WO2022032714A1 - 一种制备化学发光水凝胶的方法 - Google Patents

一种制备化学发光水凝胶的方法 Download PDF

Info

Publication number
WO2022032714A1
WO2022032714A1 PCT/CN2020/110495 CN2020110495W WO2022032714A1 WO 2022032714 A1 WO2022032714 A1 WO 2022032714A1 CN 2020110495 W CN2020110495 W CN 2020110495W WO 2022032714 A1 WO2022032714 A1 WO 2022032714A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
hydrogel
concentration
chemiluminescent
hydrogen peroxide
Prior art date
Application number
PCT/CN2020/110495
Other languages
English (en)
French (fr)
Inventor
马纪亮
孙润仓
金栋女
Original Assignee
大连工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连工业大学 filed Critical 大连工业大学
Priority to US17/915,787 priority Critical patent/US20230203370A1/en
Publication of WO2022032714A1 publication Critical patent/WO2022032714A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • C09K11/07Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials having chemically interreactive components, e.g. reactive chemiluminescent compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms

Definitions

  • the invention relates to a novel and convenient preparation method of chemiluminescence hydrogel, which belongs to the field of luminescent materials.
  • Chemiluminescence is the study of luminescence produced by chemical reactions in recent years, and it has been widely used in cold light sources, biological detection, reporter genes, biological imaging and biomarkers.
  • most of the known chemiluminescence reactions exhibit flash-type light emission and lack high-intensity, long-term luminescence properties, hindering their applications. Therefore, strong and long-lasting light emission is essential for cold light sources in emergency situations, decorative entertainment, and underwater lighting, among others.
  • Chemiluminescent materials that is, chemiluminescent reagents are immobilized on the surface or inside of the base material in a certain way to synthesize materials with excellent chemiluminescent properties.
  • These substrate materials are not only carriers of chemiluminescence reagents, but also the interaction between them and chemiluminescence reagents may endow chemiluminescence functionalized materials with unique properties.
  • the chemiluminescence reaction can be promoted by utilizing the catalytic properties of the material itself, thereby producing higher intensity chemiluminescence.
  • Hydrogel is a high molecular polymer with a three-dimensional structure, which is formed by cross-linking of hydrophilic high molecular compounds, which can swell in water and retain a large amount of water without dissolving. At the same time, it has good biocompatibility, so it has broad application prospects in the fields of drug release systems, biomimetic materials, and chemical mechanical systems.
  • the purpose of the present invention is to provide a novel and convenient preparation method of chemiluminescence hydrogel for the problems of short luminescence time and low intensity of the existing chemiluminescence system.
  • the present invention utilizes a simple method to prepare base material hydrogel as the carrier of luminescent reagent by using chitosan as raw material, thereby synthesizing a strong and durable chemiluminescent hydrogel.
  • the preparation method of the invention is simple and easy to control, and is "green” and pollution-free.
  • a novel and convenient preparation method of chemiluminescence hydrogel comprising the following steps:
  • step (2) adding cobalt chloride solution and polyvinyl alcohol solution to the product obtained in step (1), stirring evenly, and ultrasonically defoaming; wherein, the concentration of the cobalt chloride solution is 15-60 mmol/L, and the The mass fraction of the polyvinyl alcohol solution is 5.0-10.0%; the volume ratio of the acetic acid solution to the cobalt chloride solution and the polyvinyl alcohol solution is 15.0-25.0: 0.5-2.0: 0-10.0;
  • step (3) immersing the mixture obtained in step (2) into an alkaline solution for alkaline bath treatment, and leaving it to stand overnight to obtain a hydrogel; wherein, the concentration of the alkaline solution is 1.0-10.0 mol/L;
  • step (3) (4) mixing the product obtained in step (3) with N-(4-aminobutyl)-N-ethylisoluminol (ABEI) solution, after stirring evenly, adding hydrogen peroxide solution to obtain chemical Luminescent hydrogel; wherein, the concentration of the N-(4-aminobutyl)-N-ethylisoluminol (ABEI) solution is 1-24 mmol/L, and the concentration of the hydrogen peroxide solution is 0.01 ⁇ 1.00mol/L, the volume ratio of the product obtained in the step (3) to N-(4-aminobutyl)-N-ethyl isoluminol (ABEI) solution and hydrogen peroxide solution is 1 ⁇ 1. 3:1 ⁇ 3:2 ⁇ 6.
  • the volume fraction of the acetic acid solution is 2.0%.
  • the ratio of the chitosan to the acetic acid solution is 1.0 g: 20.0 mL.
  • the concentration of the cobalt chloride solution is 30 mmol/L.
  • the mass fraction of the polyvinyl alcohol solution is 10%.
  • the volume ratio of the acetic acid solution to the cobalt chloride solution and the polyvinyl alcohol solution is 20.0:1.0:3.0.
  • the alkaline solution is KOH solution, NaOH solution, Ca(OH) 2 solution, Na 2 CO 3 solution, preferably KOH solution.
  • the concentration of the alkaline solution is 4.0 mol/L.
  • step (3) the volume ratio of the mixture obtained in step (2) to the alkaline solution is 1-5:3-15, preferably 1-5:10 .
  • the concentration of the N-(4-aminobutyl)-N-ethylisoluminol (ABEI) solution is 12 mmol/L.
  • the concentration of the hydrogen peroxide solution is 0.50 mol/L.
  • step (4) the product obtained in step (3) and N-(4-aminobutyl)-N-ethyl isoluminol (ABEI) solution ,
  • ABEI N-(4-aminobutyl)-N-ethyl isoluminol
  • step (4) after the product obtained in step (3) is uniformly pulverized, crushed or smashed, it is mixed with N-(4-aminobutyl)-N-ethyl
  • the isoluminol (ABEI) solution is mixed, and after stirring evenly, the hydrogen peroxide solution is added to obtain a chemiluminescent hydrogel.
  • the present invention also relates to the protection of the chemiluminescent hydrogel prepared by the above method.
  • the process of preparing the chemiluminescent hydrogel in the present invention belongs to an easy-to-operate and environment-friendly green synthesis method.
  • the chemiluminescence hydrogel synthesized in the present invention has the advantages of high chemiluminescence intensity and durability.
  • the raw material chitosan used in the present invention has wide sources, is cheap and easy to obtain, has good biocompatibility, safety and biodegradability, and is an ideal material for preparing hydrogel.
  • polyvinyl alcohol is added and chemically cross-linked to obtain a highly water-containing polymer with a three-dimensional network structure. It has good biocompatibility, high elasticity, non-toxicity, etc.
  • One of the medical materials is used.
  • the present invention uses cheap, non-toxic, renewable, biodegradable and good biocompatibility chitosan as a raw material to prepare a luminescent hydrogel, which is beneficial to environmental protection;
  • the chemiluminescent hydrogel material prepared by the present invention has the advantages of environmental friendliness, biocompatibility and the like;
  • the product of the present invention provides an effective way to solve the problem of short chemiluminescence time of chemiluminescent materials.
  • FIG. 1 is a graph showing the effect of the concentration of cobalt chloride solution on the luminescence time and intensity of the chemiluminescent hydrogel material in Example 1 and Example 2.
  • Example 2 is a graph showing the effect of the concentration of ABEI solution on the luminescence time and intensity of the chemiluminescent hydrogel material in Example 1, Example 4, and Example 5.
  • FIG. 3 is a graph showing the effect of the concentration of hydrogen peroxide solution on the luminescence time and intensity of the chemiluminescent hydrogel material in Example 5 and Example 6.
  • FIG. 3 is a graph showing the effect of the concentration of hydrogen peroxide solution on the luminescence time and intensity of the chemiluminescent hydrogel material in Example 5 and Example 6.
  • This embodiment discloses a preparation method of chemiluminescence hydrogel, including the steps:
  • step (1) (2) adding 1.0mL 30mmol/L cobalt chloride solution and polyvinyl alcohol solution to the product obtained in step (1) (the consumption of polyvinyl alcohol solution is 0mL, 1.0mL, 3.0mL, 5.0mL, 10.0mL, respectively mL, the mass fraction of polyvinyl alcohol solution is 10%), and ultrasonically defoamed after stirring evenly;
  • step (2) the mixture in step (2) is immersed in the KOH solution of 50mL 4.0mol/L to carry out alkali bath treatment, and let stand overnight;
  • step (3) after the product obtained in step (3) is evenly pulverized, draw 1.0 mL, then add 1.0 mL of 4.0 mmol/L ABEI solution to mix, and stir evenly;
  • step (4) adding the product obtained in step (4) into 2.0 mL of 0.50 mol/L hydrogen peroxide solution to obtain a chemiluminescent hydrogel;
  • This embodiment discloses a preparation method of chemiluminescence hydrogel, including the steps:
  • This embodiment discloses a preparation method of chemiluminescence hydrogel, including the steps:
  • step (2) adding 1.0 mL of 30 mmol/L cobalt chloride solution and 3.0 mL of polyvinyl alcohol solution (mass fraction is 10%) to the product obtained in step (1), and ultrasonically defoaming after stirring;
  • step (3) Immerse the mixture in step (2) into 50 mL of KOH solution (concentrations are 3.0 mol/L, 5.0 mol/L, 7.0 mol/L, 9.0 mol/L, respectively) for alkaline bath treatment, and let stand overnight ;
  • This embodiment discloses a preparation method of chemiluminescence hydrogel, including the steps:
  • step (2) adding 1.0 mL of 30 mmol/L cobalt chloride solution and 3.0 mL of polyvinyl alcohol solution (mass fraction is 10%) to the product obtained in step (1), and ultrasonically defoaming after stirring;
  • step (3) draw 1.0mL after the product obtained in step (3) is evenly pulverized, then add 1.0mL ABEI solution (concentrations are respectively 1mmol/L, 2mmol/L, 3mmol/L, 8mmol/L) and mix, stir;
  • This embodiment discloses a preparation method of chemiluminescence hydrogel, including the steps:
  • step (2) adding 1.0 mL of 30 mmol/L cobalt chloride solution and 3.0 mL of polyvinyl alcohol solution (mass fraction is 10%) to the product obtained in step (1), and ultrasonically defoaming after stirring;
  • step (3) after the product obtained in step (3) is evenly pulverized, draw 1.0 mL, then add 1.0 mL of ABEI solution of 12 mmol/L to mix, and stir evenly;
  • This embodiment discloses a preparation method of chemiluminescence hydrogel, including the steps:
  • step (3) after the product obtained in step (3) is evenly pulverized, draw 1.0 mL, then add 1.0 mL of ABEI solution of 12 mmol/L to mix, and stir evenly;
  • step (4) adding the product obtained in step (4) into 2.0 mL of hydrogen peroxide solution (concentrations are respectively 0.01 mol/L, 0.05 mol/L, 0.10 mol/L, 0.30 mol/L, 1.00 mol/L);
  • Fig. 1 is a graph showing the influence of different concentrations of cobalt chloride solutions in Example 1 and Example 2 on the luminescence duration of chemiluminescent hydrogel materials, wherein the consumption of polyvinyl alcohol solution in Example 1 is 3.0 mL, and the amount of cobalt chloride solution is 3.0 mL. Concentration is 30mmol/L, and the cobalt chloride solution concentration of embodiment 2 is respectively 20mmol/L, 25mmol/L, 40mmol/L, 50mmol/L, and the marked data in the figure is respectively concentration 20mmol/L, 20mmol/L, 50mmol/L from left to right.
  • the experimental results show that the concentration of cobalt chloride solution has a great influence on the luminescence duration of the material. As the concentration of cobalt chloride solution increases, the luminescence duration is gradually prolonged. When the concentration of cobalt chloride solution is 30 mmol/L, the luminescence duration reaches the longest. , the luminescence intensity gradually decreased when the concentration of cobalt chloride solution was increased, indicating that the material achieved better luminescence effect when the concentration of cobalt chloride solution was 30 mmol/L.
  • Fig. 2 is a graph showing the influence of different ABEI solution concentrations on the luminescence time of chemiluminescent hydrogel materials in Example 1, Example 4, and Example 5, wherein the consumption of the polyvinyl alcohol solution in Example 1 is 3.0 mL, the ABEI solution Concentration is 4mmol/L, the ABEI solution concentration of embodiment 4 is respectively 1mmol/L, 2mmol/L, 3mmol/L, 8mmol/L, in embodiment 5, ABEI solution concentration 12mmol/L, the marked data in the figure is from left to On the right are the chemiluminescence hydrogel materials prepared from ABEI solutions with concentrations of 1 mmol/L, 2 mmol/L, 3 mmol/L, 4 mmol/L, 8 mmol/L, and 12 mmol/L respectively at 5 min, 30 min, 60 min, 120 min, 240 min, The luminous condition corresponding to 540min.
  • the experimental results show that the concentration of ABEI solution has a great influence on the luminescence duration of the material. As the concentration of ABEI solution increases, the luminescence duration is gradually prolonged. When the concentration of ABEI solution is 4 mmol/L, the luminescence duration reaches the longest, and then the concentration of ABEI solution increases. The luminescence intensity gradually decreased when the concentration of ABEI solution was 4mmol/L, the material achieved better luminescence effect.
  • Fig. 3 is a graph showing the influence of different concentrations of hydrogen peroxide solution on the luminescence time of chemiluminescent hydrogel materials in Example 5 and Example 6, wherein the concentration of hydrogen peroxide solution in Example 5 is 0.50 mol/L, and the embodiment The concentration of hydrogen peroxide solution in 6 is 0.01mol/L, 0.05mol/L, 0.10mol/L, 0.30mol/L, 1.00mol/L, respectively.
  • the marked data in the figure from left to right are the concentration of 0.01mol/L.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

一种制备化学发光水凝胶的方法,属于发光材料领域。所述发光水凝胶的制备方法为:将壳聚糖缓慢加至乙酸溶液中,室温搅拌至完全溶解,然后加入氯化钴溶液,随后再加入聚乙烯醇溶液,搅拌充分后超声脱泡,利用碱性溶液进行碱浴处理,加入N-(4-氨丁基)-N-乙基异鲁米诺(ABEI),搅拌后加入过氧化氢溶液获得化学发光水凝胶。所合成的水凝胶具有发光强度大、持续时间长等优点,该工艺过程中加入聚乙烯醇通过化学交联得到的具有三维网状结构的高含水聚合物,具有良好的生物相容性、高弹性、无毒等特点,也是具应用潜力的生物医用材料之一。

Description

一种制备化学发光水凝胶的方法 技术领域
本发明涉及一种新型、简便的化学发光水凝胶的制备方法,属于发光材料领域。
背景技术
化学发光是近年来人们对化学反应产生的发光现象进行的研究,它已广泛应用于冷光源、生物检测、报告基因、生物成像和生物标记。然而,大多数已知的化学发光反应都表现出闪光型的光发射,缺乏高强度、长时间的发光性能,阻碍了它们的应用。因此,强而持久的光发射对于紧急情况下的冷光源、装饰性娱乐和水下照明等至关重要。
化学发光材料,即将化学发光试剂通过一定方式固载在基底材料表面或内部,合成具有优异化学发光特性的材料。这些基底材料不仅是化学发光试剂的载体,它与化学发光试剂两者之间相互作用还可能赋予化学发光功能化材料独特的性能。例如利用材料本身的催化特性可促进化学发光反应的进行,从而产生更高强度的化学发光。
水凝胶是一种具有三维结构的高分子聚合物,由亲水性的高分子化合物交联而成,能在水中溶胀并保持大量水分而又不溶解。同时,具有良好的生物相容性,因而在药物释放系统、仿生材料、化学机械系统等领域有着广阔的应用前景。
目前,大多数发光水凝胶存在制备方法复杂、发光时间短、强度低的问题,因此,还需要进行进一步的研究,寻求一种合成简单、环境友好、发光强度高、发光时间长的发光水凝胶。
发明内容
本发明的目的在于针对现有化学发光体系发光时间短、强度低等问题,提供一种新型、简便的化学发光水凝胶的制备方法。本发明利用一种简单的方法,以壳聚糖为原料制备了基底材料水凝胶作为发光试剂的载体,从而合成一种强而持久的化学发光水凝胶。本发明的制备方法简单易控,“绿色”无污染。
为了达到上述目的,本发明采用了如下技术方案:
一种新型、简便的化学发光水凝胶的制备方法,包括如下步骤:
(1)将壳聚糖缓慢加入至乙酸溶液中,搅拌至壳聚糖完全溶解;其中,所述乙酸溶液的体积分数为1.0~10.0%(v/v),所述壳聚糖与乙酸溶液的比例关系为0.5~1.5g:15.0~25.0mL;
(2)向步骤(1)中得到的产物加入氯化钴溶液及聚乙烯醇溶液,搅拌均匀后,超声脱泡;其中,所述氯化钴溶液的浓度为15~60mmol/L,所述聚乙烯醇溶液的质量分数为5.0~10.0%;所述乙酸溶液与氯化钴溶液、聚乙烯醇溶液的体积比为15.0~25.0:0.5~2.0:0~10.0;
(3)将步骤(2)中得到混合物浸入碱性溶液中进行碱浴处理,静置过夜,得到水凝胶;其中,所述碱性溶液的浓度为1.0~10.0mol/L;
(4)将步骤(3)中得到的产物与N-(4-氨丁基)-N-乙基异鲁米诺(ABEI)溶液混合,搅拌均匀后,加入过氧化氢溶液中,获得化学发光水凝胶;其中,所述N-(4-氨丁基)-N-乙基异鲁米诺(ABEI)溶液的浓度为1~24mmol/L,所述过氧化氢溶液的浓度为0.01~1.00mol/L,所述步骤(3)中得到的产物与N-(4-氨丁基)-N-乙基异鲁米诺(ABEI)溶液、过氧化氢溶液的体积比为1~3:1~3:2~6。
根据上述的技术方案,优选的情况下,步骤(1)中,所述乙酸溶液的体积分数为2.0%。
根据上述的技术方案,优选的情况下,步骤(1)中,所述壳聚糖与乙酸溶液的比例为1.0g:20.0mL。
根据上述的技术方案,优选的情况下,步骤(2)中,所述氯化钴溶液的浓度为30mmol/L。
根据上述的技术方案,优选的情况下,步骤(2)中,所述聚乙烯醇溶液的质量分数为10%。
根据上述的技术方案,优选的情况下,步骤(2)中,所述乙酸溶液与氯化钴溶液、聚乙烯醇溶液的体积比为20.0:1.0:3.0。
根据上述的技术方案,优选的情况下,步骤(3)中,所述碱性溶液为KOH溶液、NaOH溶液、Ca(OH) 2溶液、Na 2CO 3溶液,优选为KOH溶液。
根据上述的技术方案,优选的情况下,步骤(3)中,所述的碱性溶液的浓度为4.0mol/L。
根据上述的技术方案,优选的情况下,步骤(3)中,所述步骤(2)中得到的混合物与碱性溶液的体积比为1~5:3~15,优选为1~5:10。
根据上述的技术方案,优选的情况下,步骤(4)中,所述N-(4-氨丁基)-N-乙基异鲁米诺(ABEI)溶液的浓度为12mmol/L。
根据上述的技术方案,优选的情况下,步骤(4)中,所述过氧化氢溶液的浓度为0.50mol/L。
根据上述的技术方案,优选的情况下,步骤(4)中,所述步骤(3)中得到的产物与N-(4-氨丁基)-N-乙基异鲁米诺(ABEI)溶液、过氧化氢溶液的 体积比为1:1:2。
根据上述的技术方案,优选的情况下,步骤(4)中,将步骤(3)得到的产物均匀粉碎、碾碎或捣碎后,与N-(4-氨丁基)-N-乙基异鲁米诺(ABEI)溶液混合,搅拌均匀后,加入过氧化氢溶液,获得化学发光水凝胶。
本发明还涉及保护上述的方法制备的化学发光水凝胶。
本发明制备化学发光水凝胶的过程属于一种易于操作,环境友好的绿色合成方法。本发明合成的化学发光水凝胶具有化学发光强度高且持久等优点。本发明所用的原料壳聚糖来源广泛,廉价易得,且具有良好的生物相容性、安全性和可生物降解性,是制备水凝胶的理想材料。该工艺过程中加入聚乙烯醇通过化学交联得到的具有三维网状结构的高含水聚合物,具有良好的生物相容性、高弹性、无毒等特点,也是21世纪最具应用潜力的生物医用材料之一。
本发明的合成方法有如下优点:
(1)本发明采用廉价、无毒、可再生、可生物降解与生物相容性良好的壳聚糖为原料制备发光水凝胶,有利于环境保护;
(2)本发明的化学发光水凝胶材料的制备方法操作简单,反应条件易于控制;
(3)本发明制备的化学发光水凝胶材料,具有环境友好性、生物兼容性等优点;
(4)本发明的产品为解决化学发光材料化学发光时间短的问题提供了一种有效地途径。
附图说明
图1为实施例1、实施例2中氯化钴溶液浓度对化学发光水凝胶材料发光时间及强度的影响图。
图2为实施例1、实施例4、实施例5中ABEI溶液浓度对化学发光水凝胶材料发光时间及强度的影响图。
图3为实施例5、实施例6中过氧化氢溶液浓度对化学发光水凝胶材料发光时间及强度的影响图。
具体实施方式
为了更好地理解本发明的技术特点,下面通过实施例对本发明作进一步地说明,但是本发明要求保护的范围并不仅限于此。
实施例1
本实施例公开了一种化学发光水凝胶的制备方法,包括步骤:
(1)准确称取1.0g的壳聚糖加入到20mL 2%乙酸溶液中,室温下搅拌至壳聚糖完全溶解;
(2)将步骤(1)中得到的产物中加入1.0mL 30mmol/L的氯化钴溶液及聚乙烯醇溶液(聚乙烯醇溶液的用量分别为0mL、1.0mL、3.0mL、5.0mL、10.0mL,聚乙烯醇溶液的质量分数为10%),搅拌均匀后超声脱泡;
(3)将步骤(2)中的混合物浸入到50mL 4.0mol/L的KOH溶液中进行碱浴处理,静置过夜;
(4)将步骤(3)得到的产物均匀粉碎后吸取1.0mL,然后加入1.0mL 4.0mmol/L的ABEI溶液混合,搅拌均匀;
(5)将步骤(4)得到的产物加入2.0mL 0.50mol/L的过氧化氢溶液中,得到化学发光水凝胶;
(6)黑暗环境中观察步骤(5)所得系列材料的化学发光时长,并简单判断其发光强度。
实施例2
本实施例公开了一种化学发光水凝胶的制备方法,包括步骤:
(1)同实施例1的步骤(1);
(2)将步骤(1)中得到的产物中加入1.0mL的氯化钴溶液(浓度分别为20mmol/L、25mmol/L、40mmol/L、50mmol/L),以及3.0mL聚乙烯醇溶液(质量分数为10%),搅拌均匀后超声脱泡;
(3)同实施例1的步骤(3);
(4)同实施例1的步骤(4);
(5)同实施例1的步骤(5);
(6)黑暗环境中观察步骤(5)所得系列材料的化学发光时长,并简单判断其发光强度。
实施例3
本实施例公开了一种化学发光水凝胶的制备方法,包括步骤:
(1)同实施例1的步骤(1);
(2)将步骤(1)中得到的产物中加入1.0mL 30mmol/L的氯化钴溶液及3.0mL的聚乙烯醇溶液(质量分数为10%),搅拌均匀后超声脱泡;
(3)将步骤(2)中的混合物浸入到50mL的KOH溶液(浓度为分别3.0mol/L、5.0mol/L、7.0mol/L、9.0mol/L)中进行碱浴处理,静置过夜;
(4)同实施例1的步骤(4);
(5)同实施例1的步骤(5);
(6)黑暗环境中观察步骤(5)所得系列材料的化学发光时长,并简单判断其发光强度。
实施例4
本实施例公开了一种化学发光水凝胶的制备方法,包括步骤:
(1)同实施例1的步骤(1);
(2)将步骤(1)中得到的产物中加入1.0mL 30mmol/L的氯化钴溶液及3.0mL的聚乙烯醇溶液(质量分数为10%),搅拌均匀后超声脱泡;
(3)同实施例1的步骤(3);
(4)将步骤(3)得到的产物均匀粉碎后吸取1.0mL,然后加入1.0mL ABEI溶液(浓度分别为1mmol/L、2mmol/L、3mmol/L、8mmol/L)混合,搅拌均匀;
(5)同实施例1的步骤(4);
(6)黑暗环境中观察步骤(5)所得系列材料的化学发光时长,并简单判断其发光强度。
实施例5
本实施例公开了一种化学发光水凝胶的制备方法,包括步骤:
(1)同实施例1的步骤(1);
(2)将步骤(1)中得到的产物中加入1.0mL 30mmol/L的氯化钴溶液及3.0mL的聚乙烯醇溶液(质量分数为10%),搅拌均匀后超声脱泡;
(3)同实施例1的步骤(3);
(4)将步骤(3)得到的产物均匀粉碎后吸取1.0mL,然后加入1.0mL 12mmol/L的ABEI溶液混合,搅拌均匀;
(5)同实施例1的步骤(5);
(6)黑暗环境中观察步骤(5)所得系列材料的化学发光时长,并简单判断其发光强度。
实施例6
本实施例公开了一种化学发光水凝胶的制备方法,包括步骤:
(1)同实施例1的步骤(1);
(2)同实施例4的步骤(2);
(3)同实施例1的步骤(3);
(4)将步骤(3)得到的产物均匀粉碎后吸取1.0mL,然后加入1.0mL 12mmol/L的ABEI溶液混合,搅拌均匀;
(5)将步骤(4)得到的产物加入2.0mL的过氧化氢溶液(浓度分别为0.01mol/L、0.05mol/L、0.10mol/L、0.30mol/L、1.00mol/L)中;
(6)黑暗环境中观察步骤(5)所得系列材料的化学发光时长,并简单判断其发光强度。
图1为实施例1、实施例2中不同的氯化钴溶液浓度对化学发光水凝胶材料发光时长的影响图,其中实施例1中聚乙烯醇溶液的用量为3.0mL、氯化钴溶液浓度为30mmol/L,实施例2的氯化钴溶液浓度分别为20mmol/L、25mmol/L、40mmol/L、50mmol/L,图中所标数据从左到右依次分别为浓度20mmol/L、25mmol/L、30mmol/L、40mmol/L、50mmol/L的氯化钴溶液制备的化学发光水凝胶材料在5min、30min、60min、120min、240min、540min所对应的发光情况。实验结果发现氯化钴溶液浓度对该材料发光时长具有较大的影响,随着氯化钴溶液浓度增加,发光时长逐渐延长,当氯化钴溶液浓度为30mmol/L 时,发光时长达到最长,再增加氯化钴溶液浓度时发光强度逐渐下降,说明氯化钴溶液浓度为30mmol/L时,该材料达到较好的发光效果。
图2为实施例1、实施例4、实施例5中不同的ABEI溶液浓度对化学发光水凝胶材料发光时间的影响图,其中实施例1的聚乙烯醇溶液的用量为3.0mL、ABEI溶液浓度为4mmol/L,实施例4的ABEI溶液浓度分别为1mmol/L、2mmol/L、3mmol/L、8mmol/L,实施例5中ABEI溶液浓度12mmol/L,图中所标数据从左到右依次分别为浓度1mmol/L、2mmol/L、3mmol/L、4mmol/L、8mmol/L、12mmol/L的ABEI溶液制备的化学发光水凝胶材料在5min、30min、60min、120min、240min、540min所对应的发光情况。实验结果发现ABEI溶液浓度对该材料发光时长具有较大的影响,随着ABEI溶液浓度增加,发光时长逐渐延长,当ABEI溶液浓度为4mmol/L时,发光时长达到最长,再增加ABEI溶液浓度时发光强度逐渐下降,说明ABEI溶液浓度为4mmol/L时,该材料达到较好的发光效果。
图3为实施例5、实施例6中不同的过氧化氢溶液浓度对化学发光水凝胶材料发光时间的影响图,其中实施例5中过氧化氢溶液的浓度为0.50mol/L,实施例6的过氧化氢溶液浓度分别为0.01mol/L、0.05mol/L、0.10mol/L、0.30mol/L、1.00mol/L,图中所标数据从左到右依次分别为浓度0.01mol/L、0.05mol/L、0.10mol/L、0.30mol/L、0.50mol/L、1.00mol/L的过氧化氢溶液制备的化学发光水凝胶材料在5min、30min、60min、120min、480min、600min所对应的发光情况。实验结果发现过氧化氢溶液浓度对该材料发光时长具有较大的影响,随着过氧化氢溶液浓度增加,发光时长逐渐延长,当过氧化氢溶液浓度为0.50mol/L时,发光时长达到最长,且发光时常延长至600min,再增加过氧化 氢溶液浓度时发光强度逐渐下降,说明过氧化氢溶液浓度为0.50mol/L时,该材料达到较好的发光效果。
上述实施例为本发明的部分实施过程,但本发明的实施方式并不受上述实施例的限制,其他的任何违背本发明的精神实质与原理下所作的改变、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种化学发光水凝胶的制备方法,其特征在于,包括如下步骤:
    (1)将壳聚糖加入至乙酸溶液中,搅拌至壳聚糖完全溶解;
    其中,所述乙酸溶液的体积分数为1.0~10.0%,所述壳聚糖与乙酸溶液的比例为0.5~1.5g:15.0~25.0mL;
    (2)向步骤(1)中得到的产物加入氯化钴溶液及聚乙烯醇溶液,搅拌均匀后超声脱泡;
    其中,所述氯化钴溶液的浓度为15~60mmol/L,所述聚乙烯醇溶液的质量分数为5.0~10.0%,所述乙酸溶液与氯化钴溶液、聚乙烯醇溶液的体积比为15.0~25.0:0.5~2.0:0~10.0;
    (3)将步骤(2)得到的混合物浸入碱性溶液中进行碱浴处理,静置过夜,得到水凝胶;
    其中,所述碱性溶液的浓度为1.0~10.0mol/L;
    (4)将步骤(3)中得到的产物与N-(4-氨丁基)-N-乙基异鲁米诺溶液混合,搅拌均匀后,加入过氧化氢溶液中,获得化学发光水凝胶;
    其中,所述N-(4-氨丁基)-N-乙基异鲁米诺溶液的浓度为1~24mmol/L,所述过氧化氢溶液的浓度为0.01~1.00mol/L,所述步骤(3)中得到的产物与N-(4-氨丁基)-N-乙基异鲁米诺溶液、过氧化氢溶液的体积比为1~3:1~3:2~6。
  2. 根据权利要求1所述的化学发光水凝胶的制备方法,其特征在于,步骤(3)中,所述步骤(2)中得到的混合物与碱性溶液的体积比为1~5:3~15。
  3. 根据权利要求1所述的化学发光水凝胶的制备方法,其特征在于,步骤(1)中,所述乙酸溶液的体积分数为2.0%,所述壳聚糖与乙酸溶液的比例 为1.0g:20.0mL。
  4. 根据权利要求1所述的化学发光水凝胶的制备方法,其特征在于,步骤(2)中,所述氯化钴溶液的浓度为30mmol/L,所述聚乙烯醇溶液的质量分数为10%,所述乙酸溶液与氯化钴溶液、聚乙烯醇溶液的体积比为20.0:1.0:3.0。
  5. 根据权利要求1所述的化学发光水凝胶的制备方法,其特征在于,步骤(3)中,所述碱性溶液为KOH溶液、NaOH溶液、Ca(OH) 2溶液、Na 2CO 3溶液。
  6. 根据权利要求1所述的化学发光水凝胶的制备方法,其特征在于,步骤(3)中,所述碱性溶液的浓度为4.0mol/L。
  7. 根据权利要求2所述的化学发光水凝胶的制备方法,其特征在于,步骤(3)中,所述步骤(2)中得到的混合物与碱性溶液的体积比为1~5:10。
  8. 根据权利要求1所述的化学发光水凝胶的制备方法,其特征在于,步骤(4)中,所述N-(4-氨丁基)-N-乙基异鲁米诺溶液的浓度为12mmol/L,所述的过氧化氢溶液的浓度为0.50mol/L,所述步骤(3)中得到的产物与N-(4-氨丁基)-N-乙基异鲁米诺溶液、过氧化氢溶液的体积比为1:1:2。
  9. 根据权利要求1所述的化学发光水凝胶的制备方法,其特征在于,步骤(4)中,将步骤(3)得到的产物均匀粉碎、碾碎或捣碎后,与N-(4-氨丁基)-N-乙基异鲁米诺溶液混合,搅拌均匀后,加入过氧化氢溶液,获得化学发光水凝胶。
  10. 权利要求1-9中任意一项所述的方法制备的化学发光水凝胶。
PCT/CN2020/110495 2020-08-14 2020-08-21 一种制备化学发光水凝胶的方法 WO2022032714A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/915,787 US20230203370A1 (en) 2020-08-14 2020-08-21 Method for preparing chemiluminescent hydrogel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010821000.3A CN111944519A (zh) 2020-08-14 2020-08-14 一种制备化学发光水凝胶的方法
CN202010821000.3 2020-08-14

Publications (1)

Publication Number Publication Date
WO2022032714A1 true WO2022032714A1 (zh) 2022-02-17

Family

ID=73342498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110495 WO2022032714A1 (zh) 2020-08-14 2020-08-21 一种制备化学发光水凝胶的方法

Country Status (3)

Country Link
US (1) US20230203370A1 (zh)
CN (1) CN111944519A (zh)
WO (1) WO2022032714A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113509907B (zh) * 2021-03-09 2024-03-22 大连工业大学 一种木质素基复合水凝胶的制备及其在重金属离子吸附和发光材料中的应用
CN113125422B (zh) * 2021-04-16 2023-07-25 合肥工业大学 化学发光水凝胶微珠的制备方法、制得的水凝胶微珠及其应用
CN113321818A (zh) * 2021-05-11 2021-08-31 中山大学 一种复合水凝胶及其制备方法和应用
CN113637199B (zh) * 2021-08-20 2024-01-05 四川轻化工大学 一种聚乙烯醇/鲁米诺复合传感膜及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601904A (zh) * 2013-11-21 2014-02-26 福州大学 一种壳聚糖/聚乙烯醇复合材料的制备方法
CN105968388A (zh) * 2016-05-17 2016-09-28 哈尔滨理工大学 壳聚糖载药缓释水凝胶的制备方法
CN106279724A (zh) * 2016-08-22 2017-01-04 北京理工大学 一类具有高强度的壳聚糖物理水凝胶的制备方法
CN106833618A (zh) * 2016-12-19 2017-06-13 中国科学技术大学 双功能化水凝胶聚合物复合材料、其制备方法和用途
CN111234266A (zh) * 2020-03-11 2020-06-05 河南省科学院同位素研究所有限责任公司 一种壳聚糖/聚乙烯醇水凝胶敷料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601904A (zh) * 2013-11-21 2014-02-26 福州大学 一种壳聚糖/聚乙烯醇复合材料的制备方法
CN105968388A (zh) * 2016-05-17 2016-09-28 哈尔滨理工大学 壳聚糖载药缓释水凝胶的制备方法
CN106279724A (zh) * 2016-08-22 2017-01-04 北京理工大学 一类具有高强度的壳聚糖物理水凝胶的制备方法
CN106833618A (zh) * 2016-12-19 2017-06-13 中国科学技术大学 双功能化水凝胶聚合物复合材料、其制备方法和用途
CN111234266A (zh) * 2020-03-11 2020-06-05 河南省科学院同位素研究所有限责任公司 一种壳聚糖/聚乙烯醇水凝胶敷料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAI TONGCHUN, CHEN XINGBO, WANG NA, WANG YUANYUAN: "The Physical-Chemistry Properties of Poly(vinyl alcohol)/Chitosan Composite Hydrogels", ZHONGGUO KEXUE. HUAXUE - SCIENTIA SINICA CHIMICA, ZHONGGUO KEXUE ZAZHISHE, CN, vol. 44, no. 10, 20 October 2014 (2014-10-20), CN , pages 1591 - 1598, XP055899926, ISSN: 1674-7224, DOI: 10.1360/N032013-00086 *
JIANG LEI, LIN BAOFENG, LIANG XINGQUAN, LIU SIQIAN: "Progress in the Research of Hydrogels of Chitosan and its Derivatives", HUA HSUEH TUNG PAO - CHEMICAL BULLETIN, ZHONGGUO KEXUEYUAN HUAXUE YANJIUSUO, CN, no. 1, 18 January 2007 (2007-01-18), CN , pages 47 - 51, XP055899930, ISSN: 0441-3776, DOI: 10.14159/j.cnki.0441-3776.2007.01.008 *

Also Published As

Publication number Publication date
CN111944519A (zh) 2020-11-17
US20230203370A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
WO2022032714A1 (zh) 一种制备化学发光水凝胶的方法
CN110698697B (zh) 一种具有自愈合性能的聚乙烯亚胺-聚乙烯醇水凝胶的制备方法
US3709842A (en) Porous hydrogels and method of manufacturing same
JP6894975B2 (ja) 二機能性ヒドロゲルポリマー複合材料、その製造方法及び用途
CN110343194B (zh) 壳聚糖巯基化衍生物及其制备方法和应用
CN113004543B (zh) 一种纳米木质素/聚乙烯醇复合医用水凝胶及其制备方法
CN108084316A (zh) 一种羧基化多孔交联聚苯乙烯共聚荧光微球的制备方法
CN101423614B (zh) 一种发光纤维素水凝胶及其制备方法
CN113185725A (zh) 一种原位快速制备银纳米粒子/明胶复合水凝胶的方法
CN102423298B (zh) 一种核壳结构胶原多肽螯合钙纳米粒子的制备方法
CN115073768A (zh) 一种负载功能成分双网络水凝胶的制备方法
CN103157515A (zh) 对细菌纤维素的c6 进行羧基化反应的催化剂及方法
CN108904466A (zh) 一种含ZnO的水凝胶珠包封难溶性药物的方法
CN112267168A (zh) 一种高强度光致发光水凝胶纤维的制备方法
CN103755983A (zh) 一种聚乙烯醇微球及其制备方法
CN114716726A (zh) 一种大孔丝素蛋白水凝胶的制备方法
CN110128675B (zh) 一种微米级金属有机骨架材料的制备方法及其作为荧光探针的应用
US3962067A (en) Process for the production of an aqueous solution of silicoformic acid
CN110003676B (zh) 一种纳米硼酸镁/木质素复合材料的制备方法
CN109438729B (zh) 一种水凝胶表面微凸起结构的制备方法
CN109180967B (zh) 一种壳聚糖羧甲基纤维素钠复合中空球及其制备方法
CN111187612A (zh) 一种荧光金纳米团簇-聚合物空心微球及其制备方法
JP4384338B2 (ja) 酵素又は微生物固定化担体組成物
CN113773523B (zh) 一种温敏可逆水凝胶及其制备方法与应用
CN118515880A (zh) 一种苯硼酸基交联剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949212

Country of ref document: EP

Kind code of ref document: A1