WO2022050117A1 - Substrate processing device and substrate processing method - Google Patents

Substrate processing device and substrate processing method Download PDF

Info

Publication number
WO2022050117A1
WO2022050117A1 PCT/JP2021/030857 JP2021030857W WO2022050117A1 WO 2022050117 A1 WO2022050117 A1 WO 2022050117A1 JP 2021030857 W JP2021030857 W JP 2021030857W WO 2022050117 A1 WO2022050117 A1 WO 2022050117A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
wafer
height
distance
resist
Prior art date
Application number
PCT/JP2021/030857
Other languages
French (fr)
Japanese (ja)
Inventor
隆大 山口
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2022546250A priority Critical patent/JP7405268B2/en
Priority to KR1020237009861A priority patent/KR20230056036A/en
Priority to CN202180052120.4A priority patent/CN116018214A/en
Publication of WO2022050117A1 publication Critical patent/WO2022050117A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/02Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface
    • B05C11/08Spreading liquid or other fluent material by manipulating the work, e.g. tilting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/40Distributing applied liquids or other fluent materials by members moving relatively to surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • This disclosure relates to a substrate processing apparatus and a substrate processing method.
  • various liquid treatments are performed on a semiconductor wafer (hereinafter referred to as a wafer) which is a substrate.
  • this liquid treatment include supplying a coating liquid such as a resist to the surface of the wafer to form a coating film, and supplying a removing liquid for the coating film to the peripheral edge of the wafer.
  • a hump which is a raised portion due to a coating film, may be formed on the peripheral edge of the wafer after the liquid treatment.
  • a resist film is formed on the entire surface of the wafer by spin coating, and the resist film is removed by supplying a thinner to the peripheral edge of the rotating wafer, and the wafer is rotated when the thinner is supplied. It is described that the formation of humps is suppressed by setting the number to an appropriate value.
  • the present disclosure is to reduce the time and effort required for detecting the raised portion formed by supplying the treatment liquid to the peripheral portion of the surface of the substrate.
  • the substrate processing apparatus of the present disclosure includes a processing liquid supply nozzle that supplies a processing liquid to at least the peripheral edge of the surface of the substrate for processing.
  • a stage on which the substrate to which the treatment liquid is supplied is placed, and
  • the height distribution between the first position on the peripheral edge of the substrate, which is a position closer to the center of the substrate, and the second position, which is a position on the peripheral end side of the substrate with respect to the first position is A moving mechanism for laterally moving the moving body on the peripheral edge of the substrate so as to be acquired.
  • a rotation mechanism for rotating the stage with respect to the moving body in order to acquire the height distributions at a plurality of positions separated from each other in the circumferential direction of the substrate.
  • the resist film forming module 1 provided in the coating and developing apparatus 10 which is an embodiment of the substrate processing apparatus of the present disclosure, will be described with reference to the side view of FIG. 1 and the plan view of FIG.
  • a wafer W which is a circular substrate having a diameter of, for example, 300 mm, is transported to the coating / developing apparatus 10 in a state of being stored in a transport container C called FOUP (Front Opening Unity Pod) whose inside is sealed. Then, the wafer W is conveyed to the resist film forming module 1 by the conveying mechanism provided in the coating / developing apparatus 10.
  • FOUP Front Opening Unity Pod
  • the resist film forming module 1 the resist is applied as a treatment liquid to the entire surface of the wafer W, that is, the region including at least the peripheral edge of the surface of the wafer W. A resist film is formed.
  • the resist film forming module 1 while the wafer W is rotating, the position where the resist is supplied by the movement of the nozzle moves from the center of the wafer W toward the peripheral end. That is, the resist, which is the coating liquid, is applied so that the locus of the supply position on the surface of the wafer W spirals.
  • the resist supply position When the resist supply position reaches the peripheral end of the wafer W, the movement of the resist supply position is stopped, and when there is no uncoated residue of the resist on the wafer W, the resist supply is stopped.
  • the resist film made of the resist coated in this way for example, due to the viscosity of the resist, the above-mentioned hump (raised portion) is formed at the peripheral end portion of the wafer W, and the height of the hump is increased. It may be different in the circumferential direction of the wafer W.
  • the resist film forming module 1 includes a spin chuck 11, a rotation mechanism 12, a pin 13, an elevating mechanism 14, a processing mechanism 2, a fixing base 31, a lower sensor 34, and a standby unit 35.
  • the spin chuck 11 is a circular stage having substantially the same size as the wafer W, and the entire back surface of the wafer W overlaps the spin chuck 11 and is held horizontally.
  • a suction hole 30 is provided on the upper surface of the spin chuck 11, and the placed wafer W is sucked.
  • the rotation mechanism 12 causes the spin chuck 11 to rotate about a vertical axis.
  • the spin chuck 11 is provided with three through holes 15, and the three pins 13 can submerge the surface of the spin chuck 11 by the elevating mechanism 14 through each through hole 15. By raising and lowering the pin 13, the wafer W is transferred between the transfer mechanism of the coating and developing apparatus 10 and the spin chuck 11.
  • the processing mechanism 2 includes a resist supply nozzle 21, an arm 22, a moving mechanism 23, an upper sensor 24, a resist supply mechanism 25, and a guide rail 26.
  • the resist supply nozzle 21 is connected to a resist supply mechanism 25 including a valve, a pump, and the like, and discharges the resist supplied from the resist supply mechanism 25 at a predetermined flow rate vertically downward.
  • the resist supply nozzle 21 is supported on the tip end side of the arm 22, and the proximal end side of the arm 22 is connected to the moving mechanism 23.
  • the moving mechanism 23, accompanied by the arm 22 and the resist supply nozzle 21, moves horizontally along the guide rail 26, that is, moves laterally.
  • the moving mechanism 23 allows the resist supply nozzle 21, which is a processing liquid supply nozzle, to move between the wafer W and the standby portion 35 provided at a position distant from the side of the spin chuck 11.
  • the standby unit 35 houses the resist supply nozzle 21 to stand by and cleans it.
  • the moving mechanism 23 incorporates an elevating mechanism for vertically elevating and lowering the arm 22, and the elevating mechanism includes a motor equipped with an encoder. That is, the raising and lowering of the arm 22 is performed by the driving force of the motor.
  • the output of the encoder is always transmitted to the control unit 100, which will be described later.
  • the amount of rotation of the motor corresponds to the amount of elevation of the arm 22, and the control unit 100 can detect the amount of elevation of the arm 22 based on the output of the encoder. Therefore, the output of the encoder corresponds to the information on the amount of elevation of the arm 22, the resist supply nozzle 21, and the upper sensor 24 described later.
  • the upper sensor 24, which is the first distance sensor, is also supported at the tip of the arm 22, and the arm 22, the resist supply nozzle 21, which is the processing liquid supply nozzle, and the upper sensor 24 move. It forms a moving body that moves integrally by the mechanism 23.
  • the upper sensor 24 is a reflection type distance sensor, and irradiates light vertically downward from the lower end thereof to reflect light from an object irradiated with light (in this embodiment, the wafer W surface and the fixing base 31 as described later). Based on this, a detection signal corresponding to a distance (difference in height) between the lower end of the upper sensor 24 and the above-mentioned object is output to the control unit 100. Based on the detection signal, the control unit 100 detects the distance between the lower end of the upper sensor 24 and the above-mentioned object.
  • the arrangement of the resist supply nozzle 21 and the upper sensor 24 will be described in detail.
  • the resist supply nozzle 21 and the upper sensor 24 are aligned so that the resist ejection position and the position of the optical axis of the irradiation light from the upper sensor 24 (that is, the position where the distance is measured) are aligned in the horizontal movement direction of the arm 22. It is provided on the arm 22.
  • the resist supply nozzle 21 is provided so that the resist can be supplied along the radius of the wafer W, and for the upper sensor 24, each position along the radius of the wafer W and the upper sensor 24 It is provided so that the distance can be measured.
  • a fixing base 31 and a lower sensor 34 are provided below the moving path of the resist supply nozzle 21 and the upper sensor 24 between the spin chuck 11 and the standby portion 35 when viewed in a plane.
  • the fixing base 31 is provided on the floor 32 on which the resist film forming module 1 is provided.
  • the upper surface 33 of the fixed base 31 is a horizontal plane, and is used to set a reference height (zero point of height) in advance when acquiring the height distribution of the wafer W surface as described later.
  • a lower sensor 34 which is a second distance sensor, is fixedly provided on the standby portion 35 side with respect to the fixed base 31, and the fixed base 31 and the lower sensor 34 are a resist supply nozzle 21 and an upper sensor 24. They are lined up in the horizontal movement direction of.
  • the lower sensor 34 has the same configuration as the upper sensor 24 except that it irradiates light vertically upward from the upper end thereof, and light is irradiated from the upper end of the lower sensor 34 and the lower sensor 34.
  • the control unit 100 can detect the distance to the object. Further, the height of the upper end of the lower sensor 34 matches the height of the upper surface 33 of the fixed base 31, and the distance between the lower sensor 34 detected by the lower sensor 34 and the object is the fixed base 31. It corresponds to the difference in height between the upper surface 33 and the object.
  • the lower sensor 34 and the control unit 100 form a reference height setting unit.
  • the control unit 100 is a calculation unit configured by a computer, and includes a program 101 and a memory 102. A group of steps is incorporated in the program 101 so that a series of operations described later in the coating and developing apparatus 10 can be carried out. Outputs a control signal to control the operation.
  • the program 101 controls coating, transfer of the wafer W between the processing modules included in the developing apparatus 10, and operation in each processing module.
  • the operation of the processing module includes acquisition of distance parameters by the sensors 24 and 34 in the resist film forming module 1 described in detail later, formation of the resist film, acquisition of the height distribution of the surface of the wafer W, and hump height. The detection of the corresponding height and the abnormality determination of the wafer W based on the detected value are included.
  • the program 101 is stored in a storage medium such as a compact disk, a hard disk, or a DVD, and is installed in the control unit 100. Further, in the memory 102, the height distribution of the surface of the acquired wafer W, the reference height set for acquiring the height distribution, and the reference height are set as described later.
  • Sensors 24 and 34 store parameters such as distances acquired by the sensors 24 and 34, respectively.
  • 3 to 10 are side views showing the operation of each part in the module from before the start of processing on the wafer W to the acquisition of the height distribution on the surface of the wafer W, and in FIGS. 3 to 10, the distances are shown.
  • the light emitted from the upper sensor 24 and the lower sensor 34 when the detection is performed is indicated by an arrow of a two-dot chain line.
  • FIGS. 11 to 13 are top views of the wafer W mounted on the spin chuck 11 and show the operation of the upper sensor 24 and the wafer W after forming the resist film.
  • the notch which is a notch at the peripheral end of the wafer W, is shown as N, and the light irradiated from the upper sensor 24 for detecting the distance to form an optical axis is shown as P. Therefore, in FIGS. 11 to 13, the position of the light P is shown to indicate the position where the distance is detected.
  • each operation step until the distance parameter is acquired and the resist film is formed is step S, and each operation step for acquiring the height distribution of each position after the resist film is formed is stepped. Let it be T. Steps S3 to S6 are the first process of forming the resist film, and step T is the second process.
  • the resist supply nozzle 21 is moved from the state where it is located in the standby unit 35 (FIG. 3) to the outside of the standby unit 35 by the cooperation of the arm 22 ascending and horizontal movement, and the output of the predetermined encoder is obtained.
  • the upper sensor 24 is located on the fixed base 31 while being located at a certain height. Then, light is emitted from the upper sensor 24, and the control unit 100 acquires a distance (third distance) L1 between the upper surface 33 of the fixed base 31 and the lower end of the upper sensor 24 (FIG. 4).
  • the arm 22 moves and the resist supply nozzle 21 is located on the lower sensor 34 and at a height that becomes the output of a predetermined encoder, light P is emitted from the lower sensor 34, and the light P is emitted.
  • the distance (second distance) L2 between the upper end of the lower sensor 34 and the lower end of the resist supply nozzle 21 is acquired (FIG. 5).
  • the positions of the resist supply nozzle 21 and the upper sensor 24 are higher when the distance L2 is acquired than when the distance L1 is acquired.
  • the positions of the resist supply nozzle 21 and the upper sensor 24 at the time of acquiring the distance L1 are shown by the alternate long and short dash line.
  • the control unit 100 calculates the height difference L3 between the resist supply nozzle 21 and the upper sensor 24 when the distance L1 is acquired and when the distance L2 is acquired. do.
  • the difference in height between the upper surface 33 of the fixed base 31 and the lower end of the upper sensor 24 when the distance L2 is acquired is the distance L1 + the height difference L3. Since the heights of the upper surface 33 of the fixed base 31 and the upper end of the lower sensor 34 are the same as described above, the acquired distance L2 is the upper surface 33 of the fixed base 31 and the lower end of the resist supply nozzle 21. Is equal to the difference in height.
  • the reference height L0 is set, and the height of the upper sensor 24 and the height of the resist supply nozzle 21 with respect to the reference height L0 are detected. It will be. After this step S2, even if the arm 22 moves up and down, the height of the upper sensor 24 and the height of the resist supply nozzle 21 with respect to the reference height L0 can be detected based on the output of the encoder.
  • the upper sensor 24 is placed on the spin chuck 11 by the transport mechanism and horizontally moves onto the center of the stationary wafer W, and the output of the encoder is set to a predetermined value.
  • the upper sensor 24 moves up and down.
  • the light P is irradiated from the upper sensor 24 to the center of the wafer W, and the distance L5 between the center of the wafer W and the lower end of the upper sensor 24 is acquired (step S3, FIG. 6).
  • the resist supply nozzle 21 moves horizontally so as to be located on the center of the wafer W, and the distance L5-distance L4 and the preset distance between the resist supply nozzle 21 and the wafer W (referred to as L6) are determined.
  • the resist supply nozzle 21 moves up and down by the amount of this difference.
  • the resist supply nozzle 21 is located at a height separated from the center of the wafer W by the distance L6 (step S4). That is, the height of the resist supply nozzle 21 is determined based on the distance L4 (that is, based on the encoder outputs at the time of acquiring the distances L1 and L2 and the distances L1 and L2 acquired in steps S1 and S2).
  • the resist R is started to be ejected from the resist supply nozzle 21, and the resist supply nozzle 21 starts horizontal movement toward the peripheral edge of the wafer W (step).
  • step S5 FIG. 7
  • the resist R is supplied to the surface of the wafer W.
  • the resist supply nozzle 21 is located on the peripheral end of the wafer W, the horizontal movement of the resist supply nozzle 21 stops, and when the resist R is applied to the entire surface of the wafer W, the discharge of the resist R stops (FIG. 8).
  • the resist supply nozzle 21 rises, the wafer W continues to rotate at a predetermined rotation speed, and the resist R is dried and solidified to form the resist film R1 (step S6).
  • the rotation of the wafer W is stopped, and the upper sensor 24 moves so as to be located at a predetermined height on the center of the wafer W (step T1).
  • the distance (first distance) of the upper sensor 24 with respect to the reference height L0 is L7. Since the height of the upper sensor 24 with respect to the reference height L0 is detected in step S2 as described above, the distance L7 is calculated from the displacement between the encoder output in step S2 and the encoder output in step T1. Will be done.
  • the distance (referred to as L8) is acquired. That is, the distance between each position in the radius of the wafer W and the upper sensor 24 is acquired.
  • the height distribution in the radius of the wafer W is calculated by the difference between the distance L7 and the distance L8 (value detected by the upper sensor 24) continuously acquired while the upper sensor 24 is moving (step T2).
  • the graph of FIG. 14 shows an example of the height distribution.
  • the spin chuck 11 rotates, the orientation of the wafer W is changed by 90 ° clockwise, and then the wafer W stands still (right side of FIG. 11, step T3).
  • the light P is irradiated from the upper sensor 24, the upper sensor 24 moves horizontally toward the center of the wafer W, and the distance L8 between the surface of the wafer W and the upper sensor 24 is acquired again.
  • the irradiation position of the light P moves to a predetermined position on the peripheral edge of the wafer W (left side of FIG. 12)
  • the height distribution along the radial direction at the peripheral edge of the wafer W is calculated from the difference between the distance L7 and the distance L8 (step T4).
  • the graph of FIG. 15 shows an example of the height distribution.
  • step T5 the spin chuck 11 rotates, the orientation of the wafer W is changed by 90 ° clockwise, and then the wafer W stands still (center of FIG. 12, step T5).
  • the light P is irradiated from the upper sensor 24, and the upper sensor 24 moves horizontally toward the peripheral portion of the wafer W, and the distance L8 between the surface of the wafer W and the upper sensor 24 is acquired.
  • the irradiation position of the light P moves to a predetermined position outside the wafer W (right side of FIG. 12)
  • the movement of the upper sensor 24 and the light irradiation are stopped.
  • a height distribution similar to that shown in FIG. 15 is obtained by the difference between the distance L7 and the distance L8 (step T6). Therefore, in this step T6, the height distribution of the wafer W is acquired in the same manner as in step T4, except that the moving direction of the upper sensor 24 is different.
  • the spin chuck 11 rotates, the orientation of the wafer W is changed by 90 ° clockwise, and then the wafer W stands still (left side of FIG. 13, step T7).
  • the light P is irradiated from the upper sensor 24, the upper sensor 24 moves horizontally toward the center of the wafer W, and the distance L8 between the surface of the wafer W and the upper sensor 24 is acquired.
  • the irradiation position of the light P moves to a predetermined position on the peripheral edge of the wafer W (right side of FIG. 13)
  • the movement of the upper sensor 24 and the light irradiation are stopped, and the distances L7 and L8 are the same as those shown in FIG.
  • the height distribution of the wafer W is acquired (step T8).
  • step T8 the height distribution of the wafer W is acquired as in the above step T4.
  • the upper sensor 24 is retracted from the wafer W, and the resist supply nozzle 21 returns to the standby unit 35 (step T9).
  • the wafer W is carried out from the resist film forming module 1 by the transport mechanism of the coating and developing apparatus 10.
  • FIG. 16 shows the movement paths of the light P in the above steps T2, T4, T6, and T8 as A1, A2, A3, and A4, respectively, corresponding to the wafer W.
  • the outer peripheral end of the wafer W of the movement paths A1 to A4 is, for example, 2 mm away from the peripheral end of the wafer W.
  • the central end of the wafer W of the movement paths A2 to A4 is, for example, 3 mm away from the peripheral end of the wafer W. Therefore, the height distribution between the first position 2 mm closer to the center of the peripheral edge of the wafer W and the second position of the peripheral edge of the wafer W is acquired at the four positions on the peripheral edge of the wafer W. It will be.
  • the rotation speed of the wafer W in steps T3, T5, and T7 is, for example, 10 rpm. Further, the time required for each step T, that is, the time for the upper sensor 24 to move in each step T as described above is, for example, 10 seconds for T1, T4, T6, and T8, and for example, 152 seconds for T2, T3, and T5. T7 is, for example, 15 seconds, and T9 is 5 seconds.
  • the peak of the waveform on the peripheral end side of the wafer W from the predetermined position (represented as R0) on the peripheral edge of the wafer W is the top of the hump.
  • the difference between the peak and the reference height L0 is detected as the height L9 corresponding to the height of the hump.
  • the peak of the waveform represents the top of the hump
  • the difference between the peak and the reference height L0 is the height L9 corresponding to the height of the hump. Is detected as. Then, each of these heights L9 is compared with a preset allowable value.
  • the wafer W is considered to have no abnormality with respect to the hump, and if any height L9 exceeds the allowable value, the wafer W is considered to have an abnormality with respect to the hump.
  • the abnormality of the wafer W is determined based on the difference L9 between the reference height L0 and the peak height of the waveform of the height distribution.
  • the difference in height of the hump may be detected, that is, the height of the hump itself may be detected, and the presence or absence of an abnormality may be determined based on the detected value.
  • step T2 the radius of the wafer W, that is, the height distribution from the central portion to the peripheral portion of the wafer W is acquired. Therefore, among the height distributions acquired in step T2, the height distribution on the central side of the wafer W, that is, the height distribution closer to the center of the wafer W than the height distributions acquired in steps T4, T6, and T8.
  • the flatness of the resist film may be detected based on the above, and the presence or absence of an abnormality in the wafer W may be determined. Specifically, for example, the difference in height between the highest position and the lowest position in the height distribution on the central portion side is calculated.
  • the control unit 100 that makes such a determination forms a determination unit.
  • the coating / developing apparatus 10 is configured by connecting the carrier block D1, the processing block D2, and the interface block D3 in order in the left-right direction, and the interface block D3 is connected to the exposure machine D4.
  • the carrier block D1 includes a stage 41 of the transport container C, an opening / closing section 42, and a transport mechanism 43 for transporting the wafer W to the transport container C via the opening / closing section 42.
  • the processing block D2 is configured by stacking layers E1 to E6 in order from the bottom, layers E1 to E3 are configured in the same manner as layers for forming a resist film, and layers E4 to E6 are layers for development. They are configured in the same way as each other.
  • Hierarchy E1 will be described as a representative.
  • a transfer region 51 of the wafer W extending to the left and right is formed, and a transfer mechanism F1 is provided in the transfer area 51.
  • a hydrophobic module 52 and a heating module 53 are provided on the rear side of the transport region 51.
  • the hydrophobizing module 52 supplies a treatment gas to the surface of the wafer W to perform the hydrophobizing treatment before forming the resist film.
  • the heating module 53 heats the wafer W after forming the resist film to remove the solvent contained in the resist.
  • a plurality of the resist film forming modules 1 described above are provided side by side on the front side of the transport region 51.
  • Layers E4 to E6 are provided except that a developing module is provided in place of the resist film forming module 1, a hydrophobizing module 52 is not provided, and the heating module 53 performs PEB (Post Exposure Bake).
  • the configuration is the same as that of the layers E1 to E3.
  • the transport mechanism corresponding to the transport mechanism F1 in the layers E2 to E6 is shown as F2 to F6.
  • the processing block D2 is provided with a tower V1 so as to straddle the layers E1 to E6 on the carrier block D1 side in the transport area 51.
  • Tower V1 includes a large number of transfer modules TRS stacked on top of each other.
  • a transport mechanism 54 for transporting between the transfer modules TRS is provided.
  • the interface block D3 includes towers V2, V3, and V4 in which a plurality of modules are laminated with each other. Although detailed description of the modules included in the towers V2 to V4 will be omitted, the module of the tower V2 includes a transfer module TRS stacked in multiple stages. Reference numerals 61, 62, and 63 in the drawing are transfer mechanisms for transferring the wafer W between the towers V2 and V3, between the towers V3 and V4, and between the tower V2 and the exposure machine D4.
  • the wafer W is transported from the transport container C to the tower V1 via the transport mechanism 43, and then is carried into any of the layers E1 to E3 via the transport mechanism 54. Then, the wafer W is conveyed in the order of the hydrophobicity module 52 ⁇ the resist film forming module 1 ⁇ the heating module 53 ⁇ the tower V2 by the transfer mechanisms F1 to F3.
  • the hydrophobizing treatment, the formation of the resist film described above, the acquisition of the height distribution, the detection of the hump height, the abnormality determination of the wafer W, and the heat treatment are sequentially performed.
  • the wafer W is passed between the towers V2 and V4 by the transport mechanisms 61 to 63, is conveyed to the exposure machine D4, and the resist film is exposed along the circuit pattern.
  • the exposed wafer W is passed between the towers V2 to V4 by the transfer mechanisms 61 to 63, is carried into the layers E4 to E6, and is conveyed in the order of the heating module 53 ⁇ the developing module by the transfer mechanisms F4 to F6. As a result, PEB and development processing are performed in order, and a resist pattern is formed. After that, the wafer W is returned to the transport container C via the tower V1 and the transport mechanisms 54 and 43.
  • the wafer W is rotated by the spin chuck 11 in the resist film forming module 1, and the upper sensor 24 is moved by the moving mechanism 23 and the arm 22.
  • the resist film forming module 1 stores the wafer W after forming the resist film in the transport container C, further transports the wafer W to an external measuring instrument of the coating and developing apparatus 10, and takes out the wafer W from the transport container C to hump. There is no need to measure the height. That is, with respect to the coating and developing apparatus 10, it takes less time and effort to acquire the above height distribution in order to obtain information on the height of the hump.
  • the hump of the resist film If the height of the hump of the resist film is too large, the lower layer film provided in the lower layer of the resist film is etched by using the resist pattern, and when the unnecessary resist pattern is ashed, the hump portion is used. There is a risk of insufficient ashing. In order to prevent this, if the processing time is lengthened or the intensity of the plasma used for ashing is increased, the damage to the central portion of the wafer W becomes large. Further, if the height of the hump of the resist film is too large, the etching of the lower position of the hump of the resist film is insufficient for the above-mentioned lower layer film, and the recess may not be formed in the place where the recess should be formed. There is a risk of doing so.
  • the slurry for CMP or the cleaning liquid used for cleaning is not discharged to the outside of the wafer W through the recess, and may remain on the surface of the wafer W, resulting in a defect. There is.
  • the coating / developing apparatus 10 acquiring the height distribution of the peripheral portion of the wafer W as described above and determining the abnormality of the wafer W is, for example, various parameters for performing maintenance and processing of each part of the module. It will promote the adjustment of the above at an appropriate timing, and will contribute to prevent the decrease in the yield of semiconductor products. It is not necessary to acquire the height distribution of the wafers W in steps T1 to T8 for each wafer W, and it is performed once for each processing of a predetermined number of wafers W or for each lot of wafers W. You may try to do it.
  • the reference height L0 can be set, the height of the resist supply nozzle 21 from the reference height L0 can be detected, and the resist can be obtained. Detection of the height difference between the supply nozzle 21 and the upper sensor 24 is performed. That is, by providing the lower sensor 34, these settings and detection operations can be automatically performed. For example, it is advantageous for the user of the device to take less time and effort than setting and detecting these parameters by measuring the distance from the fixed base 31 by using a jig.
  • each acquired parameter is stored in the memory 102 of the control unit 100. After that, since the stored parameters can be used, steps S1 and S2 do not have to be repeated. Therefore, after executing steps S1 and S2 once, the lower sensor 34 used only in step S2 may be removed from the resist film forming module 1. However, if the configuration of the resist film forming module 1 is changed by replacing the resist supply nozzle 21 or by adjusting each part of the module, a deviation occurs between the acquired parameter and the actual value. Is possible. Therefore, it is preferable to permanently install the lower sensor 34 in the module so that each parameter can be updated by executing steps S1 and S2 at arbitrary timings, for example, when the device is started.
  • steps T1 to T9 for acquiring the height distribution the rotation speed of the wafer W, the position of the moving body including the upper sensor 24, the arm 22 and the resist supply nozzle 21, the time for performing the step, and the like are specified for each step.
  • the control unit 100 outputs a control signal according to the recipe which is the parameter group.
  • steps S3 to S6 for forming the resist film on the wafer W as in steps T1 to T9, a parameter group that defines the rotation speed of the wafer W, the position of the moving body, the time for performing the step, and the like for each step.
  • the control unit 100 outputs a control signal according to the recipe.
  • the rotation speed of the wafer W and the position of the moving body in each step S and T are preset, and when the preset time for one step elapses, the process proceeds to the next step.
  • the height position of the moving body at the time of resist ejection in step S5 as described in FIGS. 6 and 7, the height is set in advance by the distance L5 detected by the upper sensor 24. It will be changed.
  • the recipe for executing steps T1 to T9 as described above will include the same parameters as the recipe for performing steps S3 to S6 for forming the resist film. Therefore, the recipe for executing steps T1 to T9 can be created by appropriately diverting or changing the recipe for executing steps S3 to S6, and thus has an advantage that the recipe can be easily created. This is because the mechanism for acquiring the height distribution of the wafer W in steps T1 to T9 uses the spin chuck 11, the arm 22, the moving mechanism 23, and the upper sensor 24 for performing resist coating in steps S3 to S6. It can be said that there is an advantage. Each recipe is stored in the memory 102 of the control unit 100.
  • the lower sensor 34 detects the distance L2 from the resist supply nozzle 21.
  • the value calculated from the distance L2 is also used for adjusting the height of the resist supply nozzle 21 at the time of resist ejection, and by controlling the height of the nozzle, the controllability of the film thickness in each part of the resist film is high. Therefore, the desired film thickness can be obtained. That is, both the effects of setting the reference height L0 by measuring the distance L2 to enable the measurement of the surface height of the wafer W and increasing the controllability of the film thickness of the resist film can be obtained. Therefore, it is preferable.
  • the upper sensor 24 reciprocates on the peripheral edge portion of the wafer W when the wafer W is stationary and when the wafer W is then stationary.
  • the height distribution of this step T2 is used to cancel the influence of the warp of the wafer W on the peripheral portion of the wafer W.
  • the height distribution may be acquired to determine the presence or absence of an abnormality in the hump. Specifically, it will be described with reference to FIG.
  • the upper part of FIG. 19 shows an example of the height distribution of the radius of the wafer W acquired in step T2.
  • this height distribution there is a relatively large difference between the center side and the peripheral side of the wafer W due to the warp of the wafer W, and the height of the surface of the wafer W becomes larger toward the peripheral edge, and the reference height is reached. It is far from L0.
  • the control unit 100 which forms a warp correction mechanism, determines the height of the wafer W at the center of the wafer W and the height of the wafer W at a position R0 closer to the center than the position where the hump is formed at the peripheral edge of the wafer W.
  • the difference H1 is calculated.
  • the height of the wafer W on the peripheral end side of the position R0 is corrected by H1 so that the height of the wafer W at the position R0 is aligned with the height of the center of the wafer W.
  • the lower part of FIG. 19 shows the height distribution corrected in this way.
  • the height L9 corresponding to the height of the hump described above is detected from the corrected height distribution, and the abnormality is determined.
  • the height distribution calculated in steps T4, T6, and T8 the height of the wafer W is corrected by H1 and the height L9 is detected to determine an abnormality.
  • the spin chuck 11 sucks the mounted wafer W. If the warp of the wafer W is eliminated by this suction, the above correction may not be performed.
  • control unit 100 is configured to transmit information for identifying the wafer W such as an ID to the wafer W for which the height of the hump is determined to be abnormal, in the exposure machine D4. , The processing may be performed based on the information.
  • 71 in the figure is a stage on which the wafer W is placed in the exposure machine D4, and 72 in the figure is an exposure head that irradiates the wafer W with light. By moving the stage 71 back and forth and left and right, a large number of chip forming regions, which are semiconductor products, are sequentially exposed in the plane of the wafer W.
  • FIG. 20 shows a case where a normal wafer W is processed
  • FIG. 21 shows a case where an abnormal wafer W is processed.
  • the movement of the stage 71 is restricted as compared with the case where a normal wafer W is processed, and the chip forming region located closest to the peripheral end of the wafer W is not exposed. Therefore, the range of exposure for forming the pattern is controlled based on the presence or absence of abnormality in the wafer W in the resist film.
  • the resist film exposed by the exposure machine D4 may be formed by the resist film forming module 1 as described above, or may be formed by the resist film forming module 8 described later. It may be EBR processed.
  • the hump is not limited to being formed by supplying the coating liquid in a spiral shape as in the resist film forming module 1.
  • FIG. 22 shows a resist film forming module 8 that forms a resist film in a form different from that of the resist film forming module 1.
  • resist film forming modules 1 and 8 are provided side by side.
  • the resist film forming module 8 The difference between the resist film forming module 8 and the resist film forming module 1 will be described.
  • a resist is supplied to the center of the wafer W, and by rotating the wafer W, the resist is expanded by centrifugal force to form the resist film R1 on the entire surface of the wafer W. Therefore, the resist film R1 is formed by so-called spin coating.
  • a cup 81 surrounding the wafer W placed on the spin chuck 11 which is a processing stage is provided in order to receive the resist scattered from the wafer W and the thinner described later during the spin coating.
  • the resist film forming module 8 includes a thinner supply nozzle 83 supported by the arm 82, and the arm 82 has a movement mechanism (not shown) having the same configuration as the movement mechanism 23 for moving the arm 22, and is used in an upper region of the wafer W. Moves between and its outside.
  • the thinner supply nozzle 83 discharges thinner 84, which is a treatment liquid, to the peripheral portion of the rotating wafer W after forming the resist film, so that the thinner 84 is discharged from the peripheral portion of the wafer W to the circumference of the wafer W.
  • the resist film R1 in the region reaching the edge is removed. That is, a so-called EBR (Edge Bead Removal) treatment is performed in which the coating film is limitedly removed at the peripheral edge of the wafer W.
  • EBR Edge Bead Removal
  • the thinner 84 supplied to the wafer W slightly pushes the melted resist toward the center side of the wafer W, so that a hump may be formed on the resist film R1 after the EBR treatment.
  • the height of this hump may differ in the circumferential direction of the wafer W due to the positional deviation of the wafer W with respect to the spin chuck 11 and the bias of the liquid flow of the thinner 84 in the circumferential direction of the wafer W.
  • the wafer W processed by the resist film forming module 8 is conveyed to the resist film forming module 1 by the conveying mechanisms F1 to F3, and the above-described steps T1 to T9 are executed.
  • the wafer W is conveyed in the coating and developing apparatus 10 by the same route as the above-mentioned transfer route, except that the resist film forming modules are transferred between the layers E1 to E3 in this way. Therefore, the transfer mechanisms F1 to F3 transfer from the resist film forming module 8 to the resist film forming module 1 without passing through the transfer container C.
  • the coating and developing apparatus 10 is provided with the resist film forming module 8, it is not necessary to transfer the wafer W to an external measuring device after forming the resist film, so that the height distribution is distributed as described above. It is possible to reduce the time and effort required for acquisition.
  • the resist film forming module 1 does not include the resist supply nozzle 21 and can be an inspection-dedicated module for acquiring the height distribution.
  • the upper sensor 24 is not limited to linearly moving between the position on the center side and the position on the peripheral end side of the wafer W, and draws a planar arc as shown in FIG. 23, for example. You may move it.
  • 85 is a rotation mechanism to which the base end side of the arm 22 is connected and the arm 22 is swiveled around a vertical axis
  • the figure 86 is an elevating mechanism for raising and lowering the rotation mechanism 85.
  • the height distribution is acquired in the same manner as in the examples shown in FIGS. 13 to 15, except that the locus of movement of the upper sensor 24 is different.
  • step S2 when the resist film forming module 1 is used as an inspection-dedicated module in which the nozzle 21 is not provided, in step S2, instead of irradiating the resist supply nozzle 21 with light from the lower sensor 34, for example, the arm 22 is irradiated with light to reduce the distance.
  • the height that is detected and separated from the distance by a predetermined distance may be determined as the reference height L0.
  • the upper sensor 24 irradiated with light on the fixed base 31 is moved up and down, and the height at which the distance L1 becomes a desired value is set as the reference height L0.
  • the height of the upper sensor 24 with respect to the reference height L0 may be detected from the output of the encoder. That is, when the resist supply nozzle 21 is not provided, it is not necessary to acquire the height of the resist supply nozzle 21 with respect to the reference height L0, so that the module does not need to be provided with the lower sensor 34 for detecting the nozzle 21.
  • the reference height L0 may be set without using the lower sensor 34.
  • the arm 22 may be configured so that the upper sensor 24 does not move up and down and only moves horizontally. Then, the distance L7 between the arbitrarily set reference height L0 and the upper sensor 24 is acquired by using, for example, a jig, and the wafer is obtained from the distance L7 and the distance L8 between the wafer W detected by the upper sensor 24. The height distribution of W may be acquired. In such a configuration, since there is no displacement in the height of the upper sensor 24, the height distribution of the wafer W can be obtained without using the output of the encoder.
  • step S1 shown in FIG. 4 light is irradiated from the upper sensor 24 to the fixed base 31 to form the upper sensor 24 and the fixed base 31.
  • the distance L1 to and from may be acquired by facing the upper sensor 24 to the lower sensor 34 and irradiating the lower sensor 34 with light. Therefore, it is not necessary to provide the fixing base 31.
  • the upper sensor 24 and the lower sensor 34 face each other to acquire the distance L1
  • the distance L1 may be acquired by irradiating the upper sensor 24 with light from the lower sensor 34.
  • the heights of the resist supply nozzle 21 and the upper sensor 24 are changed between the execution of step S1 and the execution of step S2, but they may be the same height.
  • the height distribution of the wafer W is acquired at four positions on the peripheral edge of the wafer W, but the acquisition position is not limited to four, and there are more or less positions. It may be acquired at the position. However, since the height of the hump differs in the circumferential direction of the wafer W as described above, the height distribution is acquired at a plurality of positions by utilizing the rotation of the wafer W. Further, in the above-described example, the height distribution from the position near the center of the wafer W to the peripheral end of the wafer W is acquired at the peripheral edge of the wafer W, but the resist film forming module 8 processes the height distribution.
  • the hump may be formed on the center side of the peripheral edge of the wafer W. Therefore, the height distribution up to the peripheral end of the wafer W is not acquired, and the position between the position closer to the center of the wafer W at the peripheral edge of the wafer W and the position closer to the center than the peripheral end of the wafer W. The height distribution of may be obtained.
  • An example of acquiring a height distribution and determining an abnormality of a wafer W on which a resist film is formed has been described, but for a wafer W on which a coating film other than a resist film such as an antireflection film and an insulating film is formed, the wafer W has been described.
  • the height distribution may be acquired and an abnormality may be determined by the procedure described above.
  • an annular coating film is formed at the peripheral edge portion of the wafer W.
  • a hump may be formed at a position on the center side of the wafer W.
  • the configuration is not limited to such a configuration, and only the coating film is formed or only EBR is performed. It may be a configuration.
  • the upper sensor 24 and the lower sensor 34 may be any as long as they can measure the distance to an object away from each sensor. Therefore, the present invention is not limited to the optical distance sensor described above, and for example, an ultrasonic distance sensor may be used.
  • a coating film is formed on the wafer W, and the height of the hump of the coating film is such that the spectroscopic ellipsometry type film thickness measuring instrument and the upper sensor 24 move on the wafer W in the same manner as the resist film forming module 1. Measurements were made using the configured test equipment.
  • the above-mentioned film thickness measuring device is configured to measure the surface of the wafer W at intervals of 10 ⁇ m, and the test device is configured so that the distance can be acquired at intervals of 0.1 ⁇ m while moving.
  • the actual height of the hump of the wafer W measured by the film thickness measuring device and the test device is measured by observing the cross section by X-SEM (cross-sectional scanning electron microscopy), and the film thickness is measured. The accuracy of the measurement results in the measuring instrument and test equipment was confirmed.
  • the graph of FIG. 24 shows the result of this reference test.
  • the horizontal axis (X axis) of the graph shows the height (unit: ⁇ ) of the hump measured by X-SEM, and the vertical axis (Y axis) of the graph is measured by each of the test device and the film thickness measuring device. It shows the height of the hump (unit: ⁇ ).
  • the results of the test equipment are shown by white dots, and the results of the film thickness measuring instrument are shown by the shaded dots.
  • the solid line and the dotted line in the graph are approximate straight lines of the results obtained by each of the test device and the film thickness measuring device.
  • the accuracy of the hump height of the film thickness measuring instrument was low because the measurement interval on the surface of the wafer W was relatively large, and the height of the top of the hump was not measured and was displaced from the top. It is probable that the height of the hump was measured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Coating Apparatus (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

Provided is a substrate processing device comprising: a processing liquid supply nozzle that supplies processing liquid to at least a peripheral edge part of a surface of a substrate and carries out a process; a stage on which the substrate supplied with the processing liquid is mounted; a movement body that includes a first distance sensor for detecting the distance to the substrate mounted on the stage; a movement mechanism that moves the movement body in a lateral direction over the peripheral edge part of the substrate so as to acquire a height distribution between a first position, which is a position on the peripheral edge part of the substrate near the center of said substrate, and a second position, which is a position closer to a peripheral end side of the substrate than the first position; and a rotation mechanism that rotates the stage with respect to the movement body in order to acquire the respective height distributions between a plurality of positions separated from each other along the peripheral direction of the substrate.

Description

基板処理装置及び基板処理方法Board processing equipment and board processing method
 本開示は、基板処理装置及び基板処理方法に関する。 This disclosure relates to a substrate processing apparatus and a substrate processing method.
 半導体デバイスの製造工程においては、基板である半導体ウエハ(以下、ウエハと記載する)に対して、様々な液処理が行われる。この液処理としてはレジストなどの塗布液をウエハの表面に供給して塗布膜を形成することや、ウエハの周縁部に当該塗布膜の除去液を供給することが挙げられる。 In the semiconductor device manufacturing process, various liquid treatments are performed on a semiconductor wafer (hereinafter referred to as a wafer) which is a substrate. Examples of this liquid treatment include supplying a coating liquid such as a resist to the surface of the wafer to form a coating film, and supplying a removing liquid for the coating film to the peripheral edge of the wafer.
液処理後のウエハの周縁部にはハンプと呼ばれる、塗布膜による隆起部が形成される場合が有る。特許文献1には、スピンコーティングによるウエハの表面全体へのレジスト膜の形成と、回転するウエハの周縁部へのシンナーの供給によるレジスト膜の除去とが行われ、シンナーの供給時のウエハの回転数を適切な値とすることにより、ハンプの形成を抑制することが記載されている。 A hump, which is a raised portion due to a coating film, may be formed on the peripheral edge of the wafer after the liquid treatment. In Patent Document 1, a resist film is formed on the entire surface of the wafer by spin coating, and the resist film is removed by supplying a thinner to the peripheral edge of the rotating wafer, and the wafer is rotated when the thinner is supplied. It is described that the formation of humps is suppressed by setting the number to an appropriate value.
特開2018-121045号公報Japanese Unexamined Patent Publication No. 2018-121045
 本開示は、基板の表面の周縁部に処理液を供給することで形成される隆起部について、検出に要する手間を削減することである。 The present disclosure is to reduce the time and effort required for detecting the raised portion formed by supplying the treatment liquid to the peripheral portion of the surface of the substrate.
 本開示の基板処理装置は、少なくとも基板の表面の周縁部に処理液を供給して処理を行う処理液供給ノズルと、
 前記処理液が供給された前記基板を載置するステージと、
 前記ステージに載置された前記基板との間の距離を検出するための第1の距離センサが含まれる移動体と、
 前記基板の周縁部における当該基板の中心寄りの位置である第1の位置と、当該第1の位置よりも前記基板の周端側の位置である第2の位置との間の高さ分布が取得されるように、前記移動体を前記基板の周縁部上にて横方向に移動させる移動機構と、
 前記基板の周方向に互いに離れた複数の位置における前記高さ分布を各々取得するために、前記ステージを前記移動体に対して回転させる回転機構と、
を備える。
The substrate processing apparatus of the present disclosure includes a processing liquid supply nozzle that supplies a processing liquid to at least the peripheral edge of the surface of the substrate for processing.
A stage on which the substrate to which the treatment liquid is supplied is placed, and
A moving body including a first distance sensor for detecting a distance between the substrate mounted on the stage and the substrate.
The height distribution between the first position on the peripheral edge of the substrate, which is a position closer to the center of the substrate, and the second position, which is a position on the peripheral end side of the substrate with respect to the first position, is A moving mechanism for laterally moving the moving body on the peripheral edge of the substrate so as to be acquired.
A rotation mechanism for rotating the stage with respect to the moving body in order to acquire the height distributions at a plurality of positions separated from each other in the circumferential direction of the substrate.
To prepare for.
 本開示によれば、基板の表面の周縁部に処理液を供給することで形成される隆起部について、検出に要する手間を削減することができる。 According to the present disclosure, it is possible to reduce the time and effort required for detecting the raised portion formed by supplying the treatment liquid to the peripheral portion of the surface of the substrate.
本開示の一実施形態である塗布、現像装置に設けられるレジスト膜形成モジュールの側面図である。It is a side view of the resist film forming module provided in the coating and developing apparatus which is one Embodiment of this disclosure. 前記レジスト膜形成モジュールの平面図である。It is a top view of the resist film forming module. 前記レジスト膜形成モジュールにおけるパラメータの設定手順を示す説明図である。It is explanatory drawing which shows the setting procedure of the parameter in the resist film formation module. 前記パラメータの設定手順を示す説明図である。It is explanatory drawing which shows the setting procedure of the said parameter. 前記パラメータの設定手順を示す説明図である。It is explanatory drawing which shows the setting procedure of the said parameter. 前記レジスト膜形成モジュールにおけるレジスト膜の形成手順を示す説明図である。It is explanatory drawing which shows the formation procedure of the resist film in the resist film formation module. 前記レジスト膜の形成手順を示す説明図である。It is explanatory drawing which shows the formation procedure of the resist film. 前記レジスト膜の形成手順を示す説明図である。It is explanatory drawing which shows the formation procedure of the resist film. 前記レジスト膜の高さ分布を測定する手順を示す説明図である。It is explanatory drawing which shows the procedure of measuring the height distribution of the resist film. 前記レジスト膜の高さ分布を測定する手順を示す説明図である。It is explanatory drawing which shows the procedure of measuring the height distribution of the resist film. 前記レジスト膜の高さ分布を測定する手順を示す平面図である。It is a top view which shows the procedure of measuring the height distribution of the resist film. 前記レジスト膜の高さ分布を測定する手順を示す平面図である。It is a top view which shows the procedure of measuring the height distribution of the resist film. 前記レジスト膜の高さ分布を測定する手順を示す平面図である。It is a top view which shows the procedure of measuring the height distribution of the resist film. 前記レジスト膜の半径の高さ分布の例を示すグラフ図である。It is a graph which shows the example of the height distribution of the radius of the resist film. 前記レジスト膜の周縁部の高さ分布の例を示すグラフ図である。It is a graph which shows the example of the height distribution of the peripheral part of the resist film. 前記ウエハと高さ分布の測定が行われる領域との関係を示す平面図である。It is a top view which shows the relationship between the wafer and the region where the height distribution is measured. 前記塗布、現像装置の平面図である。It is a top view of the coating and developing apparatus. 前記塗布、現像装置の側面図である。It is a side view of the coating and developing apparatus. レジスト膜の高さ分布の補正例を示すグラフ図である。It is a graph which shows the correction example of the height distribution of a resist film. 正常なウエハに対する露光機の動作を示す説明図である。It is explanatory drawing which shows the operation of the exposure machine with respect to a normal wafer. 異常なウエハに対する露光機の動作を示す説明図である。It is explanatory drawing which shows the operation of the exposure machine with respect to an abnormal wafer. 他のレジスト膜形成モジュールを示す側面図である。It is a side view which shows the other resist film forming module. 他のレジスト膜形成モジュールを示す平面図である。It is a top view which shows the other resist film forming module. 参考試験の結果を示すグラフ図である。It is a graph which shows the result of a reference test.
 本開示の基板処理装置の一実施形態である塗布、現像装置10に設けられるレジスト膜形成モジュール1について、図1の側面図、図2の平面図を参照しながら説明する。上記の塗布、現像装置10には、FOUP(Front Opening Unity Pod)と呼ばれる内部が密閉される搬送容器Cに格納された状態で、直径が例えば300mmの円形基板であるウエハWが搬送される。そして、塗布、現像装置10に設けられる搬送機構により、当該ウエハWがレジスト膜形成モジュール1に搬送される。 The resist film forming module 1 provided in the coating and developing apparatus 10, which is an embodiment of the substrate processing apparatus of the present disclosure, will be described with reference to the side view of FIG. 1 and the plan view of FIG. A wafer W, which is a circular substrate having a diameter of, for example, 300 mm, is transported to the coating / developing apparatus 10 in a state of being stored in a transport container C called FOUP (Front Opening Unity Pod) whose inside is sealed. Then, the wafer W is conveyed to the resist film forming module 1 by the conveying mechanism provided in the coating / developing apparatus 10.
レジスト膜形成モジュール1の作用の概要を先に説明しておくと、レジスト膜形成モジュール1ではウエハWの表面全体、即ちウエハWの表面の少なくとも周縁部を含む領域に、処理液としてレジストが塗布されて、レジスト膜が形成される。このレジスト膜形成モジュール1ではウエハWが回転する状態で、ノズルの移動によりレジストが供給される位置がウエハWの中心から周端に向けて移動する。つまり、ウエハW表面における供給位置の軌跡が渦巻きをなすように、塗布液であるレジストの塗布が行われる。 To explain the outline of the operation of the resist film forming module 1 first, in the resist film forming module 1, the resist is applied as a treatment liquid to the entire surface of the wafer W, that is, the region including at least the peripheral edge of the surface of the wafer W. A resist film is formed. In the resist film forming module 1, while the wafer W is rotating, the position where the resist is supplied by the movement of the nozzle moves from the center of the wafer W toward the peripheral end. That is, the resist, which is the coating liquid, is applied so that the locus of the supply position on the surface of the wafer W spirals.
そしてレジストの供給位置がウエハWの周端に達すると、レジスト供給位置の移動が停止し、ウエハW上のレジストの塗り残しが無くなると、レジストの供給が停止する。このように塗布されたレジストからなるレジスト膜について、例えば当該レジストの粘度に起因することで、ウエハWの周端部においては既述したハンプ(隆起部)が形成され、そのハンプの高さがウエハWの周方向において異なる場合が有る。 When the resist supply position reaches the peripheral end of the wafer W, the movement of the resist supply position is stopped, and when there is no uncoated residue of the resist on the wafer W, the resist supply is stopped. With respect to the resist film made of the resist coated in this way, for example, due to the viscosity of the resist, the above-mentioned hump (raised portion) is formed at the peripheral end portion of the wafer W, and the height of the hump is increased. It may be different in the circumferential direction of the wafer W.
それに対応して、レジスト膜形成モジュール1ではレジスト膜の形成後、ウエハWの周方向に互いに離れた領域の高さ分布が取得される。より詳しくは、ウエハWの半径上の領域、及びこの半径上の領域からウエハWの周方向に互いに離れた当該ウエハWの周縁部における径方向に沿った複数の領域について、高さ分布が各々取得される。これらの各高さ分布から、ハンプの高さについての検出が可能となる。 Correspondingly, in the resist film forming module 1, after the resist film is formed, the height distribution of the regions separated from each other in the circumferential direction of the wafer W is acquired. More specifically, the height distributions are each for a region on the radius of the wafer W and a plurality of regions along the radial direction in the peripheral portion of the wafer W separated from each other in the circumferential direction of the wafer W from the region on the radius. To be acquired. From each of these height distributions, it is possible to detect the height of the hump.
以下、レジスト膜形成モジュール1の構成について説明する。レジスト膜形成モジュール1は、スピンチャック11と、回転機構12と、ピン13と、昇降機構14と、処理機構2と、固定台31と、下側センサ34と、待機部35と、を備えている。スピンチャック11はウエハWと略同じ大きさの円形のステージであり、ウエハWの裏面全体が当該スピンチャック11に重なり水平に保持される。スピンチャック11の上面には吸引孔30が設けられ、載置されたウエハWが吸着される。 Hereinafter, the configuration of the resist film forming module 1 will be described. The resist film forming module 1 includes a spin chuck 11, a rotation mechanism 12, a pin 13, an elevating mechanism 14, a processing mechanism 2, a fixing base 31, a lower sensor 34, and a standby unit 35. There is. The spin chuck 11 is a circular stage having substantially the same size as the wafer W, and the entire back surface of the wafer W overlaps the spin chuck 11 and is held horizontally. A suction hole 30 is provided on the upper surface of the spin chuck 11, and the placed wafer W is sucked.
回転機構12により、スピンチャック11は鉛直軸回りに回転する。スピンチャック11には貫通孔15が3つ設けられており、各貫通孔15を介して3本のピン13が昇降機構14により、スピンチャック11の表面を突没可能である。当該ピン13の昇降により、塗布、現像装置10の搬送機構とスピンチャック11との間で、ウエハWの受け渡しが行われる。 The rotation mechanism 12 causes the spin chuck 11 to rotate about a vertical axis. The spin chuck 11 is provided with three through holes 15, and the three pins 13 can submerge the surface of the spin chuck 11 by the elevating mechanism 14 through each through hole 15. By raising and lowering the pin 13, the wafer W is transferred between the transfer mechanism of the coating and developing apparatus 10 and the spin chuck 11.
処理機構2は、レジスト供給ノズル21、アーム22、移動機構23、上側センサ24、レジスト供給機構25及びガイドレール26を含んでいる。レジスト供給ノズル21は、バルブやポンプなどを含んだレジスト供給機構25に接続されており、レジスト供給機構25から所定の流量で供給されるレジストを、鉛直下方に向けて吐出する。アーム22の先端側にレジスト供給ノズル21が支持されており、アーム22の基端側は移動機構23に接続されている。移動機構23はアーム22及びレジスト供給ノズル21を伴い、ガイドレール26に沿って水平方向に移動、即ち横方向に移動する。移動機構23により、処理液供給ノズルであるレジスト供給ノズル21はウエハW上とスピンチャック11の側方に離れた位置に設けられた待機部35との間を移動することができる。待機部35は、当該レジスト供給ノズル21を収納して待機させると共に洗浄する。 The processing mechanism 2 includes a resist supply nozzle 21, an arm 22, a moving mechanism 23, an upper sensor 24, a resist supply mechanism 25, and a guide rail 26. The resist supply nozzle 21 is connected to a resist supply mechanism 25 including a valve, a pump, and the like, and discharges the resist supplied from the resist supply mechanism 25 at a predetermined flow rate vertically downward. The resist supply nozzle 21 is supported on the tip end side of the arm 22, and the proximal end side of the arm 22 is connected to the moving mechanism 23. The moving mechanism 23, accompanied by the arm 22 and the resist supply nozzle 21, moves horizontally along the guide rail 26, that is, moves laterally. The moving mechanism 23 allows the resist supply nozzle 21, which is a processing liquid supply nozzle, to move between the wafer W and the standby portion 35 provided at a position distant from the side of the spin chuck 11. The standby unit 35 houses the resist supply nozzle 21 to stand by and cleans it.
上記の移動機構23には、アーム22を垂直に昇降させる昇降機構が組み込まれており、当該昇降機構はエンコーダを備えたモータを含む。即ち、アーム22の昇降は、当該モータの駆動力により行われる。そして上記のエンコーダの出力は、後述する制御部100に常時送信される。モータの回転量はアーム22の昇降量に対応しており、当該エンコーダの出力に基づいて制御部100は、アーム22の昇降量を検出することができる。従って、エンコーダの出力は、アーム22、レジスト供給ノズル21及び後述の上側センサ24の昇降量の情報に相当する。 The moving mechanism 23 incorporates an elevating mechanism for vertically elevating and lowering the arm 22, and the elevating mechanism includes a motor equipped with an encoder. That is, the raising and lowering of the arm 22 is performed by the driving force of the motor. The output of the encoder is always transmitted to the control unit 100, which will be described later. The amount of rotation of the motor corresponds to the amount of elevation of the arm 22, and the control unit 100 can detect the amount of elevation of the arm 22 based on the output of the encoder. Therefore, the output of the encoder corresponds to the information on the amount of elevation of the arm 22, the resist supply nozzle 21, and the upper sensor 24 described later.
アーム22の先端にはレジスト供給ノズル21の他に、第1の距離センサである上側センサ24も支持されており、アーム22、処理液供給ノズルであるレジスト供給ノズル21、上側センサ24は、移動機構23によって一体で移動する移動体をなす。上側センサ24は反射型の距離センサであり、その下端から鉛直下方に光照射し、光が照射された物体(この実施例では後述するようにウエハW表面及び固定台31)からの反射光に基づいて、当該上側センサ24の下端と上記の物体と距離(高さの差)に相当する検出信号を、制御部100に出力する。当該検出信号に基づいて、制御部100は上側センサ24の下端と上記の物体との距離を検出する。 In addition to the resist supply nozzle 21, the upper sensor 24, which is the first distance sensor, is also supported at the tip of the arm 22, and the arm 22, the resist supply nozzle 21, which is the processing liquid supply nozzle, and the upper sensor 24 move. It forms a moving body that moves integrally by the mechanism 23. The upper sensor 24 is a reflection type distance sensor, and irradiates light vertically downward from the lower end thereof to reflect light from an object irradiated with light (in this embodiment, the wafer W surface and the fixing base 31 as described later). Based on this, a detection signal corresponding to a distance (difference in height) between the lower end of the upper sensor 24 and the above-mentioned object is output to the control unit 100. Based on the detection signal, the control unit 100 detects the distance between the lower end of the upper sensor 24 and the above-mentioned object.
レジスト供給ノズル21及び上側センサ24の配置について詳しく述べる。アーム22の水平移動方向にレジストの吐出位置、上側センサ24からの照射光の光軸の位置(即ち、距離が計測される位置)が並ぶように、レジスト供給ノズル21及び上側センサ24が、当該アーム22に設けられている。そしてレジスト供給ノズル21は、ウエハWの半径に沿ってレジストを供給することができるように設けられており、上側センサ24については、ウエハWの半径に沿った各位置と当該上側センサ24との距離が計測されるように設けられている。 The arrangement of the resist supply nozzle 21 and the upper sensor 24 will be described in detail. The resist supply nozzle 21 and the upper sensor 24 are aligned so that the resist ejection position and the position of the optical axis of the irradiation light from the upper sensor 24 (that is, the position where the distance is measured) are aligned in the horizontal movement direction of the arm 22. It is provided on the arm 22. The resist supply nozzle 21 is provided so that the resist can be supplied along the radius of the wafer W, and for the upper sensor 24, each position along the radius of the wafer W and the upper sensor 24 It is provided so that the distance can be measured.
平面で見たスピンチャック11と待機部35との間におけるレジスト供給ノズル21及び上側センサ24の移動路の下方に、固定台31及び下側センサ34が設けられている。固定台31はレジスト膜形成モジュール1が設けられる床32上に設けられている。固定台31の上面33は水平面であり、後述するようにウエハW表面の高さ分布を取得するにあたって、その取得前に基準高さ(高さのゼロ点)を予め設定するために用いられる。 A fixing base 31 and a lower sensor 34 are provided below the moving path of the resist supply nozzle 21 and the upper sensor 24 between the spin chuck 11 and the standby portion 35 when viewed in a plane. The fixing base 31 is provided on the floor 32 on which the resist film forming module 1 is provided. The upper surface 33 of the fixed base 31 is a horizontal plane, and is used to set a reference height (zero point of height) in advance when acquiring the height distribution of the wafer W surface as described later.
固定台31に対して、第2の距離センサである下側センサ34が待機部35側に固定されて設けられており、固定台31と下側センサ34とはレジスト供給ノズル21及び上側センサ24の水平移動方向に並んでいる。下側センサ34は、その上端から鉛直上方に向けて光を照射することを除いて上側センサ24と同様の構成であり、下側センサ34の上端と当該下側センサ34から光が照射された物体との距離を、制御部100は検出することができる。また、下側センサ34の上端の高さは、固定台31の上面33の高さに一致しており、下側センサ34により検出される下側センサ34と物体との距離は、固定台31の上面33と当該物体との高さの差に一致する。下側センサ34及び制御部100は、基準高さ設定部をなす。 A lower sensor 34, which is a second distance sensor, is fixedly provided on the standby portion 35 side with respect to the fixed base 31, and the fixed base 31 and the lower sensor 34 are a resist supply nozzle 21 and an upper sensor 24. They are lined up in the horizontal movement direction of. The lower sensor 34 has the same configuration as the upper sensor 24 except that it irradiates light vertically upward from the upper end thereof, and light is irradiated from the upper end of the lower sensor 34 and the lower sensor 34. The control unit 100 can detect the distance to the object. Further, the height of the upper end of the lower sensor 34 matches the height of the upper surface 33 of the fixed base 31, and the distance between the lower sensor 34 detected by the lower sensor 34 and the object is the fixed base 31. It corresponds to the difference in height between the upper surface 33 and the object. The lower sensor 34 and the control unit 100 form a reference height setting unit.
続いて、塗布、現像装置10に設けられる制御部100について説明する。制御部100はコンピュータにより構成される演算部であり、プログラム101及びメモリ102を備えている。プログラム101には、塗布、現像装置10における後述の一連の動作を実施することができるようにステップ群が組み込まれており、当該プログラム101によって制御部100は、処理モジュールや搬送機構などの各部に制御信号を出力し、動作を制御する。 Subsequently, the control unit 100 provided in the coating / developing device 10 will be described. The control unit 100 is a calculation unit configured by a computer, and includes a program 101 and a memory 102. A group of steps is incorporated in the program 101 so that a series of operations described later in the coating and developing apparatus 10 can be carried out. Outputs a control signal to control the operation.
具体的に、塗布、現像装置10に含まれる処理モジュール間でのウエハWの搬送、各処理モジュールにおける動作がプログラム101により制御される。その処理モジュールの動作としては、後に詳述するレジスト膜形成モジュール1における各センサ24、34による距離のパラメータの取得、レジスト膜の形成、ウエハWの表面の高さ分布の取得、ハンプ高さに対応する高さの検出、その検出値に基づいたウエハWの異常判定が含まれる。プログラム101は、例えばコンパクトディスク、ハードディスク、DVDなどの記憶媒体に格納されて、制御部100にインストールされる。また、メモリ102には、取得されたウエハWの表面の高さ分布や、この高さ分布の取得のために設定される基準高さや、当該基準高さを設定するために、後述のようにセンサ24、34により、各々取得される距離のパラメータなどが記憶される。 Specifically, the program 101 controls coating, transfer of the wafer W between the processing modules included in the developing apparatus 10, and operation in each processing module. The operation of the processing module includes acquisition of distance parameters by the sensors 24 and 34 in the resist film forming module 1 described in detail later, formation of the resist film, acquisition of the height distribution of the surface of the wafer W, and hump height. The detection of the corresponding height and the abnormality determination of the wafer W based on the detected value are included. The program 101 is stored in a storage medium such as a compact disk, a hard disk, or a DVD, and is installed in the control unit 100. Further, in the memory 102, the height distribution of the surface of the acquired wafer W, the reference height set for acquiring the height distribution, and the reference height are set as described later. Sensors 24 and 34 store parameters such as distances acquired by the sensors 24 and 34, respectively.
続いて、レジスト膜形成モジュール1の動作例について図3~図13を参照しながら説明する。図3~図10はウエハWへの処理の開始前からウエハW表面の高さ分布の取得に至るまでのモジュールにおける各部の動作を示す側面図であり、これらの図3~図10では、距離の検出を行う際に上側センサ24、下側センサ34から各々照射される光を二点鎖線の矢印によって示している。 Subsequently, an operation example of the resist film forming module 1 will be described with reference to FIGS. 3 to 13. 3 to 10 are side views showing the operation of each part in the module from before the start of processing on the wafer W to the acquisition of the height distribution on the surface of the wafer W, and in FIGS. 3 to 10, the distances are shown. The light emitted from the upper sensor 24 and the lower sensor 34 when the detection is performed is indicated by an arrow of a two-dot chain line.
図11~図13はスピンチャック11に載置されたウエハWの上面図であり、レジスト膜形成後における上側センサ24とウエハWの動作とを示している。この図11~図13では、ウエハWの周端の切り欠きであるノッチをN、距離の検出のために上側センサ24から照射されて光軸を形成する光をPとして示している。従って、図11~図13では光Pの位置を示すことで、距離の検出が行われている位置を示している。 11 to 13 are top views of the wafer W mounted on the spin chuck 11 and show the operation of the upper sensor 24 and the wafer W after forming the resist film. In FIGS. 11 to 13, the notch, which is a notch at the peripheral end of the wafer W, is shown as N, and the light irradiated from the upper sensor 24 for detecting the distance to form an optical axis is shown as P. Therefore, in FIGS. 11 to 13, the position of the light P is shown to indicate the position where the distance is detected.
以降の動作の説明においては、距離のパラメータを取得してレジスト膜を形成するまでの各動作工程をステップS、レジスト膜の形成後に各位置の高さ分布を取得するための各動作工程をステップTとする。ステップS3~S6がレジスト膜を形成する第1の処理、ステップTが第2の処理である。 In the following description of the operation, each operation step until the distance parameter is acquired and the resist film is formed is step S, and each operation step for acquiring the height distribution of each position after the resist film is formed is stepped. Let it be T. Steps S3 to S6 are the first process of forming the resist film, and step T is the second process.
先ず、レジスト供給ノズル21が待機部35に位置する状態から(図3)、アーム22の上昇及び水平移動の協働によって当該待機部35の外部へと移動した状態となり、所定のエンコーダの出力となる高さに位置すると共に、上側センサ24が固定台31上に位置する。そして上側センサ24から光照射され、制御部100によって固定台31の上面33と上側センサ24の下端との距離(第3の距離)L1が取得される(図4)。 First, the resist supply nozzle 21 is moved from the state where it is located in the standby unit 35 (FIG. 3) to the outside of the standby unit 35 by the cooperation of the arm 22 ascending and horizontal movement, and the output of the predetermined encoder is obtained. The upper sensor 24 is located on the fixed base 31 while being located at a certain height. Then, light is emitted from the upper sensor 24, and the control unit 100 acquires a distance (third distance) L1 between the upper surface 33 of the fixed base 31 and the lower end of the upper sensor 24 (FIG. 4).
然る後、アーム22が移動してレジスト供給ノズル21が下側センサ34上に位置すると共に、所定のエンコーダの出力となる高さに位置すると、下側センサ34から光Pが照射され、当該下側センサ34の上端とレジスト供給ノズル21の下端との距離(第2の距離)L2が取得される(図5)。なお、図4、図5に示す例では、距離L2の取得時の方が距離L1の取得時よりもレジスト供給ノズル21及び上側センサ24の位置が高いものとしている。また、図5では、一点鎖線により距離L1取得時におけるレジスト供給ノズル21及び上側センサ24の位置を示している。 After that, when the arm 22 moves and the resist supply nozzle 21 is located on the lower sensor 34 and at a height that becomes the output of a predetermined encoder, light P is emitted from the lower sensor 34, and the light P is emitted. The distance (second distance) L2 between the upper end of the lower sensor 34 and the lower end of the resist supply nozzle 21 is acquired (FIG. 5). In the examples shown in FIGS. 4 and 5, the positions of the resist supply nozzle 21 and the upper sensor 24 are higher when the distance L2 is acquired than when the distance L1 is acquired. Further, in FIG. 5, the positions of the resist supply nozzle 21 and the upper sensor 24 at the time of acquiring the distance L1 are shown by the alternate long and short dash line.
距離L1取得時、距離L2取得時の各々のエンコーダの出力の差により、制御部100は距離L1取得時と距離L2取得時とのレジスト供給ノズル21及び上側センサ24の高さの差L3を算出する。距離L2取得時の固定台31の上面33と上側センサ24の下端との高さの差は、距離L1+高さの差L3である。そして、上記したように固定台31の上面33と下側センサ34の上端との高さが揃っているので、取得された距離L2は、固定台31の上面33とレジスト供給ノズル21の下端との高さの差に等しい。以上のことから、制御部100は、レジスト供給ノズル21の下端と上側センサ24との下端の高さの差である距離L4=距離L1+高さの差L3-距離L2として算出する。さらに制御部100は距離L2に基づいて基準高さL0を設定し、基準高さL0に対する上側センサ24の高さを検出する。例えば距離L2取得時のレジスト供給ノズル21の下端の高さが、基準高さL0とされる(ステップS2)。 Based on the difference in the output of each encoder when the distance L1 is acquired and when the distance L2 is acquired, the control unit 100 calculates the height difference L3 between the resist supply nozzle 21 and the upper sensor 24 when the distance L1 is acquired and when the distance L2 is acquired. do. The difference in height between the upper surface 33 of the fixed base 31 and the lower end of the upper sensor 24 when the distance L2 is acquired is the distance L1 + the height difference L3. Since the heights of the upper surface 33 of the fixed base 31 and the upper end of the lower sensor 34 are the same as described above, the acquired distance L2 is the upper surface 33 of the fixed base 31 and the lower end of the resist supply nozzle 21. Is equal to the difference in height. From the above, the control unit 100 calculates as distance L4 = distance L1 + height difference L3-distance L2, which is the difference in height between the lower end of the resist supply nozzle 21 and the lower end of the upper sensor 24. Further, the control unit 100 sets the reference height L0 based on the distance L2, and detects the height of the upper sensor 24 with respect to the reference height L0. For example, the height of the lower end of the resist supply nozzle 21 when the distance L2 is acquired is set to the reference height L0 (step S2).
以上のステップS1、S2における動作を端的に述べると、基準高さL0が設定されると共に、基準高さL0に対する上側センサ24の高さ及びレジスト供給ノズル21の高さの検出が行われていることになる。そして、このステップS2以降は、アーム22が昇降してもエンコーダの出力に基づいて、基準高さL0に対する上側センサ24の高さ及びレジスト供給ノズル21の高さの検出が可能となる。 To briefly describe the operation in the above steps S1 and S2, the reference height L0 is set, and the height of the upper sensor 24 and the height of the resist supply nozzle 21 with respect to the reference height L0 are detected. It will be. After this step S2, even if the arm 22 moves up and down, the height of the upper sensor 24 and the height of the resist supply nozzle 21 with respect to the reference height L0 can be detected based on the output of the encoder.
上記のステップS2以降、搬送機構によってスピンチャック11に載置され、静止した状態のウエハWの中心部上へ上側センサ24が水平移動すると共に、エンコーダの出力が所定のものとなるように、当該上側センサ24が昇降する。然る後、上側センサ24からウエハWの中心に光Pが照射され、ウエハWの中心と上側センサ24の下端との距離L5が取得される(ステップS3、図6)。そして、レジスト供給ノズル21がウエハWの中心上に位置するように水平移動すると共に、距離L5-距離L4と、予め設定されたレジスト供給ノズル21とウエハWとの距離(L6とする)と、の差分が算出され、この差分の量だけ当該レジスト供給ノズル21が昇降する。それにより、レジスト供給ノズル21は、ウエハWの中心上から当該距離L6離れた高さに位置する(ステップS4)。つまり距離L4に基づいて(即ちステップS1、S2で取得された距離L1、L2及び距離L1、L2の取得時のエンコーダ出力に基づいて)、レジスト供給ノズル21の高さが決定されている。 After step S2 above, the upper sensor 24 is placed on the spin chuck 11 by the transport mechanism and horizontally moves onto the center of the stationary wafer W, and the output of the encoder is set to a predetermined value. The upper sensor 24 moves up and down. After that, the light P is irradiated from the upper sensor 24 to the center of the wafer W, and the distance L5 between the center of the wafer W and the lower end of the upper sensor 24 is acquired (step S3, FIG. 6). Then, the resist supply nozzle 21 moves horizontally so as to be located on the center of the wafer W, and the distance L5-distance L4 and the preset distance between the resist supply nozzle 21 and the wafer W (referred to as L6) are determined. The difference is calculated, and the resist supply nozzle 21 moves up and down by the amount of this difference. As a result, the resist supply nozzle 21 is located at a height separated from the center of the wafer W by the distance L6 (step S4). That is, the height of the resist supply nozzle 21 is determined based on the distance L4 (that is, based on the encoder outputs at the time of acquiring the distances L1 and L2 and the distances L1 and L2 acquired in steps S1 and S2).
然る後、ウエハWが所定の回転数で回転し、レジスト供給ノズル21からレジストRの吐出が開始されると共に、レジスト供給ノズル21はウエハWの周縁部へ向けた水平移動を開始し(ステップS5、図7)、ウエハW表面にレジストRが供給される。レジスト供給ノズル21がウエハWの周端上に位置すると、当該レジスト供給ノズル21の水平移動が停止し、レジストRがウエハWの表面全体に塗布されると、レジストRの吐出が停止する(図8)。レジスト供給ノズル21が上昇し、所定の回転数でウエハWの回転が続けられ、レジストRは乾燥、固化することでレジスト膜R1が形成される(ステップS6)。 After that, the wafer W rotates at a predetermined rotation speed, the resist R is started to be ejected from the resist supply nozzle 21, and the resist supply nozzle 21 starts horizontal movement toward the peripheral edge of the wafer W (step). S5, FIG. 7), the resist R is supplied to the surface of the wafer W. When the resist supply nozzle 21 is located on the peripheral end of the wafer W, the horizontal movement of the resist supply nozzle 21 stops, and when the resist R is applied to the entire surface of the wafer W, the discharge of the resist R stops (FIG. 8). The resist supply nozzle 21 rises, the wafer W continues to rotate at a predetermined rotation speed, and the resist R is dried and solidified to form the resist film R1 (step S6).
然る後、ウエハWの回転が停止すると共に、上側センサ24がウエハWの中心上の所定の高さに位置するように移動する(ステップT1)。このときの上側センサ24の基準高さL0に対する距離(第1の距離)をL7とする。なお、上記したようにステップS2で基準高さL0に対する上側センサ24の高さが検出されているので、距離L7としては、そのステップS2におけるエンコーダ出力と当該ステップT1のエンコーダ出力との変位から算出される。 After that, the rotation of the wafer W is stopped, and the upper sensor 24 moves so as to be located at a predetermined height on the center of the wafer W (step T1). At this time, the distance (first distance) of the upper sensor 24 with respect to the reference height L0 is L7. Since the height of the upper sensor 24 with respect to the reference height L0 is detected in step S2 as described above, the distance L7 is calculated from the displacement between the encoder output in step S2 and the encoder output in step T1. Will be done.
そして、上側センサ24から光Pが照射されると共に(図9、図11左側)、当該上側センサ24はウエハWの周縁部上へ向けて水平移動し、ウエハWの表面と上側センサ24との距離(L8とする)が取得される。つまり、ウエハWの半径における各位置と上側センサ24との距離が取得される。光Pの照射位置が、例えばウエハWの外側の所定の位置に移動すると(図10、図11中央)、上側センサ24の移動及び光照射が停止する。距離L7と、上側センサ24の移動中に取得され続けた距離L8(上側センサ24による検出値)との差分によって、ウエハWの半径における高さ分布が算出される(ステップT2)。図14のグラフは、その高さ分布の一例を示したものである。 Then, while the light P is irradiated from the upper sensor 24 (FIG. 9, left side of FIG. 11), the upper sensor 24 moves horizontally toward the peripheral edge of the wafer W, and the surface of the wafer W and the upper sensor 24 come into contact with each other. The distance (referred to as L8) is acquired. That is, the distance between each position in the radius of the wafer W and the upper sensor 24 is acquired. When the irradiation position of the light P moves to a predetermined position outside the wafer W (FIG. 10, center 11), the movement of the upper sensor 24 and the light irradiation are stopped. The height distribution in the radius of the wafer W is calculated by the difference between the distance L7 and the distance L8 (value detected by the upper sensor 24) continuously acquired while the upper sensor 24 is moving (step T2). The graph of FIG. 14 shows an example of the height distribution.
その後、スピンチャック11が回転し、ウエハWの向きが時計回りに90°変更された後、静止する(図11右側、ステップT3)。然る後、上側センサ24から光Pが照射されると共に上側センサ24がウエハWの中心部上へ向けて水平移動し、再度ウエハWの表面と上側センサ24との距離L8が取得される。光Pの照射位置がウエハWの周縁部における所定の位置に移動すると(図12左側)、上側センサ24の移動及び光照射が停止する。上記の距離L7と距離L8との差分によって、ウエハWの周縁部における径方向に沿った高さ分布が算出される(ステップT4)。図15のグラフは、その高さ分布の一例を示したものである。 After that, the spin chuck 11 rotates, the orientation of the wafer W is changed by 90 ° clockwise, and then the wafer W stands still (right side of FIG. 11, step T3). After that, the light P is irradiated from the upper sensor 24, the upper sensor 24 moves horizontally toward the center of the wafer W, and the distance L8 between the surface of the wafer W and the upper sensor 24 is acquired again. When the irradiation position of the light P moves to a predetermined position on the peripheral edge of the wafer W (left side of FIG. 12), the movement of the upper sensor 24 and the light irradiation are stopped. The height distribution along the radial direction at the peripheral edge of the wafer W is calculated from the difference between the distance L7 and the distance L8 (step T4). The graph of FIG. 15 shows an example of the height distribution.
続いてスピンチャック11が回転して、ウエハWの向きが時計回りに90°変更された後、静止する(図12中央、ステップT5)。然る後、上側センサ24から光Pが照射されると共に、上側センサ24がウエハWの周縁部上へ向けて水平移動し、ウエハWの表面と上側センサ24との距離L8が取得される。光Pの照射位置がウエハWの外側の所定の位置に移動すると(図12右側)、上側センサ24の移動及び光照射が停止する。距離L7と距離L8との差分によって、図15に示したものと同様の高さ分布が取得される(ステップT6)。従って、このステップT6では上側センサ24の移動方向が異なることを除いて、ステップT4と同様にウエハWの高さ分布が取得される。 Subsequently, the spin chuck 11 rotates, the orientation of the wafer W is changed by 90 ° clockwise, and then the wafer W stands still (center of FIG. 12, step T5). After that, the light P is irradiated from the upper sensor 24, and the upper sensor 24 moves horizontally toward the peripheral portion of the wafer W, and the distance L8 between the surface of the wafer W and the upper sensor 24 is acquired. When the irradiation position of the light P moves to a predetermined position outside the wafer W (right side of FIG. 12), the movement of the upper sensor 24 and the light irradiation are stopped. A height distribution similar to that shown in FIG. 15 is obtained by the difference between the distance L7 and the distance L8 (step T6). Therefore, in this step T6, the height distribution of the wafer W is acquired in the same manner as in step T4, except that the moving direction of the upper sensor 24 is different.
その後、スピンチャック11が回転して、ウエハWの向きが時計回りに90°変更された後、静止する(図13左側、ステップT7)。然る後、上側センサ24から光Pが照射されると共に上側センサ24がウエハWの中心部上へ向けて水平移動し、ウエハWの表面と上側センサ24との距離L8が取得される。光Pの照射位置がウエハWの周縁部における所定の位置に移動すると(図13右側)、上側センサ24の移動及び光照射が停止し、距離L7、L8から図15に示したものと同様のウエハWの高さ分布が取得される(ステップT8)。従って、このステップT8では上記のステップT4と同様にウエハWの高さ分布が取得される。その後、上側センサ24はウエハW上から退避し、レジスト供給ノズル21が待機部35へ戻る(ステップT9)。そして、塗布、現像装置10の搬送機構により、ウエハWはレジスト膜形成モジュール1から搬出される。 After that, the spin chuck 11 rotates, the orientation of the wafer W is changed by 90 ° clockwise, and then the wafer W stands still (left side of FIG. 13, step T7). After that, the light P is irradiated from the upper sensor 24, the upper sensor 24 moves horizontally toward the center of the wafer W, and the distance L8 between the surface of the wafer W and the upper sensor 24 is acquired. When the irradiation position of the light P moves to a predetermined position on the peripheral edge of the wafer W (right side of FIG. 13), the movement of the upper sensor 24 and the light irradiation are stopped, and the distances L7 and L8 are the same as those shown in FIG. The height distribution of the wafer W is acquired (step T8). Therefore, in this step T8, the height distribution of the wafer W is acquired as in the above step T4. After that, the upper sensor 24 is retracted from the wafer W, and the resist supply nozzle 21 returns to the standby unit 35 (step T9). Then, the wafer W is carried out from the resist film forming module 1 by the transport mechanism of the coating and developing apparatus 10.
このようにステップT1~T9ではウエハWを間欠的に回転させ、そのように間欠的に回転する期間中のウエハWの静止時に、上側センサ24を移動させることによって高さ分布を取得している。図16は、上記のステップT2、T4、T6、T8における、光Pの移動経路を夫々A1、A2、A3、A4として、ウエハWに対応させて表したものである。この移動経路A1~A4のウエハWの外周側の端は、例えばウエハWの周端から2mm離れている。また、移動経路A2~A4のウエハWの中心側の端は、例えばウエハWの周端よりも3mm離れている。従って、ウエハWの周端よりも2mm中心寄りの第1の位置と、ウエハWの周端の第2の位置との間の高さ分布が、ウエハWの周縁部の4つの位置で取得されていることになる。 In this way, in steps T1 to T9, the wafer W is intermittently rotated, and the height distribution is acquired by moving the upper sensor 24 when the wafer W is stationary during such an intermittent rotation period. .. FIG. 16 shows the movement paths of the light P in the above steps T2, T4, T6, and T8 as A1, A2, A3, and A4, respectively, corresponding to the wafer W. The outer peripheral end of the wafer W of the movement paths A1 to A4 is, for example, 2 mm away from the peripheral end of the wafer W. Further, the central end of the wafer W of the movement paths A2 to A4 is, for example, 3 mm away from the peripheral end of the wafer W. Therefore, the height distribution between the first position 2 mm closer to the center of the peripheral edge of the wafer W and the second position of the peripheral edge of the wafer W is acquired at the four positions on the peripheral edge of the wafer W. It will be.
ステップT3、T5、T7でのウエハWの回転数は、例えば10rpmである。また、各ステップTに要する時間、即ち各ステップTにて既述のように上側センサ24が移動する時間は例えばT1、T4、T6、T8で10秒、T2は例えば152秒、T3、T5、T7は例えば15秒、T9は5秒である。 The rotation speed of the wafer W in steps T3, T5, and T7 is, for example, 10 rpm. Further, the time required for each step T, that is, the time for the upper sensor 24 to move in each step T as described above is, for example, 10 seconds for T1, T4, T6, and T8, and for example, 152 seconds for T2, T3, and T5. T7 is, for example, 15 seconds, and T9 is 5 seconds.
そして、ステップT2で取得された図14の高さ分布について、ウエハWの周縁部における所定の位置(R0として表している)よりもウエハWの周端側の波形のピークが、ハンプの頂部を表しているものとし、当該ピークと基準高さL0との差がハンプの高さに対応する高さL9として検出される。ステップT4、T6、T8で取得された高さ分布について、波形のピークがハンプの頂部を表しているものとし、当該ピークと基準高さL0との差がハンプの高さに対応する高さL9として検出される。そして、これらの高さL9が予め設定された許容値と各々比較される。いずれも許容値以下であればウエハWはハンプについての異常無しとされ、いずれかの高さL9が許容値を越えていれば、ウエハWはハンプについての異常が有るものとされる。 Then, with respect to the height distribution of FIG. 14 acquired in step T2, the peak of the waveform on the peripheral end side of the wafer W from the predetermined position (represented as R0) on the peripheral edge of the wafer W is the top of the hump. It is assumed that the difference between the peak and the reference height L0 is detected as the height L9 corresponding to the height of the hump. Regarding the height distribution acquired in steps T4, T6, and T8, it is assumed that the peak of the waveform represents the top of the hump, and the difference between the peak and the reference height L0 is the height L9 corresponding to the height of the hump. Is detected as. Then, each of these heights L9 is compared with a preset allowable value. If both are equal to or less than the allowable value, the wafer W is considered to have no abnormality with respect to the hump, and if any height L9 exceeds the allowable value, the wafer W is considered to have an abnormality with respect to the hump.
なお、基準高さL0と高さ分布の波形のピークの高さとの差L9に基づいてウエハWの異常が判定されるものとしたが、当該波形についてのピークと、ピークをなす山の麓との高さの差を検出する、つまりハンプの高さそのものを検出し、その検出値に基づいて異常の有無を判定してもよい。 It is assumed that the abnormality of the wafer W is determined based on the difference L9 between the reference height L0 and the peak height of the waveform of the height distribution. The difference in height of the hump may be detected, that is, the height of the hump itself may be detected, and the presence or absence of an abnormality may be determined based on the detected value.
ところで上記のステップT2ではウエハWの半径、即ちウエハWの中心部から周縁部に亘る高さ分布を取得している。そこでこのステップT2で取得された高さ分布のうち、ウエハWの中心部側の高さ分布、つまりステップT4、T6、T8で取得される高さ分布よりもウエハWの中心寄りの高さ分布に基づいて、レジスト膜の平坦性についての検出を行い、ウエハWの異常の有無が判定されるようにしてもよい。具体的には例えば、その中心部側の高さ分布において最も高い位置と最も低い位置との高さの差分を算出する。そして、その差分値が許容範囲内であればウエハWに平坦性についての異常は無い(平坦性が高い)ものとし、差分値が許容範囲外であればウエハWに平坦性についての異常が有る(平坦性が低い)ものとする。このような判定を行う制御部100は、判定部をなす。 By the way, in step T2 described above, the radius of the wafer W, that is, the height distribution from the central portion to the peripheral portion of the wafer W is acquired. Therefore, among the height distributions acquired in step T2, the height distribution on the central side of the wafer W, that is, the height distribution closer to the center of the wafer W than the height distributions acquired in steps T4, T6, and T8. The flatness of the resist film may be detected based on the above, and the presence or absence of an abnormality in the wafer W may be determined. Specifically, for example, the difference in height between the highest position and the lowest position in the height distribution on the central portion side is calculated. If the difference value is within the permissible range, it is assumed that the wafer W has no abnormality in flatness (high flatness), and if the difference value is out of the permissible range, the wafer W has an abnormality in flatness. (Low flatness). The control unit 100 that makes such a determination forms a determination unit.
続いて、塗布、現像装置10の構成について、図17の平面図、図18の側面図を参照して説明する。塗布、現像装置10は、キャリアブロックD1と、処理ブロックD2と、インターフェイスブロックD3と、が左右方向に順に接続されて構成され、インターフェイスブロックD3が露光機D4に接続される。キャリアブロックD1は、搬送容器Cのステージ41と、開閉部42と、開閉部42を介して搬送容器Cに対してウエハWを搬送する搬送機構43と、を備えている。 Subsequently, the configuration of the coating and developing apparatus 10 will be described with reference to the plan view of FIG. 17 and the side view of FIG. The coating / developing apparatus 10 is configured by connecting the carrier block D1, the processing block D2, and the interface block D3 in order in the left-right direction, and the interface block D3 is connected to the exposure machine D4. The carrier block D1 includes a stage 41 of the transport container C, an opening / closing section 42, and a transport mechanism 43 for transporting the wafer W to the transport container C via the opening / closing section 42.
 処理ブロックD2は、階層E1~E6が下から順に積層されて構成されており、階層E1~E3がレジスト膜の形成用の階層で互いに同様に構成され、階層E4~E6が現像用の階層で互いに同様に構成されている。代表して階層E1について説明する。左右に延びるウエハWの搬送領域51が形成されており、当該搬送領域51には搬送機構F1が設けられている。搬送領域51の後方側には疎水化モジュール52、加熱モジュール53が設けられている。疎水化モジュール52は、レジスト膜の形成前にウエハWの表面に処理ガスを供給して疎水化処理を行う。加熱モジュール53は、レジスト膜形成後のウエハWを加熱して、レジストに含まれる溶剤を除去する。搬送領域51の前方側には、既述したレジスト膜形成モジュール1が複数、左右に並んで設けられている。 The processing block D2 is configured by stacking layers E1 to E6 in order from the bottom, layers E1 to E3 are configured in the same manner as layers for forming a resist film, and layers E4 to E6 are layers for development. They are configured in the same way as each other. Hierarchy E1 will be described as a representative. A transfer region 51 of the wafer W extending to the left and right is formed, and a transfer mechanism F1 is provided in the transfer area 51. A hydrophobic module 52 and a heating module 53 are provided on the rear side of the transport region 51. The hydrophobizing module 52 supplies a treatment gas to the surface of the wafer W to perform the hydrophobizing treatment before forming the resist film. The heating module 53 heats the wafer W after forming the resist film to remove the solvent contained in the resist. A plurality of the resist film forming modules 1 described above are provided side by side on the front side of the transport region 51.
階層E4~E6は、レジスト膜形成モジュール1の代りに現像モジュールが設けられること、疎水化モジュール52が設けられていないこと、加熱モジュール53がPEB(Post Exposure Bake)を行うものであることを除いて、階層E1~E3と同様の構成である。なお、階層E2~E6における搬送機構F1に対応する搬送機構は、F2~F6として示している。また、処理ブロックD2には、搬送領域51におけるキャリアブロックD1側にて、階層E1~E6に跨がるようにタワーV1が設けられている。タワーV1は互いに積層された多数の受け渡しモジュールTRSを備えている。この受け渡しモジュールTRS間で搬送を行う搬送機構54が設けられている。 Layers E4 to E6 are provided except that a developing module is provided in place of the resist film forming module 1, a hydrophobizing module 52 is not provided, and the heating module 53 performs PEB (Post Exposure Bake). The configuration is the same as that of the layers E1 to E3. The transport mechanism corresponding to the transport mechanism F1 in the layers E2 to E6 is shown as F2 to F6. Further, the processing block D2 is provided with a tower V1 so as to straddle the layers E1 to E6 on the carrier block D1 side in the transport area 51. Tower V1 includes a large number of transfer modules TRS stacked on top of each other. A transport mechanism 54 for transporting between the transfer modules TRS is provided.
インターフェイスブロックD3は、複数のモジュールが互いに積層されて構成されるタワーV2、V3、V4を備えている。タワーV2~V4に含まれるモジュールの詳細の説明は省略するが、タワーV2のモジュールとしては多段に積層された受け渡しモジュールTRSが含まれる。図中の符号61、62、63は、タワーV2、V3間、タワーV3、V4間、タワーV2と露光機D4間で、ウエハWを夫々受け渡す搬送機構である。 The interface block D3 includes towers V2, V3, and V4 in which a plurality of modules are laminated with each other. Although detailed description of the modules included in the towers V2 to V4 will be omitted, the module of the tower V2 includes a transfer module TRS stacked in multiple stages. Reference numerals 61, 62, and 63 in the drawing are transfer mechanisms for transferring the wafer W between the towers V2 and V3, between the towers V3 and V4, and between the tower V2 and the exposure machine D4.
 塗布、現像装置10においてウエハWは、搬送容器Cから搬送機構43を介してタワーV1に搬送された後、搬送機構54を介して階層E1~E3のいずれかに搬入される。そして当該ウエハWは搬送機構F1~F3により、疎水化モジュール52→レジスト膜形成モジュール1→加熱モジュール53→タワーV2の順で搬送される。それにより、疎水化処理、既述したレジスト膜の形成、高さ分布の取得、ハンプ高さの検出、ウエハWの異常判定、加熱処理が順次行われる。然る後、ウエハWは搬送機構61~63によりタワーV2~V4間を受け渡されて、露光機D4に搬送され、レジスト膜が回路パターンに沿って露光される。 In the coating / developing apparatus 10, the wafer W is transported from the transport container C to the tower V1 via the transport mechanism 43, and then is carried into any of the layers E1 to E3 via the transport mechanism 54. Then, the wafer W is conveyed in the order of the hydrophobicity module 52 → the resist film forming module 1 → the heating module 53 → the tower V2 by the transfer mechanisms F1 to F3. As a result, the hydrophobizing treatment, the formation of the resist film described above, the acquisition of the height distribution, the detection of the hump height, the abnormality determination of the wafer W, and the heat treatment are sequentially performed. After that, the wafer W is passed between the towers V2 and V4 by the transport mechanisms 61 to 63, is conveyed to the exposure machine D4, and the resist film is exposed along the circuit pattern.
露光済みのウエハWは、搬送機構61~63によりタワーV2~V4間を受け渡されて、階層E4~E6に搬入され、搬送機構F4~F6により加熱モジュール53→現像モジュールの順で搬送されることで、PEB、現像処理が順に行われ、レジストパターンが形成される。その後ウエハWは、タワーV1、搬送機構54、43を介して搬送容器Cに戻される。 The exposed wafer W is passed between the towers V2 to V4 by the transfer mechanisms 61 to 63, is carried into the layers E4 to E6, and is conveyed in the order of the heating module 53 → the developing module by the transfer mechanisms F4 to F6. As a result, PEB and development processing are performed in order, and a resist pattern is formed. After that, the wafer W is returned to the transport container C via the tower V1 and the transport mechanisms 54 and 43.
上記の塗布、現像装置10によれば、レジスト膜形成モジュール1においてスピンチャック11によりウエハWを回転させると共に、移動機構23及びアーム22により、上側センサ24を移動させる。そのような構成により、ウエハWの周縁部において、ウエハWの周方向に互いに離れた複数の位置におけるウエハWの中心側と周端側との間の高さ分布を取得する。そのため、レジスト膜形成モジュール1でレジスト膜形成後のウエハWを搬送容器Cに格納し、さらに塗布、現像装置10の外部の測定器へ搬送し、当該搬送容器CからウエハWを取り出してハンプの高さ測定を行う必要が無い。即ち、塗布、現像装置10については、ハンプの高さについての情報を得るために上記の高さ分布を取得するにあたり、要する手間が少ない。 According to the above-mentioned coating and developing apparatus 10, the wafer W is rotated by the spin chuck 11 in the resist film forming module 1, and the upper sensor 24 is moved by the moving mechanism 23 and the arm 22. With such a configuration, the height distribution between the center side and the peripheral end side of the wafer W at a plurality of positions separated from each other in the circumferential direction of the wafer W is acquired at the peripheral edge portion of the wafer W. Therefore, the resist film forming module 1 stores the wafer W after forming the resist film in the transport container C, further transports the wafer W to an external measuring instrument of the coating and developing apparatus 10, and takes out the wafer W from the transport container C to hump. There is no need to measure the height. That is, with respect to the coating and developing apparatus 10, it takes less time and effort to acquire the above height distribution in order to obtain information on the height of the hump.
なお、レジスト膜のハンプの高さが大きすぎると、レジストパターンを利用してレジスト膜の下層に設けられる下層膜をエッチングし、不要になったレジストパターンをアッシングする際に、当該ハンプの部分におけるアッシングが不十分となってしまうおそれが有る。それを防ぐために、処理時間を長くしたり、アッシングに用いるプラズマの強度などを高くしたりすると、ウエハWの中心部のダメージが大きくなってしまう。また、レジスト膜のハンプの高さが大きすぎると、上記の下層膜について、レジスト膜のハンプの下方位置のエッチングが不十分となり、凹部が形成されるべき箇所に当該凹部が形成されないケースが発生するおそれが有る。その場合、当該エッチング後にCMPや洗浄を行う際に、CMP用のスラリーや洗浄に用いる洗浄液が当該凹部を介してウエハWの外側へ排出されなくなり、ウエハW表面に残ることで欠陥となるおそれが有る。 If the height of the hump of the resist film is too large, the lower layer film provided in the lower layer of the resist film is etched by using the resist pattern, and when the unnecessary resist pattern is ashed, the hump portion is used. There is a risk of insufficient ashing. In order to prevent this, if the processing time is lengthened or the intensity of the plasma used for ashing is increased, the damage to the central portion of the wafer W becomes large. Further, if the height of the hump of the resist film is too large, the etching of the lower position of the hump of the resist film is insufficient for the above-mentioned lower layer film, and the recess may not be formed in the place where the recess should be formed. There is a risk of doing so. In that case, when CMP or cleaning is performed after the etching, the slurry for CMP or the cleaning liquid used for cleaning is not discharged to the outside of the wafer W through the recess, and may remain on the surface of the wafer W, resulting in a defect. There is.
このようにハンプの高さが大きすぎることによって、ウエハWから製造される半導体製品の歩留りが低下するおそれが有る。従って、塗布、現像装置10において上記のようにウエハWの周縁部の高さ分布を取得し、ウエハWの異常判定を行うことは、例えばモジュールの各部のメンテナンスや処理を行うための各種のパラメータの調整を適切なタイミングで促すことになり、半導体製品の歩留りの低下を防ぐことに寄与する。なお、ステップT1~T8のウエハWの高さ分布の取得についてはウエハW毎に行わなくてもよく、所定の枚数のウエハWを処理する毎に1回行ったり、ウエハWのロット毎に行ったりするようにしてもよい。 If the height of the hump is too large as described above, the yield of the semiconductor product manufactured from the wafer W may decrease. Therefore, in the coating / developing apparatus 10, acquiring the height distribution of the peripheral portion of the wafer W as described above and determining the abnormality of the wafer W is, for example, various parameters for performing maintenance and processing of each part of the module. It will promote the adjustment of the above at an appropriate timing, and will contribute to prevent the decrease in the yield of semiconductor products. It is not necessary to acquire the height distribution of the wafers W in steps T1 to T8 for each wafer W, and it is performed once for each processing of a predetermined number of wafers W or for each lot of wafers W. You may try to do it.
また、レジスト膜形成モジュール1においては下側センサ34によって検出される距離L2を用いることで、基準高さL0の設定と、基準高さL0からのレジスト供給ノズル21の高さの検出と、レジスト供給ノズル21と上側センサ24との高さの差の検出と、が行われる。つまり、下側センサ34を設けることにより、自動でこれらの設定、検出動作を行うことができる。例えば装置のユーザーが、冶具を用いることによって固定台31からの距離を計測するなどして、これらのパラメータの設定や検出を行うよりも、かかる手間が少なくなるため有利である。 Further, in the resist film forming module 1, by using the distance L2 detected by the lower sensor 34, the reference height L0 can be set, the height of the resist supply nozzle 21 from the reference height L0 can be detected, and the resist can be obtained. Detection of the height difference between the supply nozzle 21 and the upper sensor 24 is performed. That is, by providing the lower sensor 34, these settings and detection operations can be automatically performed. For example, it is advantageous for the user of the device to take less time and effort than setting and detecting these parameters by measuring the distance from the fixed base 31 by using a jig.
ところで上記のステップS1、S2については1回行うことで、取得された各パラメータが制御部100のメモリ102に記憶される。以降はその記憶されたパラメータを用いることができるので、ステップS1、S2は繰り返し行わなくてもよい。従って、ステップS1、S2を1回実行した後、ステップS2のみで用いる下側センサ34については、レジスト膜形成モジュール1から取り外してもよい。ただし、レジスト供給ノズル21を交換するなどしてレジスト膜形成モジュール1の構成が変更されたり、モジュールの各部の調整を行ったりすることで、取得したパラメータと実際の値との間にずれが生じることが考えられる。それ故に例えば装置の起動時など、ステップS1、S2を任意のタイミングで実行して各パラメータを更新することができるように、下側センサ34をモジュールに常設しておくことが好ましい。 By the way, by performing the above steps S1 and S2 once, each acquired parameter is stored in the memory 102 of the control unit 100. After that, since the stored parameters can be used, steps S1 and S2 do not have to be repeated. Therefore, after executing steps S1 and S2 once, the lower sensor 34 used only in step S2 may be removed from the resist film forming module 1. However, if the configuration of the resist film forming module 1 is changed by replacing the resist supply nozzle 21 or by adjusting each part of the module, a deviation occurs between the acquired parameter and the actual value. Is possible. Therefore, it is preferable to permanently install the lower sensor 34 in the module so that each parameter can be updated by executing steps S1 and S2 at arbitrary timings, for example, when the device is started.
また、高さ分布を取得するステップT1~T9についてはステップ毎に、ウエハWの回転数、上側センサ24、アーム22及びレジスト供給ノズル21からなる移動体の位置、ステップを実施する時間などを規定したパラメータ群であるレシピに従って、制御部100が制御信号を出力して実施される。そして、ウエハWにレジスト膜を形成するステップS3~S6についてもステップT1~T9と同様に、ステップ毎に、ウエハWの回転数、移動体の位置、ステップを実施する時間などを規定したパラメータ群であるレシピに従って制御部100が制御信号を出力して実施される。つまり、各ステップS、TにおけるウエハWの回転数、移動体の位置について予め設定されており、そして一つのステップについて予め設定された時間が経過したら次のステップに移行する。ただし、上記したようにステップS5のレジスト吐出時の移動体の高さ位置に関しては、図6、図7で述べたように上側センサ24によって検出される距離L5によって、予め設定された高さから変更されることになる。 Further, for steps T1 to T9 for acquiring the height distribution, the rotation speed of the wafer W, the position of the moving body including the upper sensor 24, the arm 22 and the resist supply nozzle 21, the time for performing the step, and the like are specified for each step. The control unit 100 outputs a control signal according to the recipe which is the parameter group. As for steps S3 to S6 for forming the resist film on the wafer W, as in steps T1 to T9, a parameter group that defines the rotation speed of the wafer W, the position of the moving body, the time for performing the step, and the like for each step. The control unit 100 outputs a control signal according to the recipe. That is, the rotation speed of the wafer W and the position of the moving body in each step S and T are preset, and when the preset time for one step elapses, the process proceeds to the next step. However, as described above, regarding the height position of the moving body at the time of resist ejection in step S5, as described in FIGS. 6 and 7, the height is set in advance by the distance L5 detected by the upper sensor 24. It will be changed.
上記のようにステップT1~T9を実行するレシピは、レジスト膜を形成するためのステップS3~S6を行うレシピと同様のパラメータを含むことになる。従って、ステップT1~T9を実行するレシピは、ステップS3~S6を実行するレシピを適宜、転用、変更することで作成することができるため、その作成が容易であるという利点が有る。これは、ステップT1~T9においてウエハWの高さ分布を取得する機構が、ステップS3~S6でレジスト塗布を行うためのスピンチャック11、アーム22、移動機構23及び上側センサ24を利用したものであることによる利点と言える。なお、各レシピについては、制御部100のメモリ102に記憶されている。 The recipe for executing steps T1 to T9 as described above will include the same parameters as the recipe for performing steps S3 to S6 for forming the resist film. Therefore, the recipe for executing steps T1 to T9 can be created by appropriately diverting or changing the recipe for executing steps S3 to S6, and thus has an advantage that the recipe can be easily created. This is because the mechanism for acquiring the height distribution of the wafer W in steps T1 to T9 uses the spin chuck 11, the arm 22, the moving mechanism 23, and the upper sensor 24 for performing resist coating in steps S3 to S6. It can be said that there is an advantage. Each recipe is stored in the memory 102 of the control unit 100.
また、ステップT1~T9で高さ分布の取得に利用する基準高さL0を設定するにあたり、下側センサ34によってレジスト供給ノズル21との距離L2が検出されるようにしている。その距離L2から算出した値が、レジスト吐出時のレジスト供給ノズル21の高さの調整にも利用され、ノズルの高さが制御されることによって、レジスト膜の各部における膜厚の制御性が高くなり、所望の膜厚とすることができる。つまり、距離L2を測定することで基準高さL0を設定してウエハWの表面高さの測定を可能にすること、レジスト膜の膜厚の制御性を上昇させることの両方の効果が得られるため好ましい。 Further, when setting the reference height L0 used for acquiring the height distribution in steps T1 to T9, the lower sensor 34 detects the distance L2 from the resist supply nozzle 21. The value calculated from the distance L2 is also used for adjusting the height of the resist supply nozzle 21 at the time of resist ejection, and by controlling the height of the nozzle, the controllability of the film thickness in each part of the resist film is high. Therefore, the desired film thickness can be obtained. That is, both the effects of setting the reference height L0 by measuring the distance L2 to enable the measurement of the surface height of the wafer W and increasing the controllability of the film thickness of the resist film can be obtained. Therefore, it is preferable.
さらにステップT1~T9では、ウエハWが静止するときと、次にウエハWが静止するときとで、上側センサ24がウエハWの周縁部上を往復移動するようにしている。このように上側センサ24を動作させることで、高さ分布の取得のための上側センサ24の不要な動きが省かれることになる。それにより、ウエハWの静止時間が長くなることが抑えられるので、スループットの低下が抑制される。 Further, in steps T1 to T9, the upper sensor 24 reciprocates on the peripheral edge portion of the wafer W when the wafer W is stationary and when the wafer W is then stationary. By operating the upper sensor 24 in this way, unnecessary movement of the upper sensor 24 for acquiring the height distribution can be omitted. As a result, it is possible to suppress the lengthening of the stationary time of the wafer W, so that the decrease in throughput is suppressed.
ところでステップT2ではウエハWの周縁部以外の高さ分布も取得することから、このステップT2の高さ分布を利用し、ウエハWの反りによる影響がキャンセルされるように、ウエハWの周縁部の高さ分布を取得して、ハンプについての異常の有無を判定してもよい。具体的に図19を用いて説明する。当該図19の上段にはステップT2にて取得されるウエハWの半径の高さ分布の一例を示している。この高さ分布としてはウエハWの反りによって、当該ウエハWの中心側と周縁側との間で比較的大きな差が有り、当該周縁に向かうほどウエハWの表面の高さが大きく、基準高さL0から離れている。 By the way, since the height distribution other than the peripheral portion of the wafer W is also acquired in step T2, the height distribution of this step T2 is used to cancel the influence of the warp of the wafer W on the peripheral portion of the wafer W. The height distribution may be acquired to determine the presence or absence of an abnormality in the hump. Specifically, it will be described with reference to FIG. The upper part of FIG. 19 shows an example of the height distribution of the radius of the wafer W acquired in step T2. As for this height distribution, there is a relatively large difference between the center side and the peripheral side of the wafer W due to the warp of the wafer W, and the height of the surface of the wafer W becomes larger toward the peripheral edge, and the reference height is reached. It is far from L0.
反りについての補正機構をなす制御部100は、ウエハWの中心における当該ウエハWの高さと、ウエハWの周縁部においてハンプが形成される位置よりも中心寄りの位置R0におけるウエハWの高さとの差分H1を算出する。そして、位置R0のウエハWの高さがウエハWの中心の高さに揃うように、位置R0よりもウエハWの周端側の高さについてH1だけ補正する。図19の下段は、そのように補正を行った高さ分布を示している。 The control unit 100, which forms a warp correction mechanism, determines the height of the wafer W at the center of the wafer W and the height of the wafer W at a position R0 closer to the center than the position where the hump is formed at the peripheral edge of the wafer W. The difference H1 is calculated. Then, the height of the wafer W on the peripheral end side of the position R0 is corrected by H1 so that the height of the wafer W at the position R0 is aligned with the height of the center of the wafer W. The lower part of FIG. 19 shows the height distribution corrected in this way.
そして補正された高さ分布から、既述したハンプの高さに対応する高さL9を検出し、異常の判定を行う。ステップT4、T6、T8で算出される高さ分布についても、ウエハWの高さをH1だけ補正し、高さL9を検出して異常の判定を行う。ただし、既述したようにスピンチャック11は、載置されたウエハWを吸引する。この吸引により、ウエハWの反りが解消されるようであれば、上記の補正を行わなくてもよい。 Then, the height L9 corresponding to the height of the hump described above is detected from the corrected height distribution, and the abnormality is determined. Regarding the height distribution calculated in steps T4, T6, and T8, the height of the wafer W is corrected by H1 and the height L9 is detected to determine an abnormality. However, as described above, the spin chuck 11 sucks the mounted wafer W. If the warp of the wafer W is eliminated by this suction, the above correction may not be performed.
ところで制御部100は露光機D4に対して、ハンプの高さが異常であると判定されたウエハWについて、IDなどの当該ウエハWを特定する情報を送信するように構成され、露光機D4では、その情報に基づいて処理が行われるようにしてもよい。図20、図21を参照して、より詳しく説明する。図中71は露光機D4内にてウエハWを載置するステージ、図中72はウエハWに光を照射する露光ヘッドである。ステージ71が前後左右に移動することで、ウエハWの面内に多数設定される半導体製品であるチップの形成領域が、順次、露光される。 By the way, the control unit 100 is configured to transmit information for identifying the wafer W such as an ID to the wafer W for which the height of the hump is determined to be abnormal, in the exposure machine D4. , The processing may be performed based on the information. A more detailed description will be given with reference to FIGS. 20 and 21. 71 in the figure is a stage on which the wafer W is placed in the exposure machine D4, and 72 in the figure is an exposure head that irradiates the wafer W with light. By moving the stage 71 back and forth and left and right, a large number of chip forming regions, which are semiconductor products, are sequentially exposed in the plane of the wafer W.
図20は正常なウエハWを処理する場合、図21は異常なウエハWを処理する場合を夫々示している。正常なウエハWを処理する場合に比べて、異常なウエハWを処理する場合は、ステージ71の移動が制限され、ウエハWの最も周端寄りに位置するチップの形成領域が露光されない。従って、レジスト膜においてウエハWの異常の有無に基づいて、パターンを形成するために露光する範囲が制御される。 FIG. 20 shows a case where a normal wafer W is processed, and FIG. 21 shows a case where an abnormal wafer W is processed. When processing an abnormal wafer W, the movement of the stage 71 is restricted as compared with the case where a normal wafer W is processed, and the chip forming region located closest to the peripheral end of the wafer W is not exposed. Therefore, the range of exposure for forming the pattern is controlled based on the presence or absence of abnormality in the wafer W in the resist film.
上記のように異常と判定されたウエハWについて、周縁部の露光を行わないことで露光機D4の運用コストを低下させたり、露光機D4のスループットを向上させたりすることができる。なお、この露光機D4で露光されるレジスト膜については、既述のようにレジスト膜形成モジュール1で成膜されたものであってもよいし、後述のレジスト膜形成モジュール8で成膜されてEBR処理がなされたものであってもよい。 By not exposing the peripheral portion of the wafer W determined to be abnormal as described above, the operating cost of the exposure machine D4 can be reduced and the throughput of the exposure machine D4 can be improved. The resist film exposed by the exposure machine D4 may be formed by the resist film forming module 1 as described above, or may be formed by the resist film forming module 8 described later. It may be EBR processed.
図21のような露光範囲の制御を行わず、異常なウエハWも正常なウエハWと同様に各チップの形成領域を露光する場合には、例えば異常なウエハWから製造された半導体製品のうち、ウエハWの最も周端寄りの形成領域から製造されたチップについては、異常な製品であるものとみなすようにしてもよい。つまり当該チップについては検査対象から外して破棄し、歩留りの計算からも除外するなどの対応をとるようにしてもよい。 When the abnormal wafer W is exposed to the formation region of each chip in the same manner as the normal wafer W without controlling the exposure range as shown in FIG. 21, for example, among the semiconductor products manufactured from the abnormal wafer W. , Chips manufactured from the formation region closest to the peripheral edge of the wafer W may be regarded as an abnormal product. That is, the chip may be excluded from the inspection target and discarded, and the chip may be excluded from the yield calculation.
また、ハンプとしては、レジスト膜形成モジュール1のように螺旋を描くように塗布液を供給することで形成されることに限られない。図22は、レジスト膜形成モジュール1とは異なる形態でレジスト膜を形成するレジスト膜形成モジュール8を示している。上記の塗布、現像装置10の各階層E1~E3には、レジスト膜形成モジュール1が複数設けられる代りに、レジスト膜形成モジュール1、8が左右に並んで設けられるものとする。 Further, the hump is not limited to being formed by supplying the coating liquid in a spiral shape as in the resist film forming module 1. FIG. 22 shows a resist film forming module 8 that forms a resist film in a form different from that of the resist film forming module 1. Instead of providing a plurality of resist film forming modules 1 on each layer E1 to E3 of the coating and developing apparatus 10, resist film forming modules 1 and 8 are provided side by side.
レジスト膜形成モジュール8について、レジスト膜形成モジュール1との差異点を説明する。レジスト膜形成モジュール8ではウエハWの中心部にレジストを供給し、ウエハWを回転させることで、遠心力によりレジストを展伸させてウエハWの表面全体にレジスト膜R1が形成される。従って、レジスト膜R1の形成がいわゆるスピンコーティングにより行われる。そのスピンコーティング時に当該ウエハWから飛散するレジストや後述のシンナーを受け止めるために、処理用のステージであるスピンチャック11に載置されるウエハWを囲むカップ81が設けられる。 The difference between the resist film forming module 8 and the resist film forming module 1 will be described. In the resist film forming module 8, a resist is supplied to the center of the wafer W, and by rotating the wafer W, the resist is expanded by centrifugal force to form the resist film R1 on the entire surface of the wafer W. Therefore, the resist film R1 is formed by so-called spin coating. A cup 81 surrounding the wafer W placed on the spin chuck 11 which is a processing stage is provided in order to receive the resist scattered from the wafer W and the thinner described later during the spin coating.
レジスト膜形成モジュール8は、アーム82に支持されるシンナー供給ノズル83を備えており、アーム82はアーム22を移動させる移動機構23と同様の構成の移動機構(不図示)によりウエハWの上方領域とその外側との間で移動する。シンナー供給ノズル83により、レジスト膜形成後の回転するウエハWの周縁部に処理液であるシンナー84が吐出されることで、ウエハWの周縁部においてシンナー84が吐出される位置からウエハWの周端に至る領域のレジスト膜R1が除去される。つまり、ウエハWの周縁部にて限定的に塗布膜が除去される、いわゆるEBR(Edge Bead Removal)処理が行われる。 The resist film forming module 8 includes a thinner supply nozzle 83 supported by the arm 82, and the arm 82 has a movement mechanism (not shown) having the same configuration as the movement mechanism 23 for moving the arm 22, and is used in an upper region of the wafer W. Moves between and its outside. The thinner supply nozzle 83 discharges thinner 84, which is a treatment liquid, to the peripheral portion of the rotating wafer W after forming the resist film, so that the thinner 84 is discharged from the peripheral portion of the wafer W to the circumference of the wafer W. The resist film R1 in the region reaching the edge is removed. That is, a so-called EBR (Edge Bead Removal) treatment is performed in which the coating film is limitedly removed at the peripheral edge of the wafer W.
ウエハWに供給されたシンナー84が、溶解したレジストをウエハWの中心側に僅かに押しやることで、EBR処理後のレジスト膜R1にはハンプが形成される場合が有る。そして、ウエハWのスピンチャック11に対する位置ずれや、ウエハWの周方向におけるシンナー84の液流れの偏りにより、このハンプの高さは、ウエハWの周方向において異なるものとなる場合が有る。 The thinner 84 supplied to the wafer W slightly pushes the melted resist toward the center side of the wafer W, so that a hump may be formed on the resist film R1 after the EBR treatment. The height of this hump may differ in the circumferential direction of the wafer W due to the positional deviation of the wafer W with respect to the spin chuck 11 and the bias of the liquid flow of the thinner 84 in the circumferential direction of the wafer W.
各階層E1~E3において、レジスト膜形成モジュール8で処理を受けたウエハWは搬送機構F1~F3によってレジスト膜形成モジュール1に搬送され、既述したステップT1~T9が実行される。このように階層E1~E3でレジスト膜形成モジュール間の搬送が行われることを除いて、既述した搬送経路と同様の経路でウエハWは、塗布、現像装置10内を搬送される。従って、搬送機構F1~F3はレジスト膜形成モジュール8から搬送容器Cを経由せずにレジスト膜形成モジュール1に搬送する。そのため、塗布、現像装置10について、レジスト膜形成モジュール8を備えた装置構成としても、ウエハWをレジスト膜形成後に外部の測定機器に搬送する必要が無いため、既述したように高さ分布を取得する手間を低減させることができる。 In each layer E1 to E3, the wafer W processed by the resist film forming module 8 is conveyed to the resist film forming module 1 by the conveying mechanisms F1 to F3, and the above-described steps T1 to T9 are executed. The wafer W is conveyed in the coating and developing apparatus 10 by the same route as the above-mentioned transfer route, except that the resist film forming modules are transferred between the layers E1 to E3 in this way. Therefore, the transfer mechanisms F1 to F3 transfer from the resist film forming module 8 to the resist film forming module 1 without passing through the transfer container C. Therefore, even if the coating and developing apparatus 10 is provided with the resist film forming module 8, it is not necessary to transfer the wafer W to an external measuring device after forming the resist film, so that the height distribution is distributed as described above. It is possible to reduce the time and effort required for acquisition.
そして、上記のレジスト膜形成モジュール8を装置に設けるにあたって、レジスト膜形成モジュール1についてはレジスト供給ノズル21を含まず、高さ分布の取得を行うための検査専用モジュールとすることができる。そのように検査専用モジュールとするにあたって、上側センサ24はウエハWの中心側の位置と周端側の位置とを直線移動することに限られず、例えば図23に示すように平面視円弧を描いて移動するようにしてもよい。図中85はアーム22の基端側が接続され、当該アーム22を鉛直軸回りに旋回させるための回転機構であり、図中86は回転機構85を昇降させる昇降機構である。この図23の構成例では、上側センサ24の移動の軌跡が異なることを除いて、図13~図15で示した例と同様に高さ分布が取得される。 When the resist film forming module 8 is provided in the apparatus, the resist film forming module 1 does not include the resist supply nozzle 21 and can be an inspection-dedicated module for acquiring the height distribution. In making such an inspection-dedicated module, the upper sensor 24 is not limited to linearly moving between the position on the center side and the position on the peripheral end side of the wafer W, and draws a planar arc as shown in FIG. 23, for example. You may move it. In the figure, 85 is a rotation mechanism to which the base end side of the arm 22 is connected and the arm 22 is swiveled around a vertical axis, and in the figure 86 is an elevating mechanism for raising and lowering the rotation mechanism 85. In the configuration example of FIG. 23, the height distribution is acquired in the same manner as in the examples shown in FIGS. 13 to 15, except that the locus of movement of the upper sensor 24 is different.
また、レジスト膜形成モジュール1をノズル21が設けられない検査専用モジュールとする場合、ステップS2では下側センサ34からレジスト供給ノズル21に光照射する代わりに、例えばアーム22に光照射して距離を検出し、その距離から所定の距離だけ離れた高さを基準高さL0として決めてもよい。 Further, when the resist film forming module 1 is used as an inspection-dedicated module in which the nozzle 21 is not provided, in step S2, instead of irradiating the resist supply nozzle 21 with light from the lower sensor 34, for example, the arm 22 is irradiated with light to reduce the distance. The height that is detected and separated from the distance by a predetermined distance may be determined as the reference height L0.
また、そのように検査専用モジュールとする場合には、例えば固定台31に対して光照射した上側センサ24を昇降させ、距離L1が所望の値となる高さを基準高さL0として設定し、以降はエンコーダの出力からこの基準高さL0に対する上側センサ24の高さを検出するようにしてもよい。つまりレジスト供給ノズル21を設けない場合は、基準高さL0に対するレジスト供給ノズル21の高さを取得する必要が無いので、当該ノズル21を検出するための下側センサ34をモジュールに設けなくてもよく、下側センサ34を用いずに基準高さL0の設定が行われるようにしてもよい。 Further, in the case of making such an inspection-dedicated module, for example, the upper sensor 24 irradiated with light on the fixed base 31 is moved up and down, and the height at which the distance L1 becomes a desired value is set as the reference height L0. After that, the height of the upper sensor 24 with respect to the reference height L0 may be detected from the output of the encoder. That is, when the resist supply nozzle 21 is not provided, it is not necessary to acquire the height of the resist supply nozzle 21 with respect to the reference height L0, so that the module does not need to be provided with the lower sensor 34 for detecting the nozzle 21. Often, the reference height L0 may be set without using the lower sensor 34.
また、検査専用モジュールとする場合は、アーム22としては昇降動作が行われず、上側センサ24が水平移動のみする構成であってもよい。そして、任意に設定した基準高さL0と上側センサ24との距離L7を例えば冶具を用いることで取得しておき、この距離L7と上側センサ24によって検出されるウエハWとの距離L8とからウエハWの高さ分布を取得してもよい。このような構成の場合、上側センサ24の高さの変位が無いため、ウエハWの高さ分布についてはエンコーダの出力を用いることなく取得することができる。 Further, in the case of the inspection-dedicated module, the arm 22 may be configured so that the upper sensor 24 does not move up and down and only moves horizontally. Then, the distance L7 between the arbitrarily set reference height L0 and the upper sensor 24 is acquired by using, for example, a jig, and the wafer is obtained from the distance L7 and the distance L8 between the wafer W detected by the upper sensor 24. The height distribution of W may be acquired. In such a configuration, since there is no displacement in the height of the upper sensor 24, the height distribution of the wafer W can be obtained without using the output of the encoder.
ところでレジスト膜形成モジュール1でレジスト膜形成及び高さ分布の取得を行うにあたり、図4に示したステップS1として、上側センサ24から固定台31に光を照射して、上側センサ24と固定台31との距離L1を取得しているが、上側センサ24を下側センサ34に対向させ、当該下側センサ34に光照射することによって距離L1を取得してもよい。従って、固定台31を設けなくてもよい。また、そのように上側センサ24、下側センサ34を向かい合わせて距離L1を取得するにあたり、下側センサ34から上側センサ24に光照射することで距離L1を取得してもよい。また、上記の例では、ステップS1実行時とステップS2実行時とでレジスト供給ノズル21及び上側センサ24の高さが変更されているが、同じ高さであってもよい。 By the way, in performing the resist film formation and the acquisition of the height distribution by the resist film forming module 1, as step S1 shown in FIG. 4, light is irradiated from the upper sensor 24 to the fixed base 31 to form the upper sensor 24 and the fixed base 31. Although the distance L1 to and from is acquired, the distance L1 may be acquired by facing the upper sensor 24 to the lower sensor 34 and irradiating the lower sensor 34 with light. Therefore, it is not necessary to provide the fixing base 31. Further, when the upper sensor 24 and the lower sensor 34 face each other to acquire the distance L1, the distance L1 may be acquired by irradiating the upper sensor 24 with light from the lower sensor 34. Further, in the above example, the heights of the resist supply nozzle 21 and the upper sensor 24 are changed between the execution of step S1 and the execution of step S2, but they may be the same height.
なお、既述した例ではウエハWの高さ分布について、ウエハWの周縁部の4つの位置で取得しているが、取得する位置を4つとすることには限られず、より多い位置あるいはより少ない位置で取得してもよい。ただし、上記したようにハンプの高さはウエハWの周方向において異なるので、ウエハWの回転を利用して、複数の位置で高さ分布を取得する。また、既述した例ではウエハWの周縁部においてウエハWの中心部寄りの位置からウエハWの周端に至るまでの高さ分布を取得しているが、レジスト膜形成モジュール8で処理される場合のように、ハンプはウエハWの周端よりも中心側に形成される場合が有る。従って、ウエハWの周端に至るまでの高さ分布を取得せず、ウエハWの周縁部においてウエハWの中心部寄りの位置と、ウエハWの周端よりも中心部寄りの位置との間の高さ分布を取得するようにしてもよい。 In the above-mentioned example, the height distribution of the wafer W is acquired at four positions on the peripheral edge of the wafer W, but the acquisition position is not limited to four, and there are more or less positions. It may be acquired at the position. However, since the height of the hump differs in the circumferential direction of the wafer W as described above, the height distribution is acquired at a plurality of positions by utilizing the rotation of the wafer W. Further, in the above-described example, the height distribution from the position near the center of the wafer W to the peripheral end of the wafer W is acquired at the peripheral edge of the wafer W, but the resist film forming module 8 processes the height distribution. As in the case, the hump may be formed on the center side of the peripheral edge of the wafer W. Therefore, the height distribution up to the peripheral end of the wafer W is not acquired, and the position between the position closer to the center of the wafer W at the peripheral edge of the wafer W and the position closer to the center than the peripheral end of the wafer W. The height distribution of may be obtained.
レジスト膜が形成されたウエハWについて高さ分布の取得及び異常の判定を行う例を述べたが、反射防止膜、絶縁膜などのレジスト膜以外の塗布膜が形成されたウエハWに対して、既述した手順で高さ分布の取得及び異常の判定を行ってもよい。また、ウエハWを回転させた状態で塗布液を吐出したノズルをウエハWの周端側から中心側へと移動させることで、ウエハWの周縁部において環状の塗布膜を形成する。その環状の塗布膜においては、ウエハWの中心側の位置にハンプが形成される場合が有る。そのような塗布膜が形成されたウエハWに対しても、既述した手順で高さ分布の取得及び異常の判定を行うことができる。 An example of acquiring a height distribution and determining an abnormality of a wafer W on which a resist film is formed has been described, but for a wafer W on which a coating film other than a resist film such as an antireflection film and an insulating film is formed, the wafer W has been described. The height distribution may be acquired and an abnormality may be determined by the procedure described above. Further, by moving the nozzle that discharges the coating liquid in the state where the wafer W is rotated from the peripheral end side to the center side of the wafer W, an annular coating film is formed at the peripheral edge portion of the wafer W. In the annular coating film, a hump may be formed at a position on the center side of the wafer W. Even for the wafer W on which such a coating film is formed, the height distribution can be obtained and the abnormality can be determined by the procedure described above.
基板処理装置として、塗布膜であるレジスト膜の形成及び現像を行う構成例を示したが、そのような構成とすることに限られず、塗布膜の形成のみ行う構成であったり、EBRのみを行う構成であってもよい。また、上側センサ24及び下側センサ34としては各センサから離れた物体との距離を測定できるものであればよい。従って、既述した光学式の距離センサに限られず、例えば超音波式の距離センサを用いてもよい。 As a substrate processing apparatus, a configuration example for forming and developing a resist film as a coating film has been shown, but the configuration is not limited to such a configuration, and only the coating film is formed or only EBR is performed. It may be a configuration. Further, the upper sensor 24 and the lower sensor 34 may be any as long as they can measure the distance to an object away from each sensor. Therefore, the present invention is not limited to the optical distance sensor described above, and for example, an ultrasonic distance sensor may be used.
なお、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の特許請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更または組み合わせが行われてもよい。 It should be noted that the embodiments disclosed this time are exemplary in all respects and are not considered to be restrictive. The above embodiments may be omitted, replaced, modified or combined in various forms without departing from the scope of the appended claims and their gist.
(参考試験)
ウエハWに塗布膜を形成し、当該塗布膜のハンプの高さについて、分光エリプソメトリー式の膜厚測定器と、レジスト膜形成モジュール1と同様に上側センサ24がウエハW上を移動するように構成された試験装置と、を用いて測定した。上記の膜厚測定器についてはウエハWの表面について10μm間隔で測定が行われる構成であり、試験装置については移動中に0.1μm間隔で距離の取得が可能であるように構成した。そして、そのように膜厚測定器、試験装置にて測定されたウエハWのハンプについて、X-SEM(cross-sectional scanning electron microscopy)による断面観察を行うことで実際の高さを測り、膜厚測定器及び試験装置における測定結果の正確性を確認した。
(Reference test)
A coating film is formed on the wafer W, and the height of the hump of the coating film is such that the spectroscopic ellipsometry type film thickness measuring instrument and the upper sensor 24 move on the wafer W in the same manner as the resist film forming module 1. Measurements were made using the configured test equipment. The above-mentioned film thickness measuring device is configured to measure the surface of the wafer W at intervals of 10 μm, and the test device is configured so that the distance can be acquired at intervals of 0.1 μm while moving. Then, the actual height of the hump of the wafer W measured by the film thickness measuring device and the test device is measured by observing the cross section by X-SEM (cross-sectional scanning electron microscopy), and the film thickness is measured. The accuracy of the measurement results in the measuring instrument and test equipment was confirmed.
図24のグラフに、この参考試験の結果を表している。グラフの横軸(X軸)はX-SEMによって測定されたハンプの高さ(単位:Å)を示しており、グラフの縦軸(Y軸)は試験装置、膜厚測定器の各々により測定されたハンプの高さ(単位:Å)を示している。グラフでは、試験装置による結果を白い点で示しており、膜厚測定器による結果を斜線付きの点で示している。そして、グラフ中の実線、点線は試験装置、膜厚測定器の各々により得られた結果の近似直線である。 The graph of FIG. 24 shows the result of this reference test. The horizontal axis (X axis) of the graph shows the height (unit: Å) of the hump measured by X-SEM, and the vertical axis (Y axis) of the graph is measured by each of the test device and the film thickness measuring device. It shows the height of the hump (unit: Å). In the graph, the results of the test equipment are shown by white dots, and the results of the film thickness measuring instrument are shown by the shaded dots. The solid line and the dotted line in the graph are approximate straight lines of the results obtained by each of the test device and the film thickness measuring device.
試験装置の近似直線はY=0.9877X、膜厚測定器の近似直線はY=0.3671Xであった。従って、この参考試験によれば、既述したレジスト膜形成モジュール1によれば、正確性高くハンプの高さを測定可能であることが分かる。なお、膜厚測定器のハンプ高さの正確性が低かったのは、ウエハW表面における測定間隔が比較的大きいことで、ハンプの頂部の高さが測定されずに、当該頂部からずれた位置の高さが測定されたことによるものと考えられる。 The approximate straight line of the test device was Y = 0.9877X, and the approximate straight line of the film thickness measuring instrument was Y = 0.3671X. Therefore, according to this reference test, it can be seen that the height of the hump can be measured with high accuracy according to the resist film forming module 1 described above. The accuracy of the hump height of the film thickness measuring instrument was low because the measurement interval on the surface of the wafer W was relatively large, and the height of the top of the hump was not measured and was displaced from the top. It is probable that the height of the hump was measured.
10    塗布、現像装置
11    スピンチャック
21    レジスト供給ノズル
22    アーム
23    移動機構
24    上側センサ
12    回転機構
 
10 Coating and developing equipment 11 Spin chuck 21 Resist supply nozzle 22 Arm 23 Moving mechanism 24 Upper sensor 12 Rotating mechanism

Claims (14)

  1.  少なくとも基板の表面の周縁部に処理液を供給して処理を行う処理液供給ノズルと、
     前記処理液が供給された前記基板を載置するステージと、
     前記ステージに載置された前記基板との間の距離を検出するための第1の距離センサが含まれる移動体と、
     前記基板の周縁部における当該基板の中心寄りの位置である第1の位置と、当該第1の位置よりも前記基板の周端側の位置である第2の位置との間の高さ分布が取得されるように、前記移動体を前記基板の周縁部上にて横方向に移動させる移動機構と、
     前記基板の周方向に互いに離れた複数の位置における前記高さ分布を各々取得するために、前記ステージを前記移動体に対して回転させる回転機構と、
    を備える基板処理装置。
    A treatment liquid supply nozzle that supplies treatment liquid to at least the peripheral edge of the surface of the substrate and performs treatment.
    A stage on which the substrate to which the treatment liquid is supplied is placed, and
    A moving body including a first distance sensor for detecting a distance between the substrate mounted on the stage and the substrate.
    The height distribution between the first position on the peripheral edge of the substrate, which is a position closer to the center of the substrate, and the second position, which is a position on the peripheral end side of the substrate with respect to the first position, is A moving mechanism for laterally moving the moving body on the peripheral edge of the substrate so as to be acquired.
    A rotation mechanism for rotating the stage with respect to the moving body in order to acquire the height distributions at a plurality of positions separated from each other in the circumferential direction of the substrate.
    Substrate processing equipment.
  2. 前記移動機構は前記ステージに対して前記移動体を昇降させると共に昇降量の情報を出力し、
    前記昇降量の情報によって算出される前記移動体が横方向に移動するときの基準高さと前記第1の距離センサとの間の第1の距離と、前記第1の距離センサによる検出値と、に基づいて前記高さ分布を取得する演算部が設けられる請求項1記載の基板処理装置。
    The moving mechanism raises and lowers the moving body with respect to the stage and outputs information on the amount of raising and lowering.
    The reference height when the moving body moves laterally calculated by the information on the amount of ascending / descending, the first distance between the first distance sensor, the value detected by the first distance sensor, and the value detected by the first distance sensor. The board processing apparatus according to claim 1, wherein a calculation unit for acquiring the height distribution is provided based on the above.
  3. 前記基準高さを設定するための基準高さ設定部が設けられる請求項2記載の基板処理装置。 The substrate processing apparatus according to claim 2, wherein a reference height setting unit for setting the reference height is provided.
  4. 前記基準高さ設定部は、
    前記演算部と、前記移動体の移動路の下方に設けられ、当該移動体までの第2の距離を検出するための第2の距離センサと、を含み、
    前記演算部は、当該第2の距離に基づいて前記基準高さを設定する請求項3記載の基板処理装置。
    The reference height setting unit is
    The arithmetic unit and a second distance sensor provided below the moving path of the moving body and for detecting a second distance to the moving body are included.
    The substrate processing apparatus according to claim 3, wherein the calculation unit sets the reference height based on the second distance.
  5. 前記処理液供給ノズルは前記移動体に含まれ、前記第2の距離は当該処理液供給ノズルと前記第2の距離センサとの距離であり、
    前記演算部は、
    当該第2の距離と、前記第1または第2の距離センサによって取得される当該第1の距離センサと当該第2の距離センサとの間の第3の距離と、前記第2の距離、前記第3の距離を各々取得するときの前記昇降量の情報と、に基づいて、前記基板に前記処理液を供給するときの前記処理液供給ノズルの高さを決定する請求項4記載の基板処理装置。
    The processing liquid supply nozzle is included in the moving body, and the second distance is the distance between the processing liquid supply nozzle and the second distance sensor.
    The arithmetic unit
    The second distance, the third distance between the first distance sensor and the second distance sensor acquired by the first or second distance sensor, and the second distance, said. The substrate processing according to claim 4, wherein the height of the processing liquid supply nozzle when supplying the processing liquid to the substrate is determined based on the information on the amount of ascending / descending when each of the third distances is acquired. Device.
  6. 前記処理液は塗布膜を形成するための塗布液であり、
    前記回転する基板において、当該塗布液の供給位置が前記基板の中心部から周縁部に向かって移動するように前記移動機構によって前記処理液供給ノズルが移動する第1の処理が行われ、
    当該第1の処理が行われた基板に、前記複数の位置の高さ分布を取得する第2の処理が行われる請求項5記載の基板処理装置。
    The treatment liquid is a coating liquid for forming a coating film, and is a coating liquid.
    In the rotating substrate, the first process of moving the treatment liquid supply nozzle by the movement mechanism is performed so that the supply position of the coating liquid moves from the central portion to the peripheral portion of the substrate.
    The substrate processing apparatus according to claim 5, wherein a second process of acquiring height distributions at a plurality of positions is performed on the substrate on which the first process has been performed.
  7. 制御信号を出力する制御部が設けられ、
    前記第1の処理及び前記第2の処理は、各々続けて行われる複数のステップを含み、
    各ステップは、前記基板の回転数、前記移動体の位置、及びステップを実施する時間について各々設定したレシピに基づき、前記制御信号が出力されることで行われる請求項6記載の基板処理装置。
    A control unit that outputs control signals is provided, and
    The first process and the second process each include a plurality of steps performed in succession.
    The substrate processing apparatus according to claim 6, wherein each step is performed by outputting the control signal based on a recipe set for each of the rotation speed of the substrate, the position of the moving body, and the time for performing the step.
  8. 前記処理液は、前記ステージとは異なる処理用ステージに載置された前記基板の表面全体に形成された膜を、当該基板の周縁部にて限定的に除去する除去液であり、
    前記基板を内部に格納した状態で密閉される搬送容器を経由することなく、当該基板を前記処理用ステージから前記ステージへ搬送する搬送機構が設けられる請求項1記載の基板処理装置。
    The treatment liquid is a removal liquid for limitingly removing a film formed on the entire surface of the substrate placed on a treatment stage different from the stage at the peripheral edge of the substrate.
    The substrate processing apparatus according to claim 1, wherein a transport mechanism for transporting the substrate from the processing stage to the stage without passing through a transport container sealed with the substrate stored inside is provided.
  9. 前記複数の位置における高さ分布の取得は、
    前記回転機構による前記基板の間欠的な回転と、
    当該間欠的に回転する期間中の前記基板の静止時における前記移動機構による前記第1の距離センサの横方向の移動と、によって行われる請求項1記載の基板処理装置。
    The acquisition of the height distribution at the plurality of positions is
    Intermittent rotation of the substrate by the rotation mechanism and
    The substrate processing apparatus according to claim 1, wherein the first distance sensor is laterally moved by the moving mechanism when the substrate is stationary during the period of intermittent rotation.
  10. 前記基板が静止するときと次に前記基板が静止するときとで、前記第1の距離センサは当該基板の周縁部上を往復移動する請求項9記載の基板処理装置。 The substrate processing apparatus according to claim 9, wherein the first distance sensor reciprocates on the peripheral edge of the substrate when the substrate is stationary and when the substrate is then stationary.
  11. 前記第1の距離センサにより、当該第1の距離センサと前記基板の中心部との距離が取得され、当該距離に基づいて前記高さ分布を補正する補正機構が設けられる請求項1記載の基板処理装置。 The substrate according to claim 1, wherein the distance between the first distance sensor and the central portion of the substrate is acquired by the first distance sensor, and a correction mechanism for correcting the height distribution based on the distance is provided. Processing equipment.
  12. 前記第1の距離センサにより取得される前記複数の高さ分布のうちの一つは、前記基板の中心部から周縁部に亘る高さ分布であり、
    当該高さ分布のうち、前記基板の中心部側の高さ分布に基づいて当該基板の異常の有無の判定を行う判定部が設けられる請求項1記載の基板処理装置。
    One of the plurality of height distributions acquired by the first distance sensor is a height distribution extending from the central portion to the peripheral portion of the substrate.
    The substrate processing apparatus according to claim 1, wherein a determination unit for determining the presence or absence of an abnormality in the substrate is provided based on the height distribution on the center side of the substrate in the height distribution.
  13.  処理液供給ノズルにより、少なくとも基板の表面の周縁部に処理液を供給して処理を行う工程と、
     前記処理液が供給された前記基板をステージに載置する工程と、
     移動体に含まれる第1の距離センサにより、前記ステージに載置された前記基板との間の距離を検出する工程と、
     移動機構によって前記移動体を前記基板の周縁部上にて横方向に移動させ、前記基板の周縁部における当該基板の中心寄りの位置である第1の位置と、当該第1の位置よりも前記基板の周端側の位置である第2の位置との間の高さ分布を取得する工程と、
     回転機構により、前記ステージを前記移動体に対して回転させ、前記基板の周方向に互いに離れた複数の位置における前記高さ分布を各々取得する工程と、
    を備える基板処理方法。
    The process of supplying the treatment liquid to at least the peripheral edge of the surface of the substrate by the treatment liquid supply nozzle and performing the treatment.
    The process of placing the substrate to which the treatment liquid is supplied on the stage, and
    A step of detecting the distance between the substrate and the substrate mounted on the stage by the first distance sensor included in the moving body, and
    The moving body is laterally moved on the peripheral edge of the substrate by the moving mechanism, and the first position, which is a position closer to the center of the substrate on the peripheral edge of the substrate, and the position higher than the first position. The process of acquiring the height distribution between the second position, which is the position on the peripheral end side of the substrate, and
    A step of rotating the stage with respect to the moving body by a rotation mechanism and acquiring the height distributions at a plurality of positions separated from each other in the circumferential direction of the substrate.
    A substrate processing method comprising.
  14. 前記処理液は前記基板にレジスト膜を形成するレジスト、あるいは前記基板の表面全体に形成されたレジスト膜のうち当該基板の周縁部に形成された部位を限定的に除去する除去液であり、
    前記高さ分布に基づいて、前記レジスト膜においてパターンを形成するために露光する範囲を制御する工程を備える請求項13記載の基板処理方法。
     
    The treatment liquid is a resist that forms a resist film on the substrate, or a removal liquid that limitedly removes a portion of the resist film formed on the entire surface of the substrate that is formed on the peripheral edge of the substrate.
    The substrate processing method according to claim 13, further comprising a step of controlling an exposure range for forming a pattern in the resist film based on the height distribution.
PCT/JP2021/030857 2020-09-04 2021-08-23 Substrate processing device and substrate processing method WO2022050117A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022546250A JP7405268B2 (en) 2020-09-04 2021-08-23 Substrate processing equipment and substrate processing method
KR1020237009861A KR20230056036A (en) 2020-09-04 2021-08-23 Substrate processing apparatus and substrate processing method
CN202180052120.4A CN116018214A (en) 2020-09-04 2021-08-23 Substrate processing apparatus and substrate processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-149320 2020-09-04
JP2020149320 2020-09-04

Publications (1)

Publication Number Publication Date
WO2022050117A1 true WO2022050117A1 (en) 2022-03-10

Family

ID=80490891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030857 WO2022050117A1 (en) 2020-09-04 2021-08-23 Substrate processing device and substrate processing method

Country Status (5)

Country Link
JP (1) JP7405268B2 (en)
KR (1) KR20230056036A (en)
CN (1) CN116018214A (en)
TW (1) TW202215500A (en)
WO (1) WO2022050117A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140386A (en) * 2004-11-15 2006-06-01 Dainippon Screen Mfg Co Ltd Substrate position correcting device and method
JP2013102053A (en) * 2011-11-08 2013-05-23 Tokyo Electron Ltd Substrate processing system, substrate transfer method, program, and computer storage medium
WO2017047355A1 (en) * 2015-09-15 2017-03-23 東京エレクトロン株式会社 Substrate processing device, substrate processing method, and storage medium
JP2018061957A (en) * 2014-06-04 2018-04-19 東京エレクトロン株式会社 Liquid coating method, liquid coating device, and computer-readable recording medium
JP2018142742A (en) * 2018-06-11 2018-09-13 キヤノン株式会社 Transport device, lithographic apparatus, and manufacturing method for article

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249433A (en) 2002-02-25 2003-09-05 Seiko Epson Corp Exposure system and exposure controlling method
JP4363593B2 (en) 2003-05-14 2009-11-11 東京エレクトロン株式会社 Thin film removal equipment
JP5398785B2 (en) 2011-06-20 2014-01-29 株式会社東芝 Spiral coating apparatus and spiral coating method
JP6815799B2 (en) 2016-09-13 2021-01-20 東京エレクトロン株式会社 Substrate processing equipment and substrate processing method
JP7024307B2 (en) 2017-01-26 2022-02-24 東京エレクトロン株式会社 Coating film removing device, coating film removing method and storage medium
JP7043777B2 (en) 2017-10-04 2022-03-30 東京エレクトロン株式会社 Coating film forming device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140386A (en) * 2004-11-15 2006-06-01 Dainippon Screen Mfg Co Ltd Substrate position correcting device and method
JP2013102053A (en) * 2011-11-08 2013-05-23 Tokyo Electron Ltd Substrate processing system, substrate transfer method, program, and computer storage medium
JP2018061957A (en) * 2014-06-04 2018-04-19 東京エレクトロン株式会社 Liquid coating method, liquid coating device, and computer-readable recording medium
WO2017047355A1 (en) * 2015-09-15 2017-03-23 東京エレクトロン株式会社 Substrate processing device, substrate processing method, and storage medium
JP2018142742A (en) * 2018-06-11 2018-09-13 キヤノン株式会社 Transport device, lithographic apparatus, and manufacturing method for article

Also Published As

Publication number Publication date
KR20230056036A (en) 2023-04-26
JPWO2022050117A1 (en) 2022-03-10
JP7405268B2 (en) 2023-12-26
CN116018214A (en) 2023-04-25
TW202215500A (en) 2022-04-16

Similar Documents

Publication Publication Date Title
JP7136254B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
KR102086170B1 (en) Method of removing coating film of substrate peripheral portion, substrate processing apparatus and storage medium
JP6540813B2 (en) Substrate processing apparatus, substrate processing method and storage medium
JP6436068B2 (en) Substrate processing method and substrate processing apparatus
JP7422828B2 (en) Substrate processing equipment and substrate processing method
KR101591478B1 (en) Substrate warpage removing apparatus, substrate warpage removing method and storage medium
WO2017061199A1 (en) Liquid treatment device, liquid treatment method, and storage medium
WO2022050117A1 (en) Substrate processing device and substrate processing method
JP7129549B2 (en) Processing equipment and processing method
JP7043777B2 (en) Coating film forming device
JP6597872B2 (en) Substrate processing method
JP6696306B2 (en) Liquid processing method, liquid processing apparatus, and storage medium
JP2017118049A (en) Substrate processing apparatus, substrate processing method and storage medium
TW202001680A (en) Bump height measurement device, substrate processing device, bump height measurement method, and storage medium
CN115145120A (en) Information acquisition system and information acquisition method for substrate processing apparatus, and arithmetic unit
CN116414008A (en) Apparatus for treating substrate and method for treating substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546250

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237009861

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864175

Country of ref document: EP

Kind code of ref document: A1