WO2022022336A1 - 业务卫星运行状态诊断方法及相关装置 - Google Patents

业务卫星运行状态诊断方法及相关装置 Download PDF

Info

Publication number
WO2022022336A1
WO2022022336A1 PCT/CN2021/107409 CN2021107409W WO2022022336A1 WO 2022022336 A1 WO2022022336 A1 WO 2022022336A1 CN 2021107409 W CN2021107409 W CN 2021107409W WO 2022022336 A1 WO2022022336 A1 WO 2022022336A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
service
service beam
report
evaluation
Prior art date
Application number
PCT/CN2021/107409
Other languages
English (en)
French (fr)
Inventor
张海波
王斌
乔云飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21848829.4A priority Critical patent/EP4181427A4/en
Publication of WO2022022336A1 publication Critical patent/WO2022022336A1/zh
Priority to US18/157,299 priority patent/US20230155672A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18515Transmission equipment in satellites or space-based relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/08Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing integrity information, e.g. health of satellites or quality of ephemeris data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/10Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals
    • G01S19/12Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals wherein the cooperating elements are telecommunication base stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/254Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to Doppler shift of satellite signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18569Arrangements for system physical machines management, i.e. for construction operations control, administration, maintenance
    • H04B7/18573Arrangements for system physical machines management, i.e. for construction operations control, administration, maintenance for operations control, administration or maintenance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/08Trunked mobile radio systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present application relates to the technical field of satellite communications, and in particular, to a method and related device for diagnosing the operation state of a service satellite.
  • Satellite communication technology is the communication between radio communication stations on the earth using satellites as relays. In this satellite communication technology, a considerable part is used for environmental monitoring, meteorological services, stereo mapping, ocean observation and other purposes. Perspectives provide users with a large amount of data they need. As satellite communication technology plays an increasingly important role in modern communication technology, the diagnosis of satellite operation status has also been developed rapidly, which plays a vital role in the safety of satellite communication technology.
  • the operation status of the satellite is mainly judged by the information obtained by the satellite's own monitoring system or the special monitoring station on the ground.
  • the monitoring system of the satellite itself has a simple structure, and can only roughly monitor the average transmit power of the satellite, and the accuracy of the judgment is low;
  • the ground monitoring station can only monitor the beam area covering the ground monitoring station for a period of time in real time. Continuous monitoring is required.
  • the above-mentioned ground user terminal obtains the data of the above-mentioned beam in the above-mentioned frequency range, it is regarded as monitoring each area of the above-mentioned beam), and the monitoring result can be obtained, because the ground monitoring station is facing the massive satellites and massive beam groups , the monitoring period is long and the workload is large, so that the monitoring efficiency is low.
  • the embodiments of the present application disclose a method and a related device for diagnosing the operation state of a service satellite, which can improve the correctness and efficiency of the diagnosis.
  • an embodiment of the present application provides a method for diagnosing an operation state of a service satellite.
  • the method includes: a first device receives a first service beam sent by a service satellite; the first device detects attribute information of the first service beam, The attribute information includes one or more of carrier power, bandwidth, carrier-to-noise ratio, and frequency; if the attribute information of the first service beam is abnormal, the first device generates a first evaluation of the first service beam
  • the above-mentioned evaluation report includes the abnormal information of the above-mentioned first service beam; the above-mentioned first device sends the above-mentioned first evaluation report to the satellite controller, and the above-mentioned satellite controller is used for the above-mentioned first evaluation based on multiple copies of the above-mentioned first equipment.
  • the report generates a diagnosis report of the above-mentioned first service beam, and the above-mentioned diagnosis report is used for the ground monitoring station to confirm the operation status of the above-mentioned
  • a plurality of first devices generate a first evaluation report according to the detected attribute information of some or all of the first service beam anomalies, and send it to the maintenance controller; the maintenance controller generates a plurality of first evaluation reports according to the received Diagnose the report and send the report to the ground monitoring station, without the need for the ground monitoring station to participate in the monitoring of the above-mentioned first service beam, and also avoid the problem that the ground monitoring station cannot obtain fast monitoring results because it does not receive all the beams, sharing the ground
  • the monitoring station faces the detection pressure of massive satellites and beams, which improves the efficiency of operational status diagnosis of operational satellites.
  • the above-mentioned multiple evaluation reports are used to describe part or all of the abnormal information of the same first service beam.
  • the attribute information includes carrier power
  • the first device detects the attribute information of the first service beam, including: the first device detects the amplitude of the first service beam; the above The first device calculates the carrier power of the first service beam according to the amplitude of the first service beam.
  • the carrier power is an average carrier power, or the carrier power is an instantaneous carrier power.
  • this method can detect the instantaneous carrier power of the first service beam (at this time, the calculation time of the carrier power of the beam set by the ground user terminal is compared to Since the above-mentioned average transmit power is very small, it can be regarded as the instantaneous carrier power of the beam), which improves the correctness of the operational status diagnosis of the operational satellite.
  • the target parameter in the attribute information of the first service beam is lower than the reference threshold, and the difference from the reference threshold is not less than the first threshold, then the first service The attribute information of the beam is abnormal, the above-mentioned target parameter includes the above-mentioned carrier-to-noise ratio or the above-mentioned, and the above-mentioned reference threshold is an artificially set value or a historical target parameter.
  • the above-mentioned first device sending the above-mentioned evaluation report to the satellite controller includes: if the number of the above-mentioned evaluation reports of the first service beam reaches a second threshold, then the above-mentioned first A device sends the evaluation report of the first service beam to the satellite controller.
  • an embodiment of the present application provides a method for diagnosing the operation state of a service satellite, including: the satellite controller receives multiple first evaluation reports of the same first service beam sent by multiple first devices respectively, and the above-mentioned first evaluation report An evaluation report is a report generated by the first device according to the first service beam sent by the service satellite, and the first evaluation report includes abnormal information of the first service beam; the satellite controller An evaluation report generates the diagnosis report of the first service beam; the satellite controller sends the diagnosis report of the first service beam to the ground monitoring station, and the diagnosis report is used by the ground monitoring station to confirm the operation status of the service satellite.
  • the maintenance controller generates a diagnosis report according to the received multiple first evaluation reports recording the abnormal information of the first service beam, and sends the report to the ground monitoring station, without the need for the ground monitoring station to participate in the monitoring of the first service beam.
  • the ground monitoring station cannot obtain rapid monitoring results because it does not receive all beams, shares the detection pressure of the ground monitoring station facing a large number of satellites and beams, and improves the efficiency of operational status diagnosis of operational satellites.
  • the above-mentioned multiple evaluation reports are used to describe part or all of the abnormal information of the same first service beam.
  • the method further includes: the satellite controller obtains, through a communication link, a second evaluation report of the service beam sent by the service satellite, where the second evaluation report is the service A report that is generated by the satellite according to the transmission situation of the first service beam and used to characterize the operation status of the service satellite.
  • the method further includes: the satellite controller sends the data to the ground The monitoring station sends the second evaluation report of the first service beam.
  • the second evaluation report used to characterize the operational status of the operational satellite and the diagnostic report used to confirm the abnormal operational status of the operational satellite are both sent to the ground monitoring station, so as to more accurately analyze the operational status of the operational satellite.
  • the satellite controller generates a diagnosis report of the first service beam according to multiple first evaluation reports of the first service beam, including: the satellite controller according to external factors Screening data in multiple first assessment reports of the first service beam to obtain a target assessment report; the satellite controller generates a diagnosis report of the first service beam according to the target assessment report.
  • the above-mentioned external factors include weather factors
  • the above-mentioned target evaluation report is the above-mentioned first evaluation report obtained under non-adverse weather.
  • this method filters out the above-mentioned first evaluation report under bad weather conditions, eliminates the problem of abnormal information of the first service beam due to weather factors, and improves the accuracy of the operational status diagnosis of the service satellite.
  • the satellite controller and the service satellite are the same satellite.
  • an embodiment of the present application provides an apparatus for diagnosing the operation state of a service satellite, including: a first receiving unit, configured to receive a first service beam sent by a service satellite; and a detection unit, configured to detect the above-mentioned first service beam attribute information, wherein the attribute information includes one or more of carrier power, bandwidth, carrier-to-noise ratio and frequency; the first generating unit is configured to generate the above-mentioned first service beam if the attribute information of the above-mentioned first service beam is abnormal A first evaluation report of a service beam, where the evaluation report includes abnormality information of the first service beam; a first sending unit, configured to send the first evaluation report to a satellite controller, and the satellite controller is configured to The plurality of first evaluation reports of the first device generate a diagnosis report of the first service beam, and the diagnosis report is used for the ground monitoring station to confirm the operation status of the service satellite.
  • a plurality of the above-mentioned devices generate a first evaluation report according to the detected attribute information of some or all of the first service beam anomalies, and send it to the maintenance controller; the maintenance controller generates a diagnosis according to the received multiple first evaluation reports. report, and send the report to the ground monitoring station, which does not require the ground monitoring station to participate in the monitoring of the above-mentioned first service beam, and also avoids the problem that the ground monitoring station cannot obtain rapid monitoring results because it does not receive all beams, sharing the ground monitoring
  • the station faces the detection pressure of massive satellites and massive beams, which improves the efficiency of operational status diagnosis of operational satellites.
  • the above-mentioned multiple evaluation reports are used to describe part or all of the abnormal information of the same first service beam.
  • the attribute information includes carrier power
  • the detection unit is specifically configured to: detect the amplitude of the first service beam; calculate the first service beam according to the amplitude of the first service beam carrier power.
  • the carrier power is an average carrier power, or the carrier power is an instantaneous carrier power.
  • this method can detect the instantaneous carrier power of the first service beam (at this time, the calculation time of the carrier power of the beam set by the ground user terminal is compared to Since the above-mentioned average transmit power is very small, it can be regarded as the instantaneous carrier power of the beam), which improves the correctness of the operational status diagnosis of the operational satellite.
  • the target parameter in the attribute information of the first service beam is lower than the reference threshold, and the difference from the reference threshold is not less than the first threshold, then the first service beam The attribute information is abnormal, the target parameter includes the carrier-to-noise ratio or the carrier power, and the reference threshold is a set value or a historical target parameter.
  • the sending unit is specifically configured to: if the number of evaluation reports of the first service beam reaches a second threshold, send the first service beam to the satellite controller Evaluation Report.
  • an embodiment of the present application provides an apparatus for diagnosing the operating state of a service satellite, including: a second receiving unit configured to receive multiple first evaluations of the same first service beam sent by multiple first devices respectively
  • the first evaluation report is a report generated by the first device according to the first service beam sent by the service satellite, and the first evaluation report includes abnormality information of the first service beam.
  • the second generating unit is configured to generate the diagnosis report of the first service beam according to the multiple first evaluation reports of the first service beam; the second sending unit is configured to send the diagnosis report of the first service beam to the ground monitoring station , the above-mentioned diagnosis report is used by the ground monitoring station to confirm the operation status of the above-mentioned operational satellites.
  • the above-mentioned device generates a diagnosis report according to the received multiple first evaluation reports that record the abnormal information of the first service beam, and sends the report to the ground monitoring station, without the ground monitoring station participating in the monitoring of the above-mentioned first service beam, At the same time, it also avoids the problem that the ground monitoring station cannot obtain rapid monitoring results because it does not receive all beams, shares the detection pressure of the ground monitoring station facing a large number of satellites and beams, and improves the efficiency of operational status diagnosis of operational satellites.
  • the above-mentioned multiple evaluation reports are used to describe part or all of the abnormal information of the same bundle of services.
  • the above-mentioned apparatus further includes: an acquisition unit configured to acquire, through a communication link, a second evaluation report of the above-mentioned first service beam sent by the above-mentioned service satellite, and the above-mentioned second evaluation report A report that is generated for the above-mentioned service satellite according to the transmission situation of the above-mentioned first service beam and used to characterize the operation state of the above-mentioned service satellite.
  • the above-mentioned apparatus further includes: a third sending unit, after the above-mentioned obtaining unit obtains, through a communication link, the second evaluation report of the above-mentioned first service beam sent by the above-mentioned service satellite , sending the second evaluation report of the first service beam to the ground monitoring station.
  • the second evaluation report used to characterize the operational status of the operational satellite and the diagnostic report used to confirm the abnormal operational status of the operational satellite are both sent to the ground monitoring station, so as to more accurately analyze the operational status of the operational satellite.
  • the above-mentioned generating unit is specifically configured to: screen data in multiple first evaluation reports of the above-mentioned first service beam according to external factors to obtain a target evaluation report;
  • the target evaluation report generates the above-mentioned diagnostic report of the first service beam.
  • the above-mentioned external factors include weather factors
  • the above-mentioned target evaluation report is the above-mentioned first evaluation report obtained under non-adverse weather.
  • the above method filters out the above-mentioned first evaluation report under bad weather conditions, eliminates the problem of abnormal information of the first service beam due to weather factors, and improves the accuracy of the operational status diagnosis of the service satellite.
  • the above-mentioned device and the above-mentioned service satellite are the same satellite.
  • an embodiment of the present application provides a terminal, including: a communication interface, a memory, and a processor, wherein the communication interface is used for data communication, the memory is used to store a computer program, and the processor is configured to run the above A computer program, so that the above-mentioned terminal executes the above-mentioned method for diagnosing the operation state of the operational satellite in the first aspect or any one of the optional solutions of the first aspect.
  • an embodiment of the present application provides a satellite controller, including: a communication interface, a memory, and a processor, wherein the communication interface is used for data communication, the memory is used for storing a computer program, and the processor is configured as The above computer program is run, so that the above terminal executes the above method for diagnosing the operation state of the operational satellite in the second aspect or any optional solution of the second aspect.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is processed and executed, the first aspect or any one of the first aspect is implemented The method described in the optional scheme.
  • the embodiments of the present application provide a computer program product, when the computer program product runs on the processor, the first aspect or any one of the optional first aspects in the embodiments of the present application is implemented. method described in the scheme.
  • the terminal provided in the fifth aspect, the satellite controller provided in the sixth aspect, the computer-readable storage medium provided in the seventh aspect, and the computer product provided in the eighth aspect are all used to execute the first aspect, or the first aspect.
  • the second aspect, or any optional solution of the first aspect, or the operational status diagnosis method of the operational satellite provided by any optional solution of the second aspect therefore, for the beneficial effects that can be achieved, refer to the first On the one hand, or the second aspect, or any optional solution of the first aspect, or any optional solution of the second aspect, the beneficial effects in the method for diagnosing the operational status of the operational satellite provided by Repeat.
  • FIG. 1 is a schematic diagram of a scenario of a method for diagnosing the operation state of a service satellite provided by an embodiment of the present application;
  • FIG. 2 is a schematic diagram of a scenario for diagnosing the operation state of a service satellite provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for diagnosing the operation state of a business satellite provided by an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a beamforming transmitter provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a service satellite radio frequency system provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a hardware structure of a signal evaluation module provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a software structure of a signal evaluation module provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another scenario for diagnosing the operation status of a service satellite provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a communication scenario between a satellite cluster formed by a plurality of satellites according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a scenario in which a ground monitoring station obtains the above-mentioned first evaluation report and the above-mentioned second evaluation report according to an embodiment of the present application;
  • FIG. 11 is a schematic structural diagram of an apparatus for diagnosing operating status of a service satellite provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another apparatus for diagnosing the operation state of a service satellite provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another apparatus for diagnosing operating status of a service satellite provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another apparatus for diagnosing the operation state of a service satellite provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a method for diagnosing operating status of a service satellite provided by an embodiment of the present application.
  • the structure includes a service satellite 101 , a ground user terminal 102 , a satellite controller 103 and a ground monitoring station 104 .
  • the satellite controller 103 can be one satellite
  • the satellite controller 103 and the service satellite 101 can be the same satellite or two different satellites; if the satellite controller 103 is composed of multiple satellites
  • the service satellite 101 may be a satellite in the satellite cluster, or may not be a satellite in the satellite cluster.
  • the above-mentioned service satellite 101 transmits the first service beam to the ground user terminal 102.
  • the above-mentioned ground user terminal 102 After the above-mentioned ground user terminal 102 receives the above-mentioned first service beam, it detects and evaluates the attribute information of the above-mentioned first service beam, and generates a first evaluation report from the evaluation result, Then, the above-mentioned first evaluation report is sent to the above-mentioned satellite controller 103, and the satellite controller receives the above-mentioned first evaluation report, and performs aggregation and screening according to the above-mentioned first evaluation report to obtain the diagnosis report of the first service beam.
  • the satellite controller 103 also communicates with the above-mentioned service satellite 101 to obtain a second evaluation report generated by the service satellite according to the transmission of the above-mentioned service beam, and the satellite controller 103 sends the above-mentioned diagnosis report and/or the above-mentioned diagnosis report to the above-mentioned ground monitoring station 104. Second evaluation report.
  • FIG. 1 introduces a schematic diagram of the structure of a method for diagnosing the operation state of a service satellite, and a detailed scenario description is given below for the above-mentioned schematic diagram of the structure.
  • FIG. 2 is a schematic diagram of a scenario for diagnosing the operation status of a service satellite according to an embodiment of the application.
  • the scenario includes: a service satellite 201, a ground user terminal 202, a satellite controller 203, and a ground monitoring station 204, wherein,
  • the above-mentioned ground user terminal 202 may be a smart phone, a notebook computer, a tablet computer, a desktop computer, a satellite receiver or other electronic devices.
  • the service satellite 101 can transmit different beams, for example, beam 1, beam 2, beam 3, etc., wherein different beams can be distinguished by different identity documents (IDs), for example, the ID of beam 1 is vcxj01, the ID of beam 2 is vcxj02, and the ID of beam 3 is vcxj03.
  • IDs identity documents
  • the method for diagnosing the operation state of a business satellite is described by taking one of the beams as an example.
  • the beam is hereinafter referred to as the first business beam.
  • the service satellite 201 transmits the first service beam to the ground user terminal 202, and the ground user terminal 202 receives part or all of the above-mentioned first service beam.
  • the above-mentioned ground user terminal detects the attribute information (for example, carrier power, bandwidth, carrier-to-noise ratio and frequency) of the above-mentioned first service beam, if the attribute information of the above-mentioned first service beam is abnormal (for example, the above-mentioned first service beam).
  • above-mentioned carrier power can be average carrier power, also can be instantaneous carrier power (when the calculation time of above-mentioned carrier power is very little, then the carrier power that calculates at this moment
  • the ground user terminal stores the first When the number of evaluation reports reaches a second threshold (the second threshold is a preset value), multiple first evaluation reports are sent to the satellite controller 203.
  • the multiple first evaluation reports may be a ground user It can also be sent by multiple terrestrial user terminals.
  • the satellite controller 203 receives multiple first evaluation reports sent by the ground user terminal, screens the multiple first evaluation reports according to the weather records stored by the satellite controller 203, and generates a diagnosis report of the first service beam.
  • the above-mentioned satellite controller filters out the attribute information under bad weather in the above-mentioned first evaluation report (in order to exclude the abnormal situation of attribute information caused by weather factors), and obtains the first evaluation report under non-adverse weather.
  • the satellite controller 203 obtains a second evaluation report through the communication link, wherein the second evaluation report is generated by the above-mentioned service satellite 201 according to the transmission situation of the above-mentioned first service beam.
  • the above-mentioned satellite controller 203 sends the above-mentioned diagnosis report and the above-mentioned second evaluation report to the ground monitoring station 204, wherein the above-mentioned diagnosis report is used for the above-mentioned ground monitoring station 104 to confirm the operation status of the above-mentioned operational satellite, and the above-mentioned second evaluation report is used to characterize the above-mentioned operation status. Reports on operational status of operational satellites.
  • the above-mentioned ground user terminal may be multiple ground user terminal devices, and the operations performed by the above-mentioned ground user terminal are applicable to any one of the above-mentioned multiple terminal devices; the above-mentioned service satellite can synchronously transmit a plurality of first terminal devices.
  • a service beam may also transmit multiple service beams asynchronously, and the description of the above-mentioned first service beam in FIG. 2 is also applicable to other first service beams.
  • a plurality of ground user terminals can detect anomalies in the attribute information of some or all of the above-mentioned service beams according to some or all of the service beams transmitted by the received service satellites,
  • the first evaluation report is generated according to abnormal attribute information (for example, carrier power, carrier-to-noise ratio, bandwidth, frequency, etc.), thereby avoiding the problem that the ground monitoring station cannot obtain fast detection results due to not receiving all the beams, and sharing the ground
  • the monitoring station faces the detection pressure of a large number of satellites and a large number of beams, which improves the efficiency of business operation status diagnosis; and, compared with the average transmit power detected by the business satellite's own monitoring system, the attribute information in the first evaluation report of the above-mentioned satellites
  • the carrier power in can be the instantaneous power of the service beam (at this time, the calculation time of the carrier power of the beam set by the ground user terminal is very small compared to the above-mentioned average
  • FIG. 3 is a schematic flowchart of a method for diagnosing the operation state of a business satellite provided by an embodiment of the present application. The method includes but is not limited to the following steps:
  • Step S301 The ground user terminal detects attribute information of the first service beam.
  • the above-mentioned ground user terminal may be a smart phone, a notebook computer, a tablet computer, a desktop computer, a satellite receiver or other electronic equipment, and the above-mentioned attribute information includes one or more of carrier power, bandwidth, carrier-to-noise ratio and frequency item, the above-mentioned first service beam is a beam for service transmission.
  • the ground user terminal Before the ground user terminal detects the attribute information of the first service beam, the ground user terminal receives the first service beam transmitted by the service satellite.
  • the first business beam sent by the above-mentioned business satellites belongs to the satellite communication business.
  • the satellite communication business can provide a variety of services according to its characteristics and user needs (for example, scientific research, space observation, meteorological observation, long-distance communication, mobile communication and many other fields) .
  • Satellite communication services refer to services such as voice, data, and video images provided through a satellite communication network composed of operational satellites and earth stations. Earth stations usually refer to fixed earth stations, movable earth stations, and mobile or handheld user terminals.
  • FIG. 4 is a schematic structural diagram of a beamforming transmitter provided by the present application.
  • the schematic diagram includes: a baseband 401, an intermediate frequency 402, and a transceiver 403.
  • the baseband 401 transmits the first service beam through the intermediate frequency 402 and transmits and receives
  • the antenna outputs a signal of a certain amplitude and phase, and transmits it into the airspace, and the multiple beams (ie multiple first service beams) emitted by the multiple antennas interfere with each other to form the required directional beams.
  • the transceivers of the business satellites will have the problem of performance degradation, and the degradation of the transceivers will directly lead to The transmit saturation power and additional power efficiency of the power amplifiers of this service satellite will gradually decrease, and the probability of sudden failure will also be higher.
  • the additional power efficiency (the additional power efficiency is related to the above input power and output power) ) first increases and then decreases; when the input power is constant, the higher the number of temperature cycles, the lower the output power and the lower power efficiency of the corresponding accessories.
  • the performance of the above transceivers degrades, it will affect the beamforming.
  • the margin is exceeded, the beam pointing will deviate, and the isotropically radiated power (EIRP) cannot meet the design requirements. Affecting normal services and even affecting surrounding normal beams.
  • the above-mentioned service satellite performs information transmission between the first service beam and the ground user terminal, and according to the different spectrum division ranges, the above-mentioned first service beam can be divided into beams of different frequency bands (for example, the frequency bands of the first service beam (( 140 ⁇ 400.5MHZ) beams (mainly used for non-geostationary satellite communication services including low-orbit satellites), beams in the frequency band (21 ⁇ 25GHZ) of beam 2 (this frequency band has large transmission loss and is affected by rainfall and water vapor in the atmosphere) The influence of condensate is serious, but because of the available frequency bandwidth, it is the frequency band that broadband radio multimedia satellites consider to adopt).
  • Above-mentioned business satellite sends first business beam to above-mentioned ground user terminal, and this first business beam passes through attenuation (due to above-mentioned business beam After the loss of space and atmosphere), finally reach the ground user terminal of the receiving end.
  • Fig. 5 is a schematic structural diagram of a service satellite radio frequency system provided by the embodiment of the application, and the structure includes: transmit power monitoring 501 And the antenna 502, as can be seen from FIG. 5, the above-mentioned first service beam is transmitted by the antenna 502 after passing through the phase shifter, the excitation power amplifier, the final stage power amplifier and the transmission power detection 501, wherein the above-mentioned transmission power detection 501 will record the above-mentioned first
  • the carrier power of the service beam (the carrier power is generally the average power of a time calculation unit, where a time calculation unit is generally longer, so the result of the carrier power obtained is relatively rough), and the carrier power is recorded in the second evaluation.
  • the second evaluation report is a report generated by the service satellite according to the transmission situation of the first service beam.
  • the above-mentioned ground user terminal After the above-mentioned ground user terminal passes through a high-gain antenna and a low-noise receiver, it receives part or all of the above-mentioned first service beam, wherein the above-mentioned high-gain antenna is used to focus the energy of the signal of the above-mentioned first service beam. It is a narrow beam to receive the signal from the above-mentioned first service satellite antenna and provide sufficient downlink carrier power; the above-mentioned low-noise receiver is used to reduce the noise power in the downlink carrier bandwidth.
  • the above-mentioned ground user terminal receives the above-mentioned first service beam.
  • the above-mentioned service satellite sweeps over the area where the above-mentioned ground user terminal is located for the rth time (where r ⁇ 1)
  • the above-mentioned ground user terminal receives part or all of the first service beam within the same time period, and according to the service satellite
  • the ground user terminal can receive the first service beam of the same frequency band, and can also receive the first service beam of different frequency bands.
  • the ground user terminal can receive the information in the frequency band of 140-200MHZ of the first service beam; 200MHZ band information, the third time to receive 160 ⁇ 370MHZ band information.
  • FIG. 6 is a schematic diagram of a hardware structure of a signal evaluation module provided by an embodiment of the present application.
  • the hardware structure includes a signal evaluation module 601, and the signal evaluation module 601 is used for evaluating the downlink beam signal quality and storing evaluation result. As can be seen from FIG.
  • the signal of the above-mentioned first service beam becomes an intermediate frequency
  • the signal enters the signal evaluation module through the coupler, and the filter of the signal evaluation module undergoes frequency selection to obtain the signal of the frequency band where the first service beam is located.
  • the information carried by the first service beam (for example, frequency, bandwidth, carrier-to-noise) is detected in the signal of the frequency band where the first service beam is modulated (the modulation may be a modulation method of amplitude modulation, frequency modulation and/or phase modulation). ratio or carrier power).
  • FIG. 7 is a schematic diagram of a software structure of a signal evaluation module provided by an embodiment of the application.
  • the software structure includes a signal evaluation unit 701, and the signal evaluation unit 701 is used to evaluate the signal quality of the downlink first service beam. , and store the result of the above evaluation.
  • the signal of the above-mentioned first service beam becomes a digital intermediate frequency signal, and the digital intermediate frequency signal is the above-mentioned signal.
  • the input signal of the evaluation unit after the signal passes through the carrier frequency decomposition and screening unit in FIG. 7, the attribute information of the first service beam is obtained, and the signal quality evaluation unit evaluates the attribute information of the first service beam, and judges the Whether the attribute information of the first service beam is abnormal.
  • the evaluation may be to evaluate the received attribute information of the first service beam and a reference threshold or a historical value, and determine whether the target parameter (for example, carrier power or carrier ratio) in the attribute information is lower than the reference threshold, And whether the difference from the above reference threshold is not less than the first threshold.
  • the signal processing module in the ground user terminal When abnormal attribute information occurs, the signal processing module in the ground user terminal generates a first evaluation report according to the attribute information and stores it in the storage unit in FIG. 7 .
  • the baseband in FIG. 7 controls the working state of the storage unit, the signal quality evaluation unit and the carrier frequency decomposition and screening unit in the above figure through the enable signal, and reads the above-mentioned first service beam from the storage unit in FIG. 7 .
  • the ground monitoring station uses the power spectral density to show the variation relationship between the carrier power of the first service beam, time and frequency.
  • Table 1 provides partial attribute information of a first service beam detected by a terrestrial user terminal according to an embodiment of the present application.
  • the above-mentioned ground user terminal detects the frequency, bandwidth, carrier power and carrier-to-noise ratio of the first service beam within a fixed time (here, 1s is taken as an example for illustration).
  • the carrier power is calculated according to the detected amplitude of the first service beam, and the carrier-to-noise ratio is calculated according to the power of the carrier and the noise.
  • the fixed time for calculating the above-mentioned carrier power can be the same as the time calculation unit of the above-mentioned business satellite radio frequency system, or it can be smaller than the time calculation unit of the above-mentioned business satellite radio frequency system (for example, the above-mentioned fixed time is 1s, and the time is shorter, which can be regarded as the above-mentioned fixed time. the instantaneous carrier power of the first service beam).
  • the above-mentioned ground user terminal performs a more precise calculation on the carrier power or carrier-to-noise ratio of the above-mentioned first service beam within the calculation load range that can be carried, thereby obtaining more abundant and accurate data, and improving the operation status of the above-mentioned service satellites correctness of diagnosis.
  • Step S302 If the attribute information of the first service beam is abnormal, the terrestrial user terminal generates a first evaluation report of the first service beam.
  • the signal evaluation module in FIG. 6 or the signal evaluation unit in FIG. 7 is based on the detected attribute information of the first service beam and the reference threshold of the attribute information of the beam (for example, the preset threshold of the beam or historical value) to evaluate and get the evaluation result.
  • the reference threshold of the attribute information of the beam for example, the preset threshold of the beam or historical value
  • the target parameter in the attribute information of the first service beam for example, the carrier power and carrier-to-noise ratio of the first service beam
  • the difference from the reference threshold is not less than the first threshold
  • the first evaluation report may include time, frequency, bandwidth, carrier power, carrier-to-noise ratio, abnormal information, and the coordinates of the ground (here It can be the geographic location of the above-mentioned terrestrial user terminal)).
  • the above-mentioned ground user terminal performs evaluation according to the data in the above-mentioned Table 1.
  • the preset threshold of the carrier power is 300mW. Therefore, the signal evaluation module here detects The value of the beam received in the above-mentioned time period 7/15 13:01-13:02 is lower than the above-mentioned preset threshold, and the difference between the detected value and the above-mentioned historical value is 100mW, and the above-mentioned difference is greater than the above-mentioned first value.
  • the first threshold for example, the first threshold is set to 80mW
  • the above-mentioned ground user terminal determines that the carrier power of the first service beam in the time period from 13:01 to 13:02 on 7/15 is abnormal.
  • the historical value of the carrier-to-noise ratio of the above-mentioned first service beam in the time period 7/15 13:07-13:08 is 12dB, therefore, the beam detected by the signal evaluation module here is in the above-mentioned time period 7 /15
  • the value within 13:07-13:08 is lower than the above-mentioned historical value, and the difference between the detected value and the above-mentioned historical value is 3dB, and the above-mentioned difference is greater than the above-mentioned first threshold (for example, the first threshold is set to 1dB), according to the evaluation result, the carrier-to-noise ratio of the first service beam in the time period from 13:07 to 13:08 on 7/15 is abnormal.
  • the above-mentioned ground user terminal generates a first evaluation report according to the above-mentioned evaluation result. Please refer to Table 2.
  • Table 2 is a part of the first evaluation report generated by the ground user terminal according to the attribute information of the first service beam provided by the embodiment of the present application information.
  • the terrestrial user terminal evaluates the above-mentioned beam 1 according to the attribute information of the above-mentioned first service beam detected in Table 1 in the time periods 7/15 13:07-13:08 and 7/15 13 :09-13:10 attribute information is abnormal, and a first evaluation report is generated according to the above abnormal attribute information.
  • the above-mentioned ground user terminal generates a first evaluation report according to the detection result of the attribute information of the above-mentioned first service beam once (for example, on July 15 in Table 1).
  • a first evaluation report is generated from the detection result of the attribute information of the first service beam received on August 15 or September 6).
  • the operations performed by the above-mentioned ground user terminals are applicable to any terminal equipment among multiple ground user terminals; the above-mentioned service satellites may transmit multiple first service beams synchronously, or may transmit multiple services asynchronously. beam, and the description of the above-mentioned first service beam in FIG. 3 is also applicable to other first service beams.
  • Step S303 Multiple ground user terminals send multiple first evaluation reports to the satellite controller.
  • FIG. 8 is a schematic diagram of another scenario for diagnosing the operation status of the service satellite provided by the embodiment of the application, and the scenario includes: the service satellite 801, The ground user terminal 802 and the ground monitoring station 803, the above-mentioned service satellite 801 receives multiple first evaluation reports of the first service beam sent by multiple ground user terminals 802, and the above-mentioned multiple first evaluation reports are used for the above-mentioned service satellite 801 to pair.
  • the multiple first evaluation reports are aggregated and screened, a diagnosis report of the first service beam is generated, and the diagnosis report is sent to the ground monitoring station.
  • the satellite controller is a satellite cluster consisting of multiple satellites, and the operational satellite may be a satellite in the satellite cluster, or may not be a satellite in the satellite cluster.
  • the above-mentioned multiple ground user terminals send multiple first evaluation reports to the satellite controller formed by the above-mentioned multiple satellites, and any ground user terminal in the above-mentioned multiple ground user terminals can send multiple first evaluation reports to the above-mentioned one satellite controller. report, or send multiple first evaluation reports to the above-mentioned multiple satellite controllers.
  • any one ground user terminal among the above-mentioned multiple ground user terminals may send one first evaluation report, or may send multiple first evaluation reports.
  • Step S304 The satellite controller receives multiple first evaluation reports of the first service beam sent by multiple ground user terminals.
  • Step S305 The satellite controller generates a diagnosis report of the first service beam according to the plurality of first evaluation reports.
  • FIG. 9 is a schematic diagram of a scenario of communication between satellite clusters composed of multiple satellites according to an embodiment of the present application.
  • the above scenario includes satellites
  • the controller 901, the satellite controller 902 and the satellite controller 903, the above-mentioned satellite controller 901, the satellite controller 902 and the satellite controller 903 receive multiple first evaluation reports of the above-mentioned first service beam, and the above-mentioned satellite controllers Direct communication is possible as well as indirect communication.
  • the satellite controller 902 and the satellite controller 903 directly send the plurality of first evaluation reports to the satellite controller 901 .
  • the above-mentioned satellite controller 902 sends the received multiple first evaluation reports to the above-mentioned satellite controller 901, and the above-mentioned satellite controller 903 first sends the received multiple first evaluation reports to the above-mentioned satellite controller 1002.
  • the satellite controller 1002 forwards the received multiple first evaluation reports sent by the satellite controller 1003 to the above-mentioned satellite controller 901 .
  • the above-mentioned satellite controller stores external information for a period of time (here, weather information is used as an example for illustration), and according to the stored weather information, there is heavy rain in the time period from 13:00 to 13:30 on 2020/7/15 bad weather.
  • weather information is used as an example for illustration
  • the above-mentioned satellite controller according to the above-mentioned stored weather information, the data in the above-mentioned first evaluation report is screened, The data under severe weather is filtered out, and the data under non-severe weather is obtained, so as to generate a diagnosis report.
  • the above method eliminates the situation that abnormal information of the above-mentioned first service beam occurs due to weather factors, and improves the accuracy of the above-mentioned operation state diagnosis of the service satellite.
  • the satellite controller when the above-mentioned satellite controller is not a service satellite, the satellite controller also communicates with the above-mentioned service satellite, so as to obtain a second evaluation report generated by the above-mentioned service satellite for the service satellite with respect to the transmission situation of the above-mentioned first service beam, the The second evaluation report is a report used to characterize the operational status of the above-mentioned operational satellites.
  • Step S306 The satellite controller sends the diagnosis report of the first service beam to the ground monitoring station.
  • the satellite controller sends the diagnosis report and/or the second evaluation report to the ground monitoring station, and the ground monitoring station confirms the operational status of the operational satellite according to the second evaluation report and/or the diagnosis report. For example, when the carrier-to-noise ratio is abnormal, it may be that the modulation transmission system in the operational satellite is faulty.
  • FIG. 10 is a schematic diagram of a scenario in which a ground monitoring station obtains the above-mentioned first evaluation report and the above-mentioned second evaluation report according to an embodiment of the present application.
  • the scenario diagram includes a ground monitoring station 1001 , a threshold detector 1002 and Data area 1003, the above-mentioned satellite controller sends the above-mentioned diagnosis report and the above-mentioned second evaluation report to the above-mentioned ground monitoring station.
  • the ground monitoring station receives the above-mentioned first evaluation report and the above-mentioned second evaluation report, and receives the above-mentioned first evaluation report and the above-mentioned second evaluation report through the antenna.
  • the above-mentioned second evaluation report after passing through the above-mentioned threshold detector and the above-mentioned data area, obtains the data information of the above-mentioned first evaluation report and the above-mentioned second evaluation report, wherein the above-mentioned diagnosis report is used to confirm the operation status of the above-mentioned operational satellite, and the above-mentioned second The evaluation report is used to characterize the operational status of the above-mentioned operational satellites.
  • the above-mentioned service satellite can transmit a plurality of first service beams synchronously, and can also transmit a plurality of service beams asynchronously, and the description of the above-mentioned first service beams in FIG. 2 is also applicable to any one of the plurality of first service beams.
  • the first service beam can transmit a plurality of first service beams synchronously, and can also transmit a plurality of service beams asynchronously, and the description of the above-mentioned first service beams in FIG. 2 is also applicable to any one of the plurality of first service beams.
  • the first service beam can transmit a plurality of first service beams synchronously, and can also transmit a plurality of service beams asynchronously, and the description of the above-mentioned first service beams in FIG. 2 is also applicable to any one of the plurality of first service beams.
  • the first service beam can transmit a plurality of first service beams synchronously, and can also transmit a plurality of service beam
  • the above-mentioned multiple ground user terminals each generate multiple first evaluation reports according to the above-mentioned abnormal attribute information according to the first service beam, which can more comprehensively reflect the operation status of the service satellite and avoid the ground
  • the device screens the above-mentioned multiple first evaluation reports, removes the data under bad weather, and obtains a diagnosis report, which improves the accuracy of the above-mentioned operational satellite operation status diagnosis.
  • FIG. 11 is a schematic structural diagram of an apparatus 1100 for diagnosing operating status of a service satellite provided by an embodiment of the present application, where the apparatus 1100 may be the above ground user terminal or a device in the above ground user terminal.
  • the above-mentioned apparatus 1100 may include: a detecting unit 1101, a first generating unit 1102, and a first sending unit 1103, wherein the detailed description of each unit is as follows.
  • the first service beam detection unit 1101 is configured to detect attribute information of the first service beam, wherein the attribute information includes one or more of carrier power, bandwidth, carrier-to-noise ratio and frequency, and the first service beam is a service satellite transmitted beam;
  • the first generating unit 1102 is configured to generate a first evaluation report of the first service beam if the attribute information of the first service beam is abnormal, and the evaluation report includes the abnormality information of the first service beam;
  • the first sending unit 1103 is used to send the above-mentioned first evaluation report to the satellite controller, and the above-mentioned satellite controller is used to generate a diagnosis report of the above-mentioned first service beam according to a plurality of above-mentioned first evaluation reports from a plurality of above-mentioned first devices, and the above-mentioned
  • the diagnostic report is used by the ground monitoring station to confirm the operation status of the above-mentioned operational satellites.
  • the above-mentioned multiple evaluation reports are used to describe part or all of the abnormal information of the same first service beam.
  • the attribute information includes carrier power
  • the detection unit is specifically configured to: detect the amplitude of the first service beam; calculate the first service beam according to the amplitude of the first service beam carrier power.
  • the carrier power is an average carrier power, or the carrier power is an instantaneous carrier power.
  • this method can detect the instantaneous carrier power of the first service beam (at this time, the calculation time of the carrier power of the beam set by the ground user terminal is compared to Since the above-mentioned average transmit power is very small, it can be regarded as the instantaneous carrier power of the beam), which improves the correctness of the operational status diagnosis of the operational satellite.
  • the target parameter in the attribute information of the first service beam is lower than the reference threshold, and the difference from the reference threshold is not less than the first threshold, then the first service beam The attribute information is abnormal, the target parameter includes the carrier-to-noise ratio or the carrier power, and the reference threshold is a set value or a historical target parameter.
  • the sending unit is specifically configured to: if the number of evaluation reports of the first service beam reaches a second threshold, send the first service beam to the satellite controller Evaluation Report.
  • each operation may also correspond to the corresponding description with reference to the method embodiment shown in FIG. 2 , which will not be repeated here.
  • a plurality of the above-mentioned devices generate a first evaluation report according to the detected attribute information of some or all of the first service beam anomalies, and send it to the maintenance controller;
  • the controller generates a diagnosis report according to the received multiple first evaluation reports, and sends the report to the ground monitoring station, which does not require the ground monitoring station to participate in the monitoring of the first service beam, and also avoids the ground monitoring station not receiving all the beams.
  • the problem of not being able to obtain rapid monitoring results has shared the detection pressure of the ground monitoring station facing a large number of satellites and a large number of beams, and improved the efficiency of operational status diagnosis of operational satellites.
  • FIG. 12 is a schematic structural diagram of an apparatus 1200 for diagnosing operating status of a service satellite provided by an embodiment of the present application, where the apparatus 1200 is the above ground user terminal or a device in the above ground user terminal.
  • the above-mentioned apparatus 1200 may include: a receiving unit 1201, a second generating unit 1202, and a second sending unit 1203. The detailed description of each unit is as follows.
  • the receiving unit 1201 is configured to receive multiple first evaluation reports of the same first service beam sent by multiple first devices respectively, where the above-mentioned first evaluation report is generated by the above-mentioned first device according to the first service beam sent by the service satellite. report, the above-mentioned first evaluation report includes abnormal information of the above-mentioned first service beam;
  • a second generating unit 1202 configured to generate a diagnosis report of the first service beam according to a plurality of first evaluation reports of the first service beam;
  • the second sending unit 1203 is configured to send the diagnosis report of the first service beam to the ground monitoring station, where the diagnosis report is used for the ground monitoring station to confirm the operation status of the service satellite.
  • the above-mentioned multiple evaluation reports are used to describe part or all of the abnormal information of the same service beam.
  • the above-mentioned apparatus further includes: an acquisition unit configured to acquire, through a communication link, a second evaluation report of the above-mentioned first service beam sent by the above-mentioned service satellite, where the above-mentioned second evaluation report is the above-mentioned service satellite A report that is generated according to the transmission situation of the first service beam and used to characterize the operation state of the service satellite.
  • the above-mentioned apparatus further includes: a third sending unit, configured to send the second evaluation report of the above-mentioned first service beam sent by the above-mentioned service satellite to the above-mentioned ground after the above-mentioned obtaining unit obtains the second evaluation report of the above-mentioned first service beam sent by the above-mentioned service satellite through a communication link.
  • the monitoring station sends the second evaluation report of the first service beam.
  • the second evaluation report used to characterize the operational status of the operational satellite and the diagnostic report used to confirm the abnormal operational status of the operational satellite are both sent to the ground monitoring station, so as to more accurately analyze the operational status of the operational satellite.
  • the generating unit is specifically configured to: screen data in multiple first evaluation reports of the first service beam according to external factors to obtain a target evaluation report; generate a target evaluation report according to the above-mentioned target evaluation report The diagnostic report of the above-mentioned first service beam.
  • the external factors include weather factors
  • the target evaluation report is the first evaluation report obtained under non-adverse weather.
  • the above method filters out the above-mentioned first evaluation report under bad weather conditions, eliminates the problem of abnormal information of the first service beam due to weather factors, and improves the accuracy of the operational status diagnosis of the service satellite.
  • the above-mentioned device and the above-mentioned service satellite are the same satellite.
  • each operation may also correspond to the corresponding description with reference to the method embodiment shown in FIG. 2 , which will not be repeated here.
  • the above apparatus generates a diagnosis report according to a plurality of received first evaluation reports recording the abnormality information of the first service beam, and sends the report to the ground monitoring station, without the ground monitoring station participating in the above-mentioned first evaluation report.
  • the monitoring of business beams also avoids the problem that the ground monitoring station cannot obtain rapid monitoring results because it does not receive all beams, and shares the detection pressure of the ground monitoring station facing a large number of satellites and beams, which improves the operational status of business satellites. efficient.
  • FIG. 13 is a schematic structural diagram of an apparatus 1300 for diagnosing operating status of a service satellite provided by an embodiment of the present application.
  • the apparatus 1300 is the above-mentioned ground user terminal or a device in the above-mentioned ground user terminal.
  • the above-mentioned terminal 1300 includes: a communication interface 1301, a memory 1302 and a processor 1303, wherein the above-mentioned communication interface 1301, memory 1302 and processor 1303 can be connected by a bus or other means, and the embodiment of the present application takes the connection by a bus as an example.
  • the above-mentioned communication interface 1301 is used for data communication
  • the memory 1302 can be random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (erasable programmable read-only memory) read only memory, EPROM), or portable read-only memory (compact disc read-only memory, CD-ROM), not limited to this
  • the memory 1304 is used to store related instructions and data
  • the processor 1303 can be one or more central The processor (Central Processing Unit, CPU), which can be the computing core and control center of the diagnostic device, is used to parse various instructions and data inside the diagnostic device.
  • the processor 1303 is a CPU
  • the CPU can be a Single-core CPU, can also be multi-core CPU.
  • the processor 1303 of the device 1300 is configured to read the program code stored in the above-mentioned memory 1302, and perform the following operations: detect the attribute information of the above-mentioned first service beam, wherein the above-mentioned attribute information includes carrier power, bandwidth, carrier-to-noise ratio and One or more of the frequencies, the above-mentioned first service beam is a beam transmitted by a service satellite; if the attribute information of the above-mentioned first service beam is abnormal, the above-mentioned first evaluation report of the above-mentioned first service beam is generated, and the above-mentioned evaluation report includes Abnormal information of the above-mentioned first service beam; send the above-mentioned first evaluation report to the satellite controller through the communication interface, and the above-mentioned satellite controller is used to generate the diagnosis of the above-mentioned first service beam according to a plurality of above-mentioned first evaluation reports from a plurality of above-mentioned terminals
  • the above-mentioned multiple evaluation reports are used to describe part or all of the abnormal information of the same first service beam.
  • the attribute information includes carrier power
  • the detecting the attribute information of the first service beam includes: detecting the amplitude of the first service beam; calculating the first service beam according to the amplitude of the first service beam.
  • the carrier power of a service beam includes: detecting the amplitude of the first service beam; calculating the first service beam according to the amplitude of the first service beam.
  • the carrier power is an average carrier power, or the carrier power is an instantaneous carrier power.
  • this method can detect the instantaneous carrier power of the first service beam (at this time, the calculation time of the carrier power of the beam set by the ground user terminal is compared to Since the above-mentioned average transmit power is very small, it can be regarded as the instantaneous carrier power of the beam), which improves the correctness of the operational status diagnosis of the operational satellite.
  • the above-mentioned target parameter includes the above-mentioned carrier-to-noise ratio or the above-mentioned
  • the above-mentioned reference threshold is an artificially set value or a historical target parameter.
  • the above-mentioned sending the above-mentioned evaluation report to the satellite controller through the communication interface includes: if the number of the above-mentioned evaluation reports of the first service beam reaches a second threshold, sending the above-mentioned evaluation report to the above-mentioned satellite through the communication interface. The controller sends the above-mentioned evaluation report of the first service beam.
  • each operation may also correspond to the corresponding description with reference to the method embodiment shown in FIG. 2 .
  • a plurality of the above devices generate a first evaluation report according to the detected attribute information of some or all of the first service beam anomalies, and send it to the maintenance controller; the maintenance controller An evaluation report generates a diagnostic report, and sends the report to the ground monitoring station, which does not require the ground monitoring station to participate in the monitoring of the first service beam, and also avoids the problem that the ground monitoring station cannot obtain fast monitoring results because it does not receive all beams , which shares the detection pressure of the ground monitoring station facing a large number of satellites and a large number of beams, and improves the efficiency of the operational status diagnosis of operational satellites.
  • FIG. 14 is a schematic structural diagram of an apparatus 1400 for diagnosing operating status of a service satellite provided by an embodiment of the present application, and the apparatus 1400 may be the above-mentioned satellite controller or a device in the above-mentioned satellite controller.
  • the above-mentioned apparatus 1400 includes: a communication interface 1401, a memory 1402 and a processor 1403, wherein the above-mentioned communication interface 1401, memory 1402 and processor 1403 can be connected through a bus or other means, and the embodiment of the present application takes the connection through a bus as an example.
  • the above-mentioned communication interface 1401 is used for data communication
  • the memory 1402 can be random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (erasable programmable read-only memory) read only memory, EPROM), or portable read-only memory (compact disc read-only memory, CD-ROM), not limited to this
  • the memory 1404 is used to store related instructions and data
  • the processor 1403 can be one or more central The processor (Central Processing Unit, CPU), which can be the computing core and control center of the diagnostic device, is used to parse various instructions and data inside the diagnostic device.
  • the processor 1403 is a CPU
  • the CPU can be a Single-core CPU, can also be multi-core CPU.
  • the processor 1403 of the device 1400 is configured to read the program code stored in the above-mentioned memory 1402, and the operations performed include: receiving multiple first evaluation reports of the same first service beam respectively sent by multiple first devices through the communication port,
  • the above-mentioned first evaluation report is a report generated by the above-mentioned first equipment according to the first service beam sent by the service satellite, and the above-mentioned first evaluation report includes abnormal information of the above-mentioned first service beam; according to multiple first evaluations of the above-mentioned first service beam
  • the report generates the diagnosis report of the first service beam; sends the diagnosis report of the first service beam to the ground monitoring station through the communication interface, and the diagnosis report is used for the ground monitoring station to confirm the operation status of the service satellite.
  • the above-mentioned multiple evaluation reports are used to describe part or all of the abnormal information of the same first service beam.
  • a second evaluation report of the service beam sent by the service satellite is obtained through a communication link, and the second evaluation report is a report generated by the service satellite according to the transmission situation of the first service beam. Reports used to characterize the operational status of the above-mentioned operational satellites.
  • the method further includes: sending the first service beam to the ground monitoring station through a communication interface of the above-mentioned second assessment report.
  • the second evaluation report used to characterize the operational status of the operational satellite and the diagnostic report used to confirm the abnormal operational status of the operational satellite are both sent to the ground monitoring station, so as to more accurately analyze the operational status of the operational satellite.
  • generating the diagnosis report of the first service beam according to the multiple first evaluation reports of the first service beam includes: analyzing the multiple first service beams of the first service beam according to external factors. The data in the evaluation report is screened to obtain a target evaluation report; and the diagnosis report of the first service beam is generated according to the above-mentioned target evaluation report.
  • the external factors include weather factors
  • the target evaluation report is the first evaluation report obtained under non-adverse weather.
  • the above-mentioned maintenance controller filters out the above-mentioned first evaluation report under bad weather conditions, eliminates the problem of abnormal information on the first service beam due to weather factors, and improves the accuracy of the operational status diagnosis of the service satellite.
  • the above-mentioned satellite controller and the above-mentioned service satellite are the same satellite.
  • each operation may also correspond to the corresponding description with reference to the method embodiment shown in FIG. 2 .
  • the above device generates a diagnosis report according to a plurality of received first evaluation reports recording the abnormality information of the first service beam, and sends the report to the ground monitoring station, without the ground monitoring station participating in the above-mentioned first evaluation report.
  • the monitoring of business beams also avoids the problem that the ground monitoring station cannot obtain rapid monitoring results because it does not receive all beams, and shares the detection pressure of the ground monitoring station facing a large number of satellites and beams, which improves the operational status of business satellites. efficient.
  • Embodiments of the present application also provide a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the computer or processor is run on a computer or a processor, the computer or the processor is made to execute any one of the above methods. or multiple steps.
  • Each component module of the above-mentioned signal processing and diagnosis device can be stored in the above-mentioned computer-readable storage medium if it is implemented in the form of a software functional unit and sold or used as an independent product.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product described above includes one or more computer instructions.
  • the aforementioned computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable diagnostic equipment.
  • the computer instructions described above may be stored in or transmitted over a computer readable storage medium.
  • the computer instructions described above may be sent from one website site, computer, server or data center to another website site, via wire (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wirelessly (eg, infrared, wireless, microwave, etc.) computer, server or data center for transmission.
  • the above-mentioned computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, etc. that includes one or more available media integrated.
  • the above-mentioned usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, solid state disk (SSD)), and the like.
  • a plurality of ground user terminals can detect anomalies in the attribute information of some or all of the first service beams according to the received service satellites. , generate the first evaluation report according to the abnormal attribute information (for example, carrier power, carrier-to-noise ratio, bandwidth, frequency, etc.)
  • the ground monitoring station faces the detection pressure of massive satellites and massive beams, which improves the efficiency of operational status diagnosis of operational satellites; and, compared with the average transmit power detected by the operational satellite monitoring system itself, the attribute information in the first evaluation report above
  • the carrier power in can be the instantaneous power of the first service beam, which improves the correctness of the operational status diagnosis of the service satellites; in addition, the maintenance controller screens the above evaluation reports based on the stored weather records, and preserves the accuracy of the evaluation reports in non-severe weather conditions.
  • the attribute information in the above evaluation report below excludes the abnormal situation of the above attribute information caused by the interference of weather factors, thereby further enhancing the accuracy of the detection result.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Security & Cryptography (AREA)
  • Radio Relay Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

本申请实施例提供一种业务卫星运行状态诊断的方法及相关装置,该方法包括:地面用户终端检测第一业务波束的属性信息,其中,上述第一业务波束为业务卫星发射的波束,若该第一业务波束的属性信息异常,则生成该第一业务波束的第一评估报告,该地面用户终端向卫星控制器发送上述第一评估报告;上述卫星控制器接收多个地面用户终端发送的多份第一评估报告,并根据上述多份第一评估报告生成该业务波束的诊断报告,此外,该卫星控制器还可以与上述业务卫星通信,获取用于表征该业务卫星运行状态的第二评估报告;上述卫星控制器向地面监测站发送上述诊断报告和/或上述第二评估报告,采用本申请实施例,能够提高业务卫星运行状态诊断的正确性以及效率。

Description

业务卫星运行状态诊断方法及相关装置
本申请要求于2020年7月28日提交国家知识产权局、申请号为202010749458.2、发明名称为“业务卫星运行状态诊断方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及卫星通信技术领域,尤其涉及一种业务卫星运行状态诊断方法及相关装置。
背景技术
随着科学技术的发展,卫星通信技术也得到了快速的发展。卫星通信技术就是地球上的无线电通信站间利用卫星作为中继而进行的通信,在该项卫星通信技术中,相当大的一部分用于环境监测、气象服务、立体测绘、海洋观测等用途,从空间视角为用户提供大量所需的数据。随着卫星通信技术在现代通信技术中发挥着越来越重要的作用,卫星运行状态的诊断也迅速得到了发展,它对卫星通信技术的安全起着至关重要的作用。
目前,卫星的运行状态主要是通过卫星自身的监测系统或者地面专用监测站获取的信息来判断。然而,由于卫星成本、体积和功耗等因素限制,卫星自身的监测系统结构简单,只能粗略地监测卫星的平均发射功率,判断的准确性较低;此外,根据地球与卫星的运行规律,地面监测站只能实时地监测到一段时间内的覆盖该地面监测站的波束区域,需要通过持续地监测,当该地面监测站监测到上述波束的各个区域(例如,针对频率范围为25-29GHZ的波束,当上述地面用户终端获取上述波束在上述频率范围的数据时,才视为监测到上述波束的各个区域),才能得出监测结果,由于地面监测站是面对海量卫星及海量波束群,监测周期长,工作量大,从而使得监测的效率较低。
发明内容
本申请实施例公开了一种业务卫星运行状态诊断方法及相关装置,能够提高诊断的正确性以及效率。
第一方面,本申请实施例提供了一种业务卫星运行状态诊断方法,该方法包括:第一设备接收业务卫星发送的第一业务波束;上述第一设备检测上述第一业务波束的属性信息,其中,上述属性信息包括载波功率、带宽、载噪比和频率中的一项或者多项;若上述第一业务波束的属性信息异常,则上述第一设备生成上述第一业务波束的第一评估报告,上述评估报告包括上述第一业务波束的异常信息;上述第一设备向卫星控制器发送上述第一评估报告,上述卫星控制器用于根据来自多个上述第一设备的多份上述第一评估报告生成上述第一业务波束的诊断报告,上述诊断报告用于地面监测站确认上述业务卫星的运行状况。
可以看出,多个第一设备根据检测到的部分或全部第一业务波束异常的属性信息生成第一评估报告,并发送给维护控制器;维护控制器根据接收的多份第一评估报告生成诊断报告,并将该报告发送给地面监测站,无需地面监测站参与上述第一业务波束的监测,同时也避免了地面监测站因未接收全部波束而无法得到快速监测结果的问题,分担了地面监 测站面对海量卫星以及海量波束的检测压力,提高了业务卫星运行状态诊断的效率。
在第一方面的一种可选的方案中,上述多份上述评估报告用于描述同一束第一业务波束的部分或全部的异常信息。
在第一方面的又一种可选的方案中上述属性信息包括载波功率,上述第一设备检测上述第一业务波束的属性信息,包括:上述第一设备检测上述第一业务波束的振幅;上述第一设备根据上述第一业务波束的振幅计算上述第一业务波束的载波功率。
在第一方面的一种可选的方案中,上述载波功率为平均载波功率,或者,上述载波功率为瞬时载波功率。
可以看出,相比于业务卫星自身监测系统检测到的平均发射功率,该方法能够检测该第一业务波束的瞬时载波功率(此时,该地面用户终端设置波束的载波功率的计算时间相比于上述平均发射功率很小,可以视为该波束的瞬时载波功率),提高了业务卫星运行状态诊断的正确性。
在第一方面的又一种可选的方案中,若上述第一业务波束的属性信息中目标参数低于参考阈值,且与上述参考阈值的差值不小于第一阈值,则上述第一业务波束的属性信息异常,上述目标参数包括上述载噪比或上述,上述参考阈值为人为设置的值或历史的目标参数。
在第一方面的又一种可选的方案中,上述第一设备向卫星控制器发送上述的评估报告,包括:若上述第一业务波束的评估报告的数量达到第二阈值时,则上述第一设备向上述卫星控制器发送上述第一业务波束的评估报告。
第二方面,本申请实施例提供了一种业务卫星运行状态诊断的方法,包括:卫星控制器接收多个第一设备分别发送的同一第一业务波束的多份的第一评估报告,上述第一评估报告为上述第一设备根据业务卫星发送的第一业务波束生成的报告,上述第一评估报告包括上述第一业务波束的异常信息;上述卫星控制器根据上述第一业务波束的多份第一评估报告生成上述第一业务波束的诊断报告;上述卫星控制器向地面监测站发送上述第一业务波束的诊断报告,上述诊断报告用于地面监测站确认上述业务卫星的运行状况。
可以看出,维护控制器根据接收的多份记录第一业务波束异常信息的第一评估报告生成诊断报告,并将该报告发送给地面监测站,无需地面监测站参与上述第一业务波束的监测,同时也避免了地面监测站因未接收全部波束而无法得到快速监测结果的问题,分担了地面监测站面对海量卫星以及海量波束的检测压力,提高了业务卫星运行状态诊断的效率。
在第二方面的一种可选的方案中,上述多份评估报告用于描述同一束第一业务波束的部分或全部的异常信息。
在第二方面的又一种可选的方案中,上述方法还包括:上述卫星控制器通过通信链路获取上述业务卫星发送的上述业务波束的第二评估报告,上述第二评估报告为上述业务卫星根据上述第一业务波束的发射情况生成的用于表征上述业务卫星运行状态的报告。
在第二方面的又一种可选的方案中,上述卫星控制器通过通信链路获取上述业务卫星发送的上述第一业务波束的第二评估报告之后,还包括:上述卫星控制器向上述地面监测站发送上述第一业务波束的上述第二评估报告。
可以看出,该方法用于表征业务卫星运行状态的第二评估报告与用于确认上述业务卫 星异常的运行状况的诊断报告均发送给地面监测站,便于更加准确地分析上述业务卫星的运行状态。
在第二方面的又一种可选的方案中,上述卫星控制器根据上述第一业务波束的多份第一评估报告生成上述第一业务波束的诊断报告,包括:上述卫星控制器根据外界因素对上述第一业务波束的多份第一评估报告中的数据进行筛选,得到目标评估报告;上述卫星控制器根据上述目标评估报告生成上述第一业务波束的诊断报告。
在第二方面的又一种可选的方案中,上述外界因素包括天气因素,上述目标评估报告为非恶劣天气下获取的上述第一评估报告。
可以看出,该方法筛选掉了天气恶劣情况下的上述第一评估报告,排除了因天气因素导致第一业务波束出现异常信息的问题,提高了业务卫星运行状态诊断的正确性。
在第二方面的又一种可选的方案中,上述卫星控制器与上述业务卫星为同一个卫星。
第三方面,本申请实施例提供了一种业务卫星运行状态诊断的装置,包括:第一接收单元,用于接收业务卫星发送的第一业务波束;检测单元,用于检测上述第一业务波束的属性信息,其中,上述属性信息包括载波功率、带宽、载噪比和频率中的一项或者多项;第一生成单元,用于若上述第一业务波束的属性信息异常,则生成上述第一业务波束的第一评估报告,上述评估报告包括上述第一业务波束的异常信息;第一发送单元,用于向卫星控制器发送上述第一评估报告,上述卫星控制器用于根据来自多个上述第一设备的多份上述第一评估报告生成上述第一业务波束的诊断报告,上述诊断报告用于地面监测站确认上述业务卫星的运行状况。
可以看出,多个上述装置根据检测到的部分或全部第一业务波束异常的属性信息生成第一评估报告,并发送给维护控制器;维护控制器根据接收的多份第一评估报告生成诊断报告,并将该报告发送给地面监测站,无需地面监测站参与上述第一业务波束的监测,同时也避免了地面监测站因未接收全部波束而无法得到快速监测结果的问题,分担了地面监测站面对海量卫星以及海量波束的检测压力,提高了业务卫星运行状态诊断的效率。
在第三方面的一种可选的方案中,上述多份上述评估报告用于描述同一束第一业务波束的部分或全部的异常信息。
在第三方面又一种可选的方案中,上述属性信息包括载波功率,上述检测单元具体用于:检测上述第一业务波束的振幅;根据上述第一业务波束的振幅计算上述第一业务波束的载波功率。
在第三方面又一种可选的方案中,上述载波功率为平均载波功率,或者,上述载波功率为瞬时载波功率。
可以看出,相比于业务卫星自身监测系统检测到的平均发射功率,该方法能够检测该第一业务波束的瞬时载波功率(此时,该地面用户终端设置波束的载波功率的计算时间相比于上述平均发射功率很小,可以视为该波束的瞬时载波功率),提高了业务卫星运行状态诊断的正确性。
在第三方面又一种可选的方案中,若上述第一业务波束的属性信息中目标参数低于参考阈值,且与上述参考阈值的差值不小于第一阈值,则上述第一业务波束的属性信息异常,上述目标参数包括上述载噪比或上述载波功率,上述参考阈值为认为设置的值或历史的目 标参数。
在第三方面又一种可选的方案中,上述发送单元具体用于:若上述第一业务波束的评估报告的数量达到第二阈值时,则向上述卫星控制器发送上述第一业务波束的评估报告。
第四方面,本申请实施例提供了一种业务卫星运行状态诊断的装置,包括:第二接收单元,用于接收多个第一设备分别发送的同一第一业务波束的多份的第一评估报告,上述第一评估报告为上述第一设备根据业务卫星发送的第一业务波束生成的报告,上述第一评估报告包括上述第一业务波束的异常信息。第二生成单元,用于根据上述第一业务波束的多份第一评估报告生成上述第一业务波束的诊断报告;第二发送单元,用于向地面监测站发送上述第一业务波束的诊断报告,上述诊断报告用于地面监测站确认上述业务卫星的运行状况。
可以看出,上述装置根据接收的多份记录第一业务波束异常信息的第一评估报告生成诊断报告,并将该报告发送给地面监测站,无需地面监测站参与上述第一业务波束的监测,同时也避免了地面监测站因未接收全部波束而无法得到快速监测结果的问题,分担了地面监测站面对海量卫星以及海量波束的检测压力,提高了业务卫星运行状态诊断的效率。
在第四方面的一种可选的方案中,上述多份评估报告用于描述同一束业务的部分或全部的异常信息。
在第四方面的又一种可选的方案中,上述装置还包括:获取单元,用于通过通信链路获取上述业务卫星发送的上述第一业务波束的第二评估报告,上述第二评估报告为上述业务卫星根据上述第一业务波束的发射情况生成的用于表征上述业务卫星运行状态的报告。
在第四方面的又一种可选的方案中,上述装置还包括:第三发送单元,用于上述获取单元通过通信链路获取上述业务卫星发送的上述第一业务波束的第二评估报告之后,向上述地面监测站发送上述第一业务波束的上述第二评估报告。
可以看出,该方法用于表征业务卫星运行状态的第二评估报告与用于确认上述业务卫星异常的运行状况的诊断报告均发送给地面监测站,便于更加准确地分析上述业务卫星的运行状态。
在第四方面的又一种可选的方案中,上述生成单元具体用于:根据外界因素对上述第一业务波束的多份第一评估报告中的数据进行筛选,得到目标评估报告;根据上述目标评估报告生成上述第一业务波束的诊断报告。
在第四方面的又一种可选的方案中,上述外界因素包括天气因素,上述目标评估报告为非恶劣天气下获取的上述第一评估报告。
可以看出,上述方法筛选掉了天气恶劣情况下的上述第一评估报告,排除了因天气因素导致第一业务波束出现异常信息的问题,提高了业务卫星运行状态诊断的正确性。
在第四方面的又一种可选的方案中,上述装置与上述业务卫星为同一个卫星。
第五方面,本申请实施例提供了一种终端,包括:通信接口、存储器和处理器,其中,上述通信接口用于数据通信,上述存储器用于存储计算机程序,上述处理器被配置为运行上述计算机程序,以使上述终端执行如第一方面或第一方面的任意一种可选的方案中上述业务卫星运行状态诊断方法。
第六方面,本申请实施例提供了一种卫星控制器,包括:通信接口、存储器和处理器, 其中,上述通信接口用于数据通信,上述存储器用于存储计算机程序,上述处理器被配置为运行上述计算机程序,以使上述终端执行如第二方面或第二方面的任一种可选的方案中上述业务卫星运行状态诊断方法。
第七方面,本申请实施例提供了一种计算机可读存储介质,上述计算机可读存储介质存储有计算机程序,当上述计算机程序被处理运行时,实现第一方面或者第一方面中任意一种可选的方案中所描述的方法。
第八方面,本申请实施例提供了一种计算机程序产品,当该计算机程序产品在处理器上运行的时候,实现本申请实施例中的第一方面或者第一方面中任意一种可选的方案所描述的方法。
可以理解地,上述第五方面提供的终端、第六方面提供的卫星控制器、第七方面提供的计算机可读存储介质,以及第八方面提供的计算机产品均用于执行第一方面,或者第二方面,或者第一方面的任一种可选的方案,或者第二方面的任一种可选的方案所提供的业务卫星运行状态诊断方法,因此,其所能达到的有益效果可以参考第一方面,或者第二方面,或者第一方面的任一种可选的方案,或者第二方面的任一种可选的方案所提供的业务卫星运行状态诊断方法中的有益效果,此处不再赘述。
附图说明
以下对本申请实施例用到的附图进行介绍。
图1是本申请实施例提供的一种业务卫星运行状态诊断方法的场景示意图;
图2是本申请实施例提供的一种业务卫星运行状态诊断的场景示意图;
图3是本申请实施例提供的一种业务卫星运行状态诊断方法的流程示意图;
图4是本申请实施例提供的一种波束赋形发射机的结构示意图;
图5是本申请实施例提供的一种业务卫星射频系统的结构示意图;
图6是本申请实施例提供的一种信号评估模块的硬件结构示意图;
图7是本申请实施例提供的一种信号评估模块的软件结构示意图;
图8是本申请实施例提供的又一种业务卫星运行状态诊断的场景示意图;
图9为本申请实施例提供的一种多个卫星组成的卫星集群之间通信的场景示意图;
图10是本申请实施例提供的一种地面监测站获取上述第一评估报告与上述第二评估报告的场景示意图;
图11是本申请实施例提供的一种业务卫星运行状态诊断装置的结构示意图;
图12是本申请实施例提供的又一种业务卫星运行状态诊断装置的结构示意图;
图13是本申请实施例提供的又一种业务卫星运行状态诊断装置的结构示意图;
图14是本申请实施例提供的又一种业务卫星运行状态诊断装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本 申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参见图1,图1是本申请实施例提供的一种业务卫星运行状态诊断方法的结构示意图,该结构包括:业务卫星101,地面用户终端102,卫星控制器103以及地面监测站104。可选的,如果该卫星控制器103可以为一颗卫星,则卫星控制器103和业务卫星101可以为同一个卫星,也可以两颗不同的卫星;如果卫星控制器103为由多颗卫星组成的卫星集群,则业务卫星101可以为该卫星集群中的一个卫星,也可以不为该卫星集群中的卫星。
上述业务卫星101向地面用户终端102发射第一业务波束,上述地面用户终端102接收上述第一业务波束之后,检测和评估上述第一业务波束的属性信息,并将评估结果生成第一评估报告,然后向上述卫星控制器103发送上述第一评估报告,该卫星控制器接收上述第一评估报告,并根据上述第一评估报告进行汇总和筛选,得到该第一业务波波束的诊断报告,此外,该卫星控制器103也与上述业务卫星101通信,获取该业务卫星根据上述业务波束的发射情况生成的第二评估报告,该卫星控制器103向上述地面监测站104发送上述诊断报告和/或上述第二评估报告。
从图1的描述中可以看出,相比于业务卫星根据自身检测系统进行检测以及通过地面监测站进行检测的现有方法,地面用户终端与卫星控制器参与了该业务卫星运行状态诊断的过程,分担了上述业务卫星与上述地面监测站的检测压力,提高了业务卫星运行状态诊断的效率。
图1介绍了业务卫星运行状态诊断方法的结构示意图,下面对上述结构示意图进行详细的场景介绍。请参见图2,图2为本申请实施例提供的一种业务卫星运行状态诊断的场景示意图,该场景包括:业务卫星201,地面用户终端202、卫星控制器203以及地面监测站204,其中,上述地面用户终端202可以为智能手机、笔记本电脑、平板电脑、桌上型电脑、卫星接收机或其他电子设备。
具体地,业务卫星101可以发射不同的波束,例如,波束1、波束2、波束3等,其中,不同的波束可以通过不同身份标识号(identity document,ID)进行区分,例如,波束1的ID为vcxj01,波束2的ID为vcxj02,波束3的ID为vcxj03。这里的业务卫星运行状态诊断方法以其中一道波束为例进行阐述,为了便于描述,后续称该一道波束为第一业务波束。
业务卫星201向地面用户终端202发射第一业务波束,地面用户终端202接收部分或全部的上述第一业务波束,例如,上述地面用户终端接收上述第一业务波束部分频率的信息,或者接收上述第一业务波束全部频率的信息。上述地面用户终端检测上述第一业务波束的属性信息(例如,载波功率、带宽、载噪比和频率),若上述第一业务波束的属性信息异常(例如,上述第一业务波束的载波功率或载噪比低于该第一业务波束的参考阈值,且与该参考阈值的差值不小于第一阈值,则该地面用户终端生成该第一业务波束的第一评估报告并存储该第一评估报告。其中,上述载波功率可以为平均载波功率,也可以为瞬时载波功率(当上述载波功率的计算时间很小的时候,则此时计算得到的载波功率可以视为瞬时功率);上述参考阈值为设预的值或历史的目标参数;上述第一评估报告包括异常的属性信息,检测时间,检测地点(例如,上述地面用户终端所处的地面位置)。当该地面用户终端存储的第一评估报告的数量达到第二阈值(该第二阈值为预先设置的值)时,则将多份 第一评估报告发送给卫星控制器203。其中,上述多份第一评估报告可以为一个地面用户终端发送的,也可以为多个地面用户终端发送的。
上述卫星控制器203接收上述地面用户终端发送的多份第一评估报告,根据该卫星控制器203存储的天气记录对上述多份第一评估报告进行筛选,并生成第一业务波束的诊断报告。例如,上述卫星控制器筛选掉上述第一评估报告中恶劣天气下的属性信息(为了排除因天气因素导致属性信息异常的情况),得到非恶劣天气下的第一评估报告。此外,该卫星控制器203通过通信链路获取第二评估报告,其中,该第二评估报告为上述业务卫星201根据上述第一业务波束的发射情况生成的。
上述卫星控制器203向地面监测站204发送上述诊断报告和上述第二评估报告,其中,上述诊断报告用于上述地面监测站104确认上述业务卫星的运行状况,上述第二评估报告用于表征上述业务卫星运行状态的报告。
需要说明的是,上述地面用户终端可以为多个地面用户终端设备,上述地面用户终端所执行的操作适用于上述多个终端设备中的任意一个终端设备;上述业务卫星可以同步地发射多个第一业务波束,也可以不同步地发射多个业务波束,且图2中对上述第一业务波束的描述同样适用于其他第一业务波束。
从图2所描述的场景图中,可以看出,多个地面用户终端能够根据接收的业务卫星发射的部分或全部的业务波束,检测出上述部分或全部的业务波束的属性信息的异常情况,根据异常的属性信息(例如,载波功率、载噪比、带宽、频率等)生成第一评估报告,从而避免了地面监测站因未接收全部的波束而无法得到快速检测结果的问题,分担了地面监测站面对海量卫星以及海量波束的检测压力,提高了业务运行状态诊断的效率;并且,相比于业务卫星自身监测系统检测到的平均发射功率,上述卫星述第一评估报告中的属性信息中的载波功率可以为该业务波束的瞬时功率(此时,该地面用户终端设置波束的载波功率的计算时间相比于上述平均发射功率很小,可以视为该波束的瞬时载波功率),提高了业务卫星运行状态诊断的正确性;此外,维护控制器根提高存储的天气记录对上述评估报告进行筛选,保留了在非恶劣天气下的上述第一评估报告中的属性信息,排除了因天气因素的干扰导致上述属性信息异常的情况,从而增强了检测结果的准确性。
请参见图3,图3是本申请实施例提供的一种业务卫星运行状态诊断方法的流程示意图,该方法包括但不限于如下步骤:
步骤S301:地面用户终端检测第一业务波束的属性信息。
其中,上述地面用户终端可以为智能手机、笔记本电脑、平板电脑、桌上型电脑、卫星接收机或其他电子设备,上述属性信息包括载波功率、带宽、载噪比和频率中的一项或者多项,上述第一业务波束为业务发射的波束。
在上述地面用户终端检测上述第一业务波束的属性信息之前,该地面用户终端接收业务卫星发射的第一业务波束。上述业务卫星发送第一业务波束属于卫星通信业务,卫星通信业务根据其特点和用户需求,可以提供多种服务(例如,科学研究、宇宙观测、气象观测、远距离通信、移动通信等诸多领域)。卫星通信业务是指经过业务卫星和地球站组成的卫星通信网络提供的语音、数据、视频图像等业务,其中,地球站通常是指固定地球站,可移动地球站、移动或手持用户终端。波束赋形技术可以将不同数据流映射到多个高增益波束, 覆盖特定的空域,并且能根据需求调节波束形状和指向,是卫星通信业务的关键技术。请参见图4,图4为本申请提供的一种波束赋形发射机的结构示意图,该示意图包括:基带401,中频402以及收发器403,上述基带401将第一业务波束通过中频402以及收发器403之后,由天线输出一定幅度、相位的信号,发射到空域中,多个天线发射的多个波束(即多个第一业务波束)互相干涉,形成所需要的定向的波束。由于上述业务卫星的工作环境相比于地面较恶劣,随着时间的推移和收发器温度循环次数的提高,该业务卫星的收发器会存在性能退化的问题,而该收发器退化问题直接会导致该业务卫星的功放的发射饱和功率和附加功率效率会逐渐下降,突发失效的概率也更高。例如,在一般情况下,当温度循环次数一定时,随着输入功率的增加,输出功率逐渐增加,最后趋于稳定,从而使得附加功率效率(该附加功率效率与上述输入功率和输出功率有关)出现先增加后降低的现象;当输入功率一定时,温度循环次数越高,则输出功率越低,对应的附件功率效率也较低。当上述收发器出现性能退化之后,会对波束赋形产生影响,当超过裕度之后,会出现波束指向偏离,等向全向辐射功率(equivalent isotropically radiated power,EIRP)不能满足设计要求等问题,影响正常业务,甚至对周边正常波束产生影响。
由于当业务卫星中的器件会出现退化或故障时,该业务卫星发射的业务波束会出现异常现象,还会影响到周边的波束,则业务卫星运行状态诊断越来越受到重视,其在卫星通信技术中起着关键性作用。
具体地,上述业务卫星通过第一业务波束与地面用户终端之间进行信息传输,根据频谱划分范围的不同,上述第一业务波束可以划分为不同频段的波束(例如,第一业务波束的频段(140~400.5MHZ)的波束(主要用于包括低轨道卫星在内的非同步卫星通信业务),波束2的频段(21~25GHZ)的波束(该频段传输损耗大,受降雨及大气中的水汽凝结物的影响严重,但是由于可用频带宽,是目前宽带电波多媒体卫星考虑采用的频段)。上述业务卫星向上述地面用户终端发送第一业务波束,该第一业务波束经过衰减(由于上述业务波束在宇宙空间和大气层的损耗)之后,最终到达接收端的地面用户终端。请参加图5,图5为本申请实施例提供的一种业务卫星射频系统的结构示意图,该结构包括:发射功率监测501以及天线502,由图5可知,上述第一业务波束经过移相器、激励功放、末级功放以及发射功率检测501之后,由天线502发射出去,其中,上述发射功率检测501会记录上述第一业务波束的载波功率(该载波功率一般为一个时间计算单位的平均功率,其中,一个时间计算单位一般较长,因而得到的该载波功率的结果较为粗略),且该载波功率记录在第二评估报告中,该第二评估报告为该业务卫星根据该第一业务波束的发射情况生成的报告。
上述地面用户终端经过高增益的天线和低噪声的接收机之后,接收上述第一业务波束的部分或全部的波束,其中,上述高增益的天线用于将上述第一业务波束的信号的能量聚焦为一个窄波束,以接收来自上述第一业务卫星天线的信号,提供足够的下行载波功率;上述低噪声的接收机用于减小下行载波带宽内的噪声功率。
上述地面用户终端接收上述第一业务波束。当上述业务卫星第r次(其中,r≥1)扫过上述地面用户终端所在的区域时,在同一时间段内,上述地面用户终端接收部分或全部的第一业务波束,并且,根据业务卫星运行规律与地球自转规律,上述业务卫星每次扫过上述地面用户终端时,该地面用户终端可以接收相同频段的第一业务波束,也可以接收不同 频段的第一业务波束。例如,当业务卫星第2次和第3次扫过该地面用户终端时,该地面用户终端可以接收该第一业务波束140~200MHZ频段的信息;该地面用户终端也可以第2次接收140~200MHZ频段的信息,第3次接收160~370MHZ频段的信息。
具体地,上述地面用户终端中的信号评估硬件模块检测上述第一业务波束的属性信息。请参见图6,图6为本申请实施例提供的一种信号评估模块的硬件结构示意图,该硬件结构包括信号评估模块601,该信号评估模块601用于对下行波束信号质量进行评估,并存储评估结果。从图6中可以看出,上述地面用户终端接收上述第一业务波束的信号之后,经过低噪声放大器(low-noise amplifier,LNA)、下变频器后,上述第一业务波束的信号变为中频信号,经过耦合器进入信号评估模块,该信号评估模块的滤波器经过选频,得到上述第一业务波束所在频段的信号,选频得到的第一业务波束所在频段的信号之后,检波器从已调制(该调制可以为调幅、调频和/或调相的调制方法)的上述第一业务波束所在频段的信号中,检测出上述第一业务波束所携带的信息(例如,频率、带宽、载噪比或载波功率等信息)。
上述详细阐述了该信号评估硬件模块,下面提供了该信号评估硬件模块对应的软件结构。请参见图7,图7为本申请实施例提供的一种信号评估模块的软件结构示意图,该软件结构包括信号评估单元701,该信号评估单元701用于对下行第一业务波束信号质量进行评估,并存储上述评估的结果。上述地面用户终端经过天线接收上述第一业务波束之后,经过低噪音放大器LNA、下变频器以及模拟数字放大器ADC之后,上述第一业务波束的信号变为数字中频信号,该数字中频信号是上述信号评估单元的输入信号,该信号经过图7中的载波频率分解及筛选单元之后,得到该第一业务波束的属性信息,该信号质量评估单元对上述第一业务波束的属性信息进行评估,判断该第一业务波束的属性信息是否异常。其中,该评估可以是针对接收到的该第一业务波束的属性信息与参考阈值或者是历史值进行评估,判断该属性信息中目标参数(例如,载波功率或者载波比)是否低于参考阈值,且与上述参考阈值的差值是否不小于第一阈值。当出现异常的属性信息时,则该地面用户终端中的信号处理模块根据该属性信息生成第一评估报告并存储在图7中存储单元中。图7中的基带通过使能信号控制上述图中的存储单元、信号质量评估单元以及上述载波频率分解及筛选单元的工作状态,并从图7中的存储单元中读取上述第一业务波束的异常的属性信息。一般情况下,对于上述第一业务波束的属性信息中的载波功率,地面监测站采用功率谱密度来展现该第一业务波束的载波功率与时间、频率之间的变化关系。
请参见表1,表1为本申请实施例提供的一种地面用户终端检测到的第一业务波束的部分属性信息。
表1,一种地面用户终端检测到的第一业务波束的部分属性信息
Figure PCTCN2021107409-appb-000001
Figure PCTCN2021107409-appb-000002
从表1中可以看出,上述地面用户终端检测出固定时间内(这里以1s为例进行示意)的该第一业务波束的频率、带宽、载波功率和载噪比。其中,上述载波功率是根据检测到的上述第一业务波束的振幅计算得到的,上述载噪比是根据载波功率与噪音的功率计算得到的。
计算上述载波功率的固定时间可以与上述业务卫星射频系统的时间计算单位相同,也可以比上述业务卫星射频系统的时间计算单位小(例如,上述固定时间为1s,时间较短,可以视为上述第一业务波束的瞬时载波功率)。因而,上述地面用户终端在能承载的计算负荷范围内,对上述第一业务波束的载波功率或载噪比进行更加精细的计算,从而获得更加丰富且精确的数据,提高了上述业务卫星运行状态诊断的正确性。
步骤S302:若上述第一业务波束的属性信息异常,则上述地面用户终端生成该第一业务波束的第一评估报告。
具体地,图6中的信号评估模块或图7中的信号评估单元根据上述检测到的该第一业务波束的属性信息与该波束的属性信息的参考阈值(例如,该波束的预设阈值或者历史值)进行评估,并得出评估结果。例如,上述第一业务波束的属性信息中目标参数(例如,该第一业务波束的载波功率、载噪比)低于上述参考阈值,且与上述参考阈值的差值不小于第一阈值,则判断该波束的属性信息异常,并根据异常的属性信息生成第一评估报告(该第一评估报告可以包括时间、频率、带宽、载波功率、载噪比、异常信息、所处地面的坐标(这里可以为上述地面用户终端的地理位置))。
例如,上述地面用户终端根据上述表1中的数据进行评估,当波束在时间段为7/15 13:01-13:02的载波功率的预设阈值为300mW,因此,这里的信号评估模块检测到的该波束在上述时间段7/15 13:01-13:02内的数值低于上述预设阈值,并且检测到的数值与上述历史值的差值为100mW,上述差值大于上述第一阈值(例如,该第一阈值设置为80mW),则上述地面用户终端判断该第一业务波束在7/15 13:01-13:02时间段内的载波功率是异常。同样地,当上述第一业务波束在时间段为7/15 13:07-13:08的载噪比的历史值为12dB,因此,这里的信号评估模块检测到的该波束在上述时间段7/15 13:07-13:08内的数值低于上述历史值,并且检测到的数值与上述历史值的差值为3dB,上述差值大于上述第一阈值(例如,该第一阈值设置为1dB),根据评估结果该第一业务波束在7/15 13:07-13:08时间段内的载噪比异常。上述地面用户终端根据上述评估结果生成第一评估报告,请参见表2,表2为本申请实施例提供的一种地面用户终端根据第一业务波束的属性信息生成的第一评估报告中的部分信息。
表2,一种地面用户终端根据第一业务波束的属性信息生成的第一评估报告中的部分信息
Figure PCTCN2021107409-appb-000003
从表2中可以看出,该地面用户终端根据表1中检测到的上述第一业务波束的属性信息评估出上述波束1在时间段7/15 13:07-13:08和7/15 13:09-13:10的属性信息异常,并根据上述异常的属性信息生成第一评估报告。此外,上述地面用户终端根据一次(例如表1中的7月15日)上述第一业务波束的属性信息的检测结果生成一份第一评估报告,也可以为根据多次(例如,7月15日、8月15日或9月6日)接收到的上述第一业务波束的属性信息的检测结果生成第一评估报告。
需要说明的是,上述地面用户终端所执行的操作适用于多个地面用户终端中的任意一个终端设备;上述业务卫星可以同步地发射多个第一业务波束,也可以不同步地发射多个业务波束,且图3中对上述第一业务波束的描述同样适用于其他第一业务波束。
步骤S303:多个地面用户终端向卫星控制器发送多份第一评估报告。
情况一:该卫星控制器为一颗卫星,则卫星控制器和业务卫星可以为同一个卫星,也可以两颗不同的卫星。上述多个地面用户终端向上述卫星控制器发送多份第一评估报告。 其中,当卫星控制器和业务卫星可以为同一个卫星时,请参见图8,图8为本申请实施例提供的又一种业务卫星运行状态诊断的场景示意图,该场景包括:业务卫星801、地面用户终端802以及地面监测站803,上述业务卫星801接收多个地面用户终端802发送的该第一业务波束的多份第一评估报告,上述多份第一评估报告用于上述业务卫星801对该多份第一评估报告进行汇总和筛选,生成该第一业务波束的诊断报告并向地面监测站发送该诊断报告。
情况二:卫星控制器为由多颗卫星组成的卫星集群,则业务卫星可以为该卫星集群中的一个卫星,也可以不为该卫星集群中的卫星。上述多个地面用户终端向上述多个卫星组成的卫星控制器发送多份第一评估报告,上述多个地面用户终端中的任意一个地面用户终端可以向上述一个卫星控制器发送多份第一评估报告,也可以向上述多个卫星控制器发送多份第一评估报告。
在上述情况一与情况二中,上述多个地面用户终端中的任意一个地面用户终端可以发送一份第一评估报告,也可以发送多份第一评估报告。
步骤S304:上述卫星控制器接收多个地面用户终端发送的上述第一业务波束的多份第一评估报告。
步骤S305:上述卫星控制器根据上述多份第一评估报告生成上述第一业务波束的诊断报告。
当上述卫星控制器为多个卫星组成的卫星集群时,请参见图9,图9为本申请实施例提供的一种多个卫星组成的卫星集群之间通信的场景示意图,上述场景中包括卫星控制器901,卫星控制器902和卫星控制器903,上述卫星控制器901,卫星控制器902和卫星控制器903接收到上述第一业务波束的多份第一评估报告,上述卫星控制器之间可以进行直接通信,也可以进行间接通信。
直接通信:上述卫星控制器902与上述卫星控制器903将上述多份第一评估报告直接发送给上述卫星控制器901。
间接通信:上述卫星控制器902将接收的多份第一评估报告发送给上述卫星控制器901,上述卫星控制器903先将接收到的多份第一评估报告发送给上述卫星控制器1002,上述卫星控制器1002将接收到的卫星控制器1003发送的多份第一评估报告转发送给上述卫星控制器901。
具体地,上述卫星控制器存储了一段时间内的外界信息(这里以天气信息为例进行示意),根据存储的天气信息,2020/7/15的13:00-13:30时间段内存在暴雨的恶劣天气。由于在卫星通信技术中,波束在往返大气层时,会受到大气层的传播损耗(例如,电离层中自由电子与离子的吸收,还有对流层中氧分子、水蒸气分子和云雾、雨、雪的吸收与散射),因此在卫星通信过程中,恶劣天气对上述地面用户终端的评估存在一定的干扰,因此,上述卫星控制器根据上述存储的天气信息,对上述第一评估报告中的数据进行筛选,将上述恶劣天气下的数据筛选掉,得到非恶劣天气下的数据,从而生成诊断报告。
可以看出,上述方法排除了天气因素导致上述第一业务波束出现异常信息的情况,提高了上述业务卫星运行状态诊断的正确性。
此外,当上述卫星控制器不为业务卫星时,该卫星控制器还与上述业务卫星进行通信, 从而获取上述业务卫星针对该业务卫星针对上述第一业务波束发射情况生成的第二评估报告,该第二评估报告为用于表征上述业务卫星运行状态的报告。
步骤S306:上述卫星控制器向地面监测站发送上述第一业务波束的诊断报告。
具体地,上述卫星控制器向上述地面监测站发送上述诊断报告和/或上述第二评估报告,上述地面监测站根据上述第二评估报告和/或上述诊断报告确认上述业务卫星运行状态。例如,当载噪比发生异常时,可能是该业务卫星中的调制传输系统发生了故障。
请参见图10,图10为本申请实施例提供的一种地面监测站获取上述第一评估报告与上述第二评估报告的场景示意图,该场景图中包括地面监测站1001、阈值探测器1002以及数据区1003,上述卫星控制器向上述地面监测站发送上述诊断报告与上述第二评估报告该地面监测站接收上述第一评估报告与上述第二评估报告,并经过天线接收上述第一评估报告与上述第二评估报告,经过上述阈值探测器与上述数据区之后获取上述第一评估报告与上述第二评估报告的数据信息,其中,上述诊断报告用于确认上述业务卫星的运行状况,上述第二评估报告用于表征上述业务卫星运行状态的报告。
上述业务卫星可以同步地发射多个第一业务波束,也可以不同步地发射多个业务波束,并且图2中对上述第一业务波束的描述同样适用于多个第一业务波束中的任意一个第一业务波束。
在图2所描述的方法中,上述多个地面用户终端各自根据第一业务波束根据上述存在异常的属性信息生成多份第一评估报告,能够较为全面地反映业务卫星的运行状态,避免了地面监测站因为未接收到全部的波束而无法得到快速监测结果的问题,分担了地面监测站面对海量卫星以及海量波束的检测压力,提高了上述业务卫星运行状态诊断的效率,并且,上述卫星控制器根据存储的天气因素对上述多份第一评估报告进行筛选,去掉天气恶劣下的数据,得到诊断报告,提高了上述业务卫星运行状态诊断的正确性。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
请参见图11,图11是本申请实施例提供的一种业务卫星运行状态诊断装置1100的结构示意图,其中,该装置1100可以为上述地面用户终端或者上述地面用户终端中的器件。上述装置1100可以包括:检测单元1101、第一生成单元1102以及第一发送单元1103,其中,各个单元的详细描述如下。
第一业务波束检测单元1101用于检测第一业务波束的属性信息,其中,上述属性信息包括载波功率、带宽、载噪比和频率中的一项或者多项,上述第一业务波束为业务卫星发射的波束;
第一生成单元1102用于若上述第一业务波束的属性信息异常,则生成上述第一业务波束的第一评估报告,上述评估报告包括上述第一业务波束的异常信息;
第一发送单元1103用于向卫星控制器发送上述第一评估报告,上述卫星控制器用于根据来自多个上述第一设备的多份上述第一评估报告生成上述第一业务波束的诊断报告,上述诊断报告用于地面监测站确认上述业务卫星的运行状况。
在第三方面的一种可选的方案中,上述多份上述评估报告用于描述同一束第一业务波束的部分或全部的异常信息。
在第三方面又一种可选的方案中,上述属性信息包括载波功率,上述检测单元具体用 于:检测上述第一业务波束的振幅;根据上述第一业务波束的振幅计算上述第一业务波束的载波功率。
在第三方面又一种可选的方案中,上述载波功率为平均载波功率,或者,上述载波功率为瞬时载波功率。
可以看出,相比于业务卫星自身监测系统检测到的平均发射功率,该方法能够检测该第一业务波束的瞬时载波功率(此时,该地面用户终端设置波束的载波功率的计算时间相比于上述平均发射功率很小,可以视为该波束的瞬时载波功率),提高了业务卫星运行状态诊断的正确性。
在第三方面又一种可选的方案中,若上述第一业务波束的属性信息中目标参数低于参考阈值,且与上述参考阈值的差值不小于第一阈值,则上述第一业务波束的属性信息异常,上述目标参数包括上述载噪比或上述载波功率,上述参考阈值为认为设置的值或历史的目标参数。
在第三方面又一种可选的方案中,上述发送单元具体用于:若上述第一业务波束的评估报告的数量达到第二阈值时,则向上述卫星控制器发送上述第一业务波束的评估报告。
需要说明的是,各个操作的实现还可以对应参照图2所示的方法实施例的相应描述,此处不再赘述。
在图11所描述的装置中,可以看出,可以看出,多个上述装置根据检测到的部分或全部第一业务波束异常的属性信息生成第一评估报告,并发送给维护控制器;维护控制器根据接收的多份第一评估报告生成诊断报告,并将该报告发送给地面监测站,无需地面监测站参与上述第一业务波束的监测,同时也避免了地面监测站因未接收全部波束而无法得到快速监测结果的问题,分担了地面监测站面对海量卫星以及海量波束的检测压力,提高了业务卫星运行状态诊断的效率。
请参见图12,图12是本申请实施例提供的一种业务卫星运行状态诊断装置1200结构示意图,其中,该装置1200以为上述地面用户终端或者上述地面用户终端中的器件。上述装置1200以包括:接收单元1201、第二生成单元1202以及第二发送单元1203,各个单元的详细描述如下。
接收单元1201,用于接收多个第一设备分别发送的同一第一业务波束的多份的第一评估报告,上述第一评估报告为上述第一设备根据业务卫星发送的第一业务波束生成的报告,上述第一评估报告包括上述第一业务波束的异常信息;
第二生成单元1202,用于根据上述第一业务波束的多份第一评估报告生成上述第一业务波束的诊断报告;
第二发送单元1203,用于向地面监测站发送上述第一业务波束的诊断报告,上述诊断报告用于地面监测站确认上述业务卫星的运行状况。
在一种可实施的方案中上述多份评估报告用于描述同一束业务波束的部分或全部的异常信息。
在又一种可实施的方案中,上述装置还包括:获取单元,用于通过通信链路获取上述业务卫星发送的上述第一业务波束的第二评估报告,上述第二评估报告为上述业务卫星根据上述第一业务波束的发射情况生成的用于表征上述业务卫星运行状态的报告。
在又一种可实施的方案中,上述装置还包括:第三发送单元,用于上述获取单元通过通信链路获取上述业务卫星发送的上述第一业务波束的第二评估报告之后,向上述地面监测站发送上述第一业务波束的上述第二评估报告。
可以看出,该方法用于表征业务卫星运行状态的第二评估报告与用于确认上述业务卫星异常的运行状况的诊断报告均发送给地面监测站,便于更加准确地分析上述业务卫星的运行状态。
在又一种可实施的方案中,上述生成单元具体用于:根据外界因素对上述第一业务波束的多份第一评估报告中的数据进行筛选,得到目标评估报告;根据上述目标评估报告生成上述第一业务波束的诊断报告。
在又一种可实施的方案中,上述外界因素包括天气因素,上述目标评估报告为非恶劣天气下获取的上述第一评估报告。
可以看出,上述方法筛选掉了天气恶劣情况下的上述第一评估报告,排除了因天气因素导致第一业务波束出现异常信息的问题,提高了业务卫星运行状态诊断的正确性。
在又一种可实施的方案中,上述装置与上述业务卫星为同一个卫星。
需要说明的是,各个操作的实现还可以对应参照图2所示的方法实施例的相应描述,此处不再赘述。
在图12所描述的装置中,上述装置根据接收的多份记录第一业务波束异常信息的第一评估报告生成诊断报告,并将该报告发送给地面监测站,无需地面监测站参与上述第一业务波束的监测,同时也避免了地面监测站因未接收全部波束而无法得到快速监测结果的问题,分担了地面监测站面对海量卫星以及海量波束的检测压力,提高了业务卫星运行状态诊断的效率。
请参见图13,图13是本申请实施例提供的一种业务卫星运行状态诊断装置1300结构示意图,该装置1300以为上述地面用户终端或者上述地面用户终端中的器件。上述终端1300括:通信接口1301、存储器1302和处理器1303,其中,上述的通信接口1301、存储器1302和处理器1303可通过总线或其他方式连接,本申请实施例以通过总线连接为例。
其中,上述通信接口1301用于数据通信,存储器1302可以是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),不限于此,该存储器1304用于存储相关指令及数据;处理器1303可以是一个或多个中央处理器(Central Processing Unit,CPU),即可以是诊断设备的计算核心及控制中心,用于解析诊断设备内部的各类指令及数据,在处理器1303是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该装置1300的处理器1303用于读取上述存储器1302中存储的程序代码,执行如下操作:检检测上述第一业务波束的属性信息,其中,上述属性信息包括载波功率、带宽、载噪比和频率中的一项或者多项,上述第一业务波束为业务卫星发射的波束;若上述第一业务波束的属性信息异常,则上述生成上述第一业务波束的第一评估报告,上述评估报告包括上述第一业务波束的异常信息;通过通信接口向卫星控制器发送上述第一评估报告,上述卫星控制器用于根据来自多个上述终端的多份上述第一评估报告生成上述第一业务波束 的诊断报告,上述诊断报告用于地面监测站确认上述业务卫星的运行状况。
在一种可实施的方案中,上述多份上述评估报告用于描述同一束第一业务波束的部分或全部的异常信息。
在又一种可实施的方案中,上述属性信息包括载波功率,上述检测上述第一业务波束的属性信息,包括:检测上述第一业务波束的振幅;根据上述第一业务波束的振幅计算上述第一业务波束的载波功率。
在又一种可实施的方案中,上述载波功率为平均载波功率,或者,上述载波功率为瞬时载波功率。
可以看出,相比于业务卫星自身监测系统检测到的平均发射功率,该方法能够检测该第一业务波束的瞬时载波功率(此时,该地面用户终端设置波束的载波功率的计算时间相比于上述平均发射功率很小,可以视为该波束的瞬时载波功率),提高了业务卫星运行状态诊断的正确性。
在又一种可实施的方案中,若上述第一业务波束的属性信息中目标参数低于参考阈值,且与上述参考阈值的差值不小于第一阈值,则上述第一业务波束的属性信息异常,上述目标参数包括上述载噪比或上述,上述参考阈值为人为设置的值或历史的目标参数。在又一种可实施的方案中,上述通过通信接口向卫星控制器发送上述的评估报告,包括:若上述第一业务波束的评估报告的数量达到第二阈值时,则通过通信接口向上述卫星控制器发送上述第一业务波束的评估报告。
需要说明的是,各个操作的实现还可以对应参照图2所示的方法实施例的相应描述。
在图13所描述的装置中,多个上述装置根据检测到的部分或全部第一业务波束异常的属性信息生成第一评估报告,并发送给维护控制器;维护控制器根据接收的多份第一评估报告生成诊断报告,并将该报告发送给地面监测站,无需地面监测站参与上述第一业务波束的监测,同时也避免了地面监测站因未接收全部波束而无法得到快速监测结果的问题,分担了地面监测站面对海量卫星以及海量波束的检测压力,提高了业务卫星运行状态诊断的效率。
请参见图14,图14是本申请实施例提供的一种业务卫星运行状态诊断装置1400的结构示意图,该装置1400可以为上述卫星控制器或者上述卫星控制器中的器件。上述装置1400包括:通信接口1401、存储器1402和处理器1403,其中,上述的通信接口1401、存储器1402和处理器1403可通过总线或其他方式连接,本申请实施例以通过总线连接为例。
其中,上述通信接口1401用于数据通信,存储器1402可以是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),不限于此,该存储器1404用于存储相关指令及数据;处理器1403可以是一个或多个中央处理器(Central Processing Unit,CPU),即可以是诊断设备的计算核心及控制中心,用于解析诊断设备内部的各类指令及数据,在处理器1403是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该装置1400处理器1403用于读取上述存储器1402中存储的程序代码,执行的操作包括:通过通信口接收多个第一设备分别发送的同一第一业务波束的多份的第一评估报告, 上述第一评估报告为上述第一设备根据业务卫星发送的第一业务波束生成的报告,上述第一评估报告包括上述第一业务波束的异常信息;根据上述第一业务波束的多份第一评估报告生成上述第一业务波束的诊断报告;通过通信接口向地面监测站发送上述第一业务波束的诊断报告,上述诊断报告用于地面监测站确认上述业务卫星的运行状况。
在一种可实施的方案中,上述多份评估报告用于描述同一束第一业务波束的部分或全部的异常信息。
在又一种可实施的方案中,通过通信链路获取上述业务卫星发送的上述业务波束的第二评估报告,上述第二评估报告为上述业务卫星根据上述第一业务波束的发射情况生成的用于表征上述业务卫星运行状态的报告。
在又一种可实施的方案中,上述通过通信链路获取上述业务卫星发送的上述第一业务波束的第二评估报告之后,还包括:通过通信接口向上述地面监测站发送上述第一业务波束的上述第二评估报告。
可以看出,该方法用于表征业务卫星运行状态的第二评估报告与用于确认上述业务卫星异常的运行状况的诊断报告均发送给地面监测站,便于更加准确地分析上述业务卫星的运行状态。
在又一种可实施的方案中,上述根据上述第一业务波束的多份第一评估报告生成上述第一业务波束的诊断报告,包括:根据外界因素对上述第一业务波束的多份第一评估报告中的数据进行筛选,得到目标评估报告;根据上述目标评估报告生成上述第一业务波束的诊断报告。
在又一种可实施的方案中,上述外界因素包括天气因素,上述目标评估报告为非恶劣天气下获取的上述第一评估报告。
可以看出,上述维护控制器筛选掉了天气恶劣情况下的上述第一评估报告,排除了因天气因素导致第一业务波束出现异常信息的问题,提高了业务卫星运行状态诊断的正确性。
在又一种可实施的方案中,上述卫星控制器与上述业务卫星为同一个卫星。
需要说明的是,各个操作的实现还可以对应参照图2所示的方法实施例的相应描述。
在图14所描述的装置中,上述装置根据接收的多份记录第一业务波束异常信息的第一评估报告生成诊断报告,并将该报告发送给地面监测站,无需地面监测站参与上述第一业务波束的监测,同时也避免了地面监测站因未接收全部波束而无法得到快速监测结果的问题,分担了地面监测站面对海量卫星以及海量波束的检测压力,提高了业务卫星运行状态诊断的效率。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机或处理器上运行时,使得计算机或处理器执行上述任一个方法中的一个或多个步骤。上述信号处理诊断设备的各组成模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在上述计算机可读取存储介质中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。上述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行上述计算机程序指令时,全部或部分地产生按照本申请实施例上述的流程或功能。上述计算机可以是通用计算机、专用计算 机、计算机网络、或者其他可编程诊断设备。上述计算机指令可以存储在计算机可读存储介质中,或者通过上述计算机可读存储介质进行传输。上述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。上述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。上述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
综上上述,通过实施本申请实施例,多个地面用户终端能够根据接收的业务卫星发射的部分或全部的第一业务波束,检测出上述部分或全部的第一业务波束的属性信息的异常情况,根据异常的属性信息(例如,载波功率、载噪比、带宽、频率等)生成第一评估报告,从而避免了地面监测站因未接收全部的波束而无法得到快速检测结果的问题,分担了地面监测站面对海量卫星以及海量波束的检测压力,提高了业务卫星运行状态诊断的效率;并且,相比于业务卫星自身监测系统检测到的平均发射功率,上述第一评估报告中的属性信息中的载波功率可以为该第一业务波束的瞬时功率,提高了业务卫星运行状态诊断的正确性;此外,维护控制器根提高存储的天气记录对上述评估报告进行筛选,保留了在非恶劣天气下的上述评估报告中的属性信息,排除了因天气因素的干扰导致上述属性信息异常的情况,从而更增强了检测结果的准确率。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,该的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可存储程序代码的介质在不冲突的情况下,本实施例和实施方案中的技术特征可以任意组合。
以上所揭露的仅为本申请较佳实施例而已,当然不能以此来限定本申请之权利范围,因此依本申请权利要求所作的等同变化,仍属与本申请所涵盖的范围。

Claims (31)

  1. 一种业务卫星运行状态诊断方法,其特征在于,包括:
    第一设备检测第一业务波束的属性信息,其中,所述属性信息包括载波功率、带宽、载噪比和频率中的一项或者多项,所述第一业务波束为业务卫星发射的波束;
    若所述第一业务波束的属性信息异常,则所述第一设备生成所述第一业务波束的第一评估报告,所述评估报告包括所述第一业务波束的异常信息;
    所述第一设备向卫星控制器发送所述第一评估报告,所述卫星控制器用于根据来自多个所述第一设备的多份所述第一评估报告生成所述第一业务波束的诊断报告,所述诊断报告用于地面监测站确认所述业务卫星的运行状况。
  2. 根据权利要求1所述的方法,其特征在于,所述多份所述评估报告用于描述同一第一业务波束的部分或全部的异常信息。
  3. 根据权利要求2所述的方法,其特征在于,所述属性信息包括载波功率,所述第一设备检测第一业务波束的属性信息,包括:
    所述第一设备检测所述第一业务波束的振幅;
    所述第一设备根据所述第一业务波束的振幅计算所述第一业务波束的载波功率。
  4. 根据权利要求3所述的方法,其特征在于,
    所述载波功率为平均载波功率,
    或者,所述载波功率为瞬时载波功率。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,若所述第一业务波束的属性信息中目标参数低于参考阈值,且与所述参考阈值的差值不小于第一阈值,则所述第一业务波束的属性信息异常,所述目标参数包括所述载噪比或所述载波功率,所述参考阈值为人为设置的值或历史的目标参数。
  6. 根据权利要求5所述的方法,其特征在于,所述第一设备向卫星控制器发送所述第一评估报告,包括:
    若所述第一业务波束的第一评估报告的数量达到第二阈值时,则所述第一设备向所述卫星控制器发送所述第一业务波束的第一评估报告。
  7. 一种业务卫星运行状态诊断方法,其特征在于,包括:
    卫星控制器接收多个第一设备分别发送的同一第一业务波束的多份的第一评估报告,所述第一评估报告为所述第一设备根据业务卫星发送的第一业务波束生成的报告,所述第一评估报告包括所述第一业务波束的异常信息;
    所述卫星控制器根据所述第一业务波束的多份第一评估报告生成所述第一业务波束的 诊断报告;
    所述卫星控制器向地面监测站发送所述第一业务波束的诊断报告,所述诊断报告用于地面监测站确认所述业务卫星的运行状况。
  8. 根据权利要求7所述的方法,其特征在于,所述多份评估报告用于描述同一第一业务波束的部分或全部的异常信息。
  9. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    所述卫星控制器通过通信链路获取所述业务卫星发送的所述业务波束的第二评估报告,所述第二评估报告为所述业务卫星根据所述第一业务波束的发射情况生成的用于表征所述业务卫星运行状态的报告。
  10. 根据权利要求9所述的方法,其特征在于,所述卫星控制器通过通信链路获取所述业务卫星发送的所述第一业务波束的第二评估报告之后,还包括:
    所述卫星控制器向所述地面监测站发送所述第一业务波束的所述第二评估报告。
  11. 根据权利要求7-10任一项所述的方法,其特征在于,所述卫星控制器根据所述第一业务波束的多份第一评估报告生成所述第一业务波束的诊断报告,包括:
    所述卫星控制器根据外界因素对所述第一业务波束的多份第一评估报告中的数据进行筛选,得到目标评估报告;
    所述卫星控制器根据所述目标评估报告生成所述第一业务波束的诊断报告。
  12. 根据权利要求11所述的方法,其特征在于,所述外界因素包括天气因素,所述目标评估报告为非恶劣天气下获取的所述第一评估报告。
  13. 根据权利要求7-12任一项所述的方法,其特征在于,所述卫星控制器与所述业务卫星为同一个卫星。
  14. 一种业务卫星运行状态诊断装置,其特征在于,包括:
    第一接收单元,用于接收业务卫星发送的第一业务波束;
    检测单元,用于检测所述第一业务波束的属性信息,其中,所述属性信息包括载波功率、带宽、载噪比和频率中的一项或者多项;
    第一生成单元,用于若所述第一业务波束的属性信息异常,则生成所述第一业务波束的第一评估报告,所述评估报告包括所述第一业务波束的异常信息;
    第一发送单元,用于向卫星控制器发送所述第一评估报告,所述卫星控制器用于根据来自多个所述第一设备的多份所述第一评估报告生成所述第一业务波束的诊断报告,所述诊断报告用于地面监测站确认所述业务卫星的运行状况。
  15. 根据权利要求14所述的装置,其特征在于,所述多份所述评估报告用于描述同一束第一业务波束的部分或全部的异常信息。
  16. 根据权利要求15所述的装置,其特征在于,所述属性信息包括载波功率,所述检测单元具体用于:
    检测所述第一业务波束的振幅;
    根据所述第一业务波束的振幅计算所述第一业务波束的载波功率。
  17. 根据权利要求16所述的装置,其特征在于,
    所述载波功率为平均载波功率,
    或者,所述载波功率为瞬时载波功率。
  18. 根据权利要求14-17任一项所述的装置,其特征在于,若所述第一业务波束的属性信息中目标参数低于参考阈值,且与所述参考阈值的差值不小于第一阈值,则所述第一业务波束的属性信息异常,所述目标参数包括所述载噪比或所述载波功率,所述参考阈值为认为设置的值或历史的目标参数。
  19. 根据权利要求18所述的装置,其特征在于,所述发送单元具体用于:
    若所述第一业务波束的评估报告的数量达到第二阈值时,则向所述卫星控制器发送所述第一业务波束的评估报告。
  20. 一种业务卫星运行状态诊断装置,其特征在于,包括:
    第二接收单元,用于接收多个第一设备分别发送的同一第一业务波束的多份的第一评估报告,所述第一评估报告为所述第一设备根据业务卫星发送的第一业务波束生成的报告,所述第一评估报告包括所述第一业务波束的异常信息;
    第二生成单元,用于根据所述第一业务波束的多份第一评估报告生成所述第一业务波束的诊断报告;
    第二发送单元,用于向地面监测站发送所述第一业务波束的诊断报告,所述诊断报告用于地面监测站确认所述业务卫星的运行状况。
  21. 根据权利要求20所述的装置,其特征在于,所述多份评估报告用于描述同一束第一业务波束的部分或全部的异常信息。
  22. 根据权利要求20或21所述的装置,其特征在于,所述装置还包括:
    获取单元,用于通过通信链路获取所述业务卫星发送的所述第一业务波束的第二评估报告,所述第二评估报告为所述业务卫星根据所述第一业务波束的发射情况生成的用于表征所述业务卫星运行状态的报告。
  23. 根据权利要求22所述的装置,其特征在于,所述装置还包括:
    第三发送单元,用于所述获取单元通过通信链路获取所述业务卫星发送的所述第一业务波束的第二评估报告之后,向所述地面监测站发送所述第一业务波束的所述第二评估报告。
  24. 根据权利要求20-23任一项所述的装置,其特征在于,所述生成单元具体用于:
    根据外界因素对所述第一业务波束的多份第一评估报告中的数据进行筛选,得到目标评估报告;
    根据所述目标评估报告生成所述第一业务波束的诊断报告。
  25. 根据权利要求24所述的装置,其特征在于,所述外界因素包括天气因素,所述目标评估报告为非恶劣天气下获取的所述第一评估报告。
  26. 根据权利要求20-25任一项所述的装置,其特征在于,所述装置与所述业务卫星为同一个卫星。
  27. 一种终端,其特征在于,包括:通信接口、存储器和处理器,其中,所述通信接口用于数据通信,所述存储器用于存储计算机程序,所述处理器被配置为运行所述计算机程序,以使所述终端执行如权利要求1-6任一项所述业务卫星运行状态诊断方法。
  28. 一种卫星控制器,其特征在于,包括:通信接口、存储器和处理器,其中,所述通信接口用于数据通信,所述存储器用于存储计算机程序,所述处理器被配置为运行所述计算机程序,以使所述终端执行如权利要求7-13任一项所述业务卫星运行状态诊断方法。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质有计算机程序,所述计算机程序被配置处理器执行时使所述处理器实现权利要求1-6或7-13任一项所述业务卫星运行状态诊断方法。
  30. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得权利要求1-6任一项所述的方法被执行;或者,使得权利要求7-13任一项所述的方法被执行。
  31. 一种通信系统,其特征在于,包括权利要求14-19任一项所述的装置以及权利要求20-26任一项所述的装置。
PCT/CN2021/107409 2020-07-28 2021-07-20 业务卫星运行状态诊断方法及相关装置 WO2022022336A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21848829.4A EP4181427A4 (en) 2020-07-28 2021-07-20 METHOD FOR DIAGNOSING THE OPERATING STATUS OF A SERVICE SATELLITE, AND ASSOCIATED APPARATUS
US18/157,299 US20230155672A1 (en) 2020-07-28 2023-01-20 Service satellite running status diagnosis method and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010749458.2 2020-07-28
CN202010749458.2A CN114007239A (zh) 2020-07-28 2020-07-28 业务卫星运行状态诊断方法及相关装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/157,299 Continuation US20230155672A1 (en) 2020-07-28 2023-01-20 Service satellite running status diagnosis method and related apparatus

Publications (1)

Publication Number Publication Date
WO2022022336A1 true WO2022022336A1 (zh) 2022-02-03

Family

ID=79920685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107409 WO2022022336A1 (zh) 2020-07-28 2021-07-20 业务卫星运行状态诊断方法及相关装置

Country Status (4)

Country Link
US (1) US20230155672A1 (zh)
EP (1) EP4181427A4 (zh)
CN (1) CN114007239A (zh)
WO (1) WO2022022336A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115412160A (zh) * 2022-11-01 2022-11-29 清华大学 面向卫星测控链路的测控数据传输方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108112281A (zh) * 2015-05-01 2018-06-01 高通股份有限公司 用于卫星通信的切换
CN109725333A (zh) * 2018-12-17 2019-05-07 中国空间技术研究院 一种场景自适应的卫星信号接收及处理方法
EP3567750A1 (en) * 2014-10-24 2019-11-13 Kratos Norway AS Methods and device for measuring the interference level of vsat tdma terminals causing cross-polar and/or adjacent satellite interference in a communication link

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5784695A (en) * 1996-05-14 1998-07-21 Trw Inc. Method and apparatus for handover control in a satellite based telecommunications system
EP1137198A3 (en) * 2000-03-23 2002-06-26 Hughes Electronics Corporation Method and apparatus for downlink communication resource control
US8723724B2 (en) * 2012-07-18 2014-05-13 Viasat, Inc. Ground assisted satellite antenna pointing system
US8954000B2 (en) * 2012-11-01 2015-02-10 Hughes Network Systems, Llc Real-time signal validation method and system
SG11201907651UA (en) * 2017-03-02 2019-09-27 Viasat Inc Dynamic satellite beam assignment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3567750A1 (en) * 2014-10-24 2019-11-13 Kratos Norway AS Methods and device for measuring the interference level of vsat tdma terminals causing cross-polar and/or adjacent satellite interference in a communication link
CN108112281A (zh) * 2015-05-01 2018-06-01 高通股份有限公司 用于卫星通信的切换
CN109725333A (zh) * 2018-12-17 2019-05-07 中国空间技术研究院 一种场景自适应的卫星信号接收及处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4181427A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115412160A (zh) * 2022-11-01 2022-11-29 清华大学 面向卫星测控链路的测控数据传输方法及系统

Also Published As

Publication number Publication date
EP4181427A1 (en) 2023-05-17
US20230155672A1 (en) 2023-05-18
CN114007239A (zh) 2022-02-01
EP4181427A4 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
US20170245162A1 (en) Passive intermodulation (pim) testing in distributed base transceiver station architecture
US9294203B2 (en) Problem signature terminal diagnosis method and system
US20160006499A1 (en) Apparatus and method for prediction of radio interference
US20210409146A1 (en) System and method for monitoring wireless communication channel by using cooperative jamming and spoofing
US9525478B2 (en) Peer group diagnosis detection method and system
WO2022022336A1 (zh) 业务卫星运行状态诊断方法及相关装置
US20160352414A1 (en) Real-time signal validation method and system
CN109444571B (zh) 一种小卫星通信载荷电磁兼容预测方法
CN110611626B (zh) 信道估计方法、装置及设备
CN116760485B (zh) 一种阵列天线系统射频指标测试方法和系统
CN111490833B (zh) 天线的发射信号的调整方法、装置、系统及介质
CN111263376B (zh) 一种识别自激直放站的方法及装置
Bhardwaj et al. All electronic propagation loss measurement and link budget analysis for 350 GHz communication link
KR102171276B1 (ko) 고층 기상에 따른 aesa 레이더의 덕트에 대한 전파 경로 손실 분석 방법 및 시스템
Diawuo et al. Data fitting to propagation model using least square algorithm: a case study in Ghana
CN116980029B (zh) 卫星测控链路信号质量监测方法、装置、电子设备及介质
US10673136B1 (en) Control system and method for training a reconfigurable antenna
CN110278053B (zh) 无线通信中的传输速率校准与自适应的方法、装置和系统
Plets et al. Analysis of propagation of actual DVB-H signal in a suburban environment
CN109803309B (zh) 通信方法及装置
Arnez et al. Real Time SDR Cognitive Radio System for Cooperative Spectrum Sensing in the 700 MHz Brazilian Digital TV Band
CN116073891B (zh) 一种卫星群时延测试方法、装置及系统
CN113726351B (zh) 接收装置和动态调整接收信号的衰减值的方法
CN116528273B (zh) 接收功率计算方法、装置、存储介质及电子设备
Mamushiane et al. Experience in profiling and optimizing a 5G standAlone Radio Access Network (RAN) based on an open source testbed

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21848829

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021848829

Country of ref document: EP

Effective date: 20230209

NENP Non-entry into the national phase

Ref country code: DE