WO2022054693A1 - Multilayer sheet, multilayer film, and decorative molded article in which same is used - Google Patents

Multilayer sheet, multilayer film, and decorative molded article in which same is used Download PDF

Info

Publication number
WO2022054693A1
WO2022054693A1 PCT/JP2021/032335 JP2021032335W WO2022054693A1 WO 2022054693 A1 WO2022054693 A1 WO 2022054693A1 JP 2021032335 W JP2021032335 W JP 2021032335W WO 2022054693 A1 WO2022054693 A1 WO 2022054693A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
acrylic resin
thermoplastic acrylic
silicon dioxide
laminate
Prior art date
Application number
PCT/JP2021/032335
Other languages
French (fr)
Japanese (ja)
Inventor
達也 金川
Original Assignee
三菱瓦斯化学株式会社
Mgcフィルシート株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, Mgcフィルシート株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN202180054830.0A priority Critical patent/CN116096567A/en
Priority to JP2022547541A priority patent/JPWO2022054693A1/ja
Publication of WO2022054693A1 publication Critical patent/WO2022054693A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical

Definitions

  • the present invention relates to a multilayer sheet and a multilayer film obtained by laminating a thermoplastic acrylic resin layer containing silicon dioxide particles having a specific average particle size in a specific ratio on at least one surface of the polycarbonate resin layer.
  • Sheets and films based on polycarbonate resin are widely used as structural materials to replace glass because of their excellent lightness, transparency, heat resistance, and impact resistance. Recently, it has been used as a decorative film because it is easy to print and heat-mold.
  • OA / electricity for automobile applications such as heat controller panels, car navigation touch panels, instrument covers, glazing, lamp lenses, housings and display panel front plates of mobile phones and mobile mobile terminals, and shatterproof films for glass members.
  • It is widely used for electronic applications, greenhouse covering materials, arcades, building materials such as roofing materials for daylighting, road materials such as sidewalk wainscots and highway fences, and industrial materials such as name plates.
  • its use has been limited due to its insufficient scratch resistance.
  • Patent Document 1 discloses a decorative film in which a thermoplastic acrylic resin layer is laminated on a polycarbonate resin layer.
  • the thermoplastic acrylic resin is laminated by this method, the pencil hardness equivalent to that of the thermoplastic acrylic resin can be obtained, but the scratch resistance (steel) when dust or dust is accumulated on the molded product and wiped off. Wool hardness) could not be sufficiently improved.
  • Patent Document 2 discloses a laminate that is thermally cured after applying the coating composition contained therein.
  • the scratch resistance is improved by this method, since the coating composition is applied to the molded product having a curved surface after molding, appearance defects such as dust adhesion and coating unevenness are likely to occur, and the productivity is poor. Further, there is a problem that the haze is increased by applying the coating composition.
  • the coating composition is applied to the laminated sheet before injection molding, the productivity will be improved, but since the coating composition is poor in thermoplastic and brittle, cracks are likely to occur on the coated surface during the molding process. Has the drawback that it is limited to those with a large curvature.
  • the average particle size of silica (silicon dioxide) in colloidal silica is preferably 4 to 20 nm, and the silica content is preferably 50 to 200 parts by weight with respect to the organoalkoxysilane which is a component of the coating.
  • a laminate having a haze of 0.7% or more is exemplified, but the haze value is not at a satisfactory level.
  • Patent Document 3 discloses a sheet in which a thermoplastic acrylic resin layer containing silicon dioxide particles is laminated on a polycarbonate resin layer, but further improvement in scratch resistance and impact resistance is desired. Was there.
  • An object of the present invention is to provide a multilayer sheet and a multilayer film which have high transparency and scratch resistance and are easy to print and heat-mold in order to solve the above-mentioned problems of the prior art.
  • thermoplastic acrylic resin layer containing silicon dioxide particles having a specific average particle size in a specific ratio on the polycarbonate resin layer As a result, it has been found that it is possible to provide a multilayer sheet and a multilayer film having high transparency and scratch resistance and easy to print and heat-mold.
  • the present invention uses the following ⁇ 1> polycarbonate-based resin layer as a base material, and a thermoplastic acrylic resin layer containing silicon dioxide particles is provided on the outermost layer on one side or the outermost layer on both sides of the base material.
  • a multi-layer sheet or multi-layer film made of a laminated body having The multilayer having an average particle diameter of 0.1 to 2 ⁇ m and a content of the silicon dioxide particles of more than 1% by mass and 10% by mass or less with respect to the total amount of the thermoplastic acrylic resin layer. It is a sheet or multilayer film.
  • ⁇ 2> The multilayer sheet or film according to ⁇ 1> above, wherein the total light transmittance is 85% or more and less than 93%, and the haze is 0.01% or more and less than 0.7%.
  • ⁇ 3># 0000 steel wool is attached to a 33 mm ⁇ 33 mm square pad, and the surface of the thermoplastic acrylic resin layer of the laminate is reciprocated 15 times under a load of 1000 g, and the haze after scratching is 0.01% or more 1.5.
  • ⁇ 4> The above-mentioned ⁇ 1> to ⁇ 3>, wherein the overall average thickness of the laminated body is 0.03 to 2 mm, and the average thickness of the thermoplastic acrylic resin layer is 1 ⁇ m or more and less than 10 ⁇ m. It is a multilayer sheet or a multilayer film.
  • ⁇ 5> A decorative molded product using the multilayer film or multilayer sheet according to any one of ⁇ 1> to ⁇ 4> as the outermost layer.
  • ⁇ 6> The method for manufacturing a multilayer film or a multilayer sheet according to any one of ⁇ 1> to ⁇ 4> above.
  • the feed block method When forming the laminate, the feed block method is used in which the ratio of the laminated width of the feed block to the effective die length (laminated width of the feed block (mm) / effective die length (mm)) is in the range of 0.03 to 0.7.
  • the manufacturing method is characterized by the above.
  • the multilayer sheet and the multilayer film of the present invention can achieve both high transparency and scratch resistance by using a thermoplastic acrylic resin layer containing silicon dioxide having a specific average particle size in a specific ratio. Further, as compared with a sheet having a hard coat layer having a poor thermoplasticity on the surface, the heat forming property is good, cracks are less likely to occur at the time of forming, and the productivity is also good. Further, by laminating the above-mentioned thermoplastic acrylic resin layer thinly, it is possible to impart good film strength in addition to the above-mentioned characteristics.
  • the polycarbonate-based resin constituting the polycarbonate-based resin layer in the present invention is obtained by an interfacial polymerization method using an aromatic dihydroxy compound or a small amount of the polyhydroxy compound and phosgen, or an aromatic dihydroxy compound.
  • a optionally branched thermoplastic polycarbonate polymer obtained by an ester exchange reaction with a carbonic acid diester can be used.
  • a carbonic acid ester polymer containing bisphenol A obtained by an interfacial polymerization method as a main raw material is most preferable from the viewpoint of thermal stability and moldability.
  • the molecular weight of the polycarbonate resin used is preferably 20,000 to 28,000, more preferably 21,000 to 28,000 in terms of viscosity average molecular weight. If the viscosity average molecular weight is less than 20,000, a decrease in impact resistance may be observed. If the viscosity average molecular weight exceeds 28,000, the shapeability may decrease.
  • Other resins and various additives may be added to the polycarbonate-based resin as long as its transparency and antistatic properties can be maintained. Examples of the additives include an ultraviolet absorber, an antioxidant, and an antioxidant. , Flame retardants, mold release agents, antistatic agents, dyes and pigments.
  • the thickness of the multilayer sheet and the multilayer film of the present invention is usually 0.03 mm to 2.0 mm, preferably 0.1 mm to 1.0 mm in consideration of moldability. If it is too thin, it will break easily, and if it is too thick, the shapeability will decrease.
  • the thermoplastic acrylic resin layer in the present invention is mainly composed of a thermoplastic acrylic resin and contains silicon dioxide particles.
  • Thermoplastic Acrylic Resin The thermoplastic acrylic resin constituting the thermoplastic acrylic resin layer in the present invention is a copolymer of methyl methacrylate and an acrylic acid ester such as methyl acrylate, ethyl acrylate or butyl acrylate. Yes, the copolymerization composition and molecular weight may be appropriately selected depending on the coextrusion conditions.
  • the copolymerization composition ratio is preferably 80 to 99% for methyl methacrylate and 1 to 20% for acrylic acid esters such as methyl, ethyl or butyl acrylate, but is not limited thereto.
  • the molecular weight is preferably, but is not limited to, a weight average molecular weight of 30,000 to 300,000.
  • a rubber-like polymer and / or rubber particles may be added to the thermoplastic acrylic resin as long as the transparency and surface hardness are not significantly reduced in order to impart impact resistance.
  • the Rockwell hardness (M scale) of the added thermoplastic acrylic resin composition is preferably 30 or more. When the lockwell hardness is less than 30, the transparency is lowered, the print performed on the back surface by the haze when used as a housing is deteriorated, and the required surface hardness may not be obtained.
  • thermoplastic acrylic resin may be added to the thermoplastic acrylic resin as long as the transparency and the moldability can be maintained, and the additives include, for example, an ultraviolet absorber and an antioxidant. , Color inhibitor, flame retardant, mold release agent, antistatic agent, dye pigment and the like. In order to prevent ultraviolet deterioration of the polycarbonate-based resin layer and the thermoplastic acrylic resin layer in the present invention, it is particularly preferable to add an ultraviolet absorber.
  • Examples of the ultraviolet absorber that can be used include benzotriazole-based, benzophenone-based, salicylate phenyl ester-based, benzoxazine-based, malonic acid ester-based, triazine-based, and polymer-type ultraviolet absorbers to which they are added as pendants. ..
  • Examples of the benzotriazole-based ultraviolet absorber include 2- (5-methyl-2-hydroxyphenyl) benzotriazole and 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2H-benzo.
  • Triazole 2- (2'-hydroxy-5'-t-octylphenyl) benzotriazole, 2,2-methylenebis [4- (1,1,3,3-tetramethylenebutyl) -6- (2H-benzotriazole) -2-yl) phenol], 2- (2H-benzotriazole-2-yl) -6- (1-methyl-1-phenylethyl) -4- (1,1,3,3-tetramethylbutyl) phenol
  • benzophenone-based ultraviolet absorber include 2-hydroxy-4-octoxybenzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxy-4'-chlorbenzophenone, 2,2.
  • examples of the salicylic acid phenyl ester-based ultraviolet absorber include pt-butylphenyl salicylate ester and the like.
  • examples of the benzoxazine-based ultraviolet absorber include 2,2'-(1,4-phenylene) bis [4H-3,1-benzoxadin-4-one] and the like.
  • malonic acid ester-based ultraviolet absorber examples include [(4-methoxyphenyl) -methylene] dimethyl malonate and the like.
  • triazine-based ultraviolet absorbers examples include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine and 2,4-diphenyl-6- (2-hydroxy-4-).
  • Polymer-type UV absorbers have a hydroxybenzohenone or hydroxybenzotriazole structure in the molecule, and some of them have a hydrogen atom substituted with an alkyl group.
  • the polymer type ultraviolet absorber there is UVA-633L (2-hydroxy-4- (methacryloyloxyethoxy) benzophenone) methyl methacrylate copolymer commercialized by BASF.
  • thermoplastic acrylic resins suitable for the present invention include Kuraray Co., Ltd. Parapet HR-1000L, Arkema ALTUGLAS V020, Mitsubishi Rayon IRG304, and the like.
  • the average thickness of the thermoplastic acrylic resin layer in the present invention is preferably 1 ⁇ m or more and 55 ⁇ m or less, more preferably 1 ⁇ m or more and 40 ⁇ m or less, further preferably 1 ⁇ m or more and less than 10 ⁇ m, and particularly preferably 1 ⁇ m or more and 9 ⁇ m or less.
  • the hardness of the pencil may be lowered, but the pencil is lowered by providing, for example, a thermoplastic acrylic resin layer containing no silicon dioxide between the thermoplastic acrylic resin layer and the polycarbonate resin layer in the present invention. It can also supplement the hardness.
  • the silicon dioxide particles constituting the thermoplastic acrylic resin layer in the present invention preferably have an average particle diameter of 0.1 to 2 ⁇ m, and more preferably 0.2 to 0.6 ⁇ m. If the average particle size is small, the scratch resistance effect is not sufficient, and if it is large, the punctate defects of the multilayer sheet and the multilayer film increase.
  • the content of the silicon dioxide particles is more than 1% by mass and 10% by mass or less, preferably more than 1% by mass and 5% by mass or less, and more preferably 1.5 to 3. 0% by mass is optimal. If the content of the silicon dioxide particles is low, sufficient scratch resistance cannot be obtained, and if the content is high, the haze of the multilayer sheet and the multilayer film increases.
  • the method for producing the silicon dioxide particles is not particularly limited, but the silicon dioxide particles can be produced by a known method such as a VMC method, a wet synthesis method, or a melting method.
  • the VMC method is preferable in consideration of the uniformity of the particle size of silicon dioxide.
  • the VMC method is a method in which silicon dioxide powder is put into an oxygen stream and oxidized to obtain fine spherical silicon dioxide particles using the heat of reaction.
  • Commercially available products of silicon dioxide particles include Admafine SO-C1, Admafine SO-C2, Admafine SO-C4, Admafine SO-C5, Admafine SC110G-SQ manufactured by Admatex Co., Ltd., which are appropriately selected. Can be used alone or in combination.
  • Admafine SC110G-SQ which suppresses large particles of 10 ⁇ m or more contained in the product to 100 ppm or less, is good with extremely few point defects when the laminate is formed by extrusion molding.
  • the silicon dioxide particles contained in the thermoplastic acrylic resin layer in the present invention can be identified by the following method. It is possible to confirm the presence of silicon dioxide particles by observing the surface or cross section of the molded body using a surface observation device such as TEM and FE-SEM. By these measurements, it is possible to confirm the dispersed state of the particles and the bleed-out state to the surface. At the same time, silicon dioxide particles can be identified by using them in combination with surface elemental analyzers such as EDX, XPS, and EPMA.
  • surface elemental analyzers such as EDX, XPS, and EPMA.
  • the average particle size and content of the silicon dioxide particles contained in the thermoplastic acrylic resin layer in the present invention can be measured by the following method.
  • a test piece and a sample solution can be prepared by the following method.
  • the sample solution can be prepared by any of the methods of punching a certain area of the molded product and dissolving the punched pieces in a good solvent (dichloromethane, THF, etc.).
  • the content of silicon dioxide particles can be measured by the following method. First, a solution in which Si particles having a known concentration are dispersed is impregnated into a filter paper and dried. X-ray fluorescence measurements are performed at three levels of concentration for use as a calibration curve. Next, the above-mentioned sample solution that has been pretreated and dissolved is dropped onto a filter paper, dried, and the dried filter paper is similarly measured by a fluorescent X-ray measuring device to quantify the Si element. It is possible.
  • the particle size can be measured by using a particle size measuring device manufactured by using a principle such as laser diffraction or dynamic light scattering for the prepared solution.
  • thermoplastic acrylic resin layer As a means for forming the thermoplastic acrylic resin layer on at least one surface of the polycarbonate resin layer, a method of co-extruding the thermoplastic acrylic resin layer and the polycarbonate resin layer, and thermoplasticity on the surface of the extruded polycarbonate.
  • a method of thermally laminating an acrylic resin film a method of applying a solution in which silicon dioxide particles are dispersed in a thermoplastic acrylic resin solution onto a polycarbonate substrate, and a method of drying.
  • the coextrusion method is most preferable because a multilayer film can be obtained in one step, the thickness ratio of each layer has a degree of freedom, and sufficient scratch resistance and high transparency can be achieved at the same time.
  • the thermoplastic acrylic resin film is preferably extruded.
  • the multilayer sheet and the multilayer film obtained by applying a solution in which silicon dioxide particles are dispersed in a thermoplastic acrylic resin solution on a polycarbonate base material and drying it can obtain a sufficient scratch resistance effect.
  • the extruder used for manufacturing is generally composed of a main extruder that extrudes a polycarbonate resin that constitutes a substrate layer and a sub extruder that extrudes a thermoplastic acrylic resin that constitutes a coating layer. Normally, the sub extruder is the main extruder. A smaller one than the extruder is adopted.
  • the temperature condition of the extruder for extruding the polycarbonate resin is usually 230 to 300 ° C, preferably 240 to 290 ° C, and the temperature condition of the extruder for extruding the thermoplastic acrylic resin is usually 200 to 270 ° C, preferably 200 to 270 ° C. It is 220 to 260 ° C.
  • the feed block method As a general coextrusion method laminating method, there are a feed block method in which a laminate merged in a feed block is stretched and molded inside a T-die, and each layer is spread in each manifold inside the die and near the lip outlet. There is a multi-manifold method for merging, but in the present invention, the feed block method is preferable.
  • the multi-manifold method in which the laminated width and the effective lip length are the same, is a laminating method that is disadvantageous for forming the laminated body of the present invention with a high appearance because streak-like defects are likely to appear on the film.
  • the temperature of the die is usually 230 to 340 ° C, preferably 260 to 320 ° C. If the temperature of the die is too high or too low, the scratch resistance effect may not be exhibited.
  • the laminated and sheet-shaped resin is flowed into a molding roll whose surface is mirror-treated or molded to form a laminated body. Cooling is performed while passing through the forming roll to form a laminate. As a cooling method, a film method in which the laminate is pressed at a low pressure between the No. 1 roll and the No. 2 roll and then hung on the No. 3 roll to form the laminate, and the No. 1 roll and the No. 2 roll are used.
  • the total light transmittance is preferably 85% or more and less than 93%, more preferably 90% or more and less than 93%.
  • the haze of the multilayer sheet and the multilayer film of the present invention is preferably 0.01% or more and less than 0.7%, and more preferably 0.01% or more and less than 0.5%.
  • the scratch resistance of the multilayer sheet and the multilayer film of the present invention can be evaluated by the steel wool hardness test shown below. # 0000 steel wool manufactured by Nippon Steel Wool Co., Ltd.
  • the haze after this scratch resistance test is preferably 0.01% or more and less than 15%, more preferably 0.01% or more and less than 10%, and most preferably 0.01% or more and less than 1.5%.
  • the laminate of the present invention is preferably used as a decorative film and a decorative sheet.
  • a polycarbonate resin layer having a thermoplastic acrylic resin layer containing silicon dioxide formed on one side thereof is preferably used.
  • a method of decoration for example, a method of directly printing various designs on a polycarbonate resin layer surface by continuous gravure printing, silk printing, screen printing, etc., a method of transferring a transfer foil, a method of transferring metal plating by vapor deposition, sputtering, etc. Examples thereof include a method of applying decoration and a method of laminating other decorated resin films such as printing and vapor deposition.
  • the decorative film and the decorative sheet can be used by laminating a thermoplastic resin sheet for the purpose of protecting the decorative surface.
  • a thermoplastic resin sheet for example, a polycarbonate resin, a thermoplastic acrylic resin, an ABS resin, a polyvinyl chloride resin, a polyurethane resin, a polyester resin, a polyolefin resin, or at least two or more of them are kneaded. Examples thereof include the resin composition obtained.
  • thermoplastic acrylic resin layer containing silicon dioxide is required to have scratch resistance.
  • a decorative molded product can be obtained by laminating it on a molded product.
  • the resin constituting the thermoplastic resin molded product for example, a polycarbonate resin, a thermoplastic acrylic resin, an ABS resin, a polyvinyl chloride resin, a polyurethane resin, a polyester resin, a polyolefin resin, or at least two kinds thereof. Examples thereof include a resin composition obtained by kneading the above.
  • a known molding method such as an in-mold molding method, an insert molding method, or an injection molding simultaneous bonding method is used.
  • the in-mold molding method and the insert molding method are particularly suitable as the processing method for the laminate of the present invention.
  • the in-mold molding method is a method in which a decorative film or a decorative sheet is preformed in an injection molding die by vacuum molding or pressure molding, and then molten resin is injected therein to form an injection-molded product at the same time. This is a method of attaching a decorative film or a decorative sheet to the molded product.
  • a decorative film or a decorative sheet is preformed by vacuum molding or pressure molding, then inserted into an injection molding die, and a molten resin is injected into the injection molded product.
  • a molten resin is injected into the injection molded product.
  • the decorative molded product of the present invention uses a multilayer film or a multilayer sheet made of a laminated body having excellent scratch resistance as the outermost layer as described above. Therefore, the decorative molded product of the present invention is also excellent in scratch resistance.
  • Examples of the present invention are shown below, but the present invention is not limited thereto.
  • the evaluation and measurement methods used in this example are shown below.
  • (1) Average particle size of silicon dioxide particles contained in the thermoplastic acrylic resin layer of the laminate Measurement was carried out using the particle size distribution measuring device Nanotrack Wave Series EX250 manufactured by Nikkiso Co., Ltd. As a pretreatment, the molded product was punched into a certain area (circle with a diameter of 10 mm), and the punched pieces were dissolved in THF (tetrahydrofuran). The solution was poured into the cell of the measuring device and the average particle size of the silicon dioxide particles was measured.
  • (2) Content of silicon dioxide particles contained in the thermoplastic acrylic resin layer of the laminate The Si content was quantified using a fluorescent X-ray apparatus.
  • Example 1 Polycarbonate resin layer material Iupiron S-3000R N114 manufactured by Mitsubishi Engineering Plastics Co., Ltd. was used as the polycarbonate resin layer material.
  • thermoplastic acrylic resin layer material ALTUGLAS V020 thermoplastic acrylic resin
  • Admafine SO-C1 silicon dioxide with average particle diameter 0.20 ⁇ m
  • Rikemar H-100 lipper manufactured by RIKEN Vitamin Co., Ltd.
  • Adecastab PEP-36 heat stabilizer 0.04% by mass manufactured by ADEKA Co., Ltd., K-NOXBHT manufactured by Kyodo Yakuhin Co., Ltd.
  • Tinuvin1600 ultraviolet absorber
  • BASF weight-based quantitative feeder
  • 240 using a twin-screw extruder TEM-26SS manufactured by Toshiba Machinery Co., Ltd. It was kneaded at ° C and pelletized.
  • the screw rotation speed was automatically controlled so that the resin pressure at the inlet of the gear pump was 7.0 MPa.
  • Two types of resins simultaneously supplied in a feed block set at 260 ° C. were laminated with a width of 200 mm, spread in a film shape in a die with an effective lip length of 1650 mm set at 280 ° C., and discharged.
  • the film-like laminate discharged from the die was sandwiched between a No. 1 roll having a diameter of 300 mm and a width of 2000 mm and a No. 2 roll having a diameter of 450 mm and a width of 2000 mm at 0.25 MPa, and then hung on the No. 3 roll to form a film.
  • Each roll temperature was set to No. 1 roll: 60 ° C, No.
  • No. 1 roll a rubber roll with a rubber thickness of 5 mm and a rubber hardness of 80 ° is covered with a mirror-polished metal sleeve, and a SF roll manufactured by Chiba Kikai Kogyo Co., Ltd. is used, which is mirror-polished as a No. 2 roll and a No. 3 roll.
  • a common metal rigid roll was used.
  • the average particle size and content of silicon dioxide contained in the thermoplastic acrylic resin layer were the same as the values at the time of preparation of the above-mentioned thermoplastic acrylic resin layer material.
  • the thickness and the layer thickness of the central portion of the laminated body were measured.
  • the sum of the thickness measured with a micrometer and the thickness of each layer measured with an optical microscope was the same value.
  • a steel wool test was performed on the surface of the layer (B) of this laminate, and the total light transmittance and haze before and after the test were measured. The evaluation results are shown in Table 1.
  • thermoplastic acrylic resin layer material In the preparation of the thermoplastic acrylic resin layer material, ALTUGLAS V020 (thermoplastic acrylic resin) manufactured by Alchema was set to 96.85% by mass, and Admafine SO-C1 (average particle diameter 0.20 ⁇ m) manufactured by Admatex Co., Ltd. was used. A laminate was obtained by the same method as in Example 1 except that 7% by mass was set to 2.4% by mass of Admafine SO-C1 (average particle size 0.31 ⁇ m). As a result of analysis of the obtained laminate, the average particle size and content of silicon dioxide contained in the thermoplastic acrylic resin layer were the same as the values at the time of preparation of the above-mentioned thermoplastic acrylic resin layer material.
  • the thickness and the layer thickness of the central portion of the laminated body were measured.
  • the sum of the thickness measured with a micrometer and the thickness of each layer measured with an optical microscope was the same value.
  • a steel wool test was performed on the surface of the layer (B) of this laminate, and the total light transmittance and haze before and after the test were measured. The evaluation results are shown in Table 1.
  • thermoplastic acrylic resin layer material ALTUGLAS V020 (thermoplastic acrylic resin) manufactured by Alchema was set to 98.15% by mass, and Admafine SO-C1 (average particle diameter 0.20 ⁇ m) manufactured by Admatex Co., Ltd. was used.
  • a laminate was obtained by the same method as in Example 1 except that 7% by mass was set to 1.1% by mass of Admafine SO-C5 (average particle size 1.50 ⁇ m).
  • the average particle size and content of silicon dioxide contained in the thermoplastic acrylic resin layer were the same as the values at the time of preparation of the above-mentioned thermoplastic acrylic resin layer material.
  • the thickness and the layer thickness of the central portion of the laminated body were measured.
  • the sum of the thickness measured with a micrometer and the thickness of each layer measured with an optical microscope was the same value.
  • a steel wool test was performed on the surface of the layer (B) of this laminate, and the total light transmittance and haze before and after the test were measured. The evaluation results are shown in Table 1.
  • thermoplastic acrylic resin layer material ALTUGLAS V020 (thermoplastic acrylic resin) manufactured by Alchema was set to 89.25% by mass, and Admafine SO-C1 (average particle diameter 0.20 ⁇ m) manufactured by Admatex Co., Ltd. was used. 7% by mass is Admafine SO-C1 (average particle size 0.20 ⁇ m) and 10% by mass, the discharge rate of the polycarbonate resin layer (A) for molding the laminate is 241 kg / h, and the thermoplastic acrylic resin layer (1).
  • a laminated body was obtained by the same method as in Example 1 except that the discharge amount of B) was 3.3 kg / h.
  • the average particle size and content of silicon dioxide contained in the thermoplastic acrylic resin layer were the same as the values at the time of preparation of the above-mentioned thermoplastic acrylic resin layer material.
  • the thickness and the layer thickness of the central portion of the laminated body were measured.
  • the sum of the thickness measured with a micrometer and the thickness of each layer measured with an optical microscope was the same value.
  • a steel wool test was performed on the surface of the layer (B) of this laminate, and the total light transmittance and haze before and after the test were measured. The evaluation results are shown in Table 1.
  • Example 5 A laminated body was obtained by the same method as in Example 2 except that the discharge amount of the polycarbonate resin layer (A) was 114 kg.
  • the average particle size and content of silicon dioxide contained in the thermoplastic acrylic resin layer were the same as the values at the time of preparation of the above-mentioned thermoplastic acrylic resin layer material.
  • the thickness and the layer thickness of the central portion of the laminated body were measured. The sum of the thickness measured with a micrometer and the thickness of each layer measured with an optical microscope was the same value.
  • a steel wool test was performed on the surface of the layer (B) of this laminate, and the total light transmittance and haze before and after the test were measured. The evaluation results are shown in Table 1.
  • thermoplastic acrylic resin layer material ALTUGLAS V020 (thermoplastic acrylic resin) manufactured by Arkema was set to 96.847% by mass, and silicone oil KF-96 manufactured by Shinetsu Chemical Industry Co., Ltd. was added in an amount of 0.003% by mass. Obtained a laminated body by the same method as in Example 2. As a result of analysis of the obtained laminate, the average particle size and content of silicon dioxide contained in the thermoplastic acrylic resin layer were the same as the values at the time of preparation and preparation of the above-mentioned thermoplastic acrylic resin layer material. .. Moreover, the thickness and the layer thickness of the central portion of the laminated body were measured.
  • the gear pump rotation speed was adjusted to 1.5 kg / hr and supplied to the feed block.
  • the screw rotation speed was automatically controlled so that the resin pressure at the inlet of the gear pump was 4.0 MPa.
  • Two types of resins simultaneously supplied in a feed block set at 260 ° C. were laminated with a width of 200 mm, and spread out in a sheet shape in a die with an effective lip length of 1180 mm set at 260 ° C. and discharged.
  • the sheet-like laminate discharged from the die is sandwiched at 10 MPa using a No. 1 roll having a diameter of 360 mm and a surface length of 1500 mm and a No.
  • the average particle size and content of silicon dioxide contained in the thermoplastic acrylic resin layer were the same as the values at the time of preparation of the above-mentioned thermoplastic acrylic resin layer material.
  • the thickness and the layer thickness of the central portion of the laminated body were measured.
  • the sum of the thickness measured with a micrometer and the thickness of each layer measured with an optical microscope was the same value.
  • a steel wool test was performed on the surface of the layer (B) of this laminate, and the total light transmittance and haze before and after the test were measured. The evaluation results are shown in Table 1.
  • thermoplastic acrylic resin layer material ALTUGLAS V020 (thermoplastic acrylic resin) manufactured by Alchema was set to 98.75% by mass, and Admafine SO-C5 (average particle diameter 1.50 ⁇ m) manufactured by Admatex Co., Ltd. 1.
  • a laminate was obtained by the same method as in Example 3 except that 1% by mass was set to 0.5% by mass of Admafine SO-C5 (average particle size 1.50 ⁇ m).
  • the average particle size and content of silicon dioxide contained in the thermoplastic acrylic resin layer were the same as the values at the time of preparation of the above-mentioned thermoplastic acrylic resin layer material.
  • the thickness and the layer thickness of the central portion of the laminated body were measured.
  • the sum of the thickness measured with a micrometer and the thickness of each layer measured with an optical microscope was the same value.
  • a steel wool test was performed on the surface of the layer (B) of this laminate, and the total light transmittance and haze before and after the test were measured. The evaluation results are shown in Table 1.
  • thermoplastic acrylic resin layer material ALTUGLAS V020 (thermoplastic acrylic resin) manufactured by Alchema was set to 87.25% by mass, and Admafine SO-C1 (average particle diameter 0.20 ⁇ m) manufactured by Admatex Co., Ltd. 10.
  • a laminate was obtained by the same method as in Example 4 except that 0% by mass was set to 12.0% by mass of Admafine SO-C1 (average particle size 0.20 ⁇ m).
  • the average particle size and the content of silicon dioxide contained in the thermoplastic acrylic resin layer were the same as the values at the time of preparing the thermoplastic acrylic resin layer material.
  • the thickness and the layer thickness of the central portion of the laminated body were measured.
  • thermoplastic acrylic resin layer material ALTUGLAS V020 (thermoplastic acrylic resin) manufactured by Alchema was set to 87.25% by mass, and Admafine SO-C1 (average particle diameter 0.20 ⁇ m) manufactured by Admatex Co., Ltd. was used.
  • a laminate was obtained by the same method as in Example 1 except that 7% by mass was set to 12.0% by mass of Admafanano YC100C (average particle size 0.09 ⁇ m) manufactured by Admatex Co., Ltd.
  • the average particle size and content of silicon dioxide contained in the thermoplastic acrylic resin layer were the same as the values at the time of preparation of the above-mentioned thermoplastic acrylic resin layer material.
  • the thickness and the layer thickness of the central portion of the laminated body were measured.
  • the sum of the thickness measured with a micrometer and the thickness of each layer measured with an optical microscope was the same value.
  • a steel wool test was performed on the surface of the layer (B) of this laminate, and the total light transmittance and haze before and after the test were measured. The evaluation results are shown in Table 1.
  • thermoplastic acrylic resin layer material ALTUGLAS V020 (thermoplastic acrylic resin) manufactured by Alchema was set to 99.15% by mass, and Admafine SO-C1 (average particle size 0.20 ⁇ m) was set to 3.7% by mass.
  • a laminate was obtained by the same method as in Example 1 except that the fine SO-C6 (average particle size 2.10 ⁇ m) was 0.1% by mass.
  • the average particle size and content of silicon dioxide contained in the thermoplastic acrylic resin layer were the same as the values at the time of preparation of the above-mentioned thermoplastic acrylic resin layer material.
  • the thickness and the layer thickness of the central portion of the laminated body were measured.
  • Comparative Example 2 In Comparative Example 2 (12% by mass) in which the content of silicon dioxide particles is high, silicon dioxide particles having a small particle size are used, and even if the acrylic resin layer thickness is made as thin as possible, the haze before the steel wool test is high. It was confirmed that the transparency was inferior and punctate defects occurred. Further, it was confirmed that in Comparative Example 3 (0.09 ⁇ m) in which the particle size of the silicon dioxide particles was small, the haze after the steel wool test was remarkably high and the scratch resistance effect was not exhibited at all. It was confirmed that in Comparative Example 4 (2.1 ⁇ m) in which the particle size of the silicon dioxide particles was large, the haze after the steel wool test was high and the transparency was inferior, and punctate defects were generated.
  • thermoplastic acrylic resin layer contains an appropriate amount of silicon dioxide particles having an average particle diameter in an appropriate range. There is. As a result, it was confirmed that the increase in the haze value was suppressed even after the scratch resistance test, the sheet (laminated body) had excellent scratch resistance, and the appearance of the sheet and the decorative molded product was good. Was done. It was also confirmed that the scratch resistance was further improved by using the silicon dioxide particles and an appropriate amount of silicone oil in combination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

According to the present invention, it is possible to provide a multilayer sheet or multilayer film composed of a laminate that has a polycarbonate-based resin layer as a substrate and that moreover has a silicon-dioxide-particle-containing thermoplastic acrylic-based resin layer on one or both outermost surfaces of the substrate, wherein the average particle diameter of the silicon dioxide particles is 0.1-2 μm, and the silicon dioxide particle content is greater than 1 mass% and no greater than 10 mass% relative to the entirety of the thermoplastic acrylic-based resin layer.

Description

多層シート及び多層フィルム、並びにそれを用いた加飾成形品Multi-layer sheet and multi-layer film, and decorative molded products using them
 本発明は、ポリカーボネート系樹脂層の少なくとも一方の面に特定の平均粒子径を有する二酸化珪素粒子を特定の割合で含有する熱可塑性アクリル系樹脂層を積層してなる多層シート及び多層フィルムに関する。 The present invention relates to a multilayer sheet and a multilayer film obtained by laminating a thermoplastic acrylic resin layer containing silicon dioxide particles having a specific average particle size in a specific ratio on at least one surface of the polycarbonate resin layer.
 ポリカーボネート樹脂を基材とするシート及びフィルムは、軽量性、透明性、耐熱性、耐衝撃性に優れることからガラスに代わる構造材料として幅広く使用されている。また、最近では印刷や加熱賦型が容易なことから加飾フィルムとして使用されている。例えば、ヒートコントローラーパネル、カーナビゲーションタッチパネル、計器カバー、グレージング、ランプレンズ、等の自動車用途や、携帯電話やモバイル携帯端末の筐体及び表示パネル前面版、ガラス部材の飛散防止フィルム等のOA・電気電子用途、温室被覆材、アーケード、採光用屋根材等の建材用途、歩道の腰板、高速道路のフェンス等の道路資材、銘板等の産業資材用途等に幅広く用いられている。しかしながら、耐擦傷性が不十分であることからその用途は制限されていた。 Sheets and films based on polycarbonate resin are widely used as structural materials to replace glass because of their excellent lightness, transparency, heat resistance, and impact resistance. Recently, it has been used as a decorative film because it is easy to print and heat-mold. For example, OA / electricity for automobile applications such as heat controller panels, car navigation touch panels, instrument covers, glazing, lamp lenses, housings and display panel front plates of mobile phones and mobile mobile terminals, and shatterproof films for glass members. It is widely used for electronic applications, greenhouse covering materials, arcades, building materials such as roofing materials for daylighting, road materials such as sidewalk wainscots and highway fences, and industrial materials such as name plates. However, its use has been limited due to its insufficient scratch resistance.
 一方、ポリカーボネートの耐傷付き性を改良するため、ポリカーボネート系樹脂層に熱可塑性アクリル系樹脂層を積層した加飾フィルムが特許文献1に開示されている。しかし、この方法では熱可塑性アクリル系樹脂を積層していることから、熱可塑性アクリル系樹脂並みの鉛筆硬度が得られるものの、成形品に埃や砂塵が堆積し拭き取ったときの耐擦傷性(スチールウール硬度)を充分に向上することはできなかった。 On the other hand, in order to improve the scratch resistance of polycarbonate, Patent Document 1 discloses a decorative film in which a thermoplastic acrylic resin layer is laminated on a polycarbonate resin layer. However, since the thermoplastic acrylic resin is laminated by this method, the pencil hardness equivalent to that of the thermoplastic acrylic resin can be obtained, but the scratch resistance (steel) when dust or dust is accumulated on the molded product and wiped off. Wool hardness) could not be sufficiently improved.
 また、ポリカーボネート樹脂層に熱可塑性アクリル系樹脂層を積層したシートを射出成型機金型内に配置し、金型内にポリカーボネート樹脂を射出した成形品の表面に粒径10~20nmのコロイダルシリカを含有するコーティング組成物を塗布した後、熱硬化させた積層体が特許文献2に開示されている。しかし、この方法では耐擦傷性が向上するものの、成形後の曲面を持つ成形品にコーティング組成物を塗布するために埃の付着や塗布ムラ等の外観不良が出やすく生産性が悪かった。
 更に、コーティング組成物を塗布することでヘーズが上昇するという問題点があった。仮に、射出成型前の積層シートにコーティング組成物を塗布した場合には生産性は向上するが、コーティング組成物が熱可塑性に乏しく脆いため成形の過程でコーティング面にクラックが発生しやすく成形できる形状は曲率が大きいものに限定されるという欠点があった。
 特許文献2ではコロイダルシリカ中のシリカ(二酸化珪素)の平均粒径は4~20nmが好ましく、シリカ含有量はコーティングの構成成分であるオルガノアルコキシシランに対して50~200重量部が好ましいとされており、その実施例としてヘーズ0.7%以上の積層体が例示されているが、ヘーズ値としては満足できるレベルではなかった。
In addition, a sheet in which a thermoplastic acrylic resin layer is laminated on a polycarbonate resin layer is placed in an injection molding machine mold, and colloidal silica having a particle size of 10 to 20 nm is placed on the surface of the molded product in which the polycarbonate resin is injected into the mold. Patent Document 2 discloses a laminate that is thermally cured after applying the coating composition contained therein. However, although the scratch resistance is improved by this method, since the coating composition is applied to the molded product having a curved surface after molding, appearance defects such as dust adhesion and coating unevenness are likely to occur, and the productivity is poor.
Further, there is a problem that the haze is increased by applying the coating composition. If the coating composition is applied to the laminated sheet before injection molding, the productivity will be improved, but since the coating composition is poor in thermoplastic and brittle, cracks are likely to occur on the coated surface during the molding process. Has the drawback that it is limited to those with a large curvature.
In Patent Document 2, the average particle size of silica (silicon dioxide) in colloidal silica is preferably 4 to 20 nm, and the silica content is preferably 50 to 200 parts by weight with respect to the organoalkoxysilane which is a component of the coating. As an example thereof, a laminate having a haze of 0.7% or more is exemplified, but the haze value is not at a satisfactory level.
 一方、特許文献3には、ポリカーボネート系樹脂層に二酸化珪素粒子を含有する熱可塑性アクリル系樹脂層を積層したシートが開示されているが、耐擦傷性や耐衝撃性の更なる改善が望まれていた。 On the other hand, Patent Document 3 discloses a sheet in which a thermoplastic acrylic resin layer containing silicon dioxide particles is laminated on a polycarbonate resin layer, but further improvement in scratch resistance and impact resistance is desired. Was there.
特開平7-156197号Japanese Patent Application Laid-Open No. 7-156197 特開2006-35519号Japanese Unexamined Patent Publication No. 2006-35519 特許第6495173号Patent No. 6495173
 本発明の課題は、上記の従来技術の問題点を解決するため、高い透明性と耐擦傷性を兼ね備えた印刷や熱賦型が容易な多層シート及び多層フィルムを提供することである。 An object of the present invention is to provide a multilayer sheet and a multilayer film which have high transparency and scratch resistance and are easy to print and heat-mold in order to solve the above-mentioned problems of the prior art.
 本発明者らは、前記問題解決のため鋭意検討を重ねた結果、ポリカーボネート系樹脂層に、特定の平均粒子径を有する二酸化珪素粒子を特定の割合で含有する熱可塑性アクリル系樹脂層を積層することで、高い透明性と耐擦傷性を持ち、印刷や熱賦型が容易な多層シート及び多層フィルムを提供できることを見いだした。 As a result of diligent studies to solve the above problems, the present inventors have laminated a thermoplastic acrylic resin layer containing silicon dioxide particles having a specific average particle size in a specific ratio on the polycarbonate resin layer. As a result, it has been found that it is possible to provide a multilayer sheet and a multilayer film having high transparency and scratch resistance and easy to print and heat-mold.
 すなわち、本発明は以下の通りである
<1> ポリカーボネート系樹脂層を基材とし、該基材の片面の最外層あるいは両面の最外層に、二酸化珪素粒子を含有する熱可塑性アクリル系樹脂層を有する積層体からなる多層シートまたは多層フィルムであって、
 前記二酸化珪素粒子の平均粒子径が0.1~2μmであり、前記二酸化珪素粒子の含有量が、前記熱可塑性アクリル系樹脂層の全量に対して1質量%を超え10質量%以下である、前記多層シートまたは多層フィルムである。
<2> 全光線透過率が85%以上93%未満であり、ヘーズが0.01%以上0.7%未満である、上記<1>に記載の多層シートまたは多層フィルムである。
<3> #0000のスチールウールを33mm×33mmの正方形パッドに装着し、前記積層体の熱可塑性アクリル系樹脂層の表面を荷重1000g下で15往復させ、擦傷した後のヘーズが0.01%以上1.5%未満である、上記<1>または<2>に記載の多層シートまたは多層フィルムである。
<4> 前記積層体の全体の平均厚みが0.03~2mmであり、前記熱可塑性アクリル系樹脂層の平均厚みが1μm以上10μm未満である、上記<1>から<3>のいずれかに記載の多層シートまたは多層フィルムである。
<5> 上記<1>から<4>のいずれかに記載の多層フィルムまたは多層シートを最外層に用いた加飾成形品である。
<6> 上記<1>から<4>のいずれかに記載の多層フィルムまたは多層シートの製造方法であって、
 積層体の形成に際し、フィードブロックの積層幅とダイ有効リップ長との比(フィードブロックの積層幅(mm)/ダイ有効リップ長(mm))を0.03~0.7の範囲とするフィードブロック法を用いることを特徴とする、前記製造方法である。
That is, the present invention uses the following <1> polycarbonate-based resin layer as a base material, and a thermoplastic acrylic resin layer containing silicon dioxide particles is provided on the outermost layer on one side or the outermost layer on both sides of the base material. A multi-layer sheet or multi-layer film made of a laminated body having
The multilayer having an average particle diameter of 0.1 to 2 μm and a content of the silicon dioxide particles of more than 1% by mass and 10% by mass or less with respect to the total amount of the thermoplastic acrylic resin layer. It is a sheet or multilayer film.
<2> The multilayer sheet or film according to <1> above, wherein the total light transmittance is 85% or more and less than 93%, and the haze is 0.01% or more and less than 0.7%.
<3># 0000 steel wool is attached to a 33 mm × 33 mm square pad, and the surface of the thermoplastic acrylic resin layer of the laminate is reciprocated 15 times under a load of 1000 g, and the haze after scratching is 0.01% or more 1.5. % Is the multilayer sheet or film according to <1> or <2> above.
<4> The above-mentioned <1> to <3>, wherein the overall average thickness of the laminated body is 0.03 to 2 mm, and the average thickness of the thermoplastic acrylic resin layer is 1 μm or more and less than 10 μm. It is a multilayer sheet or a multilayer film.
<5> A decorative molded product using the multilayer film or multilayer sheet according to any one of <1> to <4> as the outermost layer.
<6> The method for manufacturing a multilayer film or a multilayer sheet according to any one of <1> to <4> above.
When forming the laminate, the feed block method is used in which the ratio of the laminated width of the feed block to the effective die length (laminated width of the feed block (mm) / effective die length (mm)) is in the range of 0.03 to 0.7. The manufacturing method is characterized by the above.
 本発明の多層シート及び多層フィルムは、特定の平均粒子径を有する二酸化珪素を特定の割合で含有させた熱可塑性アクリル系樹脂層を用いることで高い透明性と耐擦傷性を両立できる。また、熱可塑性に乏しいハードコート層を表面に有するシートと比較して加熱賦型性が良好で賦型時にクラックが発生しにくく、生産性も良好である。更に、上記の熱可塑性アクリル系樹脂層を薄く積層することで、上記特性に加えて良好なフィルム強度を付与することができる。 The multilayer sheet and the multilayer film of the present invention can achieve both high transparency and scratch resistance by using a thermoplastic acrylic resin layer containing silicon dioxide having a specific average particle size in a specific ratio. Further, as compared with a sheet having a hard coat layer having a poor thermoplasticity on the surface, the heat forming property is good, cracks are less likely to occur at the time of forming, and the productivity is also good. Further, by laminating the above-mentioned thermoplastic acrylic resin layer thinly, it is possible to impart good film strength in addition to the above-mentioned characteristics.
 以下、本発明を詳細に説明する。
 本発明におけるポリカーボネート系樹脂層を構成するポリカーボネート系樹脂としては、芳香族ジヒドロキシ化合物又はこれと少量のポリヒドロキシ化合物とホスゲンとを用いて界面重合法により得たものか、または、芳香族ジヒドロキシ化合物と炭酸のジエステルとのエステル交換反応により得られる分岐していてもよい熱可塑性ポリカーボネート重合体を使用することができる。
 特に界面重合法で得られたビスフェノールAを主原料とする炭酸エステル重合物が熱安定性、賦型性の観点で最も好ましい。
 用いるポリカーボネート系樹脂の分子量は、粘度平均分子量で20,000~28,000が好ましく、21,000~28,000がより好ましい。粘度平均分子量が20,000未満では耐衝撃性の低下が見られることがある。粘度平均分子量が28,000を超えると賦型性の低下が起きることがある。ポリカーボネート系樹脂には、その透明性や賦型性を保てる範囲で他の樹脂や各種の添加剤を添加してもよく、添加剤としては、例えば、紫外線吸収剤、酸化防止剤、着色防止剤、難燃剤、離型剤、帯電防止剤、染顔料などが挙げられる。
 特に本発明の多層シート及び多層フィルムの厚みは、賦型性を考慮すると、通常0.03mm~2.0mm、好ましくは0.1mm~1.0mmである。薄すぎると割れやすく、厚すぎると賦型性が低下する。
Hereinafter, the present invention will be described in detail.
The polycarbonate-based resin constituting the polycarbonate-based resin layer in the present invention is obtained by an interfacial polymerization method using an aromatic dihydroxy compound or a small amount of the polyhydroxy compound and phosgen, or an aromatic dihydroxy compound. A optionally branched thermoplastic polycarbonate polymer obtained by an ester exchange reaction with a carbonic acid diester can be used.
In particular, a carbonic acid ester polymer containing bisphenol A obtained by an interfacial polymerization method as a main raw material is most preferable from the viewpoint of thermal stability and moldability.
The molecular weight of the polycarbonate resin used is preferably 20,000 to 28,000, more preferably 21,000 to 28,000 in terms of viscosity average molecular weight. If the viscosity average molecular weight is less than 20,000, a decrease in impact resistance may be observed. If the viscosity average molecular weight exceeds 28,000, the shapeability may decrease. Other resins and various additives may be added to the polycarbonate-based resin as long as its transparency and antistatic properties can be maintained. Examples of the additives include an ultraviolet absorber, an antioxidant, and an antioxidant. , Flame retardants, mold release agents, antistatic agents, dyes and pigments.
In particular, the thickness of the multilayer sheet and the multilayer film of the present invention is usually 0.03 mm to 2.0 mm, preferably 0.1 mm to 1.0 mm in consideration of moldability. If it is too thin, it will break easily, and if it is too thick, the shapeability will decrease.
 本発明における熱可塑性アクリル系樹脂層は、熱可塑性アクリル系樹脂を主体とし、これに二酸化珪素粒子を含有してなるものである。
(1)熱可塑性アクリル系樹脂
 本発明における熱可塑性アクリル系樹脂層を構成する熱可塑性アクリル系樹脂は、メチルメタクリレートと、メチルアクリレート、エチルアクリレートまたはブチルアクリレート等のアクリル酸エステルとの共重合体であり、共重合組成及び分子量は共押出条件により適宜選択すればよい。共重合組成比としてはメチルメタクリレート80~99%、メチル、エチルまたはブチルアクリレート等のアクリル酸エステル1~20%が好ましいが、これらに制限されるものではない。分子量は、重量平均分子量で30,000~300,000であることが好ましいが、これらだけに制限されるものではない。熱可塑性アクリル系樹脂の荷重撓み温度は高いほど、ガラス転移温度も高くなり、ロール転写温度もポリカーボネート系樹脂のロール転写温度と近くなり、ロール転写性に優れ、外観の優れた積層体が得られる。従って、熱可塑性アクリル系樹脂の荷重撓み温度は90℃以上が好ましく、より好ましくは95℃以上であり、更に好ましくは100℃以上である。
The thermoplastic acrylic resin layer in the present invention is mainly composed of a thermoplastic acrylic resin and contains silicon dioxide particles.
(1) Thermoplastic Acrylic Resin The thermoplastic acrylic resin constituting the thermoplastic acrylic resin layer in the present invention is a copolymer of methyl methacrylate and an acrylic acid ester such as methyl acrylate, ethyl acrylate or butyl acrylate. Yes, the copolymerization composition and molecular weight may be appropriately selected depending on the coextrusion conditions. The copolymerization composition ratio is preferably 80 to 99% for methyl methacrylate and 1 to 20% for acrylic acid esters such as methyl, ethyl or butyl acrylate, but is not limited thereto. The molecular weight is preferably, but is not limited to, a weight average molecular weight of 30,000 to 300,000. The higher the load deflection temperature of the thermoplastic acrylic resin, the higher the glass transition temperature, and the roll transfer temperature is close to the roll transfer temperature of the polycarbonate resin, so that a laminate with excellent roll transferability and excellent appearance can be obtained. .. Therefore, the load bending temperature of the thermoplastic acrylic resin is preferably 90 ° C. or higher, more preferably 95 ° C. or higher, and further preferably 100 ° C. or higher.
 熱可塑性アクリル系樹脂には、耐衝撃性を付与するために透明性や表面硬度を大幅に低下させない範囲で、ゴム状重合体および/またはゴム粒子を添加してもよい。この場合、添加した熱可塑性アクリル系樹脂組成物におけるロックウエル硬度(Mスケール)で30以上が望ましい。ロックウエル硬度が30未満の場合には、透明性が低下し、筐体として使用する場合にヘーズにより裏面に実施する印刷の見栄えが悪くなり、必要な表面硬度も得られないことがある。 A rubber-like polymer and / or rubber particles may be added to the thermoplastic acrylic resin as long as the transparency and surface hardness are not significantly reduced in order to impart impact resistance. In this case, the Rockwell hardness (M scale) of the added thermoplastic acrylic resin composition is preferably 30 or more. When the lockwell hardness is less than 30, the transparency is lowered, the print performed on the back surface by the haze when used as a housing is deteriorated, and the required surface hardness may not be obtained.
 また、熱可塑性アクリル系樹脂には、その透明性や賦型性を保てる範囲で他の樹脂や各種の添加剤を添加してもよく、添加剤としては、例えば、紫外線吸収剤、酸化防止剤、着色防止剤、難燃剤、離型剤、帯電防止剤、染顔料などが挙げられる。本発明におけるポリカーボネート系樹脂層及び熱可塑性アクリル系樹脂層の紫外線劣化を防止するため、特に紫外線吸収剤は添加した方がよい。 Further, other resins and various additives may be added to the thermoplastic acrylic resin as long as the transparency and the moldability can be maintained, and the additives include, for example, an ultraviolet absorber and an antioxidant. , Color inhibitor, flame retardant, mold release agent, antistatic agent, dye pigment and the like. In order to prevent ultraviolet deterioration of the polycarbonate-based resin layer and the thermoplastic acrylic resin layer in the present invention, it is particularly preferable to add an ultraviolet absorber.
 使用できる紫外線吸収剤としては、ベンゾトリアゾール系、ベンゾフェノン系、サリチル酸フェニルエステル系、ベンズオキサジン系、マロン酸エステル系、トリアジン系、および、それらをペンダントとして付加した高分子タイプの紫外線吸収剤が挙げられる。
 ベンゾトリアゾール系紫外線吸収剤としては、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2,2-メチレンビス[4-(1,1,3,3-テトラメチレンブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール等を例示することができ、ベンゾフェノン系紫外線吸収剤としては、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-4’-クロルベンゾフェノン、2,2-ジヒドロキシ-4-メトキシベンゾフェノン、2,2-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン等を例示することができる。
 また、サリチル酸フェニルエステル系紫外線吸収剤としては、p-t-ブチルフェニルサリチル酸エステル等が例示できる。ベンズオキサジン系紫外線吸取剤としては2,2’-(1,4-フェニレン)ビス[4H-3,1-ベンズオキサジン-4-オン]等が例示できる。
Examples of the ultraviolet absorber that can be used include benzotriazole-based, benzophenone-based, salicylate phenyl ester-based, benzoxazine-based, malonic acid ester-based, triazine-based, and polymer-type ultraviolet absorbers to which they are added as pendants. ..
Examples of the benzotriazole-based ultraviolet absorber include 2- (5-methyl-2-hydroxyphenyl) benzotriazole and 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzo. Triazole, 2- (2'-hydroxy-5'-t-octylphenyl) benzotriazole, 2,2-methylenebis [4- (1,1,3,3-tetramethylenebutyl) -6- (2H-benzotriazole) -2-yl) phenol], 2- (2H-benzotriazole-2-yl) -6- (1-methyl-1-phenylethyl) -4- (1,1,3,3-tetramethylbutyl) phenol Examples of the benzophenone-based ultraviolet absorber include 2-hydroxy-4-octoxybenzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxy-4'-chlorbenzophenone, 2,2. -Dihydroxy-4-methoxybenzophenone, 2,2-dihydroxy-4,4'-dimethoxybenzophenone and the like can be exemplified.
Further, examples of the salicylic acid phenyl ester-based ultraviolet absorber include pt-butylphenyl salicylate ester and the like. Examples of the benzoxazine-based ultraviolet absorber include 2,2'-(1,4-phenylene) bis [4H-3,1-benzoxadin-4-one] and the like.
 マロン酸エステル系紫外線吸収剤としては[(4-メトキシフェニル)-メチレン]マロン酸ジメチル等が例示できる。
 トリアジン系紫外線吸収剤としては、2,4-ジフェニル-6-(2-ヒドロキシ-4 -メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル- (2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4 -ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5- トリアジン、2,6-ジ(4-ビフェニル)-4-(2-ヒドロキシ-4-(2-エチルヘキシル)オキシフェニル)-1,3,5トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシエトキシ)-1,3,5-トリアジンなどを挙げることができるが、これらだけに限定されるものではなく、一般的に入手可能な紫外線吸収剤などが含まれる。
Examples of the malonic acid ester-based ultraviolet absorber include [(4-methoxyphenyl) -methylene] dimethyl malonate and the like.
Examples of triazine-based ultraviolet absorbers include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine and 2,4-diphenyl-6- (2-hydroxy-4-). Ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4- Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,6-di (4-biphenyl)- 4- (2-Hydroxy-4- (2-ethylhexyl) oxyphenyl) -1,3,5triazine, 2,4-diphenyl-6- (2-hydroxy-4-hexyloxyphenyl) -1,3,5 -Triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6 (2-hydroxy-4-benzyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4) -Butoxyethoxy) -1,3,5-triazine and the like can be mentioned, but the present invention is not limited to these, and generally available ultraviolet absorbers and the like are included.
 高分子タイプの紫外線吸収剤としては、分子中にヒドロキシベンゾヘノンまたはヒドロキシベンゾトリアゾール構造を有する物であり、それらには水素原子がアルキル基に置換されたものもある。高分子タイプの紫外線吸収剤の一例としてBASF社から商品化されているUVA-633L(2-ヒドロキシ-4-(メタクリロイルオキシエトキシ)ベンゾフェノン)メタクリル酸メチル共重合体がある。 Polymer-type UV absorbers have a hydroxybenzohenone or hydroxybenzotriazole structure in the molecule, and some of them have a hydrogen atom substituted with an alkyl group. As an example of the polymer type ultraviolet absorber, there is UVA-633L (2-hydroxy-4- (methacryloyloxyethoxy) benzophenone) methyl methacrylate copolymer commercialized by BASF.
 本発明に最適な熱可塑性アクリル系樹脂の市販品として、クラレ株式会社製 パラペットH R-1000L、アルケマ製 ALTUGLAS V020、三菱レイヨン製 IRG304、等がある。 Commercially available thermoplastic acrylic resins suitable for the present invention include Kuraray Co., Ltd. Parapet HR-1000L, Arkema ALTUGLAS V020, Mitsubishi Rayon IRG304, and the like.
 本発明における熱可塑性アクリル系樹脂層の平均厚みは1μm以上55μm以下が好ましく、1μm以上40μm以下がより好ましく、1μm以上10μm未満が更に好ましく、1μm以上9μm以下が特に好ましい。熱可塑性アクリル系樹脂層の平均厚みを薄くすることで積層体の透明性及び強度を大幅に向上させることができる。その反面、鉛筆硬度が低下することがあるが、本発明における熱可塑性アクリル系樹脂層とポリカーボネート系樹脂層との間に例えば二酸化珪素を含まない熱可塑性アクリル系樹脂層を設けることで低下した鉛筆硬度を補うこともできる。 The average thickness of the thermoplastic acrylic resin layer in the present invention is preferably 1 μm or more and 55 μm or less, more preferably 1 μm or more and 40 μm or less, further preferably 1 μm or more and less than 10 μm, and particularly preferably 1 μm or more and 9 μm or less. By reducing the average thickness of the thermoplastic acrylic resin layer, the transparency and strength of the laminate can be significantly improved. On the other hand, the hardness of the pencil may be lowered, but the pencil is lowered by providing, for example, a thermoplastic acrylic resin layer containing no silicon dioxide between the thermoplastic acrylic resin layer and the polycarbonate resin layer in the present invention. It can also supplement the hardness.
(2)二酸化珪素粒子
 本発明における熱可塑性アクリル系樹脂層を構成する二酸化珪素粒子は、平均粒子径が0.1~2μmのものが好ましく、更には0.2~0.6μmのものが好適である。平均粒子径が小さいと耐擦傷性の効果が充分ではなく、大きいと多層シート及び多層フィルムの点状欠陥が増加する。二酸化珪素粒子の含有量は、熱可塑性アクリル系樹脂層全体に対して1質量%を超え10質量%以下であり、1質量%を超え5質量%以下が好ましく、更には1.5~3.0質量%が最適である。二酸化珪素粒子の含有量が少ないと充分な耐擦傷性が得られず、多いと多層シート及び多層フィルムのヘーズが増加する。
 二酸化珪素粒子の製造方法については特に制限はないが、VMC法、湿式合成法、溶融法等の公知の方法で製造することができる。特に二酸化珪素の粒子径の均一性を考慮するとVMC法が好ましい。VMC法とは二酸化珪素粉末を酸素気流中に投入し酸化させ、その反応熱を利用する微細な球状二酸化珪素粒子を得る方法である。
 二酸化珪素粒子の市販品としては、株式会社アドマテックス製のアドマファインSO-C1、アドマファインSO-C2、アドマファインSO-C4、アドマファインSO-C5、アドマファインSC110G-SQ等があり、適宜選択して単独または混合して使用することができる。特に、製品中に含まれる10μm以上の大粒子を100ppm以下に抑制したアドマファインSC110G-SQは押出成形で積層物を成形した際、点状欠陥が極めて少なく良好である。
(2) Silicon Dioxide Particles The silicon dioxide particles constituting the thermoplastic acrylic resin layer in the present invention preferably have an average particle diameter of 0.1 to 2 μm, and more preferably 0.2 to 0.6 μm. If the average particle size is small, the scratch resistance effect is not sufficient, and if it is large, the punctate defects of the multilayer sheet and the multilayer film increase. The content of the silicon dioxide particles is more than 1% by mass and 10% by mass or less, preferably more than 1% by mass and 5% by mass or less, and more preferably 1.5 to 3. 0% by mass is optimal. If the content of the silicon dioxide particles is low, sufficient scratch resistance cannot be obtained, and if the content is high, the haze of the multilayer sheet and the multilayer film increases.
The method for producing the silicon dioxide particles is not particularly limited, but the silicon dioxide particles can be produced by a known method such as a VMC method, a wet synthesis method, or a melting method. In particular, the VMC method is preferable in consideration of the uniformity of the particle size of silicon dioxide. The VMC method is a method in which silicon dioxide powder is put into an oxygen stream and oxidized to obtain fine spherical silicon dioxide particles using the heat of reaction.
Commercially available products of silicon dioxide particles include Admafine SO-C1, Admafine SO-C2, Admafine SO-C4, Admafine SO-C5, Admafine SC110G-SQ manufactured by Admatex Co., Ltd., which are appropriately selected. Can be used alone or in combination. In particular, Admafine SC110G-SQ, which suppresses large particles of 10 μm or more contained in the product to 100 ppm or less, is good with extremely few point defects when the laminate is formed by extrusion molding.
 本発明における熱可塑性アクリル系樹脂層中に含まれる二酸化珪素粒子は、以下の方法で同定することが可能である。成形体表面もしくは断面のTEMおよびFE-SEM等の表面観察機器を用いた観察によって、二酸化珪素粒子の存在を確認する事が可能である。これらの測定により、粒子の分散状態や表面へのブリードアウト状態を確認することが可能となる。また、同時にEDX、XPS、EPMA等の表面元素分析機器等との併用により、二酸化珪素粒子の同定も可能である。 The silicon dioxide particles contained in the thermoplastic acrylic resin layer in the present invention can be identified by the following method. It is possible to confirm the presence of silicon dioxide particles by observing the surface or cross section of the molded body using a surface observation device such as TEM and FE-SEM. By these measurements, it is possible to confirm the dispersed state of the particles and the bleed-out state to the surface. At the same time, silicon dioxide particles can be identified by using them in combination with surface elemental analyzers such as EDX, XPS, and EPMA.
 また、本発明における熱可塑性アクリル系樹脂層中に含まれる二酸化珪素粒子の平均粒子径と含有量は、以下の方法で測定することが可能である。
 前処理として、以下の方法で試験片および試料溶液を調製可能である。成形体をエポキシ樹脂にて包埋し、包埋した成形体から、ウルトラミクロトームなどの表面切削装置を用いてアクリル系樹脂層のみを切出し、良溶媒(ジクロロメタン、THF等)に溶解させる方法、もしくは、成形品の一定面積を打ち抜き、打ち抜き片を良溶媒(ジクロロメタン、THF等)に溶解させる方法のいずれかにおいて試料溶液を調整可能である。
Further, the average particle size and content of the silicon dioxide particles contained in the thermoplastic acrylic resin layer in the present invention can be measured by the following method.
As a pretreatment, a test piece and a sample solution can be prepared by the following method. A method of embedding the molded body with epoxy resin, cutting out only the acrylic resin layer from the embedded molded body using a surface cutting device such as an ultramicrotome, and dissolving it in a good solvent (dichloromethane, THF, etc.), or The sample solution can be prepared by any of the methods of punching a certain area of the molded product and dissolving the punched pieces in a good solvent (dichloromethane, THF, etc.).
 二酸化珪素粒子の含有量に関しては、以下の方法にて測定が可能である。まず、予め濃度のわかっているSi粒子を分散させた溶液をろ紙に染み込ませ、乾燥させる。検量線として用いるために、3水準の濃度において蛍光X線測定を実施する。次に前処理して溶解させた上述の試料溶液を、ろ紙に滴下し、乾燥させ、乾燥させたろ紙を同様に蛍光X線測定装置によって測定する事で、Si元素の定量を実施する事が可能である。
 粒子径に関しては、調製した溶液をレーザー回折や動的光散乱などの原理を用いて製造された粒子径測定装置を用いる事によって測定可能である。
The content of silicon dioxide particles can be measured by the following method. First, a solution in which Si particles having a known concentration are dispersed is impregnated into a filter paper and dried. X-ray fluorescence measurements are performed at three levels of concentration for use as a calibration curve. Next, the above-mentioned sample solution that has been pretreated and dissolved is dropped onto a filter paper, dried, and the dried filter paper is similarly measured by a fluorescent X-ray measuring device to quantify the Si element. It is possible.
The particle size can be measured by using a particle size measuring device manufactured by using a principle such as laser diffraction or dynamic light scattering for the prepared solution.
 上記ポリカーボネート系樹脂層の少なくとも一方の面に上記熱可塑性アクリル系樹脂層を形成する手段としては、熱可塑性アクリル系樹脂層およびポリカーボネート系樹脂層を共押出する方法、押出したポリカーボネートの表面に熱可塑性アクリル系樹脂フィルムを熱ラミネートする方法、熱可塑性アクリル系樹脂溶液中に二酸化珪素粒子を分散させた溶液をポリカーボネート基材上に塗布し、乾燥させる方法等が挙げられる。特に、一工程で多層フィルムが得られること、また各層の厚み比に自由度があること、充分な耐擦傷性と高い透明性が両立できること等の理由により共押出法が最も好ましい。熱ラミネートする方法を用いる場合には、熱可塑性アクリル系樹脂フィルムは押出成形されたものが好ましい。例えば、射出成形で得られたフィルムを熱ラミネートすると、充分な耐擦傷性が得られない場合がある。また、熱可塑性アクリル系樹脂溶液中に二酸化珪素粒子を分散させた溶液をポリカーボネート基材上に塗布し、乾燥させる方法で得られた多層シート及び多層フィルムで充分な耐擦傷性の効果を得るには、大量の二酸化珪素粒子を含有させる必要があり、結果として透明性が損なわれる可能性がある。 As a means for forming the thermoplastic acrylic resin layer on at least one surface of the polycarbonate resin layer, a method of co-extruding the thermoplastic acrylic resin layer and the polycarbonate resin layer, and thermoplasticity on the surface of the extruded polycarbonate. Examples thereof include a method of thermally laminating an acrylic resin film, a method of applying a solution in which silicon dioxide particles are dispersed in a thermoplastic acrylic resin solution onto a polycarbonate substrate, and a method of drying. In particular, the coextrusion method is most preferable because a multilayer film can be obtained in one step, the thickness ratio of each layer has a degree of freedom, and sufficient scratch resistance and high transparency can be achieved at the same time. When the heat laminating method is used, the thermoplastic acrylic resin film is preferably extruded. For example, when a film obtained by injection molding is heat-laminated, sufficient scratch resistance may not be obtained. Further, the multilayer sheet and the multilayer film obtained by applying a solution in which silicon dioxide particles are dispersed in a thermoplastic acrylic resin solution on a polycarbonate base material and drying it can obtain a sufficient scratch resistance effect. Must contain large amounts of silicon dioxide particles, which can result in impaired transparency.
 上記のような本発明の多層シート及び多層フィルムを製造するのに最も適した共押出法の具体例を以下に記す。
 製造に用いられる押出装置としては、一般に基板層を構成するポリカーボネート系樹脂を押し出すメイン押出機と、被覆層を構成する熱可塑性アクリル系樹脂を押し出すサブ押出機により構成され、通常サブ押出機はメイン押出機より小型のものが採用される。ポリカーボネート系樹脂を押出す押出機の温度条件は、通常230~300℃、好ましくは240~290℃であり、熱可塑性アクリル系樹脂を押出す押出機の温度条件は通常200~270℃、好ましくは220~260℃である。
Specific examples of the coextrusion method most suitable for producing the multilayer sheet and the multilayer film of the present invention as described above are described below.
The extruder used for manufacturing is generally composed of a main extruder that extrudes a polycarbonate resin that constitutes a substrate layer and a sub extruder that extrudes a thermoplastic acrylic resin that constitutes a coating layer. Normally, the sub extruder is the main extruder. A smaller one than the extruder is adopted. The temperature condition of the extruder for extruding the polycarbonate resin is usually 230 to 300 ° C, preferably 240 to 290 ° C, and the temperature condition of the extruder for extruding the thermoplastic acrylic resin is usually 200 to 270 ° C, preferably 200 to 270 ° C. It is 220 to 260 ° C.
 一般的な共押出法の積層方法として、フィードブロック内で合流させた積層物をTダイ内部で伸ばして成形するフィードブロック法と、各層をダイ内部の各マニホールド内で広げて、リップ出口付近で合流させるマルチマニホールド法とがあるが、本発明ではフィードブロック法が好ましい。
 フィードブロック法においては、特にフィードブロックの積層幅とダイ有効リップ長との比が重要であり、フィードブロックの積層幅(mm)/ダイ有効リップ長(mm)=0.03~0.7の範囲が好ましい。更には、フィードブロックの積層幅(mm)/ダイ有効リップ長(mm)=0.05~0.2の範囲が最も好ましい。フィードブロックの積層幅(mm)/ダイ有効リップ長(mm)が大きすぎても小さすぎても積層体にスジ状欠陥が出やすい。積層幅と有効リップ長が同等であるマルチマニホールド法は、フィルムにスジ状欠陥が出やすく本発明の積層体を高外観で成形するには不利な積層方法である。
As a general coextrusion method laminating method, there are a feed block method in which a laminate merged in a feed block is stretched and molded inside a T-die, and each layer is spread in each manifold inside the die and near the lip outlet. There is a multi-manifold method for merging, but in the present invention, the feed block method is preferable.
In the feed block method, the ratio of the laminated width of the feed block to the effective die length is particularly important, and the range of the laminated width (mm) of the feed block / effective die length (mm) = 0.03 to 0.7 is preferable. Further, the range of the laminated width (mm) of the feed block / effective die length (mm) = 0.05 to 0.2 is most preferable. If the laminated width (mm) / effective die length (mm) of the feed block is too large or too small, streak-like defects are likely to appear in the laminated body. The multi-manifold method, in which the laminated width and the effective lip length are the same, is a laminating method that is disadvantageous for forming the laminated body of the present invention with a high appearance because streak-like defects are likely to appear on the film.
 ダイの温度としては、通常230~340℃、好ましくは260~320℃である。ダイの温度が高くすぎても低くすぎても耐擦傷性の効果が発現しないことがある。積層されシート状に成形された樹脂を、表面を鏡面処理または型加工された成形ロールに流入して積層体を形成する。成形ロール通過中に冷却が行われ、積層体が形成される。冷却する方法として、No.1ロールとNo.2ロールとの間で積層体を低圧で挟圧した後、No.3ロールに掛けまわして成形するフィルム法と、No.1ロールとNo.2ロールとの間で積層体を高圧で挟圧しバンク(樹脂溜まり)を形成した後、更にNo.2ロールとNo.3ロールとの間で高圧で挟圧し、引き取りロールでNo.3ロールから積層体を引きはがすシート法(バンク法)とがある。いずれの方法で冷却しても積層体の透明性や耐擦傷性に違いはないため、求められる厚みや物性に応じて適宜選択すればよい。 The temperature of the die is usually 230 to 340 ° C, preferably 260 to 320 ° C. If the temperature of the die is too high or too low, the scratch resistance effect may not be exhibited. The laminated and sheet-shaped resin is flowed into a molding roll whose surface is mirror-treated or molded to form a laminated body. Cooling is performed while passing through the forming roll to form a laminate. As a cooling method, a film method in which the laminate is pressed at a low pressure between the No. 1 roll and the No. 2 roll and then hung on the No. 3 roll to form the laminate, and the No. 1 roll and the No. 2 roll are used. After sandwiching the laminate with the rolls at high pressure to form a bank (resin pool), further pressurize between the No. 2 roll and the No. 3 roll at high pressure, and laminate from the No. 3 roll with a take-up roll. There is a sheet method (bank method) that peels off the body. Since there is no difference in the transparency and scratch resistance of the laminate regardless of which method is used for cooling, it may be appropriately selected according to the required thickness and physical properties.
 本発明の多層シート及び多層フィルムを透明用途に使用する場合、全光線透過率は85%以上93%未満であることが好ましく、90%以上93%未満が更に好ましい。また、本発明の多層シート及び多層フィルムのヘーズは0.01%以上0.7%未満が好ましく、0.01%以上0.5%未満が更に好ましい。
 本発明の多層シート及び多層フィルムの耐擦傷性は、以下に示すスチールウール硬度試験によって評価することができる。
 日本スチールウール株式会社製の#0000のスチールウールを33mm×33mmの正方形パッドに装着し、台上に保持した積層体の熱可塑性アクリル系樹脂層面にこのパッドを置いて、荷重1000g下で15往復させ擦傷する。この擦傷面をエタノールで洗浄した後、ヘーズを測定する。この耐擦傷性試験(スチールウール硬度試験)後のヘーズは、0.01%以上15%未満が好ましく、更には0.01%以上10%未満がより好ましく、0.01%以上1.5%未満が最も好ましい。
 スチールウール硬度試験後のヘーズが大きい積層体を、後述する加飾フィルム及び加飾シートとして用いた場合、日常的な使用で擦り傷が発生し成形品の外観が劣化して好ましくない。
When the multilayer sheet and the multilayer film of the present invention are used for transparent applications, the total light transmittance is preferably 85% or more and less than 93%, more preferably 90% or more and less than 93%. Further, the haze of the multilayer sheet and the multilayer film of the present invention is preferably 0.01% or more and less than 0.7%, and more preferably 0.01% or more and less than 0.5%.
The scratch resistance of the multilayer sheet and the multilayer film of the present invention can be evaluated by the steel wool hardness test shown below.
# 0000 steel wool manufactured by Nippon Steel Wool Co., Ltd. was attached to a 33 mm x 33 mm square pad, and this pad was placed on the thermoplastic acrylic resin layer surface of the laminate held on the table, and 15 reciprocations under a load of 1000 g. Scratch. After cleaning this scratched surface with ethanol, the haze is measured. The haze after this scratch resistance test (steel wool hardness test) is preferably 0.01% or more and less than 15%, more preferably 0.01% or more and less than 10%, and most preferably 0.01% or more and less than 1.5%.
When a laminate having a large haze after the steel wool hardness test is used as a decorative film and a decorative sheet, which will be described later, scratches occur in daily use and the appearance of the molded product deteriorates, which is not preferable.
 本発明の積層体は、加飾用フィルム及び加飾用シートとして好ましく用いられる。透明性や製品化後の耐擦傷性を考慮すると、ポリカーボネート系樹脂層の片面に二酸化珪素を含有する熱可塑性アクリル系樹脂層が形成されたものが好ましく用いられる。加飾の方法としては、例えば、連続グラビア印刷やシルク印刷、スクリーン印刷等によりポリカーボネート系樹脂層面に各種デザインを直接印刷する方法や、転写箔を転写する方法、蒸着やスパッタリングなどにより金属メッキ調の加飾を施す方法、また印刷や蒸着などの加飾が施された他の樹脂フィルムをラネートする方法等が挙げられる。 The laminate of the present invention is preferably used as a decorative film and a decorative sheet. Considering transparency and scratch resistance after commercialization, a polycarbonate resin layer having a thermoplastic acrylic resin layer containing silicon dioxide formed on one side thereof is preferably used. As a method of decoration, for example, a method of directly printing various designs on a polycarbonate resin layer surface by continuous gravure printing, silk printing, screen printing, etc., a method of transferring a transfer foil, a method of transferring metal plating by vapor deposition, sputtering, etc. Examples thereof include a method of applying decoration and a method of laminating other decorated resin films such as printing and vapor deposition.
 また、この加飾用フィルム及び加飾用シートは、その加飾面の保護を目的として熱可塑性樹脂シートを積層して使用することもできる。熱可塑性樹脂シートを構成する樹脂としては、例えば、ポリカーボネート系樹脂、熱可塑性アクリル系樹脂、ABS樹脂、ポリ塩化ビニル樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリオレフィン樹脂、または、少なくともそれらの2種以上を混練した樹脂組成物などが挙げられる。 Further, the decorative film and the decorative sheet can be used by laminating a thermoplastic resin sheet for the purpose of protecting the decorative surface. As the resin constituting the thermoplastic resin sheet, for example, a polycarbonate resin, a thermoplastic acrylic resin, an ABS resin, a polyvinyl chloride resin, a polyurethane resin, a polyester resin, a polyolefin resin, or at least two or more of them are kneaded. Examples thereof include the resin composition obtained.
 得られた加飾用フィルムまたは加飾用シートを、二酸化珪素を含有する熱可塑性アクリル系樹脂層が耐擦傷性が必要とされる側(通常は外側)に配置されるように、熱可塑性樹脂成形品に積層することにより、加飾成形品を得ることができる。ここで、熱可塑性樹脂成形品を構成する樹脂としては、例えば、ポリカーボネート樹脂、熱可塑性アクリル系樹脂、ABS樹脂、ポリ塩化ビニル樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリオレフィン樹脂、または、少なくともそれらの2種以上を混練した樹脂組成物などが挙げられる。 The obtained decorative film or decorative sheet is placed on the side (usually the outside) where the thermoplastic acrylic resin layer containing silicon dioxide is required to have scratch resistance. A decorative molded product can be obtained by laminating it on a molded product. Here, as the resin constituting the thermoplastic resin molded product, for example, a polycarbonate resin, a thermoplastic acrylic resin, an ABS resin, a polyvinyl chloride resin, a polyurethane resin, a polyester resin, a polyolefin resin, or at least two kinds thereof. Examples thereof include a resin composition obtained by kneading the above.
 加飾成形品を得るための方法としては、インモールド成形法、インサート成形法、射出成形同時貼合法等の公知の成形法が用いられる。加飾成形品の外観を考慮すると、特にインモールド成形法及びインサート成形法が本発明の積層体の加工法として適している。
 インモールド成形法とは、加飾フィルム又は加飾シートを射出成形金型内で真空成形や圧空成形などにより予備成形した後、そこに溶融樹脂を射出して、射出成形品を形成すると同時に、その成形品に加飾フィルム又は加飾シートを貼合する方法である。
 また、インサート成形法とは、加飾フィルム又は加飾シートを真空成形や圧空成形などにより予備成形してから、射出成形金型内に挿入し、そこに溶融樹脂を射出して、射出成形品を形成すると同時に、その成形品に加飾フィルム又は加飾シートを貼合する方法である。
As a method for obtaining a decorative molded product, a known molding method such as an in-mold molding method, an insert molding method, or an injection molding simultaneous bonding method is used. Considering the appearance of the decorative molded product, the in-mold molding method and the insert molding method are particularly suitable as the processing method for the laminate of the present invention.
The in-mold molding method is a method in which a decorative film or a decorative sheet is preformed in an injection molding die by vacuum molding or pressure molding, and then molten resin is injected therein to form an injection-molded product at the same time. This is a method of attaching a decorative film or a decorative sheet to the molded product.
In the insert molding method, a decorative film or a decorative sheet is preformed by vacuum molding or pressure molding, then inserted into an injection molding die, and a molten resin is injected into the injection molded product. At the same time as forming the above, it is a method of attaching a decorative film or a decorative sheet to the molded product.
 本発明の加飾成形品は、上述のように耐擦傷性に優れた積層体からなる多層フィルムまたは多層シートを最外層に用いるものである。このため、本発明の加飾成形品もまた、耐擦傷性に優れている。 The decorative molded product of the present invention uses a multilayer film or a multilayer sheet made of a laminated body having excellent scratch resistance as the outermost layer as described above. Therefore, the decorative molded product of the present invention is also excellent in scratch resistance.
 以下に本発明の実施例を示すが、本発明はこれらに限定されるものではない。
 本実施例で用いた評価、測定方法を以下に示す。
(1)積層体の熱可塑性アクリル系樹脂層に含まれる二酸化珪素粒子の平均粒子径
 (株)日機装の粒度分布測定装置ナノトラックWaveシリーズEX250を用いて測定を実施した。前処理として、成形品を一定面積(直径10mmの円)に打ち抜き、打ち抜き片をTHF(テトラヒドロフラン)に溶解させた。溶液を測定装置のセルへ投入し二酸化珪素粒子の平均粒子径を測定した。
(2)積層体の熱可塑性アクリル系樹脂層に含まれる二酸化珪素粒子の含有量
 蛍光X線装置を用いて、Si含有量を定量した。
(3)積層体の厚み測定
 積層体の中央部をマイクロメーターで10回測定し、その平均値を厚みとした。
(4)積層体の層厚み測定
 積層体の中央部を切り取り、断面をミクロトームで切削し、株式会社ニコン製光学顕微鏡ME600及びDIGITALSIGHTを用いてポリカーボネート系樹脂層と熱可塑性アクリル系樹脂層の層厚さを測定した。
(5)スチールウール硬度試験
 日本スチールウール株式会社製#0000スチールウールを33mm×33mmの正方形パッドに装着し、台上に保持した試料表面にこのパッドを置いて、荷重1000g下で15往復させ擦傷した。この試料をエタノールで洗浄した後、全光線透過率及びヘーズを測定した。
(6)全光線透過率測定
 株式会社 村上色彩技術研究所製 反射・透過率計HR-100型を用いて積層体の全光線透過率をJIS K7361-1に準じて測定した。
(7)ヘーズ測定
 株式会社 村上色彩技術研究所製 反射・透過率計HR-100型を用いて積層体のヘーズをJIS K7136に準じて測定した。
(8)引張試験(降伏応力・破断呼び歪)
 株式会社 東洋精機製作所製 ストログラフVE20を用いて降伏応力・破断呼び歪をJIS K7161に準じて測定した。
(9)落錐試験(破断エネルギー)
 フィルムを5K-50 SUS F304フランジでしっかり固定し、先端を曲率3mmRの半球状に加工された砲弾型の錘をフィルム中心部に落とし、フィルムが破断する重さと高さから、下記式により破断エネルギーを算出した。
 破断エネルギー(J)=破断した錘の重さ(Kgf)×破断した高さ(m)×9.8(N/Kgf)
(10)外観
 得られた積層体を目視で観察し二酸化珪素粒子を含まない外観良好な積層体と比較した。
Examples of the present invention are shown below, but the present invention is not limited thereto.
The evaluation and measurement methods used in this example are shown below.
(1) Average particle size of silicon dioxide particles contained in the thermoplastic acrylic resin layer of the laminate Measurement was carried out using the particle size distribution measuring device Nanotrack Wave Series EX250 manufactured by Nikkiso Co., Ltd. As a pretreatment, the molded product was punched into a certain area (circle with a diameter of 10 mm), and the punched pieces were dissolved in THF (tetrahydrofuran). The solution was poured into the cell of the measuring device and the average particle size of the silicon dioxide particles was measured.
(2) Content of silicon dioxide particles contained in the thermoplastic acrylic resin layer of the laminate The Si content was quantified using a fluorescent X-ray apparatus.
(3) Measurement of thickness of laminated body The central part of the laminated body was measured 10 times with a micrometer, and the average value was taken as the thickness.
(4) Measurement of layer thickness of laminated body The central part of the laminated body is cut off, the cross section is cut with a microtome, and the layer thickness of the polycarbonate resin layer and the thermoplastic acrylic resin layer is cut using the optical microscope ME600 and DIGITAL SIGHT manufactured by Nikon Co., Ltd. Was measured.
(5) Steel wool hardness test # 0000 steel wool manufactured by Nippon Steel Wool Co., Ltd. was attached to a 33 mm x 33 mm square pad, and this pad was placed on the surface of the sample held on the table and reciprocated 15 times under a load of 1000 g to scratch. did. After washing this sample with ethanol, the total light transmittance and haze were measured.
(6) Total light transmittance measurement The total light transmittance of the laminate was measured according to JIS K 7361-1 using a reflection / transmittance meter HR-100 manufactured by Murakami Color Technology Research Institute Co., Ltd.
(7) Haze measurement The haze of the laminated body was measured according to JIS K 7136 using a reflection / transmittance meter HR-100 manufactured by Murakami Color Technology Research Institute Co., Ltd.
(8) Tensile test (yield stress / fracture nominal strain)
Yield stress and fracture nominal strain were measured according to JIS K 7161 using a stromagraph VE20 manufactured by Toyo Seiki Seisakusho Co., Ltd.
(9) Drilling test (breaking energy)
The film is firmly fixed with a 5K-50 SUS F304 flange, and a bullet-shaped weight whose tip is processed into a hemisphere with a curvature of 3 mmR is dropped in the center of the film. Was calculated.
Breaking energy (J) = weight of broken weight (Kgf) x height of breaking (m) x 9.8 (N / Kgf)
(10) Appearance The obtained laminate was visually observed and compared with a laminate having a good appearance and containing no silicon dioxide particles.
(実施例1)
・ポリカーボネート系樹脂層材料
 ポリカーボネート系樹脂層材料として三菱エンジニアリングプラスチックス株式会社製ユーピロンS-3000R N114を使用した。
・熱可塑性アクリル系樹脂層材料の調製
 アルケマ製 ALTUGLAS V020(熱可塑性アクリル系樹脂)95.55質量%及び株式会社アドマテックス製 アドマファインSO-C1(平均粒子径0.20μmの二酸化珪素)3.7質量%、理研ビタミン株式会社製リケマールH-100(滑剤)0.14質量%、株式会社ADEKA製アデカスタブPEP-36(熱安定剤)0.04質量%、共同薬品株式会社製K-NOXBHT(熱安定剤)0.07質量%、BASF製Tinuvin1600(紫外線吸収剤)0.5質量%を重量式定量フィーダーで定量供給しながら、東芝機械株式会社製2軸押出機TEM-26SSを用いて240℃で混練、ペレット化した。
・積層体の成形
 ポリカーボネート系樹脂層(A)用押出機としてスクリュー径100mm、L/D=32のベント付単軸押出機を使用し、シリンダー温度280℃に設定し、フィードブロックへ236Kg/hrで供給されるようスクリュー回転数を調整した。また、被覆層となる二酸化珪素粒子を含有する熱可塑性アクリル系樹脂層(B)用押出機は、スクリュー径50mm、L/D=32のベント付単軸押出機を使用し、シリンダー温度240℃に設定し、ギアーポンプ回転数を調整し10Kg/hrでフィードブロックへ供給した。スクリュー回転数はギアーポンプ入口の樹脂圧が7.0MPaとなるように自動制御した。260℃に設定したフィードブロック内にて同時に供給された2種類の樹脂を200mm幅で積層し、280℃に設定された有効リップ長1650mmのダイス内でフィルム状に広げて吐出した。ダイスから吐出したフィルム状積層体を直径300mm幅2000mmのNo.1ロールと直径450mm幅2000mmのNo.2ロールで0.25MPaで挟圧した後、No.3ロールに掛けまわしてフィルムを成形した。それぞれのロール温度はNo.1ロール:60℃、No.2ロール:120℃、No.3ロール:140℃に設定し、ロール速度は10.9mとした。No.1ロールとしてゴム厚5mmゴム硬度80°のゴムロールを鏡面研磨された金属スリーブで被覆した千葉機械工業(株)製SFロールを使用し、No.2ロール及びNo.3ロールとして鏡面研磨された一般的な金属剛体ロールを使用した。
(Example 1)
-Polycarbonate resin layer material Iupiron S-3000R N114 manufactured by Mitsubishi Engineering Plastics Co., Ltd. was used as the polycarbonate resin layer material.
-Preparation of thermoplastic acrylic resin layer material ALTUGLAS V020 (thermoplastic acrylic resin) 95.55% by mass and Admafine SO-C1 (silicon dioxide with average particle diameter 0.20 μm) manufactured by Admatex Co., Ltd. 3. 7% by mass, Rikemar H-100 (slipper) manufactured by RIKEN Vitamin Co., Ltd. 0.14% by mass, Adecastab PEP-36 (heat stabilizer) 0.04% by mass manufactured by ADEKA Co., Ltd., K-NOXBHT manufactured by Kyodo Yakuhin Co., Ltd. ( While supplying 0.07% by mass of heat stabilizer and 0.5% by mass of Tinuvin1600 (ultraviolet absorber) manufactured by BASF with a weight-based quantitative feeder, 240 using a twin-screw extruder TEM-26SS manufactured by Toshiba Machinery Co., Ltd. It was kneaded at ° C and pelletized.
Molding of laminated body As an extruder for the polycarbonate resin layer (A), a single-screw extruder with a screw diameter of 100 mm and L / D = 32 is used, the cylinder temperature is set to 280 ° C., and the feed block is 236 kg / hr. The screw rotation speed was adjusted so that it could be supplied at. As the extruder for the thermoplastic acrylic resin layer (B) containing silicon dioxide particles as the coating layer, a single-screw extruder with a screw diameter of 50 mm and L / D = 32 is used, and the cylinder temperature is 240 ° C. The gear pump rotation speed was adjusted to 10 kg / hr and supplied to the feed block. The screw rotation speed was automatically controlled so that the resin pressure at the inlet of the gear pump was 7.0 MPa. Two types of resins simultaneously supplied in a feed block set at 260 ° C. were laminated with a width of 200 mm, spread in a film shape in a die with an effective lip length of 1650 mm set at 280 ° C., and discharged. The film-like laminate discharged from the die was sandwiched between a No. 1 roll having a diameter of 300 mm and a width of 2000 mm and a No. 2 roll having a diameter of 450 mm and a width of 2000 mm at 0.25 MPa, and then hung on the No. 3 roll to form a film. Each roll temperature was set to No. 1 roll: 60 ° C, No. 2 roll: 120 ° C, No. 3 roll: 140 ° C, and the roll speed was 10.9 m. As the No. 1 roll, a rubber roll with a rubber thickness of 5 mm and a rubber hardness of 80 ° is covered with a mirror-polished metal sleeve, and a SF roll manufactured by Chiba Kikai Kogyo Co., Ltd. is used, which is mirror-polished as a No. 2 roll and a No. 3 roll. A common metal rigid roll was used.
 得られた積層体を分析した結果、熱可塑性アクリル系樹脂層中に含まれる二酸化珪素の平均粒子径と含有量は、上記熱可塑性アクリル系樹脂層材料の調製時の値と同じであった。
 また、積層体中央部の厚さ及び層厚さを測定した。マイクロメータで測定した厚さと光学顕微鏡で測定した各層厚さの合計は同じ値であった。この積層体の(B)層表面のスチールウール試験を行い、試験前後の全光線透過率及びヘーズを測定した。評価結果を表1に示した。
As a result of analyzing the obtained laminate, the average particle size and content of silicon dioxide contained in the thermoplastic acrylic resin layer were the same as the values at the time of preparation of the above-mentioned thermoplastic acrylic resin layer material.
Moreover, the thickness and the layer thickness of the central portion of the laminated body were measured. The sum of the thickness measured with a micrometer and the thickness of each layer measured with an optical microscope was the same value. A steel wool test was performed on the surface of the layer (B) of this laminate, and the total light transmittance and haze before and after the test were measured. The evaluation results are shown in Table 1.
(実施例2)
 熱可塑性アクリル系樹脂層材料の調製において、アルケマ製 ALTUGLAS V020(熱可塑性アクリル系樹脂)を96.85質量%とし、株式会社アドマテックス製 アドマファインSO-C1(平均粒子径0.20μm)3.7質量%をアドマファインSO-C1(平均粒子径0.31μm)2.4質量%とした以外は、実施例1と同一の方法で積層体を得た。得られた積層体の分析の結果、熱可塑性アクリル系樹脂層中に含まれる二酸化珪素の平均粒子径と含有量は、上記熱可塑性アクリル系樹脂層材料の調製時の値と同じであった。
 また、積層体中央部の厚さ及び層厚さを測定した。マイクロメータで測定した厚さと光学顕微鏡で測定した各層厚さの合計は同じ値であった。この積層体の(B)層表面のスチールウール試験を行い、試験前後の全光線透過率及びヘーズを測定した。評価結果を表1に示した。
(Example 2)
In the preparation of the thermoplastic acrylic resin layer material, ALTUGLAS V020 (thermoplastic acrylic resin) manufactured by Alchema was set to 96.85% by mass, and Admafine SO-C1 (average particle diameter 0.20 μm) manufactured by Admatex Co., Ltd. was used. A laminate was obtained by the same method as in Example 1 except that 7% by mass was set to 2.4% by mass of Admafine SO-C1 (average particle size 0.31 μm). As a result of analysis of the obtained laminate, the average particle size and content of silicon dioxide contained in the thermoplastic acrylic resin layer were the same as the values at the time of preparation of the above-mentioned thermoplastic acrylic resin layer material.
Moreover, the thickness and the layer thickness of the central portion of the laminated body were measured. The sum of the thickness measured with a micrometer and the thickness of each layer measured with an optical microscope was the same value. A steel wool test was performed on the surface of the layer (B) of this laminate, and the total light transmittance and haze before and after the test were measured. The evaluation results are shown in Table 1.
(実施例3)
 熱可塑性アクリル系樹脂層材料の調製において、アルケマ製 ALTUGLAS V020(熱可塑性アクリル系樹脂)を98.15質量%とし、株式会社アドマテックス製 アドマファインSO-C1(平均粒子径0.20μm)3.7質量%をアドマファインSO-C5(平均粒子径1.50μm)1.1質量%とした以外は、実施例1と同一の方法で積層体を得た。得られた積層体の分析の結果、熱可塑性アクリル系樹脂層中に含まれる二酸化珪素の平均粒子径と含有量は、上記熱可塑性アクリル系樹脂層材料の調製時の値と同じであった。
 また、積層体中央部の厚さ及び層厚さを測定した。マイクロメータで測定した厚さと光学顕微鏡で測定した各層厚さの合計は同じ値であった。この積層体の(B)層表面のスチールウール試験を行い、試験前後の全光線透過率及びヘーズを測定した。評価結果を表1に示した。
(Example 3)
In the preparation of the thermoplastic acrylic resin layer material, ALTUGLAS V020 (thermoplastic acrylic resin) manufactured by Alchema was set to 98.15% by mass, and Admafine SO-C1 (average particle diameter 0.20 μm) manufactured by Admatex Co., Ltd. was used. A laminate was obtained by the same method as in Example 1 except that 7% by mass was set to 1.1% by mass of Admafine SO-C5 (average particle size 1.50 μm). As a result of analysis of the obtained laminate, the average particle size and content of silicon dioxide contained in the thermoplastic acrylic resin layer were the same as the values at the time of preparation of the above-mentioned thermoplastic acrylic resin layer material.
Moreover, the thickness and the layer thickness of the central portion of the laminated body were measured. The sum of the thickness measured with a micrometer and the thickness of each layer measured with an optical microscope was the same value. A steel wool test was performed on the surface of the layer (B) of this laminate, and the total light transmittance and haze before and after the test were measured. The evaluation results are shown in Table 1.
(実施例4)
 熱可塑性アクリル系樹脂層材料の調製において、アルケマ製 ALTUGLAS V020(熱可塑性アクリル系樹脂)を89.25質量%とし、株式会社アドマテックス製 アドマファインSO-C1(平均粒子径0.20μm)3.7質量%をアドマファインSO-C1(平均粒子径0.20μm)10質量%とし、積層体の成形のポリカーボネート系樹脂層(A)の吐出量を241Kg/hとし、熱可塑性アクリル系樹脂層(B)の吐出量を3.3Kg/hとした以外は、実施例1と同一の方法で積層体を得た。得られた積層体の分析の結果、熱可塑性アクリル系樹脂層中に含まれる二酸化珪素の平均粒子径と含有量は、上記熱可塑性アクリル系樹脂層材料の調製時の値と同じであった。
 また、積層体中央部の厚さ及び層厚さを測定した。マイクロメータで測定した厚さと光学顕微鏡で測定した各層厚さの合計は同じ値であった。この積層体の(B)層表面のスチールウール試験を行い、試験前後の全光線透過率及びヘーズを測定した。評価結果を表1に示した。
(Example 4)
In the preparation of the thermoplastic acrylic resin layer material, ALTUGLAS V020 (thermoplastic acrylic resin) manufactured by Alchema was set to 89.25% by mass, and Admafine SO-C1 (average particle diameter 0.20 μm) manufactured by Admatex Co., Ltd. was used. 7% by mass is Admafine SO-C1 (average particle size 0.20 μm) and 10% by mass, the discharge rate of the polycarbonate resin layer (A) for molding the laminate is 241 kg / h, and the thermoplastic acrylic resin layer (1). A laminated body was obtained by the same method as in Example 1 except that the discharge amount of B) was 3.3 kg / h. As a result of analysis of the obtained laminate, the average particle size and content of silicon dioxide contained in the thermoplastic acrylic resin layer were the same as the values at the time of preparation of the above-mentioned thermoplastic acrylic resin layer material.
Moreover, the thickness and the layer thickness of the central portion of the laminated body were measured. The sum of the thickness measured with a micrometer and the thickness of each layer measured with an optical microscope was the same value. A steel wool test was performed on the surface of the layer (B) of this laminate, and the total light transmittance and haze before and after the test were measured. The evaluation results are shown in Table 1.
(実施例5)
 ポリカーボネート系樹脂層(A)の吐出量を114Kgとした以外は実施例2と同一の方法で積層体を得た。得られた積層体の分析の結果、熱可塑性アクリル系樹脂層中に含まれる二酸化珪素の平均粒子径と含有量は、上記熱可塑性アクリル系樹脂層材料の調製時の値と同じであった。
 また、積層体中央部の厚さ及び層厚さを測定した。マイクロメータで測定した厚さと光学顕微鏡で測定した各層厚さの合計は同じ値であった。この積層体の(B)層表面のスチールウール試験を行い、試験前後の全光線透過率及びヘーズを測定した。評価結果を表1に示した。
(Example 5)
A laminated body was obtained by the same method as in Example 2 except that the discharge amount of the polycarbonate resin layer (A) was 114 kg. As a result of analysis of the obtained laminate, the average particle size and content of silicon dioxide contained in the thermoplastic acrylic resin layer were the same as the values at the time of preparation of the above-mentioned thermoplastic acrylic resin layer material.
Moreover, the thickness and the layer thickness of the central portion of the laminated body were measured. The sum of the thickness measured with a micrometer and the thickness of each layer measured with an optical microscope was the same value. A steel wool test was performed on the surface of the layer (B) of this laminate, and the total light transmittance and haze before and after the test were measured. The evaluation results are shown in Table 1.
(実施例6)
 熱可塑性アクリル系樹脂層材料の調製において、アルケマ製 ALTUGLAS V020(熱可塑性アクリル系樹脂)を96.847質量%とし、信越化学工業株式会社製シリコーンオイルKF-96を0.003質量%添加した以外は、実施例2と同一の方法で積層体を得た。得られた積層体の分析の結果、熱可塑性アクリル系樹脂層中に含まれる二酸化珪素の平均粒子径と含有量は、上記熱可塑性アクリル系樹脂層材料の調製整時の値と同じであった。
 また、積層体中央部の厚さ及び層厚さを測定した。マイクロメータで測定した厚さと光学顕微鏡で測定した各層厚さの合計は同じ値であった。この積層体の(B)層表面のスチールウール試験を行い、試験前後の全光線透過率及びヘーズを測定した。評価結果を表1に示した。
(Example 6)
In the preparation of the thermoplastic acrylic resin layer material, ALTUGLAS V020 (thermoplastic acrylic resin) manufactured by Arkema was set to 96.847% by mass, and silicone oil KF-96 manufactured by Shinetsu Chemical Industry Co., Ltd. was added in an amount of 0.003% by mass. Obtained a laminated body by the same method as in Example 2. As a result of analysis of the obtained laminate, the average particle size and content of silicon dioxide contained in the thermoplastic acrylic resin layer were the same as the values at the time of preparation and preparation of the above-mentioned thermoplastic acrylic resin layer material. ..
Moreover, the thickness and the layer thickness of the central portion of the laminated body were measured. The sum of the thickness measured with a micrometer and the thickness of each layer measured with an optical microscope was the same value. A steel wool test was performed on the surface of the layer (B) of this laminate, and the total light transmittance and haze before and after the test were measured. The evaluation results are shown in Table 1.
(実施例7)
 ポリカーボネート系樹脂層材料と熱可塑性アクリル系樹脂層材料の調製は実施例2と同様とした。
・積層体の成形
 ポリカーボネート系樹脂層(A)用押出機としてスクリュー径120mm、L/D=3 2のベント付単軸押出機を使用し、シリンダー温度280℃に設定し、フィードブロックへ305Kg/hrで供給されるようスクリュー回転数を調整した。また、被覆層となる二酸化珪素粒子を含有する熱可塑性アクリル系樹脂層(B)用押出機は、スクリュー径50mm、L/D=32のベント付単軸押出機を使用し、シリンダー温度240℃に設定し、ギアーポンプ回転数を調整し1.5Kg/hrでフィードブロックへ供給した。スクリュー回転数はギアーポンプ入口の樹脂圧が4.0MPaとなるように自動制御した。260℃に設定したフィードブロック内にて同時に供給された2種類の樹脂を200mm幅で積層し、260℃に設定された有効リップ長1180mmのダイス内でシート状に広げて吐出した。ダイスから吐出したシート状積層体を直径360mm面長1500mmのNo.1ロールと直径360mm面長1500mmのNo.2ロールを使用して10MPaで挟圧し、バンク(樹脂だまり)形成した後、更にNo.2ロールと直径360mm面長1500mmのNo.3ロールで10Mpaで挟圧し引き取りロールでシート状積層体をNo.3ロールから引き剥して成形した。それぞれのロール温度はNo.1ロール:130℃、No.2ロール:140℃、No.3ロール:180℃に設定し、ロール速度はNo.1ロール:2.93m/min、No.2ロール:2.93m/min、No.3ロール:2.95m/min、引き取りロール:3.26m/minとした。No.1ロール、No.2ロール及びNo.3ロールは全て鏡面研磨された一般的な金属剛体ロールを使用した。引き取りロールは硬度60°のゴムロールを使用した。
(Example 7)
The preparation of the polycarbonate-based resin layer material and the thermoplastic acrylic resin layer material was the same as in Example 2.
-Molding of laminate Using a single-screw extruder with a screw diameter of 120 mm and L / D = 32 as an extruder for the polycarbonate resin layer (A), set the cylinder temperature to 280 ° C and 305 kg / g to the feed block. The screw rotation speed was adjusted so that it could be supplied by hr. As the extruder for the thermoplastic acrylic resin layer (B) containing silicon dioxide particles as the coating layer, a single-screw extruder with a screw diameter of 50 mm and L / D = 32 is used, and the cylinder temperature is 240 ° C. The gear pump rotation speed was adjusted to 1.5 kg / hr and supplied to the feed block. The screw rotation speed was automatically controlled so that the resin pressure at the inlet of the gear pump was 4.0 MPa. Two types of resins simultaneously supplied in a feed block set at 260 ° C. were laminated with a width of 200 mm, and spread out in a sheet shape in a die with an effective lip length of 1180 mm set at 260 ° C. and discharged. The sheet-like laminate discharged from the die is sandwiched at 10 MPa using a No. 1 roll having a diameter of 360 mm and a surface length of 1500 mm and a No. 2 roll having a diameter of 360 mm and a surface length of 1500 mm to form a bank (resin pool), and then No. A .2 roll and a No. 3 roll having a diameter of 360 mm and a surface length of 1500 mm were pressed at 10 MPa, and the sheet-like laminate was peeled off from the No. 3 roll with a take-up roll to form a molded product. Each roll temperature is set to No. 1 roll: 130 ℃, No. 2 roll: 140 ℃, No. 3 roll: 180 ℃, and the roll speed is No. 1 roll: 2.93m / min, No. 2 roll: 2.93 m / min, No. 3 roll: 2.95 m / min, take-back roll: 3.26 m / min. The No. 1 roll, No. 2 roll, and No. 3 roll all used mirror-polished general metal rigid body rolls. A rubber roll having a hardness of 60 ° was used as the take-up roll.
 得られた積層体を分析した結果、熱可塑性アクリル系樹脂層中に含まれる二酸化珪素の平均粒子径と含有量は、上記熱可塑性アクリル系樹脂層材料の調製時の値と同じであった。また、積層体中央部の厚さ及び層厚さを測定した。マイクロメータで測定した厚さと光学顕微鏡で測定した各層厚さの合計は同じ値であった。この積層体の(B)層表面のスチールウール試験を行い、試験前後の全光線透過率及びヘーズを測定した。評価結果を表1に示した。 As a result of analyzing the obtained laminate, the average particle size and content of silicon dioxide contained in the thermoplastic acrylic resin layer were the same as the values at the time of preparation of the above-mentioned thermoplastic acrylic resin layer material. Moreover, the thickness and the layer thickness of the central portion of the laminated body were measured. The sum of the thickness measured with a micrometer and the thickness of each layer measured with an optical microscope was the same value. A steel wool test was performed on the surface of the layer (B) of this laminate, and the total light transmittance and haze before and after the test were measured. The evaluation results are shown in Table 1.
(比較例1)
 熱可塑性アクリル系樹脂層材料の調製において、アルケマ製 ALTUGLAS V020(熱可塑性アクリル系樹脂)を98.75質量%とし、株式会社アドマテックス製 アドマファインSO-C5(平均粒子径1.50μm)1.1質量%をアドマファインSO-C5(平均粒子径1.50μm)0.5質量%とした以外は、実施例3と同一の方法で積層体を得た。得られた積層体の分析の結果、熱可塑性アクリル系樹脂層中に含まれる二酸化珪素の平均粒子径と含有量は、上記熱可塑性アクリル系樹脂層材料の調製時の値と同じであった。
 また、積層体中央部の厚さ及び層厚さを測定した。マイクロメータで測定した厚さと光学顕微鏡で測定した各層厚さの合計は同じ値であった。この積層体の(B)層表面のスチールウール試験を行い、試験前後の全光線透過率及びヘーズを測定した。評価結果を表1に示した。
(Comparative Example 1)
In the preparation of the thermoplastic acrylic resin layer material, ALTUGLAS V020 (thermoplastic acrylic resin) manufactured by Alchema was set to 98.75% by mass, and Admafine SO-C5 (average particle diameter 1.50 μm) manufactured by Admatex Co., Ltd. 1. A laminate was obtained by the same method as in Example 3 except that 1% by mass was set to 0.5% by mass of Admafine SO-C5 (average particle size 1.50 μm). As a result of analysis of the obtained laminate, the average particle size and content of silicon dioxide contained in the thermoplastic acrylic resin layer were the same as the values at the time of preparation of the above-mentioned thermoplastic acrylic resin layer material.
Moreover, the thickness and the layer thickness of the central portion of the laminated body were measured. The sum of the thickness measured with a micrometer and the thickness of each layer measured with an optical microscope was the same value. A steel wool test was performed on the surface of the layer (B) of this laminate, and the total light transmittance and haze before and after the test were measured. The evaluation results are shown in Table 1.
(比較例2)
 熱可塑性アクリル系樹脂層材料の調製において、アルケマ製 ALTUGLAS V020(熱可塑性アクリル系樹脂)を87.25質量%とし、株式会社アドマテックス製 アドマファインSO-C1(平均粒子径0.20μm)10.0質量%をアドマファインSO-C1(平均粒子径0.20μm)12.0質量%とした以外は、実施例4と同一の方法で積層体を得た。得られた積層体の分析の結果、熱可塑性アクリル系樹脂層中に含有する二酸化珪素の平均粒子径と含有量は、上記熱可塑性アクリル系樹脂層材料調整時の値と同じであった。
 また、積層体中央部の厚さ及び層厚さを測定した。マイクロメータで測定した厚さと光学顕微鏡で測定した各層厚さの合計は同じ値であった。この積層体の(B)層表面のスチールウール試験を行い、試験前後の全光線透過率及びヘーズを測定した。評価結果を表1に示した。
(Comparative Example 2)
In the preparation of the thermoplastic acrylic resin layer material, ALTUGLAS V020 (thermoplastic acrylic resin) manufactured by Alchema was set to 87.25% by mass, and Admafine SO-C1 (average particle diameter 0.20 μm) manufactured by Admatex Co., Ltd. 10. A laminate was obtained by the same method as in Example 4 except that 0% by mass was set to 12.0% by mass of Admafine SO-C1 (average particle size 0.20 μm). As a result of the analysis of the obtained laminate, the average particle size and the content of silicon dioxide contained in the thermoplastic acrylic resin layer were the same as the values at the time of preparing the thermoplastic acrylic resin layer material.
Moreover, the thickness and the layer thickness of the central portion of the laminated body were measured. The sum of the thickness measured with a micrometer and the thickness of each layer measured with an optical microscope was the same value. A steel wool test was performed on the surface of the layer (B) of this laminate, and the total light transmittance and haze before and after the test were measured. The evaluation results are shown in Table 1.
(比較例3)
 熱可塑性アクリル系樹脂層材料の調製において、アルケマ製 ALTUGLAS V020(熱可塑性アクリル系樹脂)を87.25質量%とし、株式会社アドマテックス製 アドマファインSO-C1(平均粒子径0.20μm)3.7質量%を株式会社アドマテックス製 アドマファナノYC100C(平均粒子径0.09μm)12.0質量%とした以外は、実施例1と同一の方法で積層体を得た。得られた積層体の分析の結果、熱可塑性アクリル系樹脂層中に含まれる二酸化珪素の平均粒子径と含有量は、上記熱可塑性アクリル系樹脂層材料の調製時の値と同じであった。
 また、積層体中央部の厚さ及び層厚さを測定した。マイクロメータで測定した厚さと光学顕微鏡で測定した各層厚さの合計は同じ値であった。この積層体の(B)層表面のスチールウール試験を行い、試験前後の全光線透過率及びヘーズを測定した。評価結果を表1に示した。
(Comparative Example 3)
In the preparation of the thermoplastic acrylic resin layer material, ALTUGLAS V020 (thermoplastic acrylic resin) manufactured by Alchema was set to 87.25% by mass, and Admafine SO-C1 (average particle diameter 0.20 μm) manufactured by Admatex Co., Ltd. was used. A laminate was obtained by the same method as in Example 1 except that 7% by mass was set to 12.0% by mass of Admafanano YC100C (average particle size 0.09 μm) manufactured by Admatex Co., Ltd. As a result of analysis of the obtained laminate, the average particle size and content of silicon dioxide contained in the thermoplastic acrylic resin layer were the same as the values at the time of preparation of the above-mentioned thermoplastic acrylic resin layer material.
Moreover, the thickness and the layer thickness of the central portion of the laminated body were measured. The sum of the thickness measured with a micrometer and the thickness of each layer measured with an optical microscope was the same value. A steel wool test was performed on the surface of the layer (B) of this laminate, and the total light transmittance and haze before and after the test were measured. The evaluation results are shown in Table 1.
(比較例4)
 熱可塑性アクリル系樹脂層材料の調製において、アルケマ製 ALTUGLAS V020(熱可塑性アクリル系樹脂)を99.15質量%とし、アドマファインSO-C1(平均粒子径0.20μm)3.7質量%をアドマファインSO-C6(平均粒子径2.10μm)0.1質量%とした以外は、実施例1と同一の方法で積層体を得た。得られた積層体の分析の結果、熱可塑性アクリル系樹脂層中に含まれる二酸化珪素の平均粒子径と含有量は、上記熱可塑性アクリル系樹脂層材料の調製時の値と同じであった。
 また、積層体中央部の厚さ及び層厚さを測定した。マイクロメータで測定した厚さと光学顕微鏡で測定した各層厚さの合計は同じ値であった。この積層体の(B)層表面のスチールウール試験を行い、試験前後の全光線透過率及びヘーズを測定した。評価結果を表1に示した。
(Comparative Example 4)
In the preparation of the thermoplastic acrylic resin layer material, ALTUGLAS V020 (thermoplastic acrylic resin) manufactured by Alchema was set to 99.15% by mass, and Admafine SO-C1 (average particle size 0.20 μm) was set to 3.7% by mass. A laminate was obtained by the same method as in Example 1 except that the fine SO-C6 (average particle size 2.10 μm) was 0.1% by mass. As a result of analysis of the obtained laminate, the average particle size and content of silicon dioxide contained in the thermoplastic acrylic resin layer were the same as the values at the time of preparation of the above-mentioned thermoplastic acrylic resin layer material.
Moreover, the thickness and the layer thickness of the central portion of the laminated body were measured. The sum of the thickness measured with a micrometer and the thickness of each layer measured with an optical microscope was the same value. A steel wool test was performed on the surface of the layer (B) of this laminate, and the total light transmittance and haze before and after the test were measured. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 表1にまとめられた実施例および比較例の結果から、以下のことが明らかになった。まず、各比較例1~4においては、二酸化珪素粒子の含有量が、1質量%以下、または10質量%を超え、あるいは、二酸化珪素粒子の平均粒子径が0.1μm未満、または2μmを超えている。これらの比較例によれば、耐擦傷性試験後にヘーズ値が大きく増加したり、外観に劣ることが確認された。
 より具体的には、二酸化珪素粒子の含有量が少ない比較例1(0.5質量%)においては、粒子径が大きい二酸化珪素粒子を使用してもスチールウール試験後のヘーズが増加し、耐擦傷性に劣ることが確認された。二酸化珪素粒子の含有量が多い比較例2(12質量%)においては、粒子径が小さい二酸化珪素粒子を使用し、アクリル樹脂層厚みを可能な限り薄くしてもスチールウール試験前のヘーズが高く透明性に劣り、点状欠陥が発生することが確認された。また、二酸化珪素粒子の粒子径が小さい比較例3(0.09μm)ではスチールウール試験後のヘーズが著しく高く耐擦傷性の効果が全く発現しないことが確認された。二酸化珪素粒子の粒子径が大きい比較例4(2.1μm)ではスチールウール試験後のヘーズが高く透明性に劣り、点状欠陥が発生することが確認された。 
Figure JPOXMLDOC01-appb-T000001
From the results of the examples and comparative examples summarized in Table 1, the following became clear. First, in each of Comparative Examples 1 to 4, the content of the silicon dioxide particles is 1% by mass or less or more than 10% by mass, or the average particle diameter of the silicon dioxide particles is less than 0.1 μm or more than 2 μm. ing. According to these comparative examples, it was confirmed that the haze value was greatly increased after the scratch resistance test and the appearance was inferior.
More specifically, in Comparative Example 1 (0.5% by mass) in which the content of the silicon dioxide particles is small, the haze after the steel wool test increases even if the silicon dioxide particles having a large particle size are used, and the resistance is increased. It was confirmed that it was inferior in scratch resistance. In Comparative Example 2 (12% by mass) in which the content of silicon dioxide particles is high, silicon dioxide particles having a small particle size are used, and even if the acrylic resin layer thickness is made as thin as possible, the haze before the steel wool test is high. It was confirmed that the transparency was inferior and punctate defects occurred. Further, it was confirmed that in Comparative Example 3 (0.09 μm) in which the particle size of the silicon dioxide particles was small, the haze after the steel wool test was remarkably high and the scratch resistance effect was not exhibited at all. It was confirmed that in Comparative Example 4 (2.1 μm) in which the particle size of the silicon dioxide particles was large, the haze after the steel wool test was high and the transparency was inferior, and punctate defects were generated.
 これに対し、本願発明の実施例1~7においては、上述の比較例とは異なり、熱可塑性アクリル系樹脂層中に、適切な範囲の平均粒子径を有する二酸化珪素粒子が適当量含まれている。この結果、耐擦傷性試験後にもヘーズ値の増加が抑制されていてシート(積層体)が耐擦傷性に優れていること、および、シートと加飾成形品の外観が良好であることが確認された。また、二酸化珪素粒子と適当量のシリコーンオイルを併用することで耐擦傷性が更に向上することが確認された。 On the other hand, in Examples 1 to 7 of the present invention, unlike the above-mentioned comparative example, the thermoplastic acrylic resin layer contains an appropriate amount of silicon dioxide particles having an average particle diameter in an appropriate range. There is. As a result, it was confirmed that the increase in the haze value was suppressed even after the scratch resistance test, the sheet (laminated body) had excellent scratch resistance, and the appearance of the sheet and the decorative molded product was good. Was done. It was also confirmed that the scratch resistance was further improved by using the silicon dioxide particles and an appropriate amount of silicone oil in combination.

Claims (5)

  1.  ポリカーボネート系樹脂層を基材とし、該基材の片面の最外層あるいは両面の最外層に、二酸化珪素粒子を含有する熱可塑性アクリル系樹脂層を有する積層体からなる多層シートまたは多層フィルムであって、
     前記二酸化珪素粒子の平均粒子径が0.1~2μmであり、前記二酸化珪素粒子の含有量が、前記熱可塑性アクリル系樹脂層の全量に対して1質量%を超え10質量%以下である、前記多層シートまたは多層フィルム。
    A multilayer sheet or film composed of a laminate having a polycarbonate-based resin layer as a base material and having a thermoplastic acrylic resin layer containing silicon dioxide particles on the outermost layer on one side or the outermost layers on both sides of the base material. ,
    The multilayer having an average particle diameter of 0.1 to 2 μm and a content of the silicon dioxide particles of more than 1% by mass and 10% by mass or less with respect to the total amount of the thermoplastic acrylic resin layer. Sheet or multilayer film.
  2.  全光線透過率が85%以上93%未満であり、ヘーズが0.01%以上0.7%未満である、請求項1に記載の多層シートまたは多層フィルム。 The multilayer sheet or film according to claim 1, wherein the total light transmittance is 85% or more and less than 93%, and the haze is 0.01% or more and less than 0.7%.
  3.  #0000のスチールウールを33mm×33mmの正方形パッドに装着し、前記積層体の熱可塑性アクリル系樹脂層の表面を荷重1000g下で15往復させ、擦傷した後のヘーズが0.01%以上1.5%未満である、請求項1または2に記載の多層シートまたは多層フィルム。 # 0000 steel wool was attached to a 33 mm x 33 mm square pad, and the surface of the thermoplastic acrylic resin layer of the laminate was reciprocated 15 times under a load of 1000 g, and the haze after scratching was 0.01% or more and less than 1.5%. The multilayer sheet or the multilayer film according to claim 1 or 2.
  4.  前記積層体の全体の平均厚みが0.03~2mmであり、前記熱可塑性アクリル系樹脂層の平均厚みが1μm以上10μm未満である、請求項1から3のいずれかに記載の多層シートまたは多層フィルム。 The multilayer sheet or film according to any one of claims 1 to 3, wherein the overall thickness of the laminated body is 0.03 to 2 mm, and the average thickness of the thermoplastic acrylic resin layer is 1 μm or more and less than 10 μm.
  5.  請求項1から4のいずれかに記載の多層フィルムまたは多層シートを最外層に用いた加飾成形品。
     
    A decorative molded product using the multilayer film or multilayer sheet according to any one of claims 1 to 4 as the outermost layer.
PCT/JP2021/032335 2020-09-08 2021-09-02 Multilayer sheet, multilayer film, and decorative molded article in which same is used WO2022054693A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180054830.0A CN116096567A (en) 2020-09-08 2021-09-02 Multilayer sheet, multilayer film, and decorative molded article using same
JP2022547541A JPWO2022054693A1 (en) 2020-09-08 2021-09-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020150286 2020-09-08
JP2020-150286 2020-09-08

Publications (1)

Publication Number Publication Date
WO2022054693A1 true WO2022054693A1 (en) 2022-03-17

Family

ID=80632358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032335 WO2022054693A1 (en) 2020-09-08 2021-09-02 Multilayer sheet, multilayer film, and decorative molded article in which same is used

Country Status (4)

Country Link
JP (1) JPWO2022054693A1 (en)
CN (1) CN116096567A (en)
TW (1) TW202224949A (en)
WO (1) WO2022054693A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005186584A (en) * 2003-12-26 2005-07-14 Lintec Corp Hard coat film
JP2009024168A (en) * 2007-06-20 2009-02-05 Nippon Kayaku Co Ltd Ultraviolet-curable hardcoat resin composition
WO2015053328A1 (en) * 2013-10-11 2015-04-16 三菱瓦斯化学株式会社 Scratch-resistant polycarbonate resin laminate
JP2017111271A (en) * 2015-12-16 2017-06-22 アイカ工業株式会社 Photocurable antidazzle resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005186584A (en) * 2003-12-26 2005-07-14 Lintec Corp Hard coat film
JP2009024168A (en) * 2007-06-20 2009-02-05 Nippon Kayaku Co Ltd Ultraviolet-curable hardcoat resin composition
WO2015053328A1 (en) * 2013-10-11 2015-04-16 三菱瓦斯化学株式会社 Scratch-resistant polycarbonate resin laminate
JP2017111271A (en) * 2015-12-16 2017-06-22 アイカ工業株式会社 Photocurable antidazzle resin composition

Also Published As

Publication number Publication date
CN116096567A (en) 2023-05-09
JPWO2022054693A1 (en) 2022-03-17
TW202224949A (en) 2022-07-01

Similar Documents

Publication Publication Date Title
KR102159523B1 (en) Synthetic resin laminate
EP2572879B1 (en) Synthetic resin laminate
JP4971218B2 (en) Resin sheet for molding and molded body
JP6495173B2 (en) Scratch-resistant polycarbonate resin laminate
KR102475496B1 (en) Resin composition, film, and methods for producing same, molded article, and article
EP2851197B1 (en) Synthetic resin laminate
JP2017531574A (en) Transparent plastic sheet
EP3685986B1 (en) Resin film for vacuum forming, manufacturing method and usage thereof
KR20180041616A (en) Resin composition, molded article and laminate
JP2014034112A (en) Transparent multilayer sheet
KR20170031154A (en) Synthetic resin laminate
WO2022054693A1 (en) Multilayer sheet, multilayer film, and decorative molded article in which same is used
JP2007160892A (en) Multilayered sheet and molding
JP2005319774A (en) Polycarbonate resin laminated body with excellent weatherability and method for manufacturing the same
JP7241088B2 (en) Thermoplastic resin multilayer film, method for producing the same, and laminate
KR102703863B1 (en) Thermoplastic resin film and method for producing the same
WO2023048054A1 (en) Resin layered body
WO2019244909A1 (en) Decorative film for film insert molding and method for manufacturing same
JP2007185816A (en) Light-diffusing polycarbonate resin laminate
JPWO2019151537A1 (en) Thermoplastic resin film and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866652

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022547541

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866652

Country of ref document: EP

Kind code of ref document: A1