WO2022067721A1 - 短距离通信装置、芯片及控制方法 - Google Patents

短距离通信装置、芯片及控制方法 Download PDF

Info

Publication number
WO2022067721A1
WO2022067721A1 PCT/CN2020/119532 CN2020119532W WO2022067721A1 WO 2022067721 A1 WO2022067721 A1 WO 2022067721A1 CN 2020119532 W CN2020119532 W CN 2020119532W WO 2022067721 A1 WO2022067721 A1 WO 2022067721A1
Authority
WO
WIPO (PCT)
Prior art keywords
lna
signal
bypass
coupled
bypass switch
Prior art date
Application number
PCT/CN2020/119532
Other languages
English (en)
French (fr)
Inventor
阮卫
沈旭强
杨腾智
李璐
陈聪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20955746.1A priority Critical patent/EP4207609A4/en
Priority to PCT/CN2020/119532 priority patent/WO2022067721A1/zh
Priority to CN202080105387.0A priority patent/CN116349137A/zh
Publication of WO2022067721A1 publication Critical patent/WO2022067721A1/zh
Priority to US18/192,047 priority patent/US20230238986A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0067Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands
    • H04B1/0075Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands using different intermediate frequencied for the different bands
    • H04B1/0078Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands using different intermediate frequencied for the different bands with a common intermediate frequency amplifier for the different intermediate frequencies, e.g. when using switched intermediate frequency filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers

Definitions

  • the embodiments of the present application relate to the field of short-distance communication, and in particular, to a short-distance communication device, a chip, and a control method.
  • the priority control mechanism is usually adopted, that is, the module with higher priority can be Gain control of the shared LNA to control the shared LNA's gain gear.
  • the Bluetooth module and the Wi-Fi module have different adjustment thresholds for different gain levels of the signal, after the gain level of the shared LNA is adjusted, the anti-interference ability of the Bluetooth module may decrease, or The problem is that the throughput of the Wi-Fi module is reduced.
  • the present application proposes a short-range communication device, a chip and a control method, so as to effectively improve the anti-interference capability and throughput of the device.
  • a short-range communication device in a first aspect, includes a gain unit coupled to the antenna; a first radio frequency RF receive channel coupled to the gain unit; a first baseband processor coupled to the first RF receive channel for receiving a first signal from the antenna through the first RF receive channel a second RF receiving channel, coupled to the gain unit; a second baseband processor, coupled to a second RF receiving channel, for receiving a second signal from the antenna through the second RF receiving channel, wherein the second RF receiving channel is associated with the gain
  • a first bypass switch is arranged between the units, and the first bypass switch is used to selectively bypass at least one gain device in the gain unit. In this way, the present application can effectively improve the anti-interference capability and throughput of the device.
  • the first baseband processor may be a Wi-Fi baseband module
  • the second baseband processor may be a Bluetooth baseband module
  • the first signal may be a Wi-Fi signal
  • the second signal may be a Bluetooth signal
  • the first baseband processor and the second baseband processor may also be other baseband processors, baseband modules or chips applied to short-distance communication.
  • the gain unit includes: a first low noise amplifier LNA, the input end of the first LNA is coupled to the antenna, and the output end of the first LNA is coupled to the first RF receiving channel; the first bypass switch is respectively connected to the first LNA The output of the first LNA is coupled to the input of the first LNA for selectively bypassing the first LNA.
  • the first LNA may be an external LNA or a built-in LNA.
  • the first bypass switch is configured to selectively bypass the first LNA according to whether the strength of the second signal is greater than the first threshold. In this way, based on the strength of the second signal, the gain amplitude of the second signal input to the second baseband processor is controlled by bypassing the first LNA without adjusting the gain level of the first LNA.
  • the gain unit includes: a first LNA and a power attenuator, and the output end of the first LNA is respectively connected to the first RF receiving channel and the input end of the power attenuator. coupling, the input end of the first LNA is coupled to the antenna; the first bypass switch is respectively coupled to the input end of the power attenuator and the output end of the power attenuator for selectively bypassing the power attenuator. In this way, by selectively bypassing the power attenuator, the gain amplitude of the second signal input to the second baseband processor is controlled without adjusting the gain level of the first LNA.
  • the first bypass switch is configured to selectively bypass the power attenuator according to whether the strength of the second signal is greater than the second threshold. In this way, based on the strength of the second signal, the gain amplitude of the second signal input to the second baseband processor is controlled by selectively bypassing the power attenuator without adjusting the gain level of the first LNA.
  • a second bypass switch is provided between the first LNA and the power attenuator, and the second bypass switch is respectively connected to the input end of the first LNA and the first bypass switch.
  • the output end of the LNA is coupled, and the second bypass switch is used to selectively bypass the first LNA; the first bypass switch is respectively coupled to the input end of the power attenuator and the output end of the power attenuator, and is used for Selectively bypass the power attenuator.
  • the first bypass switch is configured to selectively bypass the power attenuator according to whether the strength of the second signal is greater than the third threshold; the second bypass switch is used to selectively bypass the power attenuator.
  • the switch is used for selectively bypassing the first LNA according to whether the strength of the second signal is greater than the fourth threshold; the third threshold is greater than the fourth threshold.
  • a second LNA is provided between the first LNA and the antenna; the first LNA is connected to the first RF receiving channel, the first baseband processor, and the second RF receiving channel.
  • the channel and the second baseband processor are integrated together.
  • the second baseband processor is configured to control the closed state of the first bypass switch.
  • the first baseband processor is configured to control the gain gear of the first LNA.
  • the first RF receiving path is provided with at least one of the following elements: a built-in LNA, a mixer, and a receiving analog baseband RX ABB.
  • the second RF receiving path is provided with at least one of the following elements: a built-in LNA, a mixer, and an RX ABB.
  • a chip is characterized by comprising: a first radio frequency (RF) receiving channel, coupled to a gain unit, wherein the gain unit is coupled to an antenna;
  • the antenna receives the first signal;
  • the second RF receiving channel is coupled to the gain unit;
  • the second baseband processor is used for receiving the second signal from the antenna through the second RF receiving channel, wherein the second RF receiving channel and the gain unit are between
  • a first bypass switch is provided; the second baseband processor is further configured to control the first bypass switch to selectively bypass at least one gain device in the gain unit.
  • the gain unit includes: a first low noise amplifier LNA, the input end of the first LNA is coupled to the antenna, and the output end of the first LNA is coupled to the first RF receiving channel; the first bypass switch is respectively connected to the first LNA The output end of the first LNA is coupled with the input end of the first LNA; the second baseband processor is specifically configured to selectively bypass the first LNA.
  • LNA low noise amplifier
  • the second baseband processor is configured to control the first bypass switch to selectively bypass the first LNA according to whether the strength of the second signal is greater than the first threshold. road.
  • the gain unit includes: a first LNA and a power attenuator, and the output end of the first LNA is respectively connected to the first RF receiving channel and the input end of the power attenuator. coupling, the input end of the first LNA is coupled to the antenna; the first bypass switch is respectively coupled with the input end of the power attenuator and the output end of the power attenuator; the second baseband processor is specifically used to control the first bypass switch Selectively bypass the power attenuator.
  • the second baseband processor is configured to control the first bypass switch to selectively bypass the power attenuator according to whether the strength of the second signal is greater than the second threshold. road.
  • a second bypass switch is provided between the first LNA and the power attenuator, and the second bypass switch is respectively connected to the input end of the first LNA and the first bypass switch.
  • the output ends of the LNA are coupled to each other, and the first bypass switch is respectively coupled to the input end of the power attenuator and the output end of the power attenuator for selectively bypassing the power attenuator.
  • the second baseband processor is further configured to control the second bypass switch to selectively bypass the first LNA; and control the first bypass switch to selectively bypass the power attenuator.
  • the second baseband processor is configured to control the first bypass switch to selectively perform the power attenuator on the power attenuator according to whether the strength of the second signal is greater than the third threshold.
  • the second baseband processor is configured to control the second bypass switch to selectively bypass the first LNA according to whether the strength of the second signal is greater than the fourth threshold; the third threshold is greater than the fourth threshold.
  • the first baseband processor is further configured to control the gain gear of the first LNA.
  • the first bypass switch is integrated on the chip.
  • At least one gain device in the gain unit is integrated on a chip.
  • the first RF receiving path is provided with at least one of the following elements: a built-in first LNA, a mixer, and a receiving analog baseband RX ABB.
  • the second RF receiving path is provided with at least one of the following elements: a built-in first LNA, a mixer, and an RX ABB.
  • an embodiment of the present application provides a control method, which is applied to a short-range communication device.
  • the method includes: receiving a first signal from an antenna through a first radio frequency (RF) receiving channel, wherein the first RF receiving channel is coupled to a gain unit, the gain unit is coupled to the antenna; the second signal is received from the antenna through a second RF receiving channel, wherein the second RF receiving channel is coupled to the gain unit, and a first bypass switch is provided between the second RF receiving channel and the gain unit ; controlling the first bypass switch to selectively bypass at least one gain device in the gain unit.
  • RF radio frequency
  • the gain unit includes a first low noise amplifier LNA; the controlling the first bypass switch to selectively bypass at least one gain device in the gain unit includes: according to the Whether the strength of the second signal is greater than the first threshold, the first bypass switch is controlled to selectively bypass the first LNA.
  • the gain unit includes a first LNA and a power attenuator; the controlling the first bypass switch selectively adjusts the power to the gain unit.
  • Bypassing at least one gain device includes: controlling the first bypass switch to selectively bypass the power attenuator according to whether the strength of the second signal is greater than a second threshold.
  • a second bypass switch is provided between the first LNA and the power attenuator; the control of the selectivity of the first bypass switch Bypassing at least one gain device in the gain unit selectively includes: controlling the first bypass switch to selectively bypass the power attenuator according to whether the strength of the second signal is greater than a third threshold. and controlling the second bypass switch to selectively bypass the first LNA according to whether the strength of the second signal is greater than a fourth threshold; the third threshold is greater than the fourth threshold.
  • the method further includes: controlling the gain gear of the first LNA according to the strength of the first signal.
  • FIG. 1 is a schematic structural diagram of an exemplary terminal device
  • FIG. 2 is a schematic structural diagram of an exemplary short-range communication device
  • FIG. 3 is a schematic structural diagram of an exemplary short-range communication device
  • FIG. 4 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a short-range communication device according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a control method provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a short-range communication device according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a control method provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a short-range communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a control method provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a short-range communication device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a short-range communication device according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of an apparatus provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • first and second in the description and claims of the embodiments of the present application are used to distinguish different objects, rather than to describe a specific order of the objects.
  • first target object, the second target object, etc. are used to distinguish different target objects, rather than to describe a specific order of the target objects.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations. Any embodiment or design described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner.
  • multiple processing units refers to two or more processing units; multiple systems refers to two or more systems.
  • FIG. 1 shows a structural diagram of a terminal device with a single antenna.
  • the terminal device may also have multiple antennas, and may be a device with more than two antennas.
  • FIG. 1 only shows the main components of the terminal device.
  • the terminal device 100 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the entire terminal device, execute software programs, and process data of the software programs, for example, to support the actions described in the embodiments of the present application for the terminal device.
  • the memory is mainly used to store software programs and data, for example, to store the correspondence between the threshold described in the embodiments of this application and the radio frequency (Radio Frequency, RF) path, and the like.
  • the control circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • the control circuit together with the antenna can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 1 only shows one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in this embodiment of the present application.
  • the processor may include a baseband processor and/or a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire terminal device. , execute the software program, and process the data of the software program.
  • the processor in FIG. 1 may integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, interconnected by technologies such as a bus.
  • a terminal device may include multiple baseband processors to adapt to different network standards, a terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • an antenna and a control circuit with a transceiving function may be regarded as the transceiving unit 101 of the terminal device 100, for example, used to support the terminal device to perform a receiving function and a transmitting function.
  • the processor with processing function is regarded as the processing unit 102 of the terminal device 100 .
  • the terminal device 100 includes a transceiver unit 101 and a processing unit 102 .
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, or the like.
  • the device used for realizing the receiving function in the transceiver unit 101 may be regarded as a receiving unit, and the device used for realizing the sending function in the transceiver unit 101 may be regarded as a sending unit, that is, the transceiver unit 101 includes a receiving unit and a sending unit,
  • the receiving unit may also be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter or a transmitting circuit, and the like.
  • the processor 102 may be configured to execute the instructions stored in the memory, so as to control the transceiver unit 101 to receive signals and/or send signals, so as to complete the functions of the terminal device in this embodiment of the present application.
  • the function of the transceiver unit 101 can be considered to be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • the terminal device is a terminal product that supports the 802.11 series standards and the Bluetooth standard
  • the terminal device may be a wireless communication chip, a wireless sensor, or a wireless communication terminal, etc., and may also be called a user, a site, or a terminal.
  • a site can be a mobile phone that supports Wi-Fi and Bluetooth communication, a tablet that supports Wi-Fi and Bluetooth communication, a set-top box that supports Wi-Fi and Bluetooth communication, a smart phone that supports Wi-Fi and Bluetooth communication TVs, smart wearable devices supporting Wi-Fi and Bluetooth communication functions, in-vehicle communication devices supporting Wi-Fi and Bluetooth communication functions, and computers supporting Wi-Fi and Bluetooth communication functions, etc.
  • the 802.11 series includes, but is not limited to, at least one of the following: 802.11be, 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a, and other WLAN standards of the 802.11 family.
  • Wireless local area networks (such as Wi-Fi networks) can provide high-speed and low-latency transmission.
  • WLAN systems will be used in more scenarios or industries. For example, in the Internet of Things industry, in the Internet of Vehicles industry or in the banking industry, in corporate offices, stadiums and exhibition halls, concert halls, hotel rooms, dormitories, wards, classrooms, supermarkets, squares, streets, and generation workshops and warehousing, etc.
  • devices that support WLAN communication can be sensor nodes in smart cities (such as smart water meters, smart electricity meters, and smart air detection nodes), smart devices in smart homes (such as smart cameras, projectors, etc.) devices, display screens, TV sets, stereos, refrigerators, washing machines, etc.), nodes in the Internet of Things, entertainment terminals (such as AR, VR and other wearable devices), smart devices in smart office (such as printers, projectors, Amplifiers, stereos, etc.), IoV devices in the Internet of Vehicles, infrastructure in daily life scenarios (such as vending machines, self-service navigation desks in supermarkets, self-service cash registers, self-service ordering machines, etc.), and large-scale sports Or equipment for music venues, etc.
  • the specific form of the terminal device is not particularly limited in the embodiments of the present application, which is only an exemplary description here.
  • Bluetooth is a wireless communication technology standard that enables mobile devices to exchange data over short distances to form a personal area network. It uses short-baud high-frequency radio waves to communicate via the ISM (Industrial Scientific Medical, Industrial/Scientific/Medical) frequency band of 2.4 to 2.485GHz, and the communication distance varies from several meters to several hundreds of meters.
  • ISM International Scientific Medical, Industrial/Scientific/Medical
  • the shared LNA may include shared external LNA, shared built-in LNA, or shared external LNA and shared built-in LNA.
  • the number of shared LNAs can be one or more.
  • FIG. 2 is an exemplary schematic diagram of a circuit structure.
  • a BT DBB digital baseband, digital baseband
  • the antenna receives the Wi-Fi signal and the Bluetooth signal, and is divided into two signals (Bluetooth signal and Wi-Fi signal) after passing through the external LNA.
  • the Bluetooth signal is transmitted to the BT DBB through the radio frequency channel 1, and the Wi-Fi signal passes through the radio frequency.
  • Channel 2 transmits to the Wi-Fi DBB.
  • the radio frequency path 1 includes but is not limited to: built-in LNA, mixer, RX ABB (receive analog baseband, receiving analog baseband) and other devices
  • the radio frequency path 2 is provided with: built-in LNA, mixer, RX ABB, etc. device.
  • the BT DBB and the Wi-Fi DBB are respectively electrically connected to the built-in LNA and the external LNA, for example, connected through a control line, so as to transmit a control signal (or an indication signal).
  • the circuit also includes a radio frequency path 3, the BT DBB and the Wi-Fi DBB are coupled to the radio frequency path 3, the radio frequency path 3 is coupled to the antenna, and the BT DBB and the Wi-Fi DBB pass through the radio frequency path 3 to connect the Bluetooth signal or Wi-Fi.
  • -Fi signal is transmitted to and emitted by the antenna.
  • Radio frequency channel 3 is provided with: TX ABB (Transmit analog baseband, transmit analog baseband), SPDT switch, mixer, built-in PA and external PA and other devices.
  • TX ABB Transmit analog baseband, transmit analog baseband
  • SPDT switch Sensor-sensitive mixer
  • mixer built-in PA and external PA and other devices.
  • the radio frequency path described in this application may also be referred to as a circuit, a processing circuit, a transmission circuit, etc., which is not limited in this application, and the description will not be repeated hereinafter.
  • an arbitration mechanism also known as a priority mechanism, is used in the terminal device.
  • a priority mechanism also known as a priority mechanism.
  • the BT DBB and the Wi-Fi DBB share the LNA, it is necessary to determine who controls the gain level of the shared LNA, which can also be understood as the ownership of the control right of the shared LNA.
  • a module with high priority referred to as BT DBB or Wi-Fi DBB
  • a shared LNA eg, an external LNA.
  • the priority is determined by the processor and sent to the BT DBB and the Wi-Fi DBB.
  • the BT DBB obtains the control right of the external LNA.
  • the BT DBB detects that the signal strength of the Bluetooth signal is higher than the Bluetooth switching threshold (or Called the switching threshold of the BT DBB)
  • the BT DBB sends a control signal to the external LNA through the control line to control the external LNA to downshift, that is, to set the external LNA to a low gain gear. If the priority of the Wi-Fi DBB is higher than that of the BT DBB, the Wi-Fi DBB obtains the control of the external LNA.
  • the Wi-Fi DBB When the Wi-Fi DBB detects that the signal strength of the Wi-Fi signal is higher than the Wi-Fi handover threshold (also Can be called the switching threshold of the Wi-Fi DBB), then the Wi-Fi DBB sends a control signal to the external LNA through the control line to control the external LNA to downshift, that is, to set the external LNA to a low gain gear.
  • the low-gain gear described in the embodiments of the present application refers to a gear that reduces the gain of the currently processed signal.
  • the external LNA is used to increase the gain of the signal, that is, the external LNA is used to increase the gain of the signal.
  • the gain of the signal after the LNA is placed is greater than the gain of the signal received by the antenna, and when the external LNA is placed in the low-gain gear, it means that the gain of the signal after passing through the external LNA is reduced.
  • the gain of the signal received by the antenna is still greater than the gain of the signal received by the antenna.
  • the gain of the reduced signal may be less than or equal to the gain of the signal received by the antenna, which is not limited in this application.
  • the high gain gear refers to increasing the gain of the signal passing through the external LNA, which will not be described in detail below.
  • FIG. 3 is an exemplary schematic diagram of another circuit structure.
  • the BT DBB and the Wi-Fi DBB share the antenna, the external LNA and the built-in LNA, and a priority mechanism can still be used to control the shared external LNA. and the built-in LNA, the specific details are similar to the description in FIG. 2, and are not repeated here.
  • the switching threshold of BT DBB is relatively low, for example, -70dBm . Since Wi-Fi has relatively high requirements on signal-to-noise ratio, the switching threshold of Wi-Fi DBB is relatively high, for example, -50dBm.
  • the BT DBB controls the external LNA, it will control the external LNA to downshift at a low signal strength (eg -70dBm), resulting in a decrease in the signal-to-noise ratio of the Wi-Fi signal, making the demodulation capability of the Wi-Fi DBB more powerful.
  • the Wi-Fi DBB controls the external LNA, it will control the external LNA to downshift when the signal strength is high (eg -50dBm), which will reduce the anti-interference ability of the BT DBB.
  • the external LNA may include a high gear and a low gear, where the high gear is on and the low gear is off.
  • the external LNA may also include multiple different gears, for example, multiple different high gears for increasing the gain of the signal to different degrees, and/or multiple different low gears for increasing the signal gain The gain is reduced to different degrees, and the built-in LNA is similar, and will not be described in the following.
  • the present application provides a short-range communication device.
  • the device may be a terminal, a short-range communication chip in a terminal, or a chipset including a short-range communication chip and an off-chip device.
  • an additional control circuit is set on the radio frequency path between the antenna and the BT DBB, so that both the BT DBB and the Wi-Fi DBB can realize the gain control of the signal, which meets the anti-interference requirements of Bluetooth, and at the same time It meets the signal-to-noise ratio requirements of Wi-Fi.
  • FIG. 4 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system includes one or more transmitters 100 and one or more receivers 200 .
  • Both the sending end and the receiving end in the embodiments of the present application may include various electronic devices with wireless communication functions, and the electronic devices may be handheld devices, vehicle-mounted devices, wearable devices (for example, smart watches, smart bracelets, wireless earphones) , augmented reality devices, virtual reality devices, smart glasses), computing devices or other processing devices connected to wireless modems, and various forms of user equipment (UE), mobile station (MS), smart home Devices (eg, smart refrigerators, smart TVs, smart routers, etc.), etc.
  • UE user equipment
  • MS mobile station
  • smart home Devices eg, smart refrigerators, smart TVs, smart routers, etc.
  • the electronic device A when any one of the above-mentioned electronic devices A sends data to another one of the above-mentioned electronic devices B, the electronic device A is the sending device, and the electronic device B is the receiving device. In another example, when any one of the above electronic devices A receives data sent by another one of the above electronic devices B, the electronic device A is the receiving device, and the electronic device B is the sending device.
  • the sending end 100 may send a Bluetooth signal and/or a Wi-Fi signal to the receiving end 200 .
  • Wi-Fi and Bluetooth networks are mainly described by taking Wi-Fi and Bluetooth networks as examples, those skilled in the art will readily understand that various aspects involved in this application can be extended to other networks using various standards or protocols, for example, high-performance Wireless LAN (high performance radio LAN, HIPERLAN) (a wireless standard similar to the IEEE 802.11 standard, mainly used in Europe) and wide area network (WAN), wireless local area network (WLAN), personal area network (personal area network) Area network, PAN) or other networks that are now known or developed in the future, and the use of terminal devices in scenarios where any two or more network functions coexist. Accordingly, the various aspects provided herein may be applicable to any suitable short-range wireless communication network, regardless of the coverage and wireless access protocol used.
  • high-performance Wireless LAN high performance radio LAN, HIPERLAN
  • WAN wide area network
  • WLAN wireless local area network
  • PAN personal area network Area network
  • the various aspects provided herein may be applicable to any suitable short-range wireless communication network, regardless of the coverage and wireless access protocol used.
  • FIG. 5 is a schematic structural diagram of a short-range communication device provided by an embodiment of the present application.
  • the BT DBB 540 and the Wi-Fi DBB 550 are respectively coupled to the antenna 510 through a radio frequency receiving path and a radio frequency transmitting path.
  • DBB 540 receives the Bluetooth signal input from the antenna 510 through the RF receiving channel
  • Wi-Fi DBB 550 receives the Wi-Fi signal input from the antenna 510 through the RF receiving channel
  • BT DBB 540 and Wi-Fi DBB 550 can output the Bluetooth signal respectively through the RF transmitting channel signal and Wi-Fi signal to antenna 510.
  • the BT DBB 540 is coupled to the antenna 510 through the RF path 1 or the RF path 2, wherein the RF path 1 is provided with: an external LNA 521, a built-in LNA 522, a mixer 523, an RX ABB 524, etc.
  • the RF channel 2 is provided with: built-in LNA522, mixer 523, RX ABB524 and other devices.
  • the SPDT switch 560 is used to control the enable state of the RF path 1 and the RF path 2, that is to say, the SPDT switch 560 is used to control the switching of the RF path 1 and the RF path 2, so that the BT DBB540 can pass the RF path 1.
  • RF path 2 is coupled to antenna 510 . 5
  • the terminal 0 of the SPDT switch 560 is coupled to the BT DBB540
  • the terminal 1 is coupled to the input terminal of the external LNA521
  • the terminal 2 is coupled to the output terminal of the external LNA521.
  • the external LNA may also be referred to as a shared external LNA, or may be referred to as a gain unit.
  • the names and quantities of devices on each radio frequency channel are only schematic examples. The application is not limited in this regard.
  • the RF path 2 is enabled, that is, the antenna 510 transmits the Bluetooth signal to the BT DBB through the RF path 2.
  • the RF path 1 is enabled, that is, the antenna 510 transmits the Bluetooth signal to the BT DBB540 through the RF path 1. It can also be understood that after the SPDT switch 560 is placed at the terminal 1, the external LNA (ie, the gain unit) is bypassed, or called as a bypass.
  • the Wi-Fi DBB 550 is coupled to the antenna 510 through the radio frequency path 3.
  • the radio frequency path 3 is provided with: external LNA521, built-in LNA525, mixer 526, RX ABB527 and other devices.
  • the antenna 510 can transmit Wi-Fi signals to the Wi-Fi DBB 550 through the RF path 3 .
  • the BT DBB550 and the Wi-Fi DBB550 are coupled to the antenna 510 through a radio frequency transmission path, and the radio frequency transmission path is provided with: a switch (which can be a SPDT switch) 531, a TX ABB532, a mixer 533, a built-in PA (( Power Amplifier, power amplifier)) 534, external PA535 and other devices.
  • a switch which can be a SPDT switch
  • TX ABB532 a TX ABB532
  • a mixer 533 a built-in PA (( Power Amplifier, power amplifier)) 534
  • external PA535 external PA535
  • the radio frequency transmission paths shown in the drawings of this application are only schematic examples, and the devices included, the number of devices, and the paths, etc. It may not be limited to the structure defined in the description of the present application, and will not be described in detail below.
  • radio frequency receiving paths including radio frequency path 1, radio frequency path 2, and radio frequency path 3
  • radio frequency transmitting paths are data transmission radio frequency paths for transmitting corresponding data.
  • the BT DBB and the SPDT switch 560 and the built-in LNA 522, as well as the Wi-Fi DBB and the external LNA 521 and the built-in LNA 525 can also be connected through a control path, that is, electrically connected through a control line for transmission.
  • control signal or an indication signal wherein, in the description of the embodiments of the present application, the control signal is used to control the closed state of each switch, the indication signal is used to control the gain gear of the LNA, and the indication signal may also refer to the relevant information sent by the processor. instruction, and the description will not be repeated in the following.
  • the BT DBB 540 can send a control signal (ie an electrical signal) to the SPDT switch 560 through a control path connected to the SPDT switch 560 to control the closed state of the SPDT switch 560.
  • the BT DBB540 can also send an instruction signal to the built-in LNA522 through the control path connected to the built-in LNA522 to control the gain level of the built-in LNA522.
  • the Wi-Fi DBB550 can send an indication signal (ie an electrical signal) to the external LNA521 and/or the built-in LNA526 through the control path connected to the external LNA521 and the built-in LNA526 to control the external LNA521 and/or the built-in LNA526.
  • the external LNA 521 may include two or more gears. In this embodiment and the following embodiments, only the high-gain gear (ie, on) and the low-gain gear (ie, off) are used as examples. description, which will not be repeated below.
  • a switch 536 is disposed between the antenna 510 and the external LNA 521 and the external PA 535 .
  • the switch 536 is a single-pole double-throw switch, including terminal 0 , terminal 1 and terminal 2 .
  • SPDT switch 536 placed at terminal 1 or terminal 2 enables the RF receive path or the RF transmit path to input or output signals.
  • the external PA535 and the external LNA521 can be coupled to different antennas.
  • FIG. 6 is a schematic flowchart of the control method.
  • FIG. 6 is a schematic flowchart of the control method.
  • Step 101 the Wi-Fi DBB obtains the control right of the external LNA.
  • the processor may send instruction information to the Wi-Fi DBB550 to instruct the Wi-Fi DBB550 to obtain control over the external LNA521.
  • the Wi-Fi DBB 550 determines that it has control over the external LNA 521.
  • the indication information may include priority information, for example, if the priority is high, it indicates that the control right is possessed; otherwise, the control right is not.
  • the processor may also send indication information to the BT DBB, where the indication information includes that the priority is low, that is, indicating that the BT DBB has no control right over the external LNA 521.
  • the BT DBB can also be pre-configured to have no control right, that is, the processor does not need to issue the instruction information independently.
  • the gain gear of the external LNA521 is set to the high gain gear by default, that is, the open state.
  • Step 102 the BT DBB and the Wi-Fi DBB respectively receive the Bluetooth signal and the Wi-Fi signal.
  • the SPDT switch 550 is set to the terminal 2 by default, that is, the radio frequency path 1 is enabled, and the antenna transmits the received Bluetooth signal to the BT DBB550 through the radio frequency path 1.
  • the antenna transmits the received Wi-Fi signal to the Wi-Fi DBB550 through the radio frequency path 3 .
  • Step 103 the BT DBB judges whether the strength of the Bluetooth signal is greater than or equal to the first handover threshold.
  • the first handover threshold is -70dBm as an example for description.
  • the BT DBB540 determines whether the strength of the Bluetooth signal is greater than or equal to the first handover threshold based on the received Bluetooth signal. In an example, if it is greater than or equal to the first handover threshold, step 104 is executed, and if it is less than the first handover threshold , step 102 is repeatedly executed, that is, the Bluetooth signal continues to be received based on the radio frequency channel 1.
  • the strength of the signal refers to the strength of the signal received by the antenna.
  • the strength of the signal It can also refer to the strength of the signal received by the BT DBB or the Wi-Fi DBB, and the corresponding switching threshold can be set according to the actual situation, which is not limited in this application, and the description will not be repeated below.
  • step 104 the BT DBB controls the SPDT switch to be placed on terminal 1 to enable RF path 2.
  • the BT DBB540 determines that the strength of the Bluetooth signal is greater than or equal to -70dBm, and sends a control signal to the SPDT switch 560 through the control path with the SPDT switch 560 to control the SPDT switch 560 to be placed on the terminal.
  • the BT DBB540 receives the Bluetooth signal transmitted by the antenna 510 through RF path 2 to skip the external LNA (that is, bypass the external LNA), thereby reducing the gain of the Bluetooth signal.
  • the control of the external LNA is still in the Wi-Fi DBB550, and the external LNA is still in the high-gain gear, that is to say, the BT DBB skips the external LNA (that is, the external LNA Bypass) to reduce the gain of the Bluetooth signal, the Wi-Fi signal will still be processed by the external LNA and then transmitted to the Wi-Fi DBB, so as to meet the anti-interference requirements of the BT DBB and ensure Wi-Fi - Signal-to-noise ratio of the Fi signal.
  • Step 105 the Wi-Fi DBB determines whether the strength of the Wi-Fi signal is greater than or equal to the second handover threshold.
  • the second handover threshold is -50dBm as an example for description.
  • the Wi-Fi DBB550 determines whether the strength of the Wi-Fi signal is greater than or equal to the second handover threshold based on the received Wi-Fi signal. In one example, if it is greater than or equal to the second switching threshold, step 106 is performed, and if it is less than the second switching threshold, no processing is performed, that is, the current radio frequency path (that is, the radio frequency passing through the external LNA in the high gain gear) is continued. channel) to receive Wi-Fi signals.
  • Step 106 the Wi-Fi DBB places the external LNA in a low gain gear.
  • the Wi-Fi DBB550 determines that the strength of the Wi-Fi signal is greater than or equal to -50dBm, it sends an instruction signal to the external LNA521 through the control path with the external LNA521 to place the external LNA521 in the low-gain gear. bit, that is, puts the external LNA521 in the off state.
  • the BT DBB550 can receive the Bluetooth signal through the RF channel 2, and the Wi-Fi DBB550 can receive the Wi-Fi signal through the RF channel 3 including the external LNA521 placed in the low gain gear.
  • the BT DBB540 and the Wi-Fi DBB550 can also transmit a Bluetooth signal or a Wi-Fi signal to the antenna through a radio frequency transmission channel.
  • a Bluetooth signal or a Wi-Fi signal can also transmit a Bluetooth signal or a Wi-Fi signal to the antenna through a radio frequency transmission channel.
  • FIG. 7 is a schematic structural diagram of a short-range communication device provided in an embodiment of the present application.
  • the BT DBB540 and the Wi-Fi DBB550 are respectively coupled to the antenna 510 through a radio frequency receiving path and a radio frequency transmitting path.
  • DBB 540 receives the Bluetooth signal input from the antenna 510 through the RF receiving channel
  • Wi-Fi DBB 550 receives the Wi-Fi signal input from the antenna 510 through the RF receiving channel
  • BT DBB 540 and Wi-Fi DBB 550 can output the Bluetooth signal respectively through the RF transmitting channel signal and Wi-Fi signal to antenna 510.
  • the BT DBB540 is coupled to the antenna 510 through a radio frequency receiving path (including the radio frequency path 1 or the radio frequency path 2), wherein the radio frequency path 1 is provided with: an external LNA 521, a built-in LNA 522, a frequency mixing
  • the RF path 2 is provided with: external LNA 521, power attenuator 710, built-in LNA522, mixer 523, RX ABB524 and other devices.
  • the input end of the external LNA 521 is coupled to the antenna 510
  • the input end of the power attenuator 710 is coupled to the external LNA 521 .
  • a SPDT switch 720 between RF path 1 and RF path 2, including terminal 0, terminal 1 and terminal 2, wherein terminal 0 is the stationary terminal, terminal 1 and terminal 2 are the moving terminal, and the terminal 0 is coupled to the BT DBB540, terminal 1 is coupled to the output of the power attenuator 710, and terminal 2 is coupled to the input of the power attenuator 710.
  • the SPDT switch is used to control the enable state of RF path 1 and RF path 2. That is to say, the switch between RF path 1 and RF path 2 is controlled by the SPDT switch 720, so that the BT DBB 540 can be coupled to the antenna 510 through the RF path 1 or the RF path 2.
  • the external LNA 521 and the power attenuator 710 constitute a gain unit.
  • the SPDT switch 720 is placed at terminal 1, that is, terminal 0 is connected to terminal 1, the radio frequency path 2 is enabled, that is, the antenna 510 transmits the Bluetooth signal to the BT DBB540 through the radio frequency path 2, that is, to the gain unit.
  • the power attenuator 710 is bypassed.
  • the SPDT switch 720 is placed on the terminal 2, that is, the terminal 0 is connected to the terminal 2, the RF path 1 is enabled, that is, the antenna 510 transmits the Bluetooth signal to the BT DBB 540 through the RF path 1.
  • the SPDT switch 720 is placed at terminal 1, and after enabling RF path 2, the Bluetooth signal processed by the external LNA is further processed by the power attenuator, that is, the signal amplified by the external LNA is processed. Gain reduction.
  • the Wi-Fi DBB550 is coupled to the antenna 510 through the radio frequency receiving path (including the radio frequency path 3).
  • the radio frequency path 3 is provided with: external LNA521, built-in LNA525, mixer 526, RX ABB527, etc. device.
  • the antenna 510 can transmit Wi-Fi signals to the Wi-Fi DBB 550 through the RF path 3 .
  • the BT DBB550 and the Wi-Fi DBB560 are coupled to the antenna 510 through a radio frequency transmission path.
  • the BT DBB540 is coupled to the SPDT switch 720 through the control path, with a built-in LNA522.
  • the Wi-Fi DBB550 is coupled to the external LNA521 and the built-in LNA525 through the control path.
  • FIG. 8 is a schematic flowchart of the control method.
  • FIG. 8 is a schematic flowchart of the control method.
  • step 201 the Wi-Fi DBB obtains the control right of the external LNA.
  • Step 202 the BT DBB and the Wi-Fi DBB respectively receive the Bluetooth signal and the Wi-Fi signal.
  • Step 203 the BT DBB judges whether the strength of the Bluetooth signal is greater than or equal to the first handover threshold.
  • the first handover threshold is -70dBm as an example for description.
  • the BT DBB540 determines whether the strength of the Bluetooth signal is greater than or equal to the first handover threshold based on the received Bluetooth signal. In an example, if it is greater than or equal to the first handover threshold, step 204 is executed, and if it is less than the first handover threshold , then step 202 is repeatedly executed, that is, the Bluetooth signal continues to be received based on the radio frequency channel 1.
  • step 204 the BT DBB controls the SPDT switch to be placed on terminal 1 to enable RF path 2.
  • the BT DBB540 determines that the strength of the Bluetooth signal is greater than or equal to -70dBm, and sends a control signal to the SPDT switch 720 through the control path with the SPDT switch 720 to control the SPDT switch 720 to be placed Terminal 1, enable RF channel 2, BT DBB540 receives the Bluetooth signal transmitted by the antenna 510 through RF channel 2, the power attenuator 710 can process the Bluetooth signal to reduce the gain of the Bluetooth signal, that is, through the power attenuator , which can achieve the purpose of reducing the gain of the Bluetooth signal. It should be noted that the performance of the power attenuator can be selected according to actual requirements, which is not limited in this application.
  • the control of the external LNA is still in the Wi-Fi DBB550, and the external LNA is still in the high-gain gear, so as to meet the anti-interference requirements of the BT DBB, ensure Wi-Fi The signal-to-noise ratio of the signal.
  • Step 205 the Wi-Fi DBB determines whether the strength of the Wi-Fi signal is greater than or equal to the second handover threshold.
  • step 206 the Wi-Fi DBB places the external LNA in a low gain gear.
  • FIG. 9 is a schematic structural diagram of a short-range communication device provided by an embodiment of the present application.
  • the BT DBB 540 and the Wi-Fi DBB 550 are respectively coupled to the antenna 510 through a radio frequency receiving path and a radio frequency transmitting path.
  • the BT DBB 540 is coupled to the antenna 510 through a radio frequency receiving path (including the radio frequency path 1, the radio frequency path 2, the radio frequency path 3 or the radio frequency path 4), wherein the radio frequency path 1 is provided with: an external Devices such as LNA 521, built-in LNA522, mixer 523, RX ABB524, etc., are set on RF path 2: external LNA521, power attenuator 910, built-in LNA522, mixer 523, RX ABB524 and other devices, set on RF path 3 There are: built-in LNA522, mixer 523, RX ABB524 and other devices, and radio frequency channel 4 is provided with: power attenuator 910, built-in LNA522, mixer 523, RX ABB524 and other devices.
  • an external Devices such as LNA 521, built-in LNA522, mixer 523, RX ABB524, etc.
  • SPDT switches including SPDT switches 920 and SPDT switches 930 , are disposed between the RF paths.
  • the SPDT switch 920 and SPDT switch 930 both include terminal 0, terminal 1 and terminal 2.
  • the terminal 0 of the SPDT switch 920 is coupled to the BT DBB 540
  • the terminal 1 is coupled to the output of the power attenuator 910
  • the terminal 2 is coupled to the input of the power attenuator 910 .
  • the terminal 0 of the SPDT switch 930 is coupled to the input terminal of the power attenuator 910 , the terminal 1 is coupled to the input terminal of the external LNA 521 , and the terminal 2 is coupled to the output terminal of the external LNA 521 .
  • the external LNA 521, the power attenuator 910 and the SPDT switch 930 constitute a gain unit.
  • the SPDT switch 920 is placed on the terminal 2
  • the SPDT switch 930 is placed on the terminal 2, which can enable the RF path 1, that is, bypass the power attenuator 910 in the gain unit.
  • the SPDT switch 930 is placed at the terminal 2, and the SPDT switch 920 is placed at the terminal 1, so that the RF path 2 can be enabled, that is, through the power attenuator 910, to achieve gain attenuation.
  • the SPDT switch 930 is placed at the terminal 1, and the SPDT switch 920 is placed at the terminal 2, so that the RF path 3 can be enabled, that is, the gain is achieved through the external LNA521 and the power attenuator 525 in the bypass gain unit. attenuation.
  • the SPDT switch 930 is placed at terminal 1, and the SPDT switch 920 is placed at terminal 1, enabling RF path 4, ie, through the external LNA 521 in the bypass gain unit, and enabling the power attenuator 525 , to achieve gain reduction.
  • the SPDT switch 920 and the SPDT switch 930 are set to terminal 2 by default, enabling the radio frequency path 1, that is, the BT DBB 540 receives the signal transmitted by the antenna 510 through the radio frequency path 1. Bluetooth signal.
  • the antenna 510 and the Wi-Fi DBB550 are connected through a radio frequency receiving path, that is, the radio frequency path 5, and the radio frequency path 5 is provided with: external LNA521, built-in LNA525, mixer 526, RX ABB527 and other devices.
  • the antenna 510 can transmit Wi-Fi signals to the Wi-Fi DBB 550 through the RF path 5 .
  • the BT DBB540 is connected to the SPDT switch 920, the SPDT switch 930 and the built-in LNA522 through a control channel, and optionally, the Wi-Fi DBB550 is connected to the external LNA521 and the built-in LNA525 through a control channel.
  • FIG. 10 is a schematic flowchart of the control method.
  • FIG. 10 is a schematic flowchart of the control method.
  • Step 301 the Wi-Fi DBB obtains the control right of the external LNA.
  • Step 302 the BT DBB and the Wi-Fi DBB respectively receive the Bluetooth signal and the Wi-Fi signal.
  • Step 303 the BT DBB judges whether the strength of the Bluetooth signal is greater than or equal to the first handover threshold.
  • the first handover threshold is -70dBm as an example for description.
  • the BT DBB determines whether the strength of the Bluetooth signal is greater than or equal to the first handover threshold. In an example, if it is greater than or equal to the first handover threshold, step 304 is executed, and if it is less than the first handover threshold , step 302 is repeatedly executed, that is, the Bluetooth signal continues to be received based on the radio frequency channel 1.
  • step 304 the BT DBB controls the first SPDT switch to be placed at terminal 1 to enable RF path 2.
  • the BT DBB540 determines that the strength of the Bluetooth signal is greater than or equal to -70dBm, and sends a control signal to the SPDT switch 920 through the control path with the first SPDT switch, that is, the SPDT switch 920 to The SPDT switch 920 is controlled to be placed on the terminal 1, wherein the SPDT switch 930 is still placed on the terminal 2, thereby enabling the RF path 2.
  • the BT DBB540 receives the Bluetooth signal transmitted by the antenna 510 through the RF path 2, and the power attenuator 910 can The bluetooth signal is processed to reduce the gain of the bluetooth signal, that is, the purpose of reducing the gain can be achieved through the power attenuator.
  • Step 305 the BT DBB determines whether the strength of the Bluetooth signal is greater than or equal to the second handover threshold.
  • the second handover threshold is -60dBm as an example for description.
  • the BT DBB determines whether the strength of the Bluetooth signal is greater than or equal to the second handover threshold based on the received Bluetooth signal. In an example, if it is greater than or equal to the second handover threshold, step 306 is executed, and if it is less than the second handover threshold , then no processing is performed, that is, the Bluetooth signal continues to be received through the radio frequency channel 2 .
  • Step 306 the BT DBB controls the first SPDT switch to be placed at terminal 2 and the second SPDT switch to be placed at terminal 1 to enable RF path 3 .
  • the BT DBB540 determines that the strength of the Bluetooth signal is greater than or equal to -60 dBm, and then passes through the control path between the first SPDT switch, that is, the SPDT switch 920, and the second SPDT switch, that is, the SPDT
  • the control path between the double throw switches 930 sends control signals to the SPDT switch 920 and the SPDT switch 930 respectively, so as to control the SPDT switch 930 to be placed at terminal 1, and the SPDT switch 920 to be placed at the terminal 2, so that the Enable RF path 3, BT DBB540 receives the Bluetooth signal transmitted by the antenna 510 through RF path 3 to skip the external LNA (that is, bypass the external LNA), thereby reducing the gain of the Bluetooth signal.
  • the BT DBB can also be configured to: when it is determined that the strength of the Bluetooth signal is greater than or equal to the first switching threshold, enable the radio frequency path 3, that is, skip the external LNA (bypass the external LNA). ), and then, when it is determined that the strength of the Bluetooth signal is greater than or equal to the second switching threshold, the radio frequency path 2 is enabled, that is, the power attenuator is used to reduce the gain.
  • Step 307 the BT DBB judges whether the strength of the Bluetooth signal is greater than or equal to the third handover threshold.
  • the third handover threshold is -50dBm as an example for description.
  • the BT DBB determines whether the strength of the Bluetooth signal is greater than or equal to the third handover threshold based on the received Bluetooth signal. In an example, if it is greater than or equal to the third handover threshold, step 308 is executed, and if it is less than the third handover threshold , then no processing is performed, that is, the Bluetooth signal continues to be received through the radio frequency channel 3 .
  • step 308 the BT DBB controls the first SPDT switch to be placed on terminal 1 to enable RF path 4 .
  • the BT DBB540 determines that the strength of the Bluetooth signal is greater than or equal to -50dBm, and sends a control signal to the SPDT switch 920 through the control path with the first SPDT switch, that is, the SPDT switch 920, to The SPDT switch 920 is controlled to be placed on the terminal 1, wherein the SPDT switch 920 is still placed on the terminal 1, thereby enabling the RF path 4, and the BT DBB540 receives the Bluetooth signal transmitted by the antenna 510 through the RF path 4 to skip the external
  • the LNA that is, bypassing the external LNA
  • the control of the external LNA is still in the Wi-Fi DBB550, and the external LNA is still in the high-gain gear, so as to meet the anti-interference requirements of the BT DBB, ensure Wi-Fi The signal-to-noise ratio of the signal.
  • Step 309 the Wi-Fi DBB determines whether the strength of the Wi-Fi signal is greater than or equal to the fourth handover threshold.
  • step 310 the Wi-Fi DBB places the external LNA in a low gain gear.
  • FIG. 11 is a schematic structural diagram of a short-range communication device provided by an embodiment of the present application.
  • the BT DBB1140 and the Wi-Fi DBB1150 are respectively coupled to the antenna 1110 through a radio frequency receiving path and a radio frequency transmitting path.
  • the BT DBB1140 is coupled to the antenna 1110 through a radio frequency receiving path (including the radio frequency path 1 or the radio frequency path 2), wherein the radio frequency path 1 is provided with: an external LNA 1121, a built-in LNA 1122, a frequency mixing 1123, RX ABB1124 and other devices, and the RF path 2 is provided with: external LNA 1121, mixer 1123, RX ABB1124 and other devices.
  • the external LNA may also be called a shared external LNA
  • the built-in LNA may also be called a shared built-in LNA.
  • the input end of the external LNA1121 is coupled to the antenna 1110
  • the input end of the built-in LNA1125 is coupled to the output end of the external LNA1121.
  • a single-pole double-throw switch 1160 between RF path 1 and RF path 2, including terminal 0, terminal 1 and terminal 2, where terminal 0 is a stationary terminal, and terminal 1 and terminal 2 It is a moving end, wherein, terminal 0 is coupled to the BT DBB1140, terminal 1 is coupled to the input end of the built-in LNA1125, and terminal 2 is coupled to the output end of the built-in LNA1125.
  • the SPDT switch 1160 is used to control the RF path 1 and the RF path 2. enable state.
  • the built-in 1125 constitutes a gain unit.
  • the SPDT switch 1110 is placed on terminal 1, that is, terminal 0 is connected to terminal 1, and the RF path 2 is enabled, that is, the built-in 1125 is performed. Bypass, the antenna 1110 transmits the Bluetooth signal to the BT DBB1140 through the RF path 2.
  • the SPDT switch 1160 is placed on the terminal 2, that is, the terminal 0 is connected to the terminal 2, the RF path 1 is enabled, that is, the antenna 1110 transmits the Bluetooth signal to the BT DBB1140 through the RF path 1.
  • the SPDT switch 1160 is placed at the terminal 2 to enable the radio frequency path 1 .
  • the antenna 1110 and the Wi-Fi DBB1150 are connected through a radio frequency receiving path (RF path 3), and the radio frequency path 3 is provided with: external LNA1121, built-in LNA1122, mixer 1125, RX ABB1126 and other devices.
  • the antenna 1110 can transmit Wi-Fi signals to the Wi-Fi DBB 1150 through the RF path 3 .
  • the BT DBB1140 and the SPDT switch 1160 are connected through a control path.
  • the Wi-Fi DBB1150 is connected with the external LNA1121 and the built-in LNA1122 through a control channel.
  • FIG. 12 is a schematic flowchart of the control method, in FIG. 12 :
  • step 401 the Wi-Fi DBB obtains the control right of the external LNA and the built-in LNA.
  • Step 402 the BT DBB and the Wi-Fi DBB respectively receive the Bluetooth signal and the Wi-Fi signal.
  • Step 403 the BT DBB judges whether the strength of the Bluetooth signal is greater than or equal to the first handover threshold.
  • the first handover threshold is -70dBm as an example for description.
  • the BT DBB1140 determines whether the strength of the Bluetooth signal is greater than or equal to the first handover threshold based on the received Bluetooth signal. In an example, if it is greater than or equal to the first handover threshold, step 404 is executed, and if it is less than the first handover threshold , then step 402 is repeatedly executed, that is, the Bluetooth signal continues to be received based on the radio frequency channel 1.
  • Step 404 the BT DBB determines whether the gain gear of the built-in LNA is a positive gain gear.
  • the gain gear of the LNA includes a positive gain gear, that is, the gain of the signal can be increased, and it can also include a negative gain gear, that is, the gain gear of the signal can be made, wherein the positive gain gear
  • the first and negative gain gears may in turn further comprise a plurality of gears.
  • the BT DBB determines that the strength of the Bluetooth signal is greater than or equal to -70dBm, and the built-in LNA is in the negative gain gear, that is, the built-in LNA is currently enabling the function of reducing the gain, it is not necessary to skip the built-in LNA, or It can be understood that if the built-in LNA is skipped (ie, the external LNA is bypassed), the gain of the signal will be increased instead.
  • the BT DBB determines that the strength of the Bluetooth signal is greater than or equal to -70dBm, and the built-in LNA is in the positive gain gear, that is, the built-in LNA is currently enabling the function of increasing the gain, it is necessary to skip the built-in LNA (that is, external set the LNA to bypass) to reduce the gain of the Bluetooth signal, and perform step 404.
  • Step 405 the BT DBB controls the SPDT switch to be placed on terminal 1 to enable RF path 2 .
  • the BT DBB1140 sends a control signal to the SPDT switch 1160 through the control path between the BT DBB1140 and the SPDT switch 1160 to control the SPDT switch 1160 to be placed at terminal 1, enable the RF path 2, and the BT DBB1140 passes
  • the RF path 2 receives the Bluetooth signal transmitted by the antenna 1110 to skip the built-in LNA, thereby reducing the gain of the Bluetooth signal.
  • Step 406 the Wi-Fi DBB controls the gain level of the external LNA and the built-in LNA based on the strength of the Wi-Fi signal.
  • the Wi-Fi DBB can control the gain levels of the external LNA and the built-in LNA based on the strength of the Wi-Fi signal.
  • the prior art embodiments which are not limited in this application.
  • FIG. 13 is a schematic structural diagram of a short-range communication device provided by an embodiment of the present application.
  • the BT DBB1140 and the Wi-Fi DBB1150 are respectively coupled to the antenna 1110 through a radio frequency receiving path and a radio frequency transmitting path.
  • the BT DBB1140 is coupled to the antenna 1110 through the radio frequency receiving path (including the radio frequency path 1 and the radio frequency path 2), wherein the radio frequency path 1 is provided with: an external LNA 1121, a built-in LNA 1122, a frequency mixing 1123, RX ABB1124 and other devices, RF path 2 is provided with: external LNA 1121, mixer 1123, RX ABB1124 and other devices, and RF path 3 is provided with: mixer 1123, RX ABB1124 and other devices.
  • the external LNA may also be called a shared external LNA
  • the built-in LNA may also be called a shared built-in LNA.
  • the input terminal of the external LNA 1121 is coupled to the antenna 1110
  • the output terminal of the external LNA 1121 is coupled to the internal LNA 1122
  • terminal 0 is The moving terminal
  • terminal 1 is coupled to the input terminal of the external LNA 1121
  • terminal 2 is coupled to the input terminal of the built-in LNA1122
  • terminal 3 is coupled to the built-in LNA1122. The output of the LNA1122.
  • the external LNA 1121 and the built-in LNA 1122 constitute a gain unit.
  • a single-pole, three-throw switch 1360 is placed at terminal 3 to enable radio frequency path 1 .
  • a single-pole, three-throw switch 1360 is placed at terminal 2 to enable RF path 2, which bypasses the built-in LNA1122 in the gain unit.
  • the single-pole, three-throw switch 1360 is placed at terminal 1 to enable RF path 3, that is, bypassing the built-in LNA1122 and the external LNA1121 in the gain unit.
  • the single-pole three-throw switch 1360 is set to terminal 3 by default, that is, the radio frequency path 1 is enabled.
  • the antenna 1110 and the Wi-Fi DBB1150 are connected through a radio frequency receiving path (RF path 4), and the radio frequency path 4 is provided with: external LNA1121, built-in LNA1122, mixer 1125, RX ABB1126 and other devices.
  • the antenna 1110 can transmit Wi-Fi signals to the Wi-Fi DBB 1150 through the RF path 4 .
  • the BT DBB1140 is connected to the single-pole, three-throw switch 1360 through a control path.
  • the Wi-Fi DBB1150 is connected with the external LNA1121 and the built-in LNA1125 through the control channel.
  • FIG. 14 is a schematic flowchart of the control method.
  • FIG. 14 is a schematic flowchart of the control method.
  • step 501 the Wi-Fi DBB obtains the control right of the external LNA and the built-in LNA.
  • Step 502 the BT DBB and the Wi-Fi DBB respectively receive the Bluetooth signal and the Wi-Fi signal.
  • Step 503 the BT DBB judges whether the strength of the Bluetooth signal is greater than or equal to the first handover threshold.
  • the first handover threshold is -70dBm as an example for description.
  • the BT DBB determines whether the strength of the Bluetooth signal is greater than or equal to the first handover threshold. In an example, if it is greater than or equal to the first handover threshold, step 504 is executed, and if it is less than the first handover threshold , then step 502 is repeatedly executed, that is, the Bluetooth signal continues to be received based on the radio frequency channel 1.
  • step 504 the BT DBB controls the SPDT switch to be placed on terminal 2 to enable RF path 2.
  • Step 505 the BT DBB judges whether the strength of the Bluetooth signal is greater than or equal to the second handover threshold.
  • the first handover threshold is -30dBm as an example for description.
  • the BT DBB1140 determines whether the strength of the Bluetooth signal is greater than or equal to the second handover threshold based on the received Bluetooth signal. In an example, if it is greater than or equal to the second handover threshold, step 506 is executed, and if it is less than the second handover threshold , then no processing is performed, and the Bluetooth signal is still received through the radio frequency channel 2 .
  • step 506 the BT DBB controls the SPDT switch to be placed on terminal 1 to enable RF path 3 .
  • the Wi-Fi DBB controls the gain levels of the external LNA and the built-in LNA based on the strength of the Wi-Fi signal.
  • the determination of the radio frequency path based on the signal strength of the BT DBB and the Wi-Fi DBB is used as an example.
  • the BT DBB and the Wi-Fi The DBB can report the acquired strength of the Bluetooth signal or Wi-Fi signal to the processor, and the processor determines the RF path between the BT DBB and the antenna, and the external LNA based on the strength of the Bluetooth signal or Wi-Fi signal And/or the gear position of the built-in LNA, and send the radio frequency channel switching instruction information to the BT DBB, and/or, send the gear switching instruction information to the Wi-Fi DBB.
  • the BT DBB can enable the corresponding RF channel based on the received RF channel switching instruction information, and the Wi-Fi DBB can control the gain level of the external LNA and/or the built-in LNA based on the received gear switching instruction information.
  • Bit switching other details that are not described can refer to scenarios 1 to 3, which will not be repeated here.
  • BT DBB and Wi-Fi DBB are used as examples for description.
  • the technical solutions in the embodiments of the present application can also be applied to two or two.
  • a scenario where more than one baseband processor shares a gain unit is not limited in this application.
  • FIG. 15 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • the communication apparatus 1500 may include: a processor 1501 , a transceiver 1505 , and optionally a memory 1502 .
  • the transceiver 1505 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing a transceiver function.
  • the transceiver 1505 may include a receiver and a transmitter, the receiver may be called a receiver or a receiving circuit, etc., for implementing a receiving function; the transmitter may be called a transmitter or a transmitting circuit, etc., for implementing a transmitting function.
  • the processor 1501 Stored in memory 1502 may be a computer program or software code or instructions 1504, which may also be referred to as firmware.
  • the processor 1501 can control the MAC layer and the PHY layer by running the computer program or software code or instruction 1503 therein, or by calling the computer program or software code or instruction 1504 stored in the memory 1502, so as to realize the following aspects of the present application.
  • the OM negotiation method provided by the embodiment.
  • the processor 1501 may be a central processing unit (central processing unit, CPU), and the memory 1502 may be, for example, a read-only memory (read-only memory, ROM), or a random access memory (random access memory, RAM).
  • the processor 1501 and transceiver 1505 described in this application may be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuits board (printed circuit board, PCB), electronic equipment, etc.
  • ICs integrated circuits
  • RFICs radio frequency integrated circuits
  • ASICs application specific integrated circuits
  • PCB printed circuits board
  • electronic equipment etc.
  • the above-mentioned communication apparatus 1500 may further include an antenna 1506, and each module included in the communication apparatus 1500 is only for illustration, and is not limited in this application.
  • the communication device described in the above embodiments may be a terminal, but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 15 .
  • the communication apparatus may be a stand-alone device or may be part of a larger device.
  • the implementation form of the communication device may be:
  • Independent integrated circuit IC or chip, or, chip system or subsystem
  • a set of one or more ICs, optionally, the IC set may also include storage for storing data and instructions components; (3) modules that can be embedded in other devices; (4) receivers, smart terminals, wireless devices, handsets, mobile units, in-vehicle devices, cloud devices, artificial intelligence devices, etc.; (5) others, etc. .
  • the chip shown in FIG. 16 includes a processor 1601 and an interface 1602 .
  • the number of processors 1601 may be one or more, and the number of interfaces 1602 may be multiple.
  • the chip or chip system may include a memory 1603 .
  • the BT DBB and the Wi-Fi DBB are integrated on the chip, and other devices, including radio frequency paths, antennas, etc., are provided outside the chip.
  • the BT DBB, the Wi-Fi DBB and some devices (such as built-in LNAs, mixers, etc.) in each radio frequency path in the embodiments of the present application are integrated on a chip, an antenna, or an antenna and the external LNA, or, the antenna, the external LNA and the switches for bypassing the LNA or the power attenuator involved in this application are provided off-chip.
  • embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and the computer program includes at least a piece of code, and the at least piece of code can be executed by a terminal device to control
  • the terminal device is used to implement the above method embodiments.
  • the embodiments of the present application further provide a computer program, which is used to implement the above method embodiments when the computer program is executed by a terminal device.
  • the program may be stored in whole or in part on a storage medium packaged with the processor, or may be stored in part or in part in a memory not packaged with the processor.
  • an embodiment of the present application further provides a processor, and the processor is used to implement the above method embodiments.
  • the above-mentioned processor may be a chip.
  • the steps of the method or algorithm described in conjunction with the disclosure of the embodiments of this application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory (Random Access Memory, RAM), flash memory, read only memory (Read Only Memory, ROM), erasable programmable read only memory ( Erasable Programmable ROM, EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically EPROM, EEPROM), registers, hard disk, removable hard disk, CD-ROM, or any other form of storage medium known in the art.
  • RAM Random Access Memory
  • ROM read only memory
  • EPROM erasable programmable read only memory
  • registers hard disk, removable hard disk, CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in a network device.
  • the processor and storage medium may also exist in the network device as discrete components.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

本申请实施例提供一种短距离通信装置、芯片及控制方法,该装置包括增益单元,耦合至天线;第一射频RF接收通道,耦合至增益单元;第一基带处理器,耦合至第一RF接收通道,用于通过第一RF接收通道从天线接收第一信号;第二RF接收通道,耦合至增益单元;第二基带处理器,耦合至第二RF接收通道,用于通过第二RF接收通道从天线接收第二信号,其中,第二RF接收通道与增益单元之间设置有第一旁路开关,第一旁路开关用于选择性地对增益单元中的至少一个增益器件进行旁路。本申请能够有效提高装置的抗干扰能力和吞吐量。

Description

短距离通信装置、芯片及控制方法 技术领域
本申请实施例涉及短距离通信领域,尤其涉及一种短距离通信装置、芯片及控制方法。
背景技术
目前,在蓝牙模块和无线保真(wireless fidelity,Wi-Fi)模块共享低噪声放大器(Low Noise Amplifier,LNA)的机制中,通常采用优先级控制机制,即,具有较高优先级的模块可获得对共享LNA的控制权,以控制共享LNA的增益档位。
但是,在该机制中,由于蓝牙模块和Wi-Fi模块对信号的不同增益档位对应的调节门限不同,导致共享LNA的增益档位调节后,可能会造成蓝牙模块的抗干扰能力下降,或者是Wi-Fi模块的吞吐量降低等问题。
发明内容
为了解决上述技术问题,本申请提出了一种短距离通信装置、芯片及控制方法,从而有效提高装置的抗干扰能力以及吞吐量。
第一方面,提供一种短距离通信装置。该装置包括增益单元,耦合至天线;第一射频RF接收通道,耦合至增益单元;第一基带处理器,耦合至第一RF接收通道,用于通过第一RF接收通道从天线接收第一信号;第二RF接收通道,耦合至增益单元;第二基带处理器,耦合至第二RF接收通道,用于通过第二RF接收通道从天线接收第二信号,其中,第二RF接收通道与增益单元之间设置有第一旁路开关,第一旁路开关用于选择性地对增益单元中的至少一个增益器件进行旁路。这样,本申请可有效提高装置的抗干扰能力和吞吐量。示例性的,第一基带处理器可以为Wi-Fi基带模块,第二基带处理器可以为蓝牙基带模块,相应的,第一信号可以为Wi-Fi信号,第二信号可以为蓝牙信号。示例性的,第一基带处理器与第二基带处理器还可以是其它应用于短距离通信的基带处理器、基带模块或芯片。
根据第一方面,增益单元包括:第一低噪声放大器LNA,第一LNA的输入端耦合至天线,第一LNA的输出端耦合至第一RF接收通道;第一旁路开关分别与第一LNA的输出端与第一LNA的输入端相耦合,用于选择性地对第一LNA进行旁路。这样,通过将第一LNA旁路,可使第一LNA的增益幅度的调节不再受第二信号的强度的影响,从而有效提高第一基带处理器的吞吐量,并且,在第一LNA被旁路的情况下,可降低第二信号的增益幅度。示例性的,所述第一LNA可以为外置LNA,也可以是内置LNA。
根据第一方面,或者以上第一方面的任意一种实现方式,第一旁路开关用于根据第 二信号的强度是否大于第一阈值,选择性地对第一LNA进行旁路。这样,基于第二信号的强度,通过将第一LNA旁路以控制输入至第二基带处理器的第二信号的增益幅度,而无需调节第一LNA的增益档位。
根据第一方面,或者以上第一方面的任意一种实现方式,增益单元包括:第一LNA和功率衰减器,第一LNA的输出端分别与第一RF接收通道以及功率衰减器的输入端相耦合,第一LNA的输入端耦合至天线;第一旁路开关分别与功率衰减器的输入端和功率衰减器的输出端相耦合,用于选择性地对功率衰减器进行旁路。这样,通过选择性地将功率衰减器旁路,以控制输入至第二基带处理器的第二信号的增益幅度,而无需调节第一LNA的增益档位。
根据第一方面,或者以上第一方面的任意一种实现方式,第一旁路开关用于根据第二信号的强度是否大于第二阈值,选择地对功率衰减器进行旁路。这样,基于第二信号的强度,通过选择性地将功率衰减器旁路,以控制输入至第二基带处理器的第二信号的增益幅度,而无需调节第一LNA的增益档位。
根据第一方面,或者以上第一方面的任意一种实现方式,第一LNA与功率衰减器之间设置有第二旁路开关,第二旁路开关分别与第一LNA的输入端和第一LNA的输出端相耦合,第二旁路开关用于选择性地对第一LNA进行旁路;第一旁路开关分别与功率衰减器的输入端与功率衰减器的输出端相耦合,用于选择性地对功率衰减器进行旁路。这样,通过选择性地对第一LNA进行旁路,以及选择性地对功率放大器进行旁路,以控制输入至第二基带处理器的第二信号的增益幅度,而无需调节第一LNA的增益档位。
根据第一方面,或者以上第一方面的任意一种实现方式,第一旁路开关用于根据第二信号的强度是否大于第三阈值,选择地对功率衰减器进行旁路;第二旁路开关用于根据第二信号的强度是否大于第四阈值,选择地对第一LNA进行旁路;第三阈值大于第四阈值。这样,基于第二信号的强度,通过选择性地对第一LNA进行旁路,以及选择性地对功率放大器进行旁路,以控制输入至第二基带处理器的第二信号的增益幅度,而无需调节第一LNA的增益档位。
根据第一方面,或者以上第一方面的任意一种实现方式,第一LNA与天线之间设置有第二LNA;第一LNA与第一RF接收通道、第一基带处理器、第二RF接收通道以及第二基带处理器集成在一起。
根据第一方面,或者以上第一方面的任意一种实现方式,第二基带处理器,用于控制第一旁路开关的闭合状态。
根据第一方面,或者以上第一方面的任意一种实现方式,第一基带处理器,用于控 制第一LNA的增益档位。
根据第一方面,或者以上第一方面的任意一种实现方式,第一RF接收通路设置有以下至少一个元件:内置LNA、混频器、接收模拟基带RX ABB。
根据第一方面,或者以上第一方面的任意一种实现方式,第二RF接收通路设置有以下至少一个元件:内置LNA、混频器、RX ABB。
第二方面,一种芯片,其特征在于,包括:第一射频RF接收通道,耦合至增益单元,其中,增益单元耦合至天线;第一基带处理器,用于通过第一射频RF接收通道从天线接收第一信号;第二RF接收通道,耦合至增益单元;第二基带处理器,用于通过第二RF接收通道从天线接收第二信号,其中,第二RF接收通道与增益单元之间设置有第一旁路开关;第二基带处理器,还用于控制第一旁路开关选择性地对增益单元中的至少一个增益器件进行旁路。
根据第二方面,增益单元包括:第一低噪声放大器LNA,第一LNA的输入端耦合至天线,第一LNA的输出端耦合至第一RF接收通道;第一旁路开关分别与第一LNA的输出端与第一LNA的输入端相耦合;第二基带处理器,具体用于选择性地对第一LNA进行旁路。
根据第二方面,或者以上第二方面的任意一种实现方式,第二基带处理器用于根据第二信号的强度是否大于第一阈值,控制第一旁路开关选择性地对第一LNA进行旁路。
根据第二方面,或者以上第二方面的任意一种实现方式,增益单元包括:第一LNA和功率衰减器,第一LNA的输出端分别与第一RF接收通道以及功率衰减器的输入端相耦合,第一LNA的输入端耦合至天线;第一旁路开关分别与功率衰减器的输入端和功率衰减器的输出端相耦合;第二基带处理器,具体用于控制第一旁路开关选择性地对功率衰减器进行旁路。
根据第二方面,或者以上第二方面的任意一种实现方式,第二基带处理器用于根据第二信号的强度是否大于第二阈值,控制第一旁路开关选择性地对功率衰减器进行旁路。
根据第二方面,或者以上第二方面的任意一种实现方式,第一LNA与功率衰减器之间设置有第二旁路开关,第二旁路开关分别与第一LNA的输入端和第一LNA的输出端相耦合,第一旁路开关分别与功率衰减器的输入端与功率衰减器的输出端相耦合,用于选择性地对功率衰减器进行旁路。第二基带处理器,还用于控制第二旁路开关选择性地对第一LNA进行旁路;以及,控制第一旁路开关选择性地对功率衰减器进行旁路。
根据第二方面,或者以上第二方面的任意一种实现方式,第二基带处理器,用于根据第二信号的强度是否大于第三阈值,控制第一旁路开关选择地对功率衰减器进行旁路;第二基带处理器,用于根据第二信号的强度是否大于第四阈值,控制第二旁路开关选择地对第一LNA进行旁路;第三阈值大于第四阈值。
根据第二方面,或者以上第二方面的任意一种实现方式,第一基带处理器,还用于控制第一LNA的增益档位。
根据第二方面,或者以上第二方面的任意一种实现方式,第一旁路开关集成在芯片。
根据第二方面,或者以上第二方面的任意一种实现方式,增益单元中的至少一个增益器件集成在芯片。
根据第二方面,或者以上第二方面的任意一种实现方式,第一RF接收通路设置有以下至少一个元件:内置第一LNA、混频器、接收模拟基带RX ABB。
根据第二方面,或者以上第二方面的任意一种实现方式,第二RF接收通路设置有以下至少一个元件:内置第一LNA、混频器、RX ABB。
第三方面,本申请实施例提供一种控制方法,该方法应用于短距离通信装置,方法包括:通过第一射频RF接收通道从天线接收第一信号,其中,第一RF接收通道耦合至增益单元,增益单元耦合至天线;通过第二RF接收通道从天线接收第二信号,其中,第二RF接收通道耦合至增益单元,第二RF接收通道与增益单元之间设置有第一旁路开关;控制第一旁路开关选择性地对增益单元中的至少一个增益器件进行旁路。
根据第三方面,所述增益单元包括第一低噪声放大器LNA;所述控制所述第一旁路开关选择性地对所述增益单元中的至少一个增益器件进行旁路,包括:根据所述第二信号的强度是否大于第一阈值,控制所述第一旁路开关选择性地对所述第一LNA进行旁路。
根据第三方面,或者以上第三方面的任意一种实现方式,所述增益单元包括第一LNA和功率衰减器;所述控制所述第一旁路开关选择性地对所述增益单元中的至少一个增益器件进行旁路,包括:根据所述第二信号的强度是否大于第二阈值,控制所述第一旁路开关选择性地对所述功率衰减器进行旁路。
根据第三方面,或者以上第三方面的任意一种实现方式,所述第一LNA与所述功率衰减器之间设置有第二旁路开关;所述控制所述第一旁路开关选择性地对所述增益单元中的至少一个增益器件进行旁路,包括:根据所述第二信号的强度是否大于第三阈值, 控制所述第一旁路开关选择地对所述功率衰减器进行旁路;根据所述第二信号的强度是否大于第四阈值,控制所述第二旁路开关选择地对所述第一LNA进行旁路;所述第三阈值大于所述第四阈值。
根据第三方面,或者以上第三方面的任意一种实现方式,所述方法还包括:根据所述第一信号的强度,控制所述第一LNA的增益档位。
附图说明
图1为示例性示出的终端设备的结构示意图;
图2为示例性示出的短距离通信装置的结构示意图;
图3为示例性示出的短距离通信装置的结构示意图;
图4为本申请实施例提供的一种通信系统的示意图;
图5为本申请实施例提供的一种短距离通信装置的结构示意图;
图6为本申请实施例提供的一种控制方法的流程示意图;
图7为本申请实施例提供的一种短距离通信装置的结构示意图;
图8为本申请实施例提供的一种控制方法的流程示意图;
图9为本申请实施例提供的一种短距离通信装置的结构示意图;
图10为本申请实施例提供的一种控制方法的流程示意图;
图11为本申请实施例提供的一种短距离通信装置的结构示意图;
图12为本申请实施例提供的一种控制方法的流程示意图;
图13为本申请实施例提供的一种短距离通信装置的结构示意图;
图14为本申请实施例提供的一种控制方法的流程示意图;
图15为本申请实施例提供的一种装置的结构示意图;
图16为本申请实施例提供的一种芯片的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一目标对象和第二目标对象等是用于区别不同的目标对象,而不是用于描述目标对象的特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释 为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系统。
图1示出了单个天线的终端设备的结构图,实际场景中,终端设备也可以是多天线的,并且可以是两个以上天线的设备。为了便于说明,图1仅示出了终端设备的主要部件。如图1所示,终端设备100包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备本申请实施例中所描述的动作。存储器主要用于存储软件程序和数据,例如存储本申请实施例中所描述的阈值与射频(Radio Frequency,RF)通路之间的对应关系等。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图1仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限定。
作为一种可选的实现方式,处理器可以包括基带处理器和/或中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图1中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备100的收发单元101,例如,用于支持终端设备执行接收功能和发送功能。将具有处理功能的处理器视为终端设备100的处理单元102。如图1所示,终端设备100包括收发单元101和处理单元102。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发 单元101中用于实现接收功能的器件视为接收单元,将收发单元101中用于实现发送功能的器件视为发送单元,即收发单元101包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理器102可用于执行该存储器存储的指令,以控制收发单元101接收信号和/或发送信号,完成本申请实施例终端设备的功能。作为一种实现方式,收发单元101的功能可以考虑通过收发电路或者收发的专用芯片实现。
在本申请实施例的描述中,终端设备为支持802.11系列标准和蓝牙标准的终端产品,终端设备可以为无线通讯芯片、无线传感器或无线通信终端等,也可称为用户、站点或终端。例如,站点可以为支持Wi-Fi和蓝牙通讯功能的移动电话、支持Wi-Fi和蓝牙通讯功能的平板电脑、支持Wi-Fi和蓝牙通讯功能的机顶盒、支持Wi-Fi和蓝牙通讯功能的智能电视、支持Wi-Fi和蓝牙通讯功能的智能可穿戴设备、支持Wi-Fi和蓝牙通讯功能的车载通信设备和支持Wi-Fi和蓝牙通讯功能的计算机等等。可选地,802.11系列包括但不限于一下至少之一:802.11be、802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等802.11家族的多种WLAN制式。
无线局域网(wireless local area networks,WLAN)(如Wi-Fi)网络)可以提供高速率低时延的传输,随着WLAN应用场景的不断演进,WLAN系统将会应用于更多场景或产业中,比如,应用于物联网产业,应用于车联网产业或应用于银行业,应用于企业办公,体育场馆展馆,音乐厅,酒店客房,宿舍,病房,教室,商超,广场,街道,生成车间和仓储等。当然,支持WLAN通信的设备(比如接入点或站点)可以是智慧城市中的传感器节点(比如,智能水表,智能电表,智能空气检测节点),智慧家居中的智能设备(比如智能摄像头,投影仪,显示屏,电视机,音响,电冰箱,洗衣机等),物联网中的节点,娱乐终端(比如AR,VR等可穿戴设备),智能办公中的智能设备(比如,打印机,投影仪,扩音器,音响等),车联网中的车联网设备,日常生活场景中的基础设施(比如自动售货机,商超的自助导航台,自助收银设备,自助点餐机等),以及大型体育或音乐场馆的设备等。本申请实施例中对于终端设备的具体形式不做特殊限制,在此仅是示例性说明。
蓝牙(bluetooth,BT)是一种无线通讯技术标准,使得移动设备可在短距离间交换数据,以形成个人局域网。其使用短波特高频无线电波,经由2.4至2.485GHz的ISM(Industrial Scientific Medical,工业/科学/医学)频段来进行通信,通信距离从几米到几百米不等。
在蓝牙功能和Wi-Fi功能共存的场景下,为降低成本和缩小电路布放面积,通常采用蓝牙模块与Wi-Fi模块共享天线和LNA的结构。示例性的,共享LNA可包括共享外置LNA、共享内置LNA、或者共享外置LNA和共享内置LNA。共享LNA的数量可以为一个或多个。
如图2所示为示例性示出的一种电路结构示意图,参照图2,示例性的,BT DBB(digital baseband,数字基带)与Wi-Fi DBB共享外置LNA和天线,终端设备可通过天线接收Wi-Fi信号和蓝牙信号,并经过外置LNA后分为两路信号(蓝牙信号和Wi-Fi信号),其中,蓝牙信号经过射频通路1传输至BT DBB,Wi-Fi信号经过射频通路2传输 至Wi-Fi DBB。
示例性的,射频通路1包括但不限于:内置LNA、混频器、RX ABB(receive analog baseband,接收模拟基带)等器件,射频通路2上设置有:内置LNA、混频器、RX ABB等器件。可选地,BT DBB与Wi-Fi DBB分别与内置LNA和外置LNA电连接,例如,通过控制线路连接,以传输控制信号(或指示信号)。
仍参照图2,电路中还包括射频通路3,BT DBB和Wi-Fi DBB与射频通路3耦合,射频通路3耦合至天线,BT DBB和Wi-Fi DBB通过射频通路3,将蓝牙信号或Wi-Fi信号传输至天线,并由天线发射。射频通路3设置有:TX ABB(Transmit analog baseband,发送模拟基带)、单刀双掷开关、混频器、内置PA和外置PA等器件。需要说明的是,本申请所述的射频通路也可以称为电路、处理电路、传输电路等,本申请不做限定,下文中不再重复说明。
结合图2,示例性的,终端设备中采用仲裁机制,也可以称为优先级机制,其原理为在蓝牙信号和Wi-Fi信号共存,也就是说BT DBB与Wi-Fi DBB均使能的场景下,由于BT DBB和Wi-Fi DBB共享LNA,因此,需要确定由谁控制共享LNA的增益档位,也可以理解为,共享LNA的控制权归属。可选地,具有高优先级的模块(指BT DBB或Wi-Fi DBB)可获得共享LNA(例如外置LNA)的控制权。其中,优先级是由处理器确定并下发至BT DBB和Wi-Fi DBB的。
举例说明,参照图2,若BT DBB的优先级高于Wi-Fi DBB,则BT DBB获得外置LNA的控制权,当BT DBB检测到蓝牙信号的信号强度高于蓝牙的切换门限(也可称为BT DBB的切换门限),则BT DBB通过控制线路向外置LNA发送控制信号,以控制外置LNA降档,即将外置LNA设置为低增益档位。若Wi-Fi DBB的优先级高于BT DBB,则Wi-Fi DBB获得外置LNA的控制权,当Wi-Fi DBB检测到Wi-Fi信号的信号强度高于Wi-Fi的切换门限(也可称为Wi-Fi DBB的切换门限),则Wi-Fi DBB通过控制线路向外置LNA发送控制信号,以控制外置LNA降档,即将外置LNA设置为低增益档位。需要说明的是,本申请实施例中所述的低增益档位是指将当前处理后的信号的增益降低的档位,举例说明,外置LNA用于增大信号的增益,即,通过外置LNA后的信号的增益大于天线接收到的信号的增益,而当外置LNA置于低增益档位,则是指将通过外置LNA后的信号的增益降低,一个示例中,可能降低后的信号的增益仍然大于天线接收到的信号的增益,另一个示例中,可能降低后的信号的增益小于或等于天线接收到的信号的增益,本申请不做限定。高增益档位则是指将通过外置LNA的信号的增益提高,下文中不再赘述。
如图3为示例性示出的另一种电路结构示意图,参照图3,BT DBB与Wi-Fi DBB共享天线、外置LNA和内置LNA,仍可采用优先级机制,控制共享的外置LNA和内置LNA,具体细节与图2的描述类似,此处不赘述。
需要说明的是,由于BT DBB对蓝牙信号的信噪比的要求较低,对抗干扰能力的要求较高(强干扰容易导致信号饱和),因此,BT DBB的切换门限较低,例如为-70dBm。而由于Wi-Fi对信噪比的要求比较高,因此,Wi-Fi DBB的切换门限较高,例如为-50dBm。在BT DBB控制外置LNA时,其会在较低的信号强度下(例如-70dBm)控制外置LNA 降档,导致Wi-Fi信号的信噪比降低,使得Wi-Fi DBB的解调能力大幅降低,进而造成吞吐量降低。而当Wi-Fi DBB控制外置LNA时,其会在较高的信号强度下(例如-50dBm)控制外置LNA降档,导致BT DBB的抗干扰能力降低。
示例性的,外置LNA可包括高档位和低档位,高档位为开启,低档位为关闭。外置LNA也可以包括多个不同档位,例如,包括多个不同的高档位,用于对信号的增益进行不同程度的提升,和/或,包括多个不同的低档位,用于对信号的增益进行不同程度的降低,内置LNA类似,下文中不再赘述。
本申请提供一种短距离通信装置,示例性的,该装置可以为终端,也可以为终端中的短距离通信芯片,还可以是包括短距离通信芯片和片外器件的芯片组。具体的,本申请通过在天线与BT DBB之间的射频通路上设置额外的控制电路,使得BT DBB和Wi-Fi DBB均可实现对信号的增益控制,即满足了蓝牙的抗干扰需求,同时满足了Wi-Fi的信噪比要求。
如图4所示为本申请实施例提供的一种通信系统示意图。该通信系统中包括一个或多个发送端100和一个或多个接收端200。本申请实施例中的发送端和接收端均可以包括各种具有无线通信功能的电子设备,该电子设备可以是手持设备、车载设备、可穿戴设备(例如,智能手表、智能手环、无线耳机、增强现实设备、虚拟现实设备、智能眼镜)、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(user equipment,UE),移动台(mobile station,MS),智能家居设备(例如,智能冰箱、智能电视机、智能路由器等)等。
一种示例,上述任意一种电子设备A,在向另一个上述任意一种电子设备B发送数据时,该电子设备A即为发送设备,电子设备B即为接收设备。另一种示例,上述任意一种电子设备A,在接收另一个上述任意一种电子设备B发送的数据时,该电子设备A即为接收设备,电子设备B即为发送设备。
可选地,在本申请实施例中,发送端100可向接收端200发送蓝牙信号和/或Wi-Fi信号。
虽然本申请实施例主要以部署Wi-Fi和蓝牙的网络为例进行说明,本领域技术人员容易理解,本申请涉及的各个方面可以扩展到采用各种标准或协议的其它网络,例如,高性能无线LAN(high performance radio LAN,HIPERLAN)(一种与IEEE 802.1 1标准类似的无线标准,主要在欧洲使用)以及广域网(WAN)、无线局域网(wireless local area network,WLAN)、个人区域网(personal area network,PAN)或其它现在已知或以后发展起来的网络等任意两种或两种以上网络功能共存的场景下的终端设备的使用。因此,无论使用的覆盖范围和无线接入协议如何,本申请提供的各种方面可以适用于任何合适的短距离无线通信网络。
结合上述如图4所示的通信系统示意图,下面介绍本申请的具体实施方案:
场景一
如图5所示为本申请实施例提供的一种短距离通信装置的结构示意图,参照图5,BT DBB540和Wi-Fi DBB550分别通过射频接收通路和射频发射通路耦合至天线510, 所述BT DBB 540通过射频接收通路接收天线510输入的蓝牙信号,Wi-Fi DBB 550通过射频接收通路接收天线510输入的Wi-Fi信号,BT DBB 540与Wi-Fi DBB 550可通过射频发射通路分别输出蓝牙信号和Wi-Fi信号至天线510。
示例性的,在本实施例中,BT DBB540通过射频通路1或射频通路2耦合至天线510,其中,射频通路1上设置有:外置LNA 521、内置LNA522、混频器523、RX ABB524等器件,射频通路2上设置有:内置LNA522、混频器523、RX ABB524等器件。示例性的,射频通路1和射频通路2之间存在一单刀双掷开关560,包括端子0、端子1和端子2,其中,端子0为不动端,端子1和端子2为动端,所述单刀双掷开关560用于控制射频通路1和射频通路2的使能状态,也就是说,通过单刀双掷开关560控制射频通路1和射频通路2的切换,使BT DBB540可通过射频通路1或射频通路2耦合至天线510。参照图5,单刀双掷开关560的端子0耦合至BT DBB540,端子1耦合至外置LNA521的输入端,端子2耦合至外置LNA521的输出端。
可选地,在本实施例中,外置LNA也可以称为共享外置LNA,或者可以称为增益单元,需要说明的是,各射频通路上的器件名称和数量仅为示意性举例,本申请对此不作限定。
一个示例中,若单刀双掷开关560置于端子1,即端子0与端子1连接,则使能射频通路2,即,天线510通过射频通路2传输蓝牙信号至BT DBB。另一个示例中,若单刀双掷开关560置于端子2,即端子0与端子2连接,使能射频通路1,即,天线510通过射频通路1传输蓝牙信号至BT DBB540。也可以理解为,单刀双掷开关560置于端子1后,外置LNA(即增益单元)被旁路(bypass),或者称为旁置。
仍参照图5,Wi-Fi DBB550通过射频通路3耦合至天线510,示例性的,射频通路3上设置有:外置LNA521,内置LNA525,混频器526、RX ABB527等器件。天线510可通过射频通路3传输Wi-Fi信号至Wi-Fi DBB550。
仍参照图5,BT DBB550与Wi-Fi DBB550通过射频发射通路耦合至天线510,射频发射通路设置有:开关(可以是单刀双掷开关)531、TX ABB532、混频器533、内置PA((Power Amplifier,功率放大器))534、外置PA535等器件。需要说明的是,本申请各附图中(包括图5、图7、图9、图11、图13)所示的射频发射通路仅为示意性举例,其包括的器件、器件数量以及通路等可不限于本申请描述所限定的结构,下文中不再赘述。
上述射频接收通路(包括射频通路1、射频通路2和射频通路3)以及射频发射通路均为数据传输射频通路,用于传输相应数据。在本申请实施例中,BT DBB与单刀双掷开关560和内置LNA522,以及Wi-Fi DBB与外置LNA521、内置LNA525之间还可通过控制通路连接,即通过控制线路电连接,用于传输控制信号或指示信号,其中,在本申请实施例的描述中,控制信号用于控制各开关的闭合状态,指示信号用于控制LNA的增益档位,指示信号也可以是指处理器发送的相关指令,下文中不再重复说明。
参照图5,可选地,BT DBB540可通过与单刀双掷开关560连接的控制通路,向单刀双掷开关560发送控制信号(即电信号),以控制单刀双掷开关560的闭合状态。可选地,BT DBB540还可通过与内置LNA522连接的控制通路,向内置LNA522发送指示信 号,以控制内置LNA522的增益档位。
仍参照图5,可选地,Wi-Fi DBB550可通过与外置LNA521以及内置LNA526之间连接的控制通路,向外置LNA521和/或内置LNA526发送指示信号(即电信号),以控制外置LNA 521和/或内置LNA526的档位变换。示例性的,外置LNA521可包括两个或两个以上档位,本实施例以及下面的各实施例中仅以高增益档位(即开启)和低增益档位(即关闭)为例进行说明,下文不再赘述。
可选地,天线510与外置LNA521和外置PA535之间设置有开关536,示例性的,开关536为单刀双掷开关,包括端子0、端子1和端子2。单刀双掷开关536置于端子1或端子2可使能射频接收通路或射频发射通路,以输入或输出信号。可选地,若终端设备具有多个天线,则外置PA535可与外置LNA521与不同的天线耦合。
下面结合图5,对本申请实施例中的控制方法进行详细说明,如图6所示为控制方法的流程示意图,在图6中:
步骤101,Wi-Fi DBB获得外置LNA的控制权。
具体的,处理器可向Wi-Fi DBB550发送指示信息,以指示Wi-Fi DBB550获得对外置LNA521的控制权。Wi-Fi DBB550响应于接收到的指示信息,确定其拥有对外置LNA521的控制权。可选地,指示信息可以包括优先级信息,例如,优先级为高,则指示拥有控制权,反之则没有控制权。可选地,处理器还可以向BT DBB发送指示信息,指示信息包括优先级为低,即指示BT DBB没有对外置LNA521的控制权。可选地,BT DBB也可以预先配置为没有控制权,即不需要处理器单独下发指示信息。
示例性的,在初始阶段,外置LNA521的增益档位默认为置于高增益档位,即,开启状态。
步骤102,BT DBB和Wi-Fi DBB分别接收蓝牙信号和Wi-Fi信号。
示例性的,在初始阶段,单刀双掷开关550默认置于端子2,即使能射频通路1,天线将接收到的蓝牙信号通过射频通路1传输至BT DBB550。
示例性的,天线将接收到的Wi-Fi信号通过射频通路3传输至Wi-Fi DBB550。
需要说明的是,本申请实施例中仅以蓝牙信号与Wi-Fi信号共存的场景为例进行说明。在其它实施例中,若仅存在蓝牙信号或Wi-Fi信号,则可按照已有技术实施例中的方式,本申请不做限定。
步骤103,BT DBB判断蓝牙信号的强度是否大于或等于第一切换门限。
示例性的,在本实施例中,以第一切换门限为-70dBm为例进行说明。具体的,BT DBB540基于接收到的蓝牙信号,判断蓝牙信号的强度是否大于或等于第一切换门限,一个示例中,如果大于或等于第一切换门限,则执行步骤104,如果小于第一切换门限,则重复执行步骤102,即继续基于射频通路1接收蓝牙信号。需要说明的是,在本申请实施例的描述中,信号的强度(包括蓝牙信号的强度和Wi-Fi信号的强度)均是指天线接收到的信号的强度,在其他实施例中,信号强度也可以是指BT DBB或Wi-Fi DBB接收到的信号的强度,则对应的切换门限可根据实际情况进行设置,本申请不做限定,下文中不再重复说明。
步骤104,BT DBB控制单刀双掷开关置于端子1,使能射频通路2。
示例性的,BT DBB540判定蓝牙信号的强度大于或等于-70dBm,则通过与单刀双掷开关560之间控制通路,向单刀双掷开关560发送控制信号,以控制单刀双掷开关560置于端子1,使能射频通路2,BT DBB540通过射频通路2接收天线510传输的蓝牙信号,以跳过外置LNA(即对外置LNA进行旁路),从而降低蓝牙信号的增益。
需要说明的是,此时,外置LNA的控制权仍然在Wi-Fi DBB550,并且,外置LNA仍处于高增益档位,也就是说,BT DBB通过跳过外置LNA(即对外置LNA进行旁路),以降低蓝牙信号的增益的同时,Wi-Fi信号仍然会经过外置LNA的处理后,传输至Wi-Fi DBB,从而在满足BT DBB的抗干扰需求的条件下,保证Wi-Fi信号的信噪比。
步骤105,Wi-Fi DBB判断Wi-Fi信号的强度是否大于或等于第二切换门限。
示例性的,在本实施例中,以第二切换门限为-50dBm为例进行说明。具体的,Wi-Fi DBB550基于接收到的Wi-Fi信号,判断Wi-Fi信号的强度是否大于或等于第二切换门限。一个示例中,如果大于或等于第二切换门限,则执行步骤106,如果小于第二切换门限,则不做处理,即继续通过当前射频通路(即经过处于高增益档位的外置LNA的射频通路)接收Wi-Fi信号。
步骤106,Wi-Fi DBB将外置LNA置于低增益档位。
具体的,Wi-Fi DBB550判定Wi-Fi信号的强度大于或等于-50dBm,则通过与外置LNA521之间的控制通路,向外置LNA521发送指示信号,以将外置LNA521置于低增益档位,即,将外置LNA521置于关闭状态。
此时,BT DBB550可通过射频通路2接收蓝牙信号,并且,Wi-Fi DBB550可通过包含置于低增益档位的外置LNA521的射频通路3接收Wi-Fi信号。
可选地,BT DBB540和Wi-Fi DBB550还可以通过射频发射通路传输蓝牙信号或Wi-Fi信号至天线,具体细节可参照已有技术实施例,本申请不再赘述。
场景二
如图7所示为本申请实施例提供的一种短距离通信装置的结构示意图,参照图7,BT DBB540和Wi-Fi DBB550分别通过射频接收通路和射频发射通路耦合至天线510,所述BT DBB 540通过射频接收通路接收天线510输入的蓝牙信号,Wi-Fi DBB 550通过射频接收通路接收天线510输入的Wi-Fi信号,BT DBB 540与Wi-Fi DBB 550可通过射频发射通路分别输出蓝牙信号和Wi-Fi信号至天线510。
示例性的,在本实施例中,BT DBB540通过射频接收通路(包括射频通路1或射频通路2)耦合至天线510,其中,射频通路1上设置有:外置LNA 521、内置LNA522、混频器523、RX ABB524等器件,射频通路2上设置有:外置LNA 521、功率衰减器710、内置LNA522、混频器523、RX ABB524等器件。其中,外置LNA521的输入端耦合至天线510,功率衰减器710的输入端耦合至外置LNA521。示例性的,射频通路1和射频通路2之间存在一单刀双掷开关720,包括端子0、端子1和端子2,其中,端子0为不动端,端子1和端子2为动端,端子0耦合至BT DBB540,端子1耦合至功率衰减器710的输出端,端子2耦合至功率衰减器710的输入端,该单刀双掷开关用于控制射频通路 1和射频通路2的使能状态。也就是说,通过单刀双掷开关720控制射频通路1和射频通路2的切换,使BT DBB540可通过射频通路1或射频通路2耦合至天线510。
可选地,在本实施例中,外置LNA 521与功率衰减器710构成增益单元。一个示例中,若单刀双掷开关720置于端子1,即端子0与端子1连接,则使能射频通路2,即,天线510通过射频通路2传输蓝牙信号至BT DBB540,即对增益单元中的功率衰减器710进行旁路。另一个示例中,若单刀双掷开关720置于端子2,即端子0与端子2连接,使能射频通路1,即,天线510通过射频通路1传输蓝牙信号至BT DBB540。也可以理解为,单刀双掷开关720置于端子1,使能射频通路2后,通过功率衰减器对外置LNA处理后的蓝牙信号进行进一步处理,即,对经过外置LNA放大后的信号进行增益衰减。
仍参照图7,Wi-Fi DBB550通过射频接收通路(包括射频通路3)耦合至天线510,示例性的,射频通路3上设置有:外置LNA521,内置LNA525,混频器526、RX ABB527等器件。天线510可通过射频通路3传输Wi-Fi信号至Wi-Fi DBB550。
BT DBB550和Wi-Fi DBB560通过射频发射通路耦合至天线510。
可选地,BT DBB540通过控制通路耦合至单刀双掷开关720、内置LNA522。可选地,Wi-Fi DBB550通过控制通路耦合至外置LNA521、内置LNA525。
需要说明的是,除非特殊说明本实施例以及下面的各实施例中的装置结构以及方法流程部分中未详尽描述的部分,均可参照图5及图6的相关描述,下文中不再赘述。
下面结合图7,对本申请实施例中的控制方法进行详细说明,如图8所示为控制方法的流程示意图,在图8中:
步骤201,Wi-Fi DBB获得外置LNA的控制权。
步骤202,BT DBB和Wi-Fi DBB分别接收蓝牙信号和Wi-Fi信号。
步骤203,BT DBB判断蓝牙信号的强度是否大于或等于第一切换门限。
示例性的,在本实施例中,以第一切换门限为-70dBm为例进行说明。具体的,BT DBB540基于接收到的蓝牙信号,判断蓝牙信号的强度是否大于或等于第一切换门限,一个示例中,如果大于或等于第一切换门限,则执行步骤204,如果小于第一切换门限,则重复执行步骤202,即继续基于射频通路1接收蓝牙信号。
步骤204,BT DBB控制单刀双掷开关置于端子1,使能射频通路2。
示例性的,BT DBB540判定蓝牙信号的强度大于或等于-70dBm,则通过与单刀双掷开关720之间的控制通路,向单刀双掷开关720发送控制信号,以控制单刀双掷开关720置于端子1,使能射频通路2,BT DBB540通过射频通路2接收天线510传输的蓝牙信号,功率衰减器710可对蓝牙信号进行处理,以使蓝牙信号的增益降低,也就是说,通过功率衰减器,可实现降低蓝牙信号的增益的目的。需要说明的是,功率衰减器的性能可根据实际需求进行选择,本申请不做限定。
需要说明的是,此时,外置LNA的控制权仍然在Wi-Fi DBB550,并且,外置LNA仍处于高增益档位,从而在满足BT DBB的抗干扰需求的条件下,保证Wi-Fi信号的信噪比。
步骤205,Wi-Fi DBB判断Wi-Fi信号的强度是否大于或等于第二切换门限。
步骤206,Wi-Fi DBB将外置LNA置于低增益档位。
场景三
如图9所示为本申请实施例提供的一种短距离通信装置的结构示意图,参照图9,BT DBB540和Wi-Fi DBB550分别通过射频接收通路和射频发射通路耦合至天线510。
示例性的,在本实施例中,BT DBB540通过射频接收通路(包括射频通路1、射频通路2、射频通路3或射频通路4)耦合至天线510,其中,射频通路1上设置有:外置LNA 521、内置LNA522、混频器523、RX ABB524等器件,射频通路2上设置有:外置LNA521、功率衰减器910、内置LNA522、混频器523、RX ABB524等器件,射频通路3上设置有:内置LNA522、混频器523、RX ABB524等器件,射频通路4上设置有:功率衰减器910、内置LNA522、混频器523、RX ABB524等器件。
继续参照图9,各射频通路之间设置有单刀双掷开关,包括单刀双掷开关920和单刀双掷开关930。单刀双掷开关920和单刀双掷开关930均包括端子0、端子1和端子2,通过将开关置于不同的端子,实现不同射频通路的切换,即选择性地对外置LNA521与功率衰减器910进行旁路。参照图9,单刀双掷开关920的端子0耦合至BT DBB540,端子1耦合至功率衰减器910的输出端,端子2耦合至功率衰减器910的输入端。单刀双掷开关930的端子0耦合至功率衰减器910的输入端,端子1耦合至外置LNA521的输入端,端子2耦合至外置LNA521的输出端。
可选地,在本实施例中,外置LNA 521、功率衰减器910和单刀双掷开关930构成增益单元。一个示例中,单刀双掷开关920置于端子2、单刀双掷开关930置于端子2,可使能射频通路1,即对增益单元中的功率衰减器910进行旁路。
另一个示例中,单刀双掷开关930置于端子2、单刀双掷开关920置于端子1,可使能射频通路2,即通过功率衰减器910,实现增益衰减。
又一个示例中,单刀双掷开关930置于端子1、单刀双掷开关920置于端子2,可使能射频通路3,即通过bypass增益单元中的外置LNA521和功率衰减器525,实现增益衰减。
又一个示例中,单刀双掷开关930置于端子1、单刀双掷开关920置于端子1,可使能射频通路4,即通过bypass增益单元中的外置LNA521,以及使能功率衰减器525,实现增益衰减。
示例性的,在本实施例中,在初始阶段,单刀双掷开关920和单刀双掷开关930默认为置于端子2,使能射频通路1,即BT DBB540通过射频通路1接收天线510传输的蓝牙信号。
仍参照图9,天线510与Wi-Fi DBB550通过射频接收通路,即射频通路5相连接,射频通路5上设置有:外置LNA521,内置LNA525,混频器526、RX ABB527等器件。天线510可通过射频通路5传输Wi-Fi信号至Wi-Fi DBB550。
可选地,BT DBB540与单刀双掷开关920、单刀双掷开关930与内置LNA522之间通过控制通路连接,可选地,Wi-Fi DBB550与外置LNA521和内置LNA525之间通过控 制通路连接。
下面结合图9,对本申请实施例中的控制方法进行详细说明,如图10所示为控制方法的流程示意图,在图10中:
步骤301,Wi-Fi DBB获得外置LNA的控制权。
步骤302,BT DBB和Wi-Fi DBB分别接收蓝牙信号和Wi-Fi信号。
步骤303,BT DBB判断蓝牙信号的强度是否大于或等于第一切换门限。
示例性的,在本实施例中,以第一切换门限为-70dBm为例进行说明。具体的,BT DBB基于接收到的蓝牙信号,判断蓝牙信号的强度是否大于或等于第一切换门限,一个示例中,如果大于或等于第一切换门限,则执行步骤304,如果小于第一切换门限,则重复执行步骤302,即继续基于射频通路1接收蓝牙信号。
步骤304,BT DBB控制第一单刀双掷开关置于端子1,使能射频通路2。
示例性的,BT DBB540判定蓝牙信号的强度大于或等于-70dBm,则通过与第一单刀双掷开关,即单刀双掷开关920之间的控制通路,向单刀双掷开关920发送控制信号,以控制单刀双掷开关920置于端子1,其中,单刀双掷开关930仍置于端子2,从而使能射频通路2,BT DBB540通过射频通路2接收天线510传输的蓝牙信号,功率衰减器910可对蓝牙信号进行处理,以使蓝牙信号的增益降低,也就是说,通过功率衰减器,可实现降低增益的目的。
步骤305,BT DBB判断蓝牙信号的强度是否大于或等于第二切换门限。
示例性的,在本实施例中,以第二切换门限为-60dBm为例进行说明。具体的,BT DBB基于接收到的蓝牙信号,判断蓝牙信号的强度是否大于或等于第二切换门限,一个示例中,如果大于或等于第二切换门限,则执行步骤306,如果小于第二切换门限,则不作处理,即继续通过射频通路2接收蓝牙信号。
步骤306,BT DBB控制第一单刀双掷开关置于端子2、第二单刀双掷开关置于端子1,使能射频通路3。
示例性的,BT DBB540判定蓝牙信号的强度大于或等于-60dBm,则通过与第一单刀双掷开关,即单刀双掷开关920之间的控制通路,以及与第二单刀双掷开关,即单刀双掷开关930之间的控制通路,分别向单刀双掷开关920和单刀双掷开关930发送控制信号,以控制单刀双掷开关930置于端子1,单刀双掷开关920置于端子2,以使能射频通路3,BT DBB540通过射频通路3接收天线510传输的蓝牙信号,以跳过外置LNA(即对外置LNA进行旁路),从而降低蓝牙信号的增益。
在一种可能的实现方式中,BT DBB还可以配置为:在判定蓝牙信号的强度大于或等于第一切换门限时,使能射频通路3,即跳过外置LNA(对外置LNA进行旁路),随后,在判定蓝牙信号的强度大于或等于第二切换门限时,使能射频通路2,即通过功率衰减器,实现降低增益的目的。
步骤307,BT DBB判断蓝牙信号的强度是否大于或等于第三切换门限。
示例性的,在本实施例中,以第三切换门限为-50dBm为例进行说明。具体的,BT DBB基于接收到的蓝牙信号,判断蓝牙信号的强度是否大于或等于第三切换门限,一个 示例中,如果大于或等于第三切换门限,则执行步骤308,如果小于第三切换门限,则不作处理,即继续通过射频通路3接收蓝牙信号。
步骤308,BT DBB控制第一单刀双掷开关置于端子1,使能射频通路4。
示例性的,BT DBB540判定蓝牙信号的强度大于或等于-50dBm,则通过与第一单刀双掷开关,即单刀双掷开关920之间的控制通路,向单刀双掷开关920发送控制信号,以控制单刀双掷开关920置于端子1,其中,单刀双掷开关920仍置于端子1,从而使能射频通路4,BT DBB540通过射频通路4接收天线510传输的蓝牙信号,以跳过外置LNA(即对外置LNA进行旁路),从而降低蓝牙信号的增益,并进一步通过功率衰减器525对蓝牙信号进行处理,以使蓝牙信号的增益进一步降低。
需要说明的是,此时,外置LNA的控制权仍然在Wi-Fi DBB550,并且,外置LNA仍处于高增益档位,从而在满足BT DBB的抗干扰需求的条件下,保证Wi-Fi信号的信噪比。
步骤309,Wi-Fi DBB判断Wi-Fi信号的强度是否大于或等于第四切换门限。
步骤310,Wi-Fi DBB将外置LNA置于低增益档位。
场景四
如图11所示为本申请实施例提供的一种短距离通信装置的结构示意图,参照图11,BT DBB1140和Wi-Fi DBB1150分别通过射频接收通路和射频发射通路耦合至天线1110。
示例性的,在本实施例中,BT DBB1140通过射频接收通路(包括射频通路1或射频通路2)耦合至天线1110,其中,射频通路1上设置有:外置LNA 1121、内置LNA1122、混频器1123、RX ABB1124等器件,射频通路2上设置有:外置LNA 1121、混频器1123、RX ABB1124等器件。其中,外置LNA也可以称为共享外置LNA,内置LNA也可以称为共享内置LNA。示例性的,外置LNA1121的输入端耦合至天线1110,内置LNA1125的输入端耦合至外置LNA1121的输出端。
继续参照图11,在本实施例中,射频通路1和射频通路2之间存在一单刀双掷开关1160,包括端子0、端子1和端子2,端子0为不动端,端子1和端子2为动端,其中,端子0耦合至BT DBB1140,端子1耦合至内置LNA1125的输入端,端子2耦合至内置LNA1125的输出端,该单刀双掷开关1160用于控制射频通路1和射频通路2的使能状态。
可选地,在本实施例中,内置1125构成增益单元,一个示例中,若单刀双掷开关1110置于端子1,即端子0与端子1连接,使能射频通路2,即对内置1125进行旁路,天线1110通过射频通路2传输蓝牙信号至BT DBB1140。另一个示例中,若单刀双掷开关1160置于端子2,即端子0与端子2连接,使能射频通路1,即,天线1110通过射频通路1传输蓝牙信号至BT DBB1140。示例性的,在本实施例中,在初始状态,单刀双掷开关1160置于端子2,使能射频通路1。
仍参照图11,天线1110与Wi-Fi DBB1150通过射频接收通路(射频通路3)连接,射频通路3上设置有:外置LNA1121,内置LNA1122,混频器1125、RX ABB1126等器件。天线1110可通过射频通路3传输Wi-Fi信号至Wi-Fi DBB1150。
可选地,BT DBB1140与单刀双掷开关1160之间通过控制通路连接。可选地,Wi-Fi DBB1150与外置LNA1121和内置LNA1122之间通过控制通路连接。
下面结合图11,对本申请实施例中的控制方法进行详细说明,如图12所示为控制方法的流程示意图,在图12中:
步骤401,Wi-Fi DBB获得外置LNA和内置LNA的控制权。
步骤402,BT DBB和Wi-Fi DBB分别接收蓝牙信号和Wi-Fi信号。
步骤403,BT DBB判断蓝牙信号的强度是否大于或等于第一切换门限。
示例性的,在本实施例中,以第一切换门限为-70dBm为例进行说明。具体的,BT DBB1140基于接收到的蓝牙信号,判断蓝牙信号的强度是否大于或等于第一切换门限,一个示例中,如果大于或等于第一切换门限,则执行步骤404,如果小于第一切换门限,则重复执行步骤402,即继续基于射频通路1接收蓝牙信号。
步骤404,BT DBB判定内置LNA的增益档位是否为正增益档位。
示例性的,如上文所述,LNA的增益档位包括正增益档位,即可以使信号的增益增加,也可以包括负增益档位,即可以使信号的增益档位,其中,正增益档位与负增益档位又可以进一步包括多个档位。
示例性的,如果BT DBB判定蓝牙信号的强度大于或等于-70dBm,而此时内置LNA处于负增益档位,即,内置LNA当前正在使能降低增益的功能,则无需跳过内置LNA,也可以理解为,如果跳过内置LNA(即对外置LNA进行旁路),则反而会增加信号的增益。
示例性的,如果BT DBB判定蓝牙信号的强度大于或等于-70dBm,而此时内置LNA处于正增益档位,即内置LNA当前正在使能提高增益的功能,则需要跳过内置LNA(即对外置LNA进行旁路),以降低蓝牙信号的增益,执行步骤404。
步骤405,BT DBB控制单刀双掷开关置于端子1,使能射频通路2。
示例性的,BT DBB1140通过与单刀双掷开关1160之间的控制通路,向单刀双掷开关1160发送控制信号,以控制单刀双掷开关1160置于端子1,使能射频通路2,BT DBB1140通过射频通路2接收天线1110传输的蓝牙信号,以跳过内置LNA,从而降低蓝牙信号的增益。
需要说明的是,此时,外置LNA和内置LNA的控制权仍然在Wi-Fi DBB1150,并且,外置LNA和内置LNA仍处于高增益档位,从而在满足BT DBB的抗干扰需求的条件下,保证Wi-Fi信号的信噪比。
步骤406,Wi-Fi DBB基于Wi-Fi信号的强度,控制外置LNA和内置LNA的增益档位。
示例性的,Wi-Fi DBB可基于Wi-Fi信号的强度,控制外置LNA和内置LNA的增益档位,具体细节可参照已有技术实施例,本申请不做限定。
场景五
如图13所示为本申请实施例提供的一种短距离通信装置的结构示意图,参照图13, BT DBB1140和Wi-Fi DBB1150分别通过射频接收通路和射频发射通路耦合至天线1110。
示例性的,在本实施例中,BT DBB1140通过射频接收通路(包括射频通路1和射频通路2)耦合至天线1110,其中,射频通路1上设置有:外置LNA 1121、内置LNA1122、混频器1123、RX ABB1124等器件,射频通路2上设置有:外置LNA 1121、混频器1123、RX ABB1124等器件,射频通路3上设置有:混频器1123、RX ABB1124等器件。其中,外置LNA也可以称为共享外置LNA,内置LNA也可以称为共享内置LNA。示例性的,外置LNA 1121的输入端耦合至天线1110,外置LNA 1121的输出端耦合至内置LNA1122
继续参照图13,在本实施例中,射频通路1、射频通路2和射频通路3之间存在一单刀三掷开关1360,包括端子0、端子1、端子2和端子3,其中,端子0为不动端、端子1、端子2和端子3为动端,端子0耦合至BT DBB1140,端子1耦合至外置LNA 1121的输入端,端子2耦合至内置LNA1122的输入端,端子3耦合至内置LNA1122的输出端。
可选地,在本实施例中,外置LNA 1121和内置LNA1122构成增益单元,一个示例中,单刀三掷开关1360置于端子3,可使能射频通路1。另一个示例中,单刀三掷开关1360置于端子2,可使能射频通路2,即对增益单元中的内置LNA1122进行旁路。又一个示例中,单刀三掷开关1360置于端子1,可使能射频通路3,即对增益单元中的内置LNA1122和外置LNA1121进行旁路。示例性的,在本实施例中,在初始阶段,单刀三掷开关1360默认为置于端子3,即,使能射频通路1。
仍参照图13,天线1110与Wi-Fi DBB1150通过射频接收通路(射频通路4)相连接,射频通路4上设置有:外置LNA1121,内置LNA1122,混频器1125、RX ABB1126等器件。天线1110可通过射频通路4传输Wi-Fi信号至Wi-Fi DBB1150。
可选地,BT DBB1140与单刀三掷开关1360通过控制通路连接。可选地,Wi-Fi DBB1150与外置LNA1121和内置LNA1125通过控制通路连接。
下面结合图13,对本申请实施例中的控制方法进行详细说明,如图14所示为控制方法的流程示意图,在图14中:
步骤501,Wi-Fi DBB获得外置LNA和内置LNA的控制权。
步骤502,BT DBB和Wi-Fi DBB分别接收蓝牙信号和Wi-Fi信号。
步骤503,BT DBB判断蓝牙信号的强度是否大于或等于第一切换门限。
示例性的,在本实施例中,以第一切换门限为-70dBm为例进行说明。具体的,BT DBB基于接收到的蓝牙信号,判断蓝牙信号的强度是否大于或等于第一切换门限,一个示例中,如果大于或等于第一切换门限,则执行步骤504,如果小于第一切换门限,则重复执行步骤502,即继续基于射频通路1接收蓝牙信号。
步骤504,BT DBB控制单刀双掷开关置于端子2,使能射频通路2。
步骤505,BT DBB判断蓝牙信号的强度是否大于或等于第二切换门限。
示例性的,在本实施例中,以第一切换门限为-30dBm为例进行说明。具体的,BT DBB1140基于接收到的蓝牙信号,判断蓝牙信号的强度是否大于或等于第二切换门限,一个示例中,如果大于或等于第二切换门限,则执行步骤506,如果小于第二切换门限, 则不做处理,仍通过射频通路2接收蓝牙信号。
步骤506,BT DBB控制单刀双掷开关置于端子1,使能射频通路3。
步骤507,Wi-Fi DBB基于Wi-Fi信号的强度,控制外置LNA和内置LNA的增益档位。
需要说明的是,场景一至场景二的实施例中,均是以BT DBB和Wi-Fi DBB基于信号的强度,确定射频通路为例进行说明的,在其他实施例中,BT DBB和Wi-Fi DBB可将获取到的蓝牙信号或Wi-Fi信号的强度,上报至处理器,由处理器基于蓝牙信号或Wi-Fi信号的强度,确定BT DBB与天线之间的射频通路,以及外置LNA和/或内置LNA的档位,并向BT DBB发送射频通路切换指示信息,和/或,向Wi-Fi DBB发送档位切换指示信息。相应的,BT DBB可基于接收到的射频通路切换指示信息,使能对应的射频通路,Wi-Fi DBB可基于接收到的档位切换指示信息,控制外置LNA和/或内置LNA的增益档位的切换,其它未述细节可参照场景一~场景三,此处不再赘述。
进一步需要说明的是,本申请实施例的描述中均是以BT DBB与Wi-Fi DBB为例进行说明,在其他实施例中,本申请实施例中的技术方案还可应用于两个或两个以上基带处理器共享增益单元的场景,本申请不做限定。
下面介绍本申请实施例提供的一种装置。如图15所示:
图15为本申请实施例提供的一种通信装置的结构示意图。如图15所示,该通信装置1500可包括:处理器1501、收发器1505,可选的还包括存储器1502。
所述收发器1505可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1505可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
存储器1502中可存储计算机程序或软件代码或指令1504,该计算机程序或软件代码或指令1504还可称为固件。处理器1501可通过运行其中的计算机程序或软件代码或指令1503,或通过调用存储器1502中存储的计算机程序或软件代码或指令1504,对MAC层和PHY层进行控制,以实现本申请下述各实施例提供的OM协商方法。其中,处理器1501可以为中央处理器(central processing unit,CPU),存储器1502例如可以为只读存储器(read-only memory,ROM),或为随机存取存储器(random access memory,RAM)。
本申请中描述的处理器1501和收发器1505可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。
上述通信装置1500还可以包括天线1506,该通信装置1500所包括的各模块仅为示例说明,本申请不对此进行限制。
如前所述,以上实施例描述中的通信装置可以是终端,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图15的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置的实现形式可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;(2)具有一个或多个IC 的集合,可选的,该IC集合也可以包括用于存储数据,指令的存储部件;(3)可嵌入在其他设备内的模块;(4)接收机、智能终端、无线设备、手持机、移动单元、车载设备、云设备、人工智能设备等等;(5)其他等等。
对于通信装置的实现形式是芯片或芯片系统的情况,可参见图16所示的芯片的结构示意图。图16所示的芯片包括处理器1601和接口1602。其中,处理器1601的数量可以是一个或多个,接口1602的数量可以是多个。可选的,该芯片或芯片系统可以包括存储器1603。
在一种可能的实现方式中,BT DBB与Wi-Fi DBB集成在芯片上,其它器件,包括射频通路、天线等设置在芯片外。
在另一种可能的实现方式中,BT DBB与Wi-Fi DBB以及本申请实施例中的各射频通路中的部分器件(例如内置LNA、混频器等)集成在芯片上,天线,或者天线和外置LNA,或者,天线、外置LNA和本申请涉及的各用于对LNA或功率衰减器进行旁路的开关设置在芯片外。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
基于相同的技术构思,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序包含至少一段代码,该至少一段代码可由终端设备执行,以控制终端设备用以实现上述方法实施例。
基于相同的技术构思,本申请实施例还提供一种计算机程序,当该计算机程序被终端设备执行时,用以实现上述方法实施例。
所述程序可以全部或者部分存储在与处理器封装在一起的存储介质上,也可以部分或者全部存储在不与处理器封装在一起的存储器上。
基于相同的技术构思,本申请实施例还提供一种处理器,该处理器用以实现上述方法实施例。上述处理器可以为芯片。
结合本申请实施例公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从 一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (29)

  1. 一种短距离通信装置,其特征在于,包括:
    增益单元,耦合至天线;
    第一射频RF接收通道,耦合至所述增益单元;
    第一基带处理器,耦合至所述第一RF接收通道,用于通过所述第一RF接收通道从所述天线接收第一信号;
    第二RF接收通道,耦合至所述增益单元;
    第二基带处理器,耦合至所述第二RF接收通道,用于通过所述第二RF接收通道从所述天线接收第二信号,其中,所述第二RF接收通道与所述增益单元之间设置有第一旁路开关,所述第一旁路开关用于选择性地对所述增益单元中的至少一个增益器件进行旁路。
  2. 根据权利要求1所述的装置,其特征在于,所述增益单元包括:
    第一低噪声放大器LNA,所述第一LNA的输入端耦合至所述天线,所述第一LNA的输出端耦合至所述第一RF接收通道;
    所述第一旁路开关分别与所述第一LNA的输出端与所述第一LNA的输入端相耦合,用于选择性地对所述第一LNA进行旁路。
  3. 根据权利要求2所述的装置,其特征在于,所述第一旁路开关用于根据所述第二信号的强度是否大于第一阈值,选择性地对所述第一LNA进行旁路。
  4. 根据权利要求1所述的装置,其特征在于,所述增益单元包括:
    第一LNA和功率衰减器,所述第一LNA的输出端分别与所述第一RF接收通道以及所述功率衰减器的输入端相耦合,所述第一LNA的输入端耦合至所述天线;
    所述第一旁路开关分别与所述功率衰减器的输入端和所述功率衰减器的输出端相耦合,用于选择性地对所述功率衰减器进行旁路。
  5. 根据权利要求4所述的装置,其特征在于,所述第一旁路开关用于根据所述第二信号的强度是否大于第二阈值,选择地对所述功率衰减器进行旁路。
  6. 根据权利要求4所述的装置,其特征在于,
    所述第一LNA与所述功率衰减器之间设置有第二旁路开关,所述第二旁路开关分别与所述第一LNA的输入端和所述第一LNA的输出端相耦合,所述第二旁路开关用于选择性地对所述第一LNA进行旁路;
    所述第一旁路开关分别与所述功率衰减器的输入端与所述功率衰减器的输出端相耦合,用于选择性地对所述功率衰减器进行旁路。
  7. 根据权利要求6所述的装置,其特征在于,
    所述第一旁路开关用于根据所述第二信号的强度是否大于第三阈值,选择地对所述功率衰减器进行旁路;
    所述第二旁路开关用于根据所述第二信号的强度是否大于第四阈值,选择地对所述第一LNA进行旁路;
    所述第三阈值大于所述第四阈值。
  8. 根据权利要求2至7任一项所述的装置,其特征在于,
    所述第一LNA与所述天线之间设置有第二LNA;
    所述第一LNA与所述第一RF接收通道、所述第一基带处理器、所述第二RF接收通道以及所述第二基带处理器集成在一起。
  9. 根据权利要求1至8任一项所述的装置,其特征在于,
    所述第二基带处理器,用于控制所述第一旁路开关的闭合状态。
  10. 根据权利要求2至9任一项所述的装置,其特征在于,
    所述第一基带处理器,用于控制所述第一LNA的增益档位。
  11. 根据权利要求1至10任一项所述的装置,其特征在于,所述第一RF接收通路设置有以下至少一个元件:
    内置LNA、混频器、接收模拟基带RX ABB。
  12. 根据权利要求1至11任一项所述的装置,其特征在于,所述第二RF接收通路设置有以下至少一个元件:
    内置LNA、混频器、RX ABB。
  13. 一种芯片,其特征在于,包括:
    第一射频RF接收通道,耦合至增益单元,其中,所述增益单元耦合至天线;
    第一基带处理器,用于通过所述第一射频RF接收通道从所述天线接收第一信号;
    第二RF接收通道,耦合至所述增益单元;
    第二基带处理器,用于通过所述第二RF接收通道从所述天线接收第二信号,其中,所述第二RF接收通道与所述增益单元之间设置有第一旁路开关;
    所述第二基带处理器,还用于控制所述第一旁路开关选择性地对所述增益单元中的至少一个增益器件进行旁路。
  14. 根据权利要求13所述的芯片,其特征在于,所述增益单元包括:
    第一低噪声放大器LNA,所述第一LNA的输入端耦合至所述天线,所述第一LNA的输出端耦合至所述第一RF接收通道;
    所述第一旁路开关分别与所述第一LNA的输出端与所述第一LNA的输入端相耦合;
    所述第二基带处理器,具体用于选择性地对所述第一LNA进行旁路。
  15. 根据权利要求14所述的芯片,其特征在于,所述第二基带处理器用于根据所述第二信号的强度是否大于第一阈值,控制所述第一旁路开关选择性地对所述第一LNA进行旁路。
  16. 根据权利要求13所述的芯片,其特征在于,所述增益单元包括:
    第一LNA和功率衰减器,所述第一LNA的输出端分别与所述第一RF接收通道以及所述功率衰减器的输入端相耦合,所述第一LNA的输入端耦合至所述天线;
    所述第一旁路开关分别与所述功率衰减器的输入端和所述功率衰减器的输出端相耦合;
    所述第二基带处理器,具体用于控制所述第一旁路开关选择性地对所述功率衰减器进行旁路。
  17. 根据权利要求16所述的芯片,其特征在于,所述第二基带处理器用于根据所述第二信号的强度是否大于第二阈值,控制所述第一旁路开关选择性地对所述功率衰减器进行旁路。
  18. 根据权利要求16所述的芯片,其特征在于,
    所述第一LNA与所述功率衰减器之间设置有第二旁路开关,所述第二旁路开关分别与所述第一LNA的输入端和所述第一LNA的输出端相耦合,
    所述第一旁路开关分别与所述功率衰减器的输入端与所述功率衰减器的输出端相耦合,用于选择性地对所述功率衰减器进行旁路。
    所述第二基带处理器,还用于控制所述第二旁路开关选择性地对所述第一LNA进行旁路;以及,控制所述第一旁路开关选择性地对所述功率衰减器进行旁路。
  19. 根据权利要求18所述的芯片,其特征在于,
    所述第二基带处理器,用于根据所述第二信号的强度是否大于第三阈值,控制所述第一旁路开关选择地对所述功率衰减器进行旁路;
    所述第二基带处理器,用于根据所述第二信号的强度是否大于第四阈值,控制所述第二旁路开关选择地对所述第一LNA进行旁路;所述第三阈值大于所述第四阈值。
  20. 根据权利要求24至19任一项所述的芯片,其特征在于,
    所述第一基带处理器,还用于控制所述第一LNA的增益档位。
  21. 根据权利要求13所述的芯片,其特征在于,所述第一旁路开关集成在所述芯片。
  22. 根据权利要求13所述的芯片,其特征在于,所述增益单元中的至少一个增益器件集成在所述芯片。
  23. 根据权利要求13至22任一项所述的装置,其特征在于,所述第一RF接收通路设置有以下至少一个元件:
    内置第一LNA、混频器、接收模拟基带RX ABB。
  24. 根据权利要求13至23任一项所述的装置,其特征在于,所述第二RF接收通路设置有以下至少一个元件:
    内置第一LNA、混频器、RX ABB。
  25. 一种控制方法,其特征在于,应用于短距离通信装置,所述方法包括:
    通过第一射频RF接收通道从天线接收第一信号,其中,所述第一RF接收通道耦合至增益单元,所述增益单元耦合至所述天线;
    通过第二RF接收通道从所述天线接收第二信号,其中,所述第二RF接收通道耦合至所述增益单元,所述第二RF接收通道与所述增益单元之间设置有第一旁路开关;
    控制所述第一旁路开关选择性地对所述增益单元中的至少一个增益器件进行旁路。
  26. 根据权利要求25所述的方法,其特征在于,所述增益单元包括第一低噪声放大器LNA;所述控制所述第一旁路开关选择性地对所述增益单元中的至少一个增益器件进行旁路,包括:
    根据所述第二信号的强度是否大于第一阈值,控制所述第一旁路开关选择性地对所述第一LNA进行旁路。
  27. 根据权利要求25所述的方法,其特征在于,所述增益单元包括第一LNA和功率衰减器;所述控制所述第一旁路开关选择性地对所述增益单元中的至少一个增益器件进行旁路,包括:
    根据所述第二信号的强度是否大于第二阈值,控制所述第一旁路开关选择性地对所述功率衰减器进行旁路。
  28. 根据权利要求27所述的方法,其特征在于,所述第一LNA与所述功率衰减器之间设置有第二旁路开关;所述控制所述第一旁路开关选择性地对所述增益单元中的至少一个增益器件进行旁路,包括:
    根据所述第二信号的强度是否大于第三阈值,控制所述第一旁路开关选择地对所述功率衰减器进行旁路;
    根据所述第二信号的强度是否大于第四阈值,控制所述第二旁路开关选择地对所述第一LNA进行旁路;所述第三阈值大于所述第四阈值。
  29. 根据权利要求25至28任一项所述的方法,其特征在于,所述方法还包括:根据所述第一信号的强度,控制所述第一LNA的增益档位。
PCT/CN2020/119532 2020-09-30 2020-09-30 短距离通信装置、芯片及控制方法 WO2022067721A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20955746.1A EP4207609A4 (en) 2020-09-30 2020-09-30 LOCAL RANGE COMMUNICATION DEVICE, CHIP AND CONTROL METHOD
PCT/CN2020/119532 WO2022067721A1 (zh) 2020-09-30 2020-09-30 短距离通信装置、芯片及控制方法
CN202080105387.0A CN116349137A (zh) 2020-09-30 2020-09-30 短距离通信装置、芯片及控制方法
US18/192,047 US20230238986A1 (en) 2020-09-30 2023-03-29 Short-range communications apparatus, chip, and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119532 WO2022067721A1 (zh) 2020-09-30 2020-09-30 短距离通信装置、芯片及控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/192,047 Continuation US20230238986A1 (en) 2020-09-30 2023-03-29 Short-range communications apparatus, chip, and control method

Publications (1)

Publication Number Publication Date
WO2022067721A1 true WO2022067721A1 (zh) 2022-04-07

Family

ID=80949398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119532 WO2022067721A1 (zh) 2020-09-30 2020-09-30 短距离通信装置、芯片及控制方法

Country Status (4)

Country Link
US (1) US20230238986A1 (zh)
EP (1) EP4207609A4 (zh)
CN (1) CN116349137A (zh)
WO (1) WO2022067721A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116419383A (zh) * 2023-06-06 2023-07-11 东方空间技术(北京)有限公司 一种自动增益控制方法、电路及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9479126B2 (en) * 2014-08-19 2016-10-25 Infineon Technologies Ag System and method for a low noise amplifier
CN108023602A (zh) * 2016-10-28 2018-05-11 中兴通讯股份有限公司 终端接收机及其提高接收灵敏度的方法
CN109121228A (zh) * 2017-06-23 2019-01-01 三星电子株式会社 支持多种无线接入技术的无线通信装置及无线通信方法
CN111095230A (zh) * 2017-11-02 2020-05-01 微芯片技术股份有限公司 共享无线电仲裁

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5722063A (en) * 1994-12-16 1998-02-24 Qualcomm Incorporated Method and apparatus for increasing receiver immunity to interference
US6498926B1 (en) * 1997-12-09 2002-12-24 Qualcomm Incorporated Programmable linear receiver having a variable IIP3 point
US20040171361A1 (en) * 2003-02-27 2004-09-02 Karthik Vasanth Selective input level wireless receiver
US8060041B2 (en) * 2006-02-09 2011-11-15 Qualcomm, Incorporated Adaptive receiver for wireless communication device
CN110492891B (zh) * 2016-08-31 2021-08-27 华为技术有限公司 接收机以及无线通信装置
US10056875B1 (en) * 2017-02-03 2018-08-21 Qualcomm Incorporated Radio frequency front end transmit and receive path switch gain

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9479126B2 (en) * 2014-08-19 2016-10-25 Infineon Technologies Ag System and method for a low noise amplifier
CN108023602A (zh) * 2016-10-28 2018-05-11 中兴通讯股份有限公司 终端接收机及其提高接收灵敏度的方法
CN109121228A (zh) * 2017-06-23 2019-01-01 三星电子株式会社 支持多种无线接入技术的无线通信装置及无线通信方法
CN111095230A (zh) * 2017-11-02 2020-05-01 微芯片技术股份有限公司 共享无线电仲裁

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116419383A (zh) * 2023-06-06 2023-07-11 东方空间技术(北京)有限公司 一种自动增益控制方法、电路及设备
CN116419383B (zh) * 2023-06-06 2023-08-18 东方空间技术(北京)有限公司 一种自动增益控制方法、电路及设备

Also Published As

Publication number Publication date
EP4207609A1 (en) 2023-07-05
US20230238986A1 (en) 2023-07-27
EP4207609A4 (en) 2023-10-25
CN116349137A (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
US10924151B2 (en) Transmitter device and transceiver device for transmitting different wireless standard signal
US9577699B2 (en) Dual antenna topology for bluetooth and IEEE 802.11 wireless local area network devices
US8554137B2 (en) Method and system for short range and wireless LAN coexistence
US9572176B2 (en) Multi-purpose radio front-end processing circuitry
CN101978610B (zh) 具有共用低噪声放大器的蓝牙和wlan共存结构
US8693950B2 (en) Method and system for transmit power control techniques to reduce mutual interference between coexistent wireless networks device
JP5467158B2 (ja) 無線通信システムと複数の無線通信モジュールの共存方法
US8543059B2 (en) Combo wireless system and method using the same
US20110009074A1 (en) Systems and methods for coexistence between plurality of wireless communications modules sharing single antenna
US20040264394A1 (en) Method and apparatus for multi-channel wireless LAN architecture
US20040038660A1 (en) RF front-end for dual-mode wireless LAN module
JP2007142684A (ja) 無線通信装置
US20230238986A1 (en) Short-range communications apparatus, chip, and control method
EP1124337A2 (en) Switchless half-duplex transceiver front end
US20230012045A1 (en) Apparatuses and methods for co-reception (co-rx) operation of multiple transceiver radios sharing the same antenna and low noise amplifier (lna)
US20230170930A1 (en) Supporting Multiple Protocols with Selective Amplification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020955746

Country of ref document: EP

Effective date: 20230329

NENP Non-entry into the national phase

Ref country code: DE