WO2022041848A1 - 硅棒加工设备及硅棒加工方法 - Google Patents

硅棒加工设备及硅棒加工方法 Download PDF

Info

Publication number
WO2022041848A1
WO2022041848A1 PCT/CN2021/093521 CN2021093521W WO2022041848A1 WO 2022041848 A1 WO2022041848 A1 WO 2022041848A1 CN 2021093521 W CN2021093521 W CN 2021093521W WO 2022041848 A1 WO2022041848 A1 WO 2022041848A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon rod
cutting
grinding
clamping
silicon
Prior art date
Application number
PCT/CN2021/093521
Other languages
English (en)
French (fr)
Inventor
苏静洪
李鑫
钱春军
曹奇峰
卢建伟
Original Assignee
天通日进精密技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天通日进精密技术有限公司 filed Critical 天通日进精密技术有限公司
Publication of WO2022041848A1 publication Critical patent/WO2022041848A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • B28D5/045Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools by cutting with wires or closed-loop blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/04Headstocks; Working-spindles; Features relating thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/06Work supports, e.g. adjustable steadies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/228Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding thin, brittle parts, e.g. semiconductors, wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/065Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of thin, brittle parts, e.g. semiconductors, wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material
    • B28D5/0082Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material for supporting, holding, feeding, conveying or discharging work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D7/00Accessories specially adapted for use with machines or devices of the preceding groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D7/00Accessories specially adapted for use with machines or devices of the preceding groups
    • B28D7/04Accessories specially adapted for use with machines or devices of the preceding groups for supporting or holding work or conveying or discharging work

Definitions

  • the present application relates to the technical field of silicon workpiece processing, in particular to a silicon rod processing equipment and a silicon rod processing method.
  • the existing manufacturing process of silicon wafers taking monocrystalline silicon products as an example, generally, the rough operation process can include: first, use a silicon rod cutting machine to cut off the original long silicon rods to form multi-section short silicon rods; After that, a silicon ingot squarer is used to root the truncated short silicon rods to form single crystal silicon rods; The surface shaping meets the corresponding flatness and dimensional tolerance requirements; the single crystal silicon rod is then sliced by a slicer to obtain a single crystal silicon wafer.
  • the purpose of the present application is to provide a silicon rod processing equipment and a silicon rod processing method, so as to solve the problems of complicated procedures and low efficiency in the silicon rod processing existing in the prior art.
  • a silicon ingot processing equipment comprising: a machine base having a silicon ingot processing platform, and the silicon ingot processing platform is provided with a first processing area and a second processing area.
  • At least one first silicon rod clamp set on the first processing platform, used to clamp the silicon rod and drive the clamped silicon rod to move along a first direction; wherein, the first direction is parallel to the silicon rod the axis direction of the rod; at least one second silicon rod clamp is set on the second processing platform for clamping the silicon rod and driving the clamped silicon rod to move in the first direction;
  • the cutting device is set on the first conversion mechanism , which is used to cut the silicon rod on the first processing area or the second processing area of the silicon rod processing platform to form a cut silicon rod; wherein, the first conversion mechanism drives the cutting device in the first processing area.
  • the first switching mechanism is set at the first installation position on the silicon rod processing platform;
  • the grinding device is set on the second switching mechanism, which is used for the silicon rod processing platform.
  • the silicon rod after cutting on the first processing area or the second processing area is ground; wherein, the second conversion mechanism drives the grinding device to switch positions between the first processing area and the second processing area; wherein, the first processing area
  • the two conversion mechanisms are arranged at the second installation position on the silicon rod processing platform.
  • the present application also discloses a silicon rod processing method in a second aspect, which is applied to a silicon rod processing equipment, and the silicon rod processing equipment includes a machine base having a silicon rod processing platform, a cutting device, a grinding device, and a first silicon rod.
  • a fixture and a second silicon rod fixture wherein the cutting device is provided in the first conversion mechanism, the grinding device is provided in the second conversion mechanism, and the first silicon rod fixture and the second silicon rod fixture are respectively provided in the silicon rod
  • the first processing area and the second processing area of the rod processing platform include the following steps: the cutting device is located in the first processing area and the grinding device is located in the second processing area; the first silicon rod holder on the first processing area is loaded with the first The silicon rod to be cut is made; the first silicon rod clamp is moved along the first direction to hold the first silicon rod to be cut to make the cutting device feed and cut relative to the first silicon rod to be cut to obtain the first cut silicon rod with a rectangular cross-section.
  • the first direction is parallel to the axial direction of the silicon rod; make the first conversion mechanism drive the cutting device to convert from the first processing position to the second processing position, and make the second conversion mechanism drive the grinding device from the second processing position switch to the first processing position; make the first silicon rod clamp clamp the first cut silicon rod and move along the first direction to cooperate with the grinding device to grind the first cut silicon rod to obtain the first ground silicon rod; And make the second silicon rod holder load the second silicon rod to be cut and clamp the second silicon rod to be cut to move along the first direction to make the cutting device feed and cut relative to the second silicon rod to be cut, and obtain the second silicon rod with a quasi-rectangular cross section.
  • Two silicon rods after cutting unload the first ground silicon rod held by the first silicon rod holder and load the third silicon rod to be cut; make the first switching mechanism drive the cutting device to switch from the second processing position to the second processing position a processing area, and the second switching mechanism drives the grinding device to switch from the first processing area to the second processing area; the cutting device in the first processing area cuts the third silicon rod to be cut to obtain the third cut silicon rod , and the grinding device in the second processing area grinds the second cut silicon rod to obtain a second ground silicon rod.
  • the silicon rod processing equipment and the silicon rod processing method of the present application have the following beneficial effects: the silicon rod processing equipment is provided with a first processing location and a second processing location, so that the two processing locations can be simultaneously The silicon rod processing operation is carried out, thereby improving the processing efficiency of the silicon rod; at the same time, the cutting device and the grinding device are respectively driven by the first conversion mechanism and the second conversion mechanism to convert the processing area where they are located, so that the silicon rod clamp drives the clamping device.
  • the held silicon rod moves in the direction of the axis of the silicon rod, and the square cutting and grinding operations can be realized at any processing location, and the transportation path of the silicon rod between different processes is simplified; in this way, the silicon rod processing equipment of the present application can improve the The processing efficiency also simplifies the transportation path of the silicon rods between different processes, and reduces the labor loss, time loss and the risk of damage to the silicon rods in the process flow.
  • FIG. 1 is a schematic structural diagram of an embodiment of the silicon rod processing equipment of the present application.
  • FIG. 2 shows a schematic diagram of a first conversion mechanism in an embodiment of the silicon rod processing equipment of the present application.
  • FIG. 3 shows a schematic diagram of a second conversion mechanism in an embodiment of the silicon rod processing equipment of the present application.
  • FIG. 4 shows a schematic structural diagram of a cutting device of the silicon rod processing equipment of the present application in an embodiment.
  • FIG. 5 shows a schematic structural diagram of a cutting device of the silicon rod processing equipment of the present application in an embodiment.
  • FIG. 6 is an enlarged schematic view of A in FIG. 5 .
  • FIG. 7 is a schematic diagram showing a part of the structure of the silicon rod processing equipment of the present application in an embodiment.
  • FIG. 8 a and FIG. 8 b are schematic structural diagrams of the silicon rod holder of the silicon rod processing equipment of the present application in different view directions in an embodiment.
  • Fig. 9 is a schematic diagram showing a part of the structure of the silicon rod holder in Fig. 8a.
  • FIG. 10 is a schematic diagram showing a part of the structure of the silicon rod processing equipment of the present application in an embodiment.
  • FIG. 11 is a schematic diagram showing the structure of the edge skin supporting mechanism in an embodiment of the silicon rod processing equipment of the present application.
  • FIG. 12 shows a schematic structural diagram of a part of the structure of the silicon rod processing equipment of the present application in an embodiment.
  • Fig. 13 is an enlarged schematic view at B in Fig. 8b.
  • FIG. 14 is a schematic structural diagram of a silicon rod cutting device in an embodiment of the silicon rod processing equipment of the present application.
  • 15a and 15b are schematic structural diagrams of the loading device of the silicon rod processing equipment of the present application in different view directions in an embodiment.
  • FIG. 16 is a schematic diagram showing a part of the structure of the feeding device of the silicon rod processing equipment of the present application in an embodiment.
  • first, second, etc. are used herein to describe various elements or parameters, these elements or parameters should not be limited by these terms. These terms are only used to distinguish one element or parameter from another element or parameter.
  • a first ingot holder could be referred to as a second ingot holder, and similarly, a second ingot holder could be referred to as a first ingot holder without departing from the scope of the various described embodiments.
  • Both the first and second ingot clamps describe one ingot clamp, but unless the context clearly indicates otherwise, they are not the same ingot clamp.
  • a similar situation also includes the first processing area and the second processing area, or the first clamping block and the second clamping block, or the first conversion mechanism and the second conversion mechanism, and the first installation position and the second installation position.
  • A, B or C or “A, B and/or C” means “any of the following: A; B; C; A and B; A and C; B and C; A, B and C” . Exceptions to this definition arise only when combinations of elements, functions, steps, or operations are inherently mutually exclusive in some way.
  • the existing silicon rods have a cylindrical structure, and the silicon rods are cut by the silicon rod cutting equipment, so that the cross-section of the silicon rods is rectangular-like (including square-like) after the cutting process, and the processed silicon rods are
  • the rod is in the shape of a cuboid as a whole (it may also include a shape of a cube).
  • the formation process of the single crystal silicon rod may include: firstly use a silicon rod cutting machine to cut the original long silicon rod to form a multi-section short silicon rod; after the cutting is completed, use the silicon rod to square The machine performs a square root operation on the truncated short silicon rod to form a single crystal silicon rod with a rectangular cross-section.
  • the specific implementation method of using a silicon rod cutting machine to cut off the original long silicon rod to form a multi-segment short silicon rod can refer to, for example, patent publications such as CN105856445A, CN105946127A, and CN105196433A.
  • the formation process of the single crystal silicon rod is not limited to the above-mentioned technology.
  • the formation process of the single crystal silicon rod may also include: firstly, using a full silicon rod cutting machine to perform a squaring operation on the original long silicon rod to A long single crystal silicon rod with a rectangular-like cross section is formed; after the squaring is completed, a silicon rod cutting machine is used to cut the long single crystal silicon rod after the square cutting to form a short crystal silicon rod.
  • grinding equipment can be used to grind and chamfer the rectangular-like silicon rod.
  • the inventors of the present application have found that in the related processing technology for silicon rods, the processing devices such as squaring and grinding (such as surface grinding, chamfering, etc.) are dispersed and arranged independently of each other.
  • the conversion of silicon rods requires transportation and preparation and preprocessing before processing, which has problems such as complicated procedures and low efficiency.
  • the present application proposes a silicon rod processing equipment and a silicon rod processing method.
  • equipment modification a plurality of processing devices are assembled in one equipment, which can automatically realize the square cutting and grinding of silicon rods (for example, grinding surface). , chamfering, etc.), seamless connection between various processing operations, saving labor costs, improving production efficiency, and improving the quality of silicon rod processing operations.
  • the silicon rod processing equipment includes a machine base with a silicon rod processing platform, and the silicon rod processing platform is provided with a first processing area and a second processing area; at least one first silicon rod fixture is provided at the The first processing platform is used to clamp the silicon rod and drive the clamped silicon rod to move along the first direction; wherein, the first direction is parallel to the axial direction of the silicon rod; at least one second silicon rod clamp is located in the The second processing platform is used to clamp the silicon rod and drive the clamped silicon rod to move along the first direction; the cutting device is arranged on the first conversion mechanism and is used for the first processing of the silicon rod processing platform The silicon rods on the region or the second processing region are cut to form the cut silicon rods; wherein, the first conversion mechanism is set at the first installation position on the silicon rod processing platform, and the cutting device is driven at the first processing position and The position is switched between the second processing positions; the grinding device is arranged in the second switching mechanism, and is used for grinding the silicon rod after cutting on the first processing position or
  • the present application defines a first direction and a second direction, wherein the first direction is the horizontally placed silicon rods in the silicon rod processing equipment In the direction of the axis line (also referred to as the axis of the silicon rod in this application), the first direction and the second direction are perpendicular to the direction of the heavy vertical line.
  • the cutting device can be switched between the first processing area and the second processing area by the first switching mechanism, and the grinding device can be switched between the first processing area and the second processing area by the second switching mechanism. Switch between processing locations.
  • the silicon ingot can be cut and squared in any processing location, which simplifies different processes. The procedure of transferring between them simplifies the equipment and reduces the equipment space; at the same time, different processing positions on the silicon rod processing equipment can simultaneously perform processing operations of different procedures, which is beneficial to improve the processing efficiency.
  • FIG. 1 is a schematic structural diagram of an embodiment of the silicon rod processing equipment of the present application.
  • the silicon rod processing equipment includes a machine base 10 , a cutting device 20 , a grinding device 30 , a first silicon rod holder 11 , and a second silicon rod holder 12 . It should be noted that the silicon rod processing equipment may optionally include other components, such as the view shown in FIG. 1 , but this is not a limitation of the silicon rod processing equipment of the present application.
  • the machine base 10 is used as the main part of the silicon rod processing equipment to provide a working platform. Machine stability. It should be understood that the machine base 10 can be used as a base for different structures or components in the silicon rod processing equipment, and the specific structure of the machine base 10 can be changed based on different functional requirements or structural requirements; in some examples, all the The machine base 10 includes a fixed structure or a limiting structure for receiving different components in the silicon rod processing equipment, such as a base, a rod body, a column body, a frame body, etc., all of which are the machine base 10 described in this application.
  • the base 10 may be an integrated base, and in other examples, the base 10 may include a plurality of independent bases.
  • the machine base 10 has a silicon rod processing platform, and the silicon rod processing platform is provided with a first processing area and a second processing area.
  • the first processing location and the second processing location are locations that can be used for cutting, squaring and grinding operations on the silicon rod.
  • the first silicon rod holder 11 and the second silicon rod holder 12 are clamping devices corresponding to the first processing area and the second processing area respectively, and are used to control the motion of the silicon rod. Holding the silicon rod and driving the silicon rod to move in the first direction can make the silicon rod move in the first direction relative to the cutting device 20 or the grinding device 30 to realize the preset cutting and grinding operations.
  • at least one silicon rod fixture can be set on the first processing area and the second processing area, so that the silicon rod processing operation can be performed at the first processing area and the second processing area on the silicon rod processing platform. This improves production efficiency.
  • the cutting device 20 is used for cutting the silicon rod on the first processing area or the second processing area of the silicon rod processing platform to form a cut silicon rod.
  • the cutting device 20 is set at the first installation position on the silicon rod processing platform by the first conversion mechanism 43 .
  • the area of the silicon rod processing platform is not limited to the solid area of the machine base 10.
  • the processing platform may be a circumscribed rectangle of the machine base 10 , or the silicon ingot processing platform includes a receiving space in the machine base 10 .
  • the first conversion mechanism 43 may be disposed on the machine base 10 ; or may be disposed in the hollow area (or accommodating space) of the machine base 10 .
  • the first conversion mechanism 43 and the cutting device 20 can also be independent from the base 10, for example, it can be used as an independent sales unit.
  • the first switching mechanism 43 drives the cutting device 20 to switch positions between the first processing area and the second processing area, so that any processing area can perform cutting operations.
  • the grinding device 30 is used for grinding the cut silicon rod on the first processing area or the second processing area of the silicon rod processing platform.
  • the grinding device 30 is set at the second installation position on the silicon rod processing platform by the second conversion mechanism 40 .
  • the second conversion mechanism 40 may be provided on the base 10 or in the accommodating space of the base 10 .
  • the second conversion mechanism 40 and the grinding device 30 may also be connected with the base 10-phase independent, for example, can be used as a separate sales unit.
  • the second switching mechanism 40 drives the grinding device 30 to switch positions between the first processing area and the second processing area, so that any processing area can perform grinding operations.
  • the silicon rod processing equipment can control the processing areas where the cutting device 20 and the grinding device 30 are respectively located, so that the first processing area and the second processing area can respectively perform the cutting operation and the grinding operation at the same time.
  • the processing efficiency can be improved.
  • first installation position and the second installation position are not the same position.
  • first conversion mechanism 43 and the second conversion mechanism 40 are arranged at different positions of the silicon rod processing platform.
  • the first installation position and the second installation position should satisfy that the cutting device 20 and the grinding device 30 do not interfere with each other during the process of changing the processing location.
  • the first installation location and the second installation location may be located between the first processing location and the second processing location.
  • the first installation position and the second installation position may also be set in a middle area between the first processing area and the second processing area. For example, when the first processing area and the second processing area are arranged in parallel and symmetrically, the first installation position and the second installation position may be arranged on the symmetry line of the first processing area and the second processing area.
  • the cutting device and the grinding device are respectively driven by the first switching mechanism and the second switching mechanism, so that the positions can be switched between the first processing area and the second processing area relatively independently.
  • the first switching mechanism includes a first rotating shaft, and the cutting device rotates along the first rotating shaft by a preset angle to switch positions between the first processing area and the second processing area; the second processing area
  • the conversion mechanism includes a second rotating shaft, and the grinding device rotates along the second rotating shaft by a preset angle to switch positions between the first processing area and the second processing area.
  • the cutting device is rotated by a preset angle along the first rotation axis to switch positions between the first processing position and the second processing position.
  • the structure of the first conversion mechanism and the equipment space occupied can be simplified; similarly, the grinding device can switch between different processing positions by rotating a preset angle along the second rotation axis , the structure of the second conversion mechanism can be simplified and the equipment space thereof can be reduced.
  • FIG. 2 is a schematic diagram showing a part of the structure of the silicon rod processing equipment of the present application in an embodiment.
  • the first conversion mechanism 43 includes: a bracket 430 for setting the cutting device 20; a rotation driving source 432 for driving the cutting device 20 to rotate relative to the bracket 430 along the first rotation shaft 431, to switch positions between the first processing area and the second processing area.
  • the bracket 430 can be used as the base of the first conversion mechanism 43 , and the cutting device 20 can be movably installed on the bracket 430 based on the first rotating shaft 431 , and can be driven by the rotation driving source 432 relative to the bracket 430 along the first rotating shaft 431 turn.
  • the rotational drive source 432 is, for example, a motor having a power take-off shaft, and the power take-off shaft can be axially connected to the first rotating shaft 431 .
  • the bracket 430 may be configured to include two oppositely arranged frame bodies, where the two frame bodies may be connected to the first rotating shaft 431 respectively, and the gap between the two frame bodies may be used as the cutting device
  • the movable space for the rotation of the cutting device 20 that is, the cutting device 20 will not interfere with the frame during rotation, such as collision.
  • the second conversion mechanism further includes a rotation driving mechanism for driving the grinding device to rotate, and the rotation driving mechanism includes: a driving gear, which is axially connected to the power driving source; The driving gear is connected to the first shaft.
  • FIG. 3 shows a partial structural schematic diagram of the second conversion mechanism of the silicon rod processing equipment of the present application in an embodiment.
  • the driving gear is driven by the driving source 423 to rotate, thereby driving the engaged driven gear 422 to rotate.
  • the driven gear 422 can be used to carry or connect the grinding device and the cutting device, or the driven gear 422 can be arranged to be integrated with the casing or cylinder for connecting the grinding device and the cutting device, for example, the gear teeth of the driven gear 422 are arranged on the casing of the second conversion mechanism; thus the driven gear 422 can be The grinding device and the cutting device are driven to rotate.
  • the second rotating shaft 41 may be the axle of the driven gear 422 , or the second rotating shaft 41 may be along the axle of the driven gear 422 . The direction is connected to the driven gear 422 .
  • the rotational driving mechanism is a driving motor (not shown) that is connected to the second rotating shaft, and is used to control the first rotating shaft to rotate by a preset angle so that the grinding device can rotate in the first rotating shaft. Switch between a processing area and a second processing area.
  • the specific structure of the second rotating shaft is not limited to the shaft body.
  • the second rotating shaft is a casing for arranging the grinding device. It should be understood that the second rotating shaft is only used to realize rotation on the second rotating shaft. When the grinding device rotates along the axis to realize switching between the first processing area and the second processing area.
  • the first conversion mechanism and the second conversion mechanism can relatively independently drive the corresponding cutting device and grinding device.
  • the directions of the first rotating shaft and the second rotating shaft can be set to the same direction or different directions.
  • the first rotating shaft is arranged in the first direction
  • the second rotating shaft is arranged in the re-perpendicular direction
  • the first processing area and the second processing area are arranged on opposite sides of the second direction , wherein the first direction, the second direction, and the re-perpendicular direction are perpendicular to each other.
  • the first rotating shaft 431 is set in the first direction
  • the second rotating shaft 41 is set in the re-perpendicular direction.
  • the first conversion mechanism 43 is required to be set.
  • the preset angle of the cutting device 20 rotating along the first rotating shaft 431 is, for example, 180°, which can realize the two processing switch between zones.
  • the grinding device 30 rotates along the second rotating shaft 41 by a preset angle to switch between the two processing positions, and the preset angle is, for example, 180°.
  • the grinding device 30 rotates along the second rotating shaft 41 in the direction away from the cutting device 20 when changing the processing position, which can reduce the size of the cutting device 20 .
  • the grinding device 30 is in the second processing position at this time, and when the grinding device 30 needs to change the processing position, let The rotation direction of the grinding device 30 along the second rotating shaft 41 is the clockwise direction in the plan view corresponding to FIG. 1 .
  • the grinding device 30 of the silicon rod processing equipment needs to be equipped with a grinding tool for grinding.
  • the grinding device 30 is heavy. If the second rotating shaft 41 is set in the direction of the heavy vertical line, the grinding device 30 is During the driving and rotating process, the height of the center of gravity of the grinding device 30 remains unchanged, thereby improving the stability of the conversion process, which is beneficial to reduce the work done by the second conversion mechanism to drive the grinding device 30 and maintain the service life of the second rotating shaft 41 .
  • the first direction is defined as the length direction of the machine base and the silicon rod processing platform, and the first rotating shaft 431 corresponding to the cutting device 20 is set in the first direction. If the position remains unchanged, the length of the machine base or the silicon ingot processing platform in the first direction can be reduced or a more reasonable layout can be realized. Areas or waiting areas, etc., the loading area or waiting area can be set adjacent to the cutting device 20 .
  • the cutting device includes a plurality of cutting wheels and a cutting wire saw wound around the plurality of cutting wheels to form a cutting wire saw, and the first silicon rod clamp or the second silicon rod clamp
  • the silicon rod is driven to move in the first direction, so that the cutting device can be set in a fixed state when performing the cutting operation, so as to realize the relative feeding between the cutting wire saw and the silicon rod.
  • it is necessary to move the cutting wire saw in space to realize the cutting of the silicon rod to be cut. Therefore, it is necessary to configure a driving device and a guiding structure for the cutting wheel and the cutting wire to realize the cutting wire saw relative to the silicon rod.
  • the structure of the cutting device of the present application can be simplified, the cutting wheel can be fixed on the main body of the cutting device such as the cutting frame, and the guiding structure and driving device for moving the cutting wheel along the axis of the silicon rod can be omitted, That is, the structure of the cutting device and the equipment space occupied can be reduced.
  • the cutting device includes: a cutting frame and at least one wire cutting unit; wherein, the at least one wire cutting unit is provided on the cutting frame, and the wire cutting unit includes: a plurality of cutting wheels, a transition wheel , and a cutting wire wound around the plurality of cutting wheels and transition wheels to form at least one cutting wire saw.
  • the cutting frame is connected to the first conversion mechanism, and the cutting frame is used to set the wire cutting unit.
  • the specific structure of the cutting frame can be set in different forms based on the arrangement requirements of the cutting wheel and the transition wheel, such as For the column, beam, plate frame.
  • a plurality of cutting wheels and transition wheels in the wire cutting unit are connected to the cutting frame, or, the plurality of cutting wheels and transition wheels are arranged on a bracket, a connecting plate, or a mounting frame through a bracket, a connecting plate, or a mounting frame.
  • the cutting frame, here, the carrier for arranging a plurality of cutting wheels and transition wheels can be in different forms, which is not limited in this application.
  • FIG. 4 is a schematic diagram of a cutting device in an embodiment of the silicon rod processing apparatus of the present application.
  • the wire cutting support 23 is provided on the cutting frame 21 through a limit structure such as a guide rail or a guide post, wherein the guide rail or guide post is along the vertical direction of the wheel surface of the cutting wheel 221 in the wire cutting unit 22 .
  • the wire cutting unit 22 is set in the direction of the line, so that the set wire cutting unit 22 has the freedom to move along the vertical direction of the cutting wheel surface; under this setting, the wire cutting support 23 can move along the cutting wheel under the action of the driving source. 221 The orthogonal direction of the wheel surface moves.
  • the cutting wire saw in the wire cutting unit 22 moves along the vertical direction of the cutting wheel surface, and the cutting wire saw is The distance from or close to the axis of the silicon rod can be realized, so that the cutting amount or cutting position of the silicon rod can be adjusted.
  • the cutting wheel 221 is provided with at least one cutting wire groove for winding the cutting wire 223 , and the cutting wire groove can define the position of the cutting wire 223 to control the cutting precision. Any of the cutting wire saws is formed by winding the cutting wire 223 between two cutting wheels 221 , and the positions of the two cutting wheels 221 and the positional relationship between the cutting wheels 221 can be used to determine the direction of the cutting wire saw.
  • the transition wheel 222 is used to reverse or guide the cutting line 223 , or, the transition wheel 222 can be used to adjust the tension of the cutting line 223 .
  • the cutting wire is driven to run in the winding direction, and the silicon rod is driven by the silicon rod clamp to move along the axis direction of the silicon rod, that is, the first direction to realize the relative cutting wire saw. Feed, wherein the cutting wire saw can be set in the second direction or in the direction of the heavy vertical line.
  • the cutting wire saw can be cut only when the direction of the cutting wire is perpendicular to the axial direction of the silicon rod. Therefore, in a specific scenario, the direction of the cutting wire saw is located in the vertical plane of the first direction Yes, in order to control the cutting amount of the silicon rod and the arrangement of the cutting wheel and the transition wheel, and to describe the structure of the cutting device and the arrangement of the components of the present application, the following embodiment uses the cutting wire saw to be arranged in the second direction or heavy.
  • the direction of the vertical line is used as an example for description.
  • the wire cutting unit includes: a cutting wire; a first cutting wheel and a second cutting wheel, which are arranged on the cutting frame, and the cutting wire is wound around the first cutting wheel and the second cutting wheel to form Cutting wire saw; wherein, the wheel surface of the first cutting wheel is parallel or coplanar with the wheel surface of the second cutting wheel; the first transition wheel, adjacent to the first cutting wheel, is ordered in the state of pulling the cutting wire
  • the cutting lines of the first cutting wheel and the first transition wheel are located in the plane of the first cutting wire groove for winding the cutting line in the first cutting wheel; the second transition wheel, adjacent to the second cutting wheel, is in the traction
  • the state of the cutting line makes the cutting line of the second cutting wheel and the second transition wheel located in the plane of the second cutting wire groove used for winding the cutting line in the second cutting wheel; at least one third transition wheel is arranged on the first A transition wheel and a second transition wheel are used for pulling the cutting wire between the first transition wheel and the second transition wheel, so that a cutting accommodating space is formed in the wire
  • the direction of the cutting wheel surface has a corresponding relationship with the direction of the cutting wire saw. It should be understood that the cutting wheel surface is parallel to the plane where any cutting wire groove in the cutting wheel is located, in order to control the cutting accuracy and the stability of the cutting process , the cutting wire saw should be located in the plane of the cutting wire groove used for winding the cutting wire; at the same time, during the cutting process, the direction of the force applied by the silicon rod to the cutting wire should be parallel to the cutting wire groove, that is The surface of the cutting wheel is parallel to the cutting direction, and the cutting direction is the axial direction of the silicon rod during the squaring operation.
  • the cutting wire saw is located in the second direction or the re-perpendicular direction.
  • the cutting wheel surface is parallel to the second direction and the axial direction of the silicon rod, that is, the cutting wheel surface is located in The direction of the horizontal plane, or the wheel surface of the cutting wheel is parallel to the direction of the heavy vertical line and the direction of the axis of the silicon rod.
  • FIG. 5 is a schematic structural diagram of a wire cutting unit of the cutting device of the present application in an embodiment
  • FIG. 6 is an enlarged schematic diagram of the position A in FIG. 5 .
  • the cutting device includes two wire cutting units 22 arranged opposite to each other to form two parallel cutting wire saws.
  • any one of the wire cutting units 22 includes a first cutting wheel 221a and a second cutting wheel 221b, and a cutting wire 223 is wound around the first cutting wheel 221a and the second cutting wheel 221b to form a cutting wire saw.
  • the first cutting wheel 221a includes at least one first first cutting line groove, and the plane where any of the first cutting line grooves is located is parallel to the surface of the first cutting wheel wheel; the second cutting wheel 221b includes at least one first cutting line groove.
  • the plane where any of the second cutting wire grooves is located is parallel to the surface of the second cutting wheel.
  • the wheel surface of the first cutting wheel 221a and the wheel surface of the second cutting wheel 221b are parallel or coplanar, so that when the cutting wire 223 is wound around the first cutting wheel 221a and the second cutting wheel 221b, the The corresponding first and second cutting wire grooves for winding the cutting wire 223 are located in the same plane, so that the direction of the cutting wire saw can be simultaneously located at the first cutting wire groove for winding the cutting wire 223 and the second cutting wire groove.
  • the second cutting slot is in the plane. It should be understood that the cutting wire 223 is in a running state during the cutting action, so the cutting wire saw is defined by its spatial position. In the embodiment of the present application, it is wound around the first cutting wheel 221a and the second cutting wheel 221b The cutting line 223 in between is the cutting wire saw.
  • the cutting wires 223 on both sides of the cutting wheel should be located in the plane of the cutting wire groove for winding the cutting wire 223 in the cutting wheel.
  • the cutting wire 223 at one end of the first cutting wire groove is wound to the second cutting wheel 221b to form a cutting wire saw, and the cutting wire at the other end of the first cutting wire groove 223 wraps around the first transition wheel 222a.
  • the first transition wheel 222a is adjacent to the first cutting wheel 221a, and in the state of pulling the cutting line 223 wound around the first cutting wheel 221a, the cutting line 223 wound around the first cutting wheel 221a is positioned at The first cutting wire groove in the first cutting wheel 221a for winding the cutting wire 223 is located in the plane.
  • the cutting wire 223 at one end of the second cutting wire groove is wound to the first cutting wheel 221a to form a cutting wire saw, and the cutting wire at the other end of the second cutting wire groove 223 wraps around the second transition wheel 222b.
  • the second transition wheel 222b is adjacent to the second cutting wheel 221b, and in the state of pulling the cutting line 223 wound around the second cutting wheel 221b, the cutting line 223 wound around the second cutting wheel 221b is located at the
  • the second cutting wire groove for winding the cutting wire 223 in the second cutting wheel 221b is in a plane.
  • the first transition wheel 222 a and the second transition wheel 222 b respectively have at least one wire groove for pulling the cutting wire 223 .
  • the first transition wheel 222a and the second transition wheel 222b are respectively disposed adjacent to the first cutting wheel 221a and the second cutting wheel 221b, and here, the adjacent arrangement may be left, right, upper, lower side, etc., this application does not limit.
  • the direction of the cutting wire 223 wound around the cutting wheel or transition wheel is the tangential direction of the corresponding cutting wire groove or wire groove.
  • the at least one third transition wheel 222c is disposed between the first transition wheel 222a and the second transition wheel 222b for pulling the cutting line between the first transition wheel 222a and the second transition wheel 222b 223, so that a cutting accommodating space is formed in the to-be-wire cutting unit, the cutting accommodating space can accommodate the to-be-cut silicon rod and only the cutting wire saw intersects the cutting accommodating space in the cutting device .
  • the silicon rod clamp drives the held silicon rod to feed along the axis of the silicon rod relative to the cutting wire saw, and the cutting accommodating space is the silicon rod to be cut from contacting the cutting line 223 to moving to cutting
  • the line 223 runs through the movement range of the silicon rod during the process of forming the edge skin of the silicon rod.
  • the cutting accommodating space can accommodate the silicon rod to be cut, and only the cutting wire saw in the cutting device intersects the cutting accommodating space. It should be understood that during the cutting process, the silicon rod holder and the clamped silicon rod to be cut collide with other components in the silicon rod processing equipment including the cutting wire 223 (the cutting wire 223 here is excluding the cutting wire saw) during movement. Problems that need to be avoided; at the same time, in order to realize cutting, the cutting wire saw and the silicon rod are relatively fed during the movement of the silicon rod holder to clamp the silicon rod. Therefore, it should be ensured that the cutting accommodating space includes and only includes the silicon rod and the silicon rod. Wire saw.
  • the first transition wheel 222a, the second transition wheel 222b and at least one third transition wheel 222c can be used to pull the cutting line 223 in the direction, and the third transition wheel 222c pulls the first transition wheel 222a and the second transition wheel 222c.
  • the cutting line 223 between the transition wheels 222b forms the cutting accommodating space.
  • the first transition wheel 222a, the second transition wheel 222b and the at least one third transition wheel 222c are used for pulling the cutting wire 223 away from the silicon rod to be cut. It should be understood that the cutting line 223 between the first cutting wheel 221a and the first transition wheel 222a, and the cutting line 223 between the second cutting wheel 221b and the second transition wheel 222b are located for winding the cutting line 223 The first cutting line groove (or the second cutting line groove) of .
  • the lengths of the cutting lines 223 between the first cutting wheel 221a and the first transition wheel 222a and between the second cutting wheel 221b and the second transition wheel 222b can be made Long enough, for example, longer than the length of the silicon rod to be cut, but under this setting, the cutting frame occupies too much equipment space, and the layout is unreasonable.
  • the first transition wheel 222a, the second transition wheel 222b, and at least one third transition wheel 222c are used to draw the cutting wire 223 away from the cutting accommodation space.
  • the present application provides an embodiment in which the cutting accommodating space is formed by the first transition wheel 222a, the second transition wheel 222b and the third transition wheel 222c.
  • the cutting accommodating space is formed by the first transition wheel 222a, the second transition wheel 222b and the third transition wheel 222c.
  • the wheel surface of at least one of the first transition wheel 222a, the second transition wheel 222b and the third transition wheel 222c and the wheel surface of the first cutting wheel 221a or the second cutting wheel 221b A certain angle is formed, so that the cutting line 223 deviates from the plane where the first cutting line groove (or the second cutting line groove) for winding the cutting line 223 is located, in order to optimize the overall structural layout of the cutting device and the silicon rod processing equipment , the deviated direction can be selected as a direction away from the cutting accommodating space.
  • the first transition wheel 222a, the second transition wheel 222b and the third transition wheel 222c are arranged as The cutting line 223 can be kept away from the cutting accommodating space by inclining in the direction away from the cutting accommodating space, or setting the transition wheel on the side of the cutting frame away from the cutting accommodating space.
  • the equipment space required by the wire cutting unit is effectively reduced, and it is beneficial to the overall equipment layout of the silicon rod processing equipment.
  • the direction away from the cutting accommodating space is the vector of the vertical direction of the cutting wheel surface.
  • two opposite wire cutting The corresponding directions of the units away from the cutting accommodating space point in opposite directions, which are respectively the directions shown by the arrows in the figure.
  • the wheel surface of the first transition wheel 222a and the direction of the wheel surface of the first cutting wheel 221a may form a certain angle
  • the wheel surface of the second transition wheel 222b and the wheel surface of the second cutting wheel 221b may form a certain angle.
  • the face direction can be at a certain angle.
  • the direction in which the first transition wheel 222a is arranged is only when the cutting wire 223 at the other end of the first cutting wheel 221a is located in the plane where the first cutting wire groove for winding the cutting wire 223 is located and the first transition wheel 222a for The wire grooves for winding the cutting wire 223 are in the intersection of the planes; and the direction of the second transition wheel 222b is set only when the cutting wire 223 at the other end of the second cutting wheel 221b is positioned for winding the cutting wire 223
  • the plane where the second cutting wire groove is located and the plane where the wire groove for winding the cutting wire 223 in the second transition wheel 222b is located can be in the intersection line.
  • the direction of the angle is to make the first transition
  • the wheel 222a or the second transition wheel 222b is inclined toward the direction away from the cutting accommodating space, which is beneficial to reduce the required number of the third transition wheel 222c, and is beneficial to reduce the amount of the wire cutting support at the first the length of the direction.
  • the cutting line 223 is wound around the first cutting wheel 221a, the second cutting wheel 221b, the first transition wheel 222a, the second transition wheel 222b and the third transition wheel in an end-to-end manner 222c to form a closed loop cutting line 223.
  • the cutting wheel and the transition wheel in the wire cutting unit are wound by an annular cutting wire.
  • the cutting device can save the wire storage drum, and the annular cutting wire can be cut by running the driving device.
  • the cutting wire is wound from the pay-off drum to between the cutting wheel and the transition wheel in the wire cutting unit, and from the wire cutting unit to the wire take-up drum.
  • the running process of the cutting wire is an alternate acceleration and deceleration process; in the cutting device of the present application, the annular cutting wire in the wire cutting unit can keep running at high speed, and at the same time, the annular cutting wire can run at the same time during the cutting operation. direction run.
  • the wire cutting unit of the present application can realize high-precision cutting operations, and avoid problems such as ripples on the cutting surface caused by the running reversal or running speed of the cutting wire in the existing cutting method; at the same time, the annular cutting wire can effectively Reduce the overall length of the cutting wire required by the wire cutting unit, reducing production costs.
  • the wire cutting unit includes two third transition wheels, wherein the cutting wire is wound around the first cutting wheel, the second cutting wheel, the second transition wheel, and the first cutting wheel in turn. There are three transition wheels, another third transition wheel, a first transition wheel, and a first cutting wheel to form an end-to-end annular cutting line.
  • the cutting line 223 is wound from the first cutting wheel 221 a to the second cutting wheel 221 b , forming two cutting lines.
  • Cutting wire saw between wheels; the cutting wire 223 is wound from the second cutting wheel 221b to the second transition wheel 222b, a third transition wheel 222c, another third transition wheel 222c, a first transition wheel 222a, a first transition wheel 222b
  • the cutting wheel 221a thus forms an end-to-end annular winding, and at the same time, through the pulling and guiding of the cutting wire 223 by a plurality of transition wheels, the cutting accommodating space is formed in the wire cutting unit.
  • the positions of the first transition wheel 222a, the second transition wheel 222b and the third transition wheel 222c relative to the cutting wheel and the inclination direction of the wheel surface are not limited to the illustrated embodiment, only
  • the cutting accommodating space may be formed when the cutting wire 223 is wound between the plurality of cutting wheels and transition wheels of the wire cutting unit.
  • the third transition wheels 222c of the wire cutting unit can also be set to three, four, etc., which is not limited in this application.
  • the cutting device further includes a cutting wire driving device for driving the cutting wire to run to cut the silicon rod.
  • the principle of wire cutting is that the high-speed running steel wire drives the cutting blade material attached to the steel wire or directly uses the diamond wire to rub the workpiece to be processed, so as to achieve the purpose of wire cutting.
  • the cutting wire driving device is used to realize the running of the cutting wire.
  • the cutting wire driving device 224 is a motor, and has a power take-off shaft, and the power take-off shaft is connected to the first cutting wheel or the second cutting wheel, In this way, the cutting wire can be driven by the wound cutting wheel to run in the winding direction.
  • the cutting wire driving device may also be another driving source, such as a hydraulic motor, only when the cutting wire is driven to run, which is not limited in this application.
  • the cutting device further includes a tension detection mechanism.
  • the tension of the cutting wire affects the yield and processing accuracy of the cutting.
  • the tension detection mechanism performs tension detection and adjusts so that the tension of the cutting wire reaches a certain threshold set and maintains a constant value or a constant value during cutting.
  • the constant value is a certain range allowed by the center of the value.
  • the transition wheel in the wire cutting unit acts as a tensioning wheel for adjusting the tension of the cutting wire while realizing the guiding and pulling of the cutting wire.
  • the tensioning wheel is used to adjust the tension of the cutting line, which can reduce the probability of breaking the cutting line and reduce the consumables.
  • the role of the cutting wire is very important, but even the best cutting wire has limited elongation and wear resistance, which means that the cutting wire will gradually become thinner during continuous operation until it is finally broken. . Therefore, the current wire cutting equipment generally designs a cutting wire tension compensation mechanism to compensate for the extension of the cutting wire when it travels back and forth.
  • the tension detection mechanism at least includes: a tension sensor, a servo motor and a lead screw; the tension sensor is arranged on the transition wheel, and continuously senses the tension value of the cutting line on the transition wheel , and send a drive signal when the tension value is less than the preset value; the servo motor is electrically connected to the tension sensor to start working after receiving the drive signal sent by the tension sensor; one end of the screw rod is connected to the The other end of the tensioning wheel is connected to the servo motor, and when the servo motor works, the transition wheel is pulled to perform one-way displacement, so as to adjust the tension of the cutting line.
  • the cutting device further comprises: at least one distance adjusting mechanism, which is arranged on the at least one wire cutting unit and is used to drive the plurality of cutting wheels in the wire cutting unit to be perpendicular to the cutting frame along a vertical direction. The direction of the cutting wheel face is moved.
  • the cutting device can switch the cutting wire between different cutting grooves of the cutting wheel based on the distance adjustment mechanism, or adjust the position of the cutting wire saw to change the cutting position (or processing specification) relative to the silicon rod.
  • the wire cutting unit 22 includes a plurality of cutting wheels 221 and transition wheels 222 .
  • the carrier for carrying the plurality of cutting wheels 221 and the transition wheels 222 is, for example, the wire cutting support 23 shown in FIG. 5 , and the distance adjustment mechanism (not shown) can be used to drive the whole wire cutting support 23 Moving along the vertical direction of the surface of the cutting wheel 221, the transition wheel 222 and the cutting wheel 221 together follow the wire cutting support 23 to move along the vertical direction of the surface of the cutting wheel 221.
  • the multiple The cutting wheels 221 and the transition wheels 222 are relatively stationary, that is, the positional relationship between the transition wheels 222 and the cutting wheels 221 remains unchanged.
  • the distance adjusting mechanism is used to adjust the cutting position of the at least one wire cutting wire saw relative to the silicon rod in the at least one wire cutting unit 22 .
  • each cutting wheel has at least two cutting line grooves, different cutting line grooves are parallel to each other and there is a cutting offset in the vertical direction of the cutting wheel surface between different cutting line grooves.
  • the distance adjusting mechanism is used to drive the plurality of cutting wheels in the wire cutting unit to move relative to the wire cutting support, the positions of the wire grooves on which the cutting wire is wound around the cutting wheels can be changed.
  • a plurality of cutting wheels in the wire cutting unit can be connected to a bracket, for example, wherein the bracket is movably arranged on the wire cutting support and is driven by the distance adjustment mechanism to follow the direction of the cutting wheel surface. Move in the vertical direction.
  • the corresponding cutting lines before and after the groove changing can be determined in advance.
  • Cutting wire groove for example, the position of the cutting wire before the groove change is the cutting wire groove a1, after the groove changing, the cutting wire is wound around the cutting wire groove a2, based on the cutting offset between the cutting wire groove a1 and the cutting wire groove a2.
  • the displacement amount that the at least one distance adjusting mechanism drives the movement of the plurality of cutting wheels in the wire cutting unit is set as the cutting offset between the cutting wire groove a1 and the cutting wire groove a2, which can be used to realize cutting Replacing the wire cutting wire groove a1 to the cutting wire groove a2; it should be noted that the at least one distance adjustment mechanism drives the multiple cutting wheels in the wire cutting unit to move in the direction of the vertical line of the cutting wheel surface.
  • the wire groove a2 points to the direction of the cutting wire groove a1.
  • the cutting position of the cutting wire saw in the space remains unchanged, and the step of further calibrating the position of the cutting wheel or other components is omitted, and the preset cutting amount can be The silicon rods are cut so that the slot changing process is simplified.
  • the present application provides the following embodiments.
  • the specific form of the at least one distance adjusting mechanism can be changed accordingly.
  • the wire cutting device includes a single-wire cutting unit;
  • the distance adjustment mechanism includes: a screw rod, which is arranged in the orthogonal direction of the wheel surface of the cutting wheel and is threadedly connected to the single-wire cutting unit; to drive the screw to rotate.
  • the single wire cutting unit is a wire cutting unit.
  • the single wire cutting unit in the wire cutting device includes a plurality of cutting wheels, and the cutting wire is wound around the plurality of cutting wheels to form at least one cutting wire saw.
  • the screw rod of the distance adjustment mechanism has a distal end and a proximal end.
  • the proximal end of the screw rod can be connected to a driving source and rotated under the driving of the driving source, and the distal end of the screw rod is threadedly connected to the
  • the single-wire cutting unit by means of the connection at both ends of the screw rod, can rotate based on the drive source transmission and convert the rotation of the screw rod into axial displacement by means of a threaded connection.
  • the axial displacement direction is the setting direction of the screw rod.
  • the orthogonal direction of the wheel surface of the cutting wheel; the displacement of the single-wire cutting unit in the orthogonal direction of the wheel surface of the cutting wheel can be realized by driving the lead screw by the driving source in the distance adjustment mechanism. Then, the cutting wheel of the single wire cutting unit can move forward or backward in the orthogonal direction of the cutting wheel surface.
  • the wire cutting device includes a single-wire cutting unit;
  • the distance adjustment mechanism includes: a telescopic element, which is arranged in the orthogonal direction of the wheel surface of the cutting wheel and is associated with the single-wire cutting unit; a driving source, which uses The telescopic element is driven to perform telescopic motion along the orthogonal direction of the wheel surface of the cutting wheel.
  • the telescopic piece can be configured as a rod body structure, and the extending direction of the rod body is the orthogonal direction of the wheel surface of the cutting wheel.
  • the drive source, the retractable free end is associated with the single wire cutting unit, and can drive the cutting wheel of the single wire cutting unit to move in the orthogonal direction of the cutting wheel surface under the action of the driving source.
  • the telescopic element is, for example, an electric telescopic rod, or a connecting rod connected to a cylinder taper rod, and the cylinder can be used as a driving source, which is not limited in this application.
  • the way the telescopic rod is connected to the single-wire cutting unit can be a linear connection or an indirect connection, for example, it can be directly connected to the wire-cutting support or cutting wheel support of the single-wire cutting unit, or indirectly connected to the single-wire cutting unit through a support or bearing.
  • the single wire cutting unit It should be understood that the expansion or contraction of the telescopic element can correspond to the advance or retreat of the single-wire cutting unit along the orthogonal direction of the cutting wheel surface.
  • the association can be realized by, for example, one or more of snapping, screw locking, gluing, and welding.
  • the telescopic rod can be The wire cutting unit is associated with one or more ways of snapping, screwing, gluing, and welding; of course, the realization of the association is not limited to this, and is intended to be realized in the second direction transmission.
  • the wire cutting device includes a single-wire cutting unit;
  • the distance adjustment mechanism includes: a rack, which is arranged on the single-wire cutting unit along an orthogonal direction to the surface of the cutting wheel; a transmission gear, which is connected to the The rack is meshed; the driving source is used to drive the transmission gear to rotate.
  • the transmission gear rotates under the drive of the driving source, and the rack meshing with the transmission gear moves along the step direction of the rack accordingly.
  • the rotational motion of the drive is converted into wire transportation along the direction of the rack, and the rack is arranged on the single-wire cutting unit along the orthogonal direction of the cutting wheel surface, so that the cutting wheel of the single-wire cutting unit can be driven along the cutting wheel. Orthogonal direction of the face.
  • the rotation direction of the transmission gear is controlled and switched by the driving source, so that the plurality of cutting wheels of the single-wire cutting unit can advance or retreat along the orthogonal direction of the cutting wheel surface.
  • the cutting device includes a first wire cutting unit and a second wire cutting unit arranged in parallel and opposite to each other, and at least one of the first wire cutting unit and the second wire cutting unit passes through the at least one wire cutting unit.
  • the distance adjustment mechanism is driven to move in the orthogonal direction of the surface of the cutting wheel, and is used to adjust the wire secant line between at least one cutting wire saw in the first wire cutting unit and at least one cutting wire saw in the second wire cutting unit
  • the saw spacing, or the changing cutting wire is wound around the cutting wire grooves of the plurality of cutting wheels in the first wire cutting unit and/or the cutting wire grooves of the plurality of cutting wheels in the second wire cutting unit.
  • the at least one distance adjusting mechanism can be configured to be connected to the first wire cutting unit or the second wire cutting unit, or to be associated with the first wire cutting unit and the second wire cutting unit at the same time, so as to drive the connected or associated wire cutting unit.
  • the plurality of cutting wheels in the first wire cutting unit or/and the second wire cutting unit move in orthogonal directions of the cutting wheel surfaces.
  • the distance adjusting mechanism includes: a screw rod, which is arranged in the orthogonal direction of the wheel surface of the cutting wheel and is threadedly connected with the first wire cutting unit or the second wire cutting unit; to drive the screw to rotate.
  • the manner in which the screw rod and the driving source drive the plurality of cutting wheels in the first wire cutting unit or the second wire cutting unit to move in the orthogonal direction of the cutting wheel surface is similar to that in the previous embodiment, and all the cutting wheels driven by the distance adjusting mechanism
  • the first cutting unit or the second wire cutting unit may be regarded as a single wire cutting unit, which will not be repeated here. It should be understood that by setting the distance adjusting mechanism on any wire cutting unit, the distance between the parallel cutting wire saws formed between the first wire cutting unit and the second wire cutting unit can be increased and decreased, and the wire cutting device can be Cut silicon rods into different sizes.
  • the distance adjusting mechanism includes: a telescopic element, which is arranged in the orthogonal direction of the cutting wheel surface and is associated with the first wire cutting unit or the second wire cutting unit; a driving source for driving The telescopic element performs telescopic movement along the orthogonal direction of the wheel surface of the cutting wheel.
  • the first cutting unit or the second wire cutting unit provided with the distance adjusting mechanism may be regarded as a single wire cutting unit, and the specific implementation can refer to the foregoing embodiments, which will not be repeated here.
  • the distance adjusting mechanism comprises: a rack, along the orthogonal direction of the cutting wheel surface and associated with the first wire cutting unit or the second wire cutting unit; a transmission gear, connected with the The rack is meshed; the driving source is used to drive the transmission gear to rotate. Through the meshing transmission gear and rack, the driving source can control the rack to move linearly in the direction of the rack, and the first wire cutting unit or the second wire cutting unit associated with the rack can use the teeth
  • the strip drives the plurality of cutting wheels to move in orthogonal directions to the surfaces of the cutting wheels.
  • the distance adjusting mechanism includes: a bidirectional screw rod, which is arranged along the orthogonal direction of the wheel surface of the cutting wheel and is threadedly connected with the first wire cutting unit and the second wire cutting unit; and a driving source, It is used to drive the screw rod to rotate, so that the first wire cutting unit and the second wire cutting unit move toward or away from each other along the orthogonal direction of the surface of the cutting wheel.
  • the two-way screw is a double-threaded screw
  • the two ends of the two-way screw are respectively provided with threads and the thread directions are opposite
  • the driving source can be provided at either end of the two-way screw
  • the driving source can be provided at either end of the two-way screw
  • the driving source can be provided at either end of the two-way screw
  • the driving source In order to drive the two-way screw to rotate along the screw shaft, with the threads in opposite directions at both ends of the two-way screw, when the two-way screw is rotated under the drive of the driving source, the movement of the two ends of the two-way screw is converted into the axial line in the opposite direction. Movement, the axial direction is the orthogonal direction of the cutting wheel surface of the bidirectional screw rod.
  • the plurality of cutting wheels corresponding to the first wire cutting unit and the second wire cutting unit respectively can move toward each other or move toward each other.
  • the distance adjusting mechanism is a servo motor provided in the at least one wire cutting unit.
  • a servo motor is provided on at least one wire cutting unit of the wire cutting device or each wire cutting unit, and the servo motor controls the displacement of the corresponding wire cutting unit in the orthogonal direction of the cutting wheel surface.
  • the wire cutting unit can pre-determine the cutting offset for changing grooves or the adjustment amount for changing the cutting position of the cutting wire, and the precise positioning function of the servo motor drives the plurality of cutting wheels in the wire cutting unit to a preset displacement. Movement in the direction orthogonal to the face of the cut-off wheel.
  • the wire cutting device is provided with a single wire cutting unit, and the single wire cutting unit is provided with a servo motor to drive the single wire cutting unit to move in the orthogonal direction of the wheel surface of the cutting wheel; in another example, the wire cutting device A first wire cutting unit and a second wire cutting unit are provided in the middle, and the first wire cutting unit or/and the second wire cutting unit are driven by the corresponding servo motors to move relatively independently along the orthogonal direction of the cutting wheel surface.
  • the servo motor can also be replaced with a traveling motor and a traveling lead screw.
  • the distance adjustment mechanism is a driving device that drives a plurality of cutting wheels in the wire cutting unit to move relative to the cutting frame. Form This application is not limited.
  • the first silicon rod holder is arranged at the first processing location through a first guide structure, wherein the first guide structure is a transfer guide rail or a guide post arranged along a first direction;
  • the second silicon rod holder is arranged at the second processing area through a second guide structure, wherein the second guide structure is a transfer guide rail or a guide post along the first direction.
  • FIG. 7 is a schematic diagram of a part of the structure of the silicon rod processing equipment in an embodiment. As shown in the figure, it is any one of the first silicon rod holder or the second silicon rod holder and its corresponding guiding structure.
  • the term "guide structure” may refer to any one of the first guide structure or the second guide structure;
  • the term “silicon rod” “Clamp” may refer to either the first silicon rod holder or the second silicon rod holder; that is, the first and second guide structures, and the first and second silicon rod holders
  • the fixtures can be distinguished according to the processing location, and are similar in specific structure.
  • the first silicon rod holder corresponds to the first guide structure
  • the second silicon rod holder corresponds to the second guide structure
  • processing location may refer to the first processing location or the second processing location any of the.
  • the guide structure 131 includes a transfer guide rail arranged along the first direction, that is, the axial direction of the silicon rod, and the transfer guide rail is used to set the corresponding silicon rod holder 11 so that the silicon rod holder 11 has a Can move along the first transfer rail.
  • the guide structure 131 realizes the setting of the corresponding silicon rod holder 11 and forms the freedom of movement along the axis of the silicon rod. That is, in a specific implementation manner, the guide structure 131 includes, but is not limited to, a guide column, a beam, a guide rail, a guide groove, and the like.
  • the length of the guide structure 131 can determine the displacement range of the corresponding silicon rod holder 11 along the axis of the silicon rod, and the displacement range can at least be used to realize square root cutting and grinding.
  • the cutting device and the grinding device in the silicon rod processing equipment do not move along the axis direction of the silicon rod in the cutting state or grinding state, and the silicon rod clamp 11 drives the clamped silicon rod along the axis direction of the silicon rod.
  • the movement is to realize the feeding of the cutting line or the grinding tool relative to the silicon rod; correspondingly, the length of the guide structure 131 can at least ensure that the displacement range of the corresponding silicon rod holder 11 can realize squaring and grinding.
  • the guide structure 131 is set to have a length equal to that of the machine base 10.
  • the silicon rod holder 11 can drive the clamped silicon rods to move so as to be respectively connected to the loading area, the unloading area and the processing area.
  • the silicon rod clamp is driven by the silicon rod clamp to move to realize cutting.
  • the silicon rod clamp and the components in the cutting device If there is no collision between the cutting lines), the specific structure of the silicon rod holder is related to the cutting device.
  • the at least one cutting wire saw is arranged along the second direction
  • either the first silicon rod holder or the second silicon rod holder includes: a clamping arm mounting seat, which is arranged on the corresponding Transfer guide rails or guide posts; a power source for driving the clamping arm mounting base to move along the corresponding transfer guide rails or guide posts; a pair of clamping parts, arranged opposite to each other along the first direction, used for clamping the two parts of the silicon rod; a pair of clamping arms, arranged in the direction of the horizontal plane, wherein each clamping arm has a proximal end connected to the clamping arm mounting seat and a distal end connected to the clamping part; a clamping arm driving mechanism for driving At least one of the pair of clamp arms is moved in the first direction to adjust the spacing of the pair of clamp arms in the first direction.
  • FIGS. 8 a and 8 b are respectively a top view and a three-dimensional schematic view of any one of the silicon rod clamps and the corresponding guide structure.
  • the cutting device 20 includes two wire cutting units arranged opposite to each other.
  • the cutting device 20 includes two parallel cutting wire saws along the second direction. During the feeding process of the silicon rod to be cut relative to the cutting wire saw, that is, at The surface of the silicon rod forms two opposite cut planes along the horizontal plane.
  • the silicon rod holder 11 includes a pair of clamping arms 113 for clamping the two end faces of the silicon rod.
  • the proximal end of 113 is connected to the clamp arm mounting seat 111, the clamp arm mounting seat 111 is movably arranged on the guide structure and moves along the guide structure under the drive of the power source 112, thereby driving the clamp arm 113 and the clamp arm 113 to move away from the guide structure.
  • the clamping portion 114 at the end moves along the guide structure; the power source 112 is, for example, a servo motor, which is not limited in this application.
  • the silicon rod holder 11 further includes a clamping arm driving mechanism 115 for driving at least one of the pair of clamping arms 113 to move along the first direction to adjust the distance between the pair of clamping arms 113 along the first direction, as described above
  • the clamping portions 114 respectively connected to the distal ends of the pair of clamping arms 113 can approach or move away from each other under the action of the clamping arm driving mechanism 115 to perform clamping or releasing action on the silicon rod.
  • the axis of the silicon rod is along the first direction, in order to realize the clamping of the silicon rod on the two end faces of the silicon rod, the clamping parts 114 corresponding to the distal ends of the pair of clamping arms 113 are along the first direction. Set up in one direction relative to each other.
  • the pair of clamping arms 113 are arranged in the horizontal direction.
  • the clamping arm 113 moves along the guide structure.
  • Arm 113 can avoid the cutting wire saw.
  • the pair of clamping arms 113 can also be set to have a certain angle with the horizontal plane, and the movement of the clamping arms 113 can only be ensured when the silicon rod holder 11 is moved to realize the cutting process. The range is separate from the cutting wire saw.
  • the clamping arm driving mechanism 115 includes a lead screw, which is arranged along the first direction and is associated with any one of the pair of clamping arms 113 ; a driving source for driving the associated clamping arm 113 Move in the first direction.
  • the screw rod of the clamping arm driving mechanism has a distal end and a proximal end.
  • the proximal end of the screw rod can be connected to a driving source and rotated under the driving of the driving source, and the distal end of the screw rod is threadedly connected to the Any one of the pair of clamping arms, by means of the connection at both ends of the screw rod, the screw rod can rotate based on the drive source transmission and convert the rotation of the screw rod into an axial displacement by means of a threaded connection, and the axial displacement direction is:
  • the setting direction of the lead screw is the first direction; by driving the lead screw to rotate by the driving source, the clamp arm connected to the distal end of the lead screw can be moved in the first direction, and the rotation direction of the lead screw is driven to change, so that the The forward or backward movement of the associated gripper arm in the first direction is achieved.
  • the clamping arm driving mechanism includes: a bidirectional screw rod arranged in a first direction and threadedly connected with the pair of clamping arms at both ends; a driving source for driving the screw rod to rotate to The pair of clamping arms are moved toward or away from each other along the first direction.
  • the bidirectional screw rod of the clamping arm driving mechanism 115 is threadedly connected with the pair of clamping arms 113 at both ends, and the bidirectional screw rod is a double-threaded screw and the thread directions at both ends are opposite,
  • the drive source can be set at either end of the two-way screw or connected to the two-way screw (such as the state shown in Figure 8b) to drive the two-way screw to rotate along the screw shaft, by means of The two ends of the two-way screw have threads with opposite directions.
  • the two-way screw is rotated under the driving source, the movements of the two ends of the two-way screw are converted into opposite linear movements along the axial direction of the screw and the first direction.
  • the pair of clamping arms 113 can move toward or away from each other in the first direction.
  • the clamping arm mounting base 111 may be a plurality of mounting bases connected by the clamping arm driving mechanism 115.
  • the driving source is arranged on the clamp arm mounting seat 111 between a pair of clamp arms 113, here, any clamp arm 113 can move along the guide structure 131;
  • the driving source of the clamping arm driving mechanism 115 can control the pair of clamping arms 131 to be relatively stationary.
  • the connection makes the different clamping arm mounts 111 relatively stationary, and the power source of the silicon rod holder can drive any one of the clamping arm mounts 111 to move along the guide structure 131 to realize the overall movement of the silicon rod holder.
  • the clamp arm driving mechanism includes a first rack, a second rack and a drive gear; the first rack and the second rack are respectively linked to a clamp arm, and the drive gear is connected
  • the power output shaft (not shown) of the driving motor is engaged with the first rack and the second rack, and the driving gear is used to drive the pair of clamping arms to face each other when rotating in the forward direction.
  • the movement is performed to perform the clamping action, and the pair of clamping arms are driven to move back to perform the releasing action when the pair of clamping arms are rotated in the reverse direction.
  • any one of the first silicon rod holder and the second silicon rod holder further includes a clamping part rotation mechanism for driving the clamping part to rotate.
  • the clamping portions 114 corresponding to the pair of clamping arms 113 are provided with a rotatable structure such as a rotatable base, and the clamping portion rotation mechanism 116 can be configured to drive at least one clamp The clamping portion 114 corresponding to the arm 113 rotates.
  • the clamping part rotation mechanism 116 drives the clamping part 114 to rotate with the first direction as the axis, so that the clamped silicon rod rotates along the axis of the silicon rod.
  • the positional relationship of the clamped silicon rod relative to the dicing wire saw can be adjusted.
  • the cutting surface of the rod, and the positional relationship of the clamped silicon rod relative to the grinding device can be adjusted to determine the grinding surface relative to the silicon rod, that is, the silicon rod holder can cooperate with the cutting device and the grinding device to achieve different cutting of the silicon rod Selection and control of surface and grinding surface.
  • the clamping part has a multi-point contact clamping head.
  • the contact mode between the multi-point contact clamping head and the end face of the silicon rod is not limited to point contact, so
  • the clamping portion has a plurality of protruding portions for contacting the end face of the silicon rod, wherein each protruding portion and the end face of the silicon rod can be in surface contact.
  • the protruding part of the clamping part can also be connected to the base of the clamping part through a spring along the first direction, so that a multi-point floating contact can be formed, so that the silicon rod clamp can be clamped in the clamping part.
  • the end face of the silicon rod can be adapted to the flatness of the end face of the silicon rod to clamp the silicon rod.
  • the clamping end of the clamping part for contacting the end face of the silicon rod can also be connected to the clamping part base by a universal mechanism such as a universal ball, and the clamping part can thus be adapted to clamp a End faces of silicon rods with different inclinations.
  • a pair of clamping parts of the silicon rod holder for contacting the silicon rod part is set as a rigid structure, so as to prevent the clamped silicon rod from being disturbed and affected during the cutting operation and the grinding operation Precision.
  • FIG. 9 is an enlarged schematic structural diagram of the clamping portion of the silicon rod holder of FIG. 8 a .
  • the clamping portion 114 includes a rotatable base and a series of protruding contacts 1141 disposed on the base, and each of the contacts 1141 has a contact plane.
  • the round table is rotated under the driving of the clamping part rotating mechanism 116.
  • the protruding length of the contact 1141 that is, the position in the first direction, can be adjusted, so that when the clamping silicon In the process of sticking, for silicon sticks with low end surface flatness, the protruding length of the contacts 1141 can be adjusted according to the end surfaces of the silicon sticks, so that each contact surface is in a close state with the end surfaces of the silicon sticks.
  • one of the clamping portions corresponding to the pair of clamping arms may further be provided with a pressure sensor, so as to adjust the protruding length of the contact based on the detected pressure state, or based on the detected pressure state.
  • the detection data of the pressure sensor controls the clamping arm driving mechanism to determine the distance between the pair of clamping arms in the first direction.
  • a pair of clamping arms of the silicon rod clamp are driven by the clamping arm driving mechanism to approach each other along the first direction, until the clamping part and the silicon rod to be clamped are in contact with each other.
  • the end faces are in contact with each other.
  • the clamping end When the clamping end is provided with a plurality of contacts and it is detected that the pressure value of some contacts in contact with the end faces of the silicon rods in contact is less than a set value or a set area, it can be adjusted by adjusting the contact pressure.
  • the protruding length (generally toward the approaching direction of the end face of the silicon rod) is used to change the clamping degree; or, in the process of clamping the silicon rod, a pair of clamping arms are driven toward the two ends of the silicon rod by the clamping arm driving mechanism.
  • the end faces are close to each other to realize clamping.
  • any one of the first silicon rod holder or the second silicon rod holder includes: a clamping arm mounting seat, which is arranged on the corresponding transfer guide rail or guide post; a power source for driving the clamping arm mounting seat to move along the corresponding transfer guide rail or guide post; a pair of clamping parts, arranged opposite to each other along the first direction, for clamping the two end faces of the silicon rod a pair of clamp arms, arranged in a plane perpendicular to the second direction, wherein each clamp arm has a proximal end connected to the clamp arm mounting seat and a distal end connected to the clamp part; clamp arm drive mechanism is used to drive at least one of the pair of clamping arms to move along the first direction to adjust the distance between the pair of clamping arms in the first direction.
  • the clamping arm mounting seat of the silicon rod holder, the pair of clamping parts, and the clamping arm driving mechanism may refer to the foregoing embodiments, and will not be repeated here.
  • a pair of clamping arms in the silicon rod holder are arranged in a plane perpendicular to the second direction, so that the pair of clamping arms and the clamped silicon rod move along the guide structure during the movement process.
  • the clamped silicon rod contacts the dicing wire saw, while the pair of clamping arms are spaced from the dicing wire saw.
  • the pair of clamping arms can also be set in other directions, and only when it is ensured that the silicon rod clamp moves to realize the cutting process, the movement range of the clamping arms is the same as that of the cutting wire saw. apart.
  • any one of the first silicon rod holder and the second silicon rod holder further includes a clamping part rotating mechanism for driving the clamp The holding portion rotates; the specific implementation can refer to the foregoing embodiments, which will not be repeated here.
  • the clamping arm driving mechanism includes: a screw rod arranged in the first direction and associated with any one of the pair of clamping arms; a driving source , which is used to drive the associated clamping arm to move in the first direction; the specific implementation can refer to the foregoing embodiments, which will not be repeated here.
  • the clamping arm driving mechanism includes: a bidirectional screw rod, which is arranged in the first direction and is threadedly connected with the pair of clamping arms at both ends; The source is used to drive the screw rod to rotate so that the pair of clamping arms move toward or away from each other along the first direction; the specific implementation can refer to the foregoing embodiments, which will not be repeated here.
  • the cutting is realized by coordinating the relative movement between the cutting device and the corresponding silicon rod holder.
  • the silicon rod processing equipment is further provided with a feeding area and a discharging area. For example, as shown in FIG. 1 , when the feeding area and the processing area are arranged adjacent to each other along the first direction, the silicon rod The jig always clamps the silicon rod to be cut from the loading area and then transfers the silicon rod to be cut to the processing area in the direction of the arrow shown in the figure.
  • the feeding direction of the silicon rod relative to the cutting wire saw is toward the side of the axis of the cutting wheel, so as to prevent the cutting wire from being pulled away from the cutting wire groove during cutting, as shown in FIG. 1 .
  • the silicon rod holder should drive the silicon rod to be cut to feed relative to the cutting wire saw in the direction of the arrow shown in the figure to realize cutting.
  • the distance adjustment mechanism can also be used to move the cutting wire saw to avoid the silicon rod to be cut.
  • the cutting device includes two wire cutting units arranged opposite to each other, in one cutting If the surface of the silicon rod forms two sides, the silicon rod holder needs to drive the silicon rod to rotate at a certain angle along its axis, and then the cutting wire saw cuts the silicon rod for the second time to obtain the cut silicon rod with a rectangular or quasi-rectangular cross-section.
  • the silicon rod clamp drives the clamped silicon rod to move in the first direction to return to the side adjacent to the loading area, and the distance adjustment mechanism can drive the cutting wire saw to move away from the silicon rod. Move in the direction to avoid mutual interference with the silicon rod.
  • the feeding direction of the silicon rod relative to the cutting wire saw is the side toward the axis of the cutting wheel, based on The second side cutting can be performed by readjusting the position of the cutting wire saw for the preset cutting amount of the silicon rod, thereby obtaining the cut silicon rod.
  • the silicon rod processing equipment further includes an edge skin discharge area, and the edge skin discharge area may be disposed adjacent to the processing area along the first direction.
  • FIG. 10 is a schematic diagram showing a part of the structure of the silicon rod processing equipment of the present application in an embodiment.
  • the feeding direction of the silicon rod holder relative to the cutting wire saw can be directed towards the edge skin discharge area (ie, the direction of the arrow shown in FIG. 10 ). Simplify the unloading process of the edge skin or simplify the structure for edge skin unloading.
  • the silicon rod processing equipment further includes a side skin supporting mechanism for abutting against the outer side of the silicon rod and supporting the cut edge skin.
  • removing the edge skin formed by cutting can prevent the silicon rod from colliding with the edge skin during transportation after cutting, and at the same time, removing the edge skin can realize its reuse.
  • the silicon rod to be cut held by the silicon rod holder is in a horizontal state, and the edge skin formed by cutting is also in a horizontal state.
  • the edge skin needs to be supported during cutting to assist in the removal of the edge skin; at the same time, the edge skin formed by the horizontal silicon rod during cutting is no longer subjected to the clamping force of the silicon rod clamp.
  • the connection part between the edge skin and the silicon rod may be broken by the moment formed by the gravity of the edge skin (also called edge chipping). In this way, the edge skin supporting mechanism of the present application It is also possible to prevent edge collapse by supporting the edge skin.
  • the side skin supporting mechanism includes: a supporting component, including: a supporting part, which is abutted against and supports the side skin; an air cylinder or a hydraulic pump, including a telescopic part, the telescopic part is connected to the support part to control the support part to move away from or abut against the edge skin; the installation part is used to connect the support assembly to the cutting frame.
  • a supporting component including: a supporting part, which is abutted against and supports the side skin; an air cylinder or a hydraulic pump, including a telescopic part, the telescopic part is connected to the support part to control the support part to move away from or abut against the edge skin; the installation part is used to connect the support assembly to the cutting frame.
  • the support assembly can be connected to the cutting frame by the mounting portion.
  • the mounting portion is detachably connected to the cutting frame. Based on the need for the support position of the silicon rod, it can be The mounting parts are arranged at different positions on the cutting frame.
  • the supporting component includes a supporting portion, which is used for contacting and abutting against the silicon rod to achieve a supporting effect on the edge skin. It should be noted that, in each embodiment of the present application, the supporting portion is The supporting action is to apply force to the edge skin to maintain a stable state. Taking the cutting wire saw in the second direction as an example, the edge skin formed by cutting is located on the upper or lower side of the silicon rod.
  • the supporting portion can provide support for the edge skin on the lower side of the silicon rod to prevent the edge skin from breaking, thereby maintaining the edge skin in a stable state;
  • the formed edge skin is located on the side (left or/and right side) of the silicon rod, and the supporting portion can be set to a structure compatible with the outer arc surface of the silicon rod to provide support for the edge skin, or by abutting against the edge skin.
  • the edge skin is maintained in a stable state so that the edge skin is subjected to upward frictional force.
  • the cylinder or hydraulic pump of the bearing assembly is a driving source for driving the bearing part away from or against the side skin.
  • the telescopic part of the cylinder or hydraulic pump is connected to the For the supporting portion, the telescopic direction of the telescopic portion is, for example, a direction away from or close to the axis of the silicon rod, thereby driving the connected supporting portion away from or against the edge skin.
  • the supporting portion can be set in different structures to achieve the supporting effect.
  • the supporting portion can be a supporting plate and has an arc surface for contacting the edge skin, or the supporting portion has a folded surface.
  • the application also provides the following implementation methods:
  • the support portion includes at least two support blocks, which are spaced apart along the first direction and have a bearing surface for contacting and bearing the edge skin.
  • the bearing surface of the supporting block can be set to have an arc surface to adapt to the supported edge skin, or can be set to be composed of contact planes with different levels to prevent the edge skin from rolling.
  • the edge skin can be supported by one support block; here, the present application also provides that the edge skin can be realized by at least two support blocks arranged at intervals along the first direction
  • the edge skin can be realized by at least two support blocks arranged at intervals along the first direction
  • the provided support block supports the edge skin so that the edge skin can be subjected to the force of the support part in different length directions (ie, the first direction), thereby helping to prevent the cutting wire saw from breaking through the front edge skin of the silicon rod.
  • the at least two supporting blocks arranged at intervals can be used to support the edge skin to prevent the edge skin from tilting and falling over.
  • the supporting part includes: at least two supporting rods, arranged along the first direction, for contacting and supporting the edge skin; connecting parts, which are respectively arranged on two opposite sides of the cutting frame in the first direction. The sides correspond to opposite ends of the support rod, and are used for connecting the at least two support rods and the telescopic part.
  • FIG. 11 is a schematic diagram showing a part of the structure of the silicon rod processing equipment of the present application in one embodiment.
  • the support portion includes two support rods 5111 arranged at intervals along the second direction, and the rod bodies of the support rods 5111 are along the first direction.
  • the at least two support rods 5111 can be used to support the edge skin. It should be understood that the center of gravity of the edge skin formed by cutting is located between the at least two support rods 5111 At the same time, any of the supporting rods 5111 is in line contact with the supported edge skin, and under this setting, the frictional force between the support portion and the edge skin can be reduced.
  • the connecting portions 5112 are disposed on both sides of the support rod 5111 so that the support rod 5111 is symmetrically stressed when the support portion is stressed away from or close to the silicon rod, which is beneficial to improve the structural stability of the support portion.
  • the connecting portion 5112 is respectively connected to the supporting rod 5111 and the telescopic portion 512 , wherein one end of the telescopic portion 512 is connected to the cutting frame through the mounting portion, and can be The free end of the telescopic movement is connected to the connecting portion 5112 to drive the entire supporting portion to move along the telescopic direction of the telescopic portion 512 .
  • the supporting portion is controlled to move in the direction of the heavy vertical line to move away from or close to the edge skin; it should be understood that when the direction of the cutting wire saw in the cutting device is different, or when the The structures of the support parts are different, and the corresponding telescopic parts 512 in the edge skin support mechanism can be arranged in different directions to meet the needs of supporting edge skins.
  • the telescopic portion 512 can be configured to expand and contract in the second direction, so that the supporting portion moves in the second direction to move closer to or away from the edge skin .
  • the direction of the controlled movement of the supporting portion is not limited in the present application, and it is only required that the supporting portion can support the edge skin.
  • the number of the edge skin supporting mechanisms can be set according to the need for supporting the opposite edge skins.
  • the cutting device includes a cutting wire saw
  • the edge skins are formed correspondingly in one cutting operation.
  • a side skin supporting mechanism can be provided on the frame to support the opposite side skin;
  • the cutting device includes two parallel cutting wire saws, in one cutting operation, the two side skins are formed correspondingly, and the cutting Two edge skin supporting mechanisms can be arranged on the frame to support the edge skins on both sides of the silicon rod respectively.
  • the silicon rod processing equipment further includes an edge skin dislocation mechanism, which is arranged at the first processing area and the second processing area, and is used to push the edge skin along a first direction to make the edge skin
  • the skin is released from the edge skin support mechanism.
  • the cutting device can be switched between the first processing area, that is, the second processing area by the first switching mechanism.
  • the edge and skin dislocation mechanism can be respectively set in the first processing area and the second processing area. , then after the cutting device is transferred to any processing location, the edge skin formed after cutting can be pushed by the edge skin dislocation mechanism at the processing location to help realize the edge skin discharge.
  • the edge and skin dislocation mechanism can be provided on the cutting frame, and the edge skin dislocation mechanism can follow the cutting frame to rotate under the drive of the first conversion mechanism, and can push the cutting frame at any processing position. side skin.
  • the edge skin supporting mechanism can be respectively disposed on the upper side and the lower side of the cutting frame, so that the cutting device can be placed in the cutting frame.
  • the lower edge skin formed by cutting the silicon rod has a corresponding edge skin dislocation mechanism that can be used to push the edge skin.
  • the axial direction of the silicon rod to be cut is along the first direction
  • the edge skin formed during cutting is also along the first direction in the supported state.
  • the edge skin dislocation mechanism can push the edge skin along the first direction to make the edge skin.
  • the skin moves relative to the edge skin supporting mechanism, so that the edge skin can be separated from the edge skin supporting mechanism and the subsequent transfer process can be performed on the edge skin.
  • the side skin dislocation mechanism includes an air cylinder or a hydraulic pump, wherein the telescopic rod of the air cylinder or the hydraulic pump is arranged along the first direction.
  • the edge skin dislocation mechanism 54 is set on the silicon rod processing platform, and the edge skin dislocation mechanism 54 is an air cylinder 541 with a telescopic rod.
  • the first direction is arranged and aligned to the end face of the edge skin. After the cutting wire saw penetrates the silicon rod to form an independent edge skin, the edge skin dislocation mechanism 54 moves in the first direction to abut against the edge skin end face and push the edge skin to move, so that the edge skin can be separated from the edge skin support mechanism Or from the cut silicon rod.
  • the telescopic range of the telescopic rod of the edge skin dislocation mechanism 54 may be determined based on the length specification of the silicon rod, or determined based on the span of the support portion in the edge skin support mechanism in the first direction, so as to ensure that all The edge skin can be detached.
  • the silicon rod processing equipment further includes a side skin conveying structure, which is used for receiving the cut edge skin and transferring the edge skin to the unloading area.
  • the discharge area is the side skin discharge area.
  • the edge skin conveying structure is respectively disposed in the first processing area and the second processing area, so that the cutting device is switched to any processing area to cut the silicon rod to form the edge skin from the edge skin corresponding to the processing area.
  • the conveying structure is conveyed, thereby reducing the transfer of the edge skin.
  • the direction and position of the edge skin conveying mechanism 52 can be determined by the positional relationship between the cutting area and the edge skin discharge area.
  • the cutting areas are the first processing area and the second processing area.
  • the edge skin discharge area and the cutting area are disposed adjacent to each other along the first direction.
  • the edge skin conveying structure may be disposed along the first direction, respectively and butt-jointed with the first processing area.
  • the edge skin is pushed along the first direction to be separated from the cut silicon rod or the edge skin support mechanism After that, it is transferred to the edge skin conveying structure corresponding to the processing location, which can simplify the transportation path of the edge skin.
  • the edge skin conveying mechanism is a chain conveying mechanism, a double-speed chain mechanism, or a conveyor belt mechanism.
  • the edge skin conveying mechanism includes: a conveying part for carrying the edge skin; a conveying driving source for driving the conveying part to move to convey the edge skin.
  • the edge skin conveying mechanism 52 includes: a conveying part 521 for carrying the edge skin; a conveying driving source 522 for driving the conveying part 521 to move to convey the edge skin.
  • the conveying part 521 is provided with a buffer pad for contacting the edge skin, or, the conveying part 521 is provided with a buffer pad for contacting the edge skin.
  • the portion 521 is made of a buffer material.
  • the cushioning pad or cushioning material is, for example, elastic rubber, silicone or other materials with elastic deformation, damping properties or cushioning properties.
  • the conveying part 521 can be arranged along the first direction, and is driven by the conveying driving source 522 to transport the carried side skins along the first direction.
  • the conveying driving source 522 is, for example, a motor, which is used to drive the conveying part 521 to move and control the conveying speed of the conveying part 521 .
  • the grinding device is driven by the second changing mechanism to switch to the cut silicon rod. At the processing area where the rod is located, the grinding device can grind the cut silicon rod.
  • the grinding device includes at least a pair of grinding tools, wherein the grinding surfaces of the pair of grinding tools are located in opposite horizontal planes; a grinding tool advancing and retracting mechanism is used to drive the pair of grinding tools At least one of the grinding tools moves in the direction of the heavy vertical line.
  • FIG. 12 is a schematic structural diagram of a part of the structure of the silicon rod processing equipment of the present application in an embodiment.
  • the pair of grinding tools 301 are arranged opposite to each other in the vertical direction, so as to form two opposite grinding surfaces along the horizontal direction.
  • the abrasive tool 301 includes a grinding wheel and a rotating shaft.
  • the grinding wheel is circular and has a through hole in the middle. The grinding wheel is connected to the rotating shaft to be controlled to rotate along the rotating shaft, so that the grinding wheel can contact the side surface of the silicon rod to be cut in a rotating state to realize grinding.
  • the grinding device 30 may also include a grinding tool 301, but in this setting, the grinding time will increase.
  • the grinding wheel has a certain particle size and roughness, for example, is formed by the consolidation of abrasive grains and a bonding agent, so as to form a surface with abrasive grains to contact and grind the side surface of the silicon rod after cutting.
  • the grinding wheel has a certain size and density of abrasive grains, and its abrasives can be set as alumina, silicon carbide, diamond, cubic boron nitride and other abrasive grains whose hardness is greater than that of silicon materials according to the needs of grinding silicon rods.
  • the grinding device 30 further includes a cooling device (not shown) to cool down the grinding tool 301, reduce the damage to the surface layer of the silicon rod during the grinding process, and improve the grinding performance of the grinding wheel. Cutting efficiency and service life.
  • the cooling device includes a cooling water pipe, a guide groove and a guide hole.
  • the outer periphery of the grinding wheel is provided with a protective cover for preventing cooling water from entering the rotary drive motor.
  • One end of the cooling water pipe is connected to the cooling water source, and the other end is connected to the surface of the protective cover of the grinding wheel.
  • the guide groove is arranged on the protective cover as a contact point between the protective cover and the cooling water pipe, and the guide hole is provided in the cooling tank.
  • the coolant of the cooling device can be common cooling water.
  • the cooling water pipe is connected to the cooling water source.
  • the cooling water pumped through the cooling water pipe is directed to the guide grooves and guide holes on the surface of the grinding wheel, and is guided directly to the grinding wheel and the ground silicon rod.
  • the contact surface of the grinding wheel is cooled.
  • the cooling water from the rotating guide hole of the grinding wheel enters the interior of the grinding wheel by centrifugal action for sufficient cooling.
  • the grinding tool advancing and retreating mechanism 302 is used to drive at least one grinding grinding tool 301 of the at least one pair of grinding grinding tools 301 to move in the direction of the heavy vertical line, so as to adjust the grinding amount of the cut silicon rod.
  • the abrasive tool advancing and retreating mechanism 302 includes: an advancing and retreating guide rail, which is provided on the second conversion mechanism along the direction of the re-perpendicular line, for setting the abrasive tool 301; a driving source for driving the At least one of the grinding tools 301 moves along the advancing and retreating guide rails.
  • the grinding tool advancing and retracting mechanism 302 includes a sliding guide rail, a driving motor, and a ball screw (not shown in the figure).
  • the sliding guide rail is arranged on the second conversion mechanism along the direction of the re-perpendicular line.
  • the sliding guide rail is arranged and axially connected with the driving motor.
  • the driving source can also be set as an air cylinder, a hydraulic pump, etc., and its telescopic direction can be set as a heavy vertical direction; or, the driving source can be set as a screw assembly, the The screw assembly includes a screw and a rotation driving source, wherein the screw is connected to the grinding tool 301 to make the grinding tool 301 move along the sliding guide rail under the driving of the rotating driving source.
  • the grinding tool advancing and retracting mechanism includes a bidirectional screw rod and a drive source, two sides of the bidirectional screw rod are provided with threads with opposite directions of rotation, and the bidirectional screw rod is arranged in the direction of the re-perpendicular line and connected on both sides respectively.
  • the driving source drives the bidirectional screw to rotate, and the grinding tools at both ends of the two-way screw approach or move away from each other in the direction of the heavy vertical line, so that the grinding tool can be adjusted relative to the silicon Rod grinding position and grinding amount.
  • the abrasive tool is in a fatigue state during use, and the uneven wear of different areas on the surface of the abrasive tool causes the surface of the abrasive tool to be uneven or flattened, and the surface of the abrasive tool may be contaminated with silicon rod debris or abrasive tool debris. Therefore, performing the grinding operation for a long time inevitably changes the surface state of the grinding tool, which reduces the grinding performance.
  • tools such as grindstones can be used to correct the surface of the grinding tools, or the grinding tools can be replaced after the grinding tools reach the fatigue life.
  • the silicon rod processing equipment of the present application also provides a grinding and repairing device, which can be used for grinding and repairing the grinding tool, so as to ensure that the grinding tool can achieve the required precision after the grinding tool is used for grinding the silicon rod.
  • the grinding and repairing device includes an installation main body and at least one grinding part; wherein, the at least one grinding part is arranged on the installation main body and is used for grinding the corresponding at least one grinding tool.
  • any one of the first silicon rod holder or the second silicon rod holder further includes a grinding and repairing device for grinding the corresponding grinding tool in the grinding device.
  • FIG. 13 is an enlarged schematic view of B in FIG. 8 b .
  • the grinding and repairing device is disposed on the silicon rod holder, that is, the mounting body 321 of the grinding and repairing device is set on the silicon rod.
  • the grinding part 322 in the grinding and repairing device is provided on the side of the mounting body 321 facing the grinding tool.
  • the grinding parts 322 are located on the upper side and the lower side of the clamping arm, respectively, and face the grinding tools on the upper side and the lower side, respectively.
  • the installation body 321 and the grinding part 322 on it reciprocate along the first direction under the driving of the corresponding silicon rod holder (the first silicon rod holder or the second silicon rod holder).
  • the installation body in the grinding and repairing device may be set on the base of the silicon rod processing equipment, and the grinding part in the grinding and repairing device is set on the installation body.
  • the repairing device may further include a driving unit for driving the mounting body and the dressing part on it to reciprocate in a predetermined direction.
  • the grinding part 322 of the grinding and repairing device has a surface for contacting with the grinding tool.
  • the grinding part 322 has a high adhesion as a whole. properties such as hardness, wear resistance, and hardness are used to realize the grinding of abrasive tools.
  • the grinding part 322 is a whetstone.
  • the whetstone is, for example, diamond whetstone, boron carbide whetstone, refined whetstone, common whetstone, and the like.
  • the whetstone can adjust the surface of the grinding tool in contact with the grain size of the whetstone surface. In the grinding process, the surface of the whetstone contacts the grinding tool, and the surface of the grinding tool is trimmed to a uniform particle size and the flatness and verticality of the grinding tool plane are improved.
  • the at least one grinding tool when the at least one grinding part is grinding the corresponding at least one grinding tool, the at least one grinding tool is driven by a drive motor to rotate.
  • the grinding tool is usually in contact with a grinding device such as a whetstone to achieve grinding, so there may be high and low points on the surface of the whetstone, so that the flatness of the grinding tool surface after grinding is not good;
  • the grinding part in the grinding and repairing device of the present application such as the oil stone
  • the plane formed by the oil stone itself under the reciprocating motion is different from the plane of the oil stone in the static state
  • the surface of the whetstone that is, the plane used for grinding
  • the grinding efficiency is related to the rotational speed between the workpieces during grinding, so
  • the reciprocating state of the grinding part corresponds to the rotating state of the grinding tool. Therefore, a relative movement occurs between the grinding tool and the grinding part, which is beneficial to the easy realization of the grinding process and the improvement of grinding
  • the grinding surface of the grinding part is a rectangle, a circle, an ellipse, a ring, a regular polygon or other custom shapes, etc. It should be understood that only when the grinding part is Grinding repair can be achieved by being made of the required preset material and in contact with the surface of the abrasive tool.
  • the above-mentioned various shapes are only optional embodiments, which are not limited in this application.
  • the grinding and repairing device further includes a sensing device, which is arranged on the base and is used to detect the grinding tool of the silicon rod processing equipment.
  • the grinding and repairing device is designed to repair the grinding surface of the grinding tool. After grinding and repairing through the grinding section, the surface layer of the grinding tool is ground and removed. For example, when the grinding tool is a grinding wheel, it is After grinding and repairing, the particles on the surface of the grinding wheel are gradually removed. Usually, the grinding wheel with a certain layer thickness is removed after the grinding and repairing is completed, so as to form a new grinding surface that meets the grinding surface requirements for silicon rod processing. In the subsequent grinding surface processing of the silicon rod, the side surface of the silicon rod is ground with a new grinding surface.
  • the grinding amount of the silicon rod needs to be controlled in the grinding operation of the silicon rod, and the grinding amount can be predetermined based on the specifications of the silicon rod processing equipment and the silicon rod.
  • the grinding tool can usually move relative to the silicon rod feed.
  • the initial position of the grinding surface of the grinding tool can be used as a known input value (or by multiple The feed of the grinding tool relative to the silicon rod can be controlled based on the preset grinding amount.
  • the initial position of the grinding surface has changed after the grinding and repairing device is used to grind the grinding tool. Therefore, the silicon rod processing equipment needs to know the specifications of the grinding tool in the grinding and repairing so as to correct the grinding.
  • the actual position of the surface can be controlled according to the preset value in the subsequent processing of the grinding amount of the silicon rod.
  • the sensing device in the grinding and repairing device in the example of the present application can be used to determine the size specification (mainly determining the thickness) of the grinding tool after the grinding and repairing is completed.
  • the sensor device can confirm the size of the grinding tool after grinding by determining the distance from the sensor to the grinding surface or the distance between two grinding surfaces in a pair of grinding tools arranged opposite to each other.
  • the sensing element is a touch sensor having a probe head for contacting the grinding surface.
  • the grinding tool of the silicon rod processing equipment can move relative to the grinding part, and the feeding movement can be driven by a servo motor, for example, here, the servo motor can control the feeding amount of the grinding tool , but in the grinding repair process, the feed amount determined by the servo motor control is not equal to the layer thickness of the grinding tool during the grinding process, or it can be understood that the feed control device of the grinding tool cannot be obtained.
  • the precise grinding amount in the grinding repair process that is, the actual size specification of the grinding tool needs to be obtained by measurement.
  • the contact sensor can be set to have probes at both ends to contact two opposite grinding tools of a pair of grinding tools. Grinding surface.
  • the touch sensor can be arranged on the installation body, and the connection lines of the probe heads at both ends of the touch sensor are parallel to the direction of the heavy vertical line.
  • the grinding tool can be driven by the servo motor to approach the probe head.
  • the contact sensor can obtain and record the distance between the probe heads at both ends. When the grinding tool touches the probe head, it stops moving and records the servo motor.
  • Position data based on the position data of the servo motor and the probe data of the contact sensor, the size of the grinding tool after grinding and repairing can be re-determined, and the silicon rod processing equipment can use the measured size of the grinding tool as the control system. Input data.
  • the probe head of the contact sensor is also provided with a telescopic spring.
  • the probe head When the probe head contacts the object, it can be driven back by the telescopic spring, which can be used to protect the probe head from being touched. Damaged.
  • the sensing device may be configured as a probe-type displacement sensor.
  • the sensing device can also be a distance measuring sensor, and the distance detection direction of the distance measuring sensor can be set to be perpendicular to the grinding surface of the grinding tool, so as to obtain the grinding surface after grinding repair.
  • the distance measuring sensor can be, for example, an infrared distance measuring sensor, a laser distance sensor, an ultrasonic sensor, a radar sensor, and the like.
  • the general operation process may include: first use a silicon rod cutting machine to cut off the original long silicon rods to form multi-section short silicon rods; The resulting short silicon rods are squared and cut to form cut silicon rods; then each cut silicon rod is subjected to spheronization, surface grinding and other processing operations, so that the surface shaping of the silicon rods can meet the corresponding flatness and dimensional tolerance requirements; follow-up A single crystal silicon rod is sliced by a slicer to obtain a single crystal silicon wafer.
  • the rough operation process may include: first, using a silicon ingot pre-cutting machine to open the primary silicon ingot (large-sized silicon ingot) to form a secondary silicon ingot (small-sized silicon ingot) ; After the squaring is completed, the secondary silicon ingot is cut and processed by a silicon ingot cutting machine to form a polycrystalline silicon rod; and then each polycrystalline silicon rod is processed by chamfering, rolling and other processing operations, so that the surface of the polycrystalline silicon rod can reach the corresponding level. The degree and dimensional tolerance requirements are met; the polycrystalline silicon rod is then sliced by a slicer to obtain a polycrystalline silicon wafer.
  • the clamping part when different sides of the cut silicon rod are ground or chamfered by the silicon rod processing equipment, the clamping part is driven by the clamping part rotation mechanism of the silicon rod clamp to drive the clamped silicon rod.
  • the silicon rod held is rotated to achieve.
  • the cross section of the silicon rod after cutting is rectangular or quasi-rectangular.
  • the clamping part rotating mechanism controls the silicon rod to rotate at a certain angle, such as 90°, to realize the switching of the grinding surface of the grinding tool relative to the silicon rod.
  • chamfering different edges it can be realized by controlling the rotation of the clamping part to a certain angle, such as 45°, 135° and other angles.
  • the clamping part rotating mechanism can control the clamped silicon rod to rotate at different angles to perform multiple chamfering. For example, after grinding one side of the silicon rod, the adjacent edge of the side and the edge opposite to the edge can be rotated at a certain angle such as 40°, 45°, 50° and other angles for many times. Chamfering to obtain a more smooth transition of silicon rods at the junction of different sides.
  • a certain angle such as 40°, 45°, 50° and other angles for many times.
  • patent publications such as CN108942570A.
  • the silicon rod processing equipment of the present application further includes a chamfering device for grinding the edges of the cut silicon rod.
  • a chamfering device for grinding the edges of the cut silicon rod.
  • the chamfering operation of the silicon rod is likely to cause a large loss of the grinding tool.
  • the grinding and chamfering of the silicon rod are carried out by the grinding tool and the chamfering tool of the chamfering device, respectively. Improve the service life of grinding tools.
  • the chamfering device is connected to the second conversion mechanism, and is used for switching between the first processing area and the second processing area under the driving of the second conversion mechanism to perform the first processing on the first processing area.
  • the cut silicon rod held by the silicon rod holder or the second silicon rod holder is chamfered.
  • the chamfering device is arranged beside the grinding device, so that the chamfering device and the grinding device are located in the same processing area at the same time. For example, when the grinding device and the chamfering device correspond to the first processing location, the cutting device corresponds to the second processing location, or when the grinding device and the chamfering device correspond to the second processing location, the cutting device corresponds to The first processing area.
  • the second conversion mechanism drives the grinding device and the chamfering device to change the position where the grinding device and the chamfering device are located.
  • the processing area is used to chamfer and grind the cut silicon rod.
  • the order of the chamfering process and the grinding process is not limited.
  • the diced silicon rod can be ground and then chamfered, or chamfered and then ground.
  • the grinding operation and the chamfering operation can be carried out respectively by controlling the positional relationship between the chamfering device and the grinding device relative to the silicon rod holder.
  • the chamfering device can be arranged on the second conversion mechanism through a displacement mechanism in the second direction, so as to move in the second direction to avoid the silicon rod during the grinding operation; or, by controlling the chamfering device.
  • the chamfering grinder moves along the heavy vertical line to avoid the silicon rod, which is not limited in this application.
  • the chamfering device includes: at least a pair of chamfering grinding tools, having a chamfering grinding surface located in a horizontal plane; a chamfering grinding tool advancing and retreating mechanism for driving the pair of chamfering grinding tools At least one of them moves in the direction of the heavy vertical line.
  • the chamfering grinder advancing and retreating mechanism is used to drive at least one chamfering grinder among the chamfering grinders to move up and down along the heavy vertical line direction, and the heavy vertical line direction is perpendicular to the horizontal plane.
  • the relative distance between the two chamfering grinders in the at least one pair of chamfering grinders in the direction of the heavy vertical line can be adjusted, and the feed amount of the chamfering grinder for grinding the edge of the silicon rod can also be controlled. That is, it determines the grinding amount of the edge of the silicon rod.
  • the advancing and retreating mechanism of the chamfering abrasive tool includes: an advancing and retreating guide rail, which is provided on the second conversion mechanism along the direction of the heavy vertical line, and is used for setting the at least one pair of chamfering abrasive tools; an advancing and retreating drive unit is used to drive at least one chamfering grinder in the at least one pair of chamfering grinders to move along the advancing and retreating guide rails.
  • the advancing and retreating guide rails of the chamfering grinder are arranged on the second conversion mechanism of the chamfering grinder along the direction of the heavy vertical line, and the bottom of the chamfering grinder is provided with a direction along the heavy vertical line that cooperates with the advancing and retreating guide rails.
  • the advancing and retreating driving unit includes, for example, a ball screw and a driving motor, the ball screw is arranged along the advancing and retreating guide rail, and the ball screw is associated with a corresponding chamfering grinder and is axially connected with the driving motor.
  • the position of the chamfering grinder in the direction of the heavy vertical line can be adjusted by the advancing and retreating mechanism of the chamfering grinder.
  • the chamfering tool is adjusted by the chamfering tool advancing and retreating mechanism
  • the position of the chamfering and grinding operations can be avoided to interfere with each other. For example, when the grinding device grinds the side surface of the silicon rod, a pair of chamfering grinding tools are moved away from each other to avoid the silicon rod.
  • the chamfering grinder 311 can be set as a chamfering grinding wheel, for example, the chamfering grinding wheel can be set as an R-angle grinding wheel; the chamfering grinder 311 can be made by different The grinding wheel formed by the method, such as the grinding wheel of the electroplating method and the grinding wheel of the sintering method.
  • the grinding wheel of the chamfering abrasive tool 311 is, for example, formed by the consolidation of abrasive grains and a bonding agent to form a surface with abrasive grains to contact and grind the edge of the silicon rod after cutting; the grinding wheel has a certain abrasive grain size and grinding.
  • the abrasive can be set as aluminum oxide, silicon carbide, diamond, cubic boron nitride and other abrasive grains whose hardness is greater than that of silicon material according to the needs of grinding silicon rods.
  • the chamfering grinder 311 is a grinding wheel with an annular grinding surface, and the chamfering grinder 311 can grind the edges of the silicon rod with different chord edges. It should be understood that the silicon rod holder and the The clamped silicon rod can move in the first direction, and by controlling the position of the chamfering grinder 311 in the second direction, the edges of the silicon rod can correspond to different chord edges of the chamfering grinder 311 .
  • the grinding wheel of the chamfering grinder 311 may be pre-configured to realize the chord edge of chamfering, so that the chamfering device is determined when the chamfering device is installed to the second conversion mechanism The relative position of the silicon rod holder in the second direction, so that the contact length between the edge of the silicon rod and the grinding wheel during the chamfering operation can be controlled in advance.
  • the chamfering grinding tool 311 includes a grinding wheel and a rotating shaft, and the rotating shaft is connected to the grinding wheel and is linked to the driving source, so as to drive the grinding wheel to rotate along the rotating shaft under the driving of the driving source, so that the grinding wheel in the rotating state is rotated.
  • the chamfering of the cut silicon rod can be realized.
  • the advancing and retreating mechanism is used to drive the chamfering grinder 311 to move in the direction of the heavy vertical line, so that the positional relationship between the chamfering grinder 311 and the cut silicon rod can be adjusted to determine the chamfering effect on the cut silicon rod. Grinding amount and grinding position. At the same time, the position of the chamfering grinder 311 in the direction of the heavy vertical line is adjusted by the advancing and retreating mechanism, which can avoid mutual interference between the silicon rod holder and the clamped silicon rod and the chamfering grinder 311 during the grinding process of the grinding device. .
  • the silicon rod needs to be ground and edged, or the side surface needs to be chamfered. Grinding and spheronizing.
  • the inventors of the present application have found that, for a common squared silicon rod with a side length of about 210 mm, the subsequent processes that need to be performed are grinding and chamfering.
  • the subsequent processes to be carried out are grinding and spheronization.
  • the chamfering device provided in the present application is suitable for different process requirements, and can be used for chamfering and rounding.
  • the chamfering device when used to chamfer the silicon rod after cutting, it is taken as an example that the two opposite sides of the silicon rod after cutting are located in the horizontal plane as the initial position, and the clamping of the silicon rod clamp is made.
  • the rotating mechanism drives the clamping part and the clamped silicon rod to rotate at a certain angle, for example, 40° in the clockwise direction, so that the advancing and retreating mechanism drives the chamfering grinder 311 to feed relative to the silicon rod in the direction of the heavy vertical line.
  • the silicon rod holder can drive the silicon rod to move in the first direction to realize edge grinding; then, for example, the silicon rod can be rotated 5° clockwise at a time to carry out multiple grinding operations.
  • the secondary edge is ground to obtain a silicon rod with a smoother edge transition.
  • the chamfering device includes a pair of oppositely arranged chamfering grinders 311, the pair of chamfering grinders 311 can chamfer a pair of opposite edges of the cut silicon rod; After the chamfering of a pair of opposite edges of the silicon rod is completed, for example, the rotating mechanism of the clamping part can drive the silicon rod to rotate by 45°, so as to chamfer the other pair of opposite edges of the silicon rod.
  • the silicon rod holder can drive the clamped silicon rod to rotate along the axis of the silicon rod, and by making the silicon rod in the rotating state rotate The edge is in contact with the chamfering grinder 311, thereby realizing rounding of each edge of the cut silicon rod.
  • the silicon rod processing equipment of the present application after the silicon rod holder clamps the silicon rod, it moves along the guide structure on the processing position to realize cutting and grinding.
  • the cutting position and the grinding position can be respectively converted by the first conversion
  • the mechanism and the second switching mechanism are switched to the processing positions corresponding to the silicon rods to be cut and the silicon rods after cutting, respectively.
  • the ground silicon rods are unloaded, so that the silicon rod holder can be loaded with the silicon rods to be cut. rod to continue the machining operation.
  • the cutting area is the location where the cutting device is located
  • the grinding area is the location where the grinding device is located.
  • the silicon rod processing equipment of the present application further includes a silicon rod unloading device for unloading the ground silicon rods, which is beneficial to the connection of the process flow and reduces the impact of the silicon rod processing equipment on the silicon rods.
  • a silicon rod unloading device for unloading the ground silicon rods, which is beneficial to the connection of the process flow and reduces the impact of the silicon rod processing equipment on the silicon rods.
  • the waiting time after cutting and grinding is completed, and this automatic unloading method can also be used to reduce or avoid the collision and damage of the silicon rod after grinding during transportation.
  • the silicon rod unloading device 80 includes: a conveyor belt 811 for carrying the ground silicon rods; a discharge driving source (not shown in the figure) for The conveyor belt 811 is driven to move the ground silicon rods carried by the conveyor belt 811 to move in the first direction.
  • the conveyor belt 811 can be configured to have a bearing plane to accommodate the ground silicon rods whose sides are flat.
  • the conveyor belt 811 in order to avoid the impact between the conveyor belt 811 and the surface of the silicon rod, can also be configured to be a flexible material or elastic. or a buffer layer can be added on the surface of the conveyor belt 811; the buffer layer or flexible material is, for example, elastic rubber, silicone or other materials with elastic deformation, damping properties or buffering properties.
  • the driving source drives the conveyor belt 811 to move to drive the ground silicon rods carried to move in the first direction, so as to transport the ground silicon rods out of the processing area.
  • the unloading area of the ground silicon rods is, for example, It is disposed adjacent to the processing area along the first direction, and the silicon rods can be transported out of the silicon rod processing platform by driving the silicon rods to move along the first direction through the conveyor belt 811 .
  • the silicon rod unloading device 80 and the edge skin conveying mechanism 52 can be configured as silicon rod processing equipment, for example. Both ends of the first direction, which can prevent the edge skin from interfering with the ground silicon rod during the conveying process; at the same time, the edge skin usually needs to be loaded into the edge skin cylinder after being removed for reuse, and the silicon rod is removed after grinding. After that, it needs to be transferred to other processing equipment for subsequent processing such as slicing. By distinguishing the unloading areas corresponding to the edge skin and the ground silicon rod, the edge skin and the ground silicon rod can be respectively processed after unloading. subsequent process.
  • the silicon rod unloading device 80 is provided on the silicon rod processing platform through a displacement mechanism 82 , and is used for driving at the first processing area and the second processing area under the driving of the displacement mechanism 82 . move between.
  • the silicon rod unloading device 80 is used for receiving the ground silicon rods clamped by the first silicon rod holder and the second silicon rod holder. It should be understood that when the first silicon rod holder holds the ground silicon rod, the first silicon rod holder holds the cut silicon rod, that is, the first processing area and the second processing area at the same time. The processing states of the silicon rods are different, so the silicon rod unloading device 80 receives the ground silicon rods at a processing location in one unloading.
  • the silicon rod unloading device 80 unloads the ground silicon rods in a processing area in one unloading.
  • the silicon rod unloading device 80 is set in the displacement mechanism 82 . Driven and corresponding to the first processing area and the second processing area respectively, a silicon rod unloading device 80 can be used to discharge the ground silicon rods in the two processing areas.
  • the displacement mechanism 82 can be provided on the silicon ingot processing platform by, for example, guide posts or guide rails along the second direction.
  • the displacement mechanism 82 is used to carry the silicon ingot unloading device 80 and is connected to the driving source. It is driven to move in the second direction, so that it can be moved to different processing positions.
  • the position of the silicon rod holder and the ground silicon rod held by it in the second direction is fixed.
  • the silicon rod unloading device 80 is moved to the position in the second direction to align with the silicon rod holder, so that the silicon rod holder Clamping the ground silicon rods and moving in a first direction to correspond to the silicon rod unloading device 80 in the first direction, for example, the projection of the ground silicon rods on the horizontal plane falls on the conveyor belt 811, and the silicon rods After the jig releases the ground silicon rods, the conveyor belt 811 of the silicon rod unloading device 80 can receive the ground silicon rods.
  • the silicon rod unloading device 80 is provided on the displacement mechanism 82 through a lifting mechanism 83, wherein the lifting mechanism 83 includes: a lifting guide structure, which is provided on the shifting mechanism 82 and is connected to the displacement mechanism 82.
  • the silicon rod unloading device 80 is connected; a lift driving source is used to drive the silicon rod unloading device 80 to move up and down along the lift guide structure.
  • the side lengths of the obtained ground silicon rods may be different.
  • the conveyor belt 811 accepts the ground silicon rods, the conveyor belt 811 should be positioned below the ground silicon rods and the height difference between the two rods should be minimized.
  • the lifting mechanism 83 can be used for grinding of different specifications. After the silicon rod is unloaded.
  • the elevating guide structure is, for example, a guide rail or a guide column arranged in the direction of the heavy vertical line, and the silicon rod loading and unloading device is arranged on the displacement mechanism 82 through the elevating guide structure, and is guided along the elevating and descending by the elevating driving source. structural movement.
  • the silicon rod loading and unloading device is provided at the free end of the lifting guide structure, and the lifting guide structure is driven by a lifting drive source to telescopically move in the direction of the heavy vertical line to drive the free end of the silicon rod loading and unloading device to lift and lower sports.
  • the lift drive source is used to drive the movement along the lift guide structure
  • the lift drive source is, for example, an air cylinder or a hydraulic pump, wherein the telescopic end of the air cylinder or hydraulic pump is connected to the silicon rod loading and unloading device; or the lifting drive source, such as a motor, is provided on the silicon rod loading and unloading device to drive the silicon rod loading and unloading device to move along the lifting guide structure.
  • the silicon rod to be cut held by the silicon rod holder is a silicon rod of a certain length obtained after cutting the silicon rod.
  • the original long silicon rod needs to be cut first to obtain Can be used for squared silicon rods to be cut.
  • the original long silicon rod is, for example, a rod-shaped single crystal silicon grown from the melt by the Czochralski method or the floating zone melting method, and is commonly used in the processing of silicon rods. Monocrystalline silicon rods. After the original single crystal silicon rod is cut, the silicon rod holder can realize the clamping of the cut silicon rod, thereby performing subsequent cutting and grinding operations.
  • the silicon rod processing equipment of the present application further includes a silicon rod cutting device, wherein the silicon rod cutting device includes a silicon rod carrying device for carrying a single crystal silicon rod;
  • the cutting wire saw of the silicon rod carrying device can be raised and lowered, which is used for cutting the single crystal silicon rod to form the silicon rod to be cut.
  • the silicon rod carrying device is a chain conveying mechanism, a double-speed chain mechanism, or a transmission belt mechanism.
  • FIG. 14 is a schematic diagram showing a part of the structure of the silicon rod processing equipment of the present application.
  • the silicon rod carrying device 61 is a chain conveying mechanism driven by a motor.
  • the chain conveying mechanism includes: two endless chains arranged oppositely and a sprocket for driving the two endless chains.
  • the two endless chains are parallel and oppositely arranged in the first direction, wherein two ends of each endless chain are respectively equipped with sprockets, the teeth of the sprockets are engaged with the chains, and drive the chain when rotating.
  • the chain runs.
  • the sprocket is driven to rotate by, for example, a power take-off shaft of a motor.
  • the sprockets are arranged at both ends of each endless chain, the two oppositely arranged endless chains are parallel to each other, and the sprocket at the same end is used as the driving sprocket.
  • the axes of the driving sprockets of the two endless chains are on the same horizontal axis.
  • the driving sprocket can be dynamically connected to the motor shaft, that is, the power output shaft.
  • the driving sprocket meshes with the sprockets of the two endless chains, and then the chain conveying speed is controlled by the driving motor, which can control the single load on the silicon rod carrying device. The speed at which the crystal silicon rod is transported in the axial direction.
  • each endless chain may also be provided with a plurality of bearing blocks.
  • the bearing blocks on the two endless chains are a series of wedge-shaped blocks fixed on the chains and arranged at intervals to serve as direct supports for the silicon rods to be cut or the cut silicon rod segments , and the freedom of movement of the single crystal silicon rod carried is limited to the movement direction of the conveying mechanism of the carrying device, that is, to ensure that the silicon rod and the chain conveying mechanism are relatively stationary, and the silicon rod does not move relative to each other during cutting.
  • the surface of the wedge-shaped block for contacting the silicon rod to be cut or the cut silicon rod section may be set in an arc shape to conform to the arc-shaped surface of the silicon rod; in some embodiments of the present application, the The wedge-shaped block is made of elastic rubber material, or silicone or other materials with elastic deformation or buffering properties, so as to protect the surface of the silicon rod in contact with it from being scratched or bumped.
  • the silicon rod carrying device may also be configured as a double-speed chain mechanism, or a transmission belt mechanism, etc.; the double-speed chain mechanism or the transmission belt mechanism may be disposed along the first direction and have a circular cross-section.
  • the limiting device of the silicon rod is like a wedge block to prevent the rolling of the silicon rod carried.
  • the silicon rod carrying device can be used to carry the silicon rod and restrict its movement direction, so as to control the relative position between the silicon rod and the cutting frame.
  • the silicon rod carrying device 61 transports the silicon rods along the axial direction of the silicon rods, and the cutting frame 62 includes a cutting wire saw that can be raised and lowered.
  • the silicon rods are transported to Below the cutting wire saw, the long silicon rod can be cut into a silicon rod to be cut with a preset length specification, wherein the length specification is determined by the conveying distance of the silicon rod carrying device 61 .
  • the cutting frame 62 is set on the machine base, and includes a lifting support and a plurality of cutting wheels 621 and transition wheels arranged on the lifting support, and the cutting wire is wound around the plurality of cutting wheels 621 and the transition wheels to form a cutting wire saw in the second direction.
  • the lifting support 623 is arranged on the guide column in the lifting direction, and is driven by the lifting driving source to move the cutting wire saw up and down.
  • the cutting wire saw is aligned with the position of the silicon rod carrying device in the first direction, As a result, the wire saw can cut through the silicon rods placed on the silicon rod carrier structure.
  • the lifting support 623 includes, for example, two cutting wheels 621 for forming a cutting wire saw along the second direction; the lifting support 623 has a hollow area such as an inverted U.
  • the hollow area can accommodate the cross section of the silicon rod, so as to ensure that there is no collision between the lifting support 623 and the silicon rod when the lifting support 623 is lowered to the cutting wire saw to cut the silicon rod.
  • the lift drive source is set as a screw assembly
  • the screw assembly includes a screw and a motor, one end of the screw is connected to the lifting support 623, and the other end is connected to the motor and is connected to the motor.
  • the motor drives the lifting support 623 to move along the guide post.
  • the specific form of the lift drive source is not limited to this, in another example, the lift drive source is, for example, a cylinder assembly.
  • the silicon rod holder can load the silicon rods to be cut; of course, the silicon rods to be cut can also be made of separate silicon rods. Rod cutting equipment cut to obtain.
  • the displacement range of the silicon rod holder is limited by its corresponding guiding structure, and any of the silicon rod holder needs to load the silicon rod to be cut at its corresponding processing location. In view of this, it is necessary to transport the silicon rod to be cut to a position where the silicon rod holder can hold it in advance.
  • the silicon rod processing equipment further includes a feeding device for conveying the silicon rod to be cut to the first processing area or the second processing area, so that the first silicon rod holder or the second processing area
  • the silicon rod holder is loaded with the silicon rod to be cut.
  • the feeding device can be set to have a degree of freedom to move along the second direction, so as to move the silicon rod holder corresponding to any processing position.
  • the loading device includes at least one clamping assembly, wherein the clamping assembly includes: a reclaiming arm, a top frame suspended above the silicon rod processing platform through a mounting portion, wherein , the top frame includes a guide structure arranged along the second direction so that the mounting part has the freedom to move along the second direction; the clamping piece is arranged at the bottom end of the reclaiming arm for clamping the silicon rod to be cut .
  • FIG. 15 a and FIG. 15 b respectively show structural schematic diagrams of the feeding device of the present application in different view directions in an embodiment.
  • the top frame 13 can be disposed on the machine base, for example, on a column between the first processing area and the second processing area.
  • the column can also be regarded as a part of the machine base. .
  • the top frame 13 includes a guide structure 131 disposed in the second direction.
  • the guide structure 131 is used to set the mounting portion 72 and make the mounting portion 72 move in the second direction under the limiting action of the guide structure 131 .
  • the pick-up arm 711 connected to the mounting portion 72 can move in the second direction.
  • the clamping member 712 is disposed at the bottom end of the reclaiming arm 711 for clamping the silicon rod to be cut.
  • the number of the clamping members 712 corresponds to the reclaiming arm 711, and the feeding device includes at least one clamping component.
  • the clamping member 712 can be set to have a predetermined length in the first direction to achieve stable clamping of the silicon rod to be cut.
  • the feeding device includes a plurality of clamping assemblies, and the clamping members 712 corresponding to the plurality of clamping assemblies have a spacing in the first direction, so that the center of gravity of the silicon rod to be cut can be adjusted It falls between the plurality of clamping pieces 712 to achieve stable clamping of the silicon rod to be cut.
  • the mounting portion 72 includes a translation mechanism 721 disposed along the first direction, for disposing the reclaiming arm 711 so that the reclaiming arm 711 has a degree of freedom to move along the first direction.
  • the translation mechanism 721 disposed in the first direction is, for example, a translation guide rail, and the pick-up arm 711 moves along the translation guide rail to drive the clamping member 712 at the lower end of the pick-up arm 711 to move in the first direction, so that the clamping can be adjusted.
  • the clamping position of the member 712 relative to the silicon rod to be cut in the example that the feeding device has multiple clamping components, the translation structure in the first direction can adjust the position of the multiple clamping members 712 in the first direction.
  • the feeding device can be suitable for clamping silicon rods of different lengths and specifications to be cut.
  • the clamping member 712 includes: a first clamping block 7121 and a second clamping block 7122 disposed opposite to each other, wherein the first clamping block 7121 and the second clamping block 7122 have Clamping arc surface; clamping block driving mechanism (not shown in the figure), used to drive the first clamping block 7121 and the second clamping block 7122 to open and close.
  • the clamping arc surfaces of the first clamping block and the second clamping block can be adapted to the silicon rod to be cut with a circular cross-section.
  • the part of the block facing the clamping space is set as an arc surface; in another implementation, the clamping arc surface is the contact plane where the clamping block is arranged in different directions in accordance with the curvature of the surface of the silicon rod, so that the The silicon rod is clamped.
  • the clamping arm driving mechanism includes: an opening and closing gear, a rack and a driving source (not shown); wherein, the first clamping arm and the second clamping arm are respectively provided with an opening and closing gear , the opposite sides of the rack are respectively provided with tooth patterns corresponding to the meshing of the opening and closing gears on the first clamping arm and the second clamping arm, and the driving source is connected with the gear driving member for driving The gear drives move.
  • the clamping block drives the first clamping block and the second clamping block to open and close, thereby realizing clamping and releasing of the silicon rod to be cut.
  • the clamping block driving mechanism includes: a first rack, linked to the first clamping block; a second rack, linked to the second clamping block; a clamping cylinder, provided On the first rack or the second rack, the first rack or the second rack is pushed to move in the extending direction of the rack; the transmission gear is engaged with the first rack and the second rack , used to drive the first clamping block and the second clamping block to move towards each other during forward rotation to perform the closing operation, and drive the first clamping block and the second clamping block to move opposite to each other during reverse rotation to perform the opening action.
  • the first rack and the second rack are arranged on both sides of the transmission gear. Based on the basic law of meshing between the gears or between the gears and the rack, when the transmission gear rotates, the linear velocity of the teeth on both sides of the gear moves in the opposite direction. , so that the first rack and the second rack can move in opposite directions.
  • the first clamping portion and the second clamping portion linked to the first rack and the second rack exhibit a movement of approaching or moving away from each other. For example, when the clamping cylinder pushes the first rack or the second rack to move to drive the transmission gear to rotate, and when the transmission gear is in a forward rotation state, the first rack and the second rack move toward each other to drive the transmission gear to rotate.
  • the first clamping block and the second clamping block are close to each other to perform the closing action; when the transmission gear is in a reversed state, the first rack and the second rack move away from each other to drive the first clamping portion and the second clamping portion.
  • the gripping parts move away from each other to perform the releasing action.
  • the clamping block driving mechanism includes: a first rack, linked to the first clamping block; a second rack, linked to the second clamping block; a driving gear, connected to It is connected to the power output shaft of the driving motor, and is engaged with the first rack and the second rack, and is used to drive the first clamping block and the second clamping block to move toward each other when rotating in the forward direction.
  • the closing action is performed, and the first clamping block and the second clamping block are driven to move opposite to each other during the reverse rotation to perform the opening action.
  • the first rack and the second rack can be meshed with the two sides of the drive gear, so that when the drive gear rotates, the linear speeds at the first rack and the second rack are in opposite directions, and the drive motor is driven by the drive motor.
  • the gear rotates so that the first rack and the second rack move toward each other when the driving gear rotates forward, which drives the first clamping block and the second clamping block to move toward each other to perform the closing action.
  • the driving gear is driven to rotate in the reverse direction, the first tooth The bar and the second rack move back to drive the first clamping block and the second clamping block to move back to perform the opening action.
  • the clamping block driving mechanism includes: an opening and closing gear, which is provided on the first clamping block and the second clamping block; a rack, two opposite ends of the rack are respectively provided with There are tooth patterns corresponding to the meshing of the opening and closing gears on the first clamping block and the second clamping block; the driving source is connected to the rack, and is used to drive the rack to move forward and backward along the direction of the rack.
  • the rack is located between the first clamping block and the second clamping block, and two outer surfaces of the clamping blocks facing both sides of the rack are respectively provided with the first clamping block and the second clamping block.
  • the opening and closing gears on the clamping block mesh with corresponding tooth patterns, and the driving source can be, for example, a driving motor or an air cylinder.
  • the drive motor or cylinder as the driving source drives the rack as the gear drive to move upward, and the rack drives the meshing opener on both sides.
  • the closing gear performs an external rotation action
  • the opening and closing gear drives the clamping block (the opening and closing gear and the clamping block can be connected through the rotating shaft) to perform a lowering action during the external rotation process to change from the loosened state to the clamped state; otherwise, when it is necessary to realize
  • the drive motor (or cylinder) as the driving source drives the rack as the gear drive to move downward
  • the rack drives the opening and closing gears meshing on both sides to rotate inward, and the opening and closing gears are inside.
  • the clamping block is driven (the opening and closing gear and the clamping block can be connected by the rotating shaft) to make an upward movement to change from the clamping state to the releasing state.
  • the clamping block driving mechanism includes: a bidirectional screw rod, two ends of which are threadedly connected to the first clamping block and the second clamping block; a driving source for driving the screw rod to rotate In order to make the first clamping block and the second clamping block move toward each other or move toward each other.
  • the bidirectional screw rod is disposed along the second direction and is threadedly connected with the first clamping block and the second clamping block; the driving source drives the screw rod to rotate to make the first clamp The holding block and the second holding block move toward or away from each other along the second direction.
  • the two-way screw is a double-threaded screw
  • the two ends of the two-way screw are respectively provided with threads and the thread directions are opposite
  • the driving source can be provided at either end of the two-way screw
  • the two-way screw In order to drive the two-way screw to rotate along the screw shaft, with the threads in opposite directions at both ends of the two-way screw, when the two-way screw is rotated under the drive of the driving source, the movement of the two ends of the two-way screw is converted into the axial line in the opposite direction. Movement, the axial direction is the second direction in which the bidirectional screw is set.
  • the first clamping block and the second clamping block can move toward each other or toward each other to realize clamping or releasing of the silicon rod to be cut.
  • the reclaiming arm 711 is arranged on the mounting portion 72 so as to be able to rise and fall.
  • the first clamping block 7121 and the second clamping block 7122 need to be located on opposite sides of the silicon rod, so that the silicon rod is located between the first clamping block 7121 and the second clamping block 7122. in the clamping space between the two clamping blocks 7122 .
  • the process of moving the clamping assembly so that the silicon rod is located in the clamping space it is necessary to avoid the collision between the clamping block and the silicon rod.
  • the reclaiming arm 711 is set on the mounting portion 72 in a liftable manner, and before the clamping member corresponding to the reclaiming arm 711 approaches the silicon rod to be cut in the second direction, control the The lifting height of the reclaiming arm 711 enables the clamping member to be located above the silicon rod to be cut.
  • the The reclaiming arm 711 drives the clamping member to descend so that the silicon rod to be cut is located in the clamping space. In this state, the first clamping block 7121 and the second clamping block 7122 are driven to approach each other. It can realize the clamping of the silicon rod to be cut.
  • the diameter of the silicon rod to be cut is different, and the height of the axis of the silicon rod is different when the silicon rod is in the pre-loading position.
  • the height of the axis of the silicon rod can be aligned with the preset clamping position.
  • a silicon rod processing platform for placing the silicon rod to be cut can be set on the corresponding machine base. Therefore, the space occupied by the stand can be reduced.
  • the silicon rod processing equipment further includes a predetermined loading mechanism, disposed along the first direction, for carrying the silicon rods to be cut, so that the loading device loads the silicon rods to be cut from the predetermined loading mechanism The rods are transported to the first processing location or to the second processing location. Please continue to refer to FIG.
  • the predetermined loading mechanism 74 can be aligned with the silicon rod carrying device in the first direction, so as to make the silicon rods
  • the carrier device transports the silicon rods to the predetermined loading mechanism 74 along the axial direction, and the silicon rods to be cut obtained after cutting the silicon rods by the cutting frame 62 and can be used for squaring are located on the predetermined loading mechanism 74;
  • the predetermined loading mechanism 74 can also be used to carry the silicon rod to be cut obtained by cutting the silicon rod cutting device.
  • the predetermined loading mechanism 74 has a bearing portion to limit the silicon rod to be cut to be securely placed.
  • the bearing portion includes two rows of parallel and opposite rollers arranged in a first direction, thereby allowing the At the same time, when the predetermined loading mechanism 74 is corresponding to the silicon rod carrying device of the silicon rod cutting device, the silicon rod to be cut is relative to the predetermined loading mechanism 74 along the first When the direction moves, there is rolling friction between it and its bearing part, which is convenient for conveying the silicon rod.
  • the predetermined loading mechanism 74 can be set between the first processing area and the second processing area, and the control system of the silicon rod processing equipment can read the position of the predetermined loading mechanism 74, thereby controlling the The loading device clamps the silicon rods from the predetermined loading mechanism 74 and transports the silicon rods to a displacement distance corresponding to the first silicon rod holder or the second silicon rod holder.
  • the loading device can be controlled from the predetermined loading mechanism 74 to the corresponding silicon rod holder in the second direction moving distance.
  • the silicon rod is clamped by the silicon rod clamp to move along the axis of the silicon rod.
  • the The position aligned with the axis of the silicon rod realizes clamping; at the same time, the amount of cutting or grinding of the silicon rod during the cutting or grinding operation is determined by the relative position of the cutting wire saw or grinding tool and the silicon rod, so that the silicon rod clamp is Clamping at a position aligned with the axis of the silicon rod
  • the silicon rod processing equipment can know the position of the axis of the silicon rod, that is, the silicon rod can be processed with a preset cutting amount or grinding amount, and at the same time avoid or reduce the silicon rod clamp to drive the silicon rod.
  • the height of the center of gravity changes during the rotation of the rod along the axis.
  • the feeding device is used to transport the silicon rod to be cut to the corresponding first silicon rod holder or the second silicon rod holder.
  • the degree of freedom of direction adjustment ensures that the silicon rod holder can be clamped at the position where its clamping part is aligned with the axis of the silicon rod.
  • the silicon rod clamp is realized to hold the silicon rod at the predetermined loading position.
  • the predetermined loading position is the position where the axial position of the silicon rod clamped by the feeding device is aligned with the center of the clamping portion of the silicon rod holder.
  • the position of the center line of the first clamping block and the second clamping block in the feeding device in the second direction can be obtained by the control system.
  • the position of the axis of the silicon rod in the second direction can be known, and by controlling the moving distance of the feeding device in the second direction, it can be ensured that the axis of the silicon rod is aligned with the clamping part of the silicon rod clamp in the second direction;
  • the silicon rod holder realize the clamping at a position where the clamping part is aligned with the axis of the silicon rod, it is necessary to control the position of the axis of the silicon rod in the re-perpendicular direction to align with the clamping part.
  • the feeding device further includes a sensing device for detecting that the clamping member of the feeding device or the first silicon rod clamp or the second silicon rod clamp is clamped the silicon rod, so as to determine that the first silicon rod holder or the second silicon rod holder holds the silicon rod at a predetermined loading position.
  • the sensing device can be used to detect the height of the silicon rod held by the holding member, thereby determining the position of the axis of the silicon rod in the direction of the heavy vertical line.
  • the silicon rod holder only has the freedom to move along its guiding structure and the degree of freedom to rotate the clamping portion along the central axis, so the position of the center of the clamping portion of the silicon rod holder in the direction of the heavy vertical line is a determined value.
  • the lifting movement of the reclaiming arm in the direction of the heavy vertical line can be controlled so that the position of the axial direction of the silicon rod is raised and lowered to be aligned with the clamping part of the silicon rod clamp in the direction of the heavy vertical line.
  • FIG. 13 shows a partial structural schematic diagram of the silicon rod processing equipment of the present application in an embodiment.
  • the senor is configured to detect the height of the highest point in the clamping state of the silicon rod.
  • the first clamping block in the clamping member is symmetrical with the second clamping block.
  • the axis of the silicon rod and the center line (or symmetry plane) of the two clamping blocks are in the second position.
  • the positions of the directions are the same, and in this state, the highest point on the surface of the silicon rod and the position of the axis of the silicon rod in the second direction are also the same.
  • the sensor can be set as the centerline position between the first clamping block and the second clamping block.
  • the sensing device is a touch sensor or a ranging sensor.
  • the telescopic direction corresponding to the contact sensor or the ranging direction corresponding to the distance measuring sensor can be set along the direction of the heavy vertical line, thereby determining the height of the highest point on the surface of the silicon rod held by the holding member.
  • FIG. 16 is a schematic diagram showing a part of the structure of the feeding device in an embodiment of the silicon rod processing equipment of the present application.
  • the contact sensor 73 can be arranged such that one end is disposed at the bottom end of the reclaiming arm 711 or the clamping member, and the other end is a free end that moves upward and downward toward the silicon rod, and the free end is provided with a detection head to contact the silicon rod.
  • the probe head can be controlled to move close to the silicon rod.
  • the probe head When the probe head is in contact with the surface of the silicon rod, it stops moving and records its corresponding position data.
  • the contact sensor 73 can learn and record the probe head and the silicon rod.
  • the height of the highest point on the surface of the silicon rod can be determined, and the adjustment height of the silicon rod can be determined by comparing the height of the highest point with the reference height.
  • the reference height can be, for example, the height of the highest point of a reference silicon rod pre-stored in the control system of the silicon rod processing equipment, and the reference silicon rod is a silicon rod with a known diameter value.
  • the height of the highest point of the reference silicon rod can be adjusted to determine the axis height of the corresponding reference silicon rod, so that the axis position of the reference silicon rod is aligned with the center of the clamping part of the silicon rod clamp in the height direction.
  • the height of the highest point of the silicon rod can be used as a reference height.
  • the detection data is compared with the reference height, and the difference between the height of the highest point of the silicon rod held by the current state of the holding member and the reference height determines the required displacement adjustment of the silicon rod in the lifting direction.
  • the reference height may be determined by the predetermined loading mechanism, and when the loading device clamps the silicon rod to be cut from the predetermined loading mechanism, the position of the lowest point of the silicon rod is a certain value, that is, the predetermined loading
  • the probe head of the contact sensor 73 is further provided with a telescopic spring, when the probe head contacts an object, it can be driven back by the telescopic spring, which can be used to protect the probe head and prevent the probe head from being damaged. Damaged by touch.
  • the sensing device may be configured as a probe-type displacement sensor.
  • the sensing device may also be a distance measuring sensor.
  • the distance detection direction of the distance measuring sensor may be set to the direction of the heavy vertical line.
  • the distance measuring sensor may be an infrared distance measuring sensor, Laser distance sensors, ultrasonic sensors, radar sensors, etc.
  • the sensing device can be used to measure in the state that the silicon rod to be cut is clamped by the clamping member, or the measurement is performed in the state that the silicon rod to be cut is clamped by the silicon rod holder.
  • the height of the highest point of the reference silicon rod in the state that the reference silicon rod is clamped by the silicon rod holder at the predetermined loading position is used as the reference height.
  • the reference height In the actual scene, by measuring the height of the highest point of the silicon rod clamped by the silicon rod holder Compared with the reference height to determine the displacement adjustment of the silicon rod.
  • the silicon rod holder is A pair of clamping arms move toward each other to clamp the silicon rod on the two end faces of the silicon rod; make the first clamping block 7121 and the second clamping block 7122 of the clamping part of the feeding device move away from each other to release the silicon rod, and at the same time , make the sensor 73 telescopic movement to detect the height of the silicon rod to be cut clamped by the silicon rod clamp, and compare the height of the highest point of the silicon rod clamped by the silicon rod clamp with the reference height to determine the height of the silicon rod to be cut.
  • the displacement adjustment amount of the rod when the height of the highest point of the silicon rod has become the reference height, it is determined that the silicon rod clamp has clamped the silicon rod at the predetermined loading position, so that the reclaiming arm 711 and the clamping member can be raised to At the designated position, the silicon rod holder can drive the silicon rod to move along the guide structure to perform subsequent cutting operations; when there is a height difference between the height detected by the sensor 73 pieces and the reference height, the first clamping block of the feeding device clamping piece is set.
  • the feeding device drives the silicon rod to move up and down with the displacement determined by the height difference.
  • a pair of clamping arms of the silicon rod clamp move toward each other to approach the two end faces of the silicon rod and realize the clamping, the clamping piece releases the silicon rod, and the reclaiming arm 711 and the clamping piece rise to the specified position. position, the silicon rod holder can drive the silicon rod to move along the guide structure to perform subsequent cutting operations.
  • a silicon rod to be cut is transported to the silicon rod processing platform for the first silicon rod holder on the first processing area to be the silicon rod to be cut. Clamping; in some implementations, the silicon rod to be cut can be obtained by cutting a long silicon rod by a cutting frame in a silicon rod processing equipment, and in other implementations, the silicon rod to be cut can also be a silicon rod Processed by bar cutting equipment;
  • the silicon rod is transported to the clamping position corresponding to the silicon rod holder at the processing area by a feeding device.
  • the feeding device can clamp the silicon rod to be cut from a predetermined loading mechanism and then transport the silicon rod to be cut to a predetermined loading position corresponding to the silicon rod clamp;
  • the first silicon rod holder moves along the axis direction of the silicon rod in the first processing area after clamping the silicon rod to be cut at the predetermined loading position, so that the cutting wire saw in the cutting device is fed relative to the silicon rod to be cut to realize squaring cutting;
  • a guide structure in the axial direction of the silicon rod can be provided on the processing area to make the silicon rod holder move along the guide structure under the driving of the power source; the cutting device can cooperate with the silicon rod holder and its clamped
  • the movement of the silicon rod for example, adjusting the position of the cutting wire saw to avoid the silicon rod clamp holding the silicon rod after one cut and returning to the initial position.
  • the cutting wire saw is fed for the second cutting until a cut silicon rod with a rectangular or quasi-rectangular cross-section is formed; wherein, the initial position is, for example, a predetermined loading position of the silicon rod holder, and here, the initial position should be
  • the silicon rod is moved toward the cutting wire saw where the cutting can be realized; in some embodiments, the silicon rod processing equipment can also be configured with a side skin conveying mechanism to transport the cut edge skin out of the working area;
  • the first conversion mechanism drives the cutting device to convert from the first processing position to the second processing position
  • the second conversion mechanism drives the grinding device to convert to the first processing position.
  • the first silicon rod holder can drive the clamped silicon rod after cutting to move along the guide structure, and the grinding device drives the grinding tool to move in the direction of the heavy vertical line to grind the side surface of the cut silicon rod.
  • the first silicon rod clamp drives the silicon rod to rotate along the axis of the silicon rod to switch the grinding surface of the grinding device on the silicon rod, thereby obtaining the ground silicon rod;
  • the second silicon rod holder can be loaded with another silicon rod to be cut.
  • the cutting device transferred to the second processing area can also cut the silicon rod held by the second silicon rod holder;
  • the ground silicon rods in the first processing area are unloaded, the first silicon rod holder can load another silicon rod to be cut, and the cutting device is driven by the first switching mechanism to switch from the second processing area to the first processing area.
  • the cutting device can cut the silicon rod to be cut held by the first silicon rod holder, and at the same time, the second switching mechanism can switch the grinding device to the second processing area, and the second silicon rod can be cut.
  • the cut silicon rod held by the rod holder is ground; in some embodiments, the unloading of the ground silicon rod can also be achieved by configuring a silicon rod unloading device in the silicon rod processing equipment.
  • the bar unloading device can also be set to be movable between the first processing area and the second processing area, so as to meet the unloading needs at different times to connect to the first processing area and the second processing area respectively;
  • the silicon ingot processing equipment can simultaneously perform the silicon ingot processing operation on the two processing positions, and the processing efficiency of the silicon rod is improved;
  • the second conversion mechanism switches the processing position of the grinding device, so that the silicon rod clamp drives the clamped silicon rod to move along the axis of the silicon rod, and the square cutting and grinding operations can be realized in any processing position.
  • the cutting device and the grinding device can be located in different processing areas, and different processing procedures can be performed simultaneously on the silicon rod processing platform; thus, the silicon rod processing equipment of the present application While improving the processing efficiency, the transfer path of the silicon rods for processing between different processes is simplified, and the labor loss, time loss and the risk of damage to the silicon rods in the process flow are reduced.
  • the present application also provides a silicon rod processing method, which is applied to a silicon rod processing equipment, and the silicon rod processing equipment includes a machine base having a silicon rod processing platform, a cutting device, a grinding device, and a first silicon rod.
  • a fixture and a second silicon rod fixture wherein the cutting device is set on a first conversion mechanism, the first conversion mechanism is set on a first installation position of a silicon rod processing platform, and the grinding device is set on the second conversion mechanism,
  • the second conversion mechanism is set at the second installation position of the silicon rod processing platform, and the first silicon rod fixture and the second silicon rod fixture are respectively set at the first processing area and the second processing area of the silicon rod processing platform, Include the following steps:
  • step S10 the cutting device is located in the first processing area and the grinding device is located in the second processing area;
  • the first silicon rod to be cut is transported to the silicon rod processing platform for the first silicon rod holder on the first processing area to be cut.
  • the rod is clamped; in some implementations, the silicon rod to be cut can be obtained by cutting a long silicon rod by a cutting frame in the silicon rod processing equipment, and in other implementations, the silicon rod to be cut can also be Obtained from silicon rod cutting equipment;
  • step S11 the first silicon rod holder on the first processing area is loaded with the first silicon rod to be cut;
  • the silicon rod is transported to the clamping position corresponding to the silicon rod holder at the processing area by a feeding device.
  • the feeding device can clamp the silicon rod to be cut from a predetermined loading mechanism and then transport the silicon rod to be cut to a predetermined loading position corresponding to the silicon rod holder.
  • step S12 the first silicon rod holder is moved along the first direction while gripping the first silicon rod to be cut, so that the cutting device is fed and cut relative to the first silicon rod to be cut, so as to obtain the first cut silicon rod with a rectangular-like cross section. rod; wherein, the first direction is parallel to the axial direction of the silicon rod;
  • the first silicon rod holder moves along the axis direction of the silicon rod in the first processing area after clamping the silicon rod to be cut at the predetermined loading position, so that the cutting wire saw in the cutting device is fed relative to the silicon rod to be cut to realize squaring Cutting;
  • a guide structure in the direction of the axis of the silicon rod may be provided on the processing area to make the silicon rod holder move along the guide structure under the driving of the power source, and the guide structure is, for example, a guide post or a guide rail;
  • the cutting device It can cooperate with the movement of the silicon rod holder and the silicon rod it holds, such as adjusting the position of the cutting wire saw to prevent the silicon rod holder from holding the silicon rod that has been cut once and returning to the initial position, and the silicon rod holder drives the clamped silicon rod.
  • the silicon rod is rotated at a certain angle, and then fed relative to the cutting wire saw from the initial position to perform the second cutting, until a cut silicon rod with a rectangular or quasi-rectangular cross-section is formed; wherein, the initial position is, for example, the predetermined position of the silicon rod holder.
  • the loading position here, the initial position should be the position where the silicon rod can be moved toward the cutting wire saw to realize cutting; The side skins are transported out of the work area.
  • step S13 make the first conversion mechanism drive the cutting device to be converted from the first processing position to the second processing position, and make the second conversion mechanism drive the grinding device to be converted from the second processing position to the first processing position;
  • the first switching mechanism includes a first rotating shaft, and by driving the cutting device to rotate along the first rotating shaft by a preset angle, the switching of the processing location of the cutting device can be realized;
  • the second switching mechanism includes a second rotating shaft, and by driving the grinding device to rotate by a preset angle along the second rotating shaft, the switching of the processing area where the grinding device is located can be realized;
  • the first rotating shaft may be located in the first direction
  • the second rotating axis may be located in the direction of the re-perpendicular line ;
  • the first direction, the second direction, and the re-perpendicular direction are perpendicular to each other.
  • step S14 the first silicon rod holder is made to move the first cut silicon rod in a first direction to cooperate with the grinding device to grind the first cut silicon rod to obtain a first ground silicon rod; and
  • the second silicon rod holder loads the second silicon rod to be cut and clamps the second silicon rod to be cut to move in the first direction to make the cutting device feed and cut relative to the second silicon rod to be cut to obtain a second cut with a quasi-rectangular cross-section rear silicon rod;
  • the second conversion mechanism drives the grinding device to switch from the first processing position to the second processing position.
  • the first silicon rod holder can drive the grinding device.
  • the clamped silicon rod after the first cut moves along the guide structure, and the grinding device drives the grinding tool to move in the direction of the heavy vertical line and cooperates with the movement of the first silicon rod holder in the first direction, thereby realizing the For grinding the side of the silicon rod, the first silicon rod holder drives the silicon rod to rotate along the axis of the silicon rod to switch the grinding surface of the silicon rod by the grinding device, thereby obtaining the first ground silicon rod.
  • the second silicon rod holder can be loaded with the second silicon rod to be cut.
  • the cutting device transferred to the second processing area can also cut the second silicon rod to be cut held by the second silicon rod holder to obtain the first silicon rod to be cut. Two silicon rods after cutting.
  • step S15 unload the first ground silicon rod held by the first silicon rod holder and load the third silicon rod to be cut; make the first switching mechanism drive the cutting device to switch from the second processing position to the first a processing area, and the second converting mechanism drives the grinding device to switch from the first processing area to the second processing area;
  • the first silicon rod after grinding in the first processing area is unloaded, the first silicon rod holder can load the third silicon rod to be cut, and the cutting device is driven by the first conversion mechanism to switch from the second processing position to the In the first processing position, the cutting device can cut the third silicon rod to be cut held by the first silicon rod holder, and at the same time, the second switching mechanism drives the grinding device to switch from the first processing position to the second processing position,
  • the grinding device can grind the second cut silicon rod held by the second silicon rod holder; in some embodiments, the unloading of the first ground silicon rod can also be configured in the silicon rod processing equipment
  • the silicon rod unloading device can also be set to move between the first processing location and the second processing location to meet the unloading needs at different times to connect to the first processing location and the second processing location respectively. location.
  • step S16 the cutting device in the first processing area is made to cut the third silicon rod to be cut to obtain a third silicon rod after cutting, and the grinding device in the second processing area is made to grind the second silicon rod after cutting to obtain a third silicon rod after cutting. A second milled silicon rod is obtained.
  • the implementation manner of cutting the third silicon rod to be cut by the cutting device in the first processing area may refer to the implementation manner of cutting the first silicon rod to be cut or the second silicon rod to be cut by the cutting device in the preceding steps; similar Yes, the implementation manner of grinding the silicon rod after the second cutting by the grinding device may refer to the implementation manner of grinding the silicon rod after the first cutting.
  • the silicon ingot processing equipment can simultaneously perform the silicon ingot processing operation on the two processing positions, and the processing efficiency of the silicon rod is improved;
  • the second conversion mechanism switches the processing position of the grinding device, so that the silicon rod clamp drives the clamped silicon rod to move along the axis of the silicon rod, and the square cutting and grinding operations can be realized in any processing position.
  • the transport path between the two is simplified; at the same time, the cutting device and the grinding device can be located in different processing locations, and different processing procedures can be performed on the silicon rod processing platform; thus, the silicon rod processing of the present application While improving the processing efficiency, the equipment simplifies the transportation path of the silicon rods for processing between different processes, and reduces the manpower loss, time loss and the risk of damage to the silicon rods in the process flow.

Abstract

一种硅棒加工设备及硅棒加工方法,其中,硅棒加工设备上设有第一加工区位及第二加工区位,硅棒加工设备的切割装置(20)可藉由第一转换机构(43)在第一、第二加工区位间切换,研磨装置(30)可藉由第二转换机构(40)在第一、第二加工区位间切换,令第一、第二硅棒夹具(11,12)带动所夹持的硅棒沿硅棒轴线方向移动,在任一加工区位实现开方切割及研磨作业。

Description

硅棒加工设备及硅棒加工方法 技术领域
本申请涉及硅工件加工技术领域,特别是涉及一种硅棒加工设备及硅棒加工方法。
背景技术
目前,随着社会对绿色可再生能源利用的重视和开放,光伏太阳能发电领域越来越得到重视和发展。光伏发电领域中,通常的晶体硅太阳能电池是在高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭后通过多线锯切割及后续加工而成。
现有硅片的制作流程,以单晶硅产品为例,一般地,大致的作业工序可包括:先使用硅棒截断机对原初的长硅棒进行截断作业以形成多段短硅棒;截断完成后,又使用硅棒开方机对截断后的短硅棒进行开方作业后形成单晶硅棒;再对各个单晶硅棒进行磨面、倒角等加工作业,使得单晶硅棒的表面整形达到相应的平整度及尺寸公差要求;后续再使用切片机对单晶硅棒进行切片作业,则得到单晶硅片。
不过,在一般情形下,在相关技术中,每个工序作业(例如切割开方、磨面、倒角等)所需的作业是独立布置,相应的加工装置分散在不同的生产单位或生产车间或生产车间的不同生产区域,执行不同工序作业的工件的转换需要进行搬运调配,且在执行每一工序作业之前可能都需要进行预处理工作,这样,工序繁杂,效率低下,且易影响硅棒加工作业的品质,需更多的人力或转运设备,安全隐患大,另外,各个工序的作业设备之间的流动环节多,在工件转移过程中提高了工件损伤的风险,易产生非生产因素造成的不合格,降低了产品的合格率及现有的加工方式所带来的不合理损耗,是各个公司面临的重大改善课题。
发明内容
鉴于以上所述相关技术的缺点,本申请的目的在于提供一种硅棒加工设备及硅棒加工方法,以解决现有技术中存在的硅棒加工中工序繁杂及效率低下的问题。
为实现上述目的及其他相关目的,本申请在第一方面公开了一种硅棒加工设备,包括:机座,具有硅棒加工平台,所述硅棒加工平台设有第一加工区位与第二加工区位;至少一第一硅棒夹具,设于所述第一加工平台,用于夹持硅棒并带动所夹持的硅棒沿第一方向移动;其中,所述第一方向平行于硅棒轴线方向;至少一第二硅棒夹具,设于所述第二加工平台,用于夹持硅棒并带动所夹持的硅棒沿第一方向移动;切割装置,设于第一转换机构,用于对 所述硅棒加工平台的第一加工区位或第二加工区位上的硅棒进行切割,以形成切割后硅棒;其中,所述第一转换机构驱动切割装置在第一加工区位和第二加工区位之间转换位置;其中,所述第一转换机构设于硅棒加工平台上的第一安装位置;研磨装置,设于第二转换机构,用于对所述硅棒加工平台的第一加工区位或第二加工区位上的切割后硅棒进行研磨;其中,所述第二转换机构驱动研磨装置在第一加工区位和第二加工区位之间转换位置;其中,所述第二转换机构设于硅棒加工平台上的第二安装位置。
本申请在第二方面还公开了一种硅棒加工方法,应用于硅棒加工设备中,所述硅棒加工设备包括具有硅棒加工平台的机座、切割装置、研磨装置、第一硅棒夹具及第二硅棒夹具,其中,所述切割装置设于第一转换机构,所述研磨装置设于第二转换机构,所述第一硅棒夹具及第二硅棒夹具分别对应设于硅棒加工平台的第一加工区位及第二加工区位,包括以下步骤:令切割装置位于第一加工区位及研磨装置位于第二加工区位;令第一加工区位上的第一硅棒夹具装载第一待切割硅棒;令第一硅棒夹具夹持第一待切割硅棒沿第一方向移动以令切割装置相对第一待切割硅棒进给切割,获得截面为类矩形的第一切割后硅棒;其中,所述第一方向平行于硅棒轴线方向;令第一转换机构驱动切割装置从第一加工区位转换至第二加工区位,以及令第二转换机构驱动研磨装置从第二加工区位转换至第一加工区位;令第一硅棒夹具夹持第一切割后硅棒沿第一方向移动以配合研磨装置对所述第一切割后硅棒进行研磨,获得第一研磨后硅棒;以及令第二硅棒夹具装载第二待切割硅棒并夹持第二待切割硅棒沿第一方向移动以令切割装置相对第二待切割硅棒进给切割,获得截面为类矩形的第二切割后硅棒;对第一硅棒夹具所夹持的第一研磨后硅棒予以卸料并装载第三待切割硅棒;令第一转换机构驱动切割装置从第二加工区位转换至第一加工区位,以及令第二转换机构驱动研磨装置从第一加工区位转换至第二加工区位;令第一加工区位的切割装置对第三待切割硅棒进行切割以获得第三切割后硅棒,以及令第二加工区位的研磨装置对第二切割后硅棒进行研磨以获得第二研磨后硅棒。
综上所述,本申请的硅棒加工设备及硅棒加工方法具有如下有益效果:所述硅棒加工设备上设有第一加工区位及第二加工区位,即可在两个加工区位上同时进行硅棒加工作业,硅棒加工效率由此提高;同时,通过所述第一转换机构与第二转换机构分别驱动切割装置与研磨装置转换其所处的加工区位,令硅棒夹具带动所夹持的硅棒沿硅棒轴线方向移动,在任一加工区位即可实现开方切割及研磨作业,硅棒在不同工序间的转运路径被化简;如此,本申请的硅棒加工设备在实现提高加工效率的同时简化了硅棒在不同工序间加工的转运路径,减少了工序流转的人力损耗、时间损耗及硅棒被损坏的风险。
附图说明
本申请所涉及的发明的具体特征如所附权利要求书所显示。通过参考下文中详细描述的示例性实施方式和附图能够更好地理解本申请所涉及发明的特点和优势。对附图简要说明书如下:
图1显示为本申请的硅棒加工设备在一实施例中的结构示意图。
图2显示为本申请的硅棒加工设备在一实施例中的第一转换机构示意图。
图3显示为本申请的硅棒加工设备在一实施例中的第二转换机构示意图。
图4显示为本申请的硅棒加工设备的切割装置在一实施例中的结构示意图。
图5显示为本申请的硅棒加工设备的切割装置在一实施例中的结构示意图。
图6显示为图5中A处的放大示意图。
图7显示为本申请的硅棒加工设备在一实施例中的部分结构示意图。
图8a及图8b显示为本申请的硅棒加工设备的硅棒夹具在一实施例中不同视图方向的结构示意图。
图9显示为图8a中的硅棒夹具的部分结构示意图。
图10显示为本申请的硅棒加工设备在一实施例中的部分结构示意图。
图11显示为本申请的硅棒加工设备在一实施例中的边皮承托机构的结构示意图。
图12显示为本申请的硅棒加工设备的部分结构在一实施例中的结构示意图。
图13显示为图8b中B处的放大示意图。
图14显示为本申请的硅棒加工设备在一实施例中的硅棒截断装置的结构示意图。
图15a及图15b显示为本申请的硅棒加工设备的上料装置在一实施例中不同视图方向的结构示意图。
图16显示为本申请的硅棒加工设备的上料装置在一实施例中的部分结构示意图。
具体实施方式
以下由特定的具体实施例说明本申请的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本申请的其他优点及功效。
在下述描述中,参考附图,附图描述了本申请的若干实施例。应当理解,还可使用其他实施例,并且可以在不背离本公开的精神和范围的情况下进行机械组成、结构、电气以及操作上的改变。下面的详细描述不应该被认为是限制性的,并且本申请的实施例的范围仅由公 布的专利的权利要求书所限定。这里使用的术语仅是为了描述特定实施例,而并非旨在限制本申请。空间相关的术语,例如“上”、“下”、“左”、“右”、“下面”、“下方”、“下部”、“上方”、“上部”等,可在文中使用以便于说明图中所示的一个元件或特征与另一元件或特征的关系。
虽然在一些实例中术语第一、第二等在本文中用来描述各种元件或参数,但是这些元件或参数不应当被这些术语限制。这些术语仅用来将一个元件或参数与另一个元件或参数进行区分。例如,第一硅棒夹具可以被称作第二硅棒夹具,并且类似地,第二硅棒夹具可以被称作第一硅棒夹具,而不脱离各种所描述的实施例的范围。第一硅棒夹具和第二硅棒夹具均是在描述一个硅棒夹具,但是除非上下文以其他方式明确指出,否则它们不是同一个硅棒夹具。相似的情况还包括第一加工区位与第二加工区位,或者第一夹持块与第二夹持块,或者第一转换机构与第二转换机构、第一安装位置与第二安装位置。
再者,如同在本文中所使用的,单数形式“一”、“一个”和“该”旨在也包括复数形式,除非上下文中有相反的指示。应当进一步理解,术语“包含”、“包括”表明存在所述的特征、步骤、操作、元件、组件、项目、种类、和/或组,但不排除一个或多个其他特征、步骤、操作、元件、组件、项目、种类、和/或组的存在、出现或添加。此处使用的术语“或”和“和/或”被解释为包括性的,或意味着任一个或任何组合。因此,“A、B或C”或者“A、B和/或C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A、B和C”。仅当元件、功能、步骤或操作的组合在某些方式下内在地互相排斥时,才会出现该定义的例外。
在相关的针对硅棒的加工作业技术中,会涉及到例如开方切割、磨面、倒角等若干道工序。
一般地,现有的硅棒大多为圆柱形结构,通过硅棒开方设备对硅棒进行开方切割,使得硅棒在开方处理后截面呈类矩形(包括类正方形),而已加工的硅棒整体呈类长方体形(也可包括类立方体形)。
以单晶硅棒为例,单晶硅棒的形成工艺可包括:先使用硅棒截断机对原始的长硅棒进行截断作业以形成多段短硅棒;截断完成后,又使用硅棒开方机对截断后的短硅棒进行开方作业形成截面呈类矩形的单晶硅棒。其中,使用硅棒截断机对原初的长硅棒进行截断作业以形成多段短硅棒的具体实现方式可参考例如为CN105856445A、CN105946127A、以及CN105196433A等专利公开文献,使用硅棒开方机对截断后的短硅棒进行开方作业后形成截面呈类矩形的单晶硅棒的具体实施方式则可参考CN105818285A等专利公开文献。但单晶硅棒的形成工艺并不见限于前述技术,在可选实例中,单晶硅棒的形成工艺还可包括:先使用全硅棒开方机对原初的长硅棒进行开方作业以形成截面呈类矩形的长单晶硅棒;开方完成后, 又使用硅棒截断机对开方切割后的长单晶硅棒进行截断作业形成短晶硅棒。其中,上述中使用全硅棒开方机对原初的长硅棒进行开方作业以形成呈类矩形的长单晶硅棒的具体实现方式可参考例如为CN106003443A等专利公开文献。
在利用开方设备将圆柱形的单晶硅棒经开方切割形成类矩形的硅棒之后,可再利用研磨设备对类矩形的硅棒进行磨面、倒角等作业。
本申请的发明人发现,在相关的针对硅棒的加工作业技术中,涉及的开方、研磨(例如磨面、倒角等)等加工装置是彼此分散及独立布置的,执行不同工序作业的硅棒的转换需要进行搬运调配及加工前的预处理,存在工序繁杂及效率低下等问题。
有鉴于此,本申请提出了一种硅棒加工设备及硅棒加工方法,通过设备改造,在一个设备中集合了多个加工装置,能自动化实现硅棒的开方切割和研磨(例如磨面、倒角等),各个加工作业之间无缝衔接,节省人工成本且提高生产效率,提高硅棒加工作业的品质。
在此,本申请提供的硅棒加工设备包括机座,具有硅棒加工平台,所述硅棒加工平台设有第一加工区位与第二加工区位;至少一第一硅棒夹具,设于所述第一加工平台,用于夹持硅棒并带动所夹持的硅棒沿第一方向移动;其中,所述第一方向平行于硅棒轴线方向;至少一第二硅棒夹具,设于所述第二加工平台,用于夹持硅棒并带动所夹持的硅棒沿第一方向移动;切割装置,设于第一转换机构,用于对所述硅棒加工平台的第一加工区位或第二加工区位上的硅棒进行切割,以形成切割后硅棒;其中,所述第一转换机构设于硅棒加工平台上的第一安装位置,驱动切割装置在第一加工区位和第二加工区位之间转换位置;研磨装置,设于第二转换机构,用于对所述硅棒加工平台的第一加工区位或第二加工区位上的切割后硅棒进行研磨;其中,所述第二转换机构设于硅棒加工平台上的第二安装位置,驱动研磨装置在第一加工区位和第二加工区位之间转换位置。
为便于对本申请的硅棒加工设备中结构布局与工作方式的阐述,本申请定义了第一方向、第二方向,其中,所述第一方向为硅棒加工设备中卧式置放的硅棒轴心线(在本申请中也称为硅棒轴线)方向,所述第一方向、第二方向与重垂线方向两两垂直。
由本申请提供的硅棒加工设备,切割装置可藉由第一转换机构在第一加工区位及第二加工区位间切换,所述研磨装置可藉由第二转换机构在第一加工区位及第二加工区位间切换,通过协调配合所述切割装置、研磨装置、第一硅棒夹具及第二硅棒夹具,硅棒在任一加工区位内即可完成切割及开方的作业工序,简化了不同工序之间流转的程序并简化了设备,缩减了设备空间;同时,硅棒加工设备上不同加工区位可同时进行不同工序的加工作业,有益于 提高加工效率。
请参阅图1,显示为本申请的硅棒加工设备在一实施例中的结构示意图。
如图所示,所述硅棒加工设备包括机座10、切割装置20、研磨装置30、第一硅棒夹具11、第二硅棒夹具12。应当说明的是,硅棒加工设备可选的包括其他部件,例如图1所示视图,但不作为对本申请硅棒加工设备的限制。
所述机座10作为硅棒加工设备的主体部件,用于提供作业平台,在一种示例中,所述机座10的体积和重量均较大以提供更大的安装面以及更牢固的整机稳固度。应当理解,所述机座10可作为硅棒加工设备中不同的执行加工作业的结构或部件的底座,机座10的具体结构可基于不同的功能需求或结构需求变更;在一些示例中,所述机座10包括用于承接所述硅棒加工设备中不同部件的固定结构或限位结构如底座、杆体、柱体、架体等均为本申请所述的机座10。
同时,在一些示例中,所述机座10可以为一体的底座,在另一些示例中,所述机座10可以包括多个相独立的底座。
所述机座10具有硅棒加工平台,所述硅棒加工平台上设有第一加工区位及第二加工区位。所述第一加工区位及第二加工区位为可用于对硅棒进行切割开方与研磨作业的区位。
在此,所述第一硅棒夹具11与第二硅棒夹具12为分别对应于所述第一加工区位与第二加工区位的夹持装置,用于实现对硅棒的运动控制,通过夹持所述硅棒并带动所述硅棒沿第一方向运动,即可使得所述硅棒相对于切割装置20或研磨装置30沿第一方向运动,以实现预设的切割作业及研磨作业。在实际场景中,所述第一加工区位及第二加工区位上均可设置至少一硅棒夹具以令硅棒加工平台上第一加工区位及第二加工区位均可进行硅棒加工作业,由此提高生产效率。
所述切割装置20用于对所述硅棒加工平台的第一加工区位或第二加工区位上的硅棒进行切割,以形成切割后硅棒。在此,所述切割装置20藉由所述第一转换机构43设于硅棒加工平台上的第一安装位置。应当说明的是,所述硅棒加工平台的区域不以机座10的实体区域为限,例如,当所述机座10呈U型或为平行且相对设置的两个底座,所述硅棒加工平台例如可以是机座10的外接矩形,或所述硅棒加工平台包括机座10中的容纳空间。所述第一转换机构43可以设于所述机座10上;又或可设置于机座10的中空区域(或容纳空间)中,在此设置中所述第一转换机构43及切割装置20还可与机座10相独立,例如可作为独立的销售单元。所述第一转换机构43驱动切割装置20在第一加工区位及第二加工区位间转换位置, 即令任一加工区位可进行切割作业。
所述研磨装置30用于对所述硅棒加工平台的第一加工区位或第二加工区位上的切割后硅棒进行研磨。所述研磨装置30藉由所述第二转换机构40设于硅棒加工平台上的第二安装位置。类似的,所述第二转换机构40可设于机座10上,又或设于机座10的容纳空间中,在此设置中所述第二转换机构40及研磨装置30还可与机座10相独立,例如可作为独立的销售单元。所述第二转换机构40驱动研磨装置30在第一加工区位及第二加工区位间转换位置,即令任一加工区位可进行研磨作业。
在此,所述硅棒加工设备可通过控制所述切割装置20及研磨装置30分别所处的加工区位,可令第一加工区位及第二加工区位在同一时刻分别进行切割作业及研磨作业,即可提高加工效率。
应当理解,所述第一安装位置与第二安装位置不是同一位置,对应的,所述第一转换机构43与第二转换机构40设于硅棒加工平台的不同位置。所述第一安装位置与第二安装位置应当满足所述切割装置20和研磨装置30在转换加工区位的过程中不会相互干扰。在一些实施例中,所述第一安装位置与第二安装位置可设于第一加工区位与第二加工区位之间。在一实现方式中,所述第一安装位置与第二安装位置还可设于第一加工区位与第二加工区位间的居中区域。例如,当所述第一加工区位与第二加工区位呈平行且对称设置,所述第一安装位置与第二安装位置可布设于第一加工区位与第二加工区位的对称线上。
所述切割装置与研磨装置分别藉由第一转换机构和第二转换机构驱动,即可相对独立的在第一加工区位与第二加工区位间转换位置。
在某些实施方式中,所述第一转换机构包括第一转轴,所述切割装置沿第一转轴转动预设角度以在第一加工区位与第二加工区位之间转换位置;所述第二转换机构包括第二转轴,所述研磨装置沿第二转轴转动预设角度以在第一加工区位与第二加工区位之间转换位置。
在一实现方式中,所述切割装置通过沿第一转轴转动预设角度以在第一加工区位与第二加工区位之间转换位置,相较于以直线位移机构切换加工区位的方式,在本申请提供的实现方式中,所述第一转换机构的结构及所占据的设备空间即可被化简;类似地,所述研磨装置通过沿第二转轴转动预设角度以在不同加工区位间切换,即可简化第二转换机构的结构并缩减其设备空间。
请结合参阅图1及图2,其中,图2显示为本申请的硅棒加工设备在一实施例中部分结构示意图。
在一实施例中,所述第一转换机构43包括:支架430,用于设置所述切割装置20;转动驱动源432,用于驱动所述切割装置20相对支架430沿第一转轴431转动,以在第一加工区位与第二加工区位之间转换位置。
所述支架430可作为第一转换机构43的底座,切割装置20可基于所述第一转轴431活动设于所述支架430,并可在转动驱动源432驱动下相对支架430沿第一转轴431转动。所述转动驱动源432例如为具有动力输出轴的电机,其动力输出轴可轴连接至所述第一转轴431。
在某些示例中,所述支架430可设置为包括相对设置的两架体,在两个架体可分别连接至所述第一转轴431,两架体间的间隙可用于作为所述切割装置20转动的活动空间,即切割装置20在转动中与架体间不会发生碰撞等干扰。
在一实施例中,所述第二转换机构还包括用于驱动所述研磨装置转动的转动驱动机构,所述转动驱动机构包括:主动齿轮,轴接于动力驱动源;从动齿轮,啮合于所述主动齿轮且连接所述第一转轴。
请参阅图3,显示为本申请的硅棒加工设备的第二转换机构在一实施例中的部分结构示意图。
所述主动齿轮在驱动源423驱动下转动,由此带动所啮合的从动齿轮422转动,所述从动齿轮422可用于承载或连接所述研磨装置与切割装置,又或所述从动齿轮422可设置为与用于连接研磨装置及切割装置的壳体或筒体一体,例如,所述从动齿轮422的轮齿设于第二转换机构的壳体上;由此从动齿轮422可带动所述研磨装置与切割装置转动,在此示例下,所述第二转轴41的可以为所述从动齿轮422的轮轴,又或所述第二转轴41沿所述从动齿轮422的轮轴方向连接所述从动齿轮422。
在另一示例中,所述转动驱动机构为轴接于所述第二转轴的驱动电机(未予以图示),用于控制所述第一转轴转动预设角度以令所述研磨装置在第一加工区位与第二加工区位间切换。
应当说明的是,在本申请提供的各示例中,所述第二转轴的具体结构不以轴体为限,例如,所述第二转轴还可以为用于连接所述研磨装置柱体、筒体或壳体,例如在图1所示实施例中,所述第二转轴为用于设置所述研磨装置的壳体,应当理解,所述第二转轴仅当用于实现在第二转轴转动时研磨装置发生沿轴的转动以实现在第一加工区位与第二加工区位之间的切换即可。
所述第一转换机构与第二转换机构可相对独立的驱动其所对应的切割装置与研磨装置,在此,所述第一转轴与第二转轴的方向即可设置为相同方向或不同方向。
在某些实施方式中,所述第一转轴设于第一方向,所述第二转轴设于重垂线方向;所述第一加工区位与第二加工区位设于第二方向的相对两侧,其中,所述第一方向、第二方向、以及重垂线方向两两垂直。
请结合参阅图1、图2及图3,所述第一转轴431设于第一方向,所述第二转轴41设于重垂线方向,在此设置下,仅需令第一转换机构43与第二转换机构40分别对应的第一安装位置与第二安装位置在第一方向的位置具有一定间距,即可避免切割装置20与研磨装置30在转换加工区位的过程互相干扰。
当所述第一加工区位与第二加工区位呈平行且相对设置,实际加工场景中,所述切割装置20沿第一转轴431转动的预设角度例如为180°,即可实现在两个加工区位之间切换。所述研磨装置30沿第二转轴41转动预设角度以在两个加工区位间切换,所述预设角度例如为180°。在一实施方式中,为使得所述硅棒加工设备的布局更为紧凑,令所述研磨装置30在转换加工区位时沿第二转轴41转动的方向为远离切割装置20的方向,即可缩减切割装置20与研磨装置30在第一方向的间距;以图1所示视图状态为例,此时所述研磨装置30处于第二加工区位,当所述研磨装置30需要转换加工区位时,令所述研磨装置30沿第二转轴41的转动方向为图1对应的俯视图中的顺时针方向。
应理解的,硅棒加工设备的研磨装置30需配置用于研磨的磨具,通常研磨装置30重量较大,将所述第二转轴41设于重垂线方向,则所述研磨装置30被驱动转动的过程中,研磨装置30的重心高度不变,由此可提高转换过程的稳定性,有利于减小所述第二转换机构驱动研磨装置30的做功及维护第二转轴41的使用寿命。
将所述第一方向定义为机座及硅棒加工平台的长度方向,令切割装置20对应的第一转轴431设于第一方向,切割装置20在转换加工区位的过程中在第一方向的位置不变,即可令机座或硅棒加工平台在第一方向的长度缩减或实现更为合理的布局,例如,当所述硅棒加工平台沿长度方向还设有待切割硅棒的上料区位或等候区位等,所述上料区位或等候区位可邻近切割装置20设置。
在本申请的硅棒加工设备中,所述切割装置中包括多个切割轮及绕于所述多个切割轮以形成的切割线锯,通过所述第一硅棒夹具或第二硅棒夹具带动硅棒沿第一方向运动,由此可将所述切割装置在执行切割作业时可设置为固定状态即可实现切割线锯与硅棒间的相对进给。传统的硅棒加工设备中需要通过令切割线锯在空间中移动以实现对待切割硅棒的切割的方式,由此需要为切割轮及切割线配置驱动装置及导向结构以实现切割线锯相对硅棒进给;在此, 本申请切割装置的结构即可化简,切割轮可固定于切割装置的主体例如切割架上,并可省略令切割轮沿硅棒轴线方向运动的导向结构及驱动装置,即可缩减切割装置的结构与所占据的设备空间。
在某些实施方式中,所述切割装置包括:切割架及至少一线切割单元;其中,所述至少一线切割单元设于所述切割架,所述线切割单元包括:多个切割轮、过渡轮、以及切割线,所述切割线绕于所述多个切割轮及过渡轮以形成至少一切割线锯。
所述切割架连接于所述第一转换机构,所述切割架用于设置所述线切割单元,在此,切割架的具体结构可基于切割轮及过渡轮的布置需求设为不同形式,例如为柱体、梁体、板架。
在一些实施方式中,所述线切割单元中的多个切割轮及过渡轮连接于所述切割架,又或,所述多个切割轮及过渡轮通过支架、连接板、或安装框架设于所述切割架,在此,用于设置多个切割轮及过渡轮的载体可以为不同形式,本申请不做限制。
请参阅图4,显示为本申请的硅棒加工设备在一实施例中的切割装置的示意图。
在一实现方式中,所述线切割支座23通过导轨或导柱等限位结构设于所述切割架21,其中,所述导轨或导柱沿线切割单元22中切割轮221轮面的垂线方向设置,以令所设置的线切割单元22具有沿切割轮轮面的垂线方向移动的自由度;在此设置下,所述线切割支座23即可在驱动源作用下沿切割轮221轮面的正交方向移动。
当所述线切割单元22沿切割轮221轮面的垂线方向移动,对应的,所述线切割单元22中的切割线锯沿切割轮轮面的垂线方向移动,所述切割线锯即实现相对于硅棒的轴心的远离或靠近,由此可调整对硅棒的切割量或切割位置。
所述切割轮221中设有至少一可用于缠绕切割线223的切割线槽,所述切割线槽可限定切割线223位置从而控制切割精度。任一所述切割线锯由切割线223缠绕于两个切割轮221间形成,所述两个切割轮221的位置及切割轮221间的位置关系可用于确定所述切割线锯的方向。
所述过渡轮222用于对切割线223进行换向或导向,又或,所述过渡轮222可用于调节所述切割线223的张力。
在本申请的硅棒加工设备中,在切割过程中,驱动所述切割线沿绕线方向运行,由硅棒夹具带动硅棒沿硅棒轴线方向即第一方向移动以实现相对切割线锯的进给,其中,所述切割线锯可设于第二方向或重垂线方向。
应当说明的是,所述切割线锯的方向仅当正交于所述硅棒轴线方向即可实现切割,因此, 在具体场景中所述切割线锯的方向位于第一方向的垂面内即可,为便于控制对硅棒的切割量及切割轮、过渡轮布置,以及为便于描述本申请的切割装置的结构及部件的布置方式,以下实施例以切割线锯设于第二方向或重垂线方向为例进行说明。
在一实施例中,所述线切割单元包括:切割线;第一切割轮及第二切割轮,设于所述切割架,切割线绕于所述第一切割轮及第二切割轮以形成切割线锯;其中,所述第一切割轮的轮面与第二切割轮的轮面相平行或共面;第一过渡轮,邻设于所述第一切割轮,在牵引切割线的状态下令第一切割轮与第一过渡轮的切割线位于第一切割轮中用于缠绕切割线的第一切割线槽所在平面内;第二过渡轮,邻设于所述第二切割轮,在牵引切割线的状态下令第二切割轮与第二过渡轮的切割线位于第二切割轮中用于缠绕切割线的第二切割线槽所在平面内;至少一第三过渡轮,设于所述第一过渡轮及第二过渡轮之间,用于牵引所述第一过渡轮与所述第二过渡轮之间的切割线,以令所述线切割单元中形成一切割容纳空间,所述切割容纳空间可容纳所述待切割硅棒且所述切割装置中仅有所述切割线锯与所述切割容纳空间相交。
所述切割轮轮面的方向与切割线锯的方向具有对应关系,应理解的,切割轮轮面与切割轮中任一切割线槽所在平面相平行,为控制切割精度及切割过程的稳定性,所述切割线锯应当位于用于缠绕切割线的切割线槽所在平面内;同时,在切割过程中,需令所述硅棒对切割线的施力方向平行于所述切割线槽,即所述切割轮轮面平行于切割方向,所述切割方向在开方作业中即为硅棒轴线方向。
在本申请的切割装置中,所述切割线锯位于第二方向或重垂线方向,对应的,所述切割轮轮面平行于第二方向及硅棒轴线方向即所述切割轮轮面位于水平面方向,或所述切割轮轮面平行于重垂线方向及硅棒轴线方向。
请参阅图5及图6,图5显示为本申请的切割装置的线切割单元在一实施例中的结构示意图,图6显示为图5中A处的放大示意图。
如图5所示示例中,所述切割装置包括相对设置的两线切割单元22,形成相平行的两切割线锯。结合参阅图6,任一所述线切割单元22中包括第一切割轮221a及第二切割轮221b,切割线223缠绕于所述第一切割轮221a及第二切割轮221b以形成一切割线锯。
所述第一切割轮221a中包括至少一第一第一切割线槽,任一所述第一切割线槽所在平面平行于第一切割轮轮面;所述第二切割轮221b中包括至少一第二切割线槽,任一所述第二切割线槽所在平面平行于第二切割轮轮面。
所述第一切割轮221a的轮面与第二切割轮221b的轮面相平行或共面,以令所述切割线 223在缠绕于所述第一切割轮221a及第二切割轮221b时,分别对应的用于缠绕切割线223的第一切割线槽及第二切割线槽位于同一平面内,如此可令所述切割线锯的方向同时位于用于缠绕切割线223的第一切割线槽及第二切割线槽所在平面内。应当理解,切割线223在切割作用中处于运行状态,因此所述切割线锯由其所处的空间位置定义,在本申请的实施例中,缠绕与第一切割轮221a与第二切割轮221b之间的切割线223即为切割线锯。
应理解的,当切割线223绕于任一切割轮时,应当令所述切割轮两侧的切割线223均位于所述切割轮中用于缠绕切割线223的切割线槽所在平面内。
当切割线223绕于所述第一切割轮221a,第一切割线槽一端的切割线223由缠绕至所述第二切割轮221b以形成切割线锯,第一切割线槽另一端的切割线223缠绕至所述第一过渡轮222a。所述第一过渡轮222a邻设于所述第一切割轮221a,在牵引绕于所述第一切割轮221a的切割线223的状态下令绕于所述第一切割轮221a的切割线223位于第一切割轮221a中用于缠绕切割线223的第一切割线槽所在平面内。
当切割线223绕于所述第二切割轮221b,第二切割线槽一端的切割线223由缠绕至所述第一切割轮221a以形成切割线锯,第二切割线槽另一端的切割线223缠绕至所述第二过渡轮222b。所述第二过渡轮222b邻设于所述第二切割轮221b,在牵引绕于所述第二切割轮221b的切割线223的状态下令绕于所述第二切割轮221b的切割线223位于第二切割轮221b中用于缠绕切割线223的第二切割线槽所在平面内。
所述第一过渡轮222a及第二过渡轮222b分别具有至少一导线槽,用于牵引所述切割线223。所述第一过渡轮222a及第二过渡轮222b分别邻设于所述第一切割轮221a及第二切割轮221b,在此,所述邻设可以是左侧,右侧,上侧,下侧等,本申请不做限制。
应理解的,当切割线223绕于任一切割轮或过渡轮时,缠绕于切割轮或过渡轮的切割线223方向均为对应的切割线槽或导线槽切线方向。
所述至少一第三过渡轮222c设于所述第一过渡轮222a及第二过渡轮222b之间,用于牵引所述第一过渡轮222a与所述第二过渡轮222b之间的切割线223,以令所述待线切割单元中形成一切割容纳空间,所述切割容纳空间可容纳所述待切割硅棒且所述切割装置中仅有所述切割线锯与所述切割容纳空间相交。
在切割作业中,所述硅棒夹具带动所夹持的硅棒相对切割线锯沿硅棒轴线方向进给,所述切割容纳空间即为待切割硅棒从开始接触切割线223至移动到切割线223贯穿硅棒形成边皮的过程中硅棒的运动范围。
所述切割容纳空间可容纳待切割硅棒且所述切割装置中仅有所述切割线锯与所述切割容纳空间相交。应理解的,在切割过程中,硅棒夹具及所夹持的待切割硅棒在运动中与硅棒加工设备中其他部件包括切割线223(此处的切割线223除却切割线锯)碰撞是需要避免的问题;同时,为实现切割,在硅棒夹具夹持硅棒移动过程中切割线锯与硅棒相对进给,因此,应当确保所述切割容纳空间中包括且仅包括硅棒与切割线锯。
所述第一过渡轮222a、第二过渡轮222b及至少一第三过渡轮222c均可用于实现对切割线223方向的牵引,通过所述第三过渡轮222c牵引第一过渡轮222a与第二过渡轮222b之间的切割线223以形成所述切割容纳空间。
在某些实施方式中,所述第一过渡轮222a、第二过渡轮222b及至少一第三过渡轮222c用于将所述切割线223牵引于远离待切割硅棒的方向。应理解的,所述第一切割轮221a与第一过渡轮222a间的切割线223、以及所述第二切割轮221b与第二过渡轮222b间的切割线223均位于用于缠绕切割线223的第一切割线槽(或第二切割线槽)所在平面内。为形成所述切割容纳空间,在一种实现方式中,可令第一切割轮221a与第一过渡轮222a之间、以及第二切割轮221b与第二过渡轮222b之间的切割线223长度足够长例如大于待切割硅棒长度,但在此设置下切割架所占设备空间过大,布局不合理。
在某些实施方式中,所述第一过渡轮222a、第二过渡轮222b、及至少一第三过渡轮222c用于将所述切割线223牵引远离所述切割容纳空间。
本申请提供了通过所述第一过渡轮222a、第二过渡轮222b及第三过渡轮222c以形成所述切割容纳空间的实施方式。在一实现方式中,所述第一过渡轮222a、第二过渡轮222b及第三过渡轮222c中至少一者的轮面与所述第一切割轮221a或第二切割轮221b的轮面间呈一定夹角,以使得切割线223偏离于用于缠绕切割线223的第一切割线槽(或第二切割线槽)所在平面,为优化所述切割装置与硅棒加工设备整体的结构布局,所偏离的方向可选为远离所述切割容纳空间的方向。
以所述切割装置中包括相对设置的两个线切割单元为例,呈如图5所示实施例,通过将所述第一过渡轮222a、第二过渡轮222b及第三过渡轮222c设置为朝向远离所述切割容纳空间的方向倾斜,又或将过渡轮设置在切割架上远离切割容纳空间的一侧,即可令所述切割线223远离所述切割容纳空间,在此布局下即可有效缩减线切割单元所需的设备空间,并有益于硅棒加工设备整体的设备布局。
在此,对任一所述线切割单元,所述远离所述切割容纳空间的方向为切割轮轮面的垂线 方向的矢量,以图6所示实施例为例,相对的两个线切割单元对应的所述远离所述切割容纳空间的方向指向相反,分别为图示箭头所示方向。
在某些实施方式中,所述第一过渡轮222a的轮面与第一切割轮221a的轮面方向可呈一定角度,所述第二过渡轮222b的轮面与第二切割轮221b的轮面方向可呈一定角度。所述第一过渡轮222a设置的方向仅当令所述第一切割轮221a另一端的切割线223位于用于缠绕切割线223的第一切割线槽所在平面与第一过渡轮222a中用于缠绕切割线223的导线槽所在平面的交线内即可;以及所述第二过渡轮222b设置的方向仅当令所述第二切割轮221b另一端的切割线223位于用于缠绕切割线223的第二切割线槽所在平面与第二过渡轮222b中用于缠绕切割线223的导线槽所在平面的交线内即可。
通过将所述第一过渡轮222a及第二过渡轮222b设置为与所述第一切割轮221a或第二切割轮221b的轮面间呈一定夹角,所述夹角方向为令第一过渡轮222a或第二过渡轮222b朝向远离所述切割容纳空间的方向倾斜,有利于减小所需的所述第三过渡轮222c的数量,以及有益于减小所述线切割支座在第一方向的长度。
在某些实施方式中,所述切割线223以首尾相接的方式绕于所述第一切割轮221a、第二切割轮221b、第一过渡轮222a、第二过渡轮222b及第三过渡轮222c之间以形成闭环切割线223。
线切割单元中的切割轮及过渡轮通过一环形切割线进行缠绕,在此示例下,所述切割装置即可省去贮丝筒,所述环形切割线藉由驱动装置运行即可实现切割。
在现有的切割装置中,切割线从放线筒缠绕至线切割单元中的切割轮及过渡轮间,并从所述线切割单元缠绕至收线筒,在切割作业中,所述切割线被驱动运行,切割线运行过程为交替进行的加速与减速过程;在本申请的切割装置中,线切割单元中的环形切割线可保持高速运行,同时,环形切割线在切割作业中可以同一运转方向运行。如此,本申请的线切割单元可实现高精度的切割作业,避免了现有的切割方式中切割线运行换向或运行速度导致的切割面具有波纹等问题;同时,所述环形切割线可有效减小线切割单元所需的切割线总长,降低生产成本。
在某些实施方式中,所述线切割单元中包括两个第三过渡轮,其中,所述切割线顺次缠绕于所述第一切割轮、第二切割轮、第二过渡轮、一第三过渡轮、另一第三过渡轮、第一过渡轮、第一切割轮以形成首尾相接的环形切割线。
请结合参阅图6,以所述第一切割轮221a为环形切割线223绕线的起点为例,所述切割 线223从第一切割轮221a缠绕至第二切割轮221b,形成在两个切割轮间的切割线锯;从第二切割轮221b处切割线223顺次缠绕至第二过渡轮222b、一第三过渡轮222c、另一第三过渡轮222c、第一过渡轮222a、第一切割轮221a,由此形成首尾相接的环形绕线,同时,通过多个过渡轮对切割线223的牵引导向,所述线切割单元中形成所述切割容纳空间。
当然,应理解的,所述第一过渡轮222a、第二过渡轮222b及第三过渡轮222c相对于所述切割轮设置的位置及轮面的倾斜方向不以图示实施例为限,仅当令切割线223缠绕于线切割单元的多个切割轮及过渡轮之间时形成所述切割容纳空间即可。同时,所述线切割单元第三过渡轮222c还可设置为三个、四个等,本申请不做限制。
在某些实施方式中,所述切割装置中还包括切割线驱动装置,用于驱动所述切割线运行以对硅棒进行切割。
线切割的原理是由高速运行的钢线带动附着在钢线上的切割刃料或者直接采用金刚线对待加工工件进行摩擦,从而达到线切割的目的。在此,所述切割线驱动装置即用于实现切割线运行。
在某些实施方式中,例如图4所示实施例,所述切割线驱动装置224为电机,具有动力输出轴且所述动力输出轴轴连接于所述第一切割轮或第二切割轮,如此,切割线可藉由所缠绕的切割轮带动以沿绕线方向运行。当然,在具体实现方式中,所述切割线驱动装置还可为别的驱动源例如液力马达,仅当实现带动所述切割线运行即可,本申请不做限制。
在某些实施方式中,所述切割装置中还包括张力检测机构。在线切割加工中,切割线张力大小影响切割中的成品率和加工精度,所述张力检测机构进行张力检测并调整使切割线的张力达到设定的一定阈值并在切割中保持一恒定值或以恒定值为数值中心所允许的一定范围。
在一实现方式中,所述线切割单元中的过渡轮在实现对切割线的导向牵引时,同时作为切割线张力调节的张紧轮。
张紧轮用于调整切割线的张力,可以减少切割线的断线概率以减少耗材。在切割作业中,切割线的作用举足轻重,但即便最好的切割线,其延伸度及耐磨度也是有限度的,也就是说切割线在持续运行中会逐渐变细,直至最终被拉断。因此,现在的线切割设备一般都会设计切割线张力补偿机构,用于弥补切割线往返行走中的延伸度,采用张紧轮即是一种实施手段。
在申请的一些实施例中,所述张力检测机构至少包括:张力传感器,伺服电机以及丝杆;所述张力传感器设置于所述过渡轮上,不断感测所述过渡轮上切割线的张力值,并于该张力值小于预设值时发出驱动信号;所述伺服电机电性连接所述张力传感器,用于接收到所述张 力传感器发出的驱动信号后开始工作;所述丝杆一端连接所述张紧轮,另一端连接所述伺服电机,并于伺服电机工作时牵引所述过渡轮进行单向位移,以调整所述切割线的张力。
在某些实施方式中,所述切割装置还包括:至少一调距机构,设于所述至少一线切割单元,用于驱动所述线切割单元中多个切割轮相对所述切割架沿垂直于切割轮轮面的方向移动。所述切割装置可基于调距机构实现切割线在切割轮不同切割槽之间的切换,又或调整切割线锯的位置以改变相对于硅棒的切割位置(或加工规格)。
在一些实现方式中,请结合图4、图5、及图6,以切割装置中的一个线切割单元22为例进行说明,线切割单元22中包括多个切割轮221及过渡轮222。用于承载所述多个切割轮221及过渡轮222的载体例如图5所示的线切割支座23,所述调距机构(未予以图示)可用于驱动所述线切割支座23整体沿切割轮221轮面的垂线方向移动,所述过渡轮222与切割轮221共同跟随线切割支座23发生沿切割轮221轮面的垂线方向的移动,在此状态下,所述多个切割轮221及过渡轮222为相对静止,即,过渡轮222与切割轮221之间的位置关系不变。此时,所述调距机构即用于调整所述至少一线切割单元22中至少一线割线锯相对于硅棒的切割位置。
在某些实施中,每一切割轮上具有至少两个切割线槽,不同切割线槽相互平行且不同切割线槽间具有切割轮轮面的垂线方向的切割偏移量。当所述调距机构用于驱动所述线切割单元中的多个切割轮相对于线切割支座移动,即可变换切割线绕于所述切割轮上的线槽位置。在一实现方式中,线切割单元中的多个切割轮例如可连接于支架,其中所述支架并活动设置于所述线切割支座并由所述调距机构驱动以沿切割轮轮面的垂线方向移动。
当所述至少一调距机构用于实现变换切割线绕于所述至少一线切割单元中多个切割轮的切割线槽,在实际场景中,可预先确定的换槽前后切割线所分别对应的切割线槽,例如,换槽前切割线所在位置为切割线槽a1,换槽后切割线绕于切割线槽a2,基于切割线槽a1与切割线槽a2之间的切割偏移量确定所述至少一调距机构驱动线切割单元中的多个切割轮移动的位移量,即将所述位移量设置为切割线槽a1与切割线槽a2之间的切割偏移量,即可用于实现切割线用切割线槽a1至切割线槽a2的更换;应当说明的是,所述至少一调距机构驱动线切割单元中多个切割轮在沿切割轮轮面的垂线方向移动的指向为切割线槽a2指向切割线槽a1的方向,换槽后所述切割线锯在空间中的切割位置不变,则省去了进一步校准切割轮或其他部件位置的步骤即可按照预设的切割量对硅棒进行切割,使得换槽过程被简化。
为进一步说明所述至少一调距机构实现对线切割单元中多个切割轮相对所述切割架沿垂 直于切割轮轮面的方向移动的实现方式,本申请提供了以下实施例。当所述切割装置中的线切割单元数量不同,所述至少一调距机构的具体形式可作相应变化。
在一实施例中,所述线切割装置包括单线切割单元;所述调距机构包括:丝杆,沿切割轮轮面的正交方向设置且与所述单线切割单元螺纹连接;驱动源,用于驱动所述丝杆转动。
在此,所述单线切割单元即为一个线切割单元,线切割装置中的单线切割单元中包括多个切割轮,切割线缠绕于多个切割轮由此形成至少一切割线锯。所述调距机构的丝杆具有远端及近端,在具体实现方式中,例如可将丝杆近端连接至驱动源并在驱动源驱动下转动,丝杆远端以螺纹连接至所述单线切割单元,藉由丝杆两端的连接方式,所述丝杆可基于驱动源传动发生转动并借助螺纹连接将丝杆转动转化为轴线位移,所述轴向位移方向为丝杆的设置方向即切割轮轮面的正交方向;通过调距机构中驱动源驱动丝杠转动即可实现单线切割单元在切割轮轮面的正交方向的位移,所述丝杠被驱动转动的旋向不同,即可实现单线切割单元的切割轮在切割轮轮面的正交方向的前进或后退。
在另一实施例中,所述线切割装置包括单线切割单元;所述调距机构包括:伸缩件,沿切割轮轮面的正交方向设置且与所述单线切割单元关联;驱动源,用于驱动所述伸缩件沿切割轮轮面的正交方向作伸缩运动。在此,所述伸缩件可设置为杆体结构且杆体延伸方向即为切割轮轮面的正交方向,所述伸缩件在驱动源驱动下可沿其延伸方向伸缩运动,伸缩件一端可连接至所述驱动源,可伸缩的自由端关联所述单线切割单元,即可在驱动源作用下带动所述单线切割单元的切割轮在切割轮轮面的正交方向移动。所述伸缩件例如为电动伸缩杆,又如为连接至气缸锥杆的连接杆,所述气缸即可作为驱动源,本申请不做限制。所述伸缩杆关联至所述单线切割单元的方式可为直线连接或间接连接,例如可直接连接至单线切割单元的线切割支座或切割轮支架,又或通过支座或轴承间接连接至所述单线切割单元。应当理解,所述伸缩件伸张或收缩即可对应于单线切割单元沿切割轮轮面的正交方向的前进或回退。
在此,在本申请提供的实施例中,所述关联例如可通过卡合、螺锁、粘接、及焊接中的一种或多种实现,例如在上述实施例中,所述伸缩杆可通过卡合、螺锁、粘接、及焊接中的一种或多种方式关联所述线切割单元;当然,所述关联的实现方式并不以此为限,而旨在于实现在第二方向的传动。
在又一实施例中,所述线切割装置包括单线切割单元;所述调距机构包括:齿条,沿切割轮轮面的正交方向设置于所述单线切割单元;传动齿轮,与所述齿条啮合;驱动源,用于驱动所述传动齿轮转动。所述传动齿轮在驱动源驱动下转动,啮合于所述传动齿轮的齿条相 应的沿齿条步骤方向移动,在此示例中,藉由所述齿条与传动齿轮配合,即可将驱动源驱动的转动运动转化为沿齿条方向的线运送,所述齿条沿切割轮轮面的正交方向设于所述单线切割单元,即可带动所述单线切割单元的切割轮沿切割轮轮面的正交方向移动。同时,由所述驱动源控制切换所述传动齿轮的旋向,即可使得所述单线切割单元的多个切割轮沿切割轮轮面的正交方向前进或回退。
在一实施例中,所述切割装置包括沿平行且相对设置的第一线切割单元和第二线切割单元,所述第一线切割单元和第二线切割单元中的至少一者通过所述至少一调距机构驱动沿切割轮轮面的正交方向移动,用于调整所述第一线切割单元中至少一切割线锯与所述第二线切割单元中至少一切割线锯之间的线割线锯间距、或者变换切割线绕于所述第一线切割单元中多个切割轮的切割线槽和/或所述第二线切割单元中多个切割轮的切割线槽。
所述至少一调距机构即可设置为连接至所述第一线切割单元或第二线切割单元,又或同时关联所述第一线切割单元和第二线切割单元,以驱动所连接或关联的第一线切割单元或/及第二线切割单元中的多个切割轮沿切割轮轮面的正交方向移动。
在一实施例中,所述调距机构包括:丝杆,沿切割轮轮面的正交方向设置且与所述第一线切割单元或所述第二线切割单元螺纹连接;以及驱动源,用于驱动所述丝杆转动。所述丝杆与驱动源驱动第一线切割单元或所述第二线切割单元中多个切割轮在切割轮轮面的正交方向移动的方式与前述实施例类似,被调距机构驱动的所述第一切割单元或所述第二线切割单元可看作单线切割单元,此处不做赘述。应当理解,在任一线切割单元上设置所述调距机构,即可实现第一线切割单元与第二线切割单元间形成的相平行的切割线锯间距增加及减小,所述线切割装置即可将硅棒切割为不同规格。
在另一实施例中,所述调距机构包括:伸缩件,沿切割轮面的正交方向设置且与所述第一线切割单元或所述第二线切割单元关联;驱动源,用于驱动所述伸缩件沿切割轮轮面的正交方向作伸缩运动。在此,设置有所述调距机构的所述第一切割单元或所述第二线切割单元即可看作单线切割单元,具体实现方式可参照前述实施例,此处不再赘述。
在又一实施例中,所述调距机构包括:齿条,沿切割轮轮面的正交方向且与所述第一线切割单元或所述第二线切割单元关联;传动齿轮,与所述齿条啮合;驱动源,用于驱动所述传动齿轮转动。通过相啮合的传动齿轮与齿条,所述驱动源可控制所述齿条沿齿条方向线运动,关联于所述齿条的第一线切割单元或第二线切割单元可藉由所述齿条带动多个切割轮沿切割轮轮面的正交方向移动。
在一实施例中,所述调距机构包括:双向丝杆,沿切割轮轮面的正交方向设置且与所述第一线切割单元和所述第二线切割单元螺纹连接;以及驱动源,用于驱动所述丝杆转动以使得所述第一线切割单元和所述第二线切割单元沿切割轮轮面的正交方向相向移动或相背移动。在一种实施方式中,所述双向丝杆为双螺纹丝杆,所述双向丝杆两端分别设有有螺纹且螺纹方向相反,所述驱动源可设置在双向丝杆的任一一端以带动双向丝杆沿丝杆轴转动,藉由双向丝杆两端方向相反的螺纹,所述双向丝杆在驱动源驱动下转动时双向丝杆两端的运动被转化为方向相反的轴向线运动,所述轴向即设置双向丝杆的切割轮轮面的正交方向。在所述驱动源驱动下,所述第一线切割单元与第二线切割单元所分别对应的多个切割轮即可相向运动或相背运动。
在某些实施方式中,所述调距机构为设于所述至少一线切割单元的伺服电机。在实际场景中,在所述线切割装置的至少一线切割单元上或每一线切割单元上设置伺服电机,由所述伺服电机控制对应的线切割单元在切割轮轮面的正交方向的位移。所述线切割单元可预先确定的换槽的切割偏移量或切割线变换切割位置的调整量,藉由伺服电机精确定位的功能带动所述线切割单元中多个切割轮以预设位移量沿切割轮轮面的正交方向运动。例如,所述线切割装置中设有单线切割单元,所述单线切割单元上设有伺服电机以带动所述单线切割单元沿切割轮轮面的正交方向移动;又如,所述线切割装置中设有第一线切割单元和第二线切割单元,所述第一线切割单元或/和第二线切割单元在其对应的伺服电机带动下相对独立的沿切割轮轮面的正交方向移动。在某些示例中,所述伺服电机也可更换为行进电机与行进丝杠,应理解的,所述调距机构为驱动线切割单元中多个切割轮相对切割架移动的驱动装置,其具体形式本申请不做限制。
在某些实施方式中,所述第一硅棒夹具通过第一导向结构设于所述第一加工区位,其中,所述第一导向结构为沿第一方向设置的转移导轨或导柱;所述第二硅棒夹具通过第二导向结构设于所述第二加工区位,其中,所述第二导向结构为沿第一方向的设置转移导轨或导柱。
请参阅图7,显示为所述硅棒加工设备在一实施例中的部分结构示意图。如图显示为第一硅棒夹具或第二硅棒夹具中的任一者及其对应的导向结构。
为便于对本申请的硅棒加工设备的说明,本申请提供的以下各实施例中,名词“导向结构”可表示所述第一导向结构或第二导向结构中的任意一者;名词“硅棒夹具”可表示所述第一硅棒夹具或第二硅棒夹具中的任意一者;即,所述第一导向结构与第二导向结构、以及所述第一硅棒夹具与第二硅棒夹具可依所处的加工区位位置进行区分,在具体结构上类似。当然, 所述第一硅棒夹具与第一导向结构相对应,所述第二硅棒夹具与第二导向结构相对应;类似的,“加工区位”可表示第一加工区位或第二加工区位中的任一者。
以下第一导向结构与对应的第一硅棒夹具为例进行说明。如图7所示实施例,所述导向结构131包括沿第一方向即硅棒轴线方向设置的转移导轨,所述转移导轨用于设置对应的硅棒夹具11以令所述硅棒夹11具可沿第一转移导轨移动。
应理解的,所述导向结构131的具体形式不以图7所示实施例为限,所述导向结构131实现设置对应的硅棒夹具11,并形成所述沿硅棒轴线方向运动的自由度即可;在具体实现方式中,所述导向结构131包括但不限于导向柱、横梁、导轨、导槽等。
所述导向结构131的长度可确定对应的硅棒夹具11沿硅棒轴线方向的位移范围,所述位移范围至少可用于实现开方切割及研磨。在此,所述硅棒加工设备中切割装置及研磨装置在切割状态或研磨状态下,均不发生沿硅棒轴线方向的运动,由硅棒夹具11带动所夹具的硅棒沿硅棒轴线方向运动以实现切割线或研磨磨具相对于硅棒的进给;对应的,所述导向结构131的长度至少可确保所对应的硅棒夹具11的位移范围可实现开方及研磨。
在一些示例中,所述导向结构131设置为其长度与机座10相等,如此,当所述机座10中沿硅棒轴线方向分别设置有不同区位,例如上料区位、卸料区位、加工区位等,所述硅棒夹具11可带动所夹持的硅棒运动以分别对接于上料区位、卸料区位以及加工区位。
应理解的,在本申请的硅棒加工设备中,由硅棒夹具带动所夹持的硅棒运动以实现切割,在切割加工过程中,应当使得所述硅棒夹具与切割装置中的部件(包括切割线)之间不发生碰撞,则所述硅棒夹具的具体结构与所述切割装置相关。
在某些实施方式中,所述至少一切割线锯沿第二方向设置,所述第一硅棒夹具或第二硅棒夹具中的任一者包括:夹臂安装座,设于所对应的转移导轨或导柱;动力源,用于驱动所述夹臂安装座沿所对应的转移导轨或导柱移动;一对夹持部,沿第一方向相对设置,用于夹持硅棒的两个端面;一对夹臂,设于水平面方向,其中每一夹臂具有连接于所述夹臂安装座的近端以及连接于所述夹持部的远端;夹臂驱动机构,用于驱动一对夹臂中的至少一个沿第一方向移动以调节所述一对夹臂沿第一方向的间距。
请结合参阅图1,图8a、图8b,其中,图8a、图8b分别显示为任一所述硅棒夹具及对应的导向结构的俯视图与立体示意图。
为便于理解,以下以位于第一加工区位的硅棒夹具11及导向结构121进行说明。
所述切割装置20包括相对设置的两个线切割单元,切割装置20中包括相平行的沿第二 方向两条切割线锯,在待切割硅棒相对切割线锯进给的过程中,即在硅棒表面形成相对的两个沿水平面方向的切面。
所述硅棒夹具11包括用于在硅棒两个端面进行夹持的一对夹臂113,其中,所述夹臂113的远端连接有用于接触硅棒端面的夹持部114,夹臂113近端连接至夹臂安装座111,所述夹臂安装座111活动设置于所述导向结构并在动力源112驱动下沿导向结构移动,由此带动所述夹臂113及夹臂113远端的夹持部114沿导向结构移动;所述动力源112例如为伺服电机,本申请不做限制。所述硅棒夹具11还包括夹臂驱动机构115,用于驱动一对夹臂113中的至少一个沿第一方向移动以调节所述一对夹臂113沿第一方向的间距,如此所述一对夹臂113的远端分别连接的夹持部114即可在夹臂驱动机构115作用下相互靠近或远离,以执行对硅棒的夹持或释放动作。应理解的,所述硅棒轴线沿第一方向,为实现在硅棒的两个端面执行对硅棒的夹紧,所述一对夹臂113的远端分别对应的夹持部114沿第一方向相对设置。所述一对夹臂113沿水平方向设置,当所述动力源112驱动所述夹臂安装座111带动夹臂113及其所夹持的硅棒沿导向结构移动时,运动中的所述夹臂113可避让所述切割线锯。在另一些可行的实现方式中,所述一对夹臂113也可设置为与水平面具有一定夹角,仅当确保所述硅棒夹具11移动以实现切割的过程中所述夹臂113的移动范围与所述切割线锯相离。
在某些实施方式中,所述夹臂驱动机构115包括丝杆,沿第一方向设置且与所述一对夹臂113中的任意一个关联;驱动源,用于驱动所关联的夹臂113沿第一方向移动。
所述夹臂驱动机构的丝杆具有远端及近端,在具体实现方式中,例如可将丝杆近端连接至驱动源并在驱动源驱动下转动,丝杆远端以螺纹连接至所述一对夹臂中的任意一个,藉由丝杆两端的连接方式,所述丝杆可基于驱动源传动发生转动并借助螺纹连接将丝杆转动转化为轴线位移,所述轴向位移方向为丝杆的设置方向即第一方向;通过驱动源驱动丝杠转动即可实现丝杆远端所连接的夹臂在第一方向的移动,所述丝杠被驱动转动的旋向变更,即可实现所关联的夹臂在第一方向的前进或后退。
在某些实施方式中,所述夹臂驱动机构包括:双向丝杆,沿第一方向设置且在两端与所述一对夹臂螺纹连接;驱动源,用于驱动所述丝杆转动以使得所述一对夹臂沿第一方向相向移动或相背移动。
请结合参阅图8a、图8b,在一实现方式中,所述夹臂驱动机构115的双向丝杆在两端与所述一对夹臂113螺纹连接,及所述双向丝杆为双螺纹丝杆且两端的螺纹方向相反,所述驱动源可设置在双向丝杆的任意一端或连接至所述双向丝杆(例如图8b所示状态)以带动双向 丝杆沿丝杆轴转动,藉由双向丝杆两端方向相反的螺纹,所述双向丝杆在驱动源驱动下转动时双向丝杆两端的运动被转化为方向相反的沿丝杠轴向及第一方向的线运动。在所述驱动源驱动下,所述一对夹臂113即可在第一方向相向运动或相背运动。
在一实施方式中,所述夹臂安装座111可以为通过所述夹臂驱动机构115连接的多个安装座,如图8a、图8b所示实施例中,所述一对夹臂113中的任一个对应于一夹臂安装座111,所述驱动源设于一对夹臂113之间的夹臂安装座111上,在此,任一夹臂113可沿所述导向结构131移动;当所述硅棒夹具需整体沿导向结构131移动时,例如可令所述夹臂驱动机构115的驱动源控制所述一对夹臂131相对静止,此时可藉由夹臂驱动机构115的连接作用使得不同安夹臂装座111相对静止,所述硅棒夹具的动力源可驱动任一夹臂安装座111沿导向结构131移动即可实现硅棒夹具发生整体移动。
在又一实现方式中,所述夹臂驱动机构包括第一齿条、第二齿条以及驱动齿轮;所述第一齿条与第二齿条分别联动于一夹臂,所述驱动齿轮连接于驱动电机的动力输出轴(未予以图示)并与所述第一齿条及所述第二齿条相啮合,所述驱动齿轮用于在正向转动时带动所述一对夹臂相向运动以执行夹持动作,在逆向转动时带动所述一对夹臂背向运动以执行释放动作。
在某些实施方式中,所述第一硅棒夹具与第二硅棒夹具中的任一者还包括夹持部转动机构,用于驱动所述夹持部旋转。
在本实施例的一实现方式中,所述一对夹臂113对应的夹持部114设置有可转动的结构如可转动的底座,所述夹持部转动机构116可设置为驱动至少一夹臂113对应的夹持部114转动。所述夹持部转动机构116驱动夹持部114以所述第一方向为轴线旋转,由此令所夹持的硅棒发生沿硅棒轴线的转动。在切割及研磨作业中,通过所述夹持部转动机构116驱动硅棒沿其轴线转动,即可调整所夹持的硅棒相对于切割线锯的位置关系,由此可确定切割装置对硅棒的切割面,以及可调整所夹持的硅棒相对于研磨装置的位置关系以确定相对于硅棒的研磨面,即所述硅棒夹具可配合切割装置与研磨装置实现对硅棒不同切割面及研磨面的选择与控制。
在某些实施方式中,所述夹持部具有多点接触式夹持头,应当理解的是,所述多点接触式夹持头与硅棒端面间的接触方式并不限于点接触,所述夹持部例如具有多个凸出部以接触硅棒端面,其中每一凸出部与硅棒端面可为面接触。在一实现方式中,所述夹持部的凸出部还可通过沿第一方向的弹簧连接至夹持部底座,由此可形成多点浮动接触,以令所述硅棒夹 具在夹持硅棒端面时可适应于硅棒端面的平整度以夹紧硅棒。在一些示例中,所述夹持部用于接触硅棒端面的夹持端还可通过万向机构例如万向球连接至夹持部底座,所述夹持部由此可适应于夹紧具有不同倾斜度的硅棒端面。
在某些实施方式中,所述硅棒夹具的一对夹持部用于接触所述硅棒部分设置为刚性结构,以防止所夹持的硅棒在切割作业及研磨作业中被扰动而影响加工精度。
请参阅图9,显示为图8a的硅棒夹具的夹持部的放大结构示意图。如图9所示,所述夹持部114包括可旋转的底座与设置在底座上的一系列凸出触点1141,所述每一触点1141具有一接触平面。所述圆台在夹持部转动机构116的带动下转动,在本实施例的一实现方式中,所述触点1141的凸出长度即在第一方向的位置可调节,使得在对夹持硅棒的过程中,对端面平整度较低的硅棒,可根据硅棒端面调整触点1141的凸出长度,使得每一接触面与硅棒端面处于贴紧状态。
在本申请的一实施例中,一对夹臂对应的夹持部中其中一者还可设置有压力传感器,以基于所检测的压力状态调整触点的凸出长度或,又或可基于所述压力传感器的检测数据控制所述夹臂驱动机构以确定所述一对夹臂在第一方向的间距。通常地,在夹持硅棒的过程中,硅棒夹具的一对夹臂在夹臂驱动机构的驱动下沿第一方向相互靠近,至所述夹持部与所需夹持的硅棒的端面相接触,当所述夹持端设置有多个触点并探测到部分触点与所接触硅棒的端面接触的压力值小于一设定值或设定区域时,可通过调整触点的凸出长度(一般为朝向硅棒端面靠近方向)以改变夹紧度;又或者,在对硅棒进行夹持的过程中,通过所述夹臂驱动机构驱动一对夹臂朝向硅棒两端的端面相互靠近以实现夹持,在所述夹持端与硅棒端面接触后,由压力传感器检测硅棒的夹紧程度,当达到设定的压力范围时即夹臂驱动机构控制所述一对夹臂停止相向运动,即可保持对硅棒的夹紧状态。
在某些实施方式中,所述至少一切割线锯沿重垂线方向设置。在所述切割线锯沿重垂线方向设置的一些实施例中,所述第一硅棒夹具或第二硅棒夹具中的任一者包括:夹臂安装座,设于所对应的转移导轨或导柱;动力源,用于驱动所述夹臂安装座沿所对应的转移导轨或导柱移动;一对夹持部,沿第一方向相对设置,用于夹持硅棒的两个端面;一对夹臂,设于垂直于第二方向的平面内,其中每一夹臂具有连接于所述夹臂安装座的近端以及连接于所述夹持部的远端;夹臂驱动机构,用于驱动一对夹臂中的至少一个沿第一方向移动以调节所述一对夹臂在第一方向的间距。
在此,所述硅棒夹具的夹臂安装座、所述一对夹持部、以及夹臂驱动机构可参照前述实 施例,此处不再赘述。应当注意的是,所述硅棒夹具中一对夹臂设于垂直于第二方向的平面内,以令所述一对夹臂与所夹持的硅棒在沿导向结构移动的过程中,所夹持的硅棒接触切割线锯,同时所述一对夹臂与切割线锯相离。在另一些可行的实现方式中,所述一对夹臂也可设置为其他方向,仅当确保所述硅棒夹具移动以实现切割的过程中所述夹臂的移动范围与所述切割线锯相离。
在所述切割线锯沿重垂线方向设置的一些实施例中,所述第一硅棒夹具与第二硅棒夹具中的任一者还包括夹持部转动机构,用于驱动所述夹持部旋转;具体实现方式可参照前述实施例,此处不再赘述。
在所述切割线锯沿重垂线方向设置的一些实施例中,所述夹臂驱动机构包括:丝杆,沿第一方向设置且与所述一对夹臂中的任意一个关联;驱动源,用于驱动所关联的夹臂沿第一方向移动;具体实现方式可参照前述实施例,此处不再赘述。
在所述切割线锯沿重垂线方向设置的一些实施例中,所述夹臂驱动机构包括:双向丝杆,沿第一方向设置且在两端与所述一对夹臂螺纹连接;驱动源,用于驱动所述丝杆转动以使得所述一对夹臂沿第一方向相向移动或相背移动;具体实现方式可参照前述实施例,此处不再赘述。
在所述第一加工区位及第二加工区位上,通过协调所述切割装置与对应的硅棒夹具间的相对运动以实现切割。在一些示例中,所述硅棒加工设备中还设有上料区位及卸料区位,例如图1所示,当所述上料区位与所述加工区位沿第一方向相邻设置,硅棒夹具总是从上料区位夹持待切割硅棒后沿图示箭头方向将待切割硅棒转运至加工区位。
应理解的,在切割过程中,硅棒相对所述切割线锯的进给方向为朝向切割轮轴心的一侧,以防止在切割中将切割线拨离切割线槽,呈如图1所示实施例,所述硅棒夹具应当以图示箭头方向带动待切割硅棒相对切割线锯进给以实现切割。
在某些实施场景中,所述调距机构还可用于令切割线锯移动以避让待切割硅棒,例如,当所述切割装置包括相对设置的两个线切割单元,在一次切割中可在硅棒表面形成两个侧面,则需要令硅棒夹具驱动硅棒沿其轴线转动一定角度,而后切割线锯对硅棒进行第二次切割以获得截面为矩形或类矩形的切割后硅棒。在执行了第一次切割后,硅棒夹具带动所夹持的硅棒沿第一方向移位以回到临近上料区位的一侧,所述调距机构可驱动切割线锯沿远离硅棒的方向移动以避免与硅棒互相干扰,当所述硅棒的位置回到临近上料区位的一侧,硅棒相对所述切割线锯的进给方向为朝向切割轮轴心的一侧,基于对硅棒预设的切割量重新调整切割线 锯的位置即可执行第二侧切割,由此获得切割后硅棒。
在一些实施方式中,所述硅棒加工设备中还包括边皮卸料区位,所述边皮卸料区位可沿第一方向与所述加工区位相邻设置。请参阅图10,显示为本申请的硅棒加工设备在一实施例中的部分结构示意图。在此示例下,为便于实现对边皮的转运,可令所述硅棒夹具相对切割线锯进给的方向为朝向边皮卸料区位的方向(即图10所示箭头方向),如此可化简对边皮的卸料流程或可化简用于边皮卸料的结构。
在某些实施方式中,所述硅棒加工设备还包括边皮承托机构,用于抵靠硅棒外侧并承托切割形成的边皮。
在实际生产中,将切割形成的边皮予以卸除可防止切割后硅棒在转运中与边皮碰撞,同时,将边皮在卸除可对其实现再利用。在本申请的硅棒加工设备中,硅棒夹具所夹持的待切割硅棒呈卧式状态,由此切割形成的边皮也呈卧式。在此示例下,切割中需要对边皮进行承托以协助实现对边皮的卸除;同时,呈卧式的硅棒在切割中形成的边皮不再受到硅棒夹具的夹持力,在切割线锯未完全贯穿硅棒前,边皮与硅棒的连接部分可能受边皮的重力形成的力矩作用而断裂(也可称为崩边),如此,本申请的边皮承托机构还可通过承托所述边皮以防止崩边。
在某些实施方式中,所述边皮承托机构包括:承托组件,包括:承托部,受抵靠并承托所述边皮;气缸或液压泵,包括伸缩部,所述伸缩部连接于所述承托部以控制所述承托部远离或抵靠所述边皮;安装部,用于将所述承托组件连接于所述切割架。
所述承托组件可藉由所述安装部连接至所述切割架,在某些示例中,所述安装部与所述切割架可拆卸连接,基于对所述硅棒承托位置需要,可将所述安装部设于切割架上的不同位置。
所述承托组件包括承托部,所述承托部用于接触并抵靠硅棒以实现对边皮的承托作用,应当说明的是,在本申请的各实施例中,所述承托作用即为施力于所述边皮以令边皮维持稳定的状态,以所述切割线锯在第二方向为例,切割形成的边皮位于硅棒上侧或下侧,此时所述承托部可对硅棒下侧的边皮提供支持力以防止边皮断裂,由此可令所述边皮维持稳定状态;又或当所述切割线锯设于重垂线方向,切割形成的边皮位于硅棒旁侧(左侧或/及右侧),所述承托部可设置为与硅棒外侧弧面相适应的结构以提供对边皮的支持力,或通过抵靠所述边皮以令所述边皮受到向上的摩擦力而维持稳定状态。所述承托组件的气缸或液压泵为用于驱动所述承托部远离或抵靠所述边皮的驱动源,在一实现方式中,令所述气缸或液压泵的伸缩部 连接所述承托部,所述伸缩部的伸缩方向例如为远离或靠近硅棒轴线的方向,由此带动所连接的承托部远离或抵靠边皮。
所述承托部可设置为不同结构以实现承托作用,例如所述承托部可为承托板并具有用于接触所述边皮的弧面,又或所述承托部为具有折边以防止边皮滚动的承托板,例如承托板截面呈开口的倒梯形;应理解的,可用于实现边皮承托的承托部具有多种可实现方式,本申请不做限制。
为实现将切割形成的边皮稳妥承托以防止边皮断裂,又或为简化边皮卸料转运,本申请还提供了以下实现方式:
在一示例中,所述承托部包括至少两个承托块,沿所述第一方向间隔设置,具有用于接触并承载边皮的承载面。所述承托块的承载面可设置为具有弧面以适应所承托的边皮,又或可设置为由不同水平度的接触平面组成以防止边皮滚动。
应理解的,在一些加工场景中,通过一个承托块即可实现对边皮的承托;在此,本申请还提供了通过沿第一方向间隔设置的至少两个承托块实现边皮承托的实施例,通过设置所述至少两个承托块之间沿第一方向的间隔或跨距即可实现对不同长度规格的硅棒切割形成的边皮的承托,同时,由间隔设置的承托块对边皮进行承托可使边皮在不同长度方向(即第一方向)受到承托部的作用力,由此有利于防止切割线锯未贯穿硅棒前边皮发生断裂。在切割线锯贯穿硅棒以形成与硅棒相独立的边皮后,间隔设置的所述至少两个承托块可用于承托边皮以防止边皮倾斜以致坠覆。
在又一示例中,所述承托部包括:至少两个承托杆,沿第一方向设置,用于接触并承托边皮;连接部,分设于所述切割架第一方向的相对两侧以对应所述承托杆的相对两端,用于连接所述至少两个承托杆及所述伸缩部。
请参阅图11,显示为本申请的硅棒加工设备在一实施例中的部分结构示意图。如图所示,所述承托部包括沿第二方向间隔设置两个承托杆5111,承托杆5111杆体沿第一方向。
在此,通过所述至少两个承托杆5111即可实现对边皮的承托作用,应理解的,令切割形成的所述边皮的重心位于所述至少两个承托杆5111之间即可实现对边皮的承托;同时,任一所述承托杆5111与所承托的边皮为线接触,在此设置下,可减小承托部与边皮接触的摩擦力。
所述连接部5112分设于承托杆5111两侧可使得所述承托部在受力远离或靠近硅棒时承托杆5111受力对称,有利于提高所述承托部的结构稳定性。如图11所示实施例中,所述连接部5112分别连接所述承托杆5111及所述伸缩部512,其中,所述伸缩部512一端通过所 述安装部连接于所述切割架,可伸缩运动的自由端即连接至所述连接部5112以驱动所述承托部整体沿伸缩部512的伸缩方向运动。
在图11所示示例中,所述承托部受控沿重垂线方向运动以远离或靠近边皮;应理解的,当所述切割装置中切割线锯的方向不同,又或当所述承托部的结构不同,对应的所述边皮承托机构中伸缩部512可设置在不同方向以适应于承托边皮的需要。例如,当所述切割装置中切割线锯沿重垂线方向,所述伸缩部512例如可设置为沿第二方向伸缩,以令承托部沿第二方向运动以靠近或远离所述边皮。对所述承托部受控运动的方向,本申请不做限制,仅当令所述承托部实现对边皮的承托作用即可。
所述边皮承托机构的数量可对应于对边皮的承托需要设置,例如,当所述切割装置中包括一切割线锯,则在一次切割作业中在对应形成一边皮,所述切割架上可设置一边皮承托机构以实现对边皮的承托;又如,当所述切割装置中包括平行的两条切割线锯,在一次切割作业中对应的形成两边皮,所述切割架上可设置两个边皮承托机构以分别对硅棒两侧的边皮进行承托。
在某些实施方式中,所述硅棒加工设备还包括边皮错位机构,设于所述第一加工区位及第二加工区位,用于沿第一方向推动所述边皮以令所述边皮脱离所述边皮承托机构。所述切割装置可藉由第一转换机构在第一加工区位即第二加工区位间转换,在一示例中,即可将所述边皮错位机构分别设于第一加工区位及第二加工区位,则切割装置转移至任一加工区位后,均可由所在加工区位上的边皮错位机构推动切割后形成的边皮以帮助实现边皮卸料。
在另一些实施方式中,所述边皮错位机构可设于所述切割架,边皮错位机构即可跟随切割架在第一转换机构驱动下转动,即可在任一加工区位推动切割后形成的边皮。在某些实施方式中,当所述切割装置中切割线锯沿第二方向设置,所述边皮承托机构可分别设于所述切割架上侧及下侧,以令所述切割装置在转换加工区位的过程中,对硅棒切割形成的下边皮具有对应的可用于推动边皮的边皮错位机构。
应理解的,待切割硅棒轴线方向沿第一方向,切割中形成的边皮在被承托状态下也沿第一方向,所述边皮错位机构可沿第一方向推动边皮以令边皮相对边皮承托机构运动,以令边皮脱离边皮承托机构即可对边皮进行后续的转运流程。
在一实现方式中,所述边皮错位机构包括气缸或液压泵,其中,所述气缸或液压泵的伸缩杆沿第一方向设置。
请结合参阅图10、图11,如图所示,所述边皮错位机构54设于所述硅棒加工平台,所 述边皮错位机构54为具有伸缩杆的气缸541,所述伸缩杆沿第一方向设置并对齐至所述边皮端面。当切割线锯贯穿硅棒以形成独立的边皮后,通过边皮错位机构54沿第一方向运动以抵靠至边皮端面并推动边皮运动,由此边皮可脱离边皮承托机构或脱离切割后硅棒。在此,所述边皮错位机构54的伸缩杆的伸缩范围可基于硅棒的长度规格确定,又或基于边皮承托机构中的承托部在第一方向的跨距确定,以确保所述边皮可实现脱离。
在某些实施方式中,所述硅棒加工设备还包括边皮输送结构,用于承接切割形成的所述边皮并将所述边皮转运至卸料区。在此,所述卸料区即边皮卸料区。
在一实施例中,所述边皮输送结构分别设置于第一加工区位及第二加工区位,如此令切割装置转换至任一加工区位对硅棒切割形成的边皮可由对应加工区位的边皮输送结构予以输送,由此可减少对边皮的转运。
请继续参阅图10,所述边皮输送机构52设置的方向及位置可由所述切割区与边皮卸料区的位置关系确定。在本申请的硅棒加工设备中,所述切割区即第一加工区位与第二加工区位。在一实施方式中,所述边皮卸料区与切割区沿第一方向相邻设置,在此,所述边皮输送结构可沿第一方向设置,分别并对接于所述第一加工区位及第二加工区位对应的硅棒夹具,以令硅棒夹具所夹持的硅棒在被切割形成边皮后,将边皮沿第一方向推动以脱离切割后硅棒或边皮承托机构后即被转移至所处加工区位对应的边皮输送结构,由此可简化边皮的转运路径。
在某些实施方式中,所述边皮输送机构为链条输送机构、倍速链机构、或传送带机构。
在一实施方式中,所述边皮输送机构包括:输送部,用于承载所述边皮;输送驱动源,用于驱动所述输送部运动以输送所述边皮。
在一实施方式中,所述边皮输送机构52包括:输送部521,用于承载所述边皮;输送驱动源522,用于驱动所述输送部521运动以输送所述边皮。
在一些示例中,为了避免所述边皮在输送过程中收碰撞被磨损,在一些实施例中,所述输送部521设有用于与所述边皮接触的缓冲垫,又或,所述输送部521采用缓冲材料制成。所述缓冲垫或缓冲材料例如为具有弹性的橡胶、硅胶或由其他具有弹性形变、阻尼特性或缓冲特性的材料。
如图10所示实施例,在此,所述输送部521可沿第一方向设置,并在所述输送驱动源522的驱动下沿第一方向运输所承载的边皮。所述输送驱动源522例如为电机,用于驱动输送部521运动并控制输送部521的运输速度。
在本申请的硅棒加工设备中,令硅棒夹具带动所夹持的硅棒沿第一方向移动以切割形成切割后硅棒后,通过所述第二换机构驱动研磨装置转换至切割后硅棒所在加工区位,研磨装置即可对切割后硅棒进行研磨作业。
在某些实施方式中,所述研磨装置包括至少一对研磨磨具,其中,所述一对研磨磨具的研磨面位于相对的水平面内;磨具进退机构,用于驱动所述一对研磨磨具中的至少一个沿重垂线方向移动。
请参阅图12,显示为本申请的硅棒加工设备的部分结构在一实施例中的结构示意图。所述一对研磨磨具301重垂线方向相对设置,以形成相对的两个沿水平面方向的研磨面。在某些实现方式中,所述研磨磨具301包括砂轮与旋转轴。在某些实施方式中,所述砂轮为圆形并且中间设置有通孔。所述砂轮连接至旋转轴以受控沿旋转轴旋转,由此可在旋转状态下接触待切割硅棒侧面以实现研磨。应理解的,在可行的实施方式中,所述研磨装置30中也可包括一个研磨磨具301,但在此设置下研磨耗时增加。
所述砂轮具有一定颗粒度与粗糙度,例如由磨粒与结合剂固结而成,以形成具有磨粒的表面以接触并研磨切割后硅棒侧面。所述砂轮具有一定的磨粒尺寸与磨粒密度,其磨料根据研磨硅棒的需要可设置为三氧化二铝、碳化硅、金刚石、立方氮化硼等硬度大于硅材料硬度的磨粒。
在本申请的一实施例中,所述研磨装置30还包括冷却装置(未予以图示),以对所述研磨磨具301降温,降低磨削过程中硅棒表面层损伤,提高砂轮的磨削效率与使用寿命。在本实施例的一实现方式中,所述冷却装置包括冷却水管、导流槽和导流孔。在某些实施方式中,所述砂轮圆周外沿设置有用于防止冷却水进入旋转驱动电机的防护罩。所述冷却水管一端连接冷却水源,另一端连接至所述砂轮的防护罩表面,所述导流槽设置于防护罩上,作为所述防护罩与冷却水管的接触点,所述导流孔设置在所述冷却槽内。所述冷却装置冷却剂可为常见的冷却水,冷却水管连接冷却水源,经过冷却水管抽吸的冷却水至砂轮表面的导流槽和导流孔,被引导至直达砂轮和所磨削硅棒的接触面进行冷却,在砂轮的磨削中藉由砂轮旋转导流孔的冷却水由离心作用进入砂轮内部进行充分的冷却。
所述磨具进退机构302用于驱动所述至少一对研磨磨具301中的至少一个研磨磨具301沿重垂线方向移动,以调整对所述切割后硅棒的研磨量。在某些实施方式中,所述磨具进退机构302包括:进退导轨,沿重垂线方向设于所述第二转换机构,用于设置所述研磨磨具301;驱动源,用于驱动所述研磨磨具301中的至少一个沿所述进退导轨移动。
在一实现方式中,所述磨具进退机构302包括一滑动导轨、驱动电机、滚珠丝杠(图中未予以显示)。所述滑动导轨沿重垂线方向设于所述第二转换机构,所述研磨磨具301设置有与所述滑动导轨配合的沿重垂线方向的导槽,所述滚珠丝杠沿所述滑动导轨设置并与所述驱动电机轴接。在其他可行的实现方式中,所述驱动源也可设置为气缸、液压泵等,并将其伸缩方向设置为重垂线方向;又或,所述驱动源可设置为丝杆组件,所述丝杆组件包括丝杆及转动驱动源,其中所述丝杆连接至研磨磨具301以在转动驱动源驱动下令研磨磨具301沿滑动导轨移动。
在某些实施方式中,所述磨具进退机构包括双向丝杆及驱动源,所述双向丝杆两侧设有旋向相反的螺纹,双向丝杆沿重垂线方向设置且两侧分别连接至一研磨磨具,在此设置下,所述驱动源驱动双向丝杆转动,双向丝杆两端的研磨磨具沿重垂线方向相互靠近或相互远离,由此即可调整研磨磨具相对硅棒的磨削位置及磨削量。
一般地,研磨磨具在使用中处于疲劳状态,磨具表面不同区域的磨损量不均造成磨具表面不平整或平整度下降,磨具表面可能沾染有硅棒碎屑或磨具碎屑,因此,长期执行研磨作业不免改变磨具的表面状态,使得研磨性能下降。为提高研磨磨具使用寿命,可采用磨石等工具修正磨具表面,又或在磨具达到疲劳寿命后更换磨具。
在此,本申请的硅棒加工设备中还提供了一种研磨修复装置,可用于对磨具进行研磨修复,以确保磨具用于进行硅棒研磨后可达到所需的精度,其中,所述研磨修复装置包括安装主体和至少一修磨部;其中,所述至少一修磨部设于所述安装主体上,用于修磨对应的所述至少一研磨磨具。
在某些实施方式中,所述第一硅棒夹具或第二硅棒夹具中任一者还包括研磨修复装置,用于修磨对应的所述研磨装置中的研磨磨具。
请参阅图13,显示为图8b中B处的放大示意图,如图所示,所述研磨修复装置配置在所述硅棒夹具上,即,所述研磨修复装置中的安装主体321设于硅棒夹具的其中一个夹臂上,所述研磨修复装置中的修磨部322设于安装主体321中朝向研磨磨具的一侧。例如在图13所示实施例中,所述修磨部322分别位于夹臂上侧及下侧,并分别朝向上侧及下侧的研磨磨具。所述安装主体321及其上的修磨部322在相应的硅棒夹具(第一硅棒夹具或第二硅棒夹具)的带动下沿第一方向作往复运动。
在其他实施例中,所述研磨修复装置中的安装主体可设于所述硅棒加工设备的机座上,所述研磨修复装置中的修磨部设于所述安装主体上,所述研磨修复装置还可包括用于驱动所 述安装主体及其上的修磨部沿预定方向作往复运动的驱动单元。
请结合参阅图12、图13,在此,所述研磨修复装置的修磨部322具有用于与研磨磨具接触的表面,在某些实施方式中,所述修磨部322整体具有高黏合度、耐磨性、以及硬度等性能以用于实现对研磨磨具的研磨。
在某些实施方式中,所述修磨部322为油石。在此,所述油石例如为金刚石油石、碳化硼油石、精磨油石、普通油石等。所述油石可借助于油石表面的粒度实现对所接触的研磨磨具表面的修整。在修磨过程中,油石表面接触研磨磨具,将研磨磨具的表面修整为均匀的颗粒度以及提高磨具平面的平整度、垂直度。
在某些实施方式中,所述至少一修磨部在修磨对应的所述至少一研磨磨具时,所述至少一研磨磨具在驱动电机带动下作旋转。
对比于传统的研磨方式,通常在研磨磨具旋转的状态下接触研磨装置例如油石以实现研磨,因此可能存在油石表面存在高低点的情况而使得研磨结束后研磨磨具表面的平整度不佳;在本申请提供的实施例中,本申请的研磨修复装置中修磨部例如油石在往复运动中进行研磨,往复运动下的油石本身所形成的平面与油石在静止态下的油石平面的不同,在往复运动下油石表面(即用于进行修磨的平面)无高低点,即可将研磨磨具的表面修整平整,提高研磨质量;再者,研磨效率与研磨中工件之间转速相关,所述修磨部处于往复运动状态对应于研磨磨具处于旋转状态,因此,研磨磨具与修磨部之间会产生相对运动,有益于研磨过程易于实现,研磨效率提高。
在某些实施方式中,所述修磨部的修磨面为矩形、圆形、椭圆形、环形、正多边形或其他自定义形状等,应当理解,仅当所述修磨部由符合修磨要求的预设材料制成并可实现与磨具的面接触即可实现研磨修复,上述各类形状仅为可选的实施例,本申请不做限制。
在某些实施方式中,所述研磨修复装置还包括传感器件,设于所述底座上,用于检测所述硅棒加工设备的研磨磨具。
所述研磨修复装置旨在实现对研磨磨具的磨削面的修复,在经由修磨部研磨修复后,研磨磨具的表面层被磨削清除,例如当所述研磨磨具为砂轮,在研磨修复后砂轮表面的颗粒被逐渐清除,通常在研磨修复完成后削除了一定层厚的砂轮,从而形成符合对硅棒加工的磨面需求的新的磨削面。在后续的对硅棒的磨面加工中,以新的磨削面对硅棒侧面进行研磨。在此,需要注意的是,对硅棒的磨面作业中需要控制对硅棒的磨削量,所述磨削量可基于硅棒加工设备的规格与硅棒的规格预先确定,例如,在硅棒加工设备中磨具通常可相对于硅棒进 给运动,在硅棒加工设备的控制系统中可将研磨磨具的磨削面所在的初始位置作为已知的输入值(又或由多个输入值计算获得),由此可基于预设的磨削量控制研磨磨具相对于硅棒的进给。然而,在经由研磨修复装置对研磨磨具进行修磨后,磨削面的初始位置发生了改变,因此,硅棒加工设备需要获知研磨修复中研磨磨具的规格,以藉由此修正磨削面的实际位置从而后续加工中可按照预设值控制对硅棒的磨削量。
在此,本申请的示例中研磨修复装置中的传感器件即可用于确定研磨修复完成后的研磨磨具的尺寸规格(主要为确定厚度)。在此,所述传感器件可通过确定传感器至磨削面的距离或相对设置的一对磨具中两个磨削面之间的距离以确认修磨后的磨具尺寸。
在一实现方式中,所述传感器件为接触式传感器,所述接触式传感器具有探测头,用于与磨削面接触。在实际场景中,硅棒加工设备的研磨磨具可相对于修磨部进行运动,所述进给运动例如可通过伺服电机带动,在此,所述伺服电机可控制研磨磨具的进给量,但在研磨修复过程中,由伺服电机控制确定的进给量与研磨磨具在修磨过程中被磨削的层厚不相等,或可理解为通过研磨磨具的进给控制装置不能获得研磨修复过程的精确的磨削量,即需要通过测量获得研磨磨具实际的尺寸规格。
以研磨修复装置中设有相对的两个修磨部为例进行说明,在此,所述接触式传感器可设置为两端分别具有探测头,用以接触一对研磨磨具的相向的两个磨削面。可将接触式传感器设于所述安装主体上,且接触式传感器两端的探测头的连线平行于重垂线方向。在测量过程中,可由伺服电机带动研磨磨具朝向探测头靠近,所述接触式传感器可获知并记录两端的探测头之间的距离,当研磨磨具接触探测头时停止运动并记录伺服电机的位置数据,基于伺服电机的位置数据与接触式传感器的探测头数据,可重新确定研磨修复后的研磨磨具的尺寸,硅棒加工设备即可将测量确定的研磨磨具的尺寸作为控制系统中输入数据。
在某些示例中,所述接触式传感器的探测头上还设置有伸缩弹簧,在探测头接触到物件时,可在伸缩弹簧的带动下回退,可用于保护探测头,避免探测头被触碰损坏。
在某些示例中,所述传感器件可设置为探针式位移传感器。
在某些实施方式中,所述传感器件还可以为测距传感器,在此,可将测距传感器的距离探测方向设置为垂直于研磨磨具的磨削面,由此获得研磨修复后的磨具规格,所述测距传感器举例可以为红外测距传感器、激光距离传感器、超声波传感器、雷达传感器等。
通常硅片的制作流程,以单晶硅产品为例,大致的作业工序可包括:先使用硅棒截断机对原初的长硅棒进行截断作业以形成多段短硅棒;截断完成后,对截断后的短硅棒进行开方切 割后形成切割后硅棒;再对各个切割后硅棒进行滚圆、磨面等加工作业,使得硅棒的表面整形达到相应的平整度及尺寸公差要求;后续再使用切片机对单晶硅棒进行切片作业,则得到单晶硅片。而以多晶硅产品为例,一般地,大致的作业工序可包括:先使用硅锭开方机对初级硅锭(大尺寸硅锭)进行开方加工以形成次级硅锭(小尺寸硅锭);开方完毕后,再使用硅锭截断机对次级硅锭进行截断加工以形成多晶硅棒;再对各个多晶硅棒进行倒角、滚磨等加工作业,使得多晶硅棒的表面整形达到相应的平整度及尺寸公差要求;后续再使用切片机对多晶硅棒进行切片作业,则得到多晶硅片。
在切割开方后进行研磨,由此获得表面平整度更佳的截面呈矩形或类矩形的硅棒,同时,还需对硅棒进行倒角,以使得硅棒截面不同边之间过渡平缓,由此防止边缘破裂及晶格缺陷产生,令晶棒释放内应力,并有利于后续切片中形成完整的硅片。
在某些实施方式中,在由所述硅棒加工设备对切割后硅棒的不同侧面进行磨面或对棱边进行倒角时,通过所述硅棒夹具的夹持部转动机构驱动所夹持的硅棒转动以实现。通常切割后硅棒截面呈矩形或类矩形,在对不同侧面进行研磨时,所述夹持部转动机构控制硅棒转动一定角度例如90°即可实现对研磨磨具相对硅棒的研磨面切换,在对不同棱边进行倒角时,可通过控制夹持部转动一定角度例如45°、135°等角度实现。在研磨装置所提供的研磨面为平面的情况下,在进行对硅棒的倒角时,所述夹持部转动机构可控制所夹持的硅棒转动不同的角度进行多次倒角实现,例如,对硅棒完成一个侧面的研磨后,对该侧面相邻的一条棱边及与该棱边相对的棱边,可通过旋转一定角度例如40°、45°、50°等角度进行多次倒角,得到在不同侧面交界处过渡更为圆滑的硅棒。所述实现倒角的方式可参考例如CN108942570A等专利公开文献,通过带动硅棒转动一定角度,磨具配合进行相对硅棒的进给以实现对切割后硅棒棱边磨削。在此示例下,通过控制所述硅棒夹具与研磨装置间的相对运动,研磨装置即可实现对切割后硅棒的磨面及倒角。
在一些实施方式中,为减小对所述研磨磨具的磨损,本申请的硅棒加工设备中还包括倒角装置,用于研磨所述切割后硅棒的棱边。通常的,对硅棒的倒角作业容易形成对研磨工具的较大损耗,在此,通过研磨磨具与倒角装置的倒角磨具分别进行对硅棒的磨面与倒角,即可提高研磨磨具的使用寿命。
在某些实施方式中,所述倒角装置连接于所述第二转换机构,用于在所述第二转换机构驱动下在第一加工区位及第二加工区位间切换以对所述第一硅棒夹具或第二硅棒夹具所夹持的切割后硅棒进行倒角。
在某些实施方式中,所述倒角装置设于所述研磨装置旁侧,以令所述倒角装置与研磨装置在同一时刻位于同一加工区位。例如,所述研磨装置及倒角装置对应于第一加工区位时所述切割装置对应于第二加工区位,或所述研磨装置及倒角装置对应于第二加工区位时所述切割装置对应于第一加工区位。
在此示例下,在实际加工场景中,可令所述硅棒夹具带动所夹持的硅棒运动以完成切割作业后,由所述第二转换机构驱动研磨装置与倒角装置转换所处的加工区位,由此对切割后硅棒进行倒角及研磨。
在此,对倒角工序与研磨工序的顺序不做限制,例如可先对切割后硅棒进行研磨作业而后进行倒角,或先进行倒角而后进行研磨。在实施场景中,通过控制所述倒角装置与研磨装置相对硅棒夹具的位置关系即可分别进行研磨作业及倒角作业,例如,当研磨装置对切割后硅棒进行研磨磨面时,令所述倒角装置退让以避免与切割后硅棒发生碰撞。所述倒角装置例如可通过第二方向的位移机构设置于所述第二转换机构,由此在第二方向运动以在研磨作业中回避硅棒;又或,通过控制所述倒角装置的倒角磨具沿重垂线运动以避让硅棒,本申请不做限制。
在一些实施方式中,所述倒角装置包括:至少一对倒角磨具,具有位于水平面内的倒角磨面;倒角磨具进退机构,用于驱动所述一对倒角磨具中的至少一个沿重垂线方向移动。
所述倒角磨具进退机构用于驱动所述倒角磨具中的至少一个倒角磨具沿重垂线方向作升降移动,所述重垂线方向垂直于所述水平面。如此可实现调整至少一对倒角磨具中的两个倒角磨具之间在重垂线方向上的相对距离,进而控制在倒角磨具对硅棒棱边磨削的进给量也即决定了对硅棒棱边的磨削量。
在某些实现方式中,所述倒角磨具进退机构包括:进退导轨,沿重垂线方向设于所述第二转换机构,用于设置所述至少一对倒角磨具;进退驱动单元,用于驱动所述至少一对倒角磨具中的至少一个倒角磨具沿所述进退导轨移动。
在一实现方式中,所述倒角磨具进退导轨沿重垂线方向设置于倒角磨具第二转换机构,倒角磨具的底部设置有与所述进退导轨配合的沿重垂线方向的导槽结构或导块结构。所述进退驱动单元例如包括滚珠丝杆和驱动电机,所述滚珠丝杆沿所述进退导轨设置,所述滚珠丝杆与相应的倒角磨具关联并与所述驱动电机轴接。
藉由所述倒角磨具进退机构,即可调整所述倒角磨具在重垂线方向的位置。在一些加工场景中,当所述倒角装置与研磨装置邻设,例如倒角装置与研磨装置对应于同一加工区位的 实施例中,藉由所述倒角磨具进退机构调整倒角磨具的位置,即可避免倒角作业与研磨作业互相干扰,例如,当研磨装置对硅棒的侧面进行研磨时,令一对倒角磨具相背运动以避让硅棒。
请继续参阅图12,在此,所述倒角磨具311例如可设置为倒角砂轮,所述倒角砂轮可设置为R角砂轮;所述倒角磨具311又或可为通过不同制作方式形成的磨轮,例如电镀法的磨轮、烧结法的磨轮。
所述倒角磨具311的磨轮例如由磨粒与结合剂固结而成,以形成具有磨粒的表面以接触并研磨切割后硅棒棱边;所述磨轮具有一定的磨粒尺寸与磨粒密度,其磨料根据研磨硅棒的需要可设置为三氧化二铝、碳化硅、金刚石、立方氮化硼等硬度大于硅材料硬度的磨粒。
通常的,所述倒角磨具311为研磨面呈圆环状的磨轮,所述倒角磨具311可以不同弦边对硅棒棱边进行研磨,应理解的,所述硅棒夹具及所夹持的硅棒可在第一方向运动,通过控制所述倒角磨具311在第二方向位置可令硅棒棱边对应于倒角磨具311的不同弦边。在某些实施方式中,可预先设置所述倒角磨具311的磨轮用于实现倒角的弦边,由此在将所述倒角装置安装至第二转换机构时确定所述倒角装置与硅棒夹具在第二方向的相对位置,如此可预先控制倒角作业中硅棒棱边与磨轮的接触长度。
在一实现方式中,所述倒角磨具311包括磨轮及转轴,所述转轴连接磨轮并联动于驱动源,以在驱动源驱动下带动所述磨轮沿转轴旋转,令旋转状态下的磨轮的研磨面与切割后硅棒的棱边接触,即可实现对切割后硅棒的倒角。
所述进退机构用于驱动所述倒角磨具311沿重垂线方向移动,由此可调整倒角磨具311与切割后硅棒的位置关系,以确定对所述切割硅棒倒角的磨削量及磨削位置。同时,通过所述进退机构调整所述倒角磨具311在重垂线方向的位置,可避免在研磨装置进行研磨的过程中硅棒夹具及所夹持硅棒与倒角磨具311相互干扰。
应理解的,通常,截面呈圆形的单晶硅棒被开方切割形成截面呈矩形或类矩形的硅棒后,需要对硅棒进行侧面的研磨及棱边的倒角、或进行侧面的研磨及滚圆。本申请的发明人发现,对于常见的边长规格大约为210mm的开方后硅棒,通常后续需进行的工艺为研磨及倒角,对于常见的边长规格大约为158mm的开方后硅棒,通常后续的需进行的工艺为研磨及滚圆。对此,本申请所提供的倒角装置,适应于不同的工艺需求,既可用于进行倒角,也可用于进行滚圆。
在一作业方式中,当所述倒角装置用于对切割后硅棒倒角,以切割后硅棒中的两个相对 的侧面位于水平面内为初始位置为例,令硅棒夹具的夹持部转动机构驱动夹持部及所夹持的硅棒转动一定角度例如为沿顺时针方向转动40°,由此令所述进退机构驱动倒角磨具311沿重垂线方向相对硅棒进给以实现对硅棒的接触及研磨,令所述硅棒夹具带动硅棒沿第一方向移动以实现棱边研磨;而后,例如可令硅棒以每次沿顺时针方向转动5°以进行多次棱边研磨,如此以获得棱边过渡更为圆滑的硅棒。当所述倒角装置中包括相对设置的一对倒角磨具311,所述一对倒角磨具311即可对切割后硅棒的一对相对的棱边进行倒角;当对切割后硅棒的一对相对的棱边倒角完成后,例如可令夹持部转动机构驱动硅棒转动45°,以对硅棒的另一对相对的棱边进行倒角。
在另一作业方式中,当所述倒角装置用于对切割后硅棒滚圆,所述硅棒夹具可带动所夹持的硅棒沿硅棒轴线旋转,通过令旋转状态下的硅棒的棱边接触倒角磨具311,由此实现对切割后硅棒各棱边的滚圆。
在此,本申请的硅棒加工设备中硅棒夹具夹持硅棒后在所处的加工区位上沿导向结构移动即可实现切割及研磨,其中切割区位及研磨区位可分别藉由第一转换机构与第二转换机构转换至分别对应待切割硅棒与切割后硅棒所处加工区位,在切割及研磨完成后,将研磨后硅棒予以卸料,如此可令硅棒夹具装载待切割硅棒,以继续进行加工作业。在本申请提供的各示例中,所述切割区位即切割装置所处位置,研磨区位即研磨装置所处位置。
在一些实施例中,本申请的硅棒加工设备还包括硅棒卸料装置,用于将研磨后硅棒予以卸料,如此有益于工序流转的衔接,减小硅棒加工设备在对硅棒切割及研磨完毕后的等候时间,采用此自动卸料的方式还可用于减少或避免研磨后硅棒在转运中碰撞磕损。
请继续参阅图1,在某些实施方式中,所述硅棒卸料装置80包括:传送带811,用于承载所述研磨后硅棒;卸料驱动源(图中未予以显示),用于驱动所述传送带811运动以带动其承载的研磨后硅棒沿第一方向移动。
所传送带811可设置为具有承载平面以适应侧面为平面的研磨后硅棒,在一些实施方式中,为避免传送带811与硅棒表面之间冲击,所述传送带811还可设置为柔性材料或弹性材料制成,又或在传送带811表面可增设缓冲层;所述缓冲层或柔性材料例如为具有弹性的橡胶、硅胶或由其他具有弹性形变、阻尼特性或缓冲特性的材料。
所述驱动源驱动传送带811运动以带动承载的研磨后硅棒沿第一方向运动,以将所述研磨后硅棒转运出加工区位,在此,所述研磨后硅棒的卸料区例如为沿第一方向邻设于加工区位,通过所述传送带811带动硅棒沿第一方向运动即可令硅棒被转运出硅棒加工平台。
在一些示例中,当所述硅棒加工设备中同时具有硅棒卸料装置80与边皮输送机构52,所述硅棒卸料装置80与边皮输送机构52例如可设置为硅棒加工设备第一方向的两端,由此可防止输送过程中边皮与研磨后硅棒相干扰;同时,边皮在卸除后通常需装载至边皮筒以再利用,研磨后硅棒在卸除后需转运至其他加工设备以进行后续加工处理例如切片,进行通过区分边皮与研磨后硅棒分别对应的卸料区即可在卸料后对边皮及研磨后硅棒分别进行其对应的后续工序。
在某些实施方式中,所述硅棒卸料装置80通过移位机构82设于所述硅棒加工平台,用于在所述移位机构82驱动下在第一加工区位与第二加工区位间移动。
所述硅棒卸料装置80用于承接所述第一硅棒夹具及第二硅棒夹具所夹持的研磨后硅棒。应理解的,当所述第一硅棒夹具夹持研磨后硅棒时,第一硅棒夹具所夹持的为切割后硅棒,即,在同一时刻第一加工区位与第二加工区位上硅棒的加工状态不同,因此所述硅棒卸料装置80在一次卸料中承接一加工区位上的研磨后硅棒。
如前述,所述硅棒卸料装置80在一次卸料中对一加工区位上的研磨后硅棒予以卸料,在一些实施方式中,令所述硅棒卸料装置80在移位机构82带动下分别对应于第一加工区位及第二加工区位,即可通过一个硅棒卸料装置80实现对两个加工区位上研磨后硅棒进行卸料。
在此,所述移位机构82例如可通过沿第二方向的导柱或导轨设于所述硅棒加工平台,移位机构82用于承载所述硅棒卸料装置80,并在驱动源驱动下沿第二方向运动,由此可移动对接至不同加工区位。
硅棒夹具及所夹持的研磨后硅棒在第二方向的位置固定,在此,令硅棒卸料装置80移动至在第二方向的位置对齐于所述硅棒夹具,令硅棒夹具夹持研磨后硅棒沿第一方向运动以在第一方向上对应于所述硅棒卸料装置80,例如使研磨后硅棒的在水平面上的投影落在所述传送带811上,硅棒夹具释放研磨后硅棒即可令所述硅棒卸料装置80的传送带811承接研磨后硅棒。
在某些实施方式中,所述硅棒卸料装置80通过升降机构83设于所述移位机构82,其中,所述升降机构83包括:升降导向结构,设于所述移位机构82并连接所述硅棒卸料装置80;升降驱动源,用于驱动所述硅棒卸料装置80沿所述升降导向结构升降运动。
在实际加工场景中,当所述硅棒加工设备用于对不同规格如不同直径的硅棒进行加工,对应获得的研磨后硅棒边长可能不同。在所述传送带811承接研磨后硅棒的过程中,应使传送带811位于研磨后硅棒下方并尽量减小两者间的高度落差,通过所述升降机构83即可适应 于对不同规格的研磨后硅棒进行卸料。
所述升降导向结构例如为沿重垂线方向设置的导轨或导柱,所述硅棒装卸装置通过升降导向结构设于所述移位机构82,并在升降驱动源驱动下沿所述升降导向结构运动。在一实现方式中,所述硅棒装卸装置设于所述升降导向结构的自由端,所述升降导向结构在升降驱动源驱动下沿重垂线方向伸缩运动以带动自由端的硅棒装卸装置升降运动。在又一实现方式中,所述升降驱动源用于驱动所述沿所述升降导向结构运动,在此示例下,所述升降驱动源例如为气缸或液压泵,其中,气缸或液压泵伸缩端连接至所述硅棒装卸装置;又或所述升降驱动源例如电机,设于所述硅棒装卸装置以驱动硅棒装卸装置沿升降导向结构运动。
一般地,所述硅棒夹具所夹持的待切割硅棒是基于对硅棒进行截断后获得的一定长度规格的硅棒,实际生产中,需要先对原始的长硅棒进行截断作业以获得可用于开方的待切割硅棒。所述原始的长硅棒例如为通过用直拉法或悬浮区熔法从熔体中生长的棒状单晶硅,在硅棒加工中常见的大约为5000mm(例如为5360mm的规格等)长度的单晶硅棒。将原始的单晶硅棒进行截断后,所述硅棒夹具即可实现对切割后硅棒的夹持,由此进行后续的切割及研磨作业。
在某些实施方式中,本申请的硅棒加工设备还包括硅棒截断装置,其中,所述硅棒截断装置包括硅棒承载装置,用于承载单晶硅棒;截断切割架,包括相对于所述硅棒承载装置可升降的切割线锯,用于对单晶硅棒进行截断以形成所述待切割硅棒。
在一些实施例中,所述硅棒承载装置为链条输送机构、倍速链机构、或传动带机构。
请参阅图14,显示为本申请的硅棒加工设备的部分结构示意图。
在一示例中,所述硅棒承载装置61是由电机驱动的链条输送机构。所述的链条输送机构包括:相对设置的两环状链条以及用于驱动所述两环状链条的链轮。所述两环状链条平行且相对地设置于第一方向,其中,每一环状链条的两端分别配置有链轮,所述链轮的轮齿啮合于所述链条,并在转动时带动所述链条运行。所述链轮例如由电机的动力输出轴驱动转动。
在一实现方式中,链轮布置在每一条环状链两端,所述相对设置的两条环状链相互平行,并以同一端的链轮作为主动链轮。两条环状链的主动链轮分别具有的轴线在同一条水平轴上。所述主动链轮可动力联接至电机轴即动力输出轴,主动链轮与两条环状链的链轮啮合,进而由驱动电机控制链条输送速度,即可控制在硅棒承载装置上的单晶硅棒轴向运送的速度。
在一实现方式中,每一环状链条上还可设置有多个承载块。在本申请的一些实施例中,两条环状链上的承载块为固定在链条上的间隔设置的一列楔形块,以作为所述待切割硅棒或 切割后的硅棒截段的直接支撑,并限制所承载的单晶硅棒运动的自由度仅限于承载装置的输送机构运动方向,即确保所述硅棒与链条输送机构相对静止,切割中硅棒不发生相对移动。所述楔形块用于接触所述待切割硅棒或切割后的硅棒截段的表面可设置呈弧形,以顺应所述硅棒的弧形表面;在本申请的一些实施例中,所述楔形块采用具有弹性的橡胶材料制成,或者硅胶或由其他具有弹性形变或缓冲特性的材料制成,以保护与其接触的硅棒的表面不被划伤或磕碰。
在另一些可行的示例中,所述硅棒承载装置还可设置为倍速链机构、或传动带机构等;所述倍速链机构或传动带机构可沿第一方向设置,并具有对截面为圆形的硅棒的限位装置如楔形块以防止所承载的硅棒滚动。
应理解的,所述硅棒承载装置可用于承载硅棒并限制其运动方向,以控制硅棒与截断切割架之间的相对位置即可。
如图14所示,所述硅棒承载装置61沿硅棒轴线方向输送硅棒,所述截断切割架62包括可升降的切割线锯,通过控制所述硅棒承载装置61将硅棒输送至切割线锯下方,即可实现将长硅棒截断为预设长度规格的待切割硅棒,其中,所述长度规格由硅棒承载装置61的输送距离确定。
所述截断切割架62设于所述机座,包括升降支座及设于所述升降支座上的多个切割轮621及过渡轮,切割线绕于所述多个切割轮621及过渡轮以形成沿第二方向的切割线锯。所述升降支座623设于升降方向的导柱上,并由升降驱动源驱动移动以令切割线锯升降运动,同时,所述切割线锯与硅棒承载装置在第一方向的位置对齐,由此切割线锯可对置放于硅棒承载结构上的硅棒进截断。
在一实现方式中,所述升降支座623上例如包括两个切割轮621,用于形成沿第二方向的一切割线锯;所述升降支座623中具有一中空区域例如呈倒置的U型,所述中空区域可容纳硅棒截面,以确保升降支座623降至切割线锯截断硅棒时升降支座623与硅棒之间无碰撞。
在一示例中,所述升降驱动源设置为丝杆组件,所述丝杆组件包括与丝杆和电机,所述丝杆的一端与所述升降支座623相连,另一端与电机相连并被电机驱动带动升降支座623沿导柱移动。所述升降驱动源的具体形式不局限于此,在另一示例中,所述升降驱动源例如为气缸组件。
所述截断切割架62将长硅棒截断形成预设长度规格的待切割硅棒后,所述硅棒夹具即可对待切割硅棒进行装载;当然,所述待切割硅棒也可由单独的硅棒截断设备切割获得。
所述硅棒夹具的位移范围由其对应的导向结构限定,则任一所述硅棒夹具需要在其对应的加工区位处装载待切割硅棒。有鉴于此,需要预先将待切割硅棒运送至硅棒夹具可实现夹持的位置。
在某些实施方式中,所述硅棒加工设备还包括上料装置,用于将待切割硅棒输送至第一加工区位或第二加工区位,以使所述第一硅棒夹具或第二硅棒夹具装载待切割硅棒。所述上料装置可设置为具有沿第二方向运动的自由度,以移动对应至任一加工区位的硅棒夹具。
在某些实施方式中,所述上料装置包括至少一夹持组件,其中所述夹持组件包括:取料臂,通过一安装部悬置于所述硅棒加工平台上方的顶架,其中,顶架包括沿第二方向设置的导向结构以令所述安装部具有沿第二方向移动的自由度;夹持件,设于所述取料臂底端,用于夹持待切割硅棒。
请结合参阅图1、图15a、图15b,其中,图15a、图15b分别显示为本申请的上料装置在一实施例中于不同视图方向的结构示意图。
所述顶架13例如可设置于所述机座,例如设置于第一加工区位与第二加工区位之间的立柱上,在一些示例中,所述立柱也可视为所述机座的一部分。
所述顶架13包括第二方向设置的导向结构131,所述导向结构131用于设置所述安装部72并令所述安装部72在导向结构131的限位作用下沿第二方向移动,连接至所述安装部72的取料臂711即可沿第二方向移动。
所述夹持件712设置于取料臂711底端,用于夹持待切割硅棒。在此,所述夹持件712的数量与所述取料臂711相对应,所述上料装置包括至少一夹持组件,在一示例中,当所述上料装置包括单个夹持组件,所述夹持件712例如可设置为在第一方向具有预设长度以令实现对待切割硅棒的稳妥夹持。在另一示例中,所述上料装置中包括多个夹持组件,所述多个夹持组件对应的夹持件712具有在第一方向的间距,由此可令待切割硅棒的重心落于多个夹持件712之间以实现对待切割硅棒的稳定夹持。
在某些实施方式中,所述安装部72包括沿第一方向设置的平移机构721,用于设置所述取料臂711以使所述取料臂711具有沿第一方向移动的自由度。
所述第一方向设置的平移机构721例如为平移导轨,所述取料臂711沿平移导轨移动以带动取料臂711下端的夹持件712沿第一方向移动,如此可调整所述夹持件712相对待切割硅棒的夹持位置,在所述上料装置具有多个夹持组件的示例中,由所述第一方向的平移结构可调整多个夹持件712在第一方向的间距,所述上料装置即可适用于对不同长度规格的待切 割硅棒进行夹持。
在某些实施方式中,所述夹持件712包括:相对设置的第一夹持块7121与第二夹持块7122,其中,所述第一夹持块7121及第二夹持块7122具有夹持弧面;夹持块驱动机构(图中未予以显示),用于驱动所述第一夹持块7121与第二夹持块7122作开合运动。
所述第一夹持块与第二夹持块的夹持弧面可适配于截面为圆形的待切割硅棒,在一种实现方式中,所述夹持弧面即为在夹持块朝向夹持空间部分设置为弧面;在另一中实现方式中,所述夹持弧面即夹持块顺应硅棒表面弧度设置在不同方向的接触平面,如此即可实现对具有弧面的硅棒进行夹持。
在某些示例中,所述夹臂驱动机构包括:开合齿轮、齿条及驱动源(未予以图示);其中,所述第一夹臂及第二夹臂上分别设有开合齿轮,所述齿条的相对两侧分别设有与所述第一夹臂和第二夹臂上的开合齿轮啮合对应的齿纹,所述驱动源连接与所述齿轮驱动件,用于驱动所述齿轮驱动件运动。
所述夹持块驱动所述第一夹持块与第二夹持块作开合运动,以此实现对待切割硅棒的夹持及释放。
在一实现方式上,所述夹持块驱动机构包括:第一齿条,联动于所述第一夹持块;第二齿条,联动于所述第二夹持块;夹紧气缸,设置于所述第一齿条或二齿条上,用推动所述第一齿条或第二齿条在齿条延伸方向移动;传动齿轮,与所述第一齿条及第二齿条相啮合,用于在正向转时带动所述第一夹持块及第二夹持块相向运动以执行闭合作,在逆向转动时带动所述第一夹持块及第二夹持块相背运动以执行张开动作。
所述第一齿条及第二齿条设置于传动齿轮的两侧,基于齿轮间或齿轮与齿条间啮合的基本规律,在传动齿轮旋转时,齿轮两侧齿部的线速度的反方向运动,由此可实现所述第一齿条与第二齿条以相反的方向运动。对应的,联动于所述第一齿条与第二齿条的第一夹持部与第二夹持部即表现为相向靠近或相互远离的运动。如,当所述夹紧气缸推动第一齿条或第二齿条运动以带动传动齿轮旋转,当所述传动齿轮处于正转状态,所述第一齿条与第二齿条相向靠近以驱使第一夹持块和第二夹持块相向靠近执行闭合动作;当所述传动齿轮处于反转状态,所述第一齿条与第二齿条相互远离以驱使第一夹持部和第二夹持部相互远离以执行释放动作。
在另一实现方式上,所述夹持块驱动机构包括:第一齿条,联动于所述第一夹持块;第二齿条,联动于所述第二夹持块;驱动齿轮,连接于驱动电机的动力输出轴,并与所述第一 齿条与所述第二齿条相啮合,用于在正向转动时带动所述第一夹持块及第二夹持块相向运动以执行闭合动作,在逆向转动时带动所述第一夹持块及第二夹持块相背运动以执行张开动作。
所述第一齿条与第二齿条可啮合于所述驱动齿轮的两侧,使得驱动齿轮旋转时第一齿条和第二齿条处的线速度方向相反,由驱动电机带动所述驱动齿轮旋转,令驱动齿轮正转时第一齿条与第二齿条相向运动即带动第一夹持块与第二夹持块相向运动以执行闭合动作,驱动齿轮被带动逆向转动时第一齿条与第二齿条背向运动以带动第一夹持块和第二夹持块背向运动以执行张开动作。
在又一实现方式中,所述夹持块驱动机构包括:开合齿轮,设于所述第一夹持块及第二夹持块上;齿条,所述齿条的相对两端分别设有与所述第一夹持块和第二夹持块上的开合齿轮啮合对应的齿纹;驱动源,连接于所述齿条,用于驱动所述齿条沿齿条方向进退运动。
在此,该齿条位于第一夹持块与第二夹持块中间,齿条中分别面向于两侧的夹持块的两个外侧面上分别设有与第一夹持块和第二夹持块上的开合齿轮啮合对应的齿纹,驱动源可例如为驱动电机或气缸。这样,根据上述实现方式,在实际应用中,当需实现夹持块夹合时,由作为驱动源的驱动电机或气缸驱动作为齿轮驱动件的齿条向上移动,由齿条带动两旁啮合的开合齿轮作外旋动作,开合齿轮在外旋过程中带动夹持块(开合齿轮与夹持块可通过转轴连接)作下放动作以由松开状态转入夹合状态;反之,当需实现夹持块松开时,由作为驱动源的驱动电机(或气缸)驱动作为齿轮驱动件的齿条向下移动,由齿条带动两旁啮合的开合齿轮作内旋动作,开合齿轮在内旋过程中带动夹持块(开合齿轮与夹持块可通过转轴连接)作上扬动作以由夹合状态转入松开状态。当然,上述仅为一实施例,并非用于限制硅棒夹持件的工作状态,实际上,前述中的“向上”、“外旋”、“下放”、“向下”、“内旋”、“上扬”、以及“松开”和“夹合”状态变化均可根据夹持块的结构和运作方式、夹持块驱动机构的构造而有其他的变更。
在再一实现方式中,所述夹持块驱动机构包括:双向丝杆,两端与所述第一夹持块及第二夹持块螺纹连接;驱动源,用于驱动所述丝杆转动以使得所述第一夹持块及第二夹持块相向运动或相背运动。
在此,所述双向丝杆沿第二方向设置且与所述第一夹持块和所述第二夹持块螺纹连接;所述驱动源驱动所述丝杆转动以使得所述第一夹持块和所述第二夹持块沿第二方向相向移动或相背移动。在一种实施方式中,所述双向丝杆为双螺纹丝杆,所述双向丝杆两端分别设有有螺纹且螺纹方向相反,所述驱动源可设置在双向丝杆的任一一端以带动双向丝杆沿丝杆轴 转动,藉由双向丝杆两端方向相反的螺纹,所述双向丝杆在驱动源驱动下转动时双向丝杆两端的运动被转化为方向相反的轴向线运动,所述轴向即设置双向丝杆的第二方向。在所述驱动源驱动下,所述第一夹持块与第二夹持块即可相向运动或相背运动以实现对待切割硅棒的夹持或释放。
在某些实施方式中,所述取料臂711可升降的设置于所述安装部72。所述夹持组件在实现夹持时,需令所述第一夹持块7121与第二夹持块7122分别位于硅棒的相对两侧,以使硅棒处于第一夹持块7121与第二夹持块7122之间的夹持空间中。在令夹持组件移动以使硅棒位于夹持空间的过程中,需避免夹持块与硅棒发生碰撞。在一实现方式中,将所述取料臂711可升降的设于所述安装部72,在所述取料臂711对应的夹持件在第二方向上趋近待切割硅棒前,控制所述取料臂711的升降高度以令所述夹持件位于待切割硅棒上方,当所述第一夹持块7121及第二夹持块7122位于待切割硅棒两侧后,可令所述取料臂711带动所述夹持件下降以使待切割硅棒位于所述夹持空间中,在此状态下驱动所述第一夹持块7121与第二夹持块7122相向靠近即可实现对待切割硅棒的夹持。
在一些场景中,所述待切割硅棒的直径硅棒不同,则硅棒处于预装载位置时轴线高度不同,通过所述取料臂带动所述夹持件在升降方向运动,对应的即可令硅棒的轴心高度与预设的夹持位置对齐。
在本申请的一些实施例中,通过将所述上料装置悬设于机座上方,在此设置下,对应的机座的硅棒加工平台上即可设置用于置放待切割硅棒的位置,由此可缩减机座对空间的占据面积。
在某些实施方式中,所述硅棒加工设备还包括一预定装载机构,沿第一方向设置,用于承载待切割硅棒以使所述上料装置从所述预定装载机构将待切割硅棒输送至第一加工区位或第二加工区位。请继续参阅图14,在一示例中,当所述硅棒加工设备中包括截断切割架62,所述预定装载机构74可在第一方向上对齐于所述硅棒承载装置,以令硅棒承载装置将硅棒沿轴线方向输送至预定装载机构74上,截断切割架62对硅棒进行截断后获得的可用于进行开方的待切割硅棒即位于所述预定装载机构74上;在另一些示例中,所述预定装载机构74也可用于承载硅棒截断设备截断获得的待切割硅棒。
所述预定装载机构74具有承载部以限定待切割硅棒被稳妥置放,在一实现方式中,所述承载部包括两列沿第一方向设置的平行且相对的滚轮,由此令所述待切割硅棒在承载部上不易发生滚动;同时,当所述预定装载机构74与所述硅棒截断装置的硅棒承载装置相对应,所 述待切割硅棒相对预定装载机构74沿第一方向移动时与其承载部之间为滚动摩擦,如此便于实现对硅棒的输送。
在一实现方式中,所述预定装载机构74可设于第一加工区位与第二加工区位之间,硅棒加工设备的控制系统可读取所述预定装载机构74的位置,由此可控制所述上料装置从预定装载机构74处夹持硅棒后将硅棒运输至对应第一硅棒夹具或第二硅棒夹具所需的位移距离。例如,当所述第一加工区位及第二加工区位设于第二方向的相对两侧,在此示例下可控制所述上料装置从预定装载机构74至对应的硅棒夹具在第二方向的移动距离。
在本申请的硅棒加工设备中由硅棒夹具夹持硅棒沿硅棒轴线方向移动,为确保硅棒夹具在夹持硅棒并带动其移动的过程中保持稳定,需令硅棒夹具以对齐于硅棒轴线的位置实现夹持;同时,在切割或研磨作业中对硅棒的切割量或研磨量由切割线锯或研磨磨具与硅棒的相对位置确定,令所述硅棒夹具以对齐于硅棒轴线的位置进行夹持,硅棒加工设备可获知硅棒轴线的位置,即可以预设的切割量或研磨量对硅棒进行加工,同时避免或减小硅棒夹具驱动硅棒沿轴线转动过程中重心高度变化。
所述上料装置用于将所待切割硅棒输送至对应所述第一硅棒夹具或第二硅棒夹具,在实际作业中,所述硅棒夹具对应的夹持位置仅具有沿第一方向调整的自由度,确保所述硅棒夹具以其夹持部和硅棒轴线对齐的位置实现夹持,则可通过所述上料装置调整其所夹持的硅棒所处的空间位置以实现硅棒夹具在预定装载位置夹持硅棒。
在本申请的实施例中,所述预定装载位置即上料装置所夹持的硅棒的轴线位置与硅棒夹具的夹持部中心对齐的位置。
在一实施场景中,所述上料装置中第一夹持块与第二夹持块的中线在第二方向的位置可由控制系统获取,在此状态下当待切割硅棒处于被上料装置夹持的状态,即可获知硅棒轴线在第二方向的位置,通过控制上料装置在第二方向的移动距离即可确保硅棒轴线在第二方向与硅棒夹具的夹持部对齐;要令所述硅棒夹具以夹持部与硅棒轴线对齐的位置实现夹持,则需要控制硅棒轴线在重垂线方向的位置与所述夹持部对齐。为此,在本申请的某些实施方式中,所述上料装置还包括传感器件,用于检测所述上料装置的夹持件或第一硅棒夹具或第二硅棒夹具所夹持的硅棒,以确定所述第一硅棒夹具或第二硅棒夹具以预定装载位置夹持硅棒。
所述传感器件例如可用于检测夹持件所夹持的硅棒高度,由此确定硅棒轴线在重垂线方向的位置。应理解的,硅棒夹具仅具有沿其导向结构运动的自由度及令夹持部沿中心轴线转动的自由度,则硅棒夹具的夹持部中心的重垂线方向的位置为确定值。基于所述传感器测量 获得硅棒的轴线高度,如此可控制取料臂在重垂线方向的升降运动以令硅棒轴线方向的位置升降至与硅棒夹具夹持部在重垂线方向对齐。
请参阅图13,显示为本申请的硅棒加工设备在一实施例中的部分结构示意图。
在一实现方式中,所述传感器设置为用于检测硅棒夹持状态下的最高点高度。应理解的,所述夹持件中第一夹持块与第二夹持块相对称,当硅棒处于被夹持状态,硅棒轴线与两夹持块中线(或对称面)在第二方向的位置相同,在此状态下硅棒表面的最高点与硅棒轴线在第二方向的位置也相同。在实际场景中,所述传感器即可设置为所述第一夹持块与第二夹持块之间的中线位置。
在某些实施方式中,所述传感器件为接触式传感器或测距传感器。
所述接触式传感器对应的伸缩方向或测距传感器对应的测距方向可设置为沿重垂线方向,由此确定夹持件所夹持的硅棒表面最高点高度。
请参阅图16,显示为本申请的硅棒加工设备在一实施例中上料装置的部分结构示意图。
在此,所述接触式传感器73可设置为一端设于所述取料臂711底端或夹持件,另一端为朝向所述硅棒升降运动的自由端,所述自由端设有探测头以接触硅棒。在测量过程中,可控制所述探测头靠近硅棒运动,当探测头与硅棒表面接触时停止运动并记录其对应的位置数据,所述接触式传感器73可获知并记录探测头与硅棒接触时的高度,基于接触式传感器73的探测头数据,可确定硅棒表面的最高点高度,将所述最高点高度与基准高度对比,即可确定对硅棒的调整高度。
所述基准高度例如可为一预存于硅棒加工设备控制系统内的基准硅棒的最高点高度,所述基准硅棒为直径值已知的硅棒,在夹持件夹持基准硅棒的状态下调整基准硅棒的最高点高度即可确定对应的基准硅棒的轴线高度,令所述基准硅棒的轴线位置与所述硅棒夹具的夹持部中心在高度方向对齐,此时基准硅棒的最高点高度即可作为一基准高度。将所述探测数据与基准高度对比,由当前状态夹持件所夹持硅棒的最高点高度与基准高度之间的差值以确定所需的对硅棒在升降方向的位移调整量。
又或,所述基准高度可以由所述预定装载机构确定,当上料装置从预定装载机构处夹持待切割硅棒时,硅棒最低点的位置为一确定值,即由所述预定装载机构的承载面确定的高度,在此示例下,基于所述接触传感器73的探测数据可获得对应的夹持件所夹持的硅棒的直径数据,由此可确定对硅棒在升降方向的位移量以令硅棒夹具在预定装载位置夹持硅棒。
在某些示例中,所述接触式传感器73的探测头上还设置有伸缩弹簧,在探测头接触到物 件时,可在伸缩弹簧的带动下回退,可用于保护探测头,避免探测头被触碰损坏。
在某些示例中,所述传感器件可设置为探针式位移传感器。
在某些实施方式中,所述传感器件还可以为测距传感器,在此,可将测距传感器的距离探测方向设置为重垂线方向,所述测距传感器举例可以为红外测距传感器、激光距离传感器、超声波传感器、雷达传感器等。
所述传感器件可用于在待切割硅棒被夹持件夹持的状态下进行测量,又或在待切割硅棒被硅棒夹具夹持的状态下进行测量。
例如,将基准硅棒被硅棒夹具以预定装载位置夹持的状态下基准硅棒的最高点高度作为基准高度,在实际场景中,通过测量硅棒夹具所夹持的硅棒的最高点高度与基准高度相比较,以确定对硅棒的位移调整量。
请结合参阅图15a、图15b、及图16,举例来说,当所述上料装置携所夹持的硅棒运动至第二方向与所述硅棒夹具对齐后,令所述硅棒夹具的一对夹臂相向运动以在硅棒的两个端面夹紧硅棒;令上料装置夹持件的第一夹持块7121与第二夹持块7122相背运动以释放硅棒,同时,令所述传感器73件伸缩运动以检测被硅棒夹具夹持的待切割硅棒的高度,通过测量硅棒夹具所夹持的硅棒的最高点高度与基准高度相比较,以确定对硅棒的位移调整量;当所述硅棒最高点高度已为基准高度,即确定硅棒夹具已在预定装载位置夹持硅棒,由此可令所述取料臂711及夹持件上升至指定位置,硅棒夹具即可带动硅棒沿导向结构移动以执行后续的切割作业;当传感器73件检测的高度与基准高度间具有高度差,令上料装置夹持件的第一夹持块7121与第二夹持块7122相向运动以夹持硅棒,而后硅棒夹具的一对夹臂相背运动以释放硅棒,上料装置带动硅棒以所述高度差确定的位移量升降运动;在升降调整后,硅棒夹具的一对夹臂相向运动以靠近硅棒的两个端面并实现夹持,夹持件释放硅棒,令所述取料臂711及夹持件上升至指定位置,硅棒夹具即可带动硅棒沿导向结构移动以执行后续的切割作业。
为便于理解本申请的硅棒加工设备在实际场景中的加工流程,本申请还提供了以下示例:
在初始时刻,当切割装置位于第一加工区位且研磨装置位于第二加工区位,将一待切割硅棒输送至硅棒加工平台以供第一加工区位上的第一硅棒夹具对待切割硅棒进行夹持;在一些实现方式中,所述待切割硅棒可由硅棒加工设备中的截断切割架对长硅棒截断获得,在另一些实现方式中,所述待切割硅棒也可为硅棒截断设备加工获得;
为实现所述硅棒夹具对待切割硅棒的夹持,在一些实现方式中,藉由一上料装置将硅棒输送至加工区位处硅棒夹具对应的夹持位置,在一些可行的实施例中,所述上料装置可从一 预定装载机构处夹持待切割硅棒后将待切割硅棒输送至对应硅棒夹具的预定装载位置;
所述第一硅棒夹具在预定装载位置夹持待切割硅棒后在第一加工区位沿硅棒轴线方向运动,以使得切割装置中的切割线锯相对待切割硅棒进给以实现开方切割;在此,所述加工区位上可设置有硅棒轴线方向的导向结构以令硅棒夹具在动力源驱动下沿导向结构移动;所述切割装置可配合硅棒夹具及其所夹持的硅棒的运动,例如调整切割线锯的位置以避让硅棒夹具夹持进行了一次切割的硅棒回到初始位置,硅棒夹具驱动所夹持的硅棒转动一定角度,而后从初始位置相对切割线锯进给以进行第二次切割,直至形成截面为矩形或类矩形的切割后硅棒;其中,所述初始位置例如为硅棒夹具的预定装载位置,在此,初始位置应当为令硅棒朝向切割线锯移动可实现切割的位置;在某些实施例中,所述硅棒加工设备中还可配置有边皮输送机构以将切割形成的边皮转运出工作区;
加工获得所述切割后硅棒后,所述第一转换机构驱动所述切割装置由第一加工区位转换至第二加工区位,所述第二转换机构驱动研磨装置转换至第一加工区位,在此状态下所述第一硅棒夹具即可带动所夹持的切割后硅棒沿导向结构移动,所述研磨装置驱动研磨磨具沿重垂线方向运动以实现对切割后硅棒侧面的研磨,由第一硅棒夹具驱动硅棒沿硅棒轴线转动即可切换研磨装置对硅棒的研磨面,由此可获得研磨后硅棒;
在所述第一加工区位进行研磨作业的过程中,所述第二硅棒夹具可装载另一待切割硅棒,在此,第二硅棒夹具装载待切割硅棒的实现方式可参照前述第一硅棒夹具装载待切割硅棒的方式,被转换至第二加工区位的切割装置还可对第二硅棒夹具所夹持的硅棒进行切割;
将所述第一加工区位的研磨后硅棒予以卸料,所述第一硅棒夹具即可装载又一待切割硅棒,由第一转换机构驱动切割装置由第二加工区位转换至第一加工区位,切割装置即可对所述第一硅棒夹具夹持的待切割硅棒进行切割,同时,令第二转换机构将所述研磨装置转换至第二加工区位,即可对第二硅棒夹具所夹持的切割后硅棒进行研磨;在某些实施方式中,对研磨后硅棒的卸料还可藉由在硅棒加工设备中配置硅棒卸料装置以实现,所述硅棒卸料装置还可设置为可在第一加工区位与第二加工区位间移动以在不同时刻顺应卸料需要分别对接第一加工区位及第二加工区位;
重复前述过程,所述硅棒加工设备即可在两个加工区位上同时进行硅棒加工作业,硅棒加工效率提高;同时,通过所述第一转换机构转换切割装置所持的加工区位,通过第二转换机构转换研磨装置所处的加工区位,令硅棒夹具带动所夹持的硅棒沿硅棒轴线方向移动,在任一加工区位即可实现开方切割及研磨作业,硅棒在不同工序间的转运路径被化简;同时, 在同一时刻,可令所述切割装置与研磨装置位于不同加工区位,硅棒加工平台上即可同时进行不同的加工工序;如此,本申请的硅棒加工设备在实现提高加工效率的同时简化了硅棒在不同工序间加工的转运路径,减少了工序流转的人力损耗、时间损耗及硅棒被损坏的风险。
本申请在第二方面还提供了一种硅棒加工方法,应用于硅棒加工设备中,所述硅棒加工设备包括具有硅棒加工平台的机座、切割装置、研磨装置、第一硅棒夹具及第二硅棒夹具,其中,所述切割装置设于第一转换机构,所述第一转换机构设于硅棒加工平台的第一安装位置,所述研磨装置设于第二转换机构,所述第二转换机构设于硅棒加工平台的第二安装位置,所述第一硅棒夹具及第二硅棒夹具分别对应设于硅棒加工平台的第一加工区位及第二加工区位,包括以下步骤:
在步骤S10中,令切割装置位于第一加工区位及研磨装置位于第二加工区位;
在初始时刻,当切割装置位于第一加工区位且研磨装置位于第二加工区位,将第一待切割硅棒输送至硅棒加工平台以供第一加工区位上的第一硅棒夹具对待切割硅棒进行夹持;在一些实现方式中,所述待切割硅棒可由硅棒加工设备中的截断切割架对长硅棒截断获得,在另一些实现方式中,所述待切割硅棒也可为硅棒截断设备加工获得;
在步骤S11中,令第一加工区位上的第一硅棒夹具装载第一待切割硅棒;
为实现所述硅棒夹具对待切割硅棒的夹持,在一些实现方式中,藉由一上料装置将硅棒输送至加工区位处硅棒夹具对应的夹持位置,在一些可行的实施例中,所述上料装置可从一预定装载机构处夹持待切割硅棒后将待切割硅棒输送至对应硅棒夹具的预定装载位置。
在步骤S12中,令第一硅棒夹具夹持第一待切割硅棒沿第一方向移动以令切割装置相对第一待切割硅棒进给切割,获得截面为类矩形的第一切割后硅棒;其中,所述第一方向平行于硅棒轴线方向;
所述第一硅棒夹具在预定装载位置夹持待切割硅棒后在第一加工区位沿硅棒轴线方向运动,以使得切割装置中的切割线锯相对待切割硅棒进给以实现开方切割;在此,所述加工区位上可设置有硅棒轴线方向的导向结构以令硅棒夹具在动力源驱动下沿导向结构移动,所述导向结构例如为导柱或导轨;所述切割装置可配合硅棒夹具及其所夹持的硅棒的运动,例如调整切割线锯的位置以避让硅棒夹具夹持进行了一次切割的硅棒回到初始位置,硅棒夹具驱动所夹持的硅棒转动一定角度,而后从初始位置相对切割线锯进给以进行第二次切割,直至形成截面为矩形或类矩形的切割后硅棒;其中,所述初始位置例如为硅棒夹具的预定装载位置,在此,初始位置应当为令硅棒朝向切割线锯移动可实现切割的位置;在某些实施例中, 所述硅棒加工设备中还可配置有边皮输送机构以将切割形成的边皮转运出工作区。
在步骤S13中,令第一转换机构驱动切割装置从第一加工区位转换至第二加工区位,以及令第二转换机构驱动研磨装置从第二加工区位转换至第一加工区位;
在某些实施方式中,所述第一转换机构包括第一转轴,通过驱动所述切割装置沿第一转轴转动预设角度,即可实现切割装置所处加工区位的切换;所述第二转换机构包括第二转轴,通过驱动所述研磨装置沿第二转轴转动预设角度,即可实现研磨装置所处加工区位的切换;
在一场景中,当所述第一加工区位及第二加工区位设于第二方向的相对两侧,所述第一转轴可设于第一方向,所述第二转轴设于重垂线方向;其中,所述第一方向、第二方向、以及重垂线方向两两垂直。
在步骤S14中,令第一硅棒夹具夹持第一切割后硅棒沿第一方向移动以配合研磨装置对所述第一切割后硅棒进行研磨,获得第一研磨后硅棒;以及令第二硅棒夹具装载第二待切割硅棒并夹持第二待切割硅棒沿第一方向移动以令切割装置相对第二待切割硅棒进给切割,获得截面为类矩形的第二切割后硅棒;
加工获得所述第一切割后硅棒后,所述第二转换机构驱动所述研磨装置由第一加工区位转换至第二加工区位,在此状态下所述第一硅棒夹具即可带动所夹持的第一切割后硅棒沿导向结构移动,所述研磨装置驱动研磨磨具沿重垂线方向运动并配合第一硅棒夹具在第一方向的运动,由此实现对第一切割后硅棒侧面的研磨,由第一硅棒夹具驱动硅棒沿硅棒轴线转动即可切换研磨装置对硅棒的研磨面,由此可获得第一研磨后硅棒。
在所述第一加工区位进行研磨作业的过程中,所述第二硅棒夹具可装载第二待切割硅棒,在此,第二硅棒夹具装载第二待切割硅棒的实现方式可参照前述第一硅棒夹具装载第一待切割硅棒的方式,被转换至第二加工区位的切割装置还可对第二硅棒夹具所夹持的第二待切割硅棒进行切割,以获得第二切割后硅棒。
在步骤S15中,对第一硅棒夹具所夹持的第一研磨后硅棒予以卸料并装载第三待切割硅棒;令第一转换机构驱动切割装置从第二加工区位转换至第一加工区位,以及令第二转换机构驱动研磨装置从第一加工区位转换至第二加工区位;
将所述第一加工区位的第一研磨后硅棒予以卸料,所述第一硅棒夹具即可装载第三待切割硅棒,由第一转换机构驱动切割装置从第二加工区位转换至第一加工区位,切割装置即可对所述第一硅棒夹具夹持的第三待切割硅棒进行切割,同时,第二转换机构驱动研磨装置从第一加工区位转换至第二加工区位,研磨装置可对第二硅棒夹具所夹持的第二切割后硅棒进 行研磨;在某些实施方式中,对第一研磨后硅棒的卸料还可藉由在硅棒加工设备中配置硅棒卸料装置以实现,所述硅棒卸料装置还可设置为可在第一加工区位与第二加工区位间移动以在不同时刻顺应卸料需要分别对接第一加工区位及第二加工区位。
在步骤S16中,令第一加工区位的切割装置对第三待切割硅棒进行切割以获得第三切割后硅棒,以及令第二加工区位的研磨装置对第二切割后硅棒进行研磨以获得第二研磨后硅棒。
在此,第一加工区位的切割装置对第三待切割硅棒进行切割的实现方式可参照前述步骤中切割装置对第一待切割硅棒或第二待切割硅棒进行切割的实现方式;类似的,研磨装置对第二切割后硅棒进行研磨的实现方式可参照对第一切割后硅棒进行研磨的实现方式。
重复前述过程,所述硅棒加工设备即可在两个加工区位上同时进行硅棒加工作业,硅棒加工效率提高;同时,通过所述第一转换机构转换切割装置所处的加工区位,通过第二转换机构转换研磨装置所处的加工区位,令硅棒夹具带动所夹持的硅棒沿硅棒轴线方向移动,在任一加工区位即可实现开方切割及研磨作业,硅棒在不同工序间的转运路径被化简;同时,在同一时刻,可令所述切割装置与研磨装置位于不同加工区位,硅棒加工平台上即可分别进行不同的加工工序;如此,本申请的硅棒加工设备在实现提高加工效率的同时简化了硅棒在不同工序间加工的转运路径,减少了工序流转的人力损耗、时间损耗及硅棒被损坏的风险。
上述实施例仅例示性说明本申请的原理及其功效,而非用于限制本申请。任何熟悉此技术的人士皆可在不违背本申请的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本申请所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本申请的权利要求所涵盖。

Claims (65)

  1. 一种硅棒加工设备,其特征在于,包括:
    机座,具有硅棒加工平台,所述硅棒加工平台设有第一加工区位与第二加工区位;
    至少一第一硅棒夹具,设于所述第一加工平台,用于夹持硅棒并带动所夹持的硅棒沿第一方向移动;其中,所述第一方向平行于硅棒轴线方向;
    至少一第二硅棒夹具,设于所述第二加工平台,用于夹持硅棒并带动所夹持的硅棒沿第一方向移动;
    切割装置,设于第一转换机构,用于对所述硅棒加工平台的第一加工区位或第二加工区位上的硅棒进行切割,以形成切割后硅棒;其中,所述第一转换机构设于硅棒加工平台上的第一安装位置,驱动切割装置在第一加工区位和第二加工区位之间转换位置;
    研磨装置,设于第二转换机构,用于对所述硅棒加工平台的第一加工区位或第二加工区位上的切割后硅棒进行研磨;其中,所述第二转换机构设于硅棒加工平台上的第二安装位置,驱动研磨装置在第一加工区位和第二加工区位之间转换位置。
  2. 根据权利要求1所述的硅棒加工设备,其特征在于,所述第一转换机构包括第一转轴,所述切割装置沿第一转轴转动预设角度以在第一加工区位与第二加工区位之间转换位置;所述第二转换机构包括第二转轴,所述研磨装置沿第二转轴转动预设角度以在第一加工区位与第二加工区位之间转换位置。
  3. 根据权利要求2所述的硅棒加工设备,其特征在于,所述第一转轴设于第一方向,所述第二转轴设于重垂线方向;所述第一加工区位与第二加工区位设于第二方向的相对两侧,其中,所述第一方向、第二方向、以及重垂线方向两两垂直。
  4. 根据权利要求2所述的硅棒加工设备,其特征在于,所述第二转换机构还包括用于驱动所述研磨装置转动的转动驱动机构,所述转动驱动机构包括:
    主动齿轮,轴接于动力驱动源;
    从动齿轮,啮合于所述主动齿轮且连接于所述第二转轴。
  5. 根据权利要求2所述的硅棒加工设备,其特征在于,所述第一转换机构包括:
    支架,用于设置所述切割装置;
    转动驱动源,用于驱动所述切割装置相对支架沿第一转轴转动,以在第一加工区位与第二加工区位之间转换位置。
  6. 根据权利要求1所述的硅棒加工设备,其特征在于,所述切割装置包括:
    切割架;
    至少一线切割单元,设于所述切割架,所述线切割单元包括:多个切割轮、过渡轮、及切割线,所述切割线绕于所述多个切割轮及过渡轮以形成至少一切割线锯。
  7. 根据权利要求6所述的硅棒加工设备,其特征在于,所述线切割单元包括:
    切割线;
    第一切割轮及第二切割轮,设于所述切割架,切割线绕于所述第一切割轮及第二切割轮以形成切割线锯;其中,所述第一切割轮的轮面与第二切割轮的轮面相平行或共面;
    第一过渡轮,邻设于所述第一切割轮,在牵引切割线的状态下令第一切割轮与第一过渡轮的切割线位于第一切割轮中用于缠绕切割线的第一切割线槽所在平面内;
    第二过渡轮,邻设于所述第二切割轮,在牵引切割线的状态下令第二切割轮与第二过渡轮的切割线位于第二切割轮中用于缠绕切割线的第二切割线槽所在平面内;
    至少一第三过渡轮,设于所述第一过渡轮及第二过渡轮之间,用于牵引所述第一过渡轮与所述第二过渡轮之间的切割线,以令所述线切割单元中形成一切割容纳空间,所述切割容纳空间可容纳所述待切割硅棒且所述切割装置中仅有所述切割线锯与所述切割容纳空间相交。
  8. 根据权利要求7所述的硅棒加工设备,其特征在于,所述第一过渡轮、第二过渡轮、及至少一第三过渡轮用于将所述切割线牵引远离所述切割容纳空间。
  9. 根据权利要求7所述的硅棒加工设备,其特征在于,所述切割线绕于所述第一切割轮、第二切割轮、第一过渡轮、第二过渡轮及第三过渡轮之间以形成首尾相接的闭环切割线。
  10. 根据权利要求7所述的硅棒加工设备,其特征在于,所述线切割单元中包括两个第三过渡轮,其中,所述切割线顺次缠绕于所述第一切割轮、第二切割轮、第二过渡轮、一第三 过渡轮、另一第三过渡轮、第一过渡轮、第一切割轮以形成首尾相接的闭环切割线。
  11. 根据权利要求7所述的硅棒加工设备,其特征在于,所述切割装置还包括切割线驱动装置,用于驱动所述切割线运行以对硅棒进行切割。
  12. 根据权利要求11所述的硅棒加工设备,其特征在于,所述切割线驱动装置为电机,具有动力输出轴且所述动力输出轴轴连接于所述第一切割轮或第二切割轮。
  13. 根据权利要求6所述的硅棒加工设备,其特征在于,所述线切割装置还包括:
    至少一调距机构,设于所述至少一线切割单元,用于驱动所述线切割单元中多个切割轮沿垂直于切割轮轮面的方向移动,其中,所述切割轮轮面设于水平面方向或平行于第一方向的竖直面方向。
  14. 根据权利要求13所述的硅棒加工设备,其特征在于,所述切割装置包括单线切割单元,所述调距机构包括:
    丝杆,沿切割轮轮面的正交方向设置且与所述单线切割单元螺纹连接;
    驱动源,用于驱动所述丝杆转动。
  15. 根据权利要求13所述的硅棒加工设备,其特征在于,所述切割装置包括单线切割单元,所述调距机构包括:
    伸缩件,沿切割轮轮面的正交方向设置且与所述单线切割单元关联;
    驱动源,用于驱动所述伸缩件沿切割轮轮面的正交方向伸缩运动。
  16. 根据权利要求13所述的硅棒加工设备,其特征在于,所述切割装置包括平行且相对设置第一线切割单元和第二线切割单元,所述第一线切割单元和第二线切割单元中的至少一者通过所述调距机构驱动沿切割轮轮面的正交方向移动。
  17. 根据权利要求16所述的硅棒加工设备,其特征在于,所述调距机构包括:
    丝杆,沿切割轮轮面的正交方向设置且与所述第一线切割单元或第二线切割单元螺 纹连接;
    驱动源,用于驱动所述丝杆转动。
  18. 根据权利要求16所述的硅棒加工设备,其特征在于,所述调距机构包括:
    伸缩件,沿切割轮轮面的正交方向设置且与所述第一线切割单元或第二线切割单元关联;
    驱动源,用于驱动所述伸缩件沿切割轮轮面的正交方向作伸缩运动。
  19. 根据权利要求16所述的硅棒加工设备,其特征在于,所述调距机构包括:
    双向丝杆,沿切割轮轮面的正交方向设置且与所述第一线切割单元和第二线切割单元螺纹连接;
    驱动源,用于驱动所述丝杆转动以使得所述第一线切割单元和所述第二线切割单元沿切割轮轮面的正交方向相向移动或相背移动。
  20. 根据权利要求6所述的硅棒加工设备,其特征在于,所述第一硅棒夹具通过第一导向结构设于所述第一加工区位,其中,所述第一导向结构为沿第一方向设置的转移导轨或导柱;所述第二硅棒夹具通过第二导向结构设于所述第二加工区位,其中,所述第二导向结构为沿第一方向的设置转移导轨或导柱。
  21. 根据权利要求20所述的硅棒加工设备,其特征在于,所述切割线锯沿第二方向,所述第一硅棒夹具与第二硅棒夹具中的任一者包括:
    夹臂安装座,设于所对应的转移导轨;
    动力源,用于驱动所述夹臂安装座沿所对应的转移导轨或导柱移动;
    一对夹持部,沿第一方向相对设置,用于夹持硅棒的两个端面;
    一对夹臂,设于水平面内,具有连接于所述夹臂安装座的近端以及连接于所述夹持部的远端;
    夹臂驱动机构,用于驱动一对夹臂中的至少一个沿第一方向移动以调节所述一对夹臂在第一方向的间距。
  22. 根据权利要求21所述的硅棒加工设备,其特征在于,所述第一硅棒夹具与第二硅棒夹具中的任一者还包括夹持部转动机构,用于驱动所述夹持部旋转。
  23. 根据权利要求21所述的硅棒加工设备,其特征在于,所述夹臂驱动机构包括:
    丝杆,沿第一方向设置且与所述一对夹臂中的任意一个关联;
    驱动源,用于驱动所关联的夹臂沿第一方向移动。
  24. 根据权利要求21所述的硅棒加工设备,其特征在于,所述夹臂驱动机构包括:
    双向丝杆,沿第一方向设置且在两端与所述一对夹臂螺纹连接;
    驱动源,用于驱动所述丝杆转动以使得所述一对夹臂沿第一方向相向移动或相背移动。
  25. 根据权利要求20所述的硅棒加工设备,其特征在于,所述至少一切割线锯沿重垂线方向设置,所述第一硅棒夹具与第二硅棒夹具中的任一者包括:
    夹臂安装座,设于所对应的转移导轨或导柱;
    动力源,用于驱动所述夹臂安装座沿所对应的转移导轨或导柱移动;
    一对夹持部,沿第一方向相对设置,用于夹持硅棒的两个端面;
    一对夹臂,设于垂直于第二方向的平面内,具有连接于所述夹臂安装座的近端以及连接于所述夹持部的远端;
    夹臂驱动机构,用于驱动一对夹臂中的至少一个沿第一方向移动以调节所述一对夹臂在第一方向的间距。
  26. 根据权利要求25所述的硅棒加工设备,其特征在于,所述第一硅棒夹具与第二硅棒夹具中的任一者还包括夹持部转动机构,用于驱动所述夹持部旋转。
  27. 根据权利要求25所述的硅棒加工设备,其特征在于,所述夹臂驱动机构包括:
    丝杆,沿第一方向设置且与所述一对夹臂中的任意一个关联;
    驱动源,用于驱动所关联的夹臂沿第一方向移动。
  28. 根据权利要求25所述的硅棒加工设备,其特征在于,所述夹臂驱动机构包括:
    双向丝杆,沿第一方向设置且在两端与所述一对夹臂螺纹连接;
    驱动源,用于驱动所述丝杆转动以使得所述一对夹臂沿第一方向相向移动或相背移动。
  29. 根据权利要求1所述的硅棒加工设备,其特征在于,所述硅棒加工设备还包括边皮承托机构,用于抵靠硅棒外侧并承托切割形成的所述边皮。
  30. 根据权利要求29所述的硅棒加工设备,其特征在于,所述边皮承托机构包括:
    承托组件,包括:承托部,受控抵靠并承托所述边皮;气缸或液压泵,包括伸缩部,所述伸缩部连接于所述承托部以控制所述承托部远离或抵靠所述边皮;
    安装部,用于将所述承托组件连接于所述切割装置。
  31. 根据权利要求30所述的硅棒加工设备,其特征在于,所述承托部包括:
    至少两个承托块,沿所述第一方向间隔设置,具有用于接触并承载边皮的承载面。
  32. 根据权利要求30所述的硅棒加工设备,其特征在于,所述承托部包括:
    至少两个承托杆,沿第一方向设置,用于接触并承托边皮;
    连接部,分设于所述切割架第一方向的相对两侧以对应所述承托杆的相对两端,用于连接所述至少两个承托杆及所述伸缩部。
  33. 根据权利要求29所述的硅棒加工设备,其特征在于,还包括边皮错位机构,设于所述第一加工区位及第二加工区位,用于沿第一方向推动所述边皮以令所述边皮脱离所述边皮承托机构。
  34. 根据权利要求33所述的硅棒加工设备,其特征在于,所述边皮错位机构包括气缸或液压泵,其中,所述气缸或液压泵的伸缩杆沿第一方向设置。
  35. 根据权利要求1或29所述的硅棒加工设备,其特征在于,还包括边皮输送机构,用于承 接切割形成的所述边皮并将所述边皮转运至卸料区。
  36. 根据权利要求35所述的硅棒加工设备,其特征在于,所述边皮输送机构包括:
    输送部,用于承载所述边皮;
    输送驱动源,用于驱动所述输送部沿第一方向运动以输送所述边皮。
  37. 根据权利要求1所述的硅棒加工设备,其特征在于,所述研磨装置包括:
    至少一对研磨磨具,其中,所述一对研磨磨具的研磨面平行且相对设置;
    磨具进退机构,用于驱动所述一对研磨磨具中的至少一个沿重垂线方向移动。
  38. 根据权利要求37所述的硅棒加工设备,其特征在于,所述磨具进退机构包括:
    进退导轨,沿重垂线方向设于所述第二转换机构,用于设置所述研磨磨具;
    驱动源,用于驱动所述研磨磨具中的至少一个沿所述进退导轨移动。
  39. 根据权利要求37所述的硅棒加工设备,其特征在于,所述第一硅棒夹具或第二硅棒夹具中任一者还包括研磨修复装置,用于修磨对应的所述研磨装置中的研磨磨具。
  40. 根据权利要求39所述的硅棒加工设备,其特征在于,所述研磨修复装置包括:
    安装主体,设于所述硅棒夹具,用于在所述硅棒夹具的带动下沿第一方向往复运动;
    至少一修磨部,设于所述安装主体上,用于检测或修磨所述研磨装置的研磨磨具。
  41. 根据权利要求40所述的硅棒加工设备,其特征在于,包括两个修磨部,分别设于所述安装主体的相对两侧。
  42. 根据权利要求1所述的硅棒加工设备,其特征在于,还包括倒角装置,用于研磨所述切割后硅棒的棱边。
  43. 根据权利要求42所述的硅棒加工设备,其特征在于,所述倒角装置包括:
    至少一对倒角磨具,其中,所述一对倒角磨具的倒角磨面平行且相对设置;
    倒角磨具进退机构,用于驱动所述一对研磨磨具中的至少一个沿重垂线方向移动。
  44. 根据权利要求43所述的硅棒加工设备,其特征在于,所述倒角装置连接于所述第二转换机构,用于在所述第二转换机构驱动下在第一加工区位及第二加工区位间切换以对所述第一硅棒夹具或第二硅棒夹具所夹持的切割后硅棒进行倒角。
  45. 根据权利要求44所述的硅棒加工设备,其特征在于,所述倒角磨具进退机构包括:
    进退导轨,沿重垂线方向设于所述第二转换机构,用于设置所述至少一对倒角磨具;
    进退驱动单元,用于驱动所述至少一对倒角磨具中的至少一个倒角磨具沿所述进退导轨移动。
  46. 根据权利要求1所述的硅棒加工设备,其特征在于,还包括硅棒卸料装置,用于承接所述第一硅棒夹具以及第二硅棒夹具所夹持的研磨后硅棒。
  47. 根据权利要求46所述的硅棒加工设备,其特征在于,所述硅棒卸料装置包括:
    传送带,用于承载所述研磨后硅棒;
    卸料驱动源,用于驱动所述传送带运动以带动其承载的研磨后硅棒沿第一方向移动。
  48. 根据权利要求46所述的硅棒加工设备,其特征在于,所述硅棒卸料装置通过移位机构设于所述硅棒加工平台,用于在所述移位机构驱动下在第一加工区位与第二加工区位间移动。
  49. 根据权利要求48所述的硅棒加工设备,其特征在于,所述硅棒卸料装置通过升降机构设于所述移位机构,其中,所述升降机构包括:
    升降导向结构,设于所述移位机构并连接所述硅棒卸料装置;
    升降驱动源,用于驱动所述硅棒卸料装置沿重垂线方向升降运动。
  50. 根据权利要求1所述的硅棒加工设备,其特征在于,还包括硅棒截断装置,所述硅棒截断装置包括:
    硅棒承载装置,用于承载单晶硅棒;
    截断切割架,包括相对于所述硅棒承载装置可升降的切割线锯,用于对单晶硅棒进行截断以形成所述待切割硅棒。
  51. 根据权利要求50所述的硅棒加工设备,其特征在于,所述硅棒承载装置为链条输送机构、倍速链机构、或传动带机构。
  52. 根据权利要求50所述的硅棒加工设备,其特征在于,所述硅棒截断装与研磨装置分别位于所述切割装置沿第一方向的相对两端。
  53. 根据权利要求1或50所述的硅棒加工设备,其特征在于,还包括上料装置,用于将待切割硅棒输送至第一加工区位或第二加工区位,以使所述第一硅棒夹具或第二硅棒夹具装载待切割硅棒。
  54. 根据权利要求53所述的硅棒加工设备,其特征在于,还包括一预定装载机构,沿第一方向设置,用于承载待切割硅棒以使所述上料装置从所述预定装载机构将待切割硅棒输送至第一加工区位或第二加工区位。
  55. 根据权利要求53所述的硅棒加工设备,其特征在于,所述上料装置包括至少一夹持组件,其中所述夹持组件包括:
    取料臂,通过一安装部悬置于所述硅棒加工平台上方的顶架,其中,顶架包括沿第二方向设置的导向结构以令所述安装部具有沿第二方向移动的自由度;
    夹持件,设于所述取料臂底端,用于夹持待切割硅棒。
  56. 根据权利要求55所述的硅棒加工设备,其特征在于,所述安装部包括沿第一方向设置的平移机构,用于设置所述取料臂以使所述取料臂具有沿第一方向移动的自由度。
  57. 根据权利要求55所述的硅棒加工设备,其特征在于,所述夹持件包括:
    相对设置的第一夹持块与第二夹持块,其中,所述第一夹持块及第二夹持块具有夹持 弧面;
    夹持块驱动机构,用于驱动所述第一夹持块与第二夹持块作开合运动。
  58. 根据权利要求57所述的硅棒加工设备,其特征在于,所述夹持块驱动机构包括:
    第一齿条,联动于所述第一夹持块;
    第二齿条,联动于所述第二夹持块;
    夹紧气缸,设置于所述第一齿条或二齿条上,用推动所述第一齿条或第二齿条在齿条延伸方向移动;
    传动齿轮,与所述第一齿条及第二齿条相啮合,用于在正向转时带动所述第一夹持块及第二夹持块相向运动以执行闭合作,在逆向转动时带动所述第一夹持块及第二夹持块相背运动以执行张开动作。
  59. 根据权利要求57所述的硅棒加工设备,其特征在于,所述夹持块驱动机构包括:
    第一齿条,联动于所述第一夹持块;
    第二齿条,联动于所述第二夹持块;
    驱动齿轮,连接于驱动电机的动力输出轴,并与所述第一齿条与所述第二齿条相啮合,用于在正向转动时带动所述第一夹持块及第二夹持块相向运动以执行闭合动作,在逆向转动时带动所述第一夹持块及第二夹持块相背运动以执行张开动作。
  60. 根据权利要求57所述的硅棒加工设备,其特征在于,所述夹持块驱动机构包括:
    开合齿轮,设于所述第一夹持块及第二夹持块上;
    齿条,所述齿条的相对两端分别设有与所述第一夹持块和第二夹持块上的开合齿轮啮合对应的齿纹;
    驱动源,用于驱动所述齿条沿齿条方向进退运动。
  61. 根据权利要求57所述的硅棒加工设备,其特征在于,所述夹持块驱动机构包括:
    双向丝杆,两端与所述第一夹持块及第二夹持块螺纹连接;
    驱动源,用于驱动所述丝杆转动以使得所述第一夹持块及第二夹持块相向运动或相背运动。
  62. 根据权利要求55所述的硅棒加工设备,其特征在于,所述取料臂可升降的设置于所述安装部。
  63. 根据权利要求53所述的硅棒加工设备,其特征在于,所述上料装置还包括传感器件,用于检测所述第一硅棒夹具或第二硅棒夹具所夹持的硅棒,以确定所述第一硅棒夹具或第二硅棒夹具以预定装载位置夹持硅棒。
  64. 根据权利要求63所述的硅棒加工设备,其特征在于,所述传感器件为接触式传感器或测距传感器。
  65. 一种硅棒加工方法,应用于硅棒加工设备中,所述硅棒加工设备包括具有硅棒加工平台的机座、切割装置、研磨装置、第一硅棒夹具及第二硅棒夹具,其中,所述切割装置设于第一转换机构,所述研磨装置设于第二转换机构,所述第一硅棒夹具及第二硅棒夹具分别对应设于硅棒加工平台的第一加工区位及第二加工区位,其特征在于,包括以下步骤:
    令切割装置位于第一加工区位及研磨装置位于第二加工区位;
    令第一加工区位上的第一硅棒夹具装载第一待切割硅棒;
    令第一硅棒夹具夹持第一待切割硅棒沿第一方向移动以令切割装置相对第一待切割硅棒进给切割,获得截面为类矩形的第一切割后硅棒;其中,所述第一方向平行于硅棒轴线方向;
    令第一转换机构驱动切割装置从第一加工区位转换至第二加工区位,以及令第二转换机构驱动研磨装置从第二加工区位转换至第一加工区位;
    令第一硅棒夹具夹持第一切割后硅棒沿第一方向移动以配合研磨装置对所述第一切割后硅棒进行研磨,获得第一研磨后硅棒;以及令第二硅棒夹具装载第二待切割硅棒并夹持第二待切割硅棒沿第一方向移动以令切割装置相对第二待切割硅棒进给切割,获得截面为类矩形的第二切割后硅棒;
    对第一硅棒夹具所夹持的第一研磨后硅棒予以卸料并装载第三待切割硅棒;
    令第一转换机构驱动切割装置从第二加工区位转换至第一加工区位,以及令第二转换机构驱动研磨装置从第一加工区位转换至第二加工区位;
    令第一加工区位的切割装置对第三待切割硅棒进行切割以获得第三切割后硅棒,以及令第二加工区位的研磨装置对第二切割后硅棒进行研磨以获得第二研磨后硅棒。
PCT/CN2021/093521 2020-08-28 2021-05-13 硅棒加工设备及硅棒加工方法 WO2022041848A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010888927.9 2020-08-28
CN202010888927 2020-08-28

Publications (1)

Publication Number Publication Date
WO2022041848A1 true WO2022041848A1 (zh) 2022-03-03

Family

ID=78017881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093521 WO2022041848A1 (zh) 2020-08-28 2021-05-13 硅棒加工设备及硅棒加工方法

Country Status (2)

Country Link
CN (2) CN214394870U (zh)
WO (1) WO2022041848A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114290407A (zh) * 2022-03-09 2022-04-08 太原理工大学 一种碳纤维复合材料板材线锯加工设备及加工方法
CN114589821A (zh) * 2022-03-10 2022-06-07 大连连城数控机器股份有限公司 一种切磨制造岛及其切磨方法
CN114789246A (zh) * 2022-04-28 2022-07-26 淄博双马新材料科技股份有限公司 一种用于对板坯水口底座加工的装置
CN116609357A (zh) * 2023-06-12 2023-08-18 乐山高测新能源科技有限公司 一种用于硅棒的视觉检测方法
CN116766418A (zh) * 2023-08-21 2023-09-19 山西鼎芯晶体材料有限公司 一种蓝宝石定向加工装置
CN117001448A (zh) * 2023-10-07 2023-11-07 通威微电子有限公司 一种研磨装置及研磨装置控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114347286A (zh) * 2021-11-15 2022-04-15 天通日进精密技术有限公司 一种硅棒边皮的切断设备及其切断方法
CN114589570B (zh) * 2022-03-29 2023-08-25 南通海峰家居用品有限公司 一种用于金属门窗生产的边角打磨装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101745804A (zh) * 2008-12-17 2010-06-23 天津市精诚机床制造有限公司 数控插齿、铣齿复合机床
KR20130060558A (ko) * 2011-11-30 2013-06-10 (주)이이테크 잉곳 클램핑 장치
CN103921360A (zh) * 2014-04-24 2014-07-16 上海日进机床有限公司 一种金刚线开方机
CN204504738U (zh) * 2015-04-09 2015-07-29 七冶压力容器制造有限责任公司 一种铝母线锯铣床
CN110026826A (zh) * 2018-09-30 2019-07-19 浙江晶盛机电股份有限公司 一种全自动单晶硅棒切磨复合加工一体设备及其使用方法
CN111409005A (zh) * 2020-04-30 2020-07-14 青岛高测科技股份有限公司 一种硅棒开方磨倒一体机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101745804A (zh) * 2008-12-17 2010-06-23 天津市精诚机床制造有限公司 数控插齿、铣齿复合机床
KR20130060558A (ko) * 2011-11-30 2013-06-10 (주)이이테크 잉곳 클램핑 장치
CN103921360A (zh) * 2014-04-24 2014-07-16 上海日进机床有限公司 一种金刚线开方机
CN204504738U (zh) * 2015-04-09 2015-07-29 七冶压力容器制造有限责任公司 一种铝母线锯铣床
CN110026826A (zh) * 2018-09-30 2019-07-19 浙江晶盛机电股份有限公司 一种全自动单晶硅棒切磨复合加工一体设备及其使用方法
CN111409005A (zh) * 2020-04-30 2020-07-14 青岛高测科技股份有限公司 一种硅棒开方磨倒一体机

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114290407A (zh) * 2022-03-09 2022-04-08 太原理工大学 一种碳纤维复合材料板材线锯加工设备及加工方法
CN114589821A (zh) * 2022-03-10 2022-06-07 大连连城数控机器股份有限公司 一种切磨制造岛及其切磨方法
CN114589821B (zh) * 2022-03-10 2024-04-09 大连连城数控机器股份有限公司 一种切磨制造岛及其切磨方法
CN114789246A (zh) * 2022-04-28 2022-07-26 淄博双马新材料科技股份有限公司 一种用于对板坯水口底座加工的装置
CN116609357A (zh) * 2023-06-12 2023-08-18 乐山高测新能源科技有限公司 一种用于硅棒的视觉检测方法
CN116609357B (zh) * 2023-06-12 2024-04-02 乐山高测新能源科技有限公司 一种用于硅棒的视觉检测方法
CN116766418A (zh) * 2023-08-21 2023-09-19 山西鼎芯晶体材料有限公司 一种蓝宝石定向加工装置
CN116766418B (zh) * 2023-08-21 2023-10-24 山西鼎芯晶体材料有限公司 一种蓝宝石定向加工装置
CN117001448A (zh) * 2023-10-07 2023-11-07 通威微电子有限公司 一种研磨装置及研磨装置控制方法

Also Published As

Publication number Publication date
CN214394870U (zh) 2021-10-15
CN114102886A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2022041848A1 (zh) 硅棒加工设备及硅棒加工方法
WO2022041849A1 (zh) 硅棒加工设备及硅棒加工方法
CN212218917U (zh) 硅棒切磨一体机
WO2022057296A1 (zh) 硅棒切磨一体机
CN214394871U (zh) 硅棒切磨一体机
KR101184959B1 (ko) 잉곳 블록의 복합 모따기 가공 장치 및 가공 방법
WO2022016973A1 (zh) 硅棒研磨机和硅棒研磨方法
WO2021027326A1 (zh) 硅棒截断设备
CN214982281U (zh) 硅棒切磨一体机
CN109049369B (zh) 多线切割设备及其换槽机构
WO2022048192A1 (zh) 硅棒研磨机
WO2022041863A1 (zh) 硅棒研磨机及硅棒研磨方法
EP4049790A1 (en) Silicon rod grinding machine and silicon rod grinding method
CN214562085U (zh) 倒角装置及硅棒加工设备
CN212653275U (zh) 研磨修复装置及硅棒加工设备
WO2022041864A1 (zh) 切割装置及硅棒加工设备
CN214186720U (zh) 硅棒研磨机
CN211490756U (zh) 硅棒研磨机
CN214419231U (zh) 切割装置及硅棒加工设备
CN210256793U (zh) 一种大尺寸碳化硅晶片金刚石线切割机床
CN219276284U (zh) 硅棒切磨一体机
CN112706012A (zh) 硅棒研磨机及硅棒研磨方法
CN112388852A (zh) 硅棒上料装置
CN211890289U (zh) 硅棒研磨机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21859693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21859693

Country of ref document: EP

Kind code of ref document: A1