WO2022047648A1 - Pad structures for semiconductor devices - Google Patents

Pad structures for semiconductor devices Download PDF

Info

Publication number
WO2022047648A1
WO2022047648A1 PCT/CN2020/112978 CN2020112978W WO2022047648A1 WO 2022047648 A1 WO2022047648 A1 WO 2022047648A1 CN 2020112978 W CN2020112978 W CN 2020112978W WO 2022047648 A1 WO2022047648 A1 WO 2022047648A1
Authority
WO
WIPO (PCT)
Prior art keywords
die
semiconductor
face
substrate
contact structure
Prior art date
Application number
PCT/CN2020/112978
Other languages
French (fr)
Inventor
Liang Xiao
Shu Wu
Original Assignee
Yangtze Memory Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze Memory Technologies Co., Ltd. filed Critical Yangtze Memory Technologies Co., Ltd.
Priority to PCT/CN2020/112978 priority Critical patent/WO2022047648A1/en
Priority to EP20951896.8A priority patent/EP4139958A4/en
Priority to JP2022578919A priority patent/JP7547514B2/en
Priority to CN202080002320.4A priority patent/CN112204734B/en
Priority to KR1020227044873A priority patent/KR20230013279A/en
Priority to TW109137447A priority patent/TWI755121B/en
Priority to US17/127,019 priority patent/US11424221B2/en
Publication of WO2022047648A1 publication Critical patent/WO2022047648A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76892Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances modifying the pattern
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4824Pads with extended contours, e.g. grid structure, branch structure, finger structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/034Manufacturing methods by blanket deposition of the material of the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/036Manufacturing methods by patterning a pre-deposited material
    • H01L2224/0361Physical or chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0502Disposition
    • H01L2224/05023Disposition the whole internal layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0502Disposition
    • H01L2224/05025Disposition the internal layer being disposed on a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05166Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05184Tungsten [W] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08123Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting directly to at least two bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08135Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/08145Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/09Structure, shape, material or disposition of the bonding areas after the connecting process of a plurality of bonding areas
    • H01L2224/091Disposition
    • H01L2224/0918Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/09181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/80003Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/80006Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/8036Bonding interfaces of the semiconductor or solid state body
    • H01L2224/80379Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/808Bonding techniques
    • H01L2224/80894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • H01L2224/80895Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces between electrically conductive surfaces, e.g. copper-copper direct bonding, surface activated bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/808Bonding techniques
    • H01L2224/80894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • H01L2224/80896Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces between electrically insulating surfaces, e.g. oxide or nitride layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/9202Forming additional connectors after the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06548Conductive via connections through the substrate, container, or encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L24/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L24/09Structure, shape, material or disposition of the bonding areas after the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/40EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/50EEPROM devices comprising charge-trapping gate insulators characterised by the boundary region between the core and peripheral circuit regions

Definitions

  • the present application describes embodiments generally related to semiconductor memory devices.
  • a semiconductor device communicates with the outside world through various input/output (I/O) pad structures, such as signaling pad structures, and power/ground (P/G) pad structures and the like.
  • I/O pad structures such as signaling pad structures, and power/ground (P/G) pad structures and the like.
  • a semiconductor chip can include multiple metal layers formed on top of circuitry above a substrate. One or more of the metal layers are used to form pad structures that are conductively coupled with the circuitry above the substrate.
  • the pad structures can be formed to facilitate attachment of bonding wires that can conductively couple the pad structures with external components, such as power supply, ground, other semiconductor chips, metal lines on printed circuit board (PCB) and the like.
  • PCB printed circuit board
  • the semiconductor device includes a first die and a second die boned face-to-face.
  • the first die includes first transistors formed on a face side of the first die in a semiconductor portion and at least a contact structure disposed in an insulating portion outside the semiconductor portion.
  • the second die includes a substrate and second transistors formed on a face side of the second die.
  • the semiconductor device includes a first pad structure disposed on a back side of the first die and the first pad structure is conductively coupled with the contact structure. An end of the contact structure protrudes from the insulating portion into the first pad structure.
  • the semiconductor device includes a connection structure disposed on the back side of the first die and conductively connected with the semiconductor portion.
  • connection structure and the semiconductor portion is substantially flat over the semiconductor portion.
  • a bottom surface and a top surface of the connection structure on the semiconductor portion are about a same size.
  • the contact structure includes at least a first metal material that is different from a second metal material in the first pad structure.
  • the first metal material includes tungsten and the second metal material includes aluminum.
  • a bottom surface of the first pad structure that interfaces with the insulating portion has a concave portion corresponding to the end of the contact structure.
  • the first die includes at least a memory cell array formed in the semiconductor portion, and the second die includes a periphery circuit for the memory cell array.
  • the contact structure on the first die is electrically coupled to an input/output circuit on the second die via bonding structures.
  • the first die includes an input/output circuit that is electrically coupled to the contact structure.
  • the method includes bonding a first die and a second die face-to-face.
  • the first die includes a first substrate, first transistors formed in a semiconductor portion on a face side of the first die, and a contact structure disposed in an insulating portion outside the semiconductor portion.
  • the second die includes a second substrate with second transistors formed on a face side of the second.
  • the method includes removing the first substrate from a back side of the first die. The removing of the first substrate exposes an end of the contact structure on the back side of the first die.
  • the method includes forming, on the back side of the first die, a first pad structure conductively connected with the contact structure. The end of the contact structure protrudes from the insulating portion inward the first pad structure.
  • the method further includes forming, on the back side of the first die, a connection structure that is conductively connected with the semiconductor portion.
  • the removing of the first substrate exposes the semiconductor portion from the back side of the first die, and the method includes depositing layers for forming the connection structure.
  • An interface of the layers to the semiconductor portion is substantially flat over the semiconductor portion.
  • the method includes patterning the layers to form the connection structure. A bottom surface and a top surface of the connection structure on the semiconductor portion are about a same size.
  • the method includes depositing, on the contact structure that includes at least a first metal material, a second metal material that is different from the first metal material.
  • the first pad structure includes at least the second metal material.
  • the first metal material can be tungsten and the second metal material can be aluminum in an example.
  • FIG. 1 shows a cross-sectional view of a semiconductor device according to some embodiments of the disclosure.
  • FIG. 2 shows a flow chart outlining a process for forming a semiconductor device.
  • FIGs. 3-6 show cross-sectional views of a semiconductor device during a fabrication process in accordance with some embodiments.
  • first and second features are formed in direct contact
  • additional features may be formed between the first and second features, such that the first and second features may not be in direct contact
  • present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
  • spatially relative terms such as “beneath, ” “below, ” “lower, ” “above, ” “upper” and the like, may be used herein for ease of description to describe one element or feature’s relationship to another element (s) or feature (s) as illustrated in the figures.
  • the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures.
  • the apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
  • aspects of the disclosure provide techniques for forming pad structures for a semiconductor device with two dies (e.g., a first die and a second die) bonded face-to-face.
  • the pad structures are formed on a back side of one of the two dies, such as the first die.
  • the techniques to form the pad structures do not need to form through silicon contacts (TSC) from the back side of the first die and simplify the processes to form the pad structures.
  • circuit components are formed on the face sides of the two dies.
  • at least a contact structure is formed in an insulating portion of the first die from the face side of the first die, and the contact structure is connected to an input/output (I/O) circuit.
  • I/O input/output
  • One of the pad structures on the back side of the first die is conductively coupled with the contact structure, and the contact structure includes an end that protrudes from the insulating portion inward the first pad structure.
  • the first die includes a semiconductor portion with transistors formed in the semiconductor portion.
  • a connection structure is formed with the pad structures, and is conductively coupled with the semiconductor portion.
  • the connection structure is conductively coupled with the semiconductor portion without forming contact hole based contacts from the back side of the first die.
  • the pad structures and the connection structure can be formed using same metal layer (s) in some examples.
  • the semiconductor device can be a semiconductor memory device in which one of the two dies includes a memory cell array formed on the face side and is referred to as an array die and the other of the two dies includes periphery circuitry formed on the face side and is referred to as periphery die.
  • the periphery circuitry is formed using complementary metal–oxide–semiconductor (CMOS) technology, and the periphery die is also referred to as CMOS die.
  • CMOS complementary metal–oxide–semiconductor
  • the pad structures and the connection structure can be formed on the back of the array die or can be formed on the back of the periphery die.
  • the pad structures and the connection structure are formed on the back side of the array die.
  • the array die includes a memory cell array formed in the semiconductor portion.
  • the connection structure that is conductively coupled with the semiconductor portion can be configured to provide a connection for an array common source (ACS) of the memory cell array.
  • ACS array common source
  • the two dies are formed separately on two wafers.
  • a first wafer that includes array dies and a second wafer that includes periphery dies are formed separately.
  • the first wafer can be fabricated to optimize density and performance of the memory cell arrays without compromising to fabrication limitations due to the periphery circuitry; and the second wafer can be fabricated to optimize the performance of the periphery circuitry without compromising to fabrication limitations due to the memory cell array.
  • the first wafer and the second wafer can be bonded face to face using a wafer-to-wafer bonding technology, thus the array dies on the first wafer are respectively bonded with periphery dies on the second wafer. Then, the techniques provided in the present disclosure can be used to fabricate pad structures on a back side of one of the two wafers.
  • FIG. 1 shows a cross-sectional view of a semiconductor device, such as a semiconductor memory device 100, according to some embodiments of the disclosure.
  • the semiconductor memory device 100 includes two dies that are bonded face to face. Pad structures and connection structures are formed on a back side of one of the two dies using the techniques provided in the present disclosure.
  • the semiconductor memory device 100 includes an array die 102 and a CMOS die 101 bonded face to face.
  • a semiconductor memory device can include multiple array dies and a CMOS die.
  • the multiple array dies and the CMOS die can be stacked and bonded together.
  • the CMOS die is respectively coupled to the multiple array dies, and can drive the respective array dies in a similar manner.
  • the semiconductor device 100 can be any suitable device.
  • the semiconductor device 100 includes at least a first wafer and a second wafer bonded face to face.
  • the array die 102 is disposed with other array dies on the first wafer
  • the CMOS die 101 is disposed with other CMOS dies on the second wafer.
  • the first wafer and the second wafer are bonded together, thus the array dies on the first wafer are bonded with corresponding CMOS dies on the second wafer.
  • the semiconductor device 100 is a semiconductor chip with at least the array die 102 and the CMOS die 101 bonded together.
  • the semiconductor chip is diced from wafers that are bonded together.
  • the semiconductor device 100 is a semiconductor package that includes one or more semiconductor chips assembled on a package substrate.
  • the array die 102 includes one or more semiconductor portions 105, and insulating portions 106 between the semiconductor portions 105.
  • the memory cell arrays can be formed in the semiconductor portions 105, the insulating portions can isolate the semiconductor portions 105 and provide space for contact structures 170.
  • the CMOS die 101 includes a substrate 104, and peripheral circuitry formed on the substrate 104.
  • the main surface (of the dies or wafers) is referred to as an X-Y plane, and the direction perpendicular to the main surface is referred to as Z direction.
  • connection structures 121 and pad structures 122-123 are formed on a back side of one of the two dies, such as the array die 102.
  • the pad structures 122-123 are above the insulating portions 106 and each of the pad structures 122-123 can be conductively connected with one or more of the contact structures 170.
  • a connection structure 121 is above a semiconductor portion 105 and is conductively connected to the semiconductor portion 105.
  • the semiconductor portion 105 is coupled to an array common source (ACS) for a memory cell array, and the connection structure 121 is disposed over semiconductor portion (s) 105 for a block of memory cell arrays.
  • ACS array common source
  • connection structure 121 is formed of metal layers of relatively low resistivity, and when the connection structure 121 covers a relatively large portion of the semiconductor portion 105, the connection structure 121 can connect the ACS of the block of the memory cell arrays with very small parasitic resistance.
  • the connection structure 121 can include a portion that is configured as a pad structure for ACS to receive ACS signal from an external source.
  • the pad structures 122-123 and the connection structure 121 are made of suitable metal material (s) , such as aluminum, and the like that can facilitate attachment of bonding wires.
  • the pad structures 122-123 include a titanium layer 126 and an aluminum layer 128, and the connection structure 121 includes a titanium silicide layer 127 and the aluminum layer 128.
  • the array die 102 initially includes a substrate and semiconductor portions 105 and the insulating portions 106 are formed on the substrate. The substrate is removed before the formation the pad structures 122-123 and the connection structure 121.
  • FIG. 2 shows a flow chart outlining a process 200 for forming a semiconductor memory device, such as the semiconductor memory device 100 according to some embodiments of the disclosure, and FIGs. 3-6 show cross-sectional views of the semiconductor device 100 during the process in accordance with some embodiments.
  • the process 200 starts from S201 and proceeds to S210.
  • a first die and a second die are bonded face to face.
  • the first die includes a first substrate, and includes semiconductor portions and insulating portions disposed on the first substrate on the face side. The insulating portions can insulate the semiconductor portions.
  • the first die also includes first transistors formed in the semiconductor portions from the face side of the first die. Further, the first die includes contact structures disposed in the insulating portions that are outside the semiconductor portions. The insulating portions can also insulate the contact structures from each other and from the semiconductor portions.
  • the second die includes a second substrate with second transistors formed on a face side of the second die.
  • the first die is an array die, such as the array die 102 and the second die is a CMOS die, such as the CMOS die 101.
  • the first die can be a CMOS die and the second die can be an array die.
  • FIG. 3 shows a cross-sectional view of the semiconductor memory device 100 after a bonding process of two dies.
  • the semiconductor memory device 100 includes the array die 102 and the CMOS die 101 that are bonded face to face.
  • the array die 102 is fabricated with other array dies on a first wafer, and the CMOS die 101 is fabricated with other CMOS dies on a second wafer.
  • the first wafer and the second wafer are fabricated separately.
  • memory cell arrays and I/O contact structures are formed on the first wafer using processes that operate on the face side of the first wafer.
  • first bonding structures are formed on the face side of the first wafer.
  • periphery circuitry is formed on the second wafer using processes that operate on the face side of the second wafer, and second bonding structures are formed on the face side of the second wafer.
  • the first wafer and the second wafer can be bonded face to face using a wafer-to-wafer bonding technology.
  • the first bonding structures on the first wafer are bonded with corresponding second bonding structures on the second wafer, thus the array dies on the first wafer are respectively bonded with the CMOS dies on the second wafer.
  • the array die 102 includes a substrate 103. On the substrate 103, one or more semiconductor portions 105 and insulating portions 106 are formed.
  • the insulating portions 106 are formed of insulating material, such as silicon oxide and the like that can insulate the semiconductor portions 105. Further, memory cell arrays can be formed in the semiconductor portions 105 and contact structures can be formed in the insulating portions 106.
  • the CMOS die 101 includes a substrate 104, and includes peripheral circuitry formed on the substrate 104.
  • the substrate 103 and the substrate 104 respectively can be any suitable substrate, such as a silicon (Si) substrate, a germanium (Ge) substrate, a silicon-germanium (SiGe) substrate, and/or a silicon-on-insulator (SOI) substrate.
  • the substrate 103 and the substrate 104 respectively may include a semiconductor material, for example, a Group IV semiconductor, a Group III-V compound semiconductor, or a Group II-VI oxide semiconductor.
  • the Group IV semiconductor may include Si, Ge, or SiGe.
  • the substrate 103 and the substrate 104 respectively may be a bulk wafer or an epitaxial layer.
  • a substrate is formed of multiple layers.
  • the substrate 103 includes multiple layers, such as a bulk portion 111, a silicon oxide layer 112 and a silicon nitride layer 113, as shown in FIG. 3.
  • the memory cell arrays are formed on the substrate 103 of the array die 102 and the peripheral circuitry is formed on the substrate 104 of the CMOS die 101.
  • the array die 102 and the CMOS die 101 are disposed face to face (the surface with circuitry disposed on is referred to as face, and the opposite surface is referred to as back) , and bonded together.
  • a semiconductor portion 105 is formed on the substrate 103, and a block of three dimensional (3D) NAND memory cell strings can be formed in the semiconductor portion 105.
  • the semiconductor portion 105 is conductively coupled with an array common source of the memory cell strings.
  • a memory cell array is formed in a core region 115 as an array of vertical memory cell strings.
  • the array die 102 includes a staircase region 116 and an insulating region 117.
  • the staircase region 116 is used to facilitate making connections to, for example, gates of the memory cells in the vertical memory cell strings, gates of the select transistors, and the like.
  • the gates of the memory cells in the vertical memory cell strings correspond to word lines for the NAND memory architecture.
  • the insulating region 117 is used to form the insulating portion 106.
  • vertical memory cell strings 180 are shown as representation of an array of vertical memory cell strings formed in the core region 115.
  • the vertical memory cell strings 180 are formed in a stack of layers 190.
  • the stack of layers 190 includes gate layers 195 and insulating layers 194 that are stacked alternatingly.
  • the gate layers 195 and the insulating layers 194 are configured to form transistors that are stacked vertically.
  • the stack of transistors includes memory cells and select transistors, such as one or more bottom select transistors, one or more top select transistors and the like.
  • the stack of transistors can include one or more dummy select transistors.
  • the gate layers 195 correspond to gates of the transistors.
  • the gate layers 195 are made of gate stack materials, such as high dielectric constant (high-k) gate insulator layers, metal gate (MG) electrode, and the like.
  • the insulating layers 194 are made of insulating material (s) , such as silicon nitride, silicon dioxide, and the like.
  • the vertical memory cell strings are formed of channel structures 181 that extend vertically (Z direction) into the stack of layers 190.
  • the channel structures 181 can be disposed separate from each other in the X-Y plane.
  • the channel structures 181 are disposed in the form of arrays between gate line cut structures (not shown) .
  • the gate line cut structures are used to facilitate replacement of sacrificial layers with the gate layers 195 in a gate-last process.
  • the arrays of the channel structures 181 can have any suitable array shape, such as a matrix array shape along the X direction and the Y direction, a zig-zag array shape along the X or Y direction, a beehive (e.g., hexagonal) array shape, and the like.
  • each of the channel structures has a circular shape in the X-Y plane, and a pillar shape in the X-Z plane and Y-Z plane.
  • the quantity and arrangement of the channel structures between gate line cut structures is not limited.
  • the channel structure 181 has a pillar shape that extends in the Z direction that is perpendicular to the direction of the main surface of the substrate 103.
  • the channel structure 181 is formed by materials in the circular shape in the X-Y plane, and extends in the Z direction.
  • the channel structure 181 includes function layers, such as a blocking insulating layer 182 (e.g., silicon oxide) , a charge storage layer (e.g., silicon nitride) 183, a tunneling insulating layer 184 (e.g., silicon oxide) , a semiconductor layer 185, and an insulating layer 186 that have the circular shape in the X-Y plane, and extend in the Z direction.
  • the blocking insulating layer 182 (e.g., silicon oxide) is formed on the sidewall of a hole (into the stack of layers 190) for the channel structure 181, and then the charge storage layer (e.g., silicon nitride) 183, the tunneling insulating layer 184, the semiconductor layer 185, and the insulating layer 186 are sequentially stacked from the sidewall.
  • the semiconductor layer 185 can be any suitable semiconductor material, such as polysilicon or monocrystalline silicon, and the semiconductor material may be un-doped or may include a p-type or n-type dopant. In some examples, the semiconductor material is intrinsic silicon material that is un-doped.
  • the insulating layer 186 is formed of an insulating material, such as silicon oxide and/or silicon nitride, and/or may be formed as an air gap.
  • the channel structure 181 and the stack of layers 190 together form the memory cell string 180.
  • the semiconductor layer 185 corresponds to the channel portions for transistors in the memory cell string 180
  • the gate layers 195 corresponds to the gates of the transistors in the memory cells string 180.
  • a transistor has a gate that controls a channel, and has a drain and a source at each side of the channel.
  • the drain the bottom side of the channel for transistors in FIG. 3
  • the upper side of the channel for transistors in FIG. 3 is referred to as the source. It is noted that the drain and the source can be switched under certain driving configurations. In the FIG.
  • the semiconductor layer 185 corresponds to connected channels of the transistors.
  • the drain of the specific transistor is connected with a source of a lower transistor below the specific transistor, and the source of the specific transistor is connected with a drain of an upper transistor above the specific transistor in the FIG. 3 example.
  • the transistors in the memory cell string 180 are connected in series. It is noted that “upper” and “lower” are used specific to FIG. 3 where the array die 102 is disposed upside down.
  • the memory cell string 180 includes memory cell transistors (or referred to as memory cells) .
  • a memory cell transistor can have different threshold voltages based on carrier trappings in a portion of the charge storage layer 183 that corresponds to a floating gate for the memory cell transistor. For example, when a significant amount of holes are trapped (stored) in the floating gate of the memory cell transistor, the threshold voltage of the memory cell transistor is lower than a predefined value, then the memory cell transistor is in a un-programed state (also referred to as erased state) corresponding to logic “1” . When holes are expelled from the floating gate, the threshold voltage of the memory cell transistor is above a predefined value, thus the memory cell transistor is in a programed state corresponding to logic “0” in some examples.
  • the memory cell string 180 includes one or more top select transistors configured to couple/de-couple the memory cells in the memory cell string 180 to a bit line, and includes one or more bottom select transistors configured to couple/de-couple the memory cells in the memory cell string 180 to the ACS.
  • the top select transistors are controlled by top select gates (TSG) .
  • TSG top select gates
  • the top select transistors in the memory cell string 180 are turned on and the memory cells in the memory cell string 180 are coupled to the bit line (e.g., drain of the string of memory cells is coupled to the bit line) ; and when the TSG voltage (voltage applied to the TSG) is smaller than the threshold voltage of the top select transistors, the top select transistors are turned off and the memory cells in the memory cell string 180 are de-coupled from the bit line (e.g., drain of the string of memory cells is decoupled from the bit line) .
  • TSG top select gates
  • the bottom select transistors are controlled by bottom select gates (BSG) .
  • BSG bottom select gates
  • the bottom select transistors are turned on and the memory cells in the memory cell string 180 are coupled to the ACS (e.g., source of the string of memory cells in the memory cell string 180 is coupled to the ACS) ; and when the BSG voltage (voltage applied to the BSG) is smaller than the threshold voltage of the bottom select transistors, the bottom select transistors are turned off and the memory cells are de-coupled from the ACS (e.g., source of the string of memory cells in the memory cell string 180 is de-coupled from the ACS) .
  • the upper portion of the semiconductor layer 185 in the channel hole corresponds to a source side of the vertical memory cell string 180, and the upper portion is labeled as 185 (S) .
  • a common source layer 189 is formed in conductive connection with the source of the vertical memory cell string 180.
  • the common source layer 189 can includes one or more layers.
  • the common source layer 189 includes silicon material, such as intrinsic polysilicon, doped polysilicon (such as N-type doped silicon, P-type doped silicon and the like) and the like.
  • the common source layer 189 may include metal silicide to improve conductivity.
  • the common source layer 189 is similarly in conductive connection with sources of other vertical memory cell strings (not shown) in the semiconductor portion 105, and thus forms an array common source (ACS) .
  • ACS array common source
  • the semiconductor portion 105 and the common source layer 189 are conductively coupled in some examples, thus the semiconductor portion 105 can be configured as the array common source for the vertical memory cell strings formed in the semiconductor portion 105.
  • the semiconductor layer 185 extends vertically from the source side of the channel structure 181 down, and forms a bottom portion corresponds to a drain side of the vertical memory cell string 180.
  • the bottom portion of the semiconductor layer 185 is labeled as 185 (D) .
  • drain side and the source side are named for the ease of description. The drain side and the source side may function differently from the names.
  • interconnection structures such as a via 162, a metal wire 163, a bonding structure 164, and the like, can be formed to electrically couple the bottom portion of the semiconductor layer 185 (D) to a bit line (BL) .
  • the staircase region 116 includes a staircase that is formed to facilitate word line connections to the gates of transistors (e.g., memory cells, top select transistor (s) , bottom select transistor (s) and the like) .
  • a word line connection structure 150 includes a word line contact plug 151, a via structure 152, and metal wire 153 that are conductively coupled together. The word line connection structure 150 can electrically couple a WL to a gate terminal of a transistor in the memory cell string 180.
  • the contact structures 170 are formed in the insulating region 117.
  • the contact structures 170 can be formed at the same time as the word line connection structures 150 by processing on the face side of the array die 102.
  • the contact structures 170 have similar structures as the word line connection structures 150.
  • a contact structure 170 can include a contact plug 171, a via structure 172, and metal wire 173 that are conductively coupled together.
  • a mask that includes patterns for the contact plugs 171 and the word line contact plugs 151 can be used.
  • the mask is used to form contact holes for the contact plugs 171 and the word line contact plugs 151.
  • Etch process can be used to form the contact holes.
  • etching of the contact holes for the word line contact plugs 151 can stop on the gate layers 195 and the etching of the contact holes for the contact plugs 171 can stop in the oxide layer 112.
  • the contact holes can be filled with suitable liner layer (e.g., titanium/titanium nitride) and a metal layer (e.g., tungsten) to form the contact plugs, such as the contact plugs 171 and the word line contact plugs 151.
  • Further back end of line (BEOL) processes are used to form various connection structures, such via structures, metal wires, bonding structures, and the like.
  • bonding structures are respectively formed on the face sides of the array die 102 and the CMOS die 101.
  • bonding structures 174 and 164 are formed on face side of the array die 102
  • bonding structures 131 and 134 are formed on the face side of the CMOS die 101.
  • the array die 102 and the CMOS die 101 are disposed face-to-face (circuitry side is face, and the substrate side is back) and bonded together.
  • Corresponding bonding structures on the array die 102 and the CMOS die 101 are aligned and bonded together, and form a bonding interface that conductively couple suitable components on the two dies.
  • the bonding structure 164 and the bonding structure 131 are bonded together to couple the drain side of the memory cell string 180 with a bit line (BL) .
  • the bonding structure 174 and the bonding structure 134 are bonded together to couple a contact structure 170 on the array die 102 with an I/O circuit on the CMOS die 101.
  • the first substrate of the first die is removed from the back side of the first die.
  • the removal of the first substrate exposes the semiconductor portion and the contact structures 170 on the back side of the first die.
  • FIG. 4 shows a cross-sectional view of the semiconductor memory device 100 after the removal of the first substrate 103 from the array die 102.
  • the bulk portion 111, the silicon oxide layer 112 and the silicon nitride layer 113 are removed from the back side of the array die 102.
  • a first wafer with array dies is bonded with a second wafer with CMOS dies.
  • the first substrate is thinned from the back side of the first wafer.
  • a chemical mechanical polishing (CMP) process or a grind process is used to remove a majority portion of the bulk portion 111 of the first wafer.
  • CMP chemical mechanical polishing
  • suitable etch process can be used to remove remaining bulk portion 111, the silicon oxide layer 112 and the silicon nitride layer 113 from the back side of the first wafer.
  • the removal of the bulk portion 111, the silicon oxide layer 112 and the silicon nitride layer 113 can reveal the ends (as shown by 175) of the contact structures 170 that protrude from the insulating portions 106.
  • the removal of the bulk portion 111, the silicon oxide layer 112 and the silicon nitride layer 113 can also reveal the semiconductor portion 105.
  • pad structures and connection structures are formed.
  • the pad structures include first pad structures that are conductively connected with the contact structures 170.
  • the connection structures are conductively connected with semiconductor portions 150.
  • the pad structures and the connection structures are mainly formed of aluminum (Al) .
  • interfacing layer (s) can be formed between the aluminum and the semiconductor portion 105.
  • metal silicide thin films can be used as the interfacing layer (s) .
  • a metal silicide thin film can be used to enable ohmic contacts between the aluminum and the semiconductor portion 105.
  • a metal silicide thin film is used to form local interconnects to the semiconductor portion 105.
  • a metal silicide thin film is used as diffusion barriers to prevent aluminum diffusion into the semiconductor portion 105.
  • titanium is deposited overall on the back side of the first wafer that is face-to-face bonded with the second wafer, and is then heated in a nitrogen atmosphere.
  • the titanium can react with exposed silicon surfaces (such as the semiconductor portion 105) to form titanium silicide.
  • the portions e.g., above the insulating portions, above the ends of the contact structures 170 and the like) of titanium which did not react to form silicide.
  • FIG. 5 shows a cross-sectional view of the semiconductor memory device 100 after the deposition of metal film (s) .
  • a metal film 120 is deposited on the back side of the first wafer.
  • the metal film 120 may have uneven surface due to the protrusion by the ends of the contact structures 170.
  • the metal film 120 includes a titanium layer 126 and an aluminum layer 128.
  • the titanium layer 126 on the semiconductor portion 105 can react with silicon surface to form titanium silicide 127.
  • the titanium layer 126 is deposited and heated in nitrogen atmosphere. Then the aluminum layer 128 is deposited.
  • the metal film 120 can be patterned to form pad structures and connection structures.
  • FIG. 6 shows a cross-sectional view of the semiconductor memory device 100 after the metal film 120 is patterned into pad structures 122-123 and connection structure 121.
  • the pad structures 122-123 are respectively connected to the contact structures 170 and are disposed above the insulating portions 106; the connection structure 121 is connected to the semiconductor portion 105.
  • a photolithography process is used to define patterns for the pad structures 122-123 and the connection structure 121 into a photoresist layer according to a mask, then an etch process is used to transfer the patterns into the metal film 120 and to from the pad structures 122-123 and the connection structure 121.
  • films of the connection structure 121 are directly deposited on the semiconductor portion 105, thus an interface between the connection structure 121 and the semiconductor portion 105 is substantially flat over the semiconductor portion 105.
  • the semiconductor portion 105 can be covered by an insulating layer, contact holes are formed in the insulating layer, then suitable metal layers are deposited (into the holes and over the insulating layer) to form contacts and connections.
  • the connection structure 121 is formed without using contact holes in insulating layers, and the interface between the connection structure 121 and the semiconductor portion 105 relatively flat, the bottom surface and the top surface of the connection structure 121 on the semiconductor portion 105 are about the same when etch profile related difference is ignored.
  • the metal film 120 may have uneven surface.
  • the bottom surface of the metal film 120 that interfaces with the insulating portion 106 may have concave portions corresponding to the ends of the contact structures 170, thus the bottom surface of the pad structures 122-123 may have concave portions corresponding to the ends of the contact structures 170.
  • the wafer fabrication process can continue further processes, such as, passivation, testing, dicing and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Geometry (AREA)
  • Semiconductor Memories (AREA)
  • Wire Bonding (AREA)
  • Non-Volatile Memory (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A semiconductor device (100) includes a first die (102) and a second die (101) bonded face-to-face. The first die (102) includes first transistors formed on a face side of the first die (102) in a semiconductor portion (105) and at least a contact structure (170) disposed in an insulating portion (106) outside the semiconductor portion (105). The second die (101) includes a substrate (104) and second transistors formed on a face side of the second die (101). Further, the semiconductor device (100) includes a first pad structure (122, 123) disposed on a back side of the first die (102) and the first pad structure (122, 123) is conductively coupled with the contact structure (170). An end of the contact structure (170) protrudes from the insulating portion (106) into the first pad structure (122, 123). Further, in some embodiments, the semiconductor device (100) includes a connection structure (121) disposed on the back side of the first die (102) and conductively connected with the semiconductor portion (105).

Description

PAD STRUCTURES FOR SEMICONDUCTOR DEVICES TECHNICAL FIELD
The present application describes embodiments generally related to semiconductor memory devices.
BACKGROUND
Generally, a semiconductor device (e.g., a semiconductor chip) communicates with the outside world through various input/output (I/O) pad structures, such as signaling pad structures, and power/ground (P/G) pad structures and the like. In some examples, a semiconductor chip can include multiple metal layers formed on top of circuitry above a substrate. One or more of the metal layers are used to form pad structures that are conductively coupled with the circuitry above the substrate. The pad structures can be formed to facilitate attachment of bonding wires that can conductively couple the pad structures with external components, such as power supply, ground, other semiconductor chips, metal lines on printed circuit board (PCB) and the like.
SUMMARY
Aspects of the disclosure provide a semiconductor device. The semiconductor device includes a first die and a second die boned face-to-face. The first die includes first transistors formed on a face side of the first die in a semiconductor portion and at least a contact structure disposed in an insulating portion outside the semiconductor portion. The second die includes a substrate and second transistors formed on a face side of the second die. Further, the semiconductor device includes a first pad structure disposed on a back side of the first die and the first pad structure is conductively coupled with the contact structure. An end of the contact structure protrudes from the insulating portion into the first pad structure. Further, in some embodiments, the semiconductor device includes a connection structure disposed on the back side of the first die and conductively connected with the semiconductor portion.
In an embodiment, an interface between the connection structure and the semiconductor portion is substantially flat over the semiconductor portion. In some examples, a bottom surface and a top surface of the connection structure on the semiconductor portion are about a same size.
In some embodiments, the contact structure includes at least a first metal material that is different from a second metal material in the first pad structure. In an example, the first metal material includes tungsten and the second metal material includes aluminum.
In some examples, due to the protrusion of the end of the contact structure, a bottom surface of the first pad structure that interfaces with the insulating portion has a concave portion corresponding to the end of the contact structure.
In some embodiments, the first die includes at least a memory cell array formed in the semiconductor portion, and the second die includes a periphery circuit for the memory cell array. The contact structure on the first die is electrically coupled to an input/output circuit on the second die via bonding structures.
In some embodiments, the first die includes an input/output circuit that is electrically coupled to the contact structure.
Aspects of the disclosure provide a method for fabricating a semiconductor device. The method includes bonding a first die and a second die face-to-face. The first die includes a first substrate, first transistors formed in a semiconductor portion on a face side of the first die, and a contact structure disposed in an insulating portion outside the semiconductor portion. The second die includes a second substrate with second transistors formed on a face side of the second. Further, the method includes removing the first substrate from a back side of the first die. The removing of the first substrate exposes an end of the contact structure on the back side of the first die. Then the method includes forming, on the back side of the first die, a first pad structure conductively connected with the contact structure. The end of the contact structure protrudes from the insulating portion inward the first pad structure.
In some embodiments, the method further includes forming, on the back side of the first die, a connection structure that is conductively connected with the semiconductor portion. In an embodiment, the removing of the first substrate exposes the semiconductor portion from the back side of the first die, and the method includes depositing layers for forming the connection structure. An interface of the layers to the semiconductor portion is substantially flat over the semiconductor portion. In some examples, the method includes patterning the layers to form the connection structure. A bottom surface and a top surface of the connection structure on the semiconductor portion are about a same size.
In some embodiments, the method includes depositing, on the contact structure that includes at least a first metal material, a second metal material that is different from the first metal material. The first pad structure includes at least the second metal material. The first metal material can be tungsten and the second metal material can be aluminum in an example.
BRIEF DESCRIPTION OF THE DRAWINGS
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is noted that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
FIG. 1 shows a cross-sectional view of a semiconductor device according to some embodiments of the disclosure.
FIG. 2 shows a flow chart outlining a process for forming a semiconductor device.
FIGs. 3-6 show cross-sectional views of a semiconductor device during a fabrication process in accordance with some embodiments.
DETAILED DESCRIPTION
The following disclosure provides many different embodiments, or examples, for implementing different features of the provided subject matter. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
Further, spatially relative terms, such as “beneath, ” “below, ” “lower, ” “above, ” “upper” and the like, may be used herein for ease of description to describe one element or feature’s relationship to another element (s) or feature (s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
Aspects of the disclosure provide techniques for forming pad structures for a semiconductor device with two dies (e.g., a first die and a second die) bonded face-to-face. The pad structures are formed on a back side of one of the two dies, such as the first die. The techniques to form the pad structures do not need to form through silicon contacts (TSC) from the back side of the first die and simplify the processes to form the pad structures. In some embodiments, circuit components are formed on the face sides of the two dies. Additionally, at least a contact structure is formed in an insulating portion of the first die from the face side of the first die, and the contact structure is connected to an input/output (I/O) circuit. One of the pad structures on the back side of  the first die, such as a first pad structure, is conductively coupled with the contact structure, and the contact structure includes an end that protrudes from the insulating portion inward the first pad structure. In some examples, the first die includes a semiconductor portion with transistors formed in the semiconductor portion. In some embodiments, a connection structure is formed with the pad structures, and is conductively coupled with the semiconductor portion. In an example, the connection structure is conductively coupled with the semiconductor portion without forming contact hole based contacts from the back side of the first die. The pad structures and the connection structure can be formed using same metal layer (s) in some examples.
According to some aspects of the disclosure, the semiconductor device can be a semiconductor memory device in which one of the two dies includes a memory cell array formed on the face side and is referred to as an array die and the other of the two dies includes periphery circuitry formed on the face side and is referred to as periphery die. In some examples, the periphery circuitry is formed using complementary metal–oxide–semiconductor (CMOS) technology, and the periphery die is also referred to as CMOS die. The pad structures and the connection structure can be formed on the back of the array die or can be formed on the back of the periphery die.
In some embodiments, the pad structures and the connection structure are formed on the back side of the array die. The array die includes a memory cell array formed in the semiconductor portion. Then, in an example, the connection structure that is conductively coupled with the semiconductor portion can be configured to provide a connection for an array common source (ACS) of the memory cell array.
According to some aspects of the disclosure, the two dies (e.g., the array die and the periphery die) are formed separately on two wafers. In some embodiments, a first wafer that includes array dies and a second wafer that includes periphery dies are formed separately. For example, the first wafer can be fabricated to optimize density and performance of the memory cell arrays without compromising to fabrication limitations due to the periphery circuitry; and the second wafer can be fabricated to optimize the performance of the periphery circuitry without compromising to  fabrication limitations due to the memory cell array. In some embodiments, the first wafer and the second wafer can be bonded face to face using a wafer-to-wafer bonding technology, thus the array dies on the first wafer are respectively bonded with periphery dies on the second wafer. Then, the techniques provided in the present disclosure can be used to fabricate pad structures on a back side of one of the two wafers.
FIG. 1 shows a cross-sectional view of a semiconductor device, such as a semiconductor memory device 100, according to some embodiments of the disclosure. The semiconductor memory device 100 includes two dies that are bonded face to face. Pad structures and connection structures are formed on a back side of one of the two dies using the techniques provided in the present disclosure.
Specifically, in the FIG. 1 example, the semiconductor memory device 100 includes an array die 102 and a CMOS die 101 bonded face to face. It is noted that, in some embodiments, a semiconductor memory device can include multiple array dies and a CMOS die. The multiple array dies and the CMOS die can be stacked and bonded together. The CMOS die is respectively coupled to the multiple array dies, and can drive the respective array dies in a similar manner.
The semiconductor device 100 can be any suitable device. In some examples, the semiconductor device 100 includes at least a first wafer and a second wafer bonded face to face. The array die 102 is disposed with other array dies on the first wafer, and the CMOS die 101 is disposed with other CMOS dies on the second wafer. The first wafer and the second wafer are bonded together, thus the array dies on the first wafer are bonded with corresponding CMOS dies on the second wafer. In some examples, the semiconductor device 100 is a semiconductor chip with at least the array die 102 and the CMOS die 101 bonded together. In an example, the semiconductor chip is diced from wafers that are bonded together. In another example, the semiconductor device 100 is a semiconductor package that includes one or more semiconductor chips assembled on a package substrate.
The array die 102 includes one or more semiconductor portions 105, and insulating portions 106 between the semiconductor portions 105. The memory cell  arrays can be formed in the semiconductor portions 105, the insulating portions can isolate the semiconductor portions 105 and provide space for contact structures 170. The CMOS die 101 includes a substrate 104, and peripheral circuitry formed on the substrate 104. For simplicity, the main surface (of the dies or wafers) is referred to as an X-Y plane, and the direction perpendicular to the main surface is referred to as Z direction.
Further, in the FIG. 1 example, connection structures 121 and pad structures 122-123 are formed on a back side of one of the two dies, such as the array die 102. Specifically, in the FIG. 1 example, the pad structures 122-123 are above the insulating portions 106 and each of the pad structures 122-123 can be conductively connected with one or more of the contact structures 170. In the FIG. 1 example, a connection structure 121 is above a semiconductor portion 105 and is conductively connected to the semiconductor portion 105. In some examples, the semiconductor portion 105 is coupled to an array common source (ACS) for a memory cell array, and the connection structure 121 is disposed over semiconductor portion (s) 105 for a block of memory cell arrays. In some example, the connection structure 121 is formed of metal layers of relatively low resistivity, and when the connection structure 121 covers a relatively large portion of the semiconductor portion 105, the connection structure 121 can connect the ACS of the block of the memory cell arrays with very small parasitic resistance. The connection structure 121 can include a portion that is configured as a pad structure for ACS to receive ACS signal from an external source. The pad structures 122-123 and the connection structure 121 are made of suitable metal material (s) , such as aluminum, and the like that can facilitate attachment of bonding wires. In some examples, the pad structures 122-123 include a titanium layer 126 and an aluminum layer 128, and the connection structure 121 includes a titanium silicide layer 127 and the aluminum layer 128.
It is noted that, for ease of illustration, some components of the semiconductor memory device 100, such as passivation structures, and the like are not shown.
It is noted that the array die 102 initially includes a substrate and semiconductor portions 105 and the insulating portions 106 are formed on the substrate. The substrate is removed before the formation the pad structures 122-123 and the connection structure 121.
FIG. 2 shows a flow chart outlining a process 200 for forming a semiconductor memory device, such as the semiconductor memory device 100 according to some embodiments of the disclosure, and FIGs. 3-6 show cross-sectional views of the semiconductor device 100 during the process in accordance with some embodiments. The process 200 starts from S201 and proceeds to S210.
At S210, a first die and a second die are bonded face to face. The first die includes a first substrate, and includes semiconductor portions and insulating portions disposed on the first substrate on the face side. The insulating portions can insulate the semiconductor portions. The first die also includes first transistors formed in the semiconductor portions from the face side of the first die. Further, the first die includes contact structures disposed in the insulating portions that are outside the semiconductor portions. The insulating portions can also insulate the contact structures from each other and from the semiconductor portions. The second die includes a second substrate with second transistors formed on a face side of the second die.
In some embodiments, the first die is an array die, such as the array die 102 and the second die is a CMOS die, such as the CMOS die 101. In some examples, the first die can be a CMOS die and the second die can be an array die.
FIG. 3 shows a cross-sectional view of the semiconductor memory device 100 after a bonding process of two dies. The semiconductor memory device 100 includes the array die 102 and the CMOS die 101 that are bonded face to face.
In some embodiments, the array die 102 is fabricated with other array dies on a first wafer, and the CMOS die 101 is fabricated with other CMOS dies on a second wafer. In some examples, the first wafer and the second wafer are fabricated separately. For examples, memory cell arrays and I/O contact structures are formed on the first  wafer using processes that operate on the face side of the first wafer. Further, first bonding structures are formed on the face side of the first wafer. Similarly, periphery circuitry is formed on the second wafer using processes that operate on the face side of the second wafer, and second bonding structures are formed on the face side of the second wafer.
In some embodiments, the first wafer and the second wafer can be bonded face to face using a wafer-to-wafer bonding technology. The first bonding structures on the first wafer are bonded with corresponding second bonding structures on the second wafer, thus the array dies on the first wafer are respectively bonded with the CMOS dies on the second wafer.
The array die 102 includes a substrate 103. On the substrate 103, one or more semiconductor portions 105 and insulating portions 106 are formed. The insulating portions 106 are formed of insulating material, such as silicon oxide and the like that can insulate the semiconductor portions 105. Further, memory cell arrays can be formed in the semiconductor portions 105 and contact structures can be formed in the insulating portions 106. The CMOS die 101 includes a substrate 104, and includes peripheral circuitry formed on the substrate 104.
The substrate 103 and the substrate 104 respectively can be any suitable substrate, such as a silicon (Si) substrate, a germanium (Ge) substrate, a silicon-germanium (SiGe) substrate, and/or a silicon-on-insulator (SOI) substrate. The substrate 103 and the substrate 104 respectively may include a semiconductor material, for example, a Group IV semiconductor, a Group III-V compound semiconductor, or a Group II-VI oxide semiconductor. The Group IV semiconductor may include Si, Ge, or SiGe. The substrate 103 and the substrate 104 respectively may be a bulk wafer or an epitaxial layer. In some examples, a substrate is formed of multiple layers. For example, the substrate 103 includes multiple layers, such as a bulk portion 111, a silicon oxide layer 112 and a silicon nitride layer 113, as shown in FIG. 3.
In the FIG. 3 example, the memory cell arrays are formed on the substrate 103 of the array die 102 and the peripheral circuitry is formed on the substrate 104 of the  CMOS die 101. The array die 102 and the CMOS die 101 are disposed face to face (the surface with circuitry disposed on is referred to as face, and the opposite surface is referred to as back) , and bonded together.
In some examples, a semiconductor portion 105 is formed on the substrate 103, and a block of three dimensional (3D) NAND memory cell strings can be formed in the semiconductor portion 105. The semiconductor portion 105 is conductively coupled with an array common source of the memory cell strings. In some examples, a memory cell array is formed in a core region 115 as an array of vertical memory cell strings. Besides the core region 115, the array die 102 includes a staircase region 116 and an insulating region 117. The staircase region 116 is used to facilitate making connections to, for example, gates of the memory cells in the vertical memory cell strings, gates of the select transistors, and the like. The gates of the memory cells in the vertical memory cell strings correspond to word lines for the NAND memory architecture. The insulating region 117 is used to form the insulating portion 106.
In the FIG. 3 example, vertical memory cell strings 180 are shown as representation of an array of vertical memory cell strings formed in the core region 115. The vertical memory cell strings 180 are formed in a stack of layers 190. The stack of layers 190 includes gate layers 195 and insulating layers 194 that are stacked alternatingly. The gate layers 195 and the insulating layers 194 are configured to form transistors that are stacked vertically. In some examples, the stack of transistors includes memory cells and select transistors, such as one or more bottom select transistors, one or more top select transistors and the like. In some examples, the stack of transistors can include one or more dummy select transistors. The gate layers 195 correspond to gates of the transistors. The gate layers 195 are made of gate stack materials, such as high dielectric constant (high-k) gate insulator layers, metal gate (MG) electrode, and the like. The insulating layers 194 are made of insulating material (s) , such as silicon nitride, silicon dioxide, and the like.
According to some aspects of the disclosure, the vertical memory cell strings are formed of channel structures 181 that extend vertically (Z direction) into the stack  of layers 190. The channel structures 181 can be disposed separate from each other in the X-Y plane. In some embodiments, the channel structures 181 are disposed in the form of arrays between gate line cut structures (not shown) . The gate line cut structures are used to facilitate replacement of sacrificial layers with the gate layers 195 in a gate-last process. The arrays of the channel structures 181 can have any suitable array shape, such as a matrix array shape along the X direction and the Y direction, a zig-zag array shape along the X or Y direction, a beehive (e.g., hexagonal) array shape, and the like. In some embodiments, each of the channel structures has a circular shape in the X-Y plane, and a pillar shape in the X-Z plane and Y-Z plane. In some embodiments, the quantity and arrangement of the channel structures between gate line cut structures is not limited.
In some embodiments, the channel structure 181 has a pillar shape that extends in the Z direction that is perpendicular to the direction of the main surface of the substrate 103. In an embodiment, the channel structure 181 is formed by materials in the circular shape in the X-Y plane, and extends in the Z direction. For example, the channel structure 181 includes function layers, such as a blocking insulating layer 182 (e.g., silicon oxide) , a charge storage layer (e.g., silicon nitride) 183, a tunneling insulating layer 184 (e.g., silicon oxide) , a semiconductor layer 185, and an insulating layer 186 that have the circular shape in the X-Y plane, and extend in the Z direction. In an example, the blocking insulating layer 182 (e.g., silicon oxide) is formed on the sidewall of a hole (into the stack of layers 190) for the channel structure 181, and then the charge storage layer (e.g., silicon nitride) 183, the tunneling insulating layer 184, the semiconductor layer 185, and the insulating layer 186 are sequentially stacked from the sidewall. The semiconductor layer 185 can be any suitable semiconductor material, such as polysilicon or monocrystalline silicon, and the semiconductor material may be un-doped or may include a p-type or n-type dopant. In some examples, the semiconductor material is intrinsic silicon material that is un-doped. However due to defects, intrinsic silicon material can have a carrier density in the order of 10 10 cm -3 in some examples. The insulating layer 186 is formed of an insulating material, such as silicon oxide and/or silicon nitride, and/or may be formed as an air gap.
According to some aspects of the disclosure, the channel structure 181 and the stack of layers 190 together form the memory cell string 180. For example, the semiconductor layer 185 corresponds to the channel portions for transistors in the memory cell string 180, and the gate layers 195 corresponds to the gates of the transistors in the memory cells string 180. Generally, a transistor has a gate that controls a channel, and has a drain and a source at each side of the channel. For simplicity, in the FIG. 3 example, the bottom side of the channel for transistors in FIG. 3 is referred to as the drain, and the upper side of the channel for transistors in FIG. 3 is referred to as the source. It is noted that the drain and the source can be switched under certain driving configurations. In the FIG. 3 example, the semiconductor layer 185 corresponds to connected channels of the transistors. For a specific transistor, the drain of the specific transistor is connected with a source of a lower transistor below the specific transistor, and the source of the specific transistor is connected with a drain of an upper transistor above the specific transistor in the FIG. 3 example. Thus, the transistors in the memory cell string 180 are connected in series. It is noted that “upper” and “lower” are used specific to FIG. 3 where the array die 102 is disposed upside down.
The memory cell string 180 includes memory cell transistors (or referred to as memory cells) . A memory cell transistor can have different threshold voltages based on carrier trappings in a portion of the charge storage layer 183 that corresponds to a floating gate for the memory cell transistor. For example, when a significant amount of holes are trapped (stored) in the floating gate of the memory cell transistor, the threshold voltage of the memory cell transistor is lower than a predefined value, then the memory cell transistor is in a un-programed state (also referred to as erased state) corresponding to logic “1” . When holes are expelled from the floating gate, the threshold voltage of the memory cell transistor is above a predefined value, thus the memory cell transistor is in a programed state corresponding to logic “0” in some examples.
The memory cell string 180 includes one or more top select transistors configured to couple/de-couple the memory cells in the memory cell string 180 to a bit  line, and includes one or more bottom select transistors configured to couple/de-couple the memory cells in the memory cell string 180 to the ACS.
The top select transistors are controlled by top select gates (TSG) . For example, when a TSG voltage (voltage applied to the TSG) is larger than a threshold voltage of the top select transistors, the top select transistors in the memory cell string 180 are turned on and the memory cells in the memory cell string 180 are coupled to the bit line (e.g., drain of the string of memory cells is coupled to the bit line) ; and when the TSG voltage (voltage applied to the TSG) is smaller than the threshold voltage of the top select transistors, the top select transistors are turned off and the memory cells in the memory cell string 180 are de-coupled from the bit line (e.g., drain of the string of memory cells is decoupled from the bit line) .
Similarly, the bottom select transistors are controlled by bottom select gates (BSG) . For example, when a BSG voltage (voltage applied to the BSG) is larger than a threshold voltage of the bottom select transistors in a memory cell string 180, the bottom select transistors are turned on and the memory cells in the memory cell string 180 are coupled to the ACS (e.g., source of the string of memory cells in the memory cell string 180 is coupled to the ACS) ; and when the BSG voltage (voltage applied to the BSG) is smaller than the threshold voltage of the bottom select transistors, the bottom select transistors are turned off and the memory cells are de-coupled from the ACS (e.g., source of the string of memory cells in the memory cell string 180 is de-coupled from the ACS) .
Shown in FIG. 3, the upper portion of the semiconductor layer 185 in the channel hole corresponds to a source side of the vertical memory cell string 180, and the upper portion is labeled as 185 (S) . In the FIG. 3 example, a common source layer 189 is formed in conductive connection with the source of the vertical memory cell string 180. The common source layer 189 can includes one or more layers. In some examples, the common source layer 189 includes silicon material, such as intrinsic polysilicon, doped polysilicon (such as N-type doped silicon, P-type doped silicon and the like) and the like. In some examples, the common source layer 189 may include  metal silicide to improve conductivity. The common source layer 189 is similarly in conductive connection with sources of other vertical memory cell strings (not shown) in the semiconductor portion 105, and thus forms an array common source (ACS) .
According to some aspects of the disclosure, the semiconductor portion 105 and the common source layer 189 are conductively coupled in some examples, thus the semiconductor portion 105 can be configured as the array common source for the vertical memory cell strings formed in the semiconductor portion 105.
In the FIG. 3 example, in the channel structure 181, the semiconductor layer 185 extends vertically from the source side of the channel structure 181 down, and forms a bottom portion corresponds to a drain side of the vertical memory cell string 180. The bottom portion of the semiconductor layer 185 is labeled as 185 (D) . It is noted that drain side and the source side are named for the ease of description. The drain side and the source side may function differently from the names.
In the FIG. 3 example, interconnection structures, such as a via 162, a metal wire 163, a bonding structure 164, and the like, can be formed to electrically couple the bottom portion of the semiconductor layer 185 (D) to a bit line (BL) .
Further in FIG. 3 example, the staircase region 116 includes a staircase that is formed to facilitate word line connections to the gates of transistors (e.g., memory cells, top select transistor (s) , bottom select transistor (s) and the like) . For example, a word line connection structure 150 includes a word line contact plug 151, a via structure 152, and metal wire 153 that are conductively coupled together. The word line connection structure 150 can electrically couple a WL to a gate terminal of a transistor in the memory cell string 180.
In the FIG. 3 example, the contact structures 170 are formed in the insulating region 117. In some embodiments, the contact structures 170 can be formed at the same time as the word line connection structures 150 by processing on the face side of the array die 102. Thus, in some examples, the contact structures 170 have similar structures as the word line connection structures 150. Specifically, a contact structure  170 can include a contact plug 171, a via structure 172, and metal wire 173 that are conductively coupled together.
In some examples, a mask that includes patterns for the contact plugs 171 and the word line contact plugs 151 can be used. The mask is used to form contact holes for the contact plugs 171 and the word line contact plugs 151. Etch process can be used to form the contact holes. In an example, etching of the contact holes for the word line contact plugs 151 can stop on the gate layers 195 and the etching of the contact holes for the contact plugs 171 can stop in the oxide layer 112. Further, the contact holes can be filled with suitable liner layer (e.g., titanium/titanium nitride) and a metal layer (e.g., tungsten) to form the contact plugs, such as the contact plugs 171 and the word line contact plugs 151. Further back end of line (BEOL) processes are used to form various connection structures, such via structures, metal wires, bonding structures, and the like.
Further, in the FIG. 3 examples, bonding structures are respectively formed on the face sides of the array die 102 and the CMOS die 101. For example,  bonding structures  174 and 164 are formed on face side of the array die 102, and  bonding structures  131 and 134 are formed on the face side of the CMOS die 101.
In the FIG. 3 example, the array die 102 and the CMOS die 101 are disposed face-to-face (circuitry side is face, and the substrate side is back) and bonded together. Corresponding bonding structures on the array die 102 and the CMOS die 101 are aligned and bonded together, and form a bonding interface that conductively couple suitable components on the two dies. For example, the bonding structure 164 and the bonding structure 131 are bonded together to couple the drain side of the memory cell string 180 with a bit line (BL) . In another example, the bonding structure 174 and the bonding structure 134 are bonded together to couple a contact structure 170 on the array die 102 with an I/O circuit on the CMOS die 101.
Referring back to S220, the first substrate of the first die is removed from the back side of the first die. The removal of the first substrate exposes the semiconductor portion and the contact structures 170 on the back side of the first die.
FIG. 4 shows a cross-sectional view of the semiconductor memory device 100 after the removal of the first substrate 103 from the array die 102. In the FIG. 4 example, the bulk portion 111, the silicon oxide layer 112 and the silicon nitride layer 113 are removed from the back side of the array die 102. In some examples, after a wafer-to-wafer bonding process, a first wafer with array dies is bonded with a second wafer with CMOS dies. Then, the first substrate is thinned from the back side of the first wafer. In an example, a chemical mechanical polishing (CMP) process or a grind process is used to remove a majority portion of the bulk portion 111 of the first wafer. Further, suitable etch process can be used to remove remaining bulk portion 111, the silicon oxide layer 112 and the silicon nitride layer 113 from the back side of the first wafer. The removal of the bulk portion 111, the silicon oxide layer 112 and the silicon nitride layer 113 can reveal the ends (as shown by 175) of the contact structures 170 that protrude from the insulating portions 106. The removal of the bulk portion 111, the silicon oxide layer 112 and the silicon nitride layer 113 can also reveal the semiconductor portion 105.
Referring back to FIG. 2, at S230, at the back side of the first die, pad structures and connection structures are formed. In some embodiments, the pad structures include first pad structures that are conductively connected with the contact structures 170. The connection structures are conductively connected with semiconductor portions 150.
In some embodiments, the pad structures and the connection structures are mainly formed of aluminum (Al) . In some embodiments, interfacing layer (s) can be formed between the aluminum and the semiconductor portion 105. In some examples, metal silicide thin films can be used as the interfacing layer (s) . In an example, a metal silicide thin film can be used to enable ohmic contacts between the aluminum and the semiconductor portion 105. In another example, a metal silicide thin film is used to form local interconnects to the semiconductor portion 105. In another example, a metal silicide thin film is used as diffusion barriers to prevent aluminum diffusion into the semiconductor portion 105.
In some examples, titanium is deposited overall on the back side of the first wafer that is face-to-face bonded with the second wafer, and is then heated in a nitrogen atmosphere. The titanium can react with exposed silicon surfaces (such as the semiconductor portion 105) to form titanium silicide. The portions (e.g., above the insulating portions, above the ends of the contact structures 170 and the like) of titanium which did not react to form silicide.
Then, metal film (s) can be formed on the surface of the back side of the first wafer. FIG. 5 shows a cross-sectional view of the semiconductor memory device 100 after the deposition of metal film (s) . In the FIG. 5 example, a metal film 120 is deposited on the back side of the first wafer. The metal film 120 may have uneven surface due to the protrusion by the ends of the contact structures 170. In some embodiments, the metal film 120 includes a titanium layer 126 and an aluminum layer 128. In an embodiment, the titanium layer 126 on the semiconductor portion 105 can react with silicon surface to form titanium silicide 127. For example, the titanium layer 126 is deposited and heated in nitrogen atmosphere. Then the aluminum layer 128 is deposited.
The metal film 120 can be patterned to form pad structures and connection structures. FIG. 6 shows a cross-sectional view of the semiconductor memory device 100 after the metal film 120 is patterned into pad structures 122-123 and connection structure 121. In the FIG. 6 example, the pad structures 122-123 are respectively connected to the contact structures 170 and are disposed above the insulating portions 106; the connection structure 121 is connected to the semiconductor portion 105. In some embodiments, a photolithography process is used to define patterns for the pad structures 122-123 and the connection structure 121 into a photoresist layer according to a mask, then an etch process is used to transfer the patterns into the metal film 120 and to from the pad structures 122-123 and the connection structure 121.
According to an aspect of the disclosure, films of the connection structure 121 are directly deposited on the semiconductor portion 105, thus an interface between the connection structure 121 and the semiconductor portion 105 is substantially flat over  the semiconductor portion 105. In a related example, the semiconductor portion 105 can be covered by an insulating layer, contact holes are formed in the insulating layer, then suitable metal layers are deposited (into the holes and over the insulating layer) to form contacts and connections. Comparing to the related example, the connection structure 121 is formed without using contact holes in insulating layers, and the interface between the connection structure 121 and the semiconductor portion 105 relatively flat, the bottom surface and the top surface of the connection structure 121 on the semiconductor portion 105 are about the same when etch profile related difference is ignored.
According to another aspect of the disclosure, due to the protrusion of the ends of the contact structures 170, the metal film 120 may have uneven surface. For example, the bottom surface of the metal film 120 that interfaces with the insulating portion 106 may have concave portions corresponding to the ends of the contact structures 170, thus the bottom surface of the pad structures 122-123 may have concave portions corresponding to the ends of the contact structures 170.
The wafer fabrication process can continue further processes, such as, passivation, testing, dicing and the like.
The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.

Claims (20)

  1. A semiconductor device, comprising:
    a first die and a second die boned face-to-face, the first die comprising first transistors formed on a face side of the first die in a semiconductor portion and at least a contact structure disposed in an insulating portion outside the semiconductor portion, the second die comprising a substrate and second transistors formed on a face side of the second die; and
    a first pad structure disposed on a back side of the first die and conductively coupled with the contact structure, an end of the contact structure protruding from the insulating portion into the first pad structure.
  2. The semiconductor device of claim 1, further comprising:
    a connection structure disposed on the back side of the first die and conductively connected with the semiconductor portion.
  3. The semiconductor device of claim 2, wherein an interface between the connection structure and the semiconductor portion is substantially flat over the semiconductor portion.
  4. The semiconductor device of claim 2, wherein a bottom surface and a top surface of the connection structure on the semiconductor portion are about a same size.
  5. The semiconductor device of claim 1, wherein the contact structure includes at least a first metal material that is different from a second metal material in the first pad structure.
  6. The semiconductor device of claim 5, wherein the first metal material comprises tungsten and the second metal material comprises aluminum.
  7. The semiconductor device of claim 1, wherein a bottom surface of the first pad structure that interfaces with the insulating portion has a concave portion corresponding to the end of the contact structure.
  8. The semiconductor device of claim 1, wherein the first die comprises at least a memory cell array formed in the semiconductor portion, the second die comprises a periphery circuit for the memory cell array.
  9. The semiconductor device of claim 8, wherein the contact structure on the first die is electrically coupled to an input/output circuit on the second die via bonding structures.
  10. The semiconductor device of claim 1, wherein the first die comprises an input/output circuit that is electrically coupled to the contact structure.
  11. A method for fabricating a semiconductor device, comprising:
    bonding a first die and a second die face-to-face, the first die comprising a first substrate, first transistors formed in a semiconductor portion on a face side of the first substrate, and a contact structure disposed in an insulating portion outside the semiconductor portion, the second die comprising a second substrate with second transistors formed on a face side of the second substrate
    removing the first substrate from a back side of the first die, the removing of the first substrate exposing an end of the contact structure on the back side of the first die; and
    forming, on the back side of the first die, a first pad structure conductively connected with the contact structure, the end of the contact structure protruding from the insulating portion inward the first pad structure.
  12. The method of claim 11, further comprising:
    forming, on the back side of the first die, a connection structure that is conductively connected with the semiconductor portion.
  13. The method of claim 12, wherein the removing of the first substrate exposes the semiconductor portion from the back side of the first die, and the method comprises:
    depositing layers for forming the connection structure, an interface of the layers to the semiconductor portion being substantially flat over the semiconductor portion.
  14. The method of claim 13, further comprising:
    patterning the layers to form the connection structure with a bottom surface and a top surface of the connection structure on the semiconductor portion being about a same size.
  15. The method of claim 11, wherein further comprising:
    depositing, on the contact structure that comprises at least a first metal material, a second metal material that is different from the first metal material, the first pad structure comprising at least the second metal material.
  16. The method of claim 15, wherein the first metal material comprises tungsten and the second metal material comprises aluminum.
  17. The method of claim 11, wherein forming the first pad structure further comprises:
    depositing one or more layers for forming the first pad structure on the insulating portion with the end of the contact structure protruding from the insulating portion, a bottom surface of the one or more layers that interfaces with the insulating portion having a concave portion corresponding to the end of the contact structure.
  18. The method of claim 11, wherein the first die comprises at least a memory cell array formed in the semiconductor portion, the second die comprises a periphery circuit for the memory cell array.
  19. The method of claim 18, wherein bonding the first die and the second die face-to-face further comprises:
    bonding a first bonding structure on the first die with a second bonding structure on the second die, the first bonding structure being conductively coupled with the contact structure on the first die and the second bonding structure being conductively coupled with an input/output circuit on the second die.
  20. The method of claim 11, wherein the first die comprises an input/output circuit that is electrically coupled to the contact structure.
PCT/CN2020/112978 2020-09-02 2020-09-02 Pad structures for semiconductor devices WO2022047648A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2020/112978 WO2022047648A1 (en) 2020-09-02 2020-09-02 Pad structures for semiconductor devices
EP20951896.8A EP4139958A4 (en) 2020-09-02 2020-09-02 Pad structures for semiconductor devices
JP2022578919A JP7547514B2 (en) 2020-09-02 2020-09-02 Pad structure for semiconductor device
CN202080002320.4A CN112204734B (en) 2020-09-02 2020-09-02 Pad structure of semiconductor device
KR1020227044873A KR20230013279A (en) 2020-09-02 2020-09-02 Pad structure for semiconductor devices
TW109137447A TWI755121B (en) 2020-09-02 2020-10-28 Pad structure of semiconductor element
US17/127,019 US11424221B2 (en) 2020-09-02 2020-12-18 Pad structures for semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/112978 WO2022047648A1 (en) 2020-09-02 2020-09-02 Pad structures for semiconductor devices

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/127,019 Continuation US11424221B2 (en) 2020-09-02 2020-12-18 Pad structures for semiconductor devices

Publications (1)

Publication Number Publication Date
WO2022047648A1 true WO2022047648A1 (en) 2022-03-10

Family

ID=74033785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112978 WO2022047648A1 (en) 2020-09-02 2020-09-02 Pad structures for semiconductor devices

Country Status (7)

Country Link
US (1) US11424221B2 (en)
EP (1) EP4139958A4 (en)
JP (1) JP7547514B2 (en)
KR (1) KR20230013279A (en)
CN (1) CN112204734B (en)
TW (1) TWI755121B (en)
WO (1) WO2022047648A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11462497B2 (en) * 2020-10-14 2022-10-04 Western Digital Technologies, Inc. Semiconductor device including coupled bond pads having differing numbers of pad legs
KR20220142199A (en) * 2021-04-14 2022-10-21 에스케이하이닉스 주식회사 Semiconductor memory device and manufacturing method thereof
WO2022256949A1 (en) * 2021-06-07 2022-12-15 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory devices and methods for forming the same
JP2024510338A (en) * 2021-08-30 2024-03-06 長江存儲科技有限責任公司 Contact structure and method of forming it
JP2024509989A (en) * 2021-08-31 2024-03-05 長江存儲科技有限責任公司 Pad structure for semiconductor devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10354987B1 (en) * 2018-03-22 2019-07-16 Sandisk Technologies Llc Three-dimensional memory device containing bonded chip assembly with through-substrate via structures and method of making the same
US20200258816A1 (en) 2019-02-13 2020-08-13 Sandisk Technologies Llc Bonded three-dimensional memory devices and methods of making the same by replacing carrier substrate with source layer
CN111566815A (en) * 2020-04-14 2020-08-21 长江存储科技有限责任公司 Three-dimensional memory device with backside source contact

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6507119B2 (en) * 2000-11-30 2003-01-14 Siliconware Precision Industries Co., Ltd. Direct-downset flip-chip package assembly and method of fabricating the same
US9502471B1 (en) * 2015-08-25 2016-11-22 Sandisk Technologies Llc Multi tier three-dimensional memory devices including vertically shared bit lines
US10276402B2 (en) * 2016-03-21 2019-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor package and manufacturing process thereof
JP2018148071A (en) * 2017-03-07 2018-09-20 東芝メモリ株式会社 Storage device
US10283493B1 (en) * 2018-01-17 2019-05-07 Sandisk Technologies Llc Three-dimensional memory device containing bonded memory die and peripheral logic die and method of making thereof
EP3669398A4 (en) * 2018-03-22 2021-09-01 SanDisk Technologies LLC Three-dimensional memory device containing bonded chip assembly with through-substrate via structures and method of making the same
KR102650996B1 (en) * 2018-11-06 2024-03-26 삼성전자주식회사 Semiconductor device
US10868025B2 (en) * 2018-11-26 2020-12-15 Sandisk Technologies Llc Three-dimensional memory device including replacement crystalline channels and methods of making the same
US10957680B2 (en) * 2019-01-16 2021-03-23 Sandisk Technologies Llc Semiconductor die stacking using vertical interconnection by through-dielectric via structures and methods for making the same
US11355486B2 (en) * 2019-02-13 2022-06-07 Sandisk Technologies Llc Bonded three-dimensional memory devices and methods of making the same by replacing carrier substrate with source layer
US10629616B1 (en) * 2019-02-13 2020-04-21 Sandisk Technologies Llc Bonded three-dimensional memory devices and methods of making the same by replacing carrier substrate with source layer
US10714497B1 (en) * 2019-03-04 2020-07-14 Sandisk Technologies Llc Three-dimensional device with bonded structures including a support die and methods of making the same
US11069703B2 (en) * 2019-03-04 2021-07-20 Sandisk Technologies Llc Three-dimensional device with bonded structures including a support die and methods of making the same
KR20210114016A (en) * 2019-04-30 2021-09-17 양쯔 메모리 테크놀로지스 씨오., 엘티디. Bonded semiconductor device having processor and NAND flash memory, and method of forming same
US11342244B2 (en) * 2020-01-21 2022-05-24 Sandisk Technologies Llc Bonded assembly of semiconductor dies containing pad level across-die metal wiring and method of forming the same
US11127650B2 (en) * 2020-02-24 2021-09-21 Advanced Semiconductor Engineering, Inc. Semiconductor device package including thermal dissipation element and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10354987B1 (en) * 2018-03-22 2019-07-16 Sandisk Technologies Llc Three-dimensional memory device containing bonded chip assembly with through-substrate via structures and method of making the same
US20200258816A1 (en) 2019-02-13 2020-08-13 Sandisk Technologies Llc Bonded three-dimensional memory devices and methods of making the same by replacing carrier substrate with source layer
CN111566815A (en) * 2020-04-14 2020-08-21 长江存储科技有限责任公司 Three-dimensional memory device with backside source contact

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4139958A4

Also Published As

Publication number Publication date
US11424221B2 (en) 2022-08-23
TW202211478A (en) 2022-03-16
US20220068882A1 (en) 2022-03-03
KR20230013279A (en) 2023-01-26
JP7547514B2 (en) 2024-09-09
TWI755121B (en) 2022-02-11
CN112204734A (en) 2021-01-08
JP2023531482A (en) 2023-07-24
EP4139958A4 (en) 2023-10-18
EP4139958A1 (en) 2023-03-01
CN112204734B (en) 2024-09-17

Similar Documents

Publication Publication Date Title
US10903164B2 (en) Bonded assembly including a semiconductor-on-insulator die and methods for making the same
US20200258904A1 (en) Bonded three-dimensional memory devices and methods of making the same by replacing carrier substrate with source layer
US11424221B2 (en) Pad structures for semiconductor devices
US11569215B2 (en) Three-dimensional memory device with vertical field effect transistors and method of making thereof
US10896931B1 (en) 3D semiconductor device and structure
US11948901B2 (en) Vertical memory devices
US11018191B1 (en) 3D semiconductor device and structure
US11963352B2 (en) Three-dimensional memory device with vertical field effect transistors and method of making thereof
US11133351B2 (en) 3D semiconductor device and structure
US11688695B2 (en) Semiconductor devices with shielding structures
US20230189537A1 (en) 3d semiconductor devices and structures
US10290682B2 (en) 3D IC semiconductor device and structure with stacked memory
US11024673B1 (en) 3D semiconductor device and structure
US20230062321A1 (en) Pad structures for semiconductor devices
US11956976B2 (en) 3D semiconductor devices and structures with transistors
US10825864B2 (en) 3D semiconductor device and structure
US11158674B2 (en) Method to produce a 3D semiconductor device and structure
US20230284443A1 (en) Three-dimensional memory device containing a pillar contact between channel and source and methods of making the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951896

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020951896

Country of ref document: EP

Effective date: 20221124

ENP Entry into the national phase

Ref document number: 2022578919

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20227044873

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE