウム、バリウム塩を混合し、焼成することにより得られる。 However, when the red phosphor is a nitride phosphor, (Ca, Sr) AlSiN 3 : Eu or (Sr, Ba) 2 Si 5 N 8 : Eu is relatively preferable because it can increase the red luminous flux. For (Ca, Sr) AlSiN 3 : Eu and (Sr, Ba) 2 Si 5 N 8 : Eu, for example, strontium nitride, calcium nitride, silicon nitride, aluminum nitride, europium nitride, and barium salt are mixed and fired. Obtained by
 CaAl1219:Mn4+、及びCaAl:Mn4+において、Mn4+のCaに対するモル比は、例えば、0.002~0.4、好ましくは0.005~0.1である。いずれも、その励起・発光特性が大きく変わらない範囲内で、Caに対して3モル%の範囲内で異種元素が置換されてもよい。 In CaAl 12 O 19 : Mn 4+ and CaAl 4 O 7 : Mn 4+ , the molar ratio of Mn 4+ to Ca is, for example, 0.002 to 0.4, preferably 0.005 to 0.1. In either case, different elements may be substituted within a range of 3 mol% with respect to Ca within a range in which the excitation / emission characteristics do not change significantly.
 CaAl1219:Mn4+、及びCaAl:Mn4+などの赤色蛍光体の製造方法において、マンガン、アルミニウムの炭酸塩、酸化物、硝酸塩、ハロゲン化物、シュウ酸塩などの有機酸塩が原料として使用できる。カルシウムについては、炭酸塩を除く同様の化合物が原料として使用できる。焼成時の分解物の扱いやすさや汎用性の観点から、炭酸塩、酸化物、硝酸塩を使用できる。 In the method for producing a red phosphor such as CaAl 12 O 19 : Mn 4+ and CaAl 4 O 7 : Mn 4+ , organic acid salts such as manganese and aluminum carbonates, oxides, nitrates, halides and oxalates are used. Can be used as a raw material. For calcium, similar compounds other than carbonate can be used as raw materials. Carbonates, oxides, and nitrates can be used from the viewpoint of ease of handling and versatility of decomposition products during firing.
 原料の混合は、ハンマーミル、ロールミル、ボールミル、ジェットミルなどの乾式粉砕機を用いて粉砕した後、原料粉末を十分に均一に混合できる通常の方法が使用できる。 For mixing the raw materials, a normal method can be used in which the raw material powder can be sufficiently and evenly mixed after being crushed using a dry crusher such as a hammer mill, a roll mill, a ball mill, or a jet mill.
 混合方法としては、ボールミル、パールミル、振動ボールミルなどの分散メディアを使用する方法、V型ブレンダーなどの重力を利用する方法、リボンブレンダー、ヘンシェルミキサーなどの撹拌翼を有する混合機を利用する方法などが挙げられる。 Examples of the mixing method include a method using a dispersed medium such as a ball mill, a pearl mill, and a vibrating ball mill, a method using gravity such as a V-type blender, and a method using a mixer having a stirring blade such as a ribbon blender and a Henshell mixer. Can be mentioned.
 原料の混合物は、空気、窒素、又は、酸素と窒素を適当な割合で混合したガスの下で、例えば1200℃~1500℃の範囲で焼成してもよい。加圧又は減圧のガスの下で焼成してもよいが、常圧ガス下で焼成することが簡便な点で好ましい。焼成時間は、例えば、1時間~12時間、より好ましくは、2時間~6時間である。焼成後の合成物は、軽く粉砕してもよい。粉砕は、平均粒子径が0.1μm以上20μm以下となるように行ってもよい。 The mixture of raw materials may be calcined under air, nitrogen, or a gas in which oxygen and nitrogen are mixed at an appropriate ratio, for example, in the range of 1200 ° C to 1500 ° C. It may be fired under pressurized or reduced pressure gas, but it is preferable to fire under normal pressure gas because it is convenient. The firing time is, for example, 1 hour to 12 hours, more preferably 2 hours to 6 hours. The composite after firing may be lightly pulverized. The pulverization may be performed so that the average particle size is 0.1 μm or more and 20 μm or less.
 (Ca,Sr)AlSiN:EuにおけるSr/(Ca+Sr)モル比は、通常0~1であるが、植物成長を促進する発光波長、及び安定性の観点から、0~0.8がよりこの好ましく、0~0.3が更により好ましく、0が最も好ましい。 (Ca, Sr) AlSiN 3 : The Sr / (Ca + Sr) molar ratio in Eu is usually 0 to 1, but from the viewpoint of emission wavelength promoting plant growth and stability, 0 to 0.8 is more suitable. Preferably, 0 to 0.3 is even more preferable, and 0 is most preferable.
 植物成長を促進する赤色光束、及び経済性の観点から、Alに対するEuのモル比は、0.004~0.02が好ましく、0.01~0.2がより好ましい。 From the viewpoint of the red luminous flux that promotes plant growth and economic efficiency, the molar ratio of Eu to Al is preferably 0.004 to 0.02, more preferably 0.01 to 0.2.
 (Ca,Sr)AlSiN:Euなどの、Eu2+賦活赤色無機蛍光体(発光ピーク波長:600nm~700nm)の製造方法において、カルシウム、ストロンチウム、アルミニウム、珪素の窒化物、金属、又は合金が原料として好ましい。 (Ca, Sr) In the method for producing Eu 2 + activated red inorganic phosphor (emission peak wavelength: 600 nm to 700 nm) such as AlSiN 3 : Eu, calcium, strontium, aluminum, silicon nitride, metal, or alloy is used as a raw material. Is preferable.
 原料の混合では、ハンマーミル、ロールミル、ボールミル、ジェットミル、パールミル、振動ボールミル、V型ブレンダー、リボンブレンダー、ヘンシェルミキサーなどを使用することが好ましい。 For mixing raw materials, it is preferable to use a hammer mill, roll mill, ball mill, jet mill, pearl mill, vibration ball mill, V-type blender, ribbon blender, Henschel mixer, or the like.
 原料の混合物を焼成する際、装置としては、抵抗加熱式真空加圧雰囲気熱処理炉、常圧雰囲気炉、熱間など方加圧装置(HIP)などが好ましい。焼成用ガスは、高純度窒素ガス、水素含有窒素ガス、アンモニアなどが好ましい。焼成温度は、1450℃以上、1900℃以下が好ましい。焼成時間は、1時間~24時間が好ましく、2時間~8時間がより好ましい。焼成後の合成物は、軽く粉砕してもよい。粉砕は、平均粒子径が0.1μm以上20μm以下となるように行ってもよい。平均粒子径は、粒度分布測定装置を用いて、レーザー回折・散乱法による粒子径分布測定を行った、体積基準の積算分率における50%径(D50)の値であることが好ましい。 When firing the mixture of raw materials, the apparatus is preferably a resistance heating type vacuum pressurized atmosphere heat treatment furnace, a normal pressure atmosphere furnace, a hot or the like pressure device (HIP), or the like. The firing gas is preferably high-purity nitrogen gas, hydrogen-containing nitrogen gas, ammonia or the like. The firing temperature is preferably 1450 ° C. or higher and 1900 ° C. or lower. The firing time is preferably 1 hour to 24 hours, more preferably 2 hours to 8 hours. The composite after firing may be lightly pulverized. The pulverization may be performed so that the average particle size is 0.1 μm or more and 20 μm or less. The average particle size is preferably a value of 50% diameter (D50) in a volume-based integrated fraction obtained by measuring the particle size distribution by a laser diffraction / scattering method using a particle size distribution measuring device.
 蛍光体は、赤色蛍光体以外の他の蛍光体を含んでもよく、例えば、青色光を発光する青色蛍光体を含んでもよい。これらを単独で用いても2種以上を組み合わせて用いてもよい。 The fluorescent substance may contain a fluorescent substance other than the red fluorescent substance, and may include, for example, a blue fluorescent substance that emits blue light. These may be used alone or in combination of two or more.
 植物に与える光の波長分布を調整する観点から、赤色蛍光体以外の発光色をもつ発光物質を少量添加してもよい場合がある。 From the viewpoint of adjusting the wavelength distribution of light given to plants, a small amount of a luminescent substance having a luminescent color other than the red phosphor may be added.
 波長変換体20は、蛍光体に加えて、蓄光材を含んでもよい。蓄光材は、例えば、光が照射されるとその光を吸収して蓄え、光照射を停止した後でも、例えば夜間においても、所定の時間発光し続けるものである。蓄光材は、光励起終了後は、数分~数十時間程度の残光持続性を有する。 The wavelength converter 20 may include a phosphorescent material in addition to the phosphor. The phosphorescent material absorbs and stores the light when it is irradiated, and continues to emit light for a predetermined time even after the light irradiation is stopped, for example, at night. The phosphorescent material has an afterglow persistence of about several minutes to several tens of hours after the completion of photoexcitation.
 蓄光材を用いることにより、日中の蓄光によって、夜間にも、植物に育成に必要な光、好ましくは赤色光を発光させて、植物の成長を増進できる。 By using a phosphorescent material, it is possible to promote the growth of plants by emitting the light necessary for growing plants, preferably red light, even at night by the phosphorescence during the day.
 蓄光材は、赤色光を発光する蓄光材を含んでもよいが、蛍光体の励起光を発光する蓄光材を含んでもよい。 The phosphorescent material may contain a phosphorescent material that emits red light, but may also contain a phosphorescent material that emits excitation light of a phosphor.
 赤色光を発光する蓄光材として、赤色燐光体を用いてもよい。
 この赤色燐光体は、紫外光でしか励起されず、太陽光があたる日中にも夜間にも微弱な赤色光しか発生させることができない。
A red phosphorescent body may be used as the phosphorescent material that emits red light.
This red phosphor is excited only by ultraviolet light, and can generate only faint red light during the daytime and at night when it is exposed to sunlight.
 このような事情を踏まえて本発明者が検討した結果、蛍光体と、蛍光体の励起光を発光する蓄光材とを併用することが見出された。具体的な組み合わせとして、可視光励起赤色蛍光体と、青~黄緑色蓄光材との組み合わせが挙げられる。
 青~黄緑色蓄光材としては、高い蓄光強度を示すEu,Dy賦活アルミン酸ストロンチウムが使用できる。
As a result of the study by the present inventor in consideration of such circumstances, it has been found that the phosphor and the phosphorescent material that emits the excitation light of the phosphor are used in combination. Specific examples include a combination of a visible light-excited red phosphor and a blue-yellow-green phosphorescent material.
As the blue to yellow-green phosphorescent material, Eu, Dy-activated strontium aluminate, which exhibits high phosphorescent intensity, can be used.
 日中には、可視光励起赤色蛍光体により赤色発光が起こるとともに、Eu,Dy賦活アルミン酸ストロンチウムが太陽光の紫外光を蓄光する。夜間になると、Eu,Dy賦活アルミン酸ストロンチウムが蓄えていたエネルギーを青~黄緑色の光として発光する。蓄光材の近傍に存在する可視光励起赤色蛍光体が、その発光を励起光として用いて、赤色光を発光できる。このため、夜間にも、比較的強力な赤色光によって、植物に育成を促進可能となる。
 Eu,Dy賦活アルミン酸ストロンチウムは、緑~黄緑色のSrAl:Eu,Dy又は青色のSrAl1425:Eu,Dyからなる群から選ばれる1種以上が好ましい。可視光励起蛍光体に対するEu,Dy賦活アルミン酸ストロンチウムの使用モル比は、0.3~40が好ましく、1~20がより好ましい。
During the daytime, the visible light-excited red phosphor emits red light, and Eu, Dy-activated strontium aluminate stores the ultraviolet light of sunlight. At night, the energy stored by Eu, Dy-activated strontium aluminate is emitted as blue to yellow-green light. A visible light-excited red phosphor existing in the vicinity of the phosphorescent material can emit red light by using its emission as excitation light. Therefore, even at night, the relatively strong red light can promote the growth of plants.
The Eu, Dy-activated strontium aluminate is preferably at least one selected from the group consisting of green to yellowish green SrAl 2 O 4 : Eu, Dy or blue Sr 4 Al 14 O 25 : Eu, Dy. The molar ratio of Eu, Dy-activated strontium aluminate used to the visible light-excited fluorophore is preferably 0.3 to 40, more preferably 1 to 20.
 波長変換体20は、複数の蛍光体の粒子と光透過性樹脂層とを備える。この光透過性樹脂層中に複数の蛍光体の粒子が内部に分散された状態である。このような波長変換体20は、全体に亘って蛍光体による発光特性のバラツキを抑制できる。光透過性樹脂層が樹脂で構成されるため、取り扱いやすい。 The wavelength converter 20 includes a plurality of phosphor particles and a light-transmitting resin layer. A plurality of phosphor particles are dispersed inside the light-transmitting resin layer. Such a wavelength converter 20 can suppress variations in light emission characteristics due to the phosphor throughout. Since the light-transmitting resin layer is made of resin, it is easy to handle.
 光透過性樹脂層を構成する樹脂材料は、透明性とともに、加工性及び/又は耐候性に優れた材料を使用でき、例えば、ポリウレタン樹脂等が挙げられる。 As the resin material constituting the light-transmitting resin layer, a material having excellent processability and / or weather resistance as well as transparency can be used, and examples thereof include polyurethane resin.
 光透過性樹脂層を構成する樹脂の透明性とは、例えば、可視光である400nm以上700nm以下の波長領域において、最大透過率の下限が、例えば、50%以上、好ましくは70%以上、より好ましくは90%以上であることを意味する。上記最大透過率の上限は、特に限定されないが、100%以下としてもよい。 The transparency of the resin constituting the light-transmitting resin layer means, for example, that the lower limit of the maximum transmittance is, for example, 50% or more, preferably 70% or more, in the wavelength region of 400 nm or more and 700 nm or less, which is visible light. It means that it is preferably 90% or more. The upper limit of the maximum transmittance is not particularly limited, but may be 100% or less.
 ポリウレタン樹脂は、例えば、分子内に水酸基を2個以上含むポリオール化合物と、分子内にイソシアネート基を含むイソシアネート化合物との重合反応により得られるポリマーである。ジオール化合物及びイソシアネート化合物は、それぞれ、公知の化合物を1種又は2種以上用いることができる。
 紫外光に対する耐光性を高める観点から、ジオール化合物及びイソシアネート化合物の少なくとも一方が、分子内に脂環式構造を有するものを使用してもよい。
The polyurethane resin is, for example, a polymer obtained by a polymerization reaction between a polyol compound containing two or more hydroxyl groups in the molecule and an isocyanate compound containing an isocyanate group in the molecule. As the diol compound and the isocyanate compound, one or more known compounds can be used, respectively.
From the viewpoint of enhancing the light resistance to ultraviolet light, at least one of the diol compound and the isocyanate compound may have an alicyclic structure in the molecule.
 ポリオール化合物としては、ポリカーボネートポリオールが好ましい。ポリオール化合物としては、ジオール化合物が好ましい。ポリカーボネートポリオールとしては、ポリカーボネートジオールが好ましい。ポリカーボネートジオールとしては、グリコールとジエチルカーボネートとの縮合物が好ましい。グリコールとしては、例えば、3-メチル-1,5-ペンタンジオールと、1,6-ヘキサメチレンジオールとを、質量比が3-メチル-1,5-ペンタンジオール:1,6-ヘキサメチレンジオール=50:50~90:10となるように含有することが好ましい。グリコールの数平均分子量は500~2,000が好ましい。 As the polyol compound, a polycarbonate polyol is preferable. As the polyol compound, a diol compound is preferable. As the polycarbonate polyol, polycarbonate diol is preferable. As the polycarbonate diol, a condensate of glycol and diethyl carbonate is preferable. As the glycol, for example, 3-methyl-1,5-pentanediol and 1,6-hexamethylenediol are used, and the mass ratio is 3-methyl-1,5-pentanediol: 1,6-hexamethylenediol =. It is preferably contained so as to be 50:50 to 90:10. The number average molecular weight of glycol is preferably 500 to 2,000.
 数平均分子量は、例えば、ポリエチレングリコール換算の数平均分子量であり、GPC(ゲルパーミエーションクロマトグラフィー)により測定する。例えば、数平均分子量は、溶剤として水を用い、GPCシステム(東ソー社製SC-8010)を使用し、市販の標準ポリエチレングリコールで検量線を作成して求める。 The number average molecular weight is, for example, a number average molecular weight in terms of polyethylene glycol, and is measured by GPC (gel permeation chromatography). For example, the number average molecular weight is determined by using water as a solvent, using a GPC system (SC-8010 manufactured by Tosoh Corporation), and preparing a calibration curve with commercially available standard polyethylene glycol.
 イソシアネート化合物としては、ポリイソシアネート化合物が好ましい。ポリイソシアネート化合物としては、脂肪族ポリイソシアネートが好ましい。脂肪族ポリイソシアネートとしては、例えば、HDI(ヘキサメチレンジイソシアネート)をベースにしたポリイソシアヌレートが好ましい。ポリイソシアネートとしては、ヌレート、アロファネート、ビュレット、アダクト等が挙げられる。 As the isocyanate compound, a polyisocyanate compound is preferable. As the polyisocyanate compound, an aliphatic polyisocyanate is preferable. As the aliphatic polyisocyanate, for example, polyisocyanurate based on HDI (hexamethylene diisocyanate) is preferable. Examples of the polyisocyanate include nurate, allophanate, burette, adduct and the like.
 ポリウレタン樹脂には、本発明の効果を損なわない範囲において、触媒、分散剤、造膜助剤、増粘剤、消泡剤、及び紫外線吸収剤等の添加剤を1種又は2種以上含んでもよい。 The polyurethane resin may contain one or more additives such as a catalyst, a dispersant, a film-forming auxiliary, a thickener, an antifoaming agent, and an ultraviolet absorber as long as the effects of the present invention are not impaired. good.
 ポリウレタン樹脂の伸び率は、例えば、50%~1500%、好ましくは100%~1200%である。伸び率は、JIS A 602に準拠し、23℃条件下で測定される破断伸び率を意味する。
 このようなポリウレタン樹脂は、伸び率が通常2~10%のエポキシ樹脂に比べて、伸び性や可とう性に優れた特性を有するため、優れた植物育成用部材100,110の加工性を向上できる。ここでいう、加工性とは、部材に破損箇所が生じ難く、かつ部材を屈曲及び/又は切断しやすい事を意味する。
The elongation rate of the polyurethane resin is, for example, 50% to 1500%, preferably 100% to 1200%. The elongation rate is based on JIS A 602 and means the elongation at break measured under the condition of 23 ° C.
Since such a polyurethane resin has excellent extensibility and flexibility as compared with an epoxy resin having an elongation rate of usually 2 to 10%, the processability of the excellent plant growing members 100 and 110 is improved. can. The term "workability" as used herein means that the member is less likely to be damaged and that the member is easily bent and / or cut.
 光透過性樹脂層の厚みは、例えば、0.05mm~5mm、好ましくは0.1mm~3mm、より好ましくは0.8mm~2mmである。 The thickness of the light-transmitting resin layer is, for example, 0.05 mm to 5 mm, preferably 0.1 mm to 3 mm, and more preferably 0.8 mm to 2 mm.
 光透過性樹脂層の一例は、伸び率が50%~1500%の樹脂を含むように構成されてもよい。
 光透過性樹脂層の一例は、ポリウレタン樹脂を含むように構成されてもよく、ポリウレタン樹脂を主成分として含むように構成されてもよい。主成分とは、ポリウレタン樹脂の含有量が、光透過性樹脂層100質量%中、例えば、50質量%以上、好ましくは80質量%以上、より好ましくは90質量%以上であることを意味する。
An example of the light-transmitting resin layer may be configured to contain a resin having an elongation rate of 50% to 1500%.
An example of the light-transmitting resin layer may be configured to contain a polyurethane resin, or may be configured to contain a polyurethane resin as a main component. The main component means that the content of the polyurethane resin is, for example, 50% by mass or more, preferably 80% by mass or more, and more preferably 90% by mass or more in 100% by mass of the light-transmitting resin layer.
 光透過性樹脂層は、単層または多層で構成されていてもよく、少なくともポリウレタン樹脂層を含むように構成されてもよい。ポリウレタン樹脂層以外の他の層は、例えば、エポキシ樹脂、シリコーン樹脂、及びビニル樹脂等を含む層であってもよい。 The light-transmitting resin layer may be composed of a single layer or multiple layers, or may be configured to include at least a polyurethane resin layer. The layer other than the polyurethane resin layer may be a layer containing, for example, an epoxy resin, a silicone resin, a vinyl resin, or the like.
 波長変換体20中の蛍光体の含有量は、樹脂材料で構成される光透過性樹脂層100質量%中、特に限定されないが、例えば、0.1質量%以上40質量%以下、好ましくは0.3質量%以上8質量%以下としてもよい。 The content of the phosphor in the wavelength converter 20 is not particularly limited in 100% by mass of the light transmissive resin layer made of the resin material, but is, for example, 0.1% by mass or more and 40% by mass or less, preferably 0. It may be 3% by mass or more and 8% by mass or less.
 波長変換体20の成形方法は、特に限定はなく、ロールを用いた押出し成形、圧縮プレス成形、キャスト成形、型枠を用いた成形方法など、公知の方法を適宜採用できる。 The molding method of the wavelength converter 20 is not particularly limited, and known methods such as extrusion molding using a roll, compression press molding, cast molding, and molding method using a mold can be appropriately adopted.
 植物育成用部材100,110は、シート状でもよく、一部に湾曲や屈曲構造を有していてもよい。 The plant growing members 100 and 110 may be in the form of a sheet, or may have a curved or bent structure in part.
 シートの形状はマルチフィルム状、プレート状でも実施可能であり、用途に応じて、アレンジが可能である。特にプレート状のものは植物の第一葉の直下に設置しておき、植物の生育状況に合わせて設置場所や設置角度を調整可能である。 The shape of the sheet can be multi-film or plate, and can be arranged according to the application. In particular, the plate-shaped one can be installed directly under the first leaf of the plant, and the installation location and installation angle can be adjusted according to the growing condition of the plant.
 植物育成用部材100,110は、自立するように構成されていてもよい。これにより、設置時の取扱性を高められる。植物育成用部材100,110を、地面に平置きしてもよいし、土壌にその一部を突き刺した状態で設置してもよい。 The plant growing members 100 and 110 may be configured to be self-supporting. This makes it easier to handle during installation. The plant growing members 100 and 110 may be placed flat on the ground, or may be installed with a part thereof pierced into the soil.
 植物育成用部材100,110の厚みの下限は、例えば、0.1mm以上、好ましくは0.5mm以上、より好ましくは1mm以上である。これにより、機械的強度を高められる。一方、植物育成用部材100,110の厚みの上限は、例えば、10mm以下、好ましくは5mm以下、より好ましくは3mm以下である。これにより、軽量化や、製造コストの低減を実現できる。 The lower limit of the thickness of the plant growing members 100 and 110 is, for example, 0.1 mm or more, preferably 0.5 mm or more, and more preferably 1 mm or more. As a result, the mechanical strength can be increased. On the other hand, the upper limit of the thickness of the plant growing members 100 and 110 is, for example, 10 mm or less, preferably 5 mm or less, and more preferably 3 mm or less. This makes it possible to reduce the weight and the manufacturing cost.
 図2(a)(b)の植物育成用部材110は、光透過性封止体30を備える。
 光透過性封止体30は、積層構造体50の少なくとも一部を覆うものであればよく、波長変換体20の表面や側面を覆うように構成されていてもよく、積層構造体50の主面、側面、及び裏面の全体を覆ってもよい。これにより、植物育成用部材110の耐久性や取扱性を高められる。
The plant growing member 110 of FIGS. 2A and 2B includes a light transmitting encapsulating body 30.
The light transmissive sealing body 30 may be configured to cover at least a part of the laminated structure 50, may be configured to cover the surface or side surface of the wavelength converter 20, and is the main of the laminated structure 50. The entire surface, side surface, and back surface may be covered. As a result, the durability and handleability of the plant growing member 110 can be improved.
 光透過性封止体30は、植物の育成に必要な光、蛍光体の励起光、或いは蛍光体からの発光を透過する透明性材料で構成されていれば特に限定されない。光透過性封止体30は、ポリエチレン、ポリエステル、ポリプロピレン、及びポリ塩化ビニルからなる群から選ばれる1種以上を含んでもよい。 The light-transmitting encapsulant 30 is not particularly limited as long as it is made of a transparent material that transmits light necessary for growing plants, excitation light of a fluorescent substance, or light emission from the fluorescent substance. The light transmissive encapsulant 30 may contain one or more selected from the group consisting of polyethylene, polyester, polypropylene, and polyvinyl chloride.
 光透過性封止体30の成形方法として、透明性材料を用いた、塗布法やフィルムラミネート法などを用いてもよい。成形時に加熱・加圧処理を施してもよい。 As a method for molding the light-transmitting encapsulant 30, a coating method, a film laminating method, or the like using a transparent material may be used. Heat / pressure treatment may be applied at the time of molding.
 植物育成用部材110には、積層構造体50を積層方向から見たとき、積層構造体50の周囲に、光透過性封止体30で構成されたマージン部32が形成されてもよい。マージン部32によって、積層構造体50の側面が保護されるため、植物育成用部材110の長期耐久性を高められる。 When the laminated structure 50 is viewed from the laminated direction, the plant growing member 110 may have a margin portion 32 formed of the light transmissive sealing body 30 formed around the laminated structure 50. Since the side surface of the laminated structure 50 is protected by the margin portion 32, the long-term durability of the plant growing member 110 can be enhanced.
 植物育成用部材110は、積層構造体50を積層方向から見たとき、積層構造体50の周囲に位置する端部の全てが、光透過性封止体30により覆われた構造を有してもよい。これにより、端部から水が入り込むことを抑制できるため、防水性を高められる。 When the laminated structure 50 is viewed from the laminated direction, the plant growing member 110 has a structure in which all the ends located around the laminated structure 50 are covered with the light transmissive sealing body 30. May be good. As a result, it is possible to prevent water from entering from the end portion, so that the waterproof property can be improved.
 また、マージン部32は、目的に応じて各種の形状に加工可能である。 Further, the margin portion 32 can be processed into various shapes according to the purpose.
 図7(a)(b)は、第二実施形態の変形例を示す。図7(a)(b)は、植物育成用部材114、植物育成用部材116の一例を模式的に示す上面図である。 FIGS. 7 (a) and 7 (b) show a modified example of the second embodiment. 7 (a) and 7 (b) are top views schematically showing an example of a plant growing member 114 and a plant growing member 116.
 植物育成用部材114は、光透過性封止体30のマージン部32に、切り欠き部36が形成されてもよい。切り欠き部36によって形成された凹部に植物を配置してもよい。これにより、植物育成用部材114を植物が栽培された領域上に敷き詰められる。あるいは、切り欠き部36によって形成された凹部と凸部とを組み合わせて、複数の植物育成用部材114を連結させてもよい。 The plant growing member 114 may have a notch 36 formed in the margin portion 32 of the light transmissive sealing body 30. The plant may be placed in the recess formed by the notch 36. As a result, the plant growing member 114 is spread over the area where the plant is cultivated. Alternatively, a plurality of plant growing members 114 may be connected by combining the concave portion and the convex portion formed by the notch portion 36.
 植物育成用部材116は、光透過性封止体30のマージン部32に、土壌に突き刺すことが可能な形状を有する切り欠き部38が形成されていてもよい。これにより、所定の角度を維持した状態で、植物育成用部材116を土壌に安定的に設置可能である。 The plant growing member 116 may have a notch 38 having a shape capable of piercing the soil in the margin portion 32 of the light transmissive sealing body 30. As a result, the plant growing member 116 can be stably installed in the soil while maintaining a predetermined angle.
 図8(a)(b)は、第二実施形態の他の変形例を示す。図8(a)は、植物育成用部材112の一例を模式的に示す側面図、図8(b)は、その上面図である。図8(a)は、B-B矢視の断面図になる。 8 (a) and 8 (b) show other modified examples of the second embodiment. FIG. 8A is a side view schematically showing an example of the plant growing member 112, and FIG. 8B is a top view thereof. FIG. 8A is a cross-sectional view taken along the line BB.
 植物育成用部材112は、積層構造体50を積層方向から見たとき、積層方向と直交する面内方向において、複数の積層構造体50が設けられており、隣接する積層構造体50の間に光透過性封止体30で構成された分離部34が形成された構造を有する。 When the laminated structure 50 is viewed from the laminated direction, the plant growing member 112 is provided with a plurality of laminated structures 50 in the in-plane direction orthogonal to the laminated direction, and the laminated structure 50 is provided between the adjacent laminated structures 50. It has a structure in which a separation portion 34 composed of a light-transmitting sealing body 30 is formed.
 植物育成用部材112は、面内方向において、複数の積層構造体50が配置されていてよい。植物の栽培位置などの目的に応じて、積層構造体50が適切に配置され得る。 The plant growing member 112 may have a plurality of laminated structures 50 arranged in the in-plane direction. The laminated structure 50 can be appropriately arranged depending on the purpose such as the cultivation position of the plant.
 複数の積層構造体50の側面が分離部34で覆われているため、植物育成用部材112の耐久性を高められる。また、光不透過性基材10よりも柔軟な材料で光透過性封止体30を形成してもよい。これにより、分離部34によって、植物育成用部材112の形状を変形させることも可能である。 Since the side surface of the plurality of laminated structures 50 is covered with the separating portion 34, the durability of the plant growing member 112 can be enhanced. Further, the light transmissive encapsulant 30 may be formed of a material that is more flexible than the light transmissive base material 10. Thereby, the shape of the plant growing member 112 can be deformed by the separating portion 34.
 植物育成用部材112の上面視において、分離部34のパターンは、特に限定されないが、縦、横、斜め方向に延在してもよく、これらが交差してもよい。分離部34のパターンは、各方向において、それぞれ複数本形成されていてもよい。 In the top view of the plant growing member 112, the pattern of the separating portion 34 is not particularly limited, but may extend in the vertical, horizontal, and diagonal directions, or these may intersect. A plurality of patterns of the separation portion 34 may be formed in each direction.
 分離部34は、切断可能な材料で構成されていてもよい。
 これによって、光不透過性基材10の強度を大きくしたい場合、分離部34を切断して、植物育成用部材112を適当な大きさや形状に加工し、土壌に設置できる。植物の栽培現場において、植物育成用部材112を適切な形状に加工可能となる。
The separating portion 34 may be made of a material that can be cut.
Thereby, when it is desired to increase the strength of the light-impermeable base material 10, the separation portion 34 can be cut, the plant growing member 112 can be processed into an appropriate size and shape, and can be installed in the soil. At the plant cultivation site, the plant growing member 112 can be processed into an appropriate shape.
 本実施形態の植物育成用部材は、植物の育成に好適に用いることが可能である。
 植物育成方法は、植物の下方又は側方に、上記の植物育成用部材を配置する工程と、植物育成用部材に励起光を照射する工程と、を含む。
The plant growing member of the present embodiment can be suitably used for growing plants.
The plant growing method includes a step of arranging the above-mentioned plant growing member below or to the side of the plant, and a step of irradiating the plant growing member with excitation light.
 植物は、特に限定されないが、葉を備える植物でもよく、農業用植物でもよい。 The plant is not particularly limited, but may be a plant having leaves or an agricultural plant.
 本実施形態によれば、植物の育成を促進させることが可能となる。 According to this embodiment, it is possible to promote the growth of plants.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良などは本発明に含まれる。 Although the embodiments of the present invention have been described above, these are examples of the present invention, and various configurations other than the above can be adopted. Further, the present invention is not limited to the above-described embodiment, and modifications and improvements within the range in which the object of the present invention can be achieved are included in the present invention.
 以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the description of these Examples.
<植物育成用部材の作成>
(実施例1)
 可視光励起赤色蛍光体(450nm励起下でピーク波長660nmの発光を発する赤色蛍光体、組成:Ca0.99Eu0.01AlSiN、平均粒子径16μm)0.16gに、透明性ポリウレタン樹脂9.84gを添加し、混練装置(ARV-310、シンキー社製)を導入し、回転数1000rpm、圧力0.7Pa、撹拌時間3分といった条件で真空脱泡攪拌し、混合物を得た。透明性ポリウレタン樹脂は、ポリカーボネートジオール(ニッポラン965、東ソー社製)100質量部と、脂肪族ポリイソシアネート(コロネートHX/コロネート2770=7/3(質量比)、東ソー社製)100質量部と、鈴触媒(ネオスタンU-810)0.08質量部とを混合したものを使用した。得られた混合物を、白色テフローンコート上に設置した成形型中に入れ込み、25℃で一晩かけて硬化させたものを使用した。
 ここで、ニッポラン965は、3-メチル-1,5-ペンタンジオール:1,6-ヘキサメチレンジオール=90:10(質量比)からなるグリコールと、ジエチルカーボネートとを縮合したポリカーボネートジオールであり、数平均分子量は1,000である。コロネートHXは、ヘキサメチレンジイソシアネートの3量体であるヌレートである。コロネート2770は、1,6-ヘキサメチレンジイソシアネートとモノアルコールから製造されるアロファネートである。Ca0.99Eu0.01AlSiNは、窒化カルシウム、窒化珪素、窒化アルミニウム、窒化ユーロピウムを混合し、焼成することにより得た。
 成形型の横枠を取り外し、厚み0.3mm×縦28cm×横28cmの白色テフロンシートの上に、厚み1mm、1.6質量%の赤色蛍光体を含む赤色蛍光体膜が形成された植物育成用部材eが得られた。
<Creation of plant growing materials>
(Example 1)
A transparent polyurethane resin 9 . 84 g was added, a kneading device (ARV-310, manufactured by Shinky Co., Ltd.) was introduced, and the mixture was vacuum defoamed and stirred under the conditions of a rotation speed of 1000 rpm, a pressure of 0.7 Pa, and a stirring time of 3 minutes to obtain a mixture. The transparent polyurethane resin is 100 parts by mass of polycarbonate diol (Nipporan 965, manufactured by Tosoh), 100 parts by mass of aliphatic polyisocyanate (Coronate HX / Coronate 2770 = 7/3 (mass ratio), manufactured by Tosoh), and bells. A mixture of 0.08 parts by mass of a catalyst (Neostan U-810) was used. The resulting mixture was placed in a mold placed on a white tephron coat and cured at 25 ° C. overnight.
Here, Nipponporan 965 is a polycarbonate diol obtained by condensing glycol composed of 3-methyl-1,5-pentanediol: 1,6-hexamethylenediol = 90:10 (mass ratio) and diethyl carbonate, and the number thereof. The average molecular weight is 1,000. Coronate HX is a nurate, which is a trimer of hexamethylene diisocyanate. Coronate 2770 is an allophanate made from 1,6-hexamethylene diisocyanate and monoalcohol. Ca 0.99 Eu 0.01 AlSiN 3 was obtained by mixing calcium nitride, silicon nitride, aluminum nitride and europium nitride and firing.
A plant growing plant in which a red fluorescent film containing a red fluorescent substance having a thickness of 1 mm and 1.6% by mass was formed on a white Teflon sheet having a thickness of 0.3 mm, a length of 28 cm, and a width of 28 cm by removing the horizontal frame of the mold. The member e was obtained.
(比較例1)
 蛍光体を含まない植物育成用部材dとして、厚み0.3mm×縦28cm×横28cmの白色テフロンシートをそのまま使用した。
(Comparative Example 1)
As the plant growing member d containing no fluorescent substance, a white Teflon sheet having a thickness of 0.3 mm, a length of 28 cm, and a width of 28 cm was used as it was.
 得られた各実施例・比較例の植物育成用部材について、以下の評価項目に基づいて評価を行った。 The plant growing members of each of the obtained Examples and Comparative Examples were evaluated based on the following evaluation items.
(分光スペクトル)
 暗室中、植物育成用部材e(実施例1)の赤色蛍光体膜の表面、植物育成用部材d(比較例1)白色テフロンシートの表面のそれぞれに、表面からの距離が35cm、表面に対して垂直方向、強度が0.4mW/cmの条件にて、キセノンランプ光を照射した。実施例1、比較例1の各表面からの光の分光スペクトルについて、分光測定器を用いて測定した。
 分光測定器として、コニカミノルタ社製、CL-500Aを使用し、測定器の受光軸と各表面とのなす角を斜め上60度とし、表面中心からの測定器までの距離を16cmとした条件で、分光スペクトルを測定した。
 分光スペクトルの結果を、図9に示す。実施例1の植物育成用部材eは、比較例1の植物育成用部材dに比べて、近紫外、青、緑の領域の光束が顕著に減少し、赤の領域の光束が顕著に増大する結果を示した。
(Spectroscopic spectrum)
In a dark room, the surface of the red phosphor film of the plant growing member e (Example 1) and the surface of the plant growing member d (Comparative Example 1) white teflon sheet are each at a distance of 35 cm from the surface with respect to the surface. The xenon lamp light was irradiated in the vertical direction under the condition of an intensity of 0.4 mW / cm 2 . The spectral spectra of the light from each surface of Example 1 and Comparative Example 1 were measured using a spectrophotometer.
CL-500A manufactured by Konica Minolta Co., Ltd. is used as the spectroscopic measuring instrument, the angle between the light receiving axis of the measuring instrument and each surface is set to 60 degrees diagonally upward, and the distance from the surface center to the measuring instrument is 16 cm. The spectroscopic spectrum was measured.
The results of the spectral spectrum are shown in FIG. In the plant growing member e of Example 1, the luminous flux in the near-ultraviolet, blue, and green regions is significantly reduced, and the luminous flux in the red region is significantly increased, as compared with the plant growing member d of Comparative Example 1. The results are shown.
(植物試験)
 実施例1の植物育成用部材e及び比較例1の植物育成用部材dを4分割し、それぞれ、28cm×7cmのシートを4枚作成した。
 植物としてコマツナ(品種:楽天)を5株、一列になど間隔で土壌に播種した。播種の10日後、コマツナを挟むように、土壌表面に4分割したシート(植物育成用部材)を配置した。植物育成用部材の配置図を図10に示す。図10(a)には、コマツナの葉の裏面に対して、植物育成用部材の表面で反射した光が照射されるように、植物育成用部材を配置した図が示されている。
 植物育成用部材を配置した後、下記の栽培試験1~3の試験条件にて、2週間コマツナを育成した。育成したコマツナを図10(b)に示す。
(Plant test)
The plant growing member e of Example 1 and the plant growing member d of Comparative Example 1 were divided into four parts, and four sheets of 28 cm × 7 cm were prepared respectively.
As a plant, 5 strains of Komatsuna (variety: Rakuten) were sown in the soil at intervals such as in a row. Ten days after sowing, a sheet (plant growing member) divided into four was placed on the soil surface so as to sandwich the Japanese mustard spinach. FIG. 10 shows a layout drawing of the plant growing member. FIG. 10A shows a diagram in which the plant growing member is arranged so that the back surface of the Komatsuna leaf is irradiated with the light reflected by the surface of the plant growing member.
After arranging the plant growing members, Komatsuna was grown for 2 weeks under the test conditions of the following cultivation tests 1 to 3. The cultivated Japanese mustard spinach is shown in FIG. 10 (b).
・栽培試験1
試験条件:屋外ビニルハウス
光量(光量子束密度):1,000~1,500μmolm-2-1
・栽培試験2
試験条件:人口気象機(25℃、6時間日長)
光量(光量子束密度):151μmolm-2-1
・栽培試験3
試験条件:人口気象機(25℃、12時間日長)
光量(光量子束密度):29μmolm-2-1
Cultivation test 1
Test conditions: Outdoor vinyl greenhouse Light intensity (photon flux density): 1,000 to 1,500 μmolm -2 s -1
Cultivation test 2
Test conditions: Artificial meteorological machine (25 ° C, 6 hours day length)
Amount of light (photon flux density): 151 μmolm -2 s -1
Cultivation test 3
Test conditions: Artificial meteorological machine (25 ° C, 12 hours day length)
Amount of light (photon flux density): 29 μmolm -2 s -1
 その後、コマツナの地上部を収穫した。収穫した地上部の本葉数(枚)、その中の最大葉長(cm)、収穫した地上部の葉の質量(乾燥前の地上部新鮮質量、g)、その葉を、105℃恒量乾燥法にて乾燥した後の葉の質量(地上部乾燥質量、g)を測定し、葉中に含まれる葉緑素含有量(SPAD値)をコニカミノルタ社製SPAD-502Plusを使用して計測した。コマツナの評価結果について、表1は5株、表2は4株、表3は4株の測定値に基づく平均値(Mean)、及び標準偏差(S.D)を示す。
 比較のため、植物育成用部材を配置しないで(対照)、上記の植物試験(栽培試験1~3)を行った。
After that, the above-ground part of Komatsuna was harvested. The number of true leaves (sheets) in the above-ground part harvested, the maximum leaf length (cm) in the leaves, the mass of the leaves in the above-ground part harvested (fresh mass of the above-ground part before drying, g), and the leaves are dried at a constant rate of 105 ° C. The mass of the leaves after drying by the method (dry mass on the ground, g) was measured, and the chlorophyll content (SPAD value) contained in the leaves was measured using SPAD-502Plus manufactured by Konica Minolta. Regarding the evaluation results of Komatsuna, Table 1 shows 5 strains, Table 2 shows 4 strains, and Table 3 shows the mean value (Mean) and standard deviation (SD) based on the measured values of 4 strains.
For comparison, the above plant tests (cultivation tests 1 to 3) were carried out without arranging the plant growing members (control).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1、比較例1、及び対照のいずれも、植物の葉に含まれる葉緑素含有量が、実験誤差範囲内で同程度であったが、実施例1の植物育成用部材eを用いることによって、植物育成用部材を用いない場合(対照)や植物育成用部材dを用いる場合(比較例1)と比べて、優れた植物育成促進効果が得られることが示された。 In all of Example 1, Comparative Example 1 and the control, the chlorophyll content contained in the leaves of the plant was about the same within the experimental error range, but by using the plant growing member e of Example 1. It was shown that an excellent plant growth promoting effect can be obtained as compared with the case where the plant growth member is not used (control) or the plant growth member d is used (Comparative Example 1).
(実施例2)
 実施例1で得られた植物育成用部材eの両面のそれぞれに、厚み0.2mm×縦30cm×横30cmの光透過性のポリプロピレンフィルムを熱ラミネートし、上下のポリプロピレンフィルムによって、白色テフロンシート及び赤色蛍光体膜を封止して、植物育成用部材hを得た(実施例2)。
 実施例2の植物育成用部材hは、防水性や繰り返し使用時の耐久性に優れていた。白色テフローンコートの周囲に設けられたポリプロピレンフィルムのマージン部は、容易に加工可能であっため、取扱性に優れていた。
 また、実施例2の植物育成用部材hは、それぞれ、実施例1の植物育成用部材eと同程度の植物育成促進効果を示した。
 赤色蛍光体として、マンガンを賦活したカルシウムアルミネート系赤色蛍光体を使用した場合、植物育成促進効果を示した。
(Example 2)
A light-transmitting polypropylene film having a thickness of 0.2 mm, a length of 30 cm, and a width of 30 cm was heat-laminated on both sides of the plant growing member e obtained in Example 1, and a white Teflon sheet and a white Teflon sheet were formed by the upper and lower polypropylene films. The red phosphor film was sealed to obtain a plant growing member h (Example 2).
The plant growing member h of Example 2 was excellent in waterproofness and durability during repeated use. The margin portion of the polypropylene film provided around the white tephron coat can be easily processed, so that it is easy to handle.
In addition, each of the plant growing members h of Example 2 showed the same level of plant growth promoting effect as the plant growing member e of Example 1.
When a manganese-activated calcium-aluminate-based red fluorescent substance was used as the red fluorescent substance, it showed an effect of promoting plant growth.
 以上のような実施例1、2の植物育成用部材を用いて、葉の裏側から適切な波長の光を照射することにより、より効率的・生産的に植物の育成が可能になる。また、曇天時や冬季の日本海側の様に光が弱い条件下で、より効果が発揮される。 By irradiating light of an appropriate wavelength from the back side of the leaves using the plant growing members of Examples 1 and 2 as described above, it becomes possible to grow plants more efficiently and productively. In addition, it is more effective under conditions of weak light such as in cloudy weather or on the Sea of Japan side in winter.
 この出願は、2020年9月29日に出願された日本出願特願2020-163639号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority on the basis of Japanese Application Japanese Patent Application No. 2020-163369 filed on September 29, 2020, and incorporates all of its disclosures herein.
10 光不透過性基材
20 波長変換体
30 光透過性封止体
32 マージン部
34 分離部
36 切り欠き部
38 切り欠き部
50 積層構造体
100 植物育成用部材
110 植物育成用部材
112 植物育成用部材
114 植物育成用部材
116 植物育成用部材 
10 Light-impermeable base material 20 Wavelength converter 30 Light-transmitting encapsulant 32 Margin part 34 Separation part 36 Notch part 38 Notch part 50 Laminated structure 100 Plant growing member 110 Plant growing member 112 For plant growing Member 114 Plant growing member 116 Plant growing member

Claims (16)

  1.  光不透過性樹脂基材と、前記光不透過性樹脂基材の上に形成された波長変換体とを有する、積層構造体を備える、植物育成用部材であって、
     前記波長変換体が、蛍光体とポリウレタン樹脂とを含む光透過性樹脂層で構成される、
    植物育成用部材。
    A plant growing member comprising a laminated structure having a light-impermeable resin base material and a wavelength converter formed on the light-impermeable resin base material.
    The wavelength converter is composed of a light-transmitting resin layer containing a phosphor and a polyurethane resin.
    A member for growing plants.
  2.  請求項1に記載の植物育成用部材であって、
     前記光不透過性樹脂基材が、テフロン、ポリエチレン、ポリエステル、ポリプロピレン、及びポリ塩化ビニルからなる群から選ばれる1種以上を含む、植物育成用部材。
    The plant growing member according to claim 1.
    A plant growing member comprising one or more selected from the group consisting of Teflon, polyethylene, polyester, polypropylene, and polyvinyl chloride as the light-impermeable resin base material.
  3.  請求項1又は2に記載の植物育成用部材であって、
     前記光不透過性樹脂基材が、光散乱層を含む、植物育成用部材。
    The plant growing member according to claim 1 or 2.
    A member for growing a plant, wherein the light-impermeable resin base material includes a light-scattering layer.
  4.  請求項1~3のいずれか一項に記載の植物育成用部材であって、
     前記光不透過性樹脂基材は、白色樹脂シートで構成される、植物育成用部材。
    The plant growing member according to any one of claims 1 to 3.
    The light-impermeable resin base material is a plant growing member composed of a white resin sheet.
  5.  請求項1~4のいずれか一項に記載の植物育成用部材であって、
     前記光不透過性樹脂基材の厚みが、0.01mm以上10mm以下である、植物育成用部材。
    The plant growing member according to any one of claims 1 to 4.
    A plant growing member having a light-impermeable resin base material having a thickness of 0.01 mm or more and 10 mm or less.
  6.  請求項1~5のいずれか一項に記載の植物育成用部材であって、
     前記蛍光体が、赤色蛍光体を含む、植物育成用部材。
    The plant growing member according to any one of claims 1 to 5.
    A member for growing a plant, wherein the fluorescent substance contains a red fluorescent substance.
  7.  請求項6に記載の植物育成用部材であって、
     前記赤色蛍光体が、賦活元素としてマンガン、及びユウロピウムからなる群から選ばれる1種以上を含む、植物育成用部材。
    The plant growing member according to claim 6.
    A member for growing a plant, wherein the red fluorescent substance contains at least one selected from the group consisting of manganese and europium as activating elements.
  8.  請求項6又は7に記載の植物育成用部材であって、
     前記赤色蛍光体が、マンガンを賦活したカルシウムアルミネート系赤色蛍光体、CaAlSiN:Eu2+からなる群から選ばれる1種以上を含む、植物育成用部材。
    The plant growing member according to claim 6 or 7.
    A plant growing member comprising one or more selected from the group consisting of a manganese-activated calcium aluminate-based red fluorescent substance and CaAlSiN 3 : Eu 2+ .
  9.  請求項1~8のいずれか一項に記載の植物育成用部材であって、
     前記波長変換体が、蓄光材を含む、植物育成用部材。
    The plant growing member according to any one of claims 1 to 8.
    The wavelength converter is a plant growing member containing a phosphorescent material.
  10.  請求項9に記載の植物育成用部材であって、
     前記蓄光材は、前記蛍光体の励起光を発光するものを含む、植物育成用部材。
    The plant growing member according to claim 9.
    The phosphorescent material is a plant growing member including a material that emits the excitation light of the phosphor.
  11.  請求項1~10のいずれか一項に記載の植物育成用部材であって、
     自立するように構成される、植物育成用部材。
    The plant growing member according to any one of claims 1 to 10.
    A member for growing plants that is configured to be self-supporting.
  12.  請求項1~11のいずれか一項に記載の植物育成用部材であって、
     植物の葉の裏面に光照射するために用いられる、植物育成用部材。
    The plant growing member according to any one of claims 1 to 11.
    A plant growing member used to irradiate the back surface of plant leaves with light.
  13.  請求項1~12のいずれか一項に記載の植物育成用部材であって、
     前記積層構造体を封止する光透過性封止体を備える、植物育成用部材。
    The plant growing member according to any one of claims 1 to 12.
    A plant growing member comprising a light-transmitting sealant that seals the laminated structure.
  14.  請求項13に記載の植物育成用部材であって、
     前記光透過性封止体が、ポリエチレン、ポリエステル、ポリプロピレン、及びポリ塩化ビニルからなる群から選ばれる1種以上を含む、
    植物育成用部材。
    The plant growing member according to claim 13.
    The light transmissive encapsulant comprises one or more selected from the group consisting of polyethylene, polyester, polypropylene, and polyvinyl chloride.
    A member for growing plants.
  15.  請求項13又は14に記載の植物育成用部材であって、
     前記積層構造体を積層方向から見たとき、前記積層構造体の周囲に、前記光透過性封止体で構成されたマージン部が形成されている、植物育成用部材。
    The plant growing member according to claim 13 or 14.
    A plant growing member having a margin portion formed of a light-transmitting encapsulating body formed around the laminated structure when the laminated structure is viewed from the stacking direction.
  16.  植物の下方又は側方に、請求項1~15のいずれか一項に記載の植物育成用部材を配置する工程と、
     前記植物育成用部材に励起光を照射する工程と、を含む、
    植物育成方法。
    The step of arranging the plant growing member according to any one of claims 1 to 15 below or to the side of the plant.
    A step of irradiating the plant growing member with excitation light, and the like.
    How to grow plants.
PCT/JP2021/035023 2020-09-29 2021-09-24 Plant growing member and plant growing method WO2022071100A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022553890A JPWO2022071100A1 (en) 2020-09-29 2021-09-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-163639 2020-09-29
JP2020163639 2020-09-29

Publications (1)

Publication Number Publication Date
WO2022071100A1 true WO2022071100A1 (en) 2022-04-07

Family

ID=80950246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035023 WO2022071100A1 (en) 2020-09-29 2021-09-24 Plant growing member and plant growing method

Country Status (2)

Country Link
JP (1) JPWO2022071100A1 (en)
WO (1) WO2022071100A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115193A (en) * 2008-10-15 2010-05-27 Tokyo Univ Of Science Cultivation method for agricultural crop using fluorescence radiation material, and material to be used for the same
JP2012050384A (en) * 2010-09-01 2012-03-15 Cdm Consulting Co Ltd Method of using agricultural and forestry material for intense heat environment
JP2013106550A (en) * 2011-11-18 2013-06-06 Sharp Corp Lighting device for growing plant
JP2015133221A (en) * 2014-01-10 2015-07-23 日亜化学工業株式会社 Illumination device
JP2020068704A (en) * 2018-10-31 2020-05-07 ユニチカ株式会社 Agricultural light reflection sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115193A (en) * 2008-10-15 2010-05-27 Tokyo Univ Of Science Cultivation method for agricultural crop using fluorescence radiation material, and material to be used for the same
JP2012050384A (en) * 2010-09-01 2012-03-15 Cdm Consulting Co Ltd Method of using agricultural and forestry material for intense heat environment
JP2013106550A (en) * 2011-11-18 2013-06-06 Sharp Corp Lighting device for growing plant
JP2015133221A (en) * 2014-01-10 2015-07-23 日亜化学工業株式会社 Illumination device
JP2020068704A (en) * 2018-10-31 2020-05-07 ユニチカ株式会社 Agricultural light reflection sheet

Also Published As

Publication number Publication date
JPWO2022071100A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
CN106461182B (en) Luminescent concentrator with increased efficiency
US20200231872A1 (en) Phosphor and a composition
TWI504723B (en) Fluorinite,led luminescent element and light source device
CN1089108C (en) Photostimulable phosphor
EP3213355B1 (en) Phosphor converted led with temperature stable flux and saturated red color point
US10093853B2 (en) Green phosphor and production method therefor, phosphor sheet, and illumination device
JP4840776B2 (en) Color converter, plant growing apparatus and plant growing method using the same
US20130188333A1 (en) Led light bulb
CN113366084A (en) Method for controlling the state of plants
WO2022071100A1 (en) Plant growing member and plant growing method
US8603360B2 (en) Emitting Phosphor
JP6123619B2 (en) Composite wavelength conversion particle, composite wavelength conversion particle-containing resin composition, and light emitting device
JP5339385B2 (en) Color converter
JP7337527B2 (en) Plant-growing member and plant-growing method
CN115353885A (en) Near ultraviolet light and green light excited far-red light fluorescent powder and application method thereof
KR20140002792A (en) Red phosphor and light-emitting element
GB2591221A (en) Method for modulating a condition of a biological cell
EP3911714A1 (en) Method for modulating a condition of a biological cell
KR101250142B1 (en) Processing method of a long phosphorescence phosphor by combustion-reaction and its application for the fabrication of luminescent sheet
KR102001718B1 (en) Oxyide phosphor
CN1846291A (en) Light emitting devices having sulfoselenide fluorescent phosphors
JP2019026673A (en) Phosphor, production method thereof, phosphor sheet and luminaire
KR101519362B1 (en) Backlight unit and light-emitting device
JP2019026674A (en) Phosphor, production method thereof, phosphor sheet and luminaire
WO2022090444A1 (en) Phosphor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875402

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553890

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875402

Country of ref document: EP

Kind code of ref document: A1