WO2022024590A1 - 基板処理方法 - Google Patents

基板処理方法 Download PDF

Info

Publication number
WO2022024590A1
WO2022024590A1 PCT/JP2021/023609 JP2021023609W WO2022024590A1 WO 2022024590 A1 WO2022024590 A1 WO 2022024590A1 JP 2021023609 W JP2021023609 W JP 2021023609W WO 2022024590 A1 WO2022024590 A1 WO 2022024590A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
nozzle
ipa
treatment
liquid supply
Prior art date
Application number
PCT/JP2021/023609
Other languages
English (en)
French (fr)
Inventor
哲也 江本
滋 山本
大樹 藤井
建治 枝光
敬次 岩田
侑哉 川井
健一 伊藤
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to US18/007,267 priority Critical patent/US20230290631A1/en
Priority to CN202180058516.XA priority patent/CN116114049A/zh
Priority to KR1020237004564A priority patent/KR20230035396A/ko
Publication of WO2022024590A1 publication Critical patent/WO2022024590A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02101Cleaning only involving supercritical fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like

Definitions

  • the present invention relates to a substrate processing method.
  • a substrate treatment method for removing the residue remaining on the substrate after forming a pattern by ashing treatment or etching treatment there is a substrate treatment method for removing the residue remaining on the substrate after forming a pattern by ashing treatment or etching treatment.
  • a substrate processing method a method of sequentially executing a chemical solution treatment, a rinsing treatment, and a spin dry treatment on a substrate is known.
  • rinsing treatment water is supplied to the substrate to remove the chemical solution from the upper surface of the substrate.
  • Patent Document 1 discloses a substrate treatment method in which a chemical solution treatment, a pure water rinsing treatment, a water repellent treatment, a pure water rinsing treatment, and a drying treatment are sequentially executed on a substrate.
  • pure water is supplied to the substrate and the chemical solution is removed from the upper surface of the substrate.
  • a water-repellent agent is supplied to the substrate to form a water-repellent protective film covering the pattern.
  • pure water is supplied to the substrate to remove the water repellent agent remaining on the upper surface of the substrate.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a substrate processing method capable of improving the cleanliness of a substrate.
  • the substrate treatment method is a method of treating a substrate, in which a step of supplying a water repellent agent to the substrate and after supplying the water repellent agent to the substrate.
  • it includes a step of supplying diluted isopropyl alcohol, which is diluted isopropyl alcohol, and a step of drying the substrate after supplying the diluted isopropyl alcohol.
  • the substrate treatment method further comprises the step of supplying isopropyl alcohol to the substrate before supplying the water repellent agent.
  • the substrate treatment method further comprises the step of supplying the substrate with isopropyl alcohol after the diluted isopropyl alcohol has been supplied and before the substrate has been dried.
  • the substrate treatment method further comprises the step of supplying isopropyl alcohol to the substrate after the supply of the water repellent agent and before the supply of the diluted isopropyl alcohol.
  • the cleanliness of the substrate can be improved.
  • “Substrate” in the present embodiment includes a semiconductor wafer, a glass substrate for a photomask, a glass substrate for a liquid crystal display, a glass substrate for a plasma display, a substrate for a FED (Field Emission Display), a substrate for an optical disk, a substrate for a magnetic disk, and a substrate.
  • Various substrates such as photomagnetic disk substrates can be applied.
  • the present embodiment will be described mainly by taking as an example a substrate processing method used for processing a disk-shaped semiconductor wafer, but the present embodiment can be similarly applied to the processing of various substrates exemplified above. Further, various shapes of the substrate can be applied.
  • FIG. 1 is a schematic view of a substrate processing apparatus 100 used in the substrate processing method of the present embodiment.
  • FIG. 1 is a schematic plan view of the substrate processing apparatus 100.
  • the substrate processing apparatus 100 processes the substrate W. More specifically, the substrate processing apparatus 100 is a single-wafer processing apparatus that processes the substrate W one by one.
  • the substrate processing method of the present embodiment can be executed by using, for example, the substrate processing apparatus 100.
  • the substrate processing apparatus 100 includes a plurality of processing units 1, a fluid cabinet 100A, a plurality of fluid boxes 100B, a plurality of load port LPs, an indexer robot IR, a center robot CR, and the like. It is provided with a control device 101.
  • Each of the load port LPs accommodates a plurality of substrates W in a stacked manner.
  • the indexer robot IR conveys the substrate W between the load port LP and the center robot CR.
  • the center robot CR conveys the substrate W between the indexer robot IR and the processing unit 1.
  • a mounting table (path) for temporarily mounting the substrate W is provided between the indexer robot IR and the center robot CR, and the mounting table is provided between the indexer robot IR and the center robot CR.
  • the device configuration may be such that the substrate W is indirectly delivered.
  • the plurality of processing units 1 form a plurality of tower TWs (four tower TWs in FIG. 1) arranged so as to surround the center robot CR in a plan view.
  • Each tower TW includes a plurality of processing units 1 (three processing units 1 in FIG. 1) stacked one above the other.
  • Each of the processing units 1 supplies the processing liquid to the substrate W to process the substrate W.
  • the fluid cabinet 100A accommodates the treatment liquid.
  • Each of the fluid boxes 100B corresponds to one of a plurality of tower TWs.
  • the processing liquid in the fluid cabinet 100A is supplied to all the processing units 1 included in the tower TW corresponding to the fluid box 100B via any of the fluid boxes 100B.
  • the treatment liquid is DHF (dilute hydrofluoric acid), DIW (Deionized Water: deionized water), SC1 (mixture of ammonia water, hydrogen peroxide water, and water), and IPA (isopropyl alcohol). ) And the water repellent agent SMT.
  • the control device 101 controls the operation of each part of the substrate processing device 100.
  • the control device 101 controls the load port LP, the indexer robot IR, and the center robot CR.
  • the control device 101 includes a control unit 102 and a storage unit 103.
  • the control unit 102 has a processor.
  • the control unit 102 has, for example, a CPU (Central Processing Unit) or an MPU (Micro Processing Unit).
  • the control unit 102 may have a general-purpose arithmetic unit.
  • the storage unit 103 stores data and computer programs.
  • the data includes recipe data.
  • the recipe data includes information indicating a plurality of recipes. Each of the plurality of recipes defines the processing content and processing procedure of the substrate W.
  • the storage unit 103 has a main storage device.
  • the main storage device is, for example, a semiconductor memory.
  • the storage unit 103 may further have an auxiliary storage device.
  • Auxiliary storage includes, for example, at least one of a semiconductor memory and a hard disk drive.
  • the storage unit 103 may include removable media.
  • the control unit 102 controls the operation of each unit of the board processing device 100 based on the computer program and data stored in the storage unit 103.
  • FIG. 2 is a schematic view of a processing unit 1 included in the substrate processing apparatus 100. Specifically, FIG. 2 is a schematic cross-sectional view of the processing unit 1.
  • the processing unit 1 includes a chamber 2, a substrate holding unit 3, a rotation driving unit 4, a first nozzle 5 to a fifth nozzle 9, a cup 10, and a first nozzle moving unit 50 to.
  • a fifth nozzle moving unit 90 is provided.
  • the substrate processing apparatus 100 further includes a first processing liquid supply unit 110 to a fifth treatment liquid supply unit 150.
  • the control device 101 includes a substrate holding unit 3, a rotation driving unit 4, a cup 10, a first nozzle moving unit 50 to a fifth nozzle moving unit 90, and a first processing liquid supply unit 110 to a fifth processing liquid. Controls the supply unit 150.
  • Chamber 2 has a substantially box shape.
  • the chamber 2 houses a substrate W, a substrate holding portion 3, a rotation driving portion 4, a first nozzle 5 to a fifth nozzle 9, a cup 10, and a first nozzle moving portion 50 to a fifth nozzle moving portion 90. Further, the chamber 2 accommodates a part of the first treatment liquid supply unit 110 to a part of the fifth treatment liquid supply unit 150.
  • the board holding portion 3 holds the board W horizontally. More specifically, the substrate W has a pattern-forming surface on which a pattern is formed.
  • the substrate holding portion 3 holds the substrate W in a state where the pattern forming surface faces upward. Therefore, the upper surface of the substrate W held by the substrate holding portion 3 is a pattern forming surface.
  • the pattern is formed on the surface of the substrate W by, for example, an etching process.
  • the substrate processing method of the present embodiment typically targets the substrate W after the dry etching process. That is, the substrate processing apparatus 100 executes a cleaning process for removing the polymer residue adhering to the substrate W after the etching process.
  • the substrate holding portion 3 is, for example, a vacuum type spin chuck. However, the substrate holding portion 3 is not limited to the vacuum type spin chuck.
  • the substrate holding portion 3 may be, for example, a sandwiching type spin chuck or a Bernoulli type spin chuck.
  • the rotation drive unit 4 rotates the substrate holding unit 3 around the rotation axis AX. As a result, the substrate W and the substrate holding portion 3 rotate integrally around the rotation axis AX.
  • the rotation axis AX extends in the vertical direction.
  • the rotary drive unit 4 includes, for example, an electric motor.
  • the first nozzle 5 supplies DHF to the substrate W from above the substrate W. Specifically, the first nozzle 5 discharges the DHF toward the rotating substrate W.
  • the first nozzle moving unit 50 moves the first nozzle 5 between the processing position and the retracted position. When the first nozzle 5 moves to the processing position, it faces the substrate W in a plan view. When the first nozzle 5 moves to the retracted position, it does not face the substrate W in a plan view. Specifically, when the first nozzle 5 moves to the processing position, it faces the central portion of the upper surface of the substrate W. Further, when the first nozzle 5 moves to the retracted position, it retracts around the substrate W in a plan view.
  • the first nozzle moving unit 50 has a first nozzle arm 51 and a first nozzle driving unit 52.
  • the first nozzle arm 51 extends along a substantially horizontal direction.
  • the first nozzle 5 is arranged at the tip of the first nozzle arm 51.
  • the first nozzle drive unit 52 rotates the first nozzle arm 51 along a substantially horizontal plane around a rotation axis extending in the vertical direction. As a result, the first nozzle 5 moves in the circumferential direction along the circumferential direction centered on the rotation axis extending in the vertical direction.
  • the first nozzle drive unit 52 includes an electric motor capable of forward and reverse rotation.
  • the first nozzle drive unit 52 is controlled by the control device 101 (control unit 102).
  • the first treatment liquid supply unit 110 supplies DHF to the first nozzle 5.
  • the first treatment liquid supply unit 110 has a first treatment liquid supply pipe 111 and a first valve 112. A part of the first treatment liquid supply pipe 111 is housed in the chamber 2.
  • the first treatment liquid supply pipe 111 supplies DHF to the first nozzle 5.
  • the first treatment liquid supply pipe 111 is a tubular member through which DHF flows.
  • the first valve 112 is provided in the first treatment liquid supply pipe 111.
  • the first valve 112 is, for example, a solenoid valve.
  • the first valve 112 is an on-off valve that opens and closes the flow path of the first processing liquid supply pipe 111.
  • the first valve 112 controls the flow of the DHF flowing through the first treatment liquid supply pipe 111. Specifically, when the first valve 112 is opened, the DHF flows to the first nozzle 5 via the first treatment liquid supply pipe 111. As a result, the DHF is discharged from the first nozzle 5. When the first valve 112 is closed, the flow of DHF is cut off, and the discharge of DHF by the first nozzle 5 is stopped.
  • the first valve 112 also functions as a regulating valve for adjusting the flow rate of the DHF flowing through the first processing liquid supply pipe 111.
  • the first valve 112 is controlled by the control device 101 (control unit 102).
  • the second nozzle 6 supplies DIW to the substrate W from above the substrate W. Specifically, the second nozzle 6 discharges DIW toward the rotating substrate W.
  • the second nozzle moving unit 60 moves the second nozzle 6 between the processing position and the retracted position in the same manner as the first nozzle moving unit 50.
  • the second nozzle moving unit 60 has a second nozzle arm 61 and a second nozzle driving unit 62, similarly to the first nozzle moving unit 50. Since the configuration of the second nozzle moving unit 60 is the same as that of the first nozzle moving unit 50, detailed description thereof will be omitted.
  • the second treatment liquid supply unit 120 supplies DIW to the second nozzle 6.
  • the second treatment liquid supply unit 120 has a second treatment liquid supply pipe 121 and a second valve 122, similarly to the first treatment liquid supply unit 110.
  • a part of the second treatment liquid supply pipe 121 is housed in the chamber 2.
  • the second treatment liquid supply pipe 121 supplies DIW to the second nozzle 6.
  • the second valve 122 is provided in the second treatment liquid supply pipe 121. Since the configuration of the second treatment liquid supply unit 120 is the same as that of the first treatment liquid supply unit 110, detailed description thereof will be omitted.
  • the third nozzle 7 supplies SC1 to the substrate W from above the substrate W. Specifically, the third nozzle 7 discharges SC1 toward the rotating substrate W.
  • the third nozzle moving unit 70 moves the third nozzle 7 between the processing position and the retracted position in the same manner as the first nozzle moving unit 50.
  • the third nozzle moving unit 70 has a third nozzle arm 71 and a third nozzle driving unit 72, similarly to the first nozzle moving unit 50. Since the configuration of the third nozzle moving unit 70 is the same as that of the first nozzle moving unit 50, detailed description thereof will be omitted.
  • the third treatment liquid supply unit 130 supplies SC1 to the third nozzle 7.
  • the third treatment liquid supply unit 130 has a third treatment liquid supply pipe 131 and a third valve 132, similarly to the first treatment liquid supply unit 110.
  • a part of the third treatment liquid supply pipe 131 is housed in the chamber 2.
  • the third treatment liquid supply pipe 131 supplies SC1 to the third nozzle 7.
  • the third valve 132 is provided in the third processing liquid supply pipe 131. Since the configuration of the third treatment liquid supply unit 130 is the same as that of the first treatment liquid supply unit 110, detailed description thereof will be omitted.
  • the fourth nozzle 8 supplies IPA and diluted IPA to the substrate W from above the substrate W. Specifically, the fourth nozzle 8 discharges IPA and diluted IPA toward the rotating substrate W. Diluted IPA indicates diluted IPA.
  • the diluted IPA is an IPA diluted by DIW.
  • the diluted IPA is a mixture of IPA and DIW.
  • the ratio (volume ratio) of DIW to IPA is, for example, 10% or more and 30% or less.
  • the diluted IPA may be referred to as "dIPA".
  • the fourth nozzle moving unit 80 moves the fourth nozzle 8 between the processing position and the retracted position in the same manner as the first nozzle moving unit 50.
  • the fourth nozzle moving unit 80 has a fourth nozzle arm 81 and a fourth nozzle driving unit 82, similarly to the first nozzle moving unit 50. Since the configuration of the fourth nozzle moving unit 80 is the same as that of the first nozzle moving unit 50, detailed description thereof will be omitted.
  • the fourth treatment liquid supply unit 140 supplies IPA and dIPA to the fourth nozzle 8.
  • the fourth treatment liquid supply unit 140 has a fourth treatment liquid supply pipe 141, a fourth valve 142, a fifth treatment liquid supply pipe 143, and a fifth valve 144.
  • a part of the fourth treatment liquid supply pipe 141 is housed in the chamber 2.
  • the fourth treatment liquid supply pipe 141 supplies IPA and dIPA to the fourth nozzle 8.
  • the fifth treatment liquid supply pipe 143 supplies DIW to the fourth treatment liquid supply pipe 141.
  • the fourth valve 142 is provided in the fourth treatment liquid supply pipe 141.
  • the fifth valve 144 is provided in the fifth treatment liquid supply pipe 143.
  • the fourth valve 142 and the fifth valve 144 are, for example, solenoid valves.
  • the fifth treatment liquid supply pipe 143 is connected to the fourth treatment liquid supply pipe 141 between the fourth nozzle 8 and the fourth valve 142.
  • the fourth valve 142 is an on-off valve that opens and closes the flow path of the fourth treatment liquid supply pipe 141.
  • the fourth valve 142 controls the flow of IPA flowing through the fourth treatment liquid supply pipe 141. Specifically, when the fourth valve 142 is opened, IPA flows to the fourth nozzle 8 via the fourth treatment liquid supply pipe 141. When the fourth valve 142 is closed, the distribution of IPA is cut off.
  • the fourth valve 142 also functions as a regulating valve for adjusting the flow rate of the IPA flowing through the fourth processing liquid supply pipe 141.
  • the fourth valve 142 is controlled by the control device 101 (control unit 102).
  • the fifth valve 144 is an on-off valve that opens and closes the flow path of the fifth treatment liquid supply pipe 143.
  • the fifth valve 144 controls the flow of DIW flowing through the fifth treatment liquid supply pipe 143. Specifically, when the fifth valve 144 is opened, the DIW flows into the fourth treatment liquid supply pipe 141 via the fifth treatment liquid supply pipe 143. When the fifth valve 144 is closed, the distribution of DIW is cut off.
  • the fifth valve 144 also functions as a regulating valve for adjusting the flow rate of the DIW flowing through the fifth processing liquid supply pipe 143.
  • the fifth valve 144 is controlled by the control device 101 (control unit 102).
  • the control device 101 opens the fourth valve 142 and closes the fifth valve 144 when the IPA is discharged from the fourth nozzle 8.
  • IPA is supplied from the fourth processing liquid supply pipe 141 to the fourth nozzle 8, and the IPA is discharged from the fourth nozzle 8.
  • control device 101 closes the fourth valve 142, the flow of IPA is cut off, and the discharge of IPA by the fourth nozzle 8 is stopped.
  • the control device 101 opens the fourth valve 142 and the fifth valve 144 when the dIPA is discharged from the fourth nozzle 8.
  • DIW joins the IPA flowing through the fourth treatment liquid supply pipe 141 from the fifth treatment liquid supply pipe 143 to generate dIPA.
  • the dIPA is supplied from the fourth processing liquid supply pipe 141 to the fourth nozzle 8.
  • dIPA is discharged from the fourth nozzle 8.
  • the fifth nozzle 9 supplies the water repellent agent SMT to the substrate W from above the substrate W. Specifically, the fifth nozzle 9 discharges the water repellent agent SMT toward the rotating substrate W.
  • the fifth nozzle moving unit 90 moves the fifth nozzle 9 between the processing position and the retracted position in the same manner as the first nozzle moving unit 50.
  • the fifth nozzle moving unit 90 has a fifth nozzle arm 91 and a fifth nozzle driving unit 92, similarly to the first nozzle moving unit 50. Since the configuration of the fifth nozzle moving unit 90 is the same as that of the first nozzle moving unit 50, detailed description thereof will be omitted.
  • the fifth treatment liquid supply unit 150 supplies the water repellent agent SMT to the fifth nozzle 9.
  • the fifth treatment liquid supply unit 150 has a sixth treatment liquid supply pipe 151 and a sixth valve 152, similarly to the first treatment liquid supply unit 110.
  • a part of the sixth treatment liquid supply pipe 151 is housed in the chamber 2.
  • the sixth treatment liquid supply pipe 151 supplies the water repellent agent SMT to the fifth nozzle 9.
  • the sixth valve 152 is provided in the sixth treatment liquid supply pipe 151. Since the configuration of the fifth treatment liquid supply unit 150 is the same as that of the first treatment liquid supply unit 110, detailed description thereof will be omitted.
  • the water repellent agent SMT is, for example, a silicon-based water repellent agent or a metal-based water repellent agent.
  • the silicon-based water repellent agent makes silicon or a compound containing silicon water-repellent (hydrophobic).
  • the metal-based water repellent agent makes a metal or a compound containing a metal water-repellent (hydrophobic).
  • the silicon-based water repellent agent is, for example, a silane coupling agent.
  • the silane coupling agent contains, for example, at least one of HMDS (hexamethyldisilazane), TMS (tetramethylsilane), fluorinated alkylchlorosilane, alkyldisilazane, and a non-chlorohydrophobic agent.
  • non-chlorohydrophobic agent examples include dimethylsilyldimethylamine, dimethylsilyldiethylamine, hexamethyldisilazane, tetramethyldisilazane, bis (dimethylamino) dimethylsilane, N, N-dimethylaminotrimethylsilane, and N- (trimethylsilyl). ) Includes at least one of dimethylamine and an organosilane compound.
  • the metal-based water repellent agent contains, for example, an amine having a hydrophobic group and at least one of an organic silicon compound.
  • the water repellent agent SMT may be diluted with a solvent that is compatible with the hydrophilic organic solvent.
  • the solvent is, for example, IPA or PGMEA (propylene glycol monomethyl ether acetate).
  • the water repellent agent SMT forms a water repellent protective film on the upper surface of the substrate W.
  • the pattern formed on the substrate W is covered with the water-repellent protective film.
  • the cup 10 is arranged around the substrate holding portion 3.
  • the cup 10 surrounds the side of the substrate W held by the substrate holding portion 3.
  • the cup 10 receives the treatment liquid (DHF, DIW, SC1, IPA, dIPA, water repellent agent SMT) scattered from the rotating substrate W.
  • DHF treatment liquid
  • DIW DIW
  • SC1 IPA
  • dIPA water repellent agent SMT
  • FIG. 3 is a flow chart showing the substrate processing method of the present embodiment.
  • the process shown in FIG. 3 includes steps S1 to S7 and steps S11 to S13.
  • the center robot CR When processing the substrate W by the substrate processing apparatus 100 described with reference to FIGS. 1 and 2, first, the center robot CR carries the substrate W into the chamber 2 of the processing unit 1 (step S1). The substrate W carried into the chamber 2 is held by the substrate holding portion 3. When the substrate holding unit 3 holds the substrate W, the rotation of the substrate W by the rotation driving unit 4 starts.
  • the first nozzle 5 moves from the retracted position to the processing position, and DHF is supplied from the first nozzle 5 to the substrate W (step S2). Specifically, the DHF is discharged from the first nozzle 5 toward the substrate W.
  • the DHF After the DHF has landed on the central portion of the upper surface of the substrate W, it flows toward the outside of the substrate W due to the rotation of the substrate W. As a result, a liquid film of DHF is formed on the upper surface of the substrate W.
  • the discharge of DHF from the first nozzle 5 to the substrate W is stopped. After that, the first nozzle 5 moves from the processing position to the retracted position.
  • the liquid film of DHF removes the natural oxide film formed on the upper surface of the substrate W.
  • the second nozzle 6 moves from the retracted position to the processing position, and DIW is supplied from the second nozzle 6 to the substrate W (step S3). Specifically, DIW is discharged from the second nozzle 6 toward the substrate W.
  • the DIW After the DIW has landed on the central portion of the upper surface of the substrate W, it flows toward the outside of the substrate W due to the rotation of the substrate W. As a result, the liquid film of DHF is replaced with the liquid film of DIW. In other words, the DHF remaining on the upper surface of the substrate W is washed away by the DIW (rinse treatment).
  • the DIW rinse treatment
  • the third nozzle 7 moves from the retracted position to the processing position, and SC1 is supplied from the third nozzle 7 to the substrate W (step S4). Specifically, SC1 is discharged from the third nozzle 7 toward the substrate W.
  • the SC1 After the SC1 has landed on the central portion of the upper surface of the substrate W, it flows toward the outside of the substrate W due to the rotation of the substrate W. As a result, the DIW liquid film is replaced with the SC1 liquid film.
  • the discharge of SC1 from the third nozzle 7 to the substrate W is stopped. After that, the third nozzle 7 moves from the processing position to the retracted position. The liquid film of SC1 removes the resist residue from the upper surface of the substrate W.
  • the second nozzle 6 moves from the retracted position to the processing position, and DIW is supplied from the second nozzle 6 to the substrate W (step S5).
  • the liquid film of SC1 is replaced with the liquid film of DIW as in step S3.
  • SC1 remaining on the upper surface of the substrate W is washed away by DIW (rinse treatment).
  • the 4th nozzle 8 moves from the retracted position to the processing position, and IPA is supplied from the 4th nozzle 8 to the substrate W (step S6). Specifically, the IPA is discharged from the fourth nozzle 8 toward the substrate W.
  • the IPA After the IPA has landed on the central portion of the upper surface of the substrate W, it flows toward the outside of the substrate W due to the rotation of the substrate W. As a result, the DIW liquid film is replaced with the IPA liquid film.
  • the ejection of IPA from the fourth nozzle 8 to the substrate W is stopped. After that, the fourth nozzle 8 moves from the processing position to the retracted position.
  • the fifth nozzle 9 moves from the retracted position to the processing position, and the water repellent agent SMT is supplied from the fifth nozzle 9 to the substrate W (step S7). Specifically, the water repellent agent SMT is discharged from the fifth nozzle 9 toward the substrate W.
  • the water repellent agent SMT After the water repellent agent SMT has landed on the central portion of the upper surface of the substrate W, it flows toward the outside of the substrate W by the rotation of the substrate W. As a result, the liquid film of IPA is replaced with the liquid film of the water repellent agent SMT.
  • the discharge of the water repellent agent SMT from the fifth nozzle 9 to the substrate W is stopped. After that, the fifth nozzle 9 moves from the processing position to the retracted position.
  • a water repellent protective film is formed on the upper surface of the substrate W, and the pattern formed on the substrate W is covered with the water repellent protective film (water repellent). Chemical processing).
  • the fourth nozzle 8 moves from the retracted position to the treatment position, and dIPA is supplied from the fourth nozzle 8 to the substrate W (step S11). Specifically, dIPA is discharged from the fourth nozzle 8 toward the substrate W.
  • the dIPA After the dIPA has landed on the central portion of the upper surface of the substrate W, it flows toward the outside of the substrate W by the rotation of the substrate W. As a result, the residue of the water repellent agent SMT is removed from the upper surface of the substrate W, and a liquid film of dIPA is formed on the upper surface of the substrate W. In other words, the water repellent agent SMT remaining on the upper surface of the substrate W is washed away by dIPA (rinse treatment).
  • dIPA rinse treatment
  • a drying treatment for drying the substrate W is executed (step S12). Specifically, the control device 101 (control unit 102) controls the rotation drive unit 4 to increase the rotation speed of the substrate W. As a result, a large centrifugal force is applied to the liquid adhering to the substrate W, and the liquid adhering to the substrate W is shaken off around the substrate W. In this way, the liquid is removed from the substrate W to dry the substrate W.
  • the control device 101 (control unit 102) stops the rotation of the substrate W by the rotation drive unit 4 after a predetermined time has elapsed from the start of high-speed rotation of the substrate W, for example.
  • the center robot CR carries out the substrate W from the chamber 2 (step S13). As a result, the process shown in FIG. 3 is completed.
  • the rinsing treatment with dIPA is performed after the water repellent treatment.
  • the surface tension of dIPA is smaller than that of water. Therefore, dIPA is easier to spread over the entire upper surface of the substrate W than water. Therefore, the water-repellent agent SMT (residue of the water-repellent agent SMT) remaining on the upper surface of the substrate W can be removed from the entire upper surface of the substrate W to improve the cleanliness of the substrate W.
  • dIPA is a highly polar liquid, the residue of the water repellent agent SMT is easily dissolved. Therefore, the residue of the water repellent agent SMT can be efficiently removed.
  • IPA and dIPA can be discharged from the fourth nozzle 8. Therefore, it is not necessary to provide a nozzle for dIPA in the substrate processing apparatus 100 (processing unit 1).
  • PGMEA is a liquid with low surface tension and high polarity.
  • the rinsing treatment after the water repellent treatment can be performed without providing the substrate processing apparatus 100 as a dedicated mechanism for supplying the chemical solution used for the rinsing treatment after the water repellent treatment to the substrate W. ..
  • the pattern can be covered with a water-repellent protective film. Therefore, the contact angle of the liquid adhering to the pattern before the drying process can be increased. As a result, the surface tension of the liquid acting on the pattern during the drying process is reduced, and the pattern can be prevented from collapsing.
  • the rinsing treatment by dIPA is performed after the water repellent treatment. Since dIPA has a smaller surface tension than water, the surface tension of the liquid acting on the pattern during the drying treatment is smaller than that in the case of rinsing with water after the water repellent treatment, and the pattern collapses more. It can be avoided.
  • the water repellent agent SMT and IPA may react to generate a reaction product, but this reaction product dissolves in the water contained in dIPA. Therefore, according to the present embodiment, it is possible to remove the reaction product generated by the reaction between the water repellent agent SMT and IPA.
  • the second embodiment is different from the first embodiment in that the dIPA is supplied to the substrate W and then the IPA is supplied to the substrate W.
  • FIG. 4 is a flow chart showing the substrate processing method of the present embodiment.
  • the process shown in FIG. 4 can be performed by the substrate processing apparatus 100 described with reference to FIGS. 1 and 2 in the same manner as in the first embodiment.
  • the process shown in FIG. 4 includes steps S1 to S7 and steps S21 to S24. Since the processes of steps S1 to S7 shown in FIG. 4 are the same as the processes of steps S1 to S7 shown in FIG. 3, the description thereof will be omitted.
  • the fourth nozzle 8 moves from the retracted position to the processing position, and dIPA is supplied from the fourth nozzle 8 to the substrate W (step S21). Specifically, dIPA is discharged from the fourth nozzle 8 toward the substrate W.
  • the dIPA After the dIPA has landed on the central portion of the upper surface of the substrate W, it flows toward the outside of the substrate W by the rotation of the substrate W. As a result, the residue of the water repellent agent SMT is removed from the upper surface of the substrate W, and a liquid film of dIPA is formed on the upper surface of the substrate W. In other words, the water repellent agent SMT remaining on the upper surface of the substrate W is washed away by dIPA (rinse treatment).
  • the IPA is supplied from the fourth nozzle 8 to the substrate W (step S22). Specifically, the fifth valve 144 closes, and the supply of DIW from the fifth treatment liquid supply pipe 143 to the fourth treatment liquid supply pipe 141 is stopped. As a result, IPA is discharged from the fourth nozzle 8 toward the substrate W.
  • the IPA After the IPA has landed on the central portion of the upper surface of the substrate W, it flows toward the outside of the substrate W due to the rotation of the substrate W. As a result, the liquid film of dIPA is replaced with the liquid film of IPA.
  • the ejection of IPA from the fourth nozzle 8 to the substrate W is stopped. After that, the fourth nozzle 8 moves from the processing position to the retracted position.
  • the reaction product generated by the reaction between the IPA supplied to the substrate W and the water repellent agent SMT before the water repellent treatment is used when the liquid film of dIPA is replaced with the liquid film of IPA. It is removed from the substrate W together with dIPA.
  • step S23 After the drying process, the center robot CR carries out the substrate W from the chamber 2 (step S24). As a result, the process shown in FIG. 4 is completed.
  • the cleanliness of the substrate W can be improved as in the first embodiment.
  • the upper surface of the substrate W can be covered with the liquid film of IPA before the drying treatment. Since the surface tension of IPA is smaller than that of dIPA, the surface tension of the liquid acting on the pattern during the drying process becomes smaller, and the collapse of the pattern can be further avoided.
  • the third embodiment is different from the first embodiment in that the IPA is supplied to the substrate W before the dIPA is supplied to the substrate W.
  • FIG. 5 is a flow chart showing the substrate processing method of the present embodiment.
  • the processing shown in FIG. 5 can be performed by the substrate processing apparatus 100 described with reference to FIGS. 1 and 2 in the same manner as in the first and second embodiments.
  • the process shown in FIG. 5 includes steps S1 to S7 and steps S31 to S34. Since the processes of steps S1 to S7 shown in FIG. 5 are the same as the processes of steps S1 to S7 shown in FIG. 3, the description thereof will be omitted.
  • the fourth nozzle 8 moves from the retracted position to the processing position, and IPA is supplied from the fourth nozzle 8 to the substrate W (step S31). Specifically, the IPA is discharged from the fourth nozzle 8 toward the substrate W.
  • the IPA After the IPA has landed on the central portion of the upper surface of the substrate W, it flows toward the outside of the substrate W due to the rotation of the substrate W. As a result, the residue of the water repellent agent SMT is removed from the upper surface of the substrate W, and a liquid film of IPA is formed on the upper surface of the substrate W. In other words, the water repellent agent SMT remaining on the upper surface of the substrate W is washed away by IPA (rinse treatment).
  • dIPA is supplied from the fourth nozzle 8 to the substrate W (step S32). Specifically, the fifth valve 144 opens, and DIW is supplied from the fifth treatment liquid supply pipe 143 to the fourth treatment liquid supply pipe 141. As a result, dIPA is discharged from the fourth nozzle 8 toward the substrate W.
  • the dIPA After the dIPA has landed on the central portion of the upper surface of the substrate W, it flows toward the outside of the substrate W by the rotation of the substrate W. As a result, the liquid film of IPA is replaced with the liquid film of dIPA.
  • the discharge of dIPA from the fourth nozzle 8 to the substrate W is stopped. After that, the fourth nozzle 8 moves from the processing position to the retracted position.
  • step S33 After the drying process, the center robot CR carries out the substrate W from the chamber 2 (step S34). As a result, the process shown in FIG. 5 is completed.
  • the third embodiment of the present invention has been described above with reference to FIGS. 1, 2, and 5. According to the present embodiment, the cleanliness of the substrate W can be improved as in the first embodiment.
  • the IPA can be supplied to the substrate W before the dIPA is supplied to the substrate W. Since IPA has a smaller surface tension than dIPA, it is easier to spread over the entire upper surface of the substrate W than dIPA. Therefore, by supplying the IPA to the substrate W and then supplying the dIPA to the substrate W, the dIPA can be easily distributed over the entire upper surface of the substrate W.
  • reaction product generated by the reaction between the IPA supplied after the water repellent treatment and the water repellent agent SMT dissolves in the dIPA, it is removed from the substrate W together with the dIPA during the drying treatment.
  • the fourth embodiment of the present invention will be described with reference to FIGS. 1, 2, and 6. However, the matters different from those of the first to third embodiments will be described, and the same matters as those of the first to third embodiments will be omitted.
  • the fourth embodiment is different from the third embodiment in that the IPA is supplied to the substrate W after the dIPA is supplied to the substrate W.
  • FIG. 6 is a flow chart showing the substrate processing method of the present embodiment.
  • the processing shown in FIG. 6 can be performed by the substrate processing apparatus 100 described with reference to FIGS. 1 and 2 in the same manner as in the first to third embodiments.
  • the process shown in FIG. 6 includes steps S1 to S7 and steps S41 to S45. Since the processes of steps S1 to S7 shown in FIG. 6 are the same as the processes of steps S1 to S7 shown in FIG. 3, the description thereof will be omitted.
  • the fourth nozzle 8 moves from the retracted position to the treatment position in the same manner as in step S31 described with reference to FIG. 5, and the substrate W is moved from the fourth nozzle 8 to the substrate W.
  • IPA is supplied to (step S41).
  • dIPA is supplied from the fourth nozzle 8 to the substrate W (step S42). Specifically, the fifth valve 144 opens, and DIW is supplied from the fifth treatment liquid supply pipe 143 to the fourth treatment liquid supply pipe 141. As a result, dIPA is discharged from the fourth nozzle 8 toward the substrate W.
  • the dIPA After the dIPA has landed on the central portion of the upper surface of the substrate W, it flows toward the outside of the substrate W by the rotation of the substrate W. As a result, the liquid film of IPA is replaced with the liquid film of dIPA.
  • the IPA is supplied from the fourth nozzle 8 to the substrate W (step S43). Specifically, the fifth valve 144 closes, and the supply of DIW from the fifth treatment liquid supply pipe 143 to the fourth treatment liquid supply pipe 141 is stopped. As a result, IPA is discharged from the fourth nozzle 8 toward the substrate W.
  • the IPA After the IPA has landed on the central portion of the upper surface of the substrate W, it flows toward the outside of the substrate W due to the rotation of the substrate W. As a result, the liquid film of dIPA is replaced with the liquid film of IPA.
  • the ejection of IPA from the fourth nozzle 8 to the substrate W is stopped. After that, the fourth nozzle 8 moves from the processing position to the retracted position.
  • step S44 After the drying process, the center robot CR carries out the substrate W from the chamber 2 (step S45). As a result, the process shown in FIG. 6 is completed.
  • the embodiment 4 of the present invention has been described above with reference to FIGS. 1, 2, and 6. According to the present embodiment, the cleanliness of the substrate W can be improved as in the first embodiment. Further, according to the present embodiment, the upper surface of the substrate W can be covered with the liquid film of IPA before the drying treatment. Therefore, as in the second embodiment, the collapse of the pattern can be further avoided.
  • FIG. 1 to 6 The embodiments of the present invention have been described above with reference to the drawings (FIGS. 1 to 6). However, the present invention is not limited to the above embodiment, and can be carried out in various embodiments without departing from the gist thereof.
  • the plurality of components disclosed in the above embodiment can be appropriately modified. For example, one component of all the components shown in one embodiment may be added to another component of another embodiment, or some of the components of all the components shown in one embodiment. The element may be removed from the embodiment.
  • the IPA was supplied to the substrate W before the water repellent treatment, but the supply of the IPA before the water repellent treatment may be omitted.
  • the substrate W after the etching treatment is the target of the treatment, but the substrate W after the ashing treatment may be the target of the treatment.
  • the substrate W after pattern formation is targeted for processing, but the present invention can be widely applied to the processing for cleaning the substrate W.
  • the present invention is useful for a method of processing a substrate.
  • Substrate processing device 110 1st processing liquid supply unit 111: 1st treatment liquid supply pipe 112: 1st Valve 120: 2nd treatment liquid supply unit 121: 2nd treatment liquid supply pipe 122: 2nd valve 130: 3rd treatment liquid supply unit 131: 3rd treatment liquid supply pipe 132: 3rd valve 140: 4th treatment liquid supply Part 141: 4th treatment liquid supply pipe 142: 4th valve 143: 5th treatment liquid supply pipe 144: 5th valve 150: 5th treatment liquid supply part 151: 6th treatment liquid supply pipe 152: 6th valve SMT: Water repellent agent W: Substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

基板処理方法を提供する。基板処理方法は、基板(W)に対し撥水化剤(SMT)を供給する工程(S7)と、撥水化剤(SMT)の供給後、基板(W)に対し、希釈化されたイソプロピルアルコールである希釈イソプロピルアルコール(dIPA)を供給する工程(S11)と、希釈イソプロピルアルコール(dIPA)の供給後、基板(W)を乾燥させる工程(S12)とを包含する。

Description

基板処理方法
 本発明は、基板処理方法に関する。
 基板を処理する方法の一種に、アッシング処理又はエッチング処理によるパターンの形成後に基板上に残った残渣物を除去する基板処理方法がある。この基板処理方法として、薬液処理、リンス処理、及びスピンドライ処理を基板に対して順次実行する方法が知られている。リンス処理では、基板に水を供給して基板の上面から薬液を除去する。
 しかしながら、基板の上面に微細なパターンが形成されている場合、パターンの内部に入り込んだ水をスピンドライ処理によって除去できない可能性がある。水は表面張力が大きい液体であるため、パターンの内部に入り込んだ水を除去できない場合、パターンの内部に入り込んだ水によってパターンが倒壊する可能性がある。
 そこで、パターンの倒壊を回避するために、基板に撥水化剤を供給してパターンを撥水性保護膜で覆うことがある。例えば、特許文献1には、薬液処理、純水リンス処理、撥水性処理、純水リンス処理、及び乾燥処理を基板に対して順次実行する基板処理方法が開示されている。
 具体的には、薬液処理後の純水リンス処理では、基板に純水を供給して、基板の上面から薬液を除去する。撥水性処理では、基板に撥水化剤を供給して、パターンを覆う撥水性保護膜を形成する。撥水性処理後の純水リンス処理では、基板に純水を供給して、基板の上面に残っている撥水化剤を除去する。
特開2010-114467号公報
 しかしながら、水は基板の上面全域に行き渡り難い。そのため、基板の上面に、純水で覆われない領域が発生する可能性がある。したがって、純水を供給するだけでは、基板の上面に残っている撥水化剤(撥水化剤の残渣)の除去率が低くなり、基板の清浄度が低下する可能性がある。
 本発明は上記課題に鑑みてなされたものであり、その目的は、基板の清浄度を向上させることができる基板処理方法を提供することにある。
 本発明の一局面によれば、基板処理方法は、基板を処理する方法であって、前記基板に対し、撥水化剤を供給する工程と、前記撥水化剤の供給後、前記基板に対し、希釈化されたイソプロピルアルコールである希釈イソプロピルアルコールを供給する工程と、前記希釈イソプロピルアルコールの供給後、前記基板を乾燥させる工程とを包含する。
 ある実施形態において、上記基板処理方法は、前記撥水化剤の供給前に、前記基板に対し、イソプロピルアルコールを供給する工程を更に包含する。
 ある実施形態において、上記基板処理方法は、前記希釈イソプロピルアルコールの供給後であって、前記基板を乾燥させる前に、前記基板に対し、イソプロピルアルコールを供給する工程を更に包含する。
 ある実施形態において、上記基板処理方法は、前記撥水化剤の供給後であって、前記希釈イソプロピルアルコールの供給前に、前記基板に対し、イソプロピルアルコールを供給する工程を更に包含する。
 本発明に係る基板処理方法によれば、基板の清浄度を向上させることができる。
本発明の実施形態1に係る基板処理方法に用いられる基板処理装置の模式図である。 基板処理装置が備える処理ユニットの模式図である。 本発明の実施形態1に係る基板処理方法を示すフロー図である。 本発明の実施形態2に係る基板処理方法を示すフロー図である。 本発明の実施形態3に係る基板処理方法を示すフロー図である。 本発明の実施形態4に係る基板処理方法を示すフロー図である。
 以下、図面(図1~図6)を参照して本発明の基板処理方法に係る実施形態を説明する。ただし、本発明は以下の実施形態に限定されない。なお、説明が重複する箇所については、適宜説明を省略する場合がある。また、図中、同一又は相当部分については同一の参照符号を付して説明を繰り返さない。
 本実施形態における「基板」には、半導体ウエハ、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、及び光磁気ディスク用基板などの各種基板を適用可能である。以下では主として、円盤状の半導体ウエハの処理に利用される基板処理方法を例に採って本実施形態を説明するが、上に例示した各種の基板の処理にも同様に適用可能である。また、基板の形状についても各種のものを適用可能である。
[実施形態1]
 以下、図1~図3を参照して本発明の実施形態1を説明する。まず、図1を参照して基板処理装置100を説明する。図1は、本実施形態の基板処理方法に用いられる基板処理装置100の模式図である。詳しくは、図1は、基板処理装置100の模式的な平面図である。基板処理装置100は、基板Wを処理する。より具体的には、基板処理装置100は、基板Wを一枚ずつ処理する枚葉式の装置である。本実施形態の基板処理方法は、例えば、基板処理装置100を利用して実行することができる。
 図1に示すように、基板処理装置100は、複数の処理ユニット1と、流体キャビネット100Aと、複数の流体ボックス100Bと、複数のロードポートLPと、インデクサーロボットIRと、センターロボットCRと、制御装置101とを備える。
 ロードポートLPの各々は、複数枚の基板Wを積層して収容する。インデクサーロボットIRは、ロードポートLPとセンターロボットCRとの間で基板Wを搬送する。センターロボットCRは、インデクサーロボットIRと処理ユニット1との間で基板Wを搬送する。なお、インデクサーロボットIRとセンターロボットCRとの間に、基板Wを一時的に載置する載置台(パス)を設けて、インデクサーロボットIRとセンターロボットCRとの間で載置台を介して間接的に基板Wを受け渡しする装置構成としてもよい。
 複数の処理ユニット1は、平面視においてセンターロボットCRを取り囲むように配置される複数のタワーTW(図1では4つのタワーTW)を形成している。各タワーTWは、上下に積層された複数の処理ユニット1(図1では3つの処理ユニット1)を含む。処理ユニット1の各々は、処理液を基板Wに供給して、基板Wを処理する。
 流体キャビネット100Aは、処理液を収容する。流体ボックス100Bはそれぞれ、複数のタワーTWのうちの1つに対応している。流体キャビネット100A内の処理液は、いずれかの流体ボックス100Bを介して、流体ボックス100Bに対応するタワーTWに含まれる全ての処理ユニット1に供給される。
 本実施形態において、処理液は、DHF(希フッ酸)と、DIW(Deionized Water:脱イオン水)と、SC1(アンモニア水、過酸化水素水、及び水の混合液)と、IPA(イソプロピルアルコール)と、撥水化剤SMTとを含む。
 続いて、制御装置101について説明する。制御装置101は、基板処理装置100の各部の動作を制御する。例えば、制御装置101は、ロードポートLP、インデクサーロボットIR、及びセンターロボットCRを制御する。制御装置101は、制御部102と、記憶部103とを含む。
 制御部102は、プロセッサーを有する。制御部102は、例えば、CPU(Central Processing Unit)、又は、MPU(Micro Processing Unit)を有する。あるいは、制御部102は、汎用演算機を有してもよい。
 記憶部103は、データ及びコンピュータプログラムを記憶する。データは、レシピデータを含む。レシピデータは、複数のレシピを示す情報を含む。複数のレシピの各々は、基板Wの処理内容及び処理手順を規定する。
 記憶部103は、主記憶装置を有する。主記憶装置は、例えば、半導体メモリである。記憶部103は、補助記憶装置を更に有してもよい。補助記憶装置は、例えば、半導体メモリ及びハードディスクドライブの少なくも一方を含む。記憶部103はリムーバブルメディアを含んでいてもよい。制御部102は、記憶部103に記憶されているコンピュータプログラム及びデータに基づいて、基板処理装置100の各部の動作を制御する。
 続いて、図1及び図2を参照して基板処理装置100について更に説明する。図2は、基板処理装置100が備える処理ユニット1の模式図である。詳しくは、図2は、処理ユニット1の模式的な断面図である。
 図2に示すように、処理ユニット1は、チャンバー2と、基板保持部3と、回転駆動部4と、第1ノズル5~第5ノズル9と、カップ10と、第1ノズル移動部50~第5ノズル移動部90とを備える。基板処理装置100は、第1処理液供給部110~第5処理液供給部150を更に備える。制御装置101(制御部102)は、基板保持部3、回転駆動部4、カップ10、第1ノズル移動部50~第5ノズル移動部90、及び第1処理液供給部110~第5処理液供給部150を制御する。
 チャンバー2は略箱形状を有する。チャンバー2には、基板W,基板保持部3、回転駆動部4、第1ノズル5~第5ノズル9、カップ10、及び第1ノズル移動部50~第5ノズル移動部90が収容される。また、チャンバー2には、第1処理液供給部110の一部~第5処理液供給部150の一部が収容される。
 基板保持部3は、基板Wを水平に保持する。より具体的には、基板Wは、パターンが形成されたパターン形成面を有する。基板保持部3は、パターン形成面が上側を向いた状態で基板Wを保持する。したがって、基板保持部3に保持されている基板Wの上面は、パターン形成面である。パターンは、例えばエッチング処理よって基板Wの表面に形成される。本実施形態の基板処理方法は、典型的には、ドライエッチング処理後の基板Wを処理の対象とする。つまり、基板処理装置100は、エッチング処理後に基板Wに付着しているポリマー残渣を除去する洗浄処理を実行する。
 基板保持部3は、例えばバキューム式のスピンチャックである。但し、基板保持部3は、バキューム式のスピンチャックに限定されない。基板保持部3は、例えば、挟持式のスピンチャック、又はベルヌーイ式のスピンチャックであってもよい。
 回転駆動部4は、回転軸線AXを中心として基板保持部3を回転させる。この結果、回転軸線AXを中心として基板Wと基板保持部3とが一体に回転する。回転軸線AXは、上下方向に延びる。回転駆動部4は、例えば、電動モータを含む。
 第1ノズル5は、基板Wの上方から、基板WにDHFを供給する。詳しくは、第1ノズル5は、回転中の基板Wに向けてDHFを吐出する。第1ノズル移動部50は、第1ノズル5を処理位置と退避位置との間で移動させる。第1ノズル5は、処理位置に移動すると、平面視において基板Wと対向する。第1ノズル5は、退避位置に移動すると、平面視において基板Wと対向しない。詳しくは、第1ノズル5は、処理位置に移動すると、基板Wの上面の中央部に対向する。また、第1ノズル5は、退避位置に移動すると、平面視において基板Wの周囲に退避する。
 具体的には、第1ノズル移動部50は、第1ノズルアーム51と、第1ノズル駆動部52とを有する。第1ノズルアーム51は略水平方向に沿って延びる。第1ノズルアーム51の先端部に第1ノズル5が配置される。第1ノズル駆動部52は、上下方向に延びる回転軸線を中心に第1ノズルアーム51を略水平面に沿って旋回させる。この結果、上下方向に延びる回転軸線を中心とする周方向に沿って、第1ノズル5が周方向に移動する。第1ノズル駆動部52は、正逆回転可能な電動モータを含む。第1ノズル駆動部52は、制御装置101(制御部102)によって制御される。
 第1処理液供給部110は、第1ノズル5にDHFを供給する。具体的には、第1処理液供給部110は、第1処理液供給配管111と、第1バルブ112とを有する。チャンバー2には、第1処理液供給配管111の一部が収容される。
 第1処理液供給配管111は、第1ノズル5にDHFを供給する。第1処理液供給配管111は、DHFが流通する管状部材である。第1バルブ112は第1処理液供給配管111に設けられる。第1バルブ112は、例えば電磁弁である。
 第1バルブ112は、第1処理液供給配管111の流路を開閉する開閉弁である。第1バルブ112は、第1処理液供給配管111を流れるDHFの流通を制御する。詳しくは、第1バルブ112が開くと、DHFが第1処理液供給配管111を介して第1ノズル5まで流れる。この結果、DHFが第1ノズル5から吐出される。第1バルブ112が閉じると、DHFの流通が遮断されて、第1ノズル5によるDHFの吐出が停止する。なお、第1バルブ112は、第1処理液供給配管111を流れるDHFの流量を調整する調整弁としても機能する。第1バルブ112は、制御装置101(制御部102)によって制御される。
 第2ノズル6は、基板Wの上方から、基板WにDIWを供給する。詳しくは、第2ノズル6は、回転中の基板Wに向けてDIWを吐出する。第2ノズル移動部60は、第1ノズル移動部50と同様に、第2ノズル6を処理位置と退避位置との間で移動させる。具体的には、第2ノズル移動部60は、第1ノズル移動部50と同様に、第2ノズルアーム61と、第2ノズル駆動部62とを有する。第2ノズル移動部60の構成は、第1ノズル移動部50と同様であるため、その詳しい説明は割愛する。
 第2処理液供給部120は、第2ノズル6にDIWを供給する。具体的には、第2処理液供給部120は、第1処理液供給部110と同様に、第2処理液供給配管121と、第2バルブ122とを有する。チャンバー2には、第2処理液供給配管121の一部が収容される。第2処理液供給配管121は、第2ノズル6にDIWを供給する。第2バルブ122は第2処理液供給配管121に設けられる。第2処理液供給部120の構成は、第1処理液供給部110と同様であるため、その詳しい説明は割愛する。
 第3ノズル7は、基板Wの上方から、基板WにSC1を供給する。詳しくは、第3ノズル7は、回転中の基板Wに向けてSC1を吐出する。第3ノズル移動部70は、第1ノズル移動部50と同様に、第3ノズル7を処理位置と退避位置との間で移動させる。具体的には、第3ノズル移動部70は、第1ノズル移動部50と同様に、第3ノズルアーム71と、第3ノズル駆動部72とを有する。第3ノズル移動部70の構成は、第1ノズル移動部50と同様であるため、その詳しい説明は割愛する。
 第3処理液供給部130は、第3ノズル7にSC1を供給する。具体的には、第3処理液供給部130は、第1処理液供給部110と同様に、第3処理液供給配管131と、第3バルブ132とを有する。チャンバー2には、第3処理液供給配管131の一部が収容される。第3処理液供給配管131は、第3ノズル7にSC1を供給する。第3バルブ132は第3処理液供給配管131に設けられる。第3処理液供給部130の構成は、第1処理液供給部110と同様であるため、その詳しい説明は割愛する。
 第4ノズル8は、基板Wの上方から、基板WにIPA及び希釈IPAを供給する。詳しくは、第4ノズル8は、回転中の基板Wに向けてIPA及び希釈IPAを吐出する。希釈IPAは、希釈化されたIPAを示す。本実施形態において、希釈IPAは、DIWによって希釈化されたIPAである。換言すると、希釈IPAは、IPAとDIWとの混合液である。IPAに対するDIWの割合(容量比)は、例えば、10%以上30%以下である。以下、希釈IPAを「dIPA」と記載する場合がある。
 第4ノズル移動部80は、第1ノズル移動部50と同様に、第4ノズル8を処理位置と退避位置との間で移動させる。具体的には、第4ノズル移動部80は、第1ノズル移動部50と同様に、第4ノズルアーム81と、第4ノズル駆動部82とを有する。第4ノズル移動部80の構成は、第1ノズル移動部50と同様であるため、その詳しい説明は割愛する。
 第4処理液供給部140は、第4ノズル8にIPA及びdIPAを供給する。具体的には、第4処理液供給部140は、第4処理液供給配管141と、第4バルブ142と、第5処理液供給配管143と、第5バルブ144とを有する。チャンバー2には、第4処理液供給配管141の一部が収容される。
 第4処理液供給配管141は、第4ノズル8にIPA及びdIPAを供給する。第5処理液供給配管143は、第4処理液供給配管141にDIWを供給する。第4バルブ142は第4処理液供給配管141に設けられる。第5バルブ144は第5処理液供給配管143に設けられる。第4バルブ142及び第5バルブ144は、例えば電磁弁である。第5処理液供給配管143は、第4ノズル8と第4バルブ142との間で第4処理液供給配管141に接続する。
 第4バルブ142は、第4処理液供給配管141の流路を開閉する開閉弁である。第4バルブ142は、第4処理液供給配管141を流れるIPAの流通を制御する。詳しくは、第4バルブ142が開くと、IPAが第4処理液供給配管141を介して第4ノズル8まで流れる。第4バルブ142が閉じると、IPAの流通が遮断される。なお、第4バルブ142は、第4処理液供給配管141を流れるIPAの流量を調整する調整弁としても機能する。第4バルブ142は、制御装置101(制御部102)によって制御される。
 第5バルブ144は、第5処理液供給配管143の流路を開閉する開閉弁である。第5バルブ144は、第5処理液供給配管143を流れるDIWの流通を制御する。詳しくは、第5バルブ144が開くと、DIWが第5処理液供給配管143を介して第4処理液供給配管141に流入する。第5バルブ144が閉じると、DIWの流通が遮断される。なお、第5バルブ144は、第5処理液供給配管143を流れるDIWの流量を調整する調整弁としても機能する。第5バルブ144は、制御装置101(制御部102)によって制御される。
 制御装置101(制御部102)は、第4ノズル8からIPAを吐出させる際に、第4バルブ142を開き、第5バルブ144を閉じる。この結果、第4処理液供給配管141から第4ノズル8にIPAが供給されて、IPAが第4ノズル8から吐出される。制御装置101(制御部102)が第4バルブ142を閉じると、IPAの流通が遮断されて、第4ノズル8によるIPAの吐出が停止する。
 制御装置101(制御部102)は、第4ノズル8からdIPAを吐出させる際に、第4バルブ142及び第5バルブ144を開く。この結果、第4処理液供給配管141を流れるIPAに、第5処理液供給配管143からDIWが合流してdIPAが生成される。dIPAは、第4処理液供給配管141から第4ノズル8に供給される。その結果、dIPAが第4ノズル8から吐出される。制御装置101(制御部102)が第4バルブ142及び第5バルブ144を閉じると、IPA及びDIWの流通が遮断されて、第4ノズル8によるdIPAの吐出が停止する。
 第5ノズル9は、基板Wの上方から、基板Wに撥水化剤SMTを供給する。詳しくは、第5ノズル9は、回転中の基板Wに向けて撥水化剤SMTを吐出する。第5ノズル移動部90は、第1ノズル移動部50と同様に、第5ノズル9を処理位置と退避位置との間で移動させる。具体的には、第5ノズル移動部90は、第1ノズル移動部50と同様に、第5ノズルアーム91と、第5ノズル駆動部92とを有する。第5ノズル移動部90の構成は、第1ノズル移動部50と同様であるため、その詳しい説明は割愛する。
 第5処理液供給部150は、第5ノズル9に撥水化剤SMTを供給する。具体的には、第5処理液供給部150は、第1処理液供給部110と同様に、第6処理液供給配管151と、第6バルブ152とを有する。チャンバー2には、第6処理液供給配管151の一部が収容される。第6処理液供給配管151は、第5ノズル9に撥水化剤SMTを供給する。第6バルブ152は第6処理液供給配管151に設けられる。第5処理液供給部150の構成は、第1処理液供給部110と同様であるため、その詳しい説明は割愛する。
 撥水化剤SMTは、例えば、シリコン系撥水化剤、又はメタル系撥水化剤である。シリコン系撥水化剤は、シリコン又はシリコンを含む化合物を撥水化(疎水化)させる。メタル系撥水化剤は、金属又は金属を含む化合物を撥水化(疎水化)させる。
 シリコン系撥水化剤は、例えば、シランカップリング剤である。シランカップリング剤は、例えば、HMDS(ヘキサメチルジシラザン)、TMS(テトラメチルシラン)、フッ素化アルキルクロロシラン、アルキルジシラザン、及び非クロロ系疎水化剤の少なくとも一つを含む。非クロロ系疎水化剤は、例えば、ジメチルシリルジメチルアミン、ジメチルシリルジエチルアミン、ヘキサメチルジシラザン、テトラメチルジシラザン、ビス(ジメチルアミノ)ジメチルシラン、N,N-ジメチルアミノトリメチルシラン、N-(トリメチルシリル)ジメチルアミン、及びオルガノシラン化合物の少なくとも一つを含む。
 メタル系撥水化剤は、例えば、疎水基を有するアミン、及び有機シリコン化合物のうちの少なくとも一方を含む。
 撥水化剤SMTは、親水性有機溶媒に対して相溶解性がある溶媒で希釈されていてもよい。溶媒は、例えば、IPA、又はPGMEA(プロピレングリコールモノメチルエーテルアセテート)である。
 撥水化剤SMTは、基板Wの上面に撥水性保護膜を形成する。この結果、基板Wに形成されているパターンが撥水性保護膜で覆われる。パターンを撥水性保護膜で覆うことにより、パターンの倒壊を回避することができる。
 カップ10は、基板保持部3の周囲に配置される。カップ10は、基板保持部3に保持される基板Wの側方を囲む。カップ10は、回転中の基板Wから飛散する処理液(DHF、DIW、SC1、IPA、dIPA、撥水化剤SMT)を受け止める。
 続いて、図1~図3を参照して本実施形態の基板処理方法を説明する。図3は、本実施形態の基板処理方法を示すフロー図である。図3に示す処理は、ステップS1~ステップS7、及びステップS11~ステップS13を包含する。
 図1及び図2を参照して説明した基板処理装置100によって基板Wを処理する際には、まず、センターロボットCRが処理ユニット1のチャンバー2内に基板Wを搬入する(ステップS1)。チャンバー2内に搬入された基板Wは、基板保持部3によって保持される。基板保持部3が基板Wを保持すると、回転駆動部4による基板Wの回転が開始する。
 基板Wの回転が開始すると、第1ノズル5が退避位置から処理位置に移動して、第1ノズル5から基板WにDHFが供給される(ステップS2)。具体的には、第1ノズル5から基板Wに向けてDHFが吐出される。
 DHFは、基板Wの上面の中央部に着液した後、基板Wの回転によって基板Wの外方に向かって流れる。この結果、基板Wの上面にDHFの液膜が形成される。基板Wの上面にDHFの液膜が形成されると、第1ノズル5から基板WへのDHFの吐出が停止する。その後、第1ノズル5は処理位置から退避位置に移動する。DHFの液膜により、基板Wの上面に形成されている自然酸化膜が除去される。
 DHFによって基板Wを処理した後、第2ノズル6が退避位置から処理位置に移動して、第2ノズル6から基板WにDIWが供給される(ステップS3)。具体的には、第2ノズル6から基板Wに向けてDIWが吐出される。
 DIWは、基板Wの上面の中央部に着液した後、基板Wの回転によって基板Wの外方に向かって流れる。この結果、DHFの液膜がDIWの液膜に置換される。換言すると、基板Wの上面に残留していたDHFがDIWによって洗い流される(リンス処理)。基板Wの上面にDIWの液膜が形成されると、第2ノズル6から基板WへのDIWの吐出が停止する。その後、第2ノズル6は処理位置から退避位置に移動する。
 DIWによるリンス処理の後、第3ノズル7が退避位置から処理位置に移動して、第3ノズル7から基板WにSC1が供給される(ステップS4)。具体的には、第3ノズル7から基板Wに向けてSC1が吐出される。
 SC1は、基板Wの上面の中央部に着液した後、基板Wの回転によって基板Wの外方に向かって流れる。この結果、DIWの液膜がSC1の液膜に置換される。基板Wの上面にSC1の液膜が形成されると、第3ノズル7から基板WへのSC1の吐出が停止する。その後、第3ノズル7は処理位置から退避位置に移動する。SC1の液膜により、基板Wの上面からレジスト残渣物が除去される。
 SC1によって基板Wを処理した後、第2ノズル6が退避位置から処理位置に移動して、第2ノズル6から基板WにDIWが供給される(ステップS5)。その結果、ステップS3と同様に、SC1の液膜がDIWの液膜に置換される。換言すると、基板Wの上面に残留していたSC1がDIWによって洗い流される(リンス処理)。
 基板Wの上面にDIWの液膜が形成されると、第2ノズル6から基板WへのDIWの吐出が停止する。その後、第2ノズル6は処理位置から退避位置に移動する。
 DIWによるリンス処理の後、第4ノズル8が退避位置から処理位置に移動して、第4ノズル8から基板WにIPAが供給される(ステップS6)。具体的には、第4ノズル8から基板Wに向けてIPAが吐出される。
 IPAは、基板Wの上面の中央部に着液した後、基板Wの回転によって基板Wの外方に向かって流れる。この結果、DIWの液膜がIPAの液膜に置換される。基板Wの上面にIPAの液膜が形成されると、第4ノズル8から基板WへのIPAの吐出が停止する。その後、第4ノズル8は処理位置から退避位置に移動する。撥水化剤SMTを基板Wに供給する前に、IPAを基板Wに供給することにより、基板Wの上面全域に撥水化剤SMTを行き渡らせることが容易になる。
 基板WにIPAを供給した後、第5ノズル9が退避位置から処理位置に移動して、第5ノズル9から基板Wに撥水化剤SMTが供給される(ステップS7)。具体的には、第5ノズル9から基板Wに向けて撥水化剤SMTが吐出される。
 撥水化剤SMTは、基板Wの上面の中央部に着液した後、基板Wの回転によって基板Wの外方に向かって流れる。この結果、IPAの液膜が撥水化剤SMTの液膜に置換される。基板Wの上面に撥水化剤SMTの液膜が形成されると、第5ノズル9から基板Wへの撥水化剤SMTの吐出が停止する。その後、第5ノズル9は処理位置から退避位置に移動する。撥水化剤SMTが基板Wの上面に形成されることにより、撥水性保護膜が基板Wの上面に形成されて、基板Wに形成されているパターンが撥水性保護膜によって覆われる(撥水化処理)。
 撥水化処理の後、第4ノズル8が退避位置から処理位置に移動して、第4ノズル8から基板WにdIPAが供給される(ステップS11)。具体的には、第4ノズル8から基板Wに向けてdIPAが吐出される。
 dIPAは、基板Wの上面の中央部に着液した後、基板Wの回転によって基板Wの外方に向かって流れる。この結果、撥水化剤SMTの残渣物が基板Wの上面から除去されて、基板Wの上面にdIPAの液膜が形成される。換言すると、基板Wの上面に残留していた撥水化剤SMTがdIPAによって洗い流される(リンス処理)。基板Wの上面にdIPAの液膜が形成されると、第4ノズル8から基板WへのdIPAの吐出が停止する。その後、第4ノズル8は処理位置から退避位置に移動する。
 dIPAによるリンス処理の後、基板Wを乾燥させる乾燥処理が実行される(ステップS12)。具体的には、制御装置101(制御部102)が回転駆動部4を制御して、基板Wの回転速度を増加させる。この結果、基板Wに付着している液体に大きな遠心力が付与されて、基板Wに付着している液体が基板Wの周囲に振り切られる。このようにして、基板Wから液体を除去して、基板Wを乾燥させる。なお、制御装置101(制御部102)は、例えば基板Wの高速回転を開始してから既定時間が経過した後に、回転駆動部4による基板Wの回転を停止させる。
 乾燥処理の後、センターロボットCRがチャンバー2内から基板Wを搬出する(ステップS13)。この結果、図3に示す処理が終了する。
 以上、図1~図3を参照して本発明の実施形態1を説明した。本実施形態によれば、撥水化処理後にdIPAによるリンス処理が行われる。dIPAは、水と比べて表面張力が小さい。したがって、dIPAは、水と比べて、基板Wの上面全域に行き渡り易い。よって、基板Wの上面に残った撥水化剤SMT(撥水化剤SMTの残渣)を基板Wの上面全域から除去して、基板Wの清浄度を向上させることができる。また、dIPAは極性の高い液体であるため、撥水化剤SMTの残渣が溶解し易い。したがって、撥水化剤SMTの残渣を効率よく除去することができる。
 また、本実施形態によれば、第4ノズル8からIPA及びdIPAを吐出させることができる。したがって、基板処理装置100(処理ユニット1)にdIPA用のノズルを設ける必要がない。
 また、表面張力が小さく、極性の高い液体にPGMEAがある。しかし、撥水化処理後にPGMEAによるリンス処理を行うには、PGMEAを基板Wに供給するための専用機構を基板処理装置100に設ける必要がある。本実施形態によれば、撥水化処理後のリンス処理に用いる薬液を基板Wに供給するための専用機構を基板処理装置100設けることなく、撥水化処理後のリンス処理を行うことができる。
 また、本実施形態によれば、撥水性保護膜によってパターンを覆うことができる。したがって、乾燥処理前にパターンに付着する液体の接触角を大きくすることができる。その結果、乾燥処理時にパターンに作用する液体の表面張力が小さくなり、パターンの倒壊を回避することができる。
 更に、本実施形態によれば、撥水化処理後にdIPAによるリンス処理が行われる。dIPAは、水と比べて表面張力が小さいため、撥水化処理後に水によるリンス処理を行う場合に比べて、乾燥処理時にパターンに作用する液体の表面張力がより小さくなり、パターンの倒壊をより回避することができる。
 なお、撥水化剤SMTとIPAとが反応して反応生成物が発生することがあるが、この反応生成物は、dIPAに含まれる水に溶解する。したがって、本実施形態によれば、撥水化剤SMTとIPAとが反応して発生する反応生成物を除去することができる。
[実施形態2]
 続いて、図1、図2、及び図4を参照して本発明の実施形態2について説明する。但し、実施形態1と異なる事項を説明し、実施形態1と同じ事項についての説明は割愛する。実施形態2は、基板WにdIPAを供給した後、基板WにIPAを供給する点で実施形態1と異なる。
 図4は、本実施形態の基板処理方法を示すフロー図である。図4に示す処理は、実施形態1と同様に、図1及び図2を参照して説明した基板処理装置100によって行うことができる。図4に示す処理は、ステップS1~ステップS7、及びステップS21~ステップS24を包含する。なお、図4に示すステップS1~ステップS7の処理は、図3に示すステップS1~ステップS7の処理と同様であるため、その説明は割愛する。
 図4に示すように、撥水化処理の後、第4ノズル8が退避位置から処理位置に移動して、第4ノズル8から基板WにdIPAが供給される(ステップS21)。具体的には、第4ノズル8から基板Wに向けてdIPAが吐出される。
 dIPAは、基板Wの上面の中央部に着液した後、基板Wの回転によって基板Wの外方に向かって流れる。この結果、撥水化剤SMTの残渣物が基板Wの上面から除去されて、基板Wの上面にdIPAの液膜が形成される。換言すると、基板Wの上面に残留していた撥水化剤SMTがdIPAによって洗い流される(リンス処理)。
 本実施形態では、基板Wの上面にdIPAの液膜が形成された後、第4ノズル8から基板WへIPAが供給される(ステップS22)。具体的には、第5バルブ144が閉じて、第5処理液供給配管143から第4処理液供給配管141へのDIWの供給が停止する。この結果、第4ノズル8から基板Wに向けてIPAが吐出される。
 IPAは、基板Wの上面の中央部に着液した後、基板Wの回転によって基板Wの外方に向かって流れる。この結果、dIPAの液膜がIPAの液膜に置換される。基板Wの上面にIPAの液膜が形成されると、第4ノズル8から基板WへのIPAの吐出が停止する。その後、第4ノズル8は処理位置から退避位置に移動する。なお、撥水化処理の前に基板Wに供給されたIPAと、撥水化剤SMTとが反応して発生した反応生成物は、dIPAの液膜をIPAの液膜に置換する際に、dIPAと共に基板Wから除去される。
 基板Wの上面にIPAの液膜が形成された後、図3を参照して説明したステップS12と同様に、乾燥処理が実行される(ステップS23)。乾燥処理の後、センターロボットCRがチャンバー2内から基板Wを搬出する(ステップS24)。この結果、図4に示す処理が終了する。
 以上、図1、図2、及び図4を参照して本発明の実施形態2を説明した。本実施形態によれば、実施形態1と同様に、基板Wの清浄度を向上させることができる。また、本実施形態によれば、乾燥処理の前に、基板Wの上面をIPAの液膜で覆うことができる。IPAは、dIPAと比べて表面張力が小さいため、乾燥処理時にパターンに作用する液体の表面張力がより小さくなり、パターンの倒壊をより回避することができる。
[実施形態3]
 続いて、図1、図2、及び図5を参照して本発明の実施形態3について説明する。但し、実施形態1、2と異なる事項を説明し、実施形態1、2と同じ事項についての説明は割愛する。実施形態3は、基板WにdIPAを供給する前に、基板WにIPAを供給する点で実施形態1と異なる。
 図5は、本実施形態の基板処理方法を示すフロー図である。図5に示す処理は、実施形態1、2と同様に、図1及び図2を参照して説明した基板処理装置100によって行うことができる。図5に示す処理は、ステップS1~ステップS7、及びステップS31~ステップS34を包含する。なお、図5に示すステップS1~ステップS7の処理は、図3に示すステップS1~ステップS7の処理と同様であるため、その説明は割愛する。
 図5に示すように、撥水化処理の後、第4ノズル8が退避位置から処理位置に移動して、第4ノズル8から基板WにIPAが供給される(ステップS31)。具体的には、第4ノズル8から基板Wに向けてIPAが吐出される。
 IPAは、基板Wの上面の中央部に着液した後、基板Wの回転によって基板Wの外方に向かって流れる。この結果、撥水化剤SMTの残渣物が基板Wの上面から除去されて、基板Wの上面にIPAの液膜が形成される。換言すると、基板Wの上面に残留していた撥水化剤SMTがIPAによって洗い流される(リンス処理)。
 IPAによるリンス処理の後、第4ノズル8から基板WへdIPAが供給される(ステップS32)。具体的には、第5バルブ144が開いて、第5処理液供給配管143から第4処理液供給配管141へDIWが供給される。この結果、第4ノズル8から基板Wに向けてdIPAが吐出される。
 dIPAは、基板Wの上面の中央部に着液した後、基板Wの回転によって基板Wの外方に向かって流れる。この結果、IPAの液膜がdIPAの液膜に置換される。基板Wの上面にdIPAの液膜が形成されると、第4ノズル8から基板WへのdIPAの吐出が停止する。その後、第4ノズル8は処理位置から退避位置に移動する。
 基板Wの上面にdIPAの液膜が形成された後、図3を参照して説明したステップS12と同様に、乾燥処理が実行される(ステップS33)。乾燥処理の後、センターロボットCRがチャンバー2内から基板Wを搬出する(ステップS34)。この結果、図5に示す処理が終了する。
 以上、図1、図2、及び図5を参照して本発明の実施形態3を説明した。本実施形態によれば、実施形態1と同様に、基板Wの清浄度を向上させることができる。
 また、本実施形態によれば、dIPAを基板Wに供給する前にIPAを基板Wに供給することができる。IPAは、dIPAと比べて表面張力が小さいため、dIPAと比べて基板Wの上面全域に行き渡り易い。したがって、IPAを基板Wに供給した後にdIPAを基板Wに供給することにより、dIPAが基板Wの上面全域に行き渡り易くなる。
 なお、撥水化処理後に供給されたIPAと撥水化剤SMTとが反応して発生する反応生成物は、dIPAに溶解するため、乾燥処理時に、dIPAと共に基板Wから除去される。
[実施形態4]
 続いて、図1、図2、及び図6を参照して本発明の実施形態4について説明する。但し、実施形態1~3と異なる事項を説明し、実施形態1~3と同じ事項についての説明は割愛する。実施形態4は、基板WにdIPAを供給した後に、基板WにIPAを供給する点で実施形態3と異なる。
 図6は、本実施形態の基板処理方法を示すフロー図である。図6に示す処理は、実施形態1~3と同様に、図1及び図2を参照して説明した基板処理装置100によって行うことができる。図6に示す処理は、ステップS1~ステップS7、及びステップS41~ステップS45を包含する。なお、図6に示すステップS1~ステップS7の処理は、図3に示すステップS1~ステップS7の処理と同様であるため、その説明は割愛する。
 図6に示すように、撥水化処理の後、図5を参照して説明したステップS31と同様に、第4ノズル8が退避位置から処理位置に移動して、第4ノズル8から基板WにIPAが供給される(ステップS41)。
 IPAによるリンス処理の後、第4ノズル8から基板WへdIPAが供給される(ステップS42)。具体的には、第5バルブ144が開いて、第5処理液供給配管143から第4処理液供給配管141へDIWが供給される。この結果、第4ノズル8から基板Wに向けてdIPAが吐出される。
 dIPAは、基板Wの上面の中央部に着液した後、基板Wの回転によって基板Wの外方に向かって流れる。この結果、IPAの液膜がdIPAの液膜に置換される。
 本実施形態では、基板Wの上面にdIPAの液膜が形成された後、第4ノズル8から基板WへIPAが供給される(ステップS43)。具体的には、第5バルブ144が閉じて、第5処理液供給配管143から第4処理液供給配管141へのDIWの供給が停止する。この結果、第4ノズル8から基板Wに向けてIPAが吐出される。
 IPAは、基板Wの上面の中央部に着液した後、基板Wの回転によって基板Wの外方に向かって流れる。この結果、dIPAの液膜がIPAの液膜に置換される。基板Wの上面にIPAの液膜が形成されると、第4ノズル8から基板WへのIPAの吐出が停止する。その後、第4ノズル8は処理位置から退避位置に移動する。
 基板Wの上面にIPAの液膜が形成された後、図3を参照して説明したステップS12と同様に、乾燥処理が実行される(ステップS44)。乾燥処理の後、センターロボットCRがチャンバー2内から基板Wを搬出する(ステップS45)。この結果、図6に示す処理が終了する。
 以上、図1、図2、及び図6を参照して本発明の実施形態4を説明した。本実施形態によれば、実施形態1と同様に、基板Wの清浄度を向上させることができる。また、本実施形態によれば、乾燥処理の前に、基板Wの上面をIPAの液膜で覆うことができる。したがって、実施形態2と同様に、パターンの倒壊をより回避することができる。
 以上、図面(図1~図6)を参照して本発明の実施形態について説明した。ただし、本発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施できる。また、上記の実施形態に開示される複数の構成要素は適宜改変可能である。例えば、ある実施形態に示される全構成要素のうちのある構成要素を別の実施形態の構成要素に追加してもよく、又は、ある実施形態に示される全構成要素のうちのいくつかの構成要素を実施形態から削除してもよい。
 図面は、発明の理解を容易にするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素の厚さ、長さ、個数、間隔等は、図面作成の都合上から実際とは異なる場合もある。また、上記の実施形態で示す各構成要素の構成は一例であって、特に限定されるものではなく、本発明の効果から実質的に逸脱しない範囲で種々の変更が可能であることは言うまでもない。
 例えば、図1~図6を参照して説明した実施形態では、撥水化処理の前に基板WにIPAが供給されたが、撥水化処理前のIPAの供給は省略されてもよい。
 また、図1~図6を参照して説明した実施形態では、エッチング処理後の基板Wが処理の対象であったが、アッシング処理後の基板Wを処理の対象としてもよい。
 また、図1~図6を参照して説明した実施形態では、基板Wを一枚ずつ処理する枚葉方式の洗浄処理ついて説明したが、本発明は、複数枚の基板Wを一度に処理するバッチ方式の洗浄処理にも適用することができる。
 また、図1~図6を参照して説明した実施形態では、パターン形成後の基板Wを処理の対象としたが、本発明は、基板Wを洗浄する処理に広く適用することができる。
 本発明は、基板を処理する方法に有用である。
5    :第1ノズル
6    :第2ノズル
7    :第3ノズル
8    :第4ノズル
9    :第5ノズル
100  :基板処理装置
110  :第1処理液供給部
111  :第1処理液供給配管
112  :第1バルブ
120  :第2処理液供給部
121  :第2処理液供給配管
122  :第2バルブ
130  :第3処理液供給部
131  :第3処理液供給配管
132  :第3バルブ
140  :第4処理液供給部
141  :第4処理液供給配管
142  :第4バルブ
143  :第5処理液供給配管
144  :第5バルブ
150  :第5処理液供給部
151  :第6処理液供給配管
152  :第6バルブ
SMT  :撥水化剤
W    :基板

Claims (4)

  1.  基板を処理する基板処理方法であって、
     前記基板に対し、撥水化剤を供給する工程と、
     前記撥水化剤の供給後、前記基板に対し、希釈化されたイソプロピルアルコールである希釈イソプロピルアルコールを供給する工程と、
     前記希釈イソプロピルアルコールの供給後、前記基板を乾燥させる工程と
     を包含する、基板処理方法。
  2.  前記撥水化剤の供給前に、前記基板に対し、イソプロピルアルコールを供給する工程を更に包含する、請求項1に記載の基板処理方法。
  3.  前記希釈イソプロピルアルコールの供給後であって、前記基板を乾燥させる前に、前記基板に対し、イソプロピルアルコールを供給する工程を更に包含する、請求項1又は請求項2に記載の基板処理方法。
  4.  前記撥水化剤の供給後であって、前記希釈イソプロピルアルコールの供給前に、前記基板に対し、イソプロピルアルコールを供給する工程を更に包含する、請求項1から請求項3のいずれか1項に記載の基板処理方法。
PCT/JP2021/023609 2020-07-31 2021-06-22 基板処理方法 WO2022024590A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/007,267 US20230290631A1 (en) 2020-07-31 2021-06-22 Substrate processing method
CN202180058516.XA CN116114049A (zh) 2020-07-31 2021-06-22 基板处理方法
KR1020237004564A KR20230035396A (ko) 2020-07-31 2021-06-22 기판 처리 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-130881 2020-07-31
JP2020130881A JP2022027088A (ja) 2020-07-31 2020-07-31 基板処理方法

Publications (1)

Publication Number Publication Date
WO2022024590A1 true WO2022024590A1 (ja) 2022-02-03

Family

ID=80035397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023609 WO2022024590A1 (ja) 2020-07-31 2021-06-22 基板処理方法

Country Status (6)

Country Link
US (1) US20230290631A1 (ja)
JP (1) JP2022027088A (ja)
KR (1) KR20230035396A (ja)
CN (1) CN116114049A (ja)
TW (1) TW202209430A (ja)
WO (1) WO2022024590A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124410A (ja) * 2009-12-11 2011-06-23 Toshiba Corp 半導体基板の表面処理装置及び方法
WO2017159052A1 (ja) * 2016-03-17 2017-09-21 株式会社Screenホールディングス 基板処理装置および基板処理方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838425B2 (en) 2008-06-16 2010-11-23 Kabushiki Kaisha Toshiba Method of treating surface of semiconductor substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124410A (ja) * 2009-12-11 2011-06-23 Toshiba Corp 半導体基板の表面処理装置及び方法
WO2017159052A1 (ja) * 2016-03-17 2017-09-21 株式会社Screenホールディングス 基板処理装置および基板処理方法

Also Published As

Publication number Publication date
TW202209430A (zh) 2022-03-01
US20230290631A1 (en) 2023-09-14
JP2022027088A (ja) 2022-02-10
KR20230035396A (ko) 2023-03-13
CN116114049A (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
JP6592303B2 (ja) 基板洗浄方法および基板洗浄装置
JP6256828B2 (ja) 基板処理方法および基板処理装置
KR20120117682A (ko) 에칭 방법, 에칭 장치 및 기억 매체
JP5771035B2 (ja) 基板処理方法および基板処理装置
US10403518B2 (en) Substrate processing method, substrate processing apparatus and recording medium
JP6013289B2 (ja) 半導体基板の洗浄方法および半導体基板の洗浄装置
JP2018129470A (ja) 基板処理装置及び基板処理方法
JP5680705B2 (ja) 基板処理方法
JP2009267167A (ja) 基板処理装置
JP6948840B2 (ja) 基板処理方法および基板処理装置
JP5276559B2 (ja) 基板処理方法および基板処理装置
JP2005268308A (ja) レジスト剥離方法およびレジスト剥離装置
JP6782185B2 (ja) 基板処理装置および基板処理方法
KR102688881B1 (ko) 기판 처리 장치, 기판 처리 방법 및 컴퓨터로 판독 가능한 기억 매체
WO2022024590A1 (ja) 基板処理方法
JP6934376B2 (ja) 基板処理方法および基板処理装置
JP6817821B2 (ja) 基板処理装置および基板処理方法
JP5905666B2 (ja) 基板処理方法および基板処理装置
WO2020195695A1 (ja) 基板処理装置、基板処理方法および半導体製造方法
TW202226340A (zh) 基板處理裝置以及基板處理方法
JP2009194090A (ja) 基板処理方法および基板処理装置
JP7532135B2 (ja) 基板処理方法、及び基板処理装置
JP2019207982A (ja) 基板処理方法および基板処理装置
JP2006351805A (ja) 基板処理方法および基板処理装置
JP2009081370A (ja) 基板洗浄方法および基板洗浄装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850999

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237004564

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21850999

Country of ref document: EP

Kind code of ref document: A1