WO2022057267A1 - 一种配置雷达的方法、装置、电子设备及存储介质 - Google Patents

一种配置雷达的方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2022057267A1
WO2022057267A1 PCT/CN2021/090583 CN2021090583W WO2022057267A1 WO 2022057267 A1 WO2022057267 A1 WO 2022057267A1 CN 2021090583 W CN2021090583 W CN 2021090583W WO 2022057267 A1 WO2022057267 A1 WO 2022057267A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
target
radar
configuration parameter
radars
Prior art date
Application number
PCT/CN2021/090583
Other languages
English (en)
French (fr)
Inventor
王哲
石建萍
Original Assignee
上海商汤临港智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海商汤临港智能科技有限公司 filed Critical 上海商汤临港智能科技有限公司
Priority to JP2021567837A priority Critical patent/JP2022546791A/ja
Priority to KR1020217043028A priority patent/KR20220038603A/ko
Publication of WO2022057267A1 publication Critical patent/WO2022057267A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4915Time delay measurement, e.g. operational details for pixel components; Phase measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out

Definitions

  • the present disclosure relates to the technical field of radar, and in particular, to a method, an apparatus, an electronic device and a storage medium for configuring a radar.
  • LiDAR has been widely used in the fields of autonomous driving, UAV exploration, map mapping and other fields due to its accurate ranging ability
  • the point cloud data provided by LiDAR has generated information such as target detection, mapping, positioning, Specific applications in related fields such as point cloud segmentation.
  • the embodiments of the present disclosure provide at least one solution for configuring radars, determining relevant scanning time information for grids divided by multiple radar scanning ranges to select corresponding configuration parameters for multiple radars, thereby reducing the synchronization of multiple radar data collections Delay, improve the data reliability and accuracy of subsequent applications.
  • an embodiment of the present disclosure provides a method for configuring a radar, the method comprising:
  • a target configuration parameter set is selected from multiple sets of the candidate configuration parameter sets, and parameter configuration is performed for the multiple radars according to the target configuration parameter set; wherein, a set of candidate configuration parameter sets includes A set of candidate configuration parameters for each radar used to determine the duration of a target scan delay.
  • the obtained target scanning ranges of multiple radars can be divided into grids; then the scanning of each grid can be scanned under each candidate configuration parameter set according to each radar. time, to determine the target scanning delay duration of multiple radars scanning to the same grid; in some possible implementations, each target scanning delay duration corresponds to a set of candidate configuration parameters of multiple radars, and each set of candidate configuration parameters is set in Including one candidate configuration parameter set corresponding to multiple radars, that is, each group of candidate configuration parameter sets can be selected from a variety of candidate configuration parameter sets corresponding to each radar, and then from each It is obtained by combining a candidate configuration parameter set selected by the radar; in this way, the target configuration parameter set with the shortest target scanning delay time can be selected from multiple sets of candidate configuration parameter sets based on multiple target scanning delay time, and the target configuration parameter set with the shortest target scanning delay time can be synchronized. Parameters are configured for multiple radars. In this way, the time delay of point cloud data
  • the target scanning delay time is determined based on the relative scanning time of scanning the grid under various candidate configuration parameter sets of each radar, which can characterize the scanning time difference of multiple radars scanning the same target, and the scanning
  • the larger the time difference the weaker the synchronization of multiple radars.
  • the smaller the scanning time difference the stronger the synchronization of multiple radars.
  • a target configuration parameter set that makes the scanning time difference smaller can be selected for each radar. For the target entered into the grid, it can be achieved that the radar data collected by multiple radars synchronously scans the target at the same time, which can improve the reliability and accuracy of the point cloud data for subsequent related applications.
  • an embodiment of the present disclosure further provides an apparatus for configuring a radar, the apparatus comprising:
  • an acquisition module configured to acquire a target scanning range scanned by a plurality of radars, and divide the target scanning range into a plurality of grids;
  • a determination module configured to determine the target scanning delay time of multiple radars scanning to the same grid according to the scanning time of each radar scanning to each grid under each candidate configuration parameter set;
  • a configuration module configured to select a target configuration parameter set from multiple sets of candidate configuration parameter sets based on the multiple target scanning delay durations, and perform parameter configuration for the plurality of radars according to the target configuration parameter set; wherein, a set of candidate configuration parameters
  • the parameter set includes a set of candidate configuration parameters for each radar used to determine a target scanning delay time.
  • embodiments of the present disclosure further provide an electronic device, including: a processor, a memory, and a bus, where the memory stores machine-readable instructions executable by the processor, and the processor is configured to execute the Machine-readable instructions stored in a memory, when the electronic device is running, the processor communicates with the memory through a bus, and the machine-readable instructions are executed by the processor to execute the first aspect and its various aspects.
  • the steps of the method for configuring a radar according to any one of the embodiments.
  • an embodiment of the present disclosure further provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is run by an electronic device, the electronic device executes the first The steps of a method of configuring a radar according to any of the aspects and various embodiments thereof.
  • an embodiment of the present disclosure provides a computer program, including computer-readable code, when the computer-readable code is executed in an electronic device, a processor in the electronic device executes any one of the above.
  • the described method of configuring the radar is not limited to:
  • FIG. 1A is a schematic diagram of a system architecture to which a method for configuring a radar according to an embodiment of the present disclosure can be applied;
  • FIG. 1B shows a flowchart of a method for configuring a radar provided by an embodiment of the present disclosure
  • FIG. 2 shows a schematic diagram of an apparatus for configuring a radar provided by an embodiment of the present disclosure
  • FIG. 3 shows a schematic diagram of an electronic device provided by an embodiment of the present disclosure.
  • the present disclosure provides at least a solution for configuring radars, and determining relevant scanning time information for grids divided by multiple radar scanning ranges to select corresponding configuration parameters for multiple radars, thereby reducing multiple radar data
  • the synchronization delay of acquisition improves the data reliability and accuracy of subsequent applications.
  • the execution subject of the method for configuring a radar provided by the embodiment of the present disclosure is generally an electronic device with a certain computing capability.
  • the electronic device includes, for example, a terminal device or a server or other processing device, and the terminal device can be a user equipment (User Equipment, UE), a mobile device, a user terminal, a terminal, a cellular phone, a cordless phone, a Personal Digital Assistant (Personal Digital Assistant, PDA), handheld devices, computing devices, in-vehicle devices, wearable devices, etc.
  • the method of configuring the radar may be implemented by the processor calling computer-readable instructions stored in the memory.
  • FIG. 1A is a schematic diagram of a system architecture to which a method for configuring a radar according to an embodiment of the present disclosure can be applied; as shown in FIG. 1A , the system architecture includes: a terminal 111 , a network 112 , and a plurality of radars 113 to 11n .
  • the terminal 111 and the plurality of radars 113 to 11n may establish a communication connection through the network 112, and the terminal 111 obtains the target scanning ranges of the plurality of radars 113 to 11n through the network 112 and performs grid division; then, the terminal 111 according to The scanning time for each radar to scan to each grid under each candidate configuration parameter set, determine the target scanning delay time of multiple radars 113 to 11n scanning to the same grid; finally, select from multiple groups of candidate configuration parameter sets A target configuration parameter set with the shortest target scanning delay time, and synchronously configure parameters for multiple radars 113 to 11n. In this way, the time delay of the point cloud data collection performed by the plurality of radars 113 to 11n can be reduced, and the synchronization can be improved.
  • the method for configuring a radar provided by an embodiment of the present disclosure is described below by taking the execution subject as a terminal device as an example.
  • FIG. 1B is a flowchart of a method for configuring a radar provided by an embodiment of the present disclosure, the method includes steps S101 to S103 , wherein:
  • S103 Based on multiple target scanning delay durations, select a target configuration parameter set from multiple sets of candidate configuration parameter sets, and perform parameter configuration for multiple radars according to the target configuration parameter set; A set of candidate configuration parameters for each radar for the target scan delay time.
  • an application scenario of the radar configuration method may be described in detail first.
  • the method for configuring radars provided by the embodiments of the present disclosure can be adapted to any scenario that requires synchronization of multiple radars; for example, it can be applied to target object detection in automatic driving, and can also be applied to traffic state detection in vehicle-road collaboration. It can be applied to other scenarios, and no specific limitation is made here.
  • a rotating scanning radar can be used to realize multi-radar synchronization, and the rotating scanning radar here can acquire point cloud data of relevant targets in the surrounding environment when rotating and scanning in the horizontal direction.
  • the radar can use a multi-line scanning method, that is, using multiple laser tubes to emit sequentially, and the structure is that multiple laser tubes are arranged longitudinally, that is, in the process of rotating and scanning in the horizontal direction, the multi-layer vertical direction is carried out. scanning.
  • There is a certain angle between each laser tube, and the vertical emission field can be 30° to 40°; in this way, when the radar equipment rotates by one scanning angle, one data packet returned by the laser emitted by multiple laser tubes can be obtained.
  • the radar point cloud data can be obtained by splicing the data packets obtained from each scanning angle.
  • the multi-radar synchronization operation may be to control multiple radars to synchronously collect radar point cloud data, and to fuse the radar point cloud data synchronously collected by each radar can be applied to the above application scenarios.
  • time synchronization is often required to reduce the delay between radars.
  • the traditional multi-radar synchronization mainly includes three schemes: one is hard trigger synchronization, usually a high-precision global positioning system (Global Positioning System, GPS) can be used as the system clock, and each radar is pulse-locked by the GPS pulse signal. , multiple radars are synchronized under the same pulse signal trigger, and the delay can reach the millisecond level; the second is software synchronization, usually a unified clock domain can be determined for multiple radars; the third is motion compensation, due to the rotating scanning radar.
  • the scanning time is relatively long (such as 100 milliseconds (ms)), and the difference between the first point and the last point of each frame of point cloud is 100ms.
  • the point cloud of the scanned target is deformed , where the motion of the vehicle can be compensated by high-precision GPS, and the time stamp in the point cloud can be used to correct the point cloud to restore the original appearance of the scanned target.
  • the above three multi-radar synchronization methods mainly scan this direction from the same moment for synchronization.
  • the first involved hard trigger synchronization method is concerned, it is limited by the operation mechanism of the internal clock of the radar, which is easy to cause
  • each radar has an independent collection period and cannot guarantee the same time collection.
  • the complexity is higher for the third involved motion compensation synchronization method.
  • the three synchronization methods mentioned above are mainly to scan this direction from the same moment for synchronization, but the core of synchronization is to allow the same target to be scanned at the same moment. The above methods do not give the above corresponding revelation.
  • the embodiments of the present disclosure provide a method for configuring a radar.
  • the method determines relevant scanning time information for grids divided by multiple radar scanning ranges to select a corresponding configuration for multiple radars. parameters, thereby reducing the synchronization delay of multiple radar data collection, and improving the data reliability and accuracy of subsequent applications.
  • the target scanning range in the embodiment of the present disclosure may be a superimposed range obtained by superimposing the scanning range of each radar in the plurality of radars when scanning.
  • the scanning area that falls into the horizontal direction may be a circular area.
  • the scanning range of the target can be determined by combining the scanning areas scanned by multiple radars.
  • the target scanning range can be defined as a rectangular area, a circular area, etc.
  • a rectangular area can be used as an example for illustration.
  • the target scanning range can be divided into grids according to the grid size, where the grid size can be the actual size, such as dividing the rectangular area corresponding to the target scanning range into lengths and a grid with a width of 0.5 meters.
  • the method for configuring radars may determine, according to the scanning time of each radar scanning to each grid under each candidate configuration parameter set, that multiple radars scan to the same
  • the target scan delay duration of a grid is selected by selecting a target configuration parameter set according to the determined multiple target scan delay durations to realize parameter configuration.
  • each target scanning delay time in the embodiment of the present disclosure corresponds to a group of candidate configuration parameter sets of multiple radars
  • each group of candidate configuration parameter sets includes a candidate configuration parameter set corresponding to the multiple radars respectively, that is, , each group of candidate configuration parameter sets of multiple radars may be a candidate configuration parameter set selected from multiple candidate configuration parameter sets corresponding to each radar, and then a candidate configuration parameter set selected from each radar is combined. owned.
  • Each radar in the embodiment of the present disclosure may correspond to multiple candidate configuration parameter sets, and one candidate configuration parameter set here may be a set including multiple candidate configuration parameters and corresponding parameter values.
  • the candidate configuration parameters here may be parameters such as scanning frequency, horizontal resolution, and initial phase angle. In some possible implementations, other candidate configuration parameters may be set, which are not specifically limited here.
  • the synchronization of three radars can be taken as an example for illustration here. If the first radar, the second radar and the third radar correspond to two, three and four candidate configuration parameter sets, respectively, in this way, through the combined operation of the above parameter sets, the 24 (2 ⁇ 3 ⁇ 4) group candidate configuration parameter set.
  • the scanning delay time of each target may be determined based on the time difference between the scanning times of any two radars respectively scanning the same grid under a corresponding set of candidate configuration parameters for multiple radars.
  • the target scanning delay duration may be determined based on the selection principle of the largest time difference (corresponding to the longest scanning delay duration).
  • the target scan delay information corresponding to all grids can be determined by analyzing the target scan delay time. Based on this target scan delay The information can be used to select a set of target configuration parameter sets for multiple radars.
  • corresponding parameter configuration is performed on multiple radars according to a selected set of target configuration parameter sets, and the multiple radars after parameter configuration can be controlled to synchronously collect radar point cloud data of the relevant scene.
  • each radar may correspond to a target configuration parameter set in a set of target configuration parameter sets.
  • the target configuration parameter set is used to configure the parameters of the corresponding radar, so as to realize the joint configuration of multiple radars and reduce the synchronization delay of data collection of multiple radars.
  • multiple point cloud data of the target can be obtained at the same time, so that the reliability and accuracy of the point cloud data of subsequent related applications can be improved.
  • the method for configuring radars can determine the target scanning delay time of multiple radars scanning to the same grid based on the scanning time of each radar scanning to each grid. Specifically, the following steps can be implemented:
  • Step 1 For each grid in the plurality of grids, determine the scanning time for each radar to scan the grid under each candidate configuration parameter set;
  • Step 2 Combining multiple radars in pairs, determining the difference between the scanning times of the two radars in each combination scanning the same grid respectively, and obtaining the candidate scanning delay time corresponding to the combination;
  • Step 3 Based on the candidate scanning delay durations corresponding to each combination, determine the target scanning delay durations of the multiple radars scanning the same grid.
  • the target scanning delay duration may represent the scanning time difference of different radars, and may be determined based on the screening results of candidate scanning delay durations corresponding to two radars in multiple combinations. In order to realize the parameter configuration for each radar, the candidate scan delay duration with the longest duration can be selected as the target scan delay duration.
  • the candidate scanning delay durations corresponding to the two radars of each combination can be determined based on the result of the subtraction of the scanning times of the two radars of the combination respectively scanning the same grid, that is, the two radars scan the same grid.
  • Step 1 Based on the position information of the radar in the target scanning range and the position range of the grid in the target scanning range, determine the angular range in which the grid falls relative to the scanning positive direction;
  • Step 2 Based on the horizontal resolution angle of the radar and the scanning time interval corresponding to the horizontal resolution angle, as well as the initial phase angle value relative to the positive scanning direction and the initial scanning time corresponding to the initial phase angle value, determine whether the current scanning angle of the radar falls.
  • Step 3 In response to the current scanning angle falling into the angle range in which the grid falls, determine the current scanning time corresponding to the current scanning angle as the scanning time when the radar scans the grid under the candidate configuration parameter set. .
  • the scan time for the radar to scan to this grid can be determined based on the current scan time corresponding to the current scan angle.
  • the angular range corresponding to the above grid may be determined based on the position information of the radar in the target scanning range and the position range of the grid in the target scanning range.
  • the radar scans the first position point of this position range first and the last position range that the radar scans to this position range.
  • Two position points in this way, a starting grid angle for this grid can be determined based on the line connecting the radar and the first position point, and a starting grid angle for this grid can be determined based on the line connecting the radar and the second position point.
  • An end grid angle of in this way, the grid angle range determined by the start grid angle and the end grid angle can be determined as the angle range within which the grid falls relative to the positive scanning direction.
  • the radar's horizontal resolution angle and the scanning time interval corresponding to the horizontal resolution angle, as well as the initial phase angle value relative to the positive scanning direction and the initial scanning moment corresponding to the initial phase angle value may be used to determine the radar. Current scan angle.
  • is used to represent the current scanning angle relative to the positive scanning direction
  • is used to represent the initial phase angle value relative to the positive scanning direction
  • tt 0 represents the scanning time interval
  • the position of the radar in the scene can be used as the starting point to determine a ray with an angle ⁇ relative to the positive scanning direction.
  • each scan time matrix may record is the moment when each grid is first scanned by the radar under a candidate configuration parameter set.
  • a grid is scanned by multiple transmissions, only the moment when it is scanned can be retained.
  • the moment when the grid is scanned for the first time can be used, or the The time of the last scan, or the average time of multiple scans. If a raster is not scanned, the location is marked as invalid.
  • the scanning time matrix of the radar in the embodiment of the present disclosure reflects the time when the radar scans to different positions in the scene, and this time is determined by the position of the radar, the initial phase angle, the scanning frequency, the horizontal resolution and other factors. .
  • the scanning frequency and horizontal resolution can be determined by the radar from the factory. In the process of parameter configuration in the embodiment of the present disclosure, it may be mainly determined how to set the initial phase angle value for different radars.
  • the subtraction operation between the scanning time matrices can be performed for the two radars in the combination, so that the candidate scanning delay time matrix can be obtained, and the candidate scanning delay matrix here can be recorded.
  • the difference is the scanning time difference between the two radars in the combination of each grid, that is, through the matrix operation, the candidate scanning delay time can be determined under the multi-grid and multi-combination, which is equivalent to using a kind of parallel processing. algorithm, which will greatly improve the speed of data processing.
  • the target scan delay duration may be determined based on the maximum scan time difference. Specifically, it can be implemented according to formula (2):
  • D(i, j) represents the target scanning delay time
  • p, q represents the radar number
  • T p (i, j) represents the scanning time matrix corresponding to the radar number p
  • T q (i, j) represents the number q The scan time matrix corresponding to the radar.
  • the target scanning delay duration in the embodiment of the present disclosure may be determined by performing the maximum scanning time difference for each grid, so that the parameter configuration of each grid can be taken into account.
  • a target configuration parameter set may be selected based on the multiple target scanning delay durations, so as to perform a target configuration parameter set for multiple radars based on the selected target configuration parameter set.
  • Parameter configuration can be achieved through the following steps:
  • Step 1 Determine the sum of the target scanning delay durations corresponding to multiple grids under a corresponding set of candidate configuration parameter sets based on the scanning delay duration of a target scanned by multiple radars to the same grid;
  • Step 2 Select a group of candidate configuration parameter sets with the smallest sum of target scanning delay durations as the target configuration parameter set.
  • the target scanning delay durations of multiple radars scanned to each of the multiple grids under a set of candidate configuration parameters may be summed to obtain a set of candidate configurations.
  • the sum of the target scanning delays corresponding to multiple grids, the sum of the target scanning delays reflects the cumulative delay of the scanning time difference corresponding to each grid in the entire target scanning range.
  • a group of candidate configuration parameter sets with the smallest sum of target scanning delay durations may be selected as the target configuration parameter set.
  • the accumulated delay Z is obtained by summing D(i,j) on (i,j), as shown in formula (3) shown:
  • the sum of the target scanning delay time at any installation position, any initial phase angle, any scanning frequency, and any horizontal resolution can be calculated for any number of radars. Whether these variables can be changed depends on the situation.
  • the installation position of the radar may be some specific positions on the car body in the automatic driving scenario.
  • the optional range is not large.
  • the initial phase angle of the radar are free to dominate. In some possible implementation manners, the embodiments of the present disclosure do not limit specific scenarios.
  • the initial phase angle of each radar can be selected from N1 types from 0 to 360°
  • the installation position can be selected from N2 types
  • the scanning frequency can be selected from N3 types
  • the horizontal resolution can be selected from N4 types.
  • the data processing method provided by the embodiment of the present disclosure can also determine a set of candidate configuration parameter sets of multiple radars according to the following steps:
  • Step 1 Obtain multiple original configuration parameter sets of each radar; each original configuration parameter set includes multiple original configuration parameters and parameter values corresponding to each original configuration parameter;
  • Step 2 Selecting standard configuration parameters from a plurality of original configuration parameters based on preset configuration conditions, and sorting the various original configuration parameter sets of each radar according to the parameter values of the standard configuration parameters in ascending order;
  • Step 3 According to the adjustment step size of the parameter values of the standard configuration parameters, multiple candidate configuration parameter sets of the radar are selected from the sorted multiple original configuration parameter sets of each radar.
  • multiple original configuration parameter sets of each radar can be obtained first, and then standard configuration parameters can be selected from multiple original configuration parameters based on preset configuration conditions; After sorting the various original configuration parameter sets of each radar in order from small to large, you can select from the sorted various original configuration parameter sets of each radar according to the adjustment step size of the parameter values of the standard configuration parameters.
  • a variety of candidate configuration parameter sets for the radar are derived.
  • some kinds of original configuration parameter sets may be selected from various original configuration parameter sets as candidate configuration parameter sets based on the adjustment step size of the parameter values of standard configuration parameters. , to reduce the amount of computation.
  • multiple candidate configuration parameter sets for each radar can be selected according to the adjustment step size according to the following steps:
  • Step 1 According to the first adjustment step size of the parameter value of the standard configuration parameter, select some original configuration parameter sets from the various original configuration parameter sets of each radar after sorting, and based on the selected part of the radar configuration parameters The original configuration parameter set, to determine a set of reference configuration parameter sets with the smallest sum of the corresponding target scanning delay time;
  • Step 2 Based on the determined set of one original configuration parameter set corresponding to each radar in a set of reference configuration parameters, and the second adjustment step size of the parameter values of the standard configuration parameters, from the sorted multiple original configuration parameters of each radar. From the configuration parameter set, multiple candidate configuration parameter sets of the radar are selected; wherein, the second adjustment step size is smaller than the first adjustment step size.
  • the parameter set selection under the coarse-grained condition may be performed based on the first adjustment step size, and then the parameter set selection under the fine-grained condition may be performed based on the second adjustment step size.
  • the initial phase angle is used as a standard configuration parameter
  • the first adjustment step of the parameter value of the standard configuration parameter is set to 30° as an example, based on this adjustment
  • the step size can select some original configuration parameter sets from various original configuration parameter sets of each radar, and the initial phase angle values in the selected part of the original configuration parameter sets can be 0°, 30°, 60°... 360°, thus realizing the parameter set selection under coarse granularity.
  • a set of reference configurations with the smallest sum of the corresponding target scanning delay time is determined.
  • Parameter set for example, the initial phase angle values of the three radars corresponding to the determined set of reference configuration parameter sets are 0°, 30°, and 90° respectively, that is, fine-grained parameters can be performed based on the set second adjustment step size Set selection.
  • the initial phase angle values of the three radars can be 0°, 30°, and 90° from the sorted sets of various original configuration parameters of each radar.
  • various candidate configuration parameter sets of the radar are selected respectively.
  • the first adjustment step size and the second adjustment step size may be synchronously set based on all radars, or different first adjustment step size and second adjustment step may be set for different radars
  • the step size can be adjusted according to different application requirements here, and no specific restrictions are made here.
  • multiple radars may be set on the traveling device, and may also be set at the relative positions of the target traffic intersections to achieve different applications.
  • Each radar can also be set in the relevant position of other related applications, and no specific limitation is made here.
  • the detection application of the target object can be implemented, corresponding to the first target scene.
  • target detection may be performed based on the collected radar point cloud data, target object information in the target scene may be determined, and target object information may be determined based on the target scene.
  • Object information to control the traveling device.
  • the information about the target object may include the relevant pose information of the target object, so that the traveling device can be controlled to make a more reasonable judgment in combination with the pose information and the traveling information of the traveling device itself; Overtaking etc.
  • the determination of the target object information in the embodiment of the present disclosure may be implemented based on a target object detection model obtained by pre-training, and details are not described herein.
  • a traffic detection application can be implemented, corresponding to the second target scene.
  • a radar especially for a target traffic intersection involving a large road surface, a radar often cannot obtain complete intersection information.
  • the method of configuring radar is used to set the synchronization of multiple radars, so as to collect radar point cloud data with more reliable and accurate data; in this way, based on the collected radar point cloud data, accurate detection of traffic status can be realized.
  • the writing order of each step does not mean a strict execution order but constitutes any limitation on the implementation process, and the specific execution order of each step should be based on its function and possible Internal logic is determined.
  • an apparatus for configuring a radar corresponding to the method for configuring a radar is also provided in the embodiment of the present disclosure.
  • the apparatus reference may be made to the implementation of the method, and the repetition will not be repeated.
  • the apparatus includes: an acquisition module 201, a determination module 202, and a configuration module 203; wherein,
  • the acquisition module 201 is configured to acquire the target scanning range scanned by multiple radars, and divide the target scanning range into a plurality of grids;
  • the determining module 202 is configured to determine the target scanning delay time of the multiple radars scanning to the same grid according to the scanning time of each radar scanning to each grid under each candidate configuration parameter set;
  • the configuration module 203 is configured to select a target configuration parameter set from multiple sets of candidate configuration parameter sets based on multiple target scanning delay durations, and perform parameter configuration for multiple radars according to the target configuration parameter set; wherein, a set of candidate configuration parameter sets includes A set of candidate configuration parameters for each radar used to determine the duration of a target scan delay.
  • the determining module 202 is configured to, according to the following steps, according to the scanning time of each radar scanning to each grid under each candidate configuration parameter set, determine that multiple radars scan the same grid
  • the target scan delay duration is:
  • the target scanning delay durations of multiple radars scanning to the same grid are determined.
  • the determining module 202 is configured to determine the target scanning delay duration for scanning the same grid from multiple radars based on the candidate scanning delay durations corresponding to each combination according to the following steps:
  • the longest candidate scan delay duration is selected from the candidate scan delay durations corresponding to each combination as the target scan delay duration.
  • the selection module is configured to select a target configuration parameter set from multiple sets of candidate configuration parameter sets based on multiple target scanning delay durations according to the following steps:
  • a set of candidate configuration parameter sets with the smallest sum of corresponding target scanning delay durations is selected as the target configuration parameter set.
  • the configuration parameters in the candidate configuration parameter set include: the horizontal resolution angle and the scanning time interval of the horizontal resolution angle, and the initial phase angle value relative to the positive scanning direction and the difference between the initial phase angle value initial scan time;
  • the determining module 202 is configured to determine the scan time for the radar to scan to the grid under the candidate configuration parameter set according to the following steps:
  • the current scan time corresponding to the current scan angle is determined as the scan time when the radar scans the grid under the candidate configuration parameter set.
  • the determining module 202 is configured to determine a set of candidate configuration parameter sets for multiple radars according to the following steps:
  • each original configuration parameter set includes multiple original configuration parameters and parameter values corresponding to each original configuration parameter;
  • standard configuration parameters are selected from multiple original configuration parameters, and the various original configuration parameter sets of each radar are sorted according to the parameter values of the standard configuration parameters in ascending order;
  • multiple candidate configuration parameter sets of the radar are selected from the sorted multiple original configuration parameter sets of each radar.
  • the determining module 202 is configured to select the multiplicity of the radars from the sorted sets of various original configuration parameters of each radar according to the adjustment step size of the parameter values of the standard configuration parameters according to the following steps. There are several candidate configuration parameter sets:
  • some original configuration parameter sets are selected from the various original configuration parameter sets of each radar after sorting, and based on the selected part of the original configuration parameters of each radar Set, determine a set of reference configuration parameters with the minimum sum of the corresponding target scanning delay time;
  • the second adjustment step size is smaller than the first adjustment step size.
  • multiple radars are arranged on the traveling device, and the above-mentioned device further includes:
  • the driving control module 204 is configured to collect the radar point cloud data of the first target scene for the plurality of radars after the parameter configuration is performed for the plurality of radars according to the target configuration parameter set; Detecting and determining target object information in the first target scene; and controlling the driving device based on the target object information.
  • the multiple radars are respectively set at relative positions of the target traffic intersection in the second target scene according to the set angle, and the above-mentioned device further includes:
  • the traffic detection module 205 is configured to, after parameter configuration is performed for the multiple radars according to the target configuration parameter set, to control the multiple radars whose parameter configuration is completed to collect the radar point cloud data of the second target scene; The traffic state detection is carried out at the traffic intersection, and the traffic detection result is obtained.
  • An embodiment of the present disclosure further provides an electronic device.
  • a schematic structural diagram of the electronic device provided by the embodiment of the present disclosure includes: a processor 301 , a memory 302 , and a bus 303 .
  • the memory 302 stores machine-readable instructions executable by the processor 301 (for example, the execution instructions corresponding to the acquisition module 201, the determination module 202, the configuration module 203 in the apparatus for configuring the radar in FIG. 2, etc.), when the electronic device is running,
  • the communication between the processor 301 and the memory 302 is through the bus 303, and the machine-readable instructions are executed by the processor 301 to perform the following processing:
  • a target configuration parameter set is selected from multiple sets of candidate configuration parameter sets, and parameter configuration is performed for multiple radars according to the target configuration parameter set; wherein, a set of candidate configuration parameter sets includes determining a target scanning delay duration The set of candidate configuration parameters for each radar of .
  • Embodiments of the present disclosure further provide a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is run by a processor, the steps of the method for configuring a radar described in the foregoing method embodiments are executed.
  • the storage medium may be a volatile or non-volatile computer-readable storage medium.
  • the computer program product of the method for configuring a radar includes a computer-readable storage medium storing program codes, and the instructions included in the program code can be used to execute the method for configuring the radar in the above method embodiments. For details, refer to the above method embodiments, which will not be repeated here.
  • Embodiments of the present disclosure also provide a computer program, which implements any one of the methods in the foregoing embodiments when the computer program is executed by a processor.
  • the computer program product can be specifically implemented by hardware, software or a combination thereof.
  • the computer program product is embodied as a computer storage medium, and in another optional embodiment, the computer program product is embodied as a software product, such as a software development kit (Software Development Kit, SDK), etc. Wait.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as stand-alone products, may be stored in a processor-executable non-volatile computer-readable storage medium.
  • the computer software products are stored in a storage medium, including Several instructions are used to cause an electronic device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • the present disclosure provides a method, device, electronic device and storage medium for configuring a radar, wherein the method includes: acquiring a target scanning range scanned by a plurality of radars, and dividing the target scanning range into a plurality of grids; The scanning time of each radar scanning to each grid under each candidate configuration parameter set, and determining the target scanning delay time of multiple radars scanning to the same grid; A target configuration parameter set is selected centrally, and parameter configuration is performed for multiple radars according to the target configuration parameter set; wherein, a set of candidate configuration parameter sets includes candidate configuration parameter sets for each radar used to determine a target scanning delay time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种配置雷达的方法、装置、电子设备及存储介质,其中,该方法包括:获取多个雷达进行扫描的目标扫描范围,并将目标扫描范围划分为多个栅格(S101);根据每个雷达在每种候选配置参数集下扫描到每个栅格的扫描时间,确定多个雷达扫描到同一个栅格的目标扫描延迟时长(S102);基于多个目标扫描延迟时长,从多组候选配置参数集中选择目标配置参数集,并根据目标配置参数集为多个雷达进行参数配置;其中,一组候选配置参数集包括用于确定一个目标扫描延迟时长的各个雷达的候选配置参数集(S103),该方法依据扫描延迟时长为多个雷达选择相应的配置参数,从而降低多个雷达进行数据采集的时延。

Description

一种配置雷达的方法、装置、电子设备及存储介质
相关申请的交叉引用
本公开基于申请号为202010975334.6、申请日为2020年9月16日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及雷达技术领域,尤其涉及一种配置雷达的方法、装置、电子设备及存储介质。
背景技术
近年来,激光雷达以其精确的测距能力,被广泛应用于自动驾驶、无人机勘探、地图测绘等领域,而激光雷达所提供的点云数据产生了诸如目标检测、建图、定位、点云分割等在相关领域中的具体应用。
以自动驾驶为例,在进行环境信息采集时,单个激光雷达所能扫描到的物理点有限(即对应的点云数据量较少),而无法获取到完整的周围环境信息,所以,通常情况下需要在车辆上设置多个激光雷达进行点云数据的采集,并将这多个激光雷达的点云数据进行融合,这就需要多个激光雷达之间的采集时间保持同步。
发明内容
本公开实施例至少提供一种配置雷达的方案,针对多个雷达扫描范围所划分的栅格进行相关扫描时间信息的确定以为多个雷达选择相应的配置参数,从而降低多个雷达数据采集的同步时延,提高后续应用的数据可靠性和准确性。
第一方面,本公开实施例提供了一种配置雷达的方法,所述方法包括:
获取多个雷达进行扫描的目标扫描范围,并将所述目标扫描范围划分为多个栅格;
根据每个雷达在每种候选配置参数集下扫描到每个栅格的扫描时间,确定多个雷达扫描到同一个栅格的目标扫描延迟时长;
基于多个目标扫描延迟时长,从多组所述候选配置参数集中选择目标配置参数集,并根据所述目标配置参数集为所述多个雷达进行参数配置;其中,一组候选配置参数集包括用于确定一个目标扫描延迟时长的各个雷达的候选配置参数集。
本公开实施例提供的配置雷达的方法,首先可以对获取的多个雷达的目标扫描范围进行栅格划分;然后可以根据每个雷达在每种候选配置参数集下扫描到每个栅格的扫描时间,确定多个雷达扫描到同一个栅格的目标扫描延迟时长;在一些可能的实现方式中,每个目标扫描延迟时长对应多个雷达的一组候选配置参数集,每组候选配置参数集中包括多个雷达分别对应的一种候选配置参数集,也即,每组候选配置参数集可以是从每个雷达对应的多种候选配置参数集中选择一种候选配置参数集,而后将从每个雷达选择出的一种候选配置参数集进行组合得到的;这样,即可以基于多个目标扫描延迟时长,从多组候选配置参数集中选择使得目标扫描延迟时长最短的目标配置参数集,并同步对多个雷达进行参数配置,如此,可以降低多个雷达进行点云数据采集的时间延迟,提升同步性。
这主要是考虑到目标扫描延迟时长是基于每个雷达的多种候选配置参数集下对栅格进行扫描的相关扫描时间所确定的,可以表征多个雷达对同一目标进行扫描的扫描时间差,扫描时间差越大对应多个雷达的同步性越弱,扫描时间差越小对应多个雷达的同步性越强,这里可以为每个雷达选取出使得扫描时间差更小的目标配置参数集,这样,对于落入到栅格内的目标而言,可以达到多雷达所同步采集的雷达数据是同时扫描到这一目标的,从而可以提升后续相关应用的点云数据可靠性和准确性。
第二方面,本公开实施例还提供了一种配置雷达的装置,所述装置包括:
获取模块,配置为获取多个雷达进行扫描的目标扫描范围,并将所述目标扫描范围划分为多个栅格;
确定模块,配置为根据每个雷达在每种候选配置参数集下扫描到每个栅格的扫描时间,确定多个雷达扫描到同一个栅格的目标扫描延迟时长;
配置模块,配置为基于多个目标扫描延迟时长,从多组候选配置参数集中选择目标配置参数集,并根据所述目标配置参数集为所述多个雷达进行参数配置;其中,一组候选配置参数集包括用于确定一个目标扫描延迟时长的各个雷达的候选配置参数集。
第三方面,本公开实施例还提供了一种电子设备,包括:处理器、存储器和总线,所述存储器存储有所述处理器可执行的机器可读指令,所述处理器用于执行所述存储器中存储的机器可读指令,当电子设备运行时,所述处理器与所述存储器之间通过总线通信,所述机器可读指令被所述处理器执行时执行如第一方面及其各种实施方式任一所述的配置雷达的方法的步骤。
第四方面,本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被电子设备运行时,所述电子设备执行如第一方面及其各种实施方式任一所述的配置雷达的方法的步骤。
第五方面,本公开实施例提供一种计算机程序,包括计算机可读代码,当所述计算机可读代码在电子设备中运行时,所述电子设备中的处理器执行用于实现上述任意一项所述的配置雷达的方法。
关于上述配置雷达的装置、电子设备、及计算机可读存储介质的效果描述参见上述配置雷达的方法的说明,这里不再赘述。
为使本公开的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,此处的附图被并入说明书中并构成本说明书中的一部分,这些附图示出了符合本公开的实施例,并与说明书一起用于说明本公开的技术方案。应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1A为可以应用本公开实施例的配置雷达的方法的一种系统架构示意图;
图1B示出了本公开实施例所提供的一种配置雷达的方法的流程图;
图2示出了本公开实施例所提供的一种配置雷达的装置的示意图;
图3示出了本公开实施例所提供的一种电子设备的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。通常在此处描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。因此,以下对本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
经研究发现,在相关技术中,一般通过设置同步时钟来控制多个激光雷达在同一个时间点触发数据采集。然而,受限于激光雷达内部时钟的运行机制,不同激光雷达内部时钟本身的同步性存在问题,多个激光雷达实际采集的原始数据之间存在较大的采集时间差,从而导致融合的点云数据不够精准,影响车辆对周围环境的感知。
基于上述研究,本公开至少提供了一种配置雷达的方案,针对多个雷达扫描范围所划分的栅格进行相关扫描时间信息的确定以为多个雷达选择相应的配置参数,从而降低多个雷达数据采集的同步时延,提高后续应用的数据可靠性和准确性。
针对以上方案所存在的缺陷,均是发明人在经过实践并仔细研究后得出的结果,因此,上述问题 的发现过程以及下文中本公开针对上述问题所提出的解决方案,都应该是发明人在本公开过程中对本公开做出的贡献。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
为便于对本实施例进行理解,首先对本公开实施例所公开的一种配置雷达的方法进行详细介绍,本公开实施例所提供的配置雷达的方法的执行主体一般为具有一定计算能力的电子设备,该电子设备例如包括:终端设备或服务器或其它处理设备,终端设备可以为用户设备(User Equipment,UE)、移动设备、用户终端、终端、蜂窝电话、无绳电话、个人数字处理(Personal Digital Assistant,PDA)、手持设备、计算设备、车载设备、可穿戴设备等。在一些可能的实现方式中,该配置雷达的方法可以通过处理器调用存储器中存储的计算机可读指令的方式来实现。
图1A为可以应用本公开实施例的配置雷达的方法的一种系统架构示意图;如图1A所示,该系统架构中包括:终端111、网络112和多个雷达113至11n。在一个示例性应用,终端111和多个雷达113至11n可以通过网络112建立通信连接,终端111通过网络112获取多个雷达113至11n的目标扫描范围并进行栅格划分;然后,终端111根据每个雷达在每种候选配置参数集下扫描到每个栅格的扫描时间,确定多个雷达113至11n扫描到同一个栅格的目标扫描延迟时长;最后,从多组候选配置参数集中选择使得目标扫描延迟时长最短的目标配置参数集,并同步对多个雷达113至11n进行参数配置。如此,能够降低多个雷达113至11n进行点云数据采集的时间延迟,提升同步性。
下面以执行主体为终端设备为例对本公开实施例提供的配置雷达的方法加以说明。
参见图1B所示,为本公开实施例提供的配置雷达的方法的流程图,方法包括步骤S101至S103,其中:
S101、获取多个雷达进行扫描的目标扫描范围,并将目标扫描范围划分为多个栅格;
S102、根据每个雷达在每种候选配置参数集下扫描到每个栅格的扫描时间,确定多个雷达扫描到同一个栅格的目标扫描延迟时长;
S103、基于多个目标扫描延迟时长,从多组候选配置参数集中选择目标配置参数集,并根据目标配置参数集为多个雷达进行参数配置;其中,一组候选配置参数集包括用于确定一个目标扫描延迟时长的各个雷达的候选配置参数集。
在一些可能的实现方式中,为了便于理解本公开实施例提供的配置雷达的方法,首先可以对该配置雷达的方法的应用场景进行详细说明。本公开实施例提供的配置雷达的方法可以适应于任何需要进行多雷达同步的场景中;例如,可以应用于自动驾驶中的目标对象检测,还可以应用于车路协同中的交通状态检测,还可以应用于其它场景中,在此不做具体的限制。
其中,本公开实施例可以采用旋转式扫描雷达实现多雷达同步,这里的旋转式扫描雷达在水平方向旋转扫描时可以获取周边环境内有关目标的点云数据。在进行旋转扫描的过程中,雷达可以采用多线扫描方式,即使用多个激光管顺序发射,结构为多个激光管纵向排列,即在水平方向旋转扫描的过程中,进行垂直方向的多层扫描。每个激光管之间有一定的夹角,垂直发射视场可以在30°至40°;这样,在雷达设备每旋转一个扫描角度可以获取多个激光管发射激光所返回的一个数据包,将各个扫描角度获取的数据包进行拼接即可得到雷达点云数据。
在一些可能的实现方式中,有关多雷达的同步操作可以是控制多个雷达同步采集雷达点云数据,将各个雷达同步采集的雷达点云数据融合起来即可以应用于上述各个应用场景中。在需要执行多个雷达的同步操作的情况下,往往需要进行时间同步,来降低雷达之间的延时。
传统的多雷达同步主要包括三种方案:其一为硬触发同步,通常可以使用高精度的全球定位系统(Global Positioning System,GPS)作为系统时钟,并通过GPS脉冲信号对各个雷达进行脉冲锁相,多个雷达在相同的脉冲信号触发下同步,延迟可以到毫秒级;其二为软件同步,通常可以是为多个雷达确定统一的时钟域;其三为运动补偿,由于旋转式扫描雷达的扫描时间比较长(如100毫秒(ms)),每帧点云的第一个点和最后一个点相差100ms,在载具(如车辆)移动的情况下,被扫描目标的点云是变形的,这里可以通过高精度GPS对载具的运动进行补偿,利用点云中的时间戳对点云进行校正 以恢复被扫描目标的本来面貌。
可知的是,上述三种多雷达同步方法主要是从同一时刻去扫描这个方向来做同步,就第一种所涉及的硬触发同步方法而言,受限于雷达内部时钟的运行机制,容易导致各雷达采集的原始数据之间有较大的时间差,从而导致融合的点云数据不够精准,就第二种所涉及的软件同步方法而言,各个雷达各自采集周期独立,也无法保证同一时刻采集相同的信息,就第三种所涉及的运动补偿同步方法而言,复杂度较高。与此同时,上述所涉及到的三种同步方法主要是从同一时刻去扫描这个方向来做同步,但是同步更核心的是让同一目标在同一时刻被扫描到,以上方法均没有给出上述相应启示。
正是为了实现上述技术目的,本公开实施例才提供了一种配置雷达的方法,该方法针对多个雷达扫描范围所划分的栅格进行相关扫描时间信息的确定以为多个雷达选择相应的配置参数,从而降低多个雷达数据采集的同步时延,提高后续应用的数据可靠性和准确性。
本公开实施例中的目标扫描范围可以是多个雷达中的每个雷达扫描时的扫描范围进行叠加所得到的叠加范围。在一些可能的实现方式中,仍以旋转式扫描激光雷达作为雷达为例,每个雷达在水平方向上旋转扫描之后,所落入到水平方面的扫描区域可以是圆形区域,在一些可能的实现方式中,将多个雷达所扫描到的扫描区域组合起来,即可确定上述目标扫描范围。
在实际应用中,为了便于进行后续分析,可以将目标扫描范围定义为一个矩形区域、圆形区域等,接下来可以以一个矩形区域为例进行实例说明。
需要说明的是,由于旋转式扫描激光雷达在水平方向上旋转扫描,按照上述方式所确定的矩形区域内将覆盖各个雷达。
在确定多雷达所对应的目标扫描范围的情况下,可以按照栅格尺寸对目标扫描范围进行栅格划分,这里的栅格尺寸可以是实际尺寸,如将目标扫描范围所对应矩形区域划分为长度和宽度均为0.5米的栅格。
为了实现针对场景内目标的扫描同步,本公开实施例提供的配置雷达的方法可以根据每个雷达在每种候选配置参数集下扫描到每个栅格的扫描时间,确定多个雷达扫描到同一个栅格的目标扫描延迟时长以根据确定的多个目标扫描延迟时长进行目标配置参数集的选取进而实现参数配置。
其中,本公开实施例中的每个目标扫描延迟时长对应的是多个雷达的一组候选配置参数集,每组候选配置参数集中包括多个雷达分别对应的一种候选配置参数集,也即,多个雷达的每组候选配置参数集可以是从每个雷达对应的多种候选配置参数集中选择一种候选配置参数集,而后将从每个雷达选择出的一种候选配置参数集进行组合得到的。
本公开实施例中的每个雷达可以对应多种候选配置参数集,这里的一种候选配置参数集可以是包括多个候选配置参数及对应参数值的一个集合。这里的候选配置参数可以是扫描频率、水平分辨率、初始相位角度等参数,在一些可能的实现方式中,可以设置其它的候选配置参数,在此不做具体的限制。
为了便于理解上述组合过程,这里可以以三个雷达的同步为例进行实例说明。若第一个雷达、第二个雷达和第三个雷达分别对应两种、三种和四种候选配置参数集,这样,通过上述参数集的组合操作,可以得到多个雷达对应的24(2×3×4)组候选配置参数集。
这样,每个目标扫描延迟时长可以是多个雷达在对应的一组候选配置参数集下,基于任意两个雷达分别扫描到同一个栅格的扫描时间的时间差所确定的。为了满足所有雷达的参数配置需求,在一些可能的实现方式中,针对同一栅格而言,可以是基于时间差最大(对应扫描延迟时长最长)的选取原则来确定目标扫描延迟时长。
在确定各组候选配置参数集分别对应同一个栅格的目标扫描延迟时长的情况下,可以通过对目标扫描延迟时长进行分析,确定所有栅格对应的目标扫描延迟信息,基于这一目标扫描延迟信息即可以针对多个雷达进行一组目标配置参数集的选取操作。
本公开实施例中,按照选取的一组目标配置参数集对多个雷达进行对应的参数配置,并可以控制进行参数配置后的多个雷达同步采集有关场景的雷达点云数据。
在一些可能的实现方式中,在选取出与多个雷达对应的一组目标配置参数集的情况下,每个雷达 可以分别对应一组目标配置参数集中的一种目标配置参数集,基于该种目标配置参数集进行对应雷达的参数配置,从而实现多个雷达的联合配置,降低多个雷达数据采集的同步时延,这样,对于落入到栅格内的目标而言,可以达到多雷达同时扫描到该目标,在同一时刻得到该目标的多个点云数据,从而可以提高后续相关应用的点云数据的可靠性和准确性。
本公开实施例提供的配置雷达的方法可以基于每个雷达扫描到每个栅格的扫描时间确定多个雷达扫描到同一个栅格的目标扫描延迟时长,具体可以通过如下步骤实现:
步骤一、针对多个栅格中的每个栅格,确定每个雷达在每种候选配置参数集下扫描到该栅格的扫描时间;
步骤二、将多个雷达两两组合,确定每个组合中的两个雷达分别扫描到同一个栅格的扫描时间之差,得到该组合对应的候选扫描延迟时长;
步骤三、基于各个组合对应的候选扫描延迟时长,确定多个雷达扫描到同一个栅格的目标扫描延迟时长。
在一些实施例中,目标扫描延迟时长可以表征的是不同雷达的扫描时间差,可以基于多种组合的两个雷达所对应的候选扫描延迟时长的筛选结果来确定。为了实现针对各个雷达的参数配置,可以选取时长最长的候选扫描延迟时长,作为目标扫描延迟时长。
其中,有关每种组合的两个雷达所对应的候选扫描延迟时长可以基于该种组合的两个雷达分别扫描到同一个栅格的扫描时间的减法运算结果来确定,也即,两个雷达扫描到同一个栅格的扫描时间之间的扫描时间差越大,所对应的候选扫描延迟时长越长。
本公开实施例中,考虑到每个雷达扫描到同一个栅格的扫描时间对于确定候选扫描延迟时长的关键作用,接下来可以通过如下步骤对上述确定扫描时间的过程进行详细说明。
步骤一、基于雷达在目标扫描范围中的位置信息以及栅格在目标扫描范围中的位置范围,确定栅格相对扫描正方向所落入的角度范围;
步骤二、基于雷达的水平分辨角和对应该水平分辨角的扫描时间间隔、以及相对扫描正方向的初始相位角度值和对应该初始相位角度值的初始扫描时刻,确定雷达的当前扫描角度是否落入栅格所落入的角度范围;
步骤三、响应于所述当前扫描角度落入所述栅格所落入的角度范围,将与当前扫描角度对应的当前扫描时刻,确定为雷达在候选配置参数集下扫描到栅格的扫描时间。
在一些可能的实现方式中,为了便于确定雷达扫描到每个栅格的扫描时间,可以先确定雷达的当前扫描角度是否落入到栅格所对应的角度范围,在确定已经落入到某个栅格所对应的角度范围的情况下,可以确定雷达扫描到这一栅格,这样,即可以基于当前扫描角度对应的当前扫描时间确定雷达扫描到这一栅格的扫描时间。
其中,上述栅格所对应的角度范围可以基于雷达在目标扫描范围中的位置信息以及栅格在目标扫描范围中的位置范围来确定。
在一些可能的实现方式中,,一旦确定一个栅格在目标扫描范围中的位置范围,即可以确定雷达最先扫描到这一位置范围的第一位置点以及最后扫描到这一位置范围的第二位置点;这样,基于雷达与第一位置点的连线可以确定针对这一栅格的一个起始栅格角度,并可以基于雷达与第二位置点的连线可以确定针对这一栅格的一个终止栅格角度;这样,由起始栅格角度和终止栅格角度所确定的栅格角度范围即可以确定为该栅格相对扫描正方向所落入的角度范围。
另外,本公开实施例中,可以基于雷达的水平分辨角和对应该水平分辨角的扫描时间间隔、以及相对扫描正方向的初始相位角度值和对应该初始相位角度值的初始扫描时刻确定雷达的当前扫描角度。
在一些可能的实现方式中,为了便于理解当前扫描角度的计算过程,可以结合旋转式扫描激光雷达进行如下示例说明。在设置100ms扫描一圈(对应360°),每圈发射1800次的前提下,可以首先计算出该雷达的最小水平分辨角为360°/1800=0.5°,在一些可能的实现方式中,以0时刻开始,计算出一个周期的100ms内,扫描到有关场景内所有位置的当前扫描角度(该当前扫描角度可以是基于 扫描正方向的偏移角度所确定的)。本公开实施例中,可以按照如下步骤确定当前扫描角度,如公式(1)所示:
Figure PCTCN2021090583-appb-000001
其中,θ用于表征相对扫描正方向的当前扫描角度,φ用于表征相对扫描正方向的初始相位角度值,t-t 0表征扫描时间间隔。
在按照上述公式确定出雷达的当前扫描角度的情况下,可以以雷达在场景中的位置为起点,确定一条相对扫描正方向为θ角的射线,基于每个栅格所落入的角度范围的确定结果,即可以判断这条射线经过了目标扫描范围中的哪些栅格,还可以确定扫描到这些栅格的扫描时间。
在一些可能的实现方式中,为了便于后续进行每个组合对应的候选扫描延迟时长的确定,可以针对每个雷达确定在候选配置参数集下的多个扫描时间矩阵,每个扫描时间矩阵可以记录的是每个栅格被该雷达在一种候选配置参数集下首次扫描到的时刻。在一些可能的实现方式中,仍以0时刻为起始时刻为例,在t=10ms时刻,此时雷达发出的激光会经过部分栅格,则这些栅格对应矩阵T中的元素记为10ms,依次类推,可以计算出一个扫描周期后,T矩阵上每个元素的时间。
需要说明的是,在一些可能的实现方式中,,如果一个栅格被多次发射扫描到,则可以仅保留一次被扫描到的时刻,这里可以采用第一次扫到的时刻,也可以采用最后一次扫到的时刻,或者是多次扫描的平均时刻。如果某个栅格没有被扫描到,则该位置标记为无效。
另外,本公开实施例中雷达的扫描时间矩阵,反映的是这个雷达在场景中,扫到不同位置的时刻,这个时刻由该雷达的位置,初始相位角,扫描频率,水平分辨率等因素决定。一般来说,扫描频率和水平分辨率可以是由雷达出厂就确定的。本公开实施例在进行参数配置的过程中,主要可以是针对不同雷达确定初始相位角度值如何设置。
在确定每个雷达对应的扫描时间矩阵的前提下,可以针对组合中的两个雷达进行扫描时间矩阵之间的减法运算,从而可以得到候选扫描延迟时长矩阵,这里的候选扫描延时矩阵可以记录的是每个栅格被组合中的两个雷达扫描到的扫描时间差,也即,通过矩阵运算,可以实现多栅格、多组合下候选扫描延迟时长的确定,相当于采用了一种并行处理算法,这将很大程度上提升数据处理的速度。
在确定候选扫描延迟时长的前提下,可以基于最大扫描时间差确定目标扫描延迟时长。具体可以按照如公式(2)来实现:
Figure PCTCN2021090583-appb-000002
其中,D(i,j)表征目标扫描延迟时长,p,q表征雷达的编号,T p(i,j)表征p号雷达所对应的扫描时间矩阵,T q(i,j)表征q号雷达所对应的扫描时间矩阵。
基于上述公式(2)可知的是,本公开实施例中的目标扫描延迟时长可以是针对各个栅格进行最大扫描时间差所确定的,从而可以兼顾各个栅格的参数配置。
本公开实施例提供的配置雷达的方法在确定出多个目标扫描延迟时长的情况下,可以基于多个目标扫描延迟时长进行目标配置参数集的选择以基于选择的目标配置参数集对多个雷达进行参数配置,具体可以通过如下步骤实现:
步骤一、基于多个雷达扫描到同一个栅格的一个目标扫描延迟时长,确定对应的一组候选配置参数集下,多个栅格对应的目标扫描延迟时长之和;
步骤二、选取目标扫描延迟时长之和最小的一组候选配置参数集作为目标配置参数集。
在一些可能的实现方式中,可以将多个雷达在一组候选配置参数集下,扫描到多个栅格中的每个栅格的目标扫描延迟时长进行求和运算,得到在一组候选配置参数集下,多个栅格对应的目标扫描延 迟时长之和,该目标扫描延迟时长之和反应了整个目标扫描范围内各个栅格所对应扫描时间差的累加延迟,该累加延迟越低,一定程度上可以表明当前所选的一组候选配置参数集越有利于多个雷达的同步操作。因此,本公开实施例可以选取目标扫描延迟时长之和最小的一组候选配置参数集作为目标配置参数集。在本公开实施例中,通过上述公式(2)得到D(i,j)之后,通过对D(i,j)在(i,j)上求和,得到累加延迟Z,如公式(3)所示:
Figure PCTCN2021090583-appb-000003
在公式(3)中,通过调节激光雷达的坐标,初始相位角等可变的参数,让累加延迟Z最小,从而能够实现多激光雷达组合的同步。
考虑到有关多个雷达的一组候选配置参数集的确定对于上述目标配置参数集的关键作用,接下来可以具体进行描述。
本公开实施例中,可以计算任意数量的雷达,在任意安装位置,任意初始相位角度,任意扫描频率,任意水平分辨率下的目标扫描延迟时长之和。这些变量是否可以进行更改,视具体的情况而定。比如,雷达的安装位置,在自动驾驶场景中可能就是车体上的某些特定位置,可选范围并不大,扫描频率和水平分辨率一般有1或2档可选,雷达的初始相位角度则可以自由支配。在一些可能的实现方式中,本公开实施例对具体场景不做限定。
在一些可能的实现方式中,假设每个雷达的初始相位角度可以在0至360°中任选N1种,安装位置可选方案N2种,扫描频率可选N3种,水平分辨率可选N4种,总共有N5个雷达,则总共有N1×N2×N3×N4×N5种排列组合的配置,每一种排列组合的配置均可以对应上述一组候选配置参数集。
除此之外,本公开实施例提供的数据处理方法还可以按照如下步骤确定多个雷达的一组候选配置参数集:
步骤一、获取每个雷达的多种原始配置参数集;每种原始配置参数集中包括多个原始配置参数及每个原始配置参数对应的参数值;
步骤二、基于预设配置条件从多个原始配置参数中选取出标准配置参数,并按照标准配置参数的参数值由小到大的顺序对每个雷达的多种原始配置参数集进行排序;
步骤三、按照标准配置参数的参数值的调整步长,从排序后的每个雷达的多种原始配置参数集中选取出该雷达的多种候选配置参数集。
在一些可能的实现方式中,首先可以获取每个雷达的多种原始配置参数集,而后可以基于预设配置条件从多个原始配置参数中选取出标准配置参数;在按照标准配置参数的参数值由小到大的顺序对每个雷达的多种原始配置参数集进行排序之后,即可以按照标准配置参数的参数值的调整步长,从排序后的每个雷达的多种原始配置参数集中选取出该雷达的多种候选配置参数集。
也即,本公开实施例可以是基于标准配置参数的参数值的调整步长从多种原始配置参数集选取部分种原始配置参数集作为候选配置参数集,这将可以在数据相对完整的前提下,降低运算量。
本公开实施例可以按照如下步骤按照调整步长选取每个雷达的多种候选配置参数集:
步骤一、按照标准配置参数的参数值的第一调整步长,从排序后的每个雷达的多种原始配置参数集中选取出部分种原始配置参数集,并基于选取出的各个雷达的部分种原始配置参数集,确定对应的目标扫描延迟时长之和最小的一组参考配置参数集;
步骤二、基于确定的一组参考配置参数集中与每个雷达对应的一种原始配置参数集,以及标准配置参数的参数值的第二调整步长,从排序后的每个雷达的多种原始配置参数集中,选取出该雷达的多种候选配置参数集;其中,第二调整步长小于第一调整步长。
在一些可能的实现方式中,可以基于第一调整步长进行粗粒度条件下的参数集选取,而后再基于第二调整步长进行细粒度条件下的参数集选取。
为了便于进一步理解上述参数集选取的过程,接下来可以以一个具体的示例进行说明。
在一些可能的实现方式中,仍以三个雷达为例,将初始相位角度作为标准配置参数,且该标准配 置参数的参数值的第一调整步长设置为30°为例,基于这一调整步长可以从各个雷达的多种原始配置参数集中选取出部分种原始配置参数集,所选取出的部分种原始配置参数集中的初始相位角度值可以依次为0°、30°、60°……360°,从而实现了粗粒度下的参数集选取。在一些可能的实现方式中,按照上述确定目标扫描延迟时长之和的类似方法,基于选取出的各个雷达的部分种原始配置参数集,确定对应的目标扫描延迟时长之和最小的一组参考配置参数集;比如,确定的一组参考配置参数集所对应的三个雷达的初始相位角度值分别为0°、30°、90°,即可以基于设置的第二调整步长进行细粒度的参数集选取。
在设置的第二调整步长为5°的情况下,可以从排序后的每个雷达的多种原始配置参数集中,以三个雷达的初始相位角度值分别为0°、30°、90°为基准,分别选取出该雷达的多种候选配置参数集。
需要说明的是,本公开实施例中有关第一调整步长和第二调整步长可以是基于所有雷达同步设置的,也可以是针对不同的雷达设置不同的第一调整步长和第二调整步长,这里可以结合不同的应用需求进行调整,在此不做具体的限制。
在本公开实施例提供的配置雷达的方法的具体应用中,多个雷达可以设置在行驶装置上,还可以分别设置在目标交通路口的相对位置以实现不同的应用,除此之外,上述多个雷达还可以设置在其它相关应用的相关位置,在此不做具体的限制。
在一些可能的实现方式中,在多个雷达均设置在行驶装置上的情况下,可以实现目标对象的检测应用,对应第一目标场景。本公开实施例中,在控制参数配置完成的多个雷达采集第一目标场景的雷达点云数据之后,可以基于采集的雷达点云数据进行目标检测,确定目标场景中的目标对象信息,基于目标对象信息,控制行驶装置。
其中,有关目标对象信息可以包括目标对象的相关位姿信息,这样,可以结合位姿信息以及行驶装置自身的行驶信息来控制行驶装置做出更合理的判断;如,是否需要急刹,是否可以超车等。
需要说明的是,本公开实施例中有关目标对象信息的确定可以基于预先训练得到的目标对象检测模型来实现,在此不做赘述。
在一些可能的实现方式中,在多个雷达分别按照设定角度设置在目标交通路口的相对位置处的情况下,可以实现交通检测应用,对应第二目标场景。本公开实施例中,特别是对于涉及路面范围较大的目标交通路口而言,一个雷达往往无法获取到完整的路口信息,在一些可能的实现方式中,即可以采用本公开实施例提供的上述配置雷达的方法进行多雷达的同步设置,从而采集到数据更为可靠和准确的雷达点云数据;这样,基于采集的雷达点云数据可以实现交通状态的准确检测。
本领域技术人员可以理解,在具体实施方式的上述方法中,各步骤的撰写顺序并不意味着严格的执行顺序而对实施过程构成任何限定,各步骤的具体执行顺序应当以其功能和可能的内在逻辑确定。
基于同一发明构思,本公开实施例中还提供了与配置雷达的方法对应的配置雷达的装置,由于本公开实施例中的装置解决问题的原理与本公开实施例上述配置雷达的方法相似,因此装置的实施可以参见方法的实施,重复之处不再赘述。
参照图2所示,为本公开实施例提供的一种配置雷达的装置的示意图,装置包括:获取模块201、确定模块202和配置模块203;其中,
获取模块201,配置为获取多个雷达进行扫描的目标扫描范围,并将目标扫描范围划分为多个栅格;
确定模块202,配置为根据每个雷达在每种候选配置参数集下扫描到每个栅格的扫描时间,确定多个雷达扫描到同一个栅格的目标扫描延迟时长;
配置模块203,配置为基于多个目标扫描延迟时长,从多组候选配置参数集中选择目标配置参数集,并根据目标配置参数集为多个雷达进行参数配置;其中,一组候选配置参数集包括用于确定一个目标扫描延迟时长的各个雷达的候选配置参数集。
在一种可能的实施方式中,确定模块202,配置为按照以下步骤根据每个雷达在每种候选配置参数集下扫描到每个栅格的扫描时间,确定多个雷达扫描到同一个栅格的目标扫描延迟时长:
针对多个栅格中的每个栅格,确定每个雷达在每种候选配置参数集下扫描到该栅格的扫描时间;
将多个雷达两两组合,确定每个组合中的两个雷达分别扫描到同一个栅格的扫描时间之差,得到该组合对应的候选扫描延迟时长;
基于各个组合对应的候选扫描延迟时长,确定多个雷达扫描到同一个栅格的目标扫描延迟时长。
在一种可能的实施方式中,确定模块202,配置为按照以下步骤基于各个组合对应的候选扫描延迟时长,确定多个雷达扫描到同一个栅格的目标扫描延迟时长:
从各个组合对应的候选扫描延迟时长中选取出时长最长的候选扫描延迟时长,作为目标扫描延迟时长。
在一种可能的实施方式中,选择模块,配置为按照以下步骤基于多个目标扫描延迟时长,从多组候选配置参数集中选择目标配置参数集:
基于多个雷达扫描到同一个栅格的一个目标扫描延迟时长,确定在该目标扫描延迟时长对应的一组候选配置参数集下,多个栅格对应的目标扫描延迟时长之和;
选取对应的目标扫描延迟时长之和最小的一组候选配置参数集作为目标配置参数集。
在一种可能的实施方式中,候选配置参数集中的配置参数包括:水平分辨角和所述水平分辨角的扫描时间间隔、以及相对扫描正方向的初始相位角度值和所述初始相位角度值的初始扫描时刻;
针对任一栅格,确定模块202,配置为按照如下步骤确定雷达在候选配置参数集下扫描到栅格的扫描时间:
基于雷达在目标扫描范围中的位置信息以及栅格在目标扫描范围中的位置范围,确定栅格相对扫描正方向所落入的角度范围;
基于雷达的水平分辨角和所述水平分辨角的扫描时间间隔、以及相对扫描正方向的初始相位角度值和所述初始相位角度值的初始扫描时刻,确定雷达的当前扫描角度是否落入栅格所落入的角度范围;
响应于所述当前扫描角度落入所述栅格所落入的角度范围,将与当前扫描角度对应的当前扫描时刻,确定为雷达在候选配置参数集下扫描到栅格的扫描时间。
在一种可能的实施方式中,确定模块202,配置为按照如下步骤确定多个雷达的一组候选配置参数集:
获取每个雷达的多种原始配置参数集;每种原始配置参数集中包括多个原始配置参数及每个原始配置参数对应的参数值;
基于预设配置条件从多个原始配置参数中选取出标准配置参数,并按照标准配置参数的参数值由小到大的顺序对每个雷达的多种原始配置参数集进行排序;
按照标准配置参数的参数值的调整步长,从排序后的每个雷达的多种原始配置参数集中选取出该雷达的多种候选配置参数集。
在一种可能的实施方式中,确定模块202,配置为按照以下步骤按照标准配置参数的参数值的调整步长,从排序后的每个雷达的多种原始配置参数集中选取出该雷达的多种候选配置参数集:
按照标准配置参数的参数值的第一调整步长,从排序后的每个雷达的多种原始配置参数集中选取出部分种原始配置参数集,并基于选取出的各个雷达的部分种原始配置参数集,确定对应的目标扫描延迟时长之和最小的一组参考配置参数集;
基于确定的一组参考配置参数集中与每个雷达对应的一种原始配置参数集,以及标准配置参数的参数值的第二调整步长,从排序后的每个雷达的多种原始配置参数集中,选取出该雷达的多种候选配置参数集;其中,第二调整步长小于第一调整步长。
在一种可能的实施方式中,多个雷达均设置在行驶装置上,上述装置还包括:
行驶控制模块204,配置为在根据目标配置参数集为多个雷达进行参数配置之后,控制参数配置完成的多个雷达采集第一目标场景的雷达点云数据;基于所述雷达点云数据进行目标检测,确定第一目标场景中的目标对象信息;基于目标对象信息,控制行驶装置。
在一种可能的实施方式中,多个雷达分别按照设定角度设置在第二目标场景中目标交通路口的相对位置处,上述装置还包括:
交通检测模块205,配置为在根据目标配置参数集为多个雷达进行参数配置之后,控制参数配置完成的多个雷达采集第二目标场景的雷达点云数据;基于所述雷达点云数据对目标交通路口进行交通状态检测,得到交通检测结果。
关于装置中的各模块的处理流程、以及各模块之间的交互流程的描述可以参照上述方法实施例中的相关说明,这里不再详述。
本公开实施例还提供了一种电子设备,如图3所示,为本公开实施例提供的电子设备结构示意图,包括:处理器301、存储器302、和总线303。存储器302存储有处理器301可执行的机器可读指令(比如,图2中的配置雷达的装置中获取模块201、确定模块202、配置模块203对应的执行指令等),当电子设备运行时,处理器301与存储器302之间通过总线303通信,机器可读指令被处理器301执行时执行如下处理:
获取多个雷达进行扫描的目标扫描范围,并将目标扫描范围划分为多个栅格;
根据每个雷达在每种候选配置参数集下扫描到每个栅格的扫描时间,确定多个雷达扫描到同一个栅格的目标扫描延迟时长;
基于多个目标扫描延迟时长,从多组候选配置参数集中选择目标配置参数集,并根据目标配置参数集为多个雷达进行参数配置;其中,一组候选配置参数集包括确定一个目标扫描延迟时长的各个雷达的候选配置参数集。
上述指令的具体执行过程可以参考本公开实施例中所述的配置雷达的方法的步骤,此处不再赘述。
本公开实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行上述方法实施例中所述的配置雷达的方法的步骤。其中,该存储介质可以是易失性或非易失的计算机可读取存储介质。
本公开实施例所提供的配置雷达的方法的计算机程序产品,包括存储了程序代码的计算机可读存储介质,所述程序代码包括的指令可用于执行上述方法实施例中所述的配置雷达的方法的步骤,具体可参见上述方法实施例,在此不再赘述。
本公开实施例还提供一种计算机程序,该计算机程序被处理器执行时实现前述实施例的任意一种方法。该计算机程序产品可以具体通过硬件、软件或其结合的方式实现。在一个可选实施例中,所述计算机程序产品具体体现为计算机存储介质,在另一个可选实施例中,计算机程序产品具体体现为软件产品,例如软件开发包(Software Development Kit,SDK)等等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统和装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本公开所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可执行的非易失的计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台电子设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动 硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上所述实施例,仅为本公开的具体实施方式,用以说明本公开的技术方案,而非对其限制,本公开的保护范围并不局限于此,尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本公开实施例技术方案的精神和范围,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应所述以权利要求的保护范围为准。
工业实用性
本公开提供了一种配置雷达的方法、装置、电子设备及存储介质,其中,该方法包括:获取多个雷达进行扫描的目标扫描范围,并将目标扫描范围划分为多个栅格;根据每个雷达在每种候选配置参数集下扫描到每个栅格的扫描时间,确定多个雷达扫描到同一个栅格的目标扫描延迟时长;基于多个目标扫描延迟时长,从多组候选配置参数集中选择目标配置参数集,并根据目标配置参数集为多个雷达进行参数配置;其中,一组候选配置参数集包括用于确定一个目标扫描延迟时长的各个雷达的候选配置参数集。

Claims (12)

  1. 一种配置雷达的方法,其中,所述方法由电子设备执行,所述方法包括:
    获取多个雷达进行扫描的目标扫描范围,并将所述目标扫描范围划分为多个栅格;
    根据每个雷达在每种候选配置参数集下扫描到每个栅格的扫描时间,确定多个雷达扫描到同一个栅格的目标扫描延迟时长;
    基于多个目标扫描延迟时长,从多组候选配置参数集中选择目标配置参数集,并根据所述目标配置参数集为所述多个雷达进行参数配置;其中,一组候选配置参数集包括用于确定一个目标扫描延迟时长的各个雷达的候选配置参数集。
  2. 根据权利要求1所述的方法,其中,所述根据每个雷达在每种候选配置参数集下扫描到每个栅格的扫描时间,确定多个雷达扫描到同一个栅格的目标扫描延迟时长,包括:
    针对所述多个栅格中的每个栅格,确定每个雷达在每种候选配置参数集下扫描到该栅格的扫描时间;
    将所述多个雷达两两组合,确定每个组合中的两个雷达分别扫描到同一个栅格的扫描时间之差,得到该组合对应的候选扫描延迟时长;
    基于各个组合对应的候选扫描延迟时长,确定多个雷达扫描到同一个栅格的目标扫描延迟时长。
  3. 根据权利要求2所述的方法,其中,所述基于各个组合对应的候选扫描延迟时长,确定多个雷达扫描到同一个栅格的目标扫描延迟时长,包括:
    从各个组合对应的候选扫描延迟时长中选取出时长最长的候选扫描延迟时长,作为所述目标扫描延迟时长。
  4. 根据权利要求1至3任一所述的方法,其中,所述基于多个目标扫描延迟时长,从多组候选配置参数集中选择目标配置参数集,包括:
    基于多个雷达扫描到同一个栅格的一个目标扫描延迟时长,确定在对应的一组候选配置参数集下,所述多个栅格对应的目标扫描延迟时长之和;
    选取目标扫描延迟时长之和最小的一组候选配置参数集作为所述目标配置参数集。
  5. 根据权利要求1至4任一所述的方法,其中,所述候选配置参数集中的配置参数包括:水平分辨角和所述水平分辨角的扫描时间间隔、以及相对扫描正方向的初始相位角度值和所述初始相位角度值的初始扫描时刻;
    针对任一所述栅格,确定所述雷达在所述候选配置参数集下扫描到该栅格的扫描时间,包括:
    基于所述雷达在所述目标扫描范围中的位置信息以及所述栅格在所述目标扫描范围中的位置范围,确定所述栅格相对所述扫描正方向所落入的角度范围;
    基于所述雷达的水平分辨角和所述水平分辨角的扫描时间间隔、以及相对扫描正方向的初始相位角度值和所述初始相位角度值的初始扫描时刻,确定所述雷达的当前扫描角度是否落入所述栅格所落入的角度范围;
    响应于所述当前扫描角度落入所述栅格所落入的角度范围,将与所述当前扫描角度对应的当前扫描时刻,确定为所述雷达在所述候选配置参数集下扫描到所述栅格的扫描时间。
  6. 根据权利要求4或5所述的方法,其中,确定所述多个雷达的一组候选配置参数集,包括:
    获取每个雷达的多种原始配置参数集;其中,每种原始配置参数集中包括多个原始配置参数及每个原始配置参数的参数值;
    基于预设配置条件从所述多个原始配置参数中选取出标准配置参数,并按照所述标准配置参数的参数值由小到大的顺序对每个雷达的多种原始配置参数集进行排序;
    按照所述标准配置参数的参数值的调整步长,从排序后的每个雷达的多种原始配置参数集中选取出该雷达的多种候选配置参数集。
  7. 根据权利要求6所述的方法,其中,所述按照所述标准配置参数的参数值的调整步长,从排序后的每个雷达的多种原始配置参数集中选取出该雷达的多种候选配置参数集,包括:
    按照所述标准配置参数的参数值的第一调整步长,从排序后的每个雷达的多种原始配置参数集中选取出部分种原始配置参数集,并基于选取出的各个雷达的部分种原始配置参数集,确定对应的目标扫描延迟时长之和最小的参考配置参数集;
    基于确定的参考配置参数集中与每个雷达对应的一种原始配置参数集,以及所述标准配置参数的参数值的第二调整步长,从排序后的每个雷达的多种原始配置参数集中,选取出该雷达的多种候选配置参数集;其中,所述第二调整步长小于所述第一调整步长。
  8. 根据权利要求1至7任一所述的方法,其中,所述多个雷达均设置在行驶装置上,在所述根据所述目标配置参数集为所述多个雷达进行参数配置之后,所述方法还包括:
    控制参数配置完成的多个雷达采集第一目标场景的雷达点云数据;
    基于所述雷达点云数据进行目标检测,确定所述第一目标场景中的目标对象信息;
    基于所述目标对象信息,控制所述行驶装置。
  9. 根据权利要求1至7任一所述的方法,其中,所述多个雷达分别按照设定角度设置在第二目标场景中目标交通路口的相对位置处,所述在根据所述目标配置参数集为所述多个雷达进行参数配置之后,所述方法还包括:
    控制参数配置完成的多个雷达采集所述第二目标场景的雷达点云数据;
    基于所述雷达点云数据对所述目标交通路口进行交通状态检测,得到交通检测结果。
  10. 一种配置雷达的装置,其中,所述装置包括:
    获取模块,配置为获取多个雷达进行扫描的目标扫描范围,并将所述目标扫描范围划分为多个栅格;
    确定模块,配置为根据每个雷达在每种候选配置参数集下扫描到每个栅格的扫描时间,确定多个雷达扫描到同一个栅格的目标扫描延迟时长;
    配置模块,配置为基于多个目标扫描延迟时长,从多组候选配置参数集中选择目标配置参数集,并根据所述目标配置参数集为所述多个雷达进行参数配置;其中,一组候选配置参数集包括用于确定一个目标扫描延迟时长的各个雷达的候选配置参数集。
  11. 一种电子设备,其中,包括:处理器、存储器和总线,所述存储器存储有所述处理器可执行的机器可读指令,所述处理器用于执行所述存储器中存储的机器可读指令,当电子设备运行时,所述处理器与所述存储器之间通过总线通信,所述机器可读指令被所述处理器执行时执行如权利要求1至9任一所述的配置雷达的方法的步骤。
  12. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被电子设备运行时,所述电子设备执行如权利要求1至9任一所述的配置雷达的方法的步骤。
PCT/CN2021/090583 2020-09-16 2021-04-28 一种配置雷达的方法、装置、电子设备及存储介质 WO2022057267A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021567837A JP2022546791A (ja) 2020-09-16 2021-04-28 レーダーを設定する方法、装置、電子機器及び記憶媒体
KR1020217043028A KR20220038603A (ko) 2020-09-16 2021-04-28 레이더 구성 방법, 장치, 전자 기기 및 저장 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010975334.6 2020-09-16
CN202010975334.6A CN112098971B (zh) 2020-09-16 2020-09-16 一种配置雷达的方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022057267A1 true WO2022057267A1 (zh) 2022-03-24

Family

ID=73760214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090583 WO2022057267A1 (zh) 2020-09-16 2021-04-28 一种配置雷达的方法、装置、电子设备及存储介质

Country Status (4)

Country Link
JP (1) JP2022546791A (zh)
KR (1) KR20220038603A (zh)
CN (2) CN112098971B (zh)
WO (1) WO2022057267A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115079098A (zh) * 2022-05-27 2022-09-20 柳州达迪通信技术股份有限公司 一种飞行目标的数据配准方法、装置、设备及存储介质
CN115967641A (zh) * 2023-03-16 2023-04-14 浙江正泰仪器仪表有限责任公司 一种批量设备参数操作的方法、装置、计算机设备及介质
RU2809532C1 (ru) * 2023-01-13 2023-12-12 Владимир Григорьевич Бартенев Способ классификации объектов по межчастотному корреляционному признаку в одноканальных рлс

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112098971B (zh) * 2020-09-16 2022-07-15 上海商汤临港智能科技有限公司 一种配置雷达的方法、装置、电子设备及存储介质
CN112749354B (zh) * 2020-12-29 2024-04-02 深圳赛安特技术服务有限公司 基于人工智能的数据扫描方法、装置、计算机设备及介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103914068A (zh) * 2013-01-07 2014-07-09 中国人民解放军第二炮兵工程大学 一种基于栅格地图的服务机器人自主导航方法
US20150092177A1 (en) * 2013-07-18 2015-04-02 Joseph Ethan Hayden Laser radar through the window (lrtw) coordinate correction method
CN108700653A (zh) * 2017-05-31 2018-10-23 深圳市大疆创新科技有限公司 一种激光雷达的扫描控制方法、装置及设备
CN109313256A (zh) * 2016-02-18 2019-02-05 艾耶股份有限公司 自适应激光雷达接收器
CN110187311A (zh) * 2019-05-15 2019-08-30 西安天伟电子系统工程有限公司 雷达参数配置方法、频率源以及雷达系统
CN110753167A (zh) * 2019-11-13 2020-02-04 广州文远知行科技有限公司 时间同步方法、装置、终端设备及存储介质
CN110928289A (zh) * 2018-09-03 2020-03-27 三星电子株式会社 用于处理雷达数据的方法和装置
CN111337903A (zh) * 2020-05-20 2020-06-26 北京大汉正源科技有限公司 一种多线激光雷达
CN112098971A (zh) * 2020-09-16 2020-12-18 上海商汤临港智能科技有限公司 一种配置雷达的方法、装置、电子设备及存储介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100277472A1 (en) * 2009-04-09 2010-11-04 Christopher Kaltenbach Method and system for capturing 3d images of a human body in a moment of movement
US8208131B2 (en) * 2010-07-01 2012-06-26 Schilling Bradley W Digital registration of 3D laser radar data based on manually selected fiducials
KR101241101B1 (ko) * 2011-11-18 2013-03-11 국방과학연구소 특징인자를 이용한 레이더 스캔 형태 인식 방법
JP2013113670A (ja) * 2011-11-28 2013-06-10 Mitsubishi Electric Corp レーザレーダシステム、レーザ測距装置および制御装置
JP5984376B2 (ja) * 2011-12-21 2016-09-06 三菱電機株式会社 レーダ信号処理装置およびレーダ装置
CN106199558A (zh) * 2016-08-18 2016-12-07 宁波傲视智绘光电科技有限公司 障碍物快速检测方法
KR102401176B1 (ko) * 2017-09-14 2022-05-24 삼성전자주식회사 레이더 영상 처리 방법, 장치 및 시스템
WO2019159802A1 (ja) * 2018-02-13 2019-08-22 パイオニア株式会社 制御装置、照射システム、制御方法、及びプログラム
WO2020015748A1 (en) * 2018-07-20 2020-01-23 Suteng Innovation Technology Co., Ltd. Systems and methods for lidar detection
CN109471130A (zh) * 2018-11-22 2019-03-15 中国人民解放军军事科学院国防科技创新研究院 一种用于野外环境无人驾驶的正负障碍物检测方法
CN111521988B (zh) * 2019-02-01 2023-11-14 比亚迪股份有限公司 基于波束形成的雷达测角方法、装置、雷达和车辆
CN110554407B (zh) * 2019-09-25 2023-05-09 哈尔滨工程大学 一种模拟船用激光雷达三维点云成像方法
CN110988849B (zh) * 2019-12-25 2022-07-08 北京万集科技股份有限公司 雷达系统的标定方法、装置、电子设备及存储介质
CN116106927A (zh) * 2020-03-27 2023-05-12 深圳市镭神智能系统有限公司 一种基于激光雷达的二维栅格地图构建方法、介质和系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103914068A (zh) * 2013-01-07 2014-07-09 中国人民解放军第二炮兵工程大学 一种基于栅格地图的服务机器人自主导航方法
US20150092177A1 (en) * 2013-07-18 2015-04-02 Joseph Ethan Hayden Laser radar through the window (lrtw) coordinate correction method
CN109313256A (zh) * 2016-02-18 2019-02-05 艾耶股份有限公司 自适应激光雷达接收器
CN108700653A (zh) * 2017-05-31 2018-10-23 深圳市大疆创新科技有限公司 一种激光雷达的扫描控制方法、装置及设备
CN110928289A (zh) * 2018-09-03 2020-03-27 三星电子株式会社 用于处理雷达数据的方法和装置
CN110187311A (zh) * 2019-05-15 2019-08-30 西安天伟电子系统工程有限公司 雷达参数配置方法、频率源以及雷达系统
CN110753167A (zh) * 2019-11-13 2020-02-04 广州文远知行科技有限公司 时间同步方法、装置、终端设备及存储介质
CN111337903A (zh) * 2020-05-20 2020-06-26 北京大汉正源科技有限公司 一种多线激光雷达
CN112098971A (zh) * 2020-09-16 2020-12-18 上海商汤临港智能科技有限公司 一种配置雷达的方法、装置、电子设备及存储介质

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115079098A (zh) * 2022-05-27 2022-09-20 柳州达迪通信技术股份有限公司 一种飞行目标的数据配准方法、装置、设备及存储介质
RU2809532C1 (ru) * 2023-01-13 2023-12-12 Владимир Григорьевич Бартенев Способ классификации объектов по межчастотному корреляционному признаку в одноканальных рлс
CN115967641A (zh) * 2023-03-16 2023-04-14 浙江正泰仪器仪表有限责任公司 一种批量设备参数操作的方法、装置、计算机设备及介质
CN115967641B (zh) * 2023-03-16 2023-05-30 浙江正泰仪器仪表有限责任公司 一种批量设备参数操作的方法、装置、计算机设备及介质

Also Published As

Publication number Publication date
JP2022546791A (ja) 2022-11-09
CN112098971A (zh) 2020-12-18
CN115144838A (zh) 2022-10-04
CN112098971B (zh) 2022-07-15
KR20220038603A (ko) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2022057267A1 (zh) 一种配置雷达的方法、装置、电子设备及存储介质
US11615605B2 (en) Vehicle information detection method, electronic device and storage medium
JP2022509302A (ja) 地図生成方法、運転制御方法、装置、電子機器及びシステム
CN112086010B (zh) 地图生成方法、装置、设备及存储介质
WO2022142185A1 (zh) 位姿数据的确定方法、装置、电子设备及车辆
CN111784835B (zh) 制图方法、装置、电子设备及可读存储介质
CN111324945B (zh) 传感器方案确定方法、装置、设备及存储介质
CN113496545A (zh) 数据处理系统、方法、传感器、移动采集背包及设备
CN112041767B (zh) 用于同步车辆传感器和设备的系统和方法
WO2022217988A1 (zh) 传感器配置方案确定方法、装置、计算机设备、存储介质及程序
US20230060421A1 (en) Multi-sensor superresolution scanning and capture system
WO2024012212A1 (zh) 环境感知方法、域控制器、存储介质及车辆
KR20210087495A (ko) 센서 데이터 처리 방법, 장치, 전자 기기 및 시스템
CN113887400B (zh) 障碍物检测方法、模型训练方法、装置及自动驾驶车辆
CN108268516A (zh) 基于八叉树的云端地图地图更新方法及设备
JP2024061721A (ja) 撮影指示方法及び撮影指示装置
KR102694715B1 (ko) 장애물의 검출 방법, 전자 기기, 노변 기기 및 클라우드 컨트롤 플랫폼
WO2023278868A1 (en) Calibration of sensor position offsets based on rotation and translation vectors for matched trajectories
CN108268514A (zh) 基于八叉树的云端地图地图更新设备
US20240129645A1 (en) Perceiving scene features using event sensors and image sensors
WO2019080879A1 (zh) 数据处理方法、计算机设备和存储介质
Rieken et al. Sensor scan timing compensation in environment models for automated road vehicles
CN113012429A (zh) 一种车路多传感器数据融合方法及系统
US20230003893A1 (en) Method and apparatus for detecting operating terrain, and engineering equipment for detecting operating terrain
CN113269260B (zh) 一种智能驾驶车辆多传感器目标融合及跟踪方法及系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021567837

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21868105

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.09.2023).

122 Ep: pct application non-entry in european phase

Ref document number: 21868105

Country of ref document: EP

Kind code of ref document: A1