WO2022041100A1 - 马达的校正系统 - Google Patents

马达的校正系统 Download PDF

Info

Publication number
WO2022041100A1
WO2022041100A1 PCT/CN2020/112013 CN2020112013W WO2022041100A1 WO 2022041100 A1 WO2022041100 A1 WO 2022041100A1 CN 2020112013 W CN2020112013 W CN 2020112013W WO 2022041100 A1 WO2022041100 A1 WO 2022041100A1
Authority
WO
WIPO (PCT)
Prior art keywords
control module
motor
angle
module
phase sequence
Prior art date
Application number
PCT/CN2020/112013
Other languages
English (en)
French (fr)
Inventor
林继谦
陈育良
Original Assignee
威刚科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 威刚科技股份有限公司 filed Critical 威刚科技股份有限公司
Priority to PCT/CN2020/112013 priority Critical patent/WO2022041100A1/zh
Publication of WO2022041100A1 publication Critical patent/WO2022041100A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage

Definitions

  • the present invention relates to a calibration system, in particular to a calibration system of a motor used for calibrating zero point position and phase sequence.
  • the existing common motor calibration method is: first fix the motor encoder (Encoder) and the motor shaft to fix each other, then use a driver to drive the motor to rotate, and obtain the waveform output by the encoder through an oscilloscope. Personnel can judge whether the relative position of the motor rotor and the encoder turntable is correct by watching the waveform on the oscilloscope. If the relevant personnel judge that the relative position of the encoder turntable and the motor rotor is incorrect, the relevant personnel will manually adjust the motor rotor. , until the relative positions of the two are correct.
  • the above-mentioned conventional methods for calibrating the zero position of the motor and the encoder are not only time-consuming and labor-intensive, but also cannot precisely adjust the relative positions of the encoder's turntable and the motor rotor relative to each other by manual methods.
  • the invention discloses a correction system for a motor, which is mainly used to improve the inconvenience caused by the manual way of performing zero-point position correction on a motor rotor and an encoder.
  • One of the embodiments of the present invention discloses a motor calibration system, which is used to calibrate a zero position of a motor and a phase sequence of the motor, the motor includes a motor control module, and the motor calibration system includes a control module, a A driving module, an angle reader, a data writer and a steering sensor.
  • the control module is electrically connected to a power source, the control module includes a storage and a processor, the storage stores a predetermined steering information, and the processor is electrically connected to the storage; a driving module is electrically connected to the control module, and the driving module is used for to connect the three-phase line of the motor; an angle reader is used to connect the motor control module, the angle reader is used to read an angle information output by the motor control module; a data writer is used to write at least one corrected angle data into the motor A control module; a steering sensor is used to be arranged on the motor, and the steering sensor is used to sense the rotation direction of the motor to generate a steering information correspondingly; wherein, the control module can execute a phase sequence correction program, when the control module executes the phase sequence correction program , the control module will control the rotation of the motor through the drive module according to the predetermined steering information, and the control module will determine whether the rotation direction of the motor is consistent with the predetermined steering information according to the steering information returned by the steering sensor; If the direction does not match the
  • the control module can also execute a phase sequence verification procedure.
  • the control module executes the phase sequence verification procedure, the control module will control the motor to rotate according to the predetermined steering information, and the control module will rotate the motor according to the steering information.
  • the steering information returned by the sensor determines whether the rotation direction of the motor is correct; if the control module determines that the rotation direction of the motor is incorrect, the control module re-executes the phase sequence correction procedure, or the control module sends a phase sequence correction failure signal.
  • the motor calibration system further includes a warning module, the warning module is electrically connected to the control module, and when the warning module receives the phase sequence calibration failure signal, the warning module will warn the user that the motor calibration system fails to correct the phase sequence of the motor.
  • the control module can also execute an angle verification procedure.
  • the control module executes the angle verification procedure
  • the control module will pass the driving module to rotate the motor by a verification angle
  • the control module will pass the angle verification procedure.
  • the reader reads the angle information to determine whether the rotation angle of the motor is correct; if the control module determines that the rotation angle of the motor is incorrect, the control module re-executes the angle correction procedure or the phase sequence correction procedure, or the control module issues an angle correction procedure failure signal.
  • the motor calibration system further includes a warning module, the warning module is electrically connected to the control module, and when the warning module receives the angle calibration failure signal, the warning module will warn the user that the motor calibration system fails to correct the angle of the motor.
  • the current angle is defined as ⁇ ; when the control module executes the phase sequence correction program, if the control module changes the forward rotation instruction and the reverse rotation instruction in the motor control module, when the control module executes the angle correction program, the zero offset value is (360- ⁇ )*(4096/360).
  • the current angle is defined as ⁇ ; when the control module executes the phase sequence correction program, if the control module does not change the forward rotation command and the reverse rotation command in the motor control module, then when the control module executes the angle correction program, the zero offset value Then it is ⁇ *(4096/360).
  • the motor calibration system further includes a communication module, the communication module is electrically connected to the control module, the communication module can receive the predetermined steering information transmitted by a production system, the control module can receive the predetermined steering information through the communication module, and convert the predetermined steering information stored in storage.
  • the communication module is electrically connected to the control module, the communication module can receive the predetermined steering information transmitted by a production system, the control module can receive the predetermined steering information through the communication module, and convert the predetermined steering information stored in storage.
  • One of the embodiments of the present invention discloses a motor calibration system, which is used to calibrate a zero position of a motor and a phase sequence of the motor, the motor includes a motor control module, and the motor calibration system includes a control module, a A driving module, an angle reader and a data writer.
  • the control module is electrically connected to a power source, the control module includes a storage and a processor, the storage stores a predetermined steering information, and the processor is electrically connected to the storage; a driving module is electrically connected to the control module, and the driving module is used for to connect the three-phase line of the motor; an angle reader is used to connect the motor control module, the angle reader is used to read an angle information output by the motor control module; a data writer is used to write at least one corrected angle data into the motor Control module; wherein, the control module can execute a phase sequence correction program, when the control module executes the phase sequence correction program, the control module will control the rotation of the motor through the drive module according to the predetermined steering information, and the control module will control the rotation of the motor according to the feedback from the motor control module
  • the steering information of the motor is determined to determine whether the rotation direction of the motor is consistent with the predetermined steering information; if the control module determines that the rotation direction of the motor does not match the predetermined steering information, the control module will control the data writer
  • the motor calibration system of the present invention can directly change the forward rotation stored in the motor control module (the motor control module includes the encoder) through the cooperation of the control module and the data writer and other components. command, reversal command and zero offset value, so as to directly complete the phase sequence correction operation for the motor and the angle correction operation for the motor, and the motor correction system of the present invention performs the phase sequence correction operation and angle correction operation for the motor.
  • the motor control module includes the encoder
  • the motor correction system of the present invention performs the phase sequence correction operation and angle correction operation for the motor.
  • FIG. 1 is a schematic block diagram of a calibration system for a motor of the present invention.
  • FIG. 2 is a schematic perspective view of the motor.
  • FIG. 3 is a front view of the motor of FIG. 2 .
  • FIG. 4 is a schematic flowchart of the first embodiment of the motor calibration performed by the control module of the motor calibration system of the present invention.
  • FIG. 5 is a schematic flowchart of a second embodiment of the motor calibration performed by the control module of the motor calibration system of the present invention.
  • FIG. 6 is a schematic block diagram of a second embodiment of the motor calibration system of the present invention.
  • FIG. 7 is a schematic block diagram of a third embodiment of the motor calibration system of the present invention.
  • FIG. 1 is a schematic block diagram of a motor calibration system 100 of the present invention.
  • the motor calibration system 100 of the present invention is used for calibrating a zero point position of a motor M and a phase sequence of the motor M (ie, the forward rotation direction and the reverse rotation direction).
  • the motor calibration system 100 includes: a control module 1 , a driving module 2 , an angle reader 3 , a data writer 4 and a steering sensor 5 .
  • the control module 1 is used for electrically connecting a power source P.
  • the power source is, for example, alternating current, direct current power supply, direct current battery, etc., which are not limited herein.
  • the control module 1 includes a storage 11 and a processor 12 .
  • the storage 11 stores a predetermined steering information 111
  • the processor 12 is electrically connected to the storage 11 .
  • the storage 11 is, for example, various types of memory, hard disk, etc.
  • the processor 12 is, for example, various microprocessors, processing chips, etc., which are not limited herein.
  • the predetermined steering information 111 refers to the forward rotation direction (and reverse rotation direction) of the custom motor input by the relevant user through the relevant input device (such as a smart phone, a keyboard, a mouse, a touch screen, etc.) and the relevant user interface. information.
  • the relevant input device such as a smart phone, a keyboard, a mouse, a touch screen, etc.
  • FIG. 2 shows a schematic view of the motor being fixed to the fixing member
  • FIG. 3 is a front view of FIG. 2
  • the user can use the relevant input device and relevant user interface , to define that when the user faces the fixed member M2 with the rotating shaft M3 exposed (as shown in FIG. 3 ), the rotating shaft M3 rotates clockwise as the forward rotation direction, and the rotating shaft M3 rotates counterclockwise as the reverse direction.
  • the driving module 2 is electrically connected to the control module 1 , and the driving module 2 is used for connecting the three-phase line M4 of the motor M.
  • the drive module 2 may include related protection mechanisms, for example, the drive module 2 may include a phase current detection circuit, an overcurrent protection circuit, etc., to ensure that the current and voltage output to the motor M are stability.
  • the angle reader 3 is used for connecting to the motor control module M5, and the angle reader 3 is used for reading an angle information M51 output by the motor control module M5.
  • the angle reader 3 may be a codec (Decoder), a quadrature encoder (QEI) module or an input capture (Input Capture) module.
  • the motor control module M5 referred to here includes a rotary encoder.
  • the rotary encoder can be, for example, an absolute encoder or an incremental encoder, which is not limited here. ;
  • the codec (angle reader 3) is used to read the signal output by the rotary encoder (motor control module M5), so as to obtain the rotation angle of the rotation shaft M3 controlled by the motor control module M5.
  • the data writer 4 is used for writing at least one corrected angle data 41 into the motor control module M5.
  • the data writer 4 may be a component similar to a recorder, and the data writer 4 can write data into the relevant control chip or memory of the motor control module M5.
  • the data writer 4 may be a blank address where the corrected angle data 41 is written into the memory, or the data writer 4 may be an address where the corrected angle data 41 has been pre-stored in the memory. Replaces data originally stored in memory.
  • the control chip in the motor control module M5 or the memory may have an address for storing the correction angle data 41 by default, and the pre-stored data at this address may be 0. If the data writer 4 will correct the angle When the data 41 is written into the motor control module M5, the data 0 pre-stored at the address will be replaced with the correction angle data 41.
  • the steering sensor 5 is arranged on the motor M, and the steering sensor 5 is used for sensing the rotation direction of the motor M, so as to generate a steering information 51 correspondingly.
  • the steering sensor 5 can be various motor position sensors, such as: Hall sensor (Hall), encoder (Encoder), resolver (Resolver), etc., but not limited to this, any can be used for
  • Hall sensor Hall sensor
  • Encoder Encoder
  • resolver resolver
  • any can be used for The sensing components for detecting the rotation direction of the rotating shaft M3 of the motor M all belong to the applicable scope of the steering sensor 5 in this embodiment.
  • the motor calibration system 100 may also not include the steering sensor 5 , and the control module 1 of the motor calibration system 100 obtains the steering information directly through the motor control module M5 51 , that is, the motor control module M5 can output the steering information 51 to the control module 1 .
  • FIG. 4 is a schematic flowchart of the first embodiment of the motor calibration performed by the control module of the motor calibration system of the present invention.
  • the control module 1 of the motor calibration system 100 calibrates the motor M
  • the control module 1 may first execute a phase sequence calibration procedure, and then execute an angle calibration procedure.
  • the control module 1 may successively execute a driving and judging step S11 : according to the predetermined steering information 51 , the driving module 2 controls the rotation of the motor M; The steering information 51 is obtained, and it is judged whether the rotation direction of the motor M is consistent with the predetermined steering information 111 . If the control module 1 determines that the rotation direction of the motor M does not match the predetermined steering information 111, the control module 1 will execute a modification step S12: the control data writer 4 modifies a forward rotation command M52 and a reverse rotation command in the motor control module M5 Rotate command M53.
  • the different winding methods and directions of the coils of the rotor of the motor M will cause the rotor to rotate in different directions after being energized. Therefore, after the motor M is energized, the motor control module M5 passes the forward rotation command M52 in the memory. And the reverse rotation command M53, when the rotor of the motor M is controlled to rotate forwardly or reversely, the rotation direction of the rotor of the motor M may be different from the rotation direction expected by the user. For example, suppose that when the motor control module M5 controls the rotor to rotate according to the forward rotation command M52, the user sees that the rotating shaft M3 rotates counterclockwise, but the user expects that the rotating shaft M3 of the motor M rotates clockwise when it rotates forwardly.
  • This situation is the situation in which the control module 1 determines that the rotation direction of the motor M does not match the predetermined steering information 111 ; as described above, when the motor calibration system 100 of the present invention occurs in this situation, the control module 1 will directly pass the data The writer 4, to change the forward rotation command M52 and the reverse rotation command M53 of the motor control module M5, so that the motor control module M5 controls the rotation direction of the rotor of the motor M according to the forward rotation command M52 or the reverse rotation command M53. is in line with the user's definition.
  • the control module 1 After the control module 1 completes the phase sequence correction program, the control module 1 will perform an angle correction program.
  • the control module 1 When the control module 1 performs the angle correction program, the control module 1 will perform an angle reading step S21 : the motor M is driven by the drive module 2 Rotate a predetermined angle; then, the control module 1 will execute a writing step S22: read the angle information M51 through the angle reader 3, and use the data writer 4 to write a current angle M511 contained in the angle information M51, Write the motor control module M5 as a zero offset value M54 of the motor control module M5.
  • the control module 1 when the control module 1 executes the angle correction procedure, the control module 1 can control the rotor of the motor M to rotate forward 30 degrees (ie, the predetermined angle) through the drive module 2, and then the control module 1 will pass
  • the angle reader 3 reads the angle information M51 output by the motor control module M5, and judges whether the motor M rotates 30 degrees in the forward direction.
  • the control module 1 reads through the angle reader 3 that the motor M actually rotates 60 degrees in the forward direction.
  • the control module 1 will know that the rotor of the motor M has rotated 30 degrees more, and the control module 1 will use the 30 degrees of the multi-rotation as the current angle M511 and write it as the zero offset value M54 of the motor control module M5 , in this way, when the motor control module M5 is subsequently powered on and executes the forward rotation command of 30 degrees, the motor control module M5 will correct the rotation angle according to the zero offset value M54, and the motor control module M5 will correctly control the forward rotation of the rotor 30 degrees.
  • the control module 1 executes the phase sequence correction program, if the control module 1 changes the forward rotation command M52 and the reverse rotation command M53 in the motor control module M5, the control When module 1 executes the angle correction procedure, the zero offset value M54 is (360- ⁇ )*(4096/360); on the contrary, when the control module 1 executes the phase sequence correction procedure, if the control module 1 does not change the motor control module M5 If the forward rotation command M52 and the reverse rotation command M53 are included, when the control module 1 executes the angle correction program, the zero offset value M54 is ⁇ *(4096/360).
  • control module 1 executes the phase sequence correction procedure and the angle correction procedure may be changed according to requirements, and is not limited here; in a preferred embodiment, the control module 1 may execute the phase sequence correction procedure first, and then execute the angle correction procedure Correction procedure. In this way, when the control module 1 executes the angle correction procedure, the control module 1 can directly write the current angle M511 obtained by the angle reader 3 into the motor control module M5 through the data writer 4 .
  • FIG. 5 is a schematic flow chart of a control module of the motor calibration system of the present invention calibrating a motor
  • FIG. 6 is a block diagram of a second embodiment of the motor calibration system of the present invention.
  • the control module 1 can also execute a phase sequence verification procedure.
  • the control module 1 will execute a phase sequence verification step S13 : control the rotation of the motor M according to the predetermined steering information 111 , and determine the rotation of the motor M according to the steering information 51 returned by the steering sensor 5 Is the direction correct.
  • control module 1 determines that the rotation direction of the motor M is incorrect, the control module 1 executes the phase sequence correction procedure again, or the control module 1 sends a phase sequence correction failure signal 13 .
  • the control module 1 may re-execute the phase sequence correction procedure first, or may repeat the phase sequence correction procedure for a predetermined number of times (for example, 3 times). .
  • the motor calibration system 100 further includes an alarm module 6 , the alarm module 6 is electrically connected to the control module 1 , and the alarm module 6 receives the phase sequence calibration
  • the warning module 6 will warn the user that the calibration system 100 of the motor fails to correct the phase sequence of the motor M.
  • the warning module 6 may include components such as lamps and horns, and the warning module 6 receives the phase sequence correction.
  • the control lamp and the horn can emit light and sound of corresponding colors respectively.
  • control module 1 can also execute an angle verification procedure.
  • the control module 1 executes the angle verification procedure
  • the control module 1 will execute An angle verification step S23 : rotate the motor M by a verification angle through the driving module 2 , and the control module 1 will read the angle information M51 through the angle reader 3 to determine whether the rotation angle of the motor M is correct. If the control module 1 determines that the rotation angle of the motor M is incorrect, the control module 1 re-executes the angle correction procedure or the phase sequence correction procedure, or the control module 1 sends an angle correction failure signal 14 .
  • the control module 1 judges that the rotation angle of the motor M is correct, the control module 1 will execute a calibration end step S24.
  • the control module 1 will end the calibration operation of the motor M, and the control module 1, for example, It is possible to store the relevant basic data, calibration result data, calibration process and other relevant data of the motor M in a specific database.
  • the warning module 6 is electrically connected to the control module 1 , and when the warning module 6 receives the angle calibration failure signal 14 , the warning module 6 will warn the user that the motor calibration system 100 has The angle correction of M fails, and the control module 1 can control the relevant lamps or horns to emit relative light and sound.
  • FIG. 7 is a block diagram of a second embodiment of the motor calibration system of the present invention.
  • the biggest difference between the motor calibration system 100 of the present invention and the foregoing embodiments is that the motor calibration system 100 further includes a communication module 7 .
  • the communication module 7 is electrically connected to the control module 1, and the communication module 7 can receive a predetermined steering information A1 transmitted by a production system A, and the control module 1 can receive the predetermined steering information A1 through the communication module 7, and store the predetermined steering information A1 in the in storage 11.
  • the communication module 7 can be any wired or wireless communication unit
  • the production system A can be an input device (such as a computer, smart phone, tablet computer) that can provide relevant personnel to input the predetermined steering information A1 etc.) online, and the relevant personnel can generate the predetermined steering information A1 through the input device according to their own needs, and the production system A is used to transmit the predetermined steering information A1 input by the relevant personnel to the motor calibration system 100.
  • the calibration system of the motor of the present invention can completely eliminate the need for relevant personnel to manually operate the relevant components of the motor in the process of calibrating the motor. Therefore, the calibration system of the motor of the present invention
  • the manual method which is more efficient and has relatively better calibration accuracy, is to operate the turntable of the encoder of the motor and observe the waveform corresponding to the output of the motor with the oscilloscope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

一种马达的校正系统(100),其用以校正马达的零点位置及马达的相序。马达的校正系统(100)包含控制模块(1)、驱动模块(2)、角度读取器(3)、数据写入器(4)及转向传感器(5)。控制模块(1)包含储存器(11)及处理器(12),处理器(12)能依据储存器(11)所储存的预定转向信息(111)控制马达旋转。控制模块(1)能通过转向传感器(5)判断马达旋转的方向,并选择性地更改马达的马达控制模块(M5)的正转指令及反转指令。控制模块(1)能控制马达控制模块(M5)旋转预定角度,并通过角度读取器(3)及数据写入器(4),将角度读取器(3)所读取到的当前角度,写入马达控制模块(M5)中,以作为马达控制模块(M5)的零点偏移值。

Description

马达的校正系统 技术领域
本发明涉及一种校正系统,尤其涉及一种用以校正的零点位置及相序的马达的校正系统。
背景技术
现有常见的马达的校正方法是:先将马达的编码器(Encoder)固定与马达的转轴相互固定,而后,利用一驱动器带动马达转动,并通过示波器取得编码器所输出的波形,最后,相关人员可以通过观看示波器上的波形来判断马达转子与编码器的转盘两者的相对位置是否正确,若是相关人员判断编码器的转盘与马达转子的相对位置不正确,则相关人员将手动调整马达转子,直到两者的相对位置正确为止。上述现有常见的马达与编码器的零点位置的校正方法,不但费时、费工,且利用人工手动的方式也无法精确地调整编码器的转盘及马达转子彼此相对位置。
发明内容
本发明公开一种马达的校正系统,主要用以改善现有以人工方式对马达转子及编码器进行零点位置校正所带来的诸多不便。
本发明的其中一个实施例公开一种马达的校正系统,其用以校正一马达的一零点位置及马达的一相序,马达包含一马达控制模块,马达的校正系统包含一控制模块、一驱动模块、一角度读取器、一数据写入器及一转向传感器。控制模块用以电性连接一电源,控制模块包含一储存器及一处理器,储存器内储存有一预定转向信息,处理器电性连接储存器;一驱动模块电性连接控制模块,驱动模块用以连接马达的三相线;一角度读取器用以连接马达控制模块,角度读取器用以读取马达控制模块输出的一角度信息;一数据写入器用以将至少一修正角度数据写入马达控制模块;一转向传感器用以设置于马达,转向传感器用以感测马达的旋转方向,以对应产生一转向信息;其中,控制模块能执行一相序校正程序,控制模块执行相序校正程序时,控制模块将依据预定转向信息,通过驱动模块控制马达旋转,且控制模块将依据转向传感器所回传的转向信息,判断马达的旋转方向是否与预定转 向信息相符合;若控制模块判断马达的旋转方向与预定转向信息不相符,则控制模块将控制数据写入器,更改马达控制模块中的一正转指令及一反转指令;其中,当控制模块执行完相序校正程序后,控制模块将执行一角度校正程序,控制模块执行角度校正程序时,控制模块将通过驱动模块,以使马达旋转一预定角度,且控制模块将通过角度读取器读取角度信息,并通过数据写入器将角度信息中所包含的一当前角度,写入马达控制模块,以作为马达控制模块的一零点偏移值。
优选地,控制模块执行完相序校正程序后,控制模块还能执行一相序验证程序,控制模块执行相序验证程序时,控制模块将依据预定转向信息控制马达旋转,且控制模块将依据转向传感器所回传的转向信息,判断马达的旋转方向是否正确;若控制模块判断马达的旋转方向不正确则控制模块重新执行相序校正程序,或者,控制模块发出一相序校正失败信号。
优选地,马达的校正系统还包含一警示模块,警示模块电性连接控制模块,警示模块接收相序校正失败信号时,警示模块将警示用户马达校正系统对马达的相序校正失败。
优选地,控制模块执行完角度校正程序后,控制模块还能执行一角度验证程序,控制模块执行角度验证程序时,控制模块将通过驱动模块,使马达旋转一验证角度,且控制模块将通过角度读取器读取角度信息,以判断马达的旋转角度是否正确;若控制模块判断马达的旋转角度不正确,则控制模块重新执行角度校正程序或相序校正程序,或者,控制模块发出一角度校正失败信号。
优选地,马达的校正系统还包含一警示模块,警示模块电性连接控制模块,警示模块接收角度校正失败信号时,警示模块将警示用户马达校正系统对马达的角度校正失败。
优选地,当前角度定义为θ;控制模块执行相序校正程序时,若控制模块更改马达控制模块中的正转指令及反转指令,则控制模块执行角度校正程序时,零点偏移值则为(360-θ)*(4096/360)。
优选地,当前角度定义为θ;控制模块执行相序校正程序时,若控制模块没有更改马达控制模块中的正转指令及反转指令,则控制模块执行角度校正程序时,则零点偏移值则为θ*(4096/360)。
优选地,马达校正系统还包含一通信模块,通信模块电性连接控制模块,通信模块能接收一生产系统所传递的预定转向信息,控制模块能通过通信模块接收预定转向信息,并将预定转向信息储存于储存器中。
本发明的其中一个实施例公开一种马达的校正系统,其用以校正一马达的一零点位置及马达的一相序,马达包含一马达控制模块,马达的校正系统包含一控制模块、一驱动模块、一角度读取器及一数据写入器。控制模块用以电性连接一电源,控制模块包含一储存器及一处理器,储存器内储存有一预定转向信息,处理器电性连接储存器;一驱动模块电性连接控制模块,驱动模块用以连接马达的三相线;一角度读取器用以连接马达控制模块,角度读取器用以读取马达控制模块输出的一角度信息;一数据写入器用以将至少一修正角度数据写入马达控制模块;其中,控制模块能执行一相序校正程序,控制模块执行相序校正程序时,控制模块将依据预定转向信息,通过驱动模块控制马达旋转,且控制模块将依据马达控制模块所回传的一转向信息,判断马达的旋转方向是否与预定转向信息相符合;若控制模块判断马达的旋转方向与预定转向信息不相符,则控制模块将控制数据写入器,更改马达控制模块中的一正转指令及一反转指令;其中,当控制模块执行完相序校正程序后,控制模块将执行一角度校正程序,控制模块执行角度校正程序时,控制模块将通过驱动模块,以使马达旋转一预定角度,且控制模块将通过角度读取器读取角度信息,并通过数据写入器将角度信息中所包含的一当前角度,写入马达控制模块,以作为马达控制模块的一零点偏移值。
综上所述,本发明的马达的校正系统,通过控制模块与数据写入器等构件的相互配合,可以直接更改马达控制模块(所述马达控制模块包含了编码器)内预先储存的正转指令、反转指令及零点偏移值,从而直接完成对马达的相序校正作业及对马达的角度校正作业,而本发明的马达的校正系统,在对马达进行相序校正作业及角度校正作业的过程中,无需用户手动调整编码器的转盘或是手动调整马达的转子。
为能更进一步了解本发明的特征及技术内容,请参阅以下有关本发明的详细说明与附图,但是此等说明与附图仅用来说明本发明,而非对本发明的保护范围作任何的限制。
附图说明
图1为本发明的马达的校正系统的方块示意图。
图2为马达的立体示意图。
图3为图2的马达的主视图。
图4为本发明的马达的校正系统的控制模块对马达校正的第一实施例的流程示意图。
图5为本发明的马达的校正系统的控制模块对马达校正的第二实施例的流程示意图。
图6为本发明的马达的校正系统的第二实施例的方块示意图。
图7为本发明的马达的校正系统的第三实施例的方块示意图。
具体实施方式
于以下说明中,如有指出请参阅特定附图或是如特定附图所示,其仅是用以强调于后续说明中,所述及的相关内容大部分出现于该特定附图中,但不限制该后续说明中仅可参考所述特定附图。
请参阅图1,其显示为本发明的马达的校正系统100的方块示意图。本发明的马达的校正系统100用以校正一马达M的一零点位置及所述马达M的一相序(即正转的方向与反转的方向)。马达的校正系统100包含:一控制模块1、一驱动模块2、一角度读取器3、一数据写入器4及一转向传感器5。
控制模块1用以电性连接一电源P。所述电源例如是交流是电、直流电源供应器、直流电池等,于此不加以限制。控制模块1包含一储存器11及一处理器12,储存器11内储存有一预定转向信息111,处理器12电性连接储存器11。所述储存器11例如是各式内存、硬盘等,所述处理器12例如是各式微处理器、处理芯片等,于此不加以限制。预定转向信息111是指相关用户通过相关输入设备(例如智能型手机、键盘、鼠标、触控屏幕等)及相关用户接口,所输入的自定义的马达的正转方向(及反转方向)的信息。
更具体来说,如图2及图3所示,图2显示为马达固定于固定构件的示意图,图3为图2的主视图。在马达M的一外壳M1固定设置于一固定构件M2的一侧,而马达M的一转动轴M3外露于固定构件M2的另一侧的情况下,使用者可以通过相关输入设备及相关用户接口,来定义用户面对露出有转动轴M3的固定构件M2时(如图3所示),转动轴M3顺时针旋转为正转方向,而转动轴M3逆时针旋转为反转方向。
如图1制图3所示,驱动模块2电性连接控制模块1,驱动模块2用以连接马达M的三相线M4。在实际应用中,驱动模块2可以是包含有相关的保护机制,例如是驱动模块2内可以是包含有相电流检测电路、过电流保护电路等,据以确保输出至马达M的电流、电压的稳定性。
角度读取器3用以连接马达控制模块M5,角度读取器3用以读取马达控制模块M5输出的一角度信息M51。在实际应用中,角度读取器3可以是编译码器(Decoder)、正交编码器(QEI)模块或输入捕捉(Input Capture)模块。于此所指的马达控制模块M5是包含一旋 转编码器(rotary encoder),所述旋转编码器例如可以是绝对型(absolute)编码器及增量型(incremental)编码器,于此不加以限制;所述编译码器(角度读取器3)是用来读取旋转编码器(马达控制模块M5)输出的信号,据以取得马达控制模块M5控制转动轴M3的旋转角度。
数据写入器4用以将至少一修正角度数据41写入马达控制模块M5。在实际应用中,数据写入器4可以是类似于刻录器的构件,而数据写入器4能将数据写入至马达控制模块M5的相关控制芯片或内存中。其中,数据写入器4可以是将修正角度数据41写入内存的空白地址,或者,数据写入器4可以是将修正角度数据41写入内存中已经预先储存有相对应数据的地址,已取代内存中原本储存的数据。举例来说,马达控制模块M5中的控制芯片或是内存中可以是默认有一个地址用来存放修正角度数据41,而该地址预先储存的数据可以是0,若是数据写入器4将修正角度数据41写入马达控制模块M5时,则该地址预先储存的数据0将被取代为修正角度数据41。
转向传感器5用以设置于马达M,转向传感器5用以感测马达M的旋转方向,以对应产生一转向信息51。在实际应用中,转向传感器5可以是各式电机位置传感器,例如:霍尔传感器(Hall)、编码器(Encoder)、解角器(Resolver)等,但不以此为限,任何可以用来检测马达M的转动轴M3的旋转方向的感测组件,皆属于本实施例所指转向传感器5可应用的范围。需说明的是,在不同的实施例中,马达的校正系统100也可以是不包含有转向传感器5,而马达的校正系统100的控制模块1则是直接通过马达控制模块M5取得所述转向信息51,也就是说,马达控制模块M5能输出所述转向信息51至控制模块1。
如图1及图4所示,图4显示为本发明的马达的校正系统的控制模块对马达校正的第一实施例的流程示意图。马达的校正系统100的控制模块1对马达M进行校正时,控制模块1可以是先执行一相序校正程序,再执行一角度校正程序。
控制模块1执行相序校正程序时,控制模块1可以是先后执行一驱动及判断步骤S11:依据预定转向信息51,通过驱动模块2控制马达M旋转;控制模块1将依据转向传感器5所回传的转向信息51,判断马达M的旋转方向是否与预定转向信息111相符合。若控制模块1判断马达M的旋转方向与预定转向信息111不相符,则控制模块1将执行一更改步骤S12:控制数据写入器4更改马达控制模块M5中的一正转指令M52及一反转指令M53。
具体来说,在实务中,马达M的转子的线圈的缠绕方式、方向的不同,会导致转子通电后的旋转方向不同,因此,马达M通电后,马达控制模块M5通过内存的正转指令 M52及反转指令M53,控制马达M的转子正转或反转时,马达M的转子的旋转方向,可能会与使用者预期的旋转方向不同。举例来说,假设马达控制模块M5依据正转指令M52控制转子旋转时,使用者看到转动轴M3是逆时针旋转,但使用者预期马达M的转动轴M3正转时,是顺时针旋转,此状况即为上述控制模块1判断马达M的旋转方向与预定转向信息111不相符的状况;如上所述,本发明的马达的校正系统100在此状况发生时,控制模块1将会直接通过数据写入器4,去更改马达控制模块M5的正转指令M52及反转指令M53,以使马达控制模块M5依据正转指令M52或反转指令M53控制马达M的转子旋转时,转子的旋转方向是符合使用者的定义。
当控制模块1执行完相序校正程序后,控制模块1将执行一角度校正程序,控制模块1执行角度校正程序时,控制模块1将执行一角度读取步骤S21:通过驱动模块2使马达M旋转一预定角度;接着,控制模块1将执行一写入步骤S22:通过角度读取器3读取角度信息M51,并通过数据写入器4将角度信息M51中所包含的一当前角度M511,写入马达控制模块M5,以作为马达控制模块M5的一零点偏移值M54。
举例来说,当控制模块1执行角度校正程序时,控制模块1例如可以是通过驱动模块2,控制马达M的转子正转30度(即所述预定角度),而后,控制模块1将会通过角度读取器3读取马达控制模块M5所输出的角度信息M51,据以判断马达M是否正转30度,假设控制模块1通过角度读取器3,读取到马达M实际是正转60度,则控制模块1将据以得知马达M的转子多转了30度,而控制模块1则会将多转的30度作为当前角度M511,写入为马达控制模块M5的零点偏移值M54,如此,马达控制模块M5后续通电并执行正转30度的指令时,马达控制模块M5将会依据零点偏移值M54进行旋转角度的修正,而马达控制模块M5将会正确地控制转子正转30度。
在本发明的其中一个实施例中,假设当前角度定义为θ,控制模块1执行相序校正程序时,若控制模块1更改马达控制模块M5中的正转指令M52及反转指令M53,则控制模块1执行角度校正程序时,零点偏移值M54则为(360-θ)*(4096/360);相反地,控制模块1执行相序校正程序时,若控制模块1没有更改马达控制模块M5中的正转指令M52及反转指令M53,则控制模块1执行角度校正程序时,则零点偏移值M54则为θ*(4096/360)。
关于控制模块1执行相序校正程序及角度校正程序的顺序,可以是依据需求变化,于此不加以限制;在较佳实施例中,控制模块1可以是先执行相序校正程序,再执行角度校 正程序,如此,控制模块1执行角度校正程序时,控制模块1可以是直接通过数据写入器4,将角度读取器3所取得的当前角度M511写入马达控制模块M5中。
请一并参阅图5及图6,图5显示为本发明的马达校正系统的控制模块对马达进行校正的流程示意图,图6显示为本发明的马达校正系统的第二实施例的方块示意图。本实施例与前述实施例的其中一个不同之处在于:控制模块1执行完相序校正程序后,控制模块1还能执行一相序验证程序。控制模块1执行相序验证程序时,控制模块1将执行一相序验证步骤S13:依据预定转向信息111控制马达M旋转,且依据转向传感器5所回传的转向信息51,判断马达M的旋转方向是否正确。若控制模块1判断马达M的旋转方向不正确则控制模块1重新执行相序校正程序,或者,控制模块1发出一相序校正失败信号13。在实际应用中,控制模块1第一次执行相序验证程序时,控制模块1可以是先重新执行一次相序校正程序,或者,可以是重复执行预定次数(例如3次)的相序校正程序。
本实施例的马达的校正系统100与前述实施例的其中一个不同之处在于:马达的校正系统100还包含一警示模块6,警示模块6电性连接控制模块1,警示模块6接收相序校正失败信号13时,警示模块6将警示用户马达的校正系统100对马达M的相序校正失败,举例来说,警示模块6可以是包含灯、喇叭等构件,而警示模块6收到相序校正失败信号13时,则可以是控制灯及喇叭分别发出相对应的颜色的光及声音。
本实施例与前述实施例的其中一个不同之处在于:控制模块1执行完角度校正程序后,控制模块1还能执行一角度验证程序,控制模块1执行角度验证程序时,控制模块1将执行一角度验证步骤S23:通过驱动模块2使马达M旋转一验证角度,且控制模块1将通过角度读取器3读取角度信息M51,以判断马达M的旋转角度是否正确。若控制模块1判断马达M的旋转角度不正确,则控制模块1重新执行角度校正程序或相序校正程序,或者,控制模块1发出一角度校正失败信号14。若控制模块1判断马达M的旋转角度正确,则控制模块1将执行一校正结束步骤S24,于所述校正结束步骤S24中,控制模块1将结束对马达M的校正作业,且控制模块1例如是可以将此马达M的相关基本数据、校正结果数据、校正过程等相关数据储存于特定的数据库中。
在马达的校正系统100包含有警示模块6的实施例中,警示模块6电性连接控制模块1,警示模块6接收角度校正失败信号14时,警示模块6将警示用户马达的校正系统100对马达M的角度校正失败,而控制模块1则可以控制相关的灯或喇叭发出相对的光及声音。
请参阅图7,其显示为本发明的马达校正系统的第二实施例的方块示意图。本发明的马达的校正系统100与前述实施例最大不同之处在于:马达的校正系统100还包含一通信模块7。通信模块7电性连接控制模块1,通信模块7能接收一生产系统A所传递的一预定转向信息A1,控制模块1能通过通信模块7接收预定转向信息A1,并将预定转向信息A1储存于储存器11中。具体来说,通信模块7可以是任何有线或是无线的通信单元,而生产系统A则可以是与可以提供相关人员输入所述预定转向信息A1的输入设备(例如计算机、智能型手机、平板计算机等)联机,而相关人员则可以是依据其本身的需求,通过输入设备产生预定转向信息A1,生产系统A则用来将相关人员所输入的预定转向信息A1,传递至马达的校正系统100的通信模块7。
综上所述,本发明的马达的校正系统,在对马达进行校正的过程中,可以完全不需要相关人员手动操作马达的相关构件,因此,本发明的马达的校正系统相较于传统利用人工手动的方式,操作马达的编码器的转盘并配合示波器观看马达所对应输出的波形的方式,更有效率且亦有相对较佳的校正的精准度。
以上所述仅为本发明的较佳可行实施例,非因此局限本发明的专利范围,故凡运用本发明说明书及附图内容所做的等效技术变化,均包含于本发明的保护范围内。

Claims (9)

  1. 一种马达的校正系统,其特征在于,所述马达的校正系统用以校正一马达的一零点位置及所述马达的一相序,所述马达包含一马达控制模块,所述马达的校正系统包含:
    一控制模块,其用以电性连接一电源,所述控制模块包含一储存器及一处理器,所述储存器内储存有一预定转向信息,所述处理器电性连接所述储存器;
    一驱动模块,其电性连接所述控制模块,所述驱动模块用以连接所述马达的三相线;
    一角度读取器,其用以连接所述马达控制模块,所述角度读取器用以读取所述马达控制模块输出的一角度信息;
    一数据写入器,其用以将至少一修正角度数据写入所述马达控制模块;
    一转向传感器,其用以设置于所述马达,所述转向传感器用以感测所述马达的旋转方向,以对应产生一转向信息;
    其中,所述控制模块能执行一相序校正程序,所述控制模块执行所述相序校正程序时,所述控制模块将依据所述预定转向信息,通过所述驱动模块控制所述马达旋转,且所述控制模块将依据所述转向传感器所回传的所述转向信息,判断所述马达的旋转方向是否与所述预定转向信息相符合;若所述控制模块判断所述马达的旋转方向与所述预定转向信息不相符,则所述控制模块将控制所述数据写入器,更改所述马达控制模块中的一正转指令及一反转指令;
    其中,当所述控制模块执行完所述相序校正程序后,所述控制模块将执行一角度校正程序,所述控制模块执行所述角度校正程序时,所述控制模块将通过所述驱动模块,以使所述马达旋转一预定角度,且所述控制模块将通过所述角度读取器读取所述角度信息,并通过所述数据写入器将所述角度信息中所包含的一当前角度,写入所述马达控制模块,以作为所述马达控制模块的一零点偏移值。
  2. 依据权利要求1所述的马达的校正系统,其特征在于,所述控制模块执行完所述相序校正程序后,所述控制模块还能执行一相序验证程序,所述控制模块执行所述相序验证程序时,所述控制模块将依据所述预定转向信息控制所述马达旋转,且所述控制模块将依据所述转向传感器所回传的所述转向信息,判断所述马达的旋转方向是否正确;若所述控制模块判断所述马达的旋转方向不正确则所述控制模块重新执行所述相序校正程序,或者,所述控制模块发出一相序校正失败信号。
  3. 依据权利要求2所述的马达的校正系统,其特征在于,所述马达的校正系统还包含 一警示模块,所述警示模块电性连接所述控制模块,所述警示模块接收所述相序校正失败信号时,所述警示模块将警示用户所述马达校正系统对所述马达的相序校正失败。
  4. 依据权利要求1所述的马达的校正系统,其特征在于,所述控制模块执行完所述角度校正程序后,所述控制模块还能执行一角度验证程序,所述控制模块执行所述角度验证程序时,所述控制模块将通过所述驱动模块,使所述马达旋转一验证角度,且所述控制模块将通过所述角度读取器读取所述角度信息,以判断所述马达的旋转角度是否正确;若所述控制模块判断所述马达的旋转角度不正确,则所述控制模块重新执行所述角度校正程序或所述相序校正程序,或者,所述控制模块发出一角度校正失败信号。
  5. 依据权利要求4所述的马达的校正系统,其特征在于,所述马达的校正系统还包含一警示模块,所述警示模块电性连接所述控制模块,所述警示模块接收所述角度校正失败信号时,所述警示模块将警示用户所述马达校正系统对所述马达的角度校正失败。
  6. 依据权利要求1所述的马达的校正系统,其特征在于,所述当前角度定义为θ;所述控制模块执行所述相序校正程序时,若所述控制模块更改所述马达控制模块中的所述正转指令及所述反转指令,则所述控制模块执行所述角度校正程序时,所述零点偏移值则为(360-θ)*(4096/360)。
  7. 依据权利要求1所述的马达的校正系统,其特征在于,所述当前角度定义为θ;所述控制模块执行所述相序校正程序时,若所述控制模块没有更改所述马达控制模块中的所述正转指令及所述反转指令,则所述控制模块执行所述角度校正程序时,则所述零点偏移值则为θ*(4096/360)。
  8. 依据权利要求1所述的马达的校正系统,其特征在于,所述马达校正系统还包含一通信模块,所述通信模块电性连接所述控制模块,所述通信模块能接收一生产系统所传递的所述预定转向信息,所述控制模块能通过所述通信模块接收所述预定转向信息,并将所述预定转向信息储存于所述储存器中。
  9. 一种马达的校正系统,其特征在于,所述马达的校正系统用以校正一马达的一零点位置及所述马达的一相序,所述马达包含一马达控制模块,所述马达的校正系统包含:
    一控制模块,其用以电性连接一电源,所述控制模块包含一储存器及一处理器,所述储存器内储存有一预定转向信息,所述处理器电性连接所述储存器;
    一驱动模块,其电性连接所述控制模块,所述驱动模块用以连接所述马达的三相线;
    一角度读取器,其用以连接所述马达控制模块,所述角度读取器用以读取所述马达控 制模块输出的一角度信息;
    一数据写入器,其用以将至少一修正角度数据写入所述马达控制模块;
    其中,所述控制模块能执行一相序校正程序,所述控制模块执行所述相序校正程序时,所述控制模块将依据所述预定转向信息,通过所述驱动模块控制所述马达旋转,且所述控制模块将依据所述马达控制模块所回传的一转向信息,判断所述马达的旋转方向是否与所述预定转向信息相符合;若所述控制模块判断所述马达的旋转方向与所述预定转向信息不相符,则所述控制模块将控制所述数据写入器,更改所述马达控制模块中的一正转指令及一反转指令;
    其中,当所述控制模块执行完所述相序校正程序后,所述控制模块将执行一角度校正程序,所述控制模块执行所述角度校正程序时,所述控制模块将通过所述驱动模块,以使所述马达旋转一预定角度,且所述控制模块将通过所述角度读取器读取所述角度信息,并通过所述数据写入器将所述角度信息中所包含的一当前角度,写入所述马达控制模块,以作为所述马达控制模块的一零点偏移值。
PCT/CN2020/112013 2020-08-28 2020-08-28 马达的校正系统 WO2022041100A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/112013 WO2022041100A1 (zh) 2020-08-28 2020-08-28 马达的校正系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/112013 WO2022041100A1 (zh) 2020-08-28 2020-08-28 马达的校正系统

Publications (1)

Publication Number Publication Date
WO2022041100A1 true WO2022041100A1 (zh) 2022-03-03

Family

ID=80354402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112013 WO2022041100A1 (zh) 2020-08-28 2020-08-28 马达的校正系统

Country Status (1)

Country Link
WO (1) WO2022041100A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204465405U (zh) * 2015-03-27 2015-07-08 海马轿车有限公司 一种永磁同步电机转子初始角度调零与校准装置
CN105490609A (zh) * 2015-12-21 2016-04-13 上海新时达电气股份有限公司 伺服自整定电机编码器零点的方法及其系统
US20170317618A1 (en) * 2016-05-02 2017-11-02 Canon Kabushiki Kaisha Information processing apparatus, and recording medium storing computer program
CN108322103A (zh) * 2018-02-08 2018-07-24 浙江国自机器人技术有限公司 一种永磁同步电机相序校正方法及其装置
CN110535377A (zh) * 2018-05-25 2019-12-03 茂达电子股份有限公司 马达驱动电路及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204465405U (zh) * 2015-03-27 2015-07-08 海马轿车有限公司 一种永磁同步电机转子初始角度调零与校准装置
CN105490609A (zh) * 2015-12-21 2016-04-13 上海新时达电气股份有限公司 伺服自整定电机编码器零点的方法及其系统
US20170317618A1 (en) * 2016-05-02 2017-11-02 Canon Kabushiki Kaisha Information processing apparatus, and recording medium storing computer program
CN108322103A (zh) * 2018-02-08 2018-07-24 浙江国自机器人技术有限公司 一种永磁同步电机相序校正方法及其装置
CN110535377A (zh) * 2018-05-25 2019-12-03 茂达电子股份有限公司 马达驱动电路及方法

Similar Documents

Publication Publication Date Title
US10578463B2 (en) Detection of defects in motor position decoder system
JP6274153B2 (ja) エンコーダ、コントローラ、モータ制御システム、ロボット制御システム、ロボット、データ送信方法、及び情報処理方法
US10823582B2 (en) Angle detection device and method of multi-turn servo, and multi-turn servo
JP2016217950A (ja) エンコーダ、コントローラ、モータ制御システム、ロボット制御システム、ロボット、データ送信方法、及び回転数比較方法
TWI748618B (zh) 馬達的校正系統
WO2022041100A1 (zh) 马达的校正系统
EP3125251A1 (en) Hamming code-based data access method and integrated random access memory
US7787970B2 (en) Position-measuring device and method for position measuring
CN114123885A (zh) 马达的校正系统
JP6993487B1 (ja) モーターの校正システム
US20180335327A1 (en) Method and program for angle calibration of rotary shaft
JP2001290710A (ja) データエラー検出装置
TWI606228B (zh) 自動角度量測裝置及其方法
JPS6288044A (ja) メモリ制御方式
JP2008108162A (ja) メモリ管理方法
US11934171B2 (en) Servo motor and encoder calibration method thereof
JPH0652065A (ja) メモリ制御回路
JP6403993B2 (ja) エンコーダおよび回転体駆動システム
KR101317154B1 (ko) 이피에스 시스템 메모리 검사 장치 및 방법
JP6510475B2 (ja) 電子制御装置及び方法
JPH04341998A (ja) メモリ回路
US20090161671A1 (en) System and method for driving a step motor
JP2007213314A (ja) エンコーダ装置およびサーボモータ並びにサーボシステム
CN117686012A (zh) 编码器的校准方法、装置、系统、设备及存储介质
JP2005049169A (ja) エンコーダ信号のミキシング方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950770

Country of ref document: EP

Kind code of ref document: A1