WO2022044321A1 - 冷凍サイクルシステム - Google Patents

冷凍サイクルシステム Download PDF

Info

Publication number
WO2022044321A1
WO2022044321A1 PCT/JP2020/032872 JP2020032872W WO2022044321A1 WO 2022044321 A1 WO2022044321 A1 WO 2022044321A1 JP 2020032872 W JP2020032872 W JP 2020032872W WO 2022044321 A1 WO2022044321 A1 WO 2022044321A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
abnormality determination
compressor
decompression
refrigerant circuit
Prior art date
Application number
PCT/JP2020/032872
Other languages
English (en)
French (fr)
Inventor
大樹 広崎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202080103233.8A priority Critical patent/CN115917223A/zh
Priority to JP2022545253A priority patent/JP7334865B2/ja
Priority to PCT/JP2020/032872 priority patent/WO2022044321A1/ja
Priority to DE112020007565.6T priority patent/DE112020007565T5/de
Priority to US17/911,726 priority patent/US20230111875A1/en
Publication of WO2022044321A1 publication Critical patent/WO2022044321A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current
    • F25B2700/151Power, e.g. by voltage or current of the compressor motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This disclosure relates to a refrigeration cycle system.
  • Patent Document 1 as a technique for determining an abnormality in the refrigerant circuit of a heat pump water heater, a current value detecting means for detecting the current value flowing through the compressor is provided, and the current value is within a predetermined time after the compressor is started. A technique for stopping the operation of a compressor when the current value detected by the detecting means exceeds a predetermined value is disclosed.
  • the measured value of the current changes according to the variation in characteristics due to the individual difference of the measuring instrument for measuring the current, or the difference in the outside air temperature and other environmental conditions. Therefore, it may not be possible to properly detect an abnormality in the refrigerant circuit.
  • the present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to provide a refrigeration cycle system capable of appropriately detecting an abnormality in a refrigerant circuit.
  • the refrigeration cycle system of the present disclosure includes a compressor that compresses the refrigerant, a cooler that cools the refrigerant compressed by the compressor, a decompression device that decompresses the refrigerant that has passed through the cooler, and a refrigerant that has passed through the decompression device.
  • a refrigerant circuit having an evaporator for evaporating, a measuring means for measuring a related physical amount which is a physical amount related to the state of the refrigerant circuit, and an abnormality of the refrigerant circuit are detected when the operation of the refrigeration cycle by the refrigerant circuit is started.
  • the decompression device is provided with a control means for executing the abnormality determination mode, and the decompression device can be switched between the first decompression amount state and the second decompression amount state in which the decompression amount is smaller than the first decompression amount state.
  • the control means puts the decompression device in the first decompression amount state, operates the compressor at the first speed, and the control means measures the measuring means when the first time has elapsed from the start of the abnormality determination mode.
  • the decompression device After storing the value of the related physical quantity measured by the above as the first measured value, the decompression device is switched from the first decompression amount state to the second decompression amount state, and the decompression device is changed from the first decompression amount state to the second decompression amount state.
  • the value of the related physical quantity measured by the measuring means after switching is stored as the second measured value, and when the value obtained by subtracting the first measured value from the second measured value is larger than the first abnormality judgment value, the refrigerant It is configured to determine that there is an abnormality in the circuit and stop the operation of the compressor.
  • FIG. It is a figure which shows the refrigeration cycle system by Embodiment 1.
  • FIG. It is a flowchart which shows the example of the process which a control part executes in an abnormality determination mode. It is a figure which shows the example of the graph of the time-dependent change of the related physical quantity after the start of a compressor.
  • FIG. 1 is a diagram showing a refrigeration cycle system according to the first embodiment.
  • the refrigerating cycle system 1 includes a refrigerant circuit 2, a measuring unit 7, and a control unit 8.
  • the refrigerant circuit 2 includes a compressor 3 that compresses the refrigerant, a cooler 4 that cools the high-pressure refrigerant compressed by the compressor 3, a decompression device 5 that decompresses the high-pressure refrigerant that has passed through the cooler 4, and a decompression device 5. It is provided with an evaporator 6 that evaporates the low-pressure refrigerant decompressed by the above.
  • the compressor 3, the cooler 4, the decompression device 5, and the evaporator 6 are connected via a refrigerant pipe to form an annular circuit.
  • the low-pressure refrigerant gas flowing out of the evaporator 6 is sucked into the compressor 3 and circulates in the refrigerant circuit 2 again.
  • the refrigerant circuit 2 is operated by electric power.
  • the refrigerant enclosed in the refrigerant circuit 2 is not particularly limited, but may be, for example, carbon dioxide, ammonia, propane, isobutane, fluorocarbons such as HFC, HFO-1123, or HFO-1234yf.
  • the cooler 4 corresponds to a heat exchanger that exchanges heat between the high-pressure refrigerant discharged from the compressor 3 and the first fluid having a temperature lower than that of the high-pressure refrigerant.
  • the first fluid may be, for example, a liquid such as water or other liquid heat medium, or a gas such as outdoor or indoor air.
  • the refrigeration cycle system 1 may include a first fluid actuator (not shown), such as a pump or blower, for flowing the first fluid to the cooler 4.
  • the decompression device 5 expands the high-pressure refrigerant into a low-pressure refrigerant.
  • the pressure reducing device 5 may be an expansion valve whose opening degree of the refrigerant passage can be adjusted.
  • the low-pressure refrigerant that has passed through the depressurizing device 5 is in a gas-liquid two-phase state.
  • the evaporator 6 corresponds to a heat exchanger that exchanges heat between a low-pressure refrigerant decompressed by the decompression device 5 and a second fluid having a temperature higher than that of the low-pressure refrigerant.
  • the refrigerant in the evaporator 6 evaporates by absorbing the heat of the second fluid.
  • the second fluid may be, for example, a gas such as outdoor or indoor air, or a liquid such as water or other liquid heat medium.
  • the refrigeration cycle system 1 may include a second fluid actuator (not shown), such as a blower or pump, for flowing the second fluid to the evaporator 6.
  • the refrigeration cycle system 1 may be used for the purpose of heating the first fluid by the cooler 4, or may be used for the purpose of cooling the second fluid by the evaporator 6.
  • the refrigeration cycle system 1 may be used in at least one of a heat pump hot water supply system, a heat pump heating system, and an air conditioning system.
  • the physical quantity related to the state of the refrigerant circuit 2 is hereinafter referred to as "related physical quantity".
  • the measuring unit 7 corresponds to a measuring means for measuring a related physical quantity.
  • the measuring unit 7 in the present embodiment measures the compressor current, which is the current for driving the electric motor included in the compressor 3, as a related physical quantity.
  • the compressor current correlates with the drive load of the compressor 3. The higher the pressure on the high pressure side of the refrigerant circuit 2, the higher the drive load of the compressor 3 tends to be, and the higher the compressor current tends to be. Therefore, by using the compressor current as a related physical quantity, it is possible to appropriately determine the state of the refrigerant circuit 2.
  • the measuring unit 7 may measure the current that drives only the compressor 3 as the compressor current, or may measure the current that drives the compressor 3 and other devices (for example, a first fluid actuator and a second fluid actuator). It may be measured as a compressor current. Since the current for driving the other device is smaller than the current for driving the compressor 3, it can be substantially ignored. In the case of alternating current, the measuring unit 7 may measure the effective value of the current as the compressor current.
  • the control unit 8 corresponds to a control means for controlling the operation of the refrigeration cycle system 1.
  • Each actuator and each sensor included in the refrigeration cycle system 1 are electrically connected to the control unit 8.
  • the control unit 8 has a timer function for managing the time.
  • the control unit 8 may be able to communicate with a user interface device (not shown).
  • Each function of the control unit 8 may be realized by a processing circuit.
  • the processing circuit of the control unit 8 may include at least one processor 8a and at least one memory 8b. At least one processor 8a may realize each function of the control unit 8 by reading and executing a program stored in at least one memory 8b.
  • Each processing circuit of the control unit 8 may be provided with at least one dedicated hardware.
  • the configuration is not limited to the configuration in which the operation is controlled by a single control unit 8 as in the illustrated example, but the configuration may be such that the operation is controlled by the cooperation of a plurality of control devices.
  • the control unit 8 controls the operation of the compressor 3 and the decompression device 5.
  • the control unit 8 may be controlled so that the operating speed of the compressor 3 is variable, for example, by inverter control. Further, the control unit 8 may control the operation speed of at least one of the first fluid actuator and the second fluid actuator to be variable by, for example, inverter control.
  • the decompression device 5 can switch between the first decompression amount state and the second decompression amount state in which the decompression amount is smaller than the first decompression amount state.
  • the first decompression amount state corresponds to, for example, a state in which the opening degree of the decompression device 5 is small.
  • the second decompression amount state corresponds to, for example, a state in which the opening degree of the decompression device 5 is large.
  • the control unit 8 can execute a normal operation mode in which the refrigerating cycle operation is performed by the refrigerant circuit 2. In the normal operation mode, the following may be performed.
  • the control unit 8 may control the operating speed of the compressor 3 according to the target heating capacity or cooling capacity.
  • the control unit 8 may adjust the opening degree of the decompression device 5 according to the temperature or pressure of the refrigerant discharged from the compressor 3.
  • the control unit 8 may control the operating speed of the first fluid actuator according to at least one of the temperature of the first fluid flowing into the cooler 4 and the temperature of the first fluid flowing out of the cooler 4. ..
  • the control unit 8 may control the operating speed of the second fluid actuator according to at least one of the temperature of the second fluid flowing into the evaporator 6 and the temperature of the second fluid flowing out of the evaporator 6. ..
  • the control unit 8 executes an abnormality determination mode in order to detect an abnormality in the refrigerant circuit 2 when starting the operation of the refrigeration cycle.
  • the control unit 8 operates the compressor 3 at a predetermined first speed. By keeping the operating speed of the compressor 3 constant, the abnormality of the refrigerant circuit 2 can be detected more appropriately.
  • the control unit 8 keeps the operating speed of the first fluid actuator at a predetermined constant speed or stops the first fluid actuator, and keeps the operating speed of the second fluid actuator at a predetermined constant speed. It is desirable to keep it at or stop the second fluid actuator. By doing so, the abnormality of the refrigerant circuit 2 can be detected more appropriately.
  • FIG. 2 is a flowchart showing an example of processing executed by the control unit 8 in the abnormality determination mode.
  • FIG. 3 is a diagram showing an example of a graph of changes over time in related physical quantities after the compressor 3 is started. In the present embodiment, the change with time of the related physical quantity shown in FIG. 3 corresponds to the change with time of the compressor current.
  • the abnormality determination mode starts at time t0. The time when the operation of the compressor 3 is started can be regarded as the time when the abnormality determination mode is started. In FIG.
  • the solid line 11 is a graph when the refrigerant circuit 2 is blocked
  • the solid line 12 is a graph when the refrigerant circuit 2 is normal
  • the solid line 13 is a graph in which the refrigerant in the refrigerant circuit 2 leaks. It is a graph when it is missing.
  • the control unit 8 first starts the abnormality determination mode when starting the operation of the refrigeration cycle.
  • the control unit 8 sets the decompression device 5 to the first decompression amount state (step S1).
  • the control unit 8 starts the compressor 3 and operates the compressor 3 at the first speed (step S2).
  • the control unit 8 determines whether or not the first time has elapsed from the start of the abnormality determination mode (step S3), and when the first time has elapsed from the start of the abnormality determination mode, the measurement unit 7 determines the related physical quantity. Measure (step S4).
  • the control unit 8 stores the measured value of the related physical quantity as the first measured value PQ1. After that, the control unit 8 switches the decompression device 5 from the first decompression amount state to the second decompression amount state (step S5).
  • the control unit 8 measures the related physical quantity by the measurement unit 7 (step S6).
  • the control unit 8 stores the measured value of the related physical quantity as the second measured value PQ2.
  • the control unit 8 compares the value obtained by subtracting the first measured value PQ1 from the second measured value PQ2 with the first abnormality determination value (step S7).
  • the control unit 8 determines that the refrigerant circuit 2 has an abnormality and operates the compressor 3. Stop (step S8).
  • the value of the related physical quantity increases as shown by the solid line 12 after the start of the abnormality determination mode.
  • the first time is set to be shorter than the time required for the value of the related physical quantity to stabilize when the refrigerant circuit 2 is normal.
  • the time t1 in FIG. 3 may correspond to the first time.
  • the value of the related physical quantity of the solid line 12 is still in the process of increasing at the time t1 when the first time has elapsed from the start of the abnormality determination mode.
  • the increase in the value of the related physical quantity of the solid line 12 is nearing the end at the time t2 in FIG.
  • the broken line 14 in FIG. 3 is a graph when the decompression device 5 is switched from the first decompression amount state to the second decompression amount state at time t1 when the refrigerant circuit 2 is normal.
  • the broken line 15 in FIG. 3 is a graph when the decompression device 5 is switched from the first decompression amount state to the second decompression amount state at time t2 when the refrigerant circuit 2 is normal.
  • the control unit 8 determines that the refrigerant circuit 2 has an abnormality and stops the operation of the compressor 3, so that the refrigerant circuit 2 can be reliably protected.
  • measuring instruments that measure physical quantities have variations in characteristics due to individual differences. Therefore, there is some error in the value of the related physical quantity measured by the measuring unit 7. In addition, the value of the related physical quantity changes depending on the outside air temperature and other environmental conditions. If the measured value of the related physical quantity itself is compared with the abnormality judgment value, there is a possibility of erroneous judgment due to the influence of the variation of the measured value due to the above factors.
  • the variation included in the first measured value PQ1 and the variation can be obtained. The variation contained in the second measured value PQ2 cancels out. Therefore, in the present embodiment, since it is not easily affected by the variation of the measured value, it is possible to surely prevent erroneous determination.
  • control unit 8 can detect the blockage of the refrigerant circuit 2 after the start of the abnormality determination mode and before the value of the related physical quantity stabilizes. Therefore, it is possible to end the abnormality determination mode in a short time.
  • the configuration is such that the abnormality of the refrigerant circuit 2 is detected after waiting for the value of the related physical quantity to stabilize, it takes a long time to determine the abnormality.
  • the abnormality can be determined only when there is a suspicion of the abnormality, and the abnormality diagnosis of the refrigerant circuit 2 cannot be performed on a daily basis.
  • the abnormality determination mode can be completed in a short time, so that the abnormality diagnosis of the refrigerant circuit 2 can be performed on a daily basis.
  • control unit 8 may be configured to further execute at least a part of each of the processes described below.
  • step S9 the control unit 8 proceeds to step S9 and takes a second time. It is determined whether or not the abnormality has passed since the start of the abnormality determination mode. The second hour is longer than the first hour. If the second time has not yet elapsed from the start of the abnormality determination mode in step S9, the control unit 8 re-executes the processes after step S6. That is, in step S6, the control unit 8 measures the related physical quantity again by the measurement unit 7, and stores the remeasured value as the second measured value PQ2. That is, the control unit 8 updates the second measured value PQ2.
  • step S7 the control unit 8 compares the updated second measured value PQ2 minus the first measured value PQ1 with the first abnormality determination value again. As a result, when the value obtained by subtracting the first measured value PQ1 from the second measured value PQ2 is larger than the first abnormality determination value, the control unit 8 determines that the refrigerant circuit 2 has an abnormality, and the compressor 3 Stop the operation of. As described above, when the control unit 8 is configured to be able to repeatedly execute the processes of steps S6 and S7, the blockage of the refrigerant circuit 2 can be detected more reliably.
  • step S9 the control unit 8 proceeds to step S10 and subtracts the second measured value PQ2 from the first measured value PQ1 to obtain the second abnormality. Compare with the judgment value. As described above, if the refrigerant circuit 2 is normal, the second measured value PQ2 is lower than the first measured value PQ1. Therefore, when the value obtained by subtracting the second measured value PQ2 from the first measured value PQ1 is larger than the second abnormality determination value, it is considered that the refrigerant circuit 2 is normal.
  • step S10 if the value obtained by subtracting the second measured value PQ2 from the first measured value PQ1 in step S10 is larger than the second abnormality determination value, the control unit 8 proceeds to step S11 and ends the abnormality determination mode. And start the normal operation mode.
  • the control unit 8 is configured to compare the value obtained by subtracting the second measured value PQ2 from the first measured value PQ1 with the second abnormality determination value, the normal operation mode is set earlier. It will be possible to start.
  • step S12 proceeds from the start of the abnormality determination mode to the third. Determine if time has passed. The third hour is longer than the second hour. For example, the time t2 in FIG. 3 may correspond to the third time. If the third time has not yet elapsed from the start of the abnormality determination mode in step S12, the control unit 8 repeats the processes after step S6. If the third time has already passed from the start of the abnormality determination mode in step S12, the control unit 8 proceeds to step S13, determines that there is an abnormality in the refrigerant circuit 2, and stops the operation of the compressor 3.
  • the load on the compressor 3 is low, so that the value of the related physical quantity is higher than in the case where the refrigerant circuit 2 is normal. It gets lower. If the refrigerant circuit 2 is normal, when the decompression device 5 is switched from the first decompression amount state to the second decompression amount state at time t2 in FIG. 3, the value of the related physical quantity decreases as shown by the broken line 15.
  • the load of the compressor 3 does not change even if the decompression device 5 is switched from the first decompression amount state to the second decompression amount state, so that the value of the related physical quantity Does not change. Therefore, when the refrigerant in the refrigerant circuit 2 is drained, the difference between the first measured value PQ1 and the second measured value PQ2 is small, so that the first measured value PQ1 to the second measured value PQ2 are obtained in step S10. The subtracted value becomes less than or equal to the second abnormality judgment value.
  • control unit 8 proceeds to step S13 and determines that the refrigerant in the refrigerant circuit 2 has leaked and is out. As a result, the control unit 8 can reliably detect that the refrigerant in the refrigerant circuit 2 has leaked and escaped.
  • Embodiment 2 Next, the second embodiment will be described, but the differences from the first embodiment described above will be mainly described, and the same or corresponding parts will be simplified or omitted.
  • the second embodiment is different from the first embodiment in that the compressor temperature is used as a related physical quantity instead of the compressor current.
  • the compressor temperature is the temperature of the compressor 3.
  • the measuring unit 7 in the second embodiment measures the compressor temperature.
  • the compressor temperature may be, for example, the temperature of the shell included in the compressor 3.
  • the inside of the shell is filled with the high-pressure refrigerant before being discharged from the compressor 3.
  • control unit 8 performs the same processing as that of the first embodiment by using the value of the compressor temperature instead of the value of the compressor current in the first embodiment. The same effect as is obtained.
  • Embodiment 3 Next, the third embodiment will be described, but the differences from the first embodiment described above will be mainly described, and the same or corresponding parts will be simplified or omitted.
  • the third embodiment is different from the first embodiment in that the discharged refrigerant temperature is used as a related physical quantity instead of the compressor current.
  • the discharged refrigerant temperature is the temperature of the refrigerant discharged from the compressor 3.
  • the measuring unit 7 in the third embodiment measures the discharged refrigerant temperature.
  • control unit 8 performs the same processing as that of the first embodiment by using the value of the discharged refrigerant temperature instead of the value of the compressor current in the first embodiment. The same effect as is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

冷凍サイクルシステムは、冷媒回路の状態に関連する物理量である関連物理量を測定する測定手段と、異常判定モードを実行する制御手段とを備える。減圧装置は、第一減圧量状態と、第一減圧量状態よりも減圧量が小さい第二減圧量状態とに切り替え可能である。異常判定モードが開始すると、制御手段は、減圧装置を第一減圧量状態にし、圧縮機を第一速度で運転する。制御手段は、異常判定モードの開始から第一時間が経過した時点で測定手段により測定された関連物理量の値を第一測定値として記憶した後、減圧装置を第一減圧量状態から第二減圧量状態に切り替え、減圧装置が第一減圧量状態から第二減圧量状態に切り替えられた後に測定手段により測定された関連物理量の値を第二測定値として記憶し、第二測定値から第一測定値を引いた値が第一異常判定値よりも大きい場合には、冷媒回路に異常があると判定し、圧縮機の運転を停止するように構成されている。

Description

冷凍サイクルシステム
 本開示は、冷凍サイクルシステムに関する。
 下記特許文献1には、ヒートポンプ給湯機の冷媒回路の異常を判定する技術として、圧縮機に流れる電流値を検知する電流値検知手段を設け、圧縮機の起動後の所定時間内に、電流値検知手段が検知した電流値が所定値以上となった場合には圧縮機の運転を停止する技術が開示されている。
日本特開2010-071603号公報
 上述した従来のシステムにおいて、電流を測定する測定器の個体差による特性のばらつき、あるいは外気温その他の環境条件の違いなどに応じて、電流の測定値は変化する。それゆえ、冷媒回路の異常を適切に検知することができない可能性がある。
 本開示は、上述のような課題を解決するためになされたもので、冷媒回路の異常を適切に検知することのできる冷凍サイクルシステムを提供することを目的とする。
 本開示の冷凍サイクルシステムは、冷媒を圧縮する圧縮機と、圧縮機により圧縮された冷媒を冷却する冷却器と、冷却器を通過した冷媒を減圧させる減圧装置と、減圧装置を通過した冷媒を蒸発させる蒸発器とを有する冷媒回路と、冷媒回路の状態に関連する物理量である関連物理量を測定する測定手段と、冷媒回路による冷凍サイクルの運転を開始する際に、冷媒回路の異常を検知するために異常判定モードを実行する制御手段と、を備え、減圧装置は、第一減圧量状態と、第一減圧量状態よりも減圧量が小さい第二減圧量状態とに切り替え可能であり、異常判定モードが開始すると、制御手段は、減圧装置を第一減圧量状態にし、圧縮機を第一速度で運転し、制御手段は、異常判定モードの開始から第一時間が経過した時点で測定手段により測定された関連物理量の値を第一測定値として記憶した後、減圧装置を第一減圧量状態から第二減圧量状態に切り替え、減圧装置が第一減圧量状態から第二減圧量状態に切り替えられた後に測定手段により測定された関連物理量の値を第二測定値として記憶し、第二測定値から第一測定値を引いた値が第一異常判定値よりも大きい場合には、冷媒回路に異常があると判定し、圧縮機の運転を停止するように構成されているものである。
 本開示によれば、冷媒回路の異常を適切に検知することのできる冷凍サイクルシステムを提供することが可能となる。
実施の形態1による冷凍サイクルシステムを示す図である。 異常判定モードにおいて制御部が実行する処理の例を示すフローチャートである。 圧縮機の起動後における関連物理量の経時変化のグラフの例を示す図である。
 以下、図面を参照して実施の形態について説明する。各図において共通または対応する要素には、同一の符号を付して、説明を簡略化または省略する。
実施の形態1.
 図1は、実施の形態1による冷凍サイクルシステムを示す図である。図1に示すように、冷凍サイクルシステム1は、冷媒回路2と、測定部7と、制御部8とを備えている。冷媒回路2は、冷媒を圧縮する圧縮機3と、圧縮機3により圧縮された高圧冷媒を冷却する冷却器4と、冷却器4を通過した高圧冷媒を減圧させる減圧装置5と、減圧装置5により減圧された低圧冷媒を蒸発させる蒸発器6とを備えている。圧縮機3、冷却器4、減圧装置5、及び蒸発器6は、冷媒配管を介して接続されることで、環状の回路を形成している。蒸発器6から流出する低圧冷媒ガスは、圧縮機3に吸入され、再び冷媒回路2を循環する。冷媒回路2は、電力によって運転される。
 冷媒回路2に封入される冷媒は、特に限定されないが、例えば、二酸化炭素、アンモニア、プロパン、イソブタン、HFCなどのフロン、HFO-1123、HFO-1234yfのいずれかでもよい。
 冷却器4は、圧縮機3から吐出された高圧冷媒と、この高圧冷媒よりも温度の低い第一流体との間で熱を交換する熱交換器に相当する。冷却器4にて、第一流体は、高圧冷媒によって加熱されることで温度が上昇する。第一流体は、例えば、水または他の液状熱媒体のような液体でもよいし、室外または室内の空気のような気体でもよい。冷凍サイクルシステム1は、第一流体を冷却器4へ流すための、例えばポンプまたは送風機のような第一流体アクチュエータ(図示省略)を備えていてもよい。
 減圧装置5は、高圧冷媒を膨張させて低圧冷媒にする。減圧装置5は、冷媒通路の開度を調整可能な膨張弁でもよい。減圧装置5を通過した低圧冷媒は、気液二相の状態となる。
 蒸発器6は、減圧装置5により減圧された低圧冷媒と、この低圧冷媒よりも温度の高い第二流体との間で熱を交換する熱交換器に相当する。蒸発器6内の冷媒は、第二流体の熱を吸収することによって蒸発する。第二流体は、例えば、室外または室内の空気のような気体でもよいし、水または他の液状熱媒体のような液体でもよい。冷凍サイクルシステム1は、第二流体を蒸発器6へ流すための、例えば送風機またはポンプのような第二流体アクチュエータ(図示省略)を備えていてもよい。
 冷凍サイクルシステム1は、冷却器4によって第一流体を加熱する目的で使用されてもよいし、蒸発器6によって第二流体を冷却する目的で使用されてもよい。例えば、冷凍サイクルシステム1は、ヒートポンプ給湯システム、ヒートポンプ暖房システム、空調システムのうちの少なくとも一つに用いられてもよい。
 冷媒回路2の状態に関連する物理量を以下「関連物理量」と称する。測定部7は、関連物理量を測定する測定手段に相当する。本実施の形態における測定部7は、圧縮機3が備える電動機を駆動する電流である圧縮機電流を関連物理量として測定する。圧縮機電流は、圧縮機3の駆動負荷と相関がある。冷媒回路2の高圧側の圧力が高いほど、圧縮機3の駆動負荷が高くなりやすく、圧縮機電流も高くなりやすい。したがって、圧縮機電流を関連物理量として用いることで、冷媒回路2の状態を適切に判定することが可能となる。
 測定部7は、圧縮機3のみを駆動する電流を圧縮機電流として測定してもよいし、圧縮機3と他の機器(例えば第一流体アクチュエータ、第二流体アクチュエータ)とを駆動する電流を圧縮機電流として測定してもよい。当該他の機器を駆動する電流は、圧縮機3を駆動する電流に比べて小さいので、実質的に無視できる。交流の場合には、測定部7は、電流の実効値を圧縮機電流として測定してもよい。
 制御部8は、冷凍サイクルシステム1の動作を制御する制御手段に相当する。冷凍サイクルシステム1が備える各アクチュエータ及び各センサは、制御部8に対して電気的に接続されている。制御部8は、時間を管理するタイマー機能を有している。制御部8は、ユーザーインターフェース装置(図示省略)と通信可能であってもよい。
 制御部8の各機能は、処理回路により実現されてもよい。制御部8の処理回路は、少なくとも1つのプロセッサ8aと少なくとも1つのメモリ8bとを備えてもよい。少なくとも1つのプロセッサ8aは、少なくとも1つのメモリ8bに記憶されたプログラムを読み出して実行することにより、制御部8のそれぞれの各機能を実現してもよい。制御部8のそれぞれの処理回路は、少なくとも1つの専用のハードウェアを備えてもよい。図示の例のように単一の制御部8により動作が制御される構成に限定されるものではなく、複数の制御装置が連携することで動作を制御する構成にしてもよい。
 制御部8は、圧縮機3及び減圧装置5の動作を制御する。制御部8は、例えばインバーター制御により、圧縮機3の動作速度が可変となるように制御してもよい。また、制御部8は、例えばインバーター制御により、第一流体アクチュエータ及び第二流体アクチュエータの少なくとも一方の動作速度が可変となるように制御してもよい。
 減圧装置5は、第一減圧量状態と、第一減圧量状態よりも減圧量が小さい第二減圧量状態とに切り替え可能である。第一減圧量状態は、例えば、減圧装置5の開度が小さい状態に相当する。第二減圧量状態は、例えば、減圧装置5の開度が大きい状態に相当する。
 制御部8は、冷媒回路2による冷凍サイクル運転を行う通常運転モードを実行可能である。通常運転モードのときには、以下のようにしてもよい。制御部8は、目標とする加熱能力または冷却能力に応じて、圧縮機3の動作速度を制御してもよい。制御部8は、圧縮機3から吐出される冷媒の温度または圧力に応じて、減圧装置5の開度を調整してもよい。制御部8は、冷却器4に流入する第一流体の温度と、冷却器4から流出する第一流体の温度との少なくとも一方に応じて、第一流体アクチュエータの動作速度を制御してもよい。制御部8は、蒸発器6に流入する第二流体の温度と、蒸発器6から流出する第二流体の温度との少なくとも一方に応じて、第二流体アクチュエータの動作速度を制御してもよい。
 制御部8は、冷凍サイクルの運転を開始する際に、冷媒回路2の異常を検知するために異常判定モードを実行する。異常判定モードにおいて、制御部8は、圧縮機3を所定の第一速度で運転する。圧縮機3の動作速度を一定に保つことにより、冷媒回路2の異常をより適切に検知できる。また、異常判定モードにおいて、制御部8は、第一流体アクチュエータの動作速度を所定の一定速度に保つか第一流体アクチュエータを停止することが望ましく、第二流体アクチュエータの動作速度を所定の一定速度に保つか第二流体アクチュエータを停止することが望ましい。そのようにすることで、冷媒回路2の異常をより適切に検知できる。
 図2は、異常判定モードにおいて制御部8が実行する処理の例を示すフローチャートである。図3は、圧縮機3の起動後における関連物理量の経時変化のグラフの例を示す図である。本実施の形態において、図3に示す関連物理量の経時変化は、圧縮機電流の経時変化に相当する。図3中、時刻t0に異常判定モードが開始する。圧縮機3の運転が開始された時点を、異常判定モードが開始した時点とみなすことができる。図3中、実線11は、冷媒回路2が閉塞している場合のグラフであり、実線12は、冷媒回路2が正常である場合のグラフであり、実線13は、冷媒回路2の冷媒が漏れて抜けている場合のグラフである。
 図2に示すように、制御部8は、冷凍サイクルの運転を開始する際に、まず異常判定モードを開始する。異常判定モードが開始すると、制御部8は、減圧装置5を第一減圧量状態に設定する(ステップS1)。次いで、制御部8は、圧縮機3を起動し、圧縮機3を第一速度で運転する(ステップS2)。続いて、制御部8は、異常判定モードの開始から第一時間が経過したかどうかを判断し(ステップS3)、異常判定モードの開始から第一時間が経過すると、測定部7により関連物理量を測定する(ステップS4)。制御部8は、この測定された関連物理量の値を第一測定値PQ1として記憶する。その後、制御部8は、減圧装置5を第一減圧量状態から第二減圧量状態に切り替える(ステップS5)。
 制御部8は、減圧装置5が第一減圧量状態から第二減圧量状態に切り替えられた後、測定部7により関連物理量を測定する(ステップS6)。制御部8は、この測定された関連物理量の値を第二測定値PQ2として記憶する。制御部8は、第二測定値PQ2から第一測定値PQ1を引いた値を、第一異常判定値と比較する(ステップS7)。制御部8は、第二測定値PQ2から第一測定値PQ1を引いた値が第一異常判定値よりも大きい場合には、冷媒回路2に異常があると判定し、圧縮機3の運転を停止する(ステップS8)。
 図3に示すように、冷媒回路2が正常である場合には、異常判定モードの開始後、関連物理量の値は、実線12で示すように、上昇していく。第一時間は、冷媒回路2が正常である場合に関連物理量の値が安定するまでに要する時間よりも短い時間になるように、設定されている。例えば、図3中の時刻t1が第一時間に相当してもよい。冷媒回路2が正常である場合には、異常判定モードの開始から第一時間が経過した時刻t1の時点で、実線12の関連物理量の値は、まだ上昇の途中にある。冷媒回路2が正常である場合には、図3中の時刻t2の時点で、実線12の関連物理量の値の上昇は終了に近づいている。
 図3中の破線14は、冷媒回路2が正常である場合に、時刻t1において減圧装置5が第一減圧量状態から第二減圧量状態に切り替えられた場合のグラフである。また、図3中の破線15は、冷媒回路2が正常である場合に、時刻t2において減圧装置5が第一減圧量状態から第二減圧量状態に切り替えられた場合のグラフである。冷媒回路2が正常である場合には、破線14あるいは破線15が示すように、減圧装置5が第一減圧量状態から第二減圧量状態に切り替えられると、圧縮機3の負荷が軽くなるので、関連物理量である圧縮機電流の値が低下する。したがって、冷媒回路2が正常である場合には、第二測定値PQ2は、第一測定値PQ1よりも低くなる。
 これに対し、冷媒回路2のどこかに詰まりがあって閉塞している場合には、時刻t1において減圧装置5が第一減圧量状態から第二減圧量状態に切り替えられた後も、圧縮機3の下流の冷媒が停滞するので、圧縮機3の負荷が増大し続ける。その結果、関連物理量である圧縮機電流の値が上昇し続ける。それゆえ、この場合には、第二測定値PQ2は、第一測定値PQ1よりも高くなる。よって、第二測定値PQ2から第一測定値PQ1を引いた値が第一異常判定値よりも大きい場合には、冷媒回路2が閉塞していると考えられる。本実施の形態であれば、この場合に制御部8が冷媒回路2に異常があると判定し、圧縮機3の運転を停止することで、冷媒回路2を確実に保護することができる。
 一般に、物理量を測定する測定器には、個体差による特性のばらつきがある。そのため、測定部7により測定された関連物理量の値には、多少の誤差がある。また、外気温その他の環境条件に応じて、関連物理量の値が変化する。仮に、関連物理量の測定値自体を異常判定値と比較したとすると、上記の要因による測定値のばらつきの影響より、誤判定する可能性がある。これに対し、本実施の形態であれば、第二測定値PQ2から第一測定値PQ1を引いた値を第一異常判定値と比較することで、第一測定値PQ1に含まれるばらつきと、第二測定値PQ2に含まれるばらつきとが相殺する。それゆえ、本実施の形態であれば、測定値のばらつきの影響を受けにくいので、誤判定を確実に防止できる。
 また、本実施の形態であれば、異常判定モードの開始後、関連物理量の値が安定するよりも前の時点で、制御部8が冷媒回路2の閉塞を検知できる。このため、異常判定モードを短時間で終了することが可能となる。
 本実施の形態とは異なり、関連物理量の値が安定するのを待ってから冷媒回路2の異常を検知する構成であると仮定すると、異常の判定までに長時間が必要となる。このような構成では、通常の運転の際に異常判定を行うことができず、専用のモードを設ける必要がある。このような構成では、異常の疑いがある場合にのみ異常の判定が可能であり、日常的に冷媒回路2の異常診断を行うことができない。これに対し、本実施の形態であれば、異常判定モードを短時間で終了できるので、日常的に冷媒回路2の異常診断を行うことが可能となる。
 本実施の形態の冷凍サイクルシステム1によれば、これまでに説明した異常判定モードの処理により、上述したような効果を得ることが可能となる。ただし、本開示において、制御部8は、以下に説明する各処理のうちの少なくとも一部をさらに実行するように構成されていてもよい。
 制御部8は、図2のステップS7で、第二測定値PQ2から第一測定値PQ1を引いた値が第一異常判定値以下であった場合には、ステップS9に進み、第二時間が異常判定モードの開始から経過したかどうかを判定する。第二時間は、第一時間よりも長い時間である。ステップS9で、異常判定モードの開始から第二時間がまだ経過していない場合には、制御部8は、ステップS6以降の処理を再び実行する。すなわち、制御部8は、ステップS6で、測定部7により関連物理量を再び測定し、その再測定値を第二測定値PQ2として記憶する。すなわち、制御部8は、第二測定値PQ2を更新する。次いで、制御部8は、ステップS7で、更新された第二測定値PQ2から第一測定値PQ1を引いた値を第一異常判定値と再び比較する。その結果、第二測定値PQ2から第一測定値PQ1を引いた値が第一異常判定値よりも大きい場合には、制御部8は、冷媒回路2に異常があると判定し、圧縮機3の運転を停止する。このように、制御部8が、ステップS6及びステップS7の処理を繰り返し実行可能に構成されている場合には、冷媒回路2の閉塞をより確実に検知できる。
 制御部8は、ステップS9で、異常判定モードの開始から第二時間がすでに経過した場合には、ステップS10に進み、第一測定値PQ1から第二測定値PQ2を引いた値を第二異常判定値と比較する。前述したように、冷媒回路2が正常であれば、第二測定値PQ2が第一測定値PQ1よりも低くなる。よって、第一測定値PQ1から第二測定値PQ2を引いた値が第二異常判定値よりも大きい場合には、冷媒回路2が正常であると考えられる。このため、制御部8は、ステップS10で第一測定値PQ1から第二測定値PQ2を引いた値が第二異常判定値よりも大きい場合には、ステップS11に進み、異常判定モードを終了して通常運転モードを開始する。このように、制御部8が、第一測定値PQ1から第二測定値PQ2を引いた値を第二異常判定値と比較するように構成されている場合には、通常運転モードをより早期に開始することが可能となる。
 制御部8は、ステップS10で第一測定値PQ1から第二測定値PQ2を引いた値が第二異常判定値以下であった場合には、ステップS12に進み、異常判定モードの開始から第三時間が経過したかどうかを判定する。第三時間は、第二時間よりも長い時間である。例えば、図3中の時刻t2が第三時間に相当してもよい。ステップS12で異常判定モードの開始から第三時間がまだ経過していない場合には、制御部8は、ステップS6以降の処理を繰り返す。ステップS12で異常判定モードの開始から第三時間がすでに経過した場合には、制御部8は、ステップS13に進み、冷媒回路2に異常があると判定し、圧縮機3の運転を停止する。
 図3の実線13が示すように、冷媒回路2の冷媒が漏れて抜けている場合には、圧縮機3の負荷が低いので、冷媒回路2が正常な場合に比べて、関連物理量の値が低くなる。冷媒回路2が正常であれば、図3中の時刻t2において減圧装置5を第一減圧量状態から第二減圧量状態に切り替えると、破線15が示すように関連物理量の値が低下する。これに対し、冷媒回路2の冷媒が抜けている場合には、減圧装置5を第一減圧量状態から第二減圧量状態に切り替えても圧縮機3の負荷が変化しないので、関連物理量の値も変化しない。それゆえ、冷媒回路2の冷媒が抜けている場合には、第一測定値PQ1と第二測定値PQ2との差が小さいので、ステップS10で、第一測定値PQ1から第二測定値PQ2を引いた値が第二異常判定値以下になる。このときに異常判定モードの開始から第三時間が経過していれば、制御部8は、ステップS13に進み、冷媒回路2の冷媒が漏れて抜けているとの判定を確定する。これにより、制御部8は、冷媒回路2の冷媒が漏れて抜けていることを確実に検知することができる。
実施の形態2.
 次に、実施の形態2について説明するが、前述した実施の形態1との相違点を中心に説明し、同一部分または相当部分については説明を簡略化または省略する。
 本実施の形態2は、実施の形態1と比べて、圧縮機電流に代えて圧縮機温度を関連物理量として用いる点が異なる。圧縮機温度は、圧縮機3の温度である。本実施の形態2における測定部7は、圧縮機温度を測定する。圧縮機温度は、例えば、圧縮機3が備えるシェルの温度でもよい。高圧シェル型の圧縮機3において、シェルの内部には圧縮機3から吐出される前の高圧冷媒が充満している。冷媒回路2の高圧側の圧力が高いほど、圧縮機3の駆動負荷が高くなりやすい。そして、圧縮機3の駆動負荷が高いほど、圧縮機温度が高くなりやすい。したがって、圧縮機温度を関連物理量として用いることで、冷媒回路2の状態を適切に判定することが可能となる。
 圧縮機3の起動後における圧縮機温度の経時変化は、図3のグラフと同様の傾向を示す。本実施の形態2では、実施の形態1における圧縮機電流の値に代えて圧縮機温度の値を用いて実施の形態1と同様の処理を制御部8が実行することにより、実施の形態1と同様の効果が得られる。
実施の形態3.
 次に、実施の形態3について説明するが、前述した実施の形態1との相違点を中心に説明し、同一部分または相当部分については説明を簡略化または省略する。
 本実施の形態3は、実施の形態1と比べて、圧縮機電流に代えて吐出冷媒温度を関連物理量として用いる点が異なる。吐出冷媒温度は、圧縮機3から吐出される冷媒の温度である。本実施の形態3における測定部7は、吐出冷媒温度を測定する。
 圧縮機3の起動後における吐出冷媒温度の経時変化は、図3のグラフと同様の傾向を示す。本実施の形態3では、実施の形態1における圧縮機電流の値に代えて吐出冷媒温度の値を用いて実施の形態1と同様の処理を制御部8が実行することにより、実施の形態1と同様の効果が得られる。
1 冷凍サイクルシステム、 2 冷媒回路、 3 圧縮機、 4 冷却器、 5 減圧装置、 6 蒸発器、 7 測定部、 8 制御部、 8a プロセッサ、 8b メモリ、 11,12,13 実線、 14,15 破線

Claims (5)

  1.  冷媒を圧縮する圧縮機と、前記圧縮機により圧縮された前記冷媒を冷却する冷却器と、前記冷却器を通過した前記冷媒を減圧させる減圧装置と、前記減圧装置を通過した前記冷媒を蒸発させる蒸発器とを有する冷媒回路と、
     前記冷媒回路の状態に関連する物理量である関連物理量を測定する測定手段と、
     前記冷媒回路による冷凍サイクルの運転を開始する際に、前記冷媒回路の異常を検知するために異常判定モードを実行する制御手段と、
     を備え、
     前記減圧装置は、第一減圧量状態と、前記第一減圧量状態よりも減圧量が小さい第二減圧量状態とに切り替え可能であり、
     前記異常判定モードが開始すると、前記制御手段は、前記減圧装置を前記第一減圧量状態にし、前記圧縮機を第一速度で運転し、
     前記制御手段は、
     前記異常判定モードの開始から第一時間が経過した時点で前記測定手段により測定された前記関連物理量の値を第一測定値として記憶した後、前記減圧装置を前記第一減圧量状態から前記第二減圧量状態に切り替え、
     前記減圧装置が前記第一減圧量状態から前記第二減圧量状態に切り替えられた後に前記測定手段により測定された前記関連物理量の値を第二測定値として記憶し、
     前記第二測定値から前記第一測定値を引いた値が第一異常判定値よりも大きい場合には、前記冷媒回路に異常があると判定し、前記圧縮機の運転を停止するように構成されている冷凍サイクルシステム。
  2.  前記制御手段は、
     前記第二測定値から前記第一測定値を引いた値が前記第一異常判定値以下の場合には、前記第一時間よりも長い時間である第二時間が前記異常判定モードの開始から経過したかどうかを判定し、
     前記異常判定モードの開始から前記第二時間がまだ経過していない場合には、前記測定手段により前記関連物理量を再び測定し、その再測定値により前記第二測定値を更新し、
     前記第二測定値から前記第一測定値を引いた値を前記第一異常判定値と再び比較し、前記第二測定値から前記第一測定値を引いた値が前記第一異常判定値よりも大きい場合には、前記冷媒回路に異常があると判定し、前記圧縮機の運転を停止するように構成されている請求項1に記載の冷凍サイクルシステム。
  3.  前記制御手段は、
     前記異常判定モードの開始から前記第二時間が経過した場合には、前記第一測定値から前記第二測定値を引いた値を第二異常判定値と比較し、
     前記第一測定値から前記第二測定値を引いた値が前記第二異常判定値よりも大きい場合には、前記異常判定モードを終了して通常運転モードを開始するように構成されている請求項2に記載の冷凍サイクルシステム。
  4.  前記制御手段は、
     前記第一測定値から前記第二測定値を引いた値が前記第二異常判定値以下の場合には、前記第二時間よりも長い時間である第三時間が前記異常判定モードの開始から経過したかどうかを判定し、
     前記異常判定モードの開始から前記第三時間が経過した場合には、前記冷媒回路に異常があると判定し、前記圧縮機の運転を停止するように構成されている請求項3に記載の冷凍サイクルシステム。
  5.  前記測定手段は、前記圧縮機を駆動する電流を前記関連物理量として測定する請求項1から請求項4のいずれか一項に記載の冷凍サイクルシステム。
PCT/JP2020/032872 2020-08-31 2020-08-31 冷凍サイクルシステム WO2022044321A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080103233.8A CN115917223A (zh) 2020-08-31 2020-08-31 制冷循环系统
JP2022545253A JP7334865B2 (ja) 2020-08-31 2020-08-31 冷凍サイクルシステム
PCT/JP2020/032872 WO2022044321A1 (ja) 2020-08-31 2020-08-31 冷凍サイクルシステム
DE112020007565.6T DE112020007565T5 (de) 2020-08-31 2020-08-31 Kältekreislaufsystem
US17/911,726 US20230111875A1 (en) 2020-08-31 2020-08-31 Refrigeration cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/032872 WO2022044321A1 (ja) 2020-08-31 2020-08-31 冷凍サイクルシステム

Publications (1)

Publication Number Publication Date
WO2022044321A1 true WO2022044321A1 (ja) 2022-03-03

Family

ID=80354906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032872 WO2022044321A1 (ja) 2020-08-31 2020-08-31 冷凍サイクルシステム

Country Status (5)

Country Link
US (1) US20230111875A1 (ja)
JP (1) JP7334865B2 (ja)
CN (1) CN115917223A (ja)
DE (1) DE112020007565T5 (ja)
WO (1) WO2022044321A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158121A (ja) * 2010-01-29 2011-08-18 Panasonic Corp 空気調和機
JP2014043962A (ja) * 2012-08-24 2014-03-13 Mitsubishi Electric Corp ヒートポンプ給湯機
JP2015045487A (ja) * 2013-08-29 2015-03-12 三菱電機株式会社 空気調和機
WO2017042859A1 (ja) * 2015-09-07 2017-03-16 三菱電機株式会社 冷凍サイクルシステム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4396286B2 (ja) * 2004-01-21 2010-01-13 三菱電機株式会社 機器診断装置および機器監視システム
JP4265982B2 (ja) * 2004-02-25 2009-05-20 三菱電機株式会社 機器診断装置、冷凍サイクル装置、冷凍サイクル監視システム
JP2007155226A (ja) * 2005-12-06 2007-06-21 Matsushita Electric Ind Co Ltd 空気調和機
JP2010071603A (ja) 2008-09-22 2010-04-02 Panasonic Corp ヒートポンプ給湯機
WO2017033240A1 (ja) * 2015-08-21 2017-03-02 三菱電機株式会社 データ取得システム、異常検知システム、冷凍サイクル装置、データ取得方法、及び異常検知方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158121A (ja) * 2010-01-29 2011-08-18 Panasonic Corp 空気調和機
JP2014043962A (ja) * 2012-08-24 2014-03-13 Mitsubishi Electric Corp ヒートポンプ給湯機
JP2015045487A (ja) * 2013-08-29 2015-03-12 三菱電機株式会社 空気調和機
WO2017042859A1 (ja) * 2015-09-07 2017-03-16 三菱電機株式会社 冷凍サイクルシステム

Also Published As

Publication number Publication date
JPWO2022044321A1 (ja) 2022-03-03
CN115917223A (zh) 2023-04-04
US20230111875A1 (en) 2023-04-13
JP7334865B2 (ja) 2023-08-29
DE112020007565T5 (de) 2023-06-07

Similar Documents

Publication Publication Date Title
JP4622990B2 (ja) 空気調和機
JP5511761B2 (ja) 空気調和機
JP2008116156A (ja) 空気調和装置
EP2589901A2 (en) Refrigeration cycle apparatus and hot water generator
JP3894190B2 (ja) ヒートポンプ給湯装置
JP5003542B2 (ja) 冷凍サイクル装置
JP5708249B2 (ja) ヒートポンプ給湯装置
JP2007278656A (ja) ヒートポンプ給湯装置
WO2022044321A1 (ja) 冷凍サイクルシステム
JP7259962B2 (ja) 冷凍サイクルシステム
JP3937715B2 (ja) ヒートポンプ給湯機
JP2000346449A (ja) ヒートポンプ給湯機
JP4930353B2 (ja) 冷却装置
KR100645905B1 (ko) 히트 펌프식 공기조화기의 제상 운전 방법
JP2008261590A (ja) エジェクタサイクル
KR100517600B1 (ko) 공기조화기의 난방 운전 방법
JP2003056907A (ja) ヒートポンプ式給湯機
JP5703849B2 (ja) ヒートポンプ式給湯装置
EP3502585B1 (en) Heat pump system
JP6394813B2 (ja) 冷凍サイクルシステム
JP2016102601A (ja) 冷凍サイクル装置
JP7444189B2 (ja) 空気調和機
JP5764029B2 (ja) ヒートポンプ給湯機及び冷凍サイクル
JP2008107880A (ja) 自動販売機
JP2009228906A (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951570

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545253

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20951570

Country of ref document: EP

Kind code of ref document: A1