WO2022014690A1 - 通信ユニット、空気処理装置、空気処理装置の通信システム、及び空気処理装置の通信方法 - Google Patents

通信ユニット、空気処理装置、空気処理装置の通信システム、及び空気処理装置の通信方法 Download PDF

Info

Publication number
WO2022014690A1
WO2022014690A1 PCT/JP2021/026682 JP2021026682W WO2022014690A1 WO 2022014690 A1 WO2022014690 A1 WO 2022014690A1 JP 2021026682 W JP2021026682 W JP 2021026682W WO 2022014690 A1 WO2022014690 A1 WO 2022014690A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication unit
unit
communication
measurement data
measuring device
Prior art date
Application number
PCT/JP2021/026682
Other languages
English (en)
French (fr)
Inventor
政弥 西村
純史 近藤
伸夫 道明
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP21843298.7A priority Critical patent/EP4164238A4/en
Priority to CN202180048979.8A priority patent/CN115812313A/zh
Publication of WO2022014690A1 publication Critical patent/WO2022014690A1/ja
Priority to US18/097,115 priority patent/US20230151991A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/57Remote control using telephone networks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/40Arrangements in telecontrol or telemetry systems using a wireless architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/70Arrangements in the main station, i.e. central controller
    • H04Q2209/75Arrangements in the main station, i.e. central controller by polling or interrogating the sub-stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/86Performing a diagnostic of the sensing device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to a communication unit, an air treatment device, a communication system of an air treatment device, and a communication method of the air treatment device.
  • the device described in Patent Document 1 includes an air quality measuring device and a wireless terminal.
  • the air quality measuring device detects the type, concentration, temperature, humidity, fine dust, etc. of various gases in the atmosphere, and derives the measured value of the air quality based on the detected various data.
  • the air quality measuring device (measuring device) transmits the measured value (measurement data) of the air quality to the wireless terminal.
  • the wireless terminal includes a display unit. The display unit displays the measured value of the air quality, the explanation of the situation according to the measured value of the air quality, and the countermeasure.
  • the measurement data does not include information for specifying the measurement location of the measurement data.
  • the wireless terminal which is the device on the receiving side of the measurement data, cannot specify the measurement location of the measurement data based on the received measurement data.
  • the purpose of the present disclosure is to enable the measurement location of the measurement data by the measuring device to be specified.
  • the first aspect of the present disclosure is intended for the communication unit (11).
  • the communication unit (11) is provided in the air treatment device (10).
  • the communication unit (11) is a receiving unit (111) that receives measurement data sent from a movable measuring device (20) separate from the air processing device (10), and the air processing device (10). It is characterized by including a transmission unit (111) that transmits the measurement data associated with the unique information to the server (30).
  • the communication unit (11) transmits the measurement data associated with the unique information of the air treatment device (10) to the server (30).
  • the server (30) can identify the measurement location of the measurement data by the measuring device (20) based on the unique information of the air processing device (10).
  • a second aspect of the present disclosure is characterized in that, in the first aspect, the communication unit (11) further includes a storage unit (112) for storing the measurement data.
  • the communication unit can store the data sent from the measuring device.
  • a third aspect of the present disclosure is that, in the second aspect, when the storage process in which the measurement data is stored in the storage unit (112) is completed, the transmission unit (111) stores the measurement data in the measurement device (20). It is characterized by transmitting information indicating that the storage process is completed.
  • the measurer can recognize that the process of transmitting the measurement data to the communication unit (11) is completed.
  • a fourth aspect of the present disclosure is a control unit (in any one of the first to third aspects, in which the measurement data is associated with the unique information by adding the unique information to the measurement data. 113) is further provided.
  • the control unit (113) since the measurement data and the unique information are associated with each other by the control unit (113), information for specifying the measurement location can be easily added to the measurement data.
  • a fifth aspect of the present disclosure is, in any one of the first to third aspects, the transmitting unit (111) transmits the unique information to the measuring device (20), and the receiving unit (11). 111) is characterized by receiving the measurement data associated with the unique information transmitted from the measuring device (20).
  • the communication unit (11) can acquire the measurement data associated with the unique information from the measuring device (20).
  • a sixth aspect of the present disclosure is, in any one of the first to fifth aspects, the communication unit (11) is the measuring device (11) via wireless communication having a horizontal communication distance of 2 m or more and 10 m or less. It is characterized by communicating with 20).
  • the measuring device (20) when the measurement data is transmitted from the measuring device (20) to the communication unit (11), the measuring device (20) is located away from the measuring place of the measuring device (20) (for example, in a building). It is possible to suppress the transmission of measurement data to the communication unit (11) of the air treatment device (10) installed on a floor different from the floor of the measurement location.
  • the information unique to the air treatment device (10) is the hierarchical information in which the air treatment device (10) is installed. It is characterized by including at least one information of the position information in which the air treatment device (10) is installed and the identification information of the air treatment device (10).
  • the receiving unit (111) is the temperature in the target space where the air is processed by the air processing apparatus (10).
  • Humidity, CO concentration, CO 2 concentration, dust concentration, air flow, illuminance, noise, and data representing at least one of VOC concentration is received as the measurement data.
  • the communication unit (11) can receive measurement data representing the environment such as temperature and humidity of the target space.
  • a ninth aspect of the present disclosure is, in any one of the first to eighth aspects, the receiving unit (111) is described from the state acquisition device (12) provided in the air processing device (10). It is characterized in that the state data representing the state of the air processing device (10) is further received, and the transmission unit (111) further transmits the state data corresponding to the unique information to the server (30). do.
  • the state data of the air treatment device associated with the unique information can be transmitted to the server (30).
  • a tenth aspect of the present disclosure is characterized in that, in the ninth aspect, the state data includes image data representing the internal state of the air processing apparatus (10).
  • the internal state of the air treatment device (10) can be monitored by the server (30).
  • the eleventh aspect of the present disclosure is intended for an air treatment apparatus (10).
  • the air treatment device (10) is characterized by including the communication unit (11).
  • the twelfth aspect of the present disclosure is intended for the communication system (100) of the air treatment device (10).
  • the communication system (100) of the air processing device (10) is characterized by including the communication unit (11), the server (30), and the measuring device (20).
  • the communication unit (11) transmits the measurement data associated with the unique information of the air treatment device (10) to the server (30), so that the server (30) causes the air treatment device (30).
  • the measurement location of the measurement data by the measuring device (20) can be easily specified based on the unique information of 10).
  • the thirteenth aspect of the present disclosure is intended for the communication system (100) of the air treatment device (10).
  • the communication system (100) of the air processing device (10) includes the communication unit (11), the server (30), the measuring device (20), and the state acquisition device (12), and the server. (30) is characterized in that a report including the measurement data and the state data with which the unique information matches is created.
  • the server (30) can create a report including measurement data and state data corresponding to the same air treatment device (10).
  • the measuring device (20) communicates with the communication unit (24) communicating with the communication unit (11) and the communication unit (24).
  • the measuring device (20) is provided with an operation unit (23) for accepting selection of the communication unit (11) to be communicated with the measuring device (20) among a plurality of the communication units (11) located within the range. ) Is associated with the measurement data of the air processing apparatus (10) including the communication unit (11) selected by the operation unit (23).
  • the measurer can operate the operation unit (23) to connect the desired communication unit (11) among the plurality of communication units (11) to the measuring device (20).
  • the measuring device (20) communicates with a communication unit (24) communicating with the communication unit (11) and the communication unit (24).
  • the measuring device (20) is provided with a control unit (26) for selecting the communication unit (11) to be communicated with the measuring device (20) among a plurality of the communication units (11) located within the range.
  • the measurement data of the above is associated with the information unique to the air processing apparatus (10) including the communication unit (11) selected by the control unit (26).
  • the communication unit (11) for communication connection with the measuring device (20) is selected by the control unit (26). Therefore, it is possible to save the trouble of the measurer who selects the communication unit (11) for communication connection with the measuring device (20).
  • the sixteenth aspect of the present disclosure is intended for the communication method of the air treatment device (10).
  • the communication unit (11) provided in the air treatment device (10) is used as the communication method of the air treatment device (10).
  • the measurement data transmitted from the movable measuring device (20) separate from the air treatment device (10) is received by the receiving unit (111) of the communication unit (11).
  • the control unit (113) of the communication unit (11) attaches the measurement data unique information of the air processing device (10) to the measurement data, so that the measurement data and the unique information can be obtained. It is characterized by including a step of associating and a step of transmitting the measurement data with which the unique information is associated with the transmission unit (111) of the communication unit (11) to the server (30).
  • the communication unit (11) transmits the measurement data associated with the unique information of the air treatment device (10) to the server (30), so that the server (30) is the air treatment device (30).
  • the measurement location of the measurement data by the measuring device (20) can be easily specified based on the unique information of 10).
  • the 17th aspect of the present disclosure is intended for the communication method of the air treatment device (10).
  • the communication method of the air treatment device (10) the communication unit (11) provided in the air treatment device (10) is used.
  • the communication method of the air treatment device (10) is such that the transmission unit (111) of the communication unit (11) has a movable measuring device (20) separate from the air treatment device (10).
  • the transmission unit (111) of the communication unit (11) includes a step of transmitting the measurement data associated with the unique information to the server (30).
  • the communication unit (11) can transmit the measurement data associated with the unique information transmitted from the measuring device (20) to the server (30).
  • An eighteenth aspect of the present disclosure is, in the sixteenth or seventeenth aspect, a step in which the storage unit (112) of the communication unit (11) stores the measurement data, and a transmission unit (11) of the communication unit (11). 111) further comprises a step of transmitting to the measuring device (20) completion information indicating that the storage process for storing the measurement data has been completed in the storage unit (112).
  • the measurer can recognize that the process of transmitting the measurement data to the communication unit (11) has been completed by confirming the completion information received by the measuring device (20).
  • the transmission unit (111) of the communication unit (11) is transferred from the measuring device (20) to the communication unit (11).
  • connection permission information permitting communication connection with the communication unit (11) is transmitted, and the communication unit (11) causes the communication unit (11) to transmit the connection permission information.
  • It is characterized by further including a step of transmitting request information requesting communication connection with the communication unit (11) to the server (30) in order to transmit the measurement data to the server (30). do.
  • the server (30) since the communication unit transmits the connection permission information to the measuring device and the request information to the server, the server (30) does not wait for the response of the communication permission to the request information.
  • the communication unit (11) can acquire the measurement data from the measuring device (20).
  • the measurer can transmit the measurement data from the measuring device (20) to the communication unit (11) even in a state where communication between the server (30) and the communication unit (11) is difficult.
  • FIG. 1 is a block diagram showing a configuration of a communication system according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing management information.
  • FIG. 3 is a schematic cross-sectional view showing an example of an air treatment device and a state acquisition device.
  • FIG. 4 is a flow chart showing a state data transmission process.
  • FIG. 5 is a flow chart showing a first example of the measurement data transmission process.
  • FIG. 6 is a flow chart showing a second example of the measurement data transmission process.
  • FIG. 7 is a flow chart showing a third example of the measurement data transmission process.
  • FIG. 8 is a flow chart showing a fourth example of the measurement data transmission process.
  • FIG. 1 is a block diagram showing a configuration of a communication system (100).
  • the communication system (100) includes an air processing device (10), a measuring device (20), and a server (30).
  • the air treatment device (10) is an air conditioning device including at least one of a heating function for raising the temperature of air and a cooling function for lowering the temperature of air.
  • the air treatment device (10) has a communication unit (11) and a state acquisition device (12).
  • the communication unit (11) has a communication unit (111), a storage unit (112), and a control unit (113).
  • the communication unit (111) includes a communication module such as a LAN board.
  • the communication unit (111) communicates with the server (30) via a network such as the Internet.
  • the communication unit (111) further includes a wireless communication module for communicating with the measuring device (20).
  • the wireless communication module is a device conforming to a short-range wireless communication standard such as BLE (Bluetooth Low Energy) (registered trademark).
  • BLE Bluetooth Low Energy
  • the communication unit (111) communicates with the measuring device (20) via wireless communication having a horizontal communication distance of 2 m or more and 10 m or less.
  • the measurement location of the measuring device (20) is located away from the measuring location of the measuring device (20) (for example, in the building). It is possible to suppress the transmission of measurement data to the communication unit (11) of the air treatment device (10) installed on a floor different from the floor).
  • a wireless communication method having a 2.4 GHz band or higher is preferable.
  • Specific examples of the wireless communication method in the 2.4 GHz band or higher include UWB (Ultra Wide Band), ZigBee (registered trademark), and specified low power wireless.
  • the communication unit (111) is connected to the status acquisition device (12) and can communicate with the status acquisition device (12).
  • the communication unit (111) may be connected to the state acquisition device (12) by wire, for example, including the communication port, via the communication port and the communication cable connected to the communication port. Even if the communication unit (111) is wirelessly connected to the state acquisition device (12) using a communication method such as Bluetooth (registered trademark) (including BLE) or Wi-Fi (registered trademark) (Wireless Fidelity). good.
  • the storage unit (112) includes a main storage device (for example, a semiconductor memory) such as a flash memory, a ROM (Read Only Memory), and a RAM (Random Access Memory), and includes an auxiliary storage device (for example, a hard disk drive). , SSD (Solid State Drive), SD (Secure Digital) memory card, or USB (Universal Serial Bus) flash memory) may be further included.
  • the storage unit (112) stores various computer programs executed by the control unit (113).
  • the storage unit (112) stores the unique information (X) of the air treatment device (10).
  • the unique information (X) is, for example, hierarchical information in which the air treatment device (10) is installed, position information in which the air treatment device (10) is installed, and identification information of the air treatment device (10). Including one of them.
  • the floor information indicates the floor of a building (for example, a building) in which the air treatment device (10) is installed. Location information indicates latitude, longitude, and altitude, or where an air treatment device (10) is installed, such as the western floor in a building.
  • the identification information of the air treatment device (10) includes, for example, the ID information of the air treatment device (10), the serial number information of the air treatment device (10), and at least one of the security keys.
  • the control unit (113) includes a processor such as a CPU and an MPU. The control unit (113) controls each element of the communication unit (11) by executing the computer program stored in the storage unit (112).
  • the state acquisition device (12) includes, for example, a camera and / or a memory.
  • the state acquisition device (12) monitors the state of the air treatment device (10) and acquires state data representing the state of the air treatment device (10).
  • the state data may include image data representing the state inside the housing of the air processing device (10).
  • the state acquisition device (12) includes a camera, and the camera captures the inside of the housing of the air processing device (10) to obtain image data representing the state inside the housing, which is the state data. get.
  • the state data may include operation data of the air processing device (10) (execution history of cooling / heating operation menu, state history of thermo ON / OFF, etc.).
  • the state acquisition device (12) includes a memory, and the memory acquires the operation data which is the state data by storing the operation data of the air processing device (10).
  • the operation data of the air treatment device (10) may include, for example, the operation history of the actuators provided in the air treatment device (10) or the detection result of the sensors.
  • the state acquisition device (12) further includes a communication module for communicating with the communication unit (11), and is connected to the communication unit (11) so as to be able to communicate by wire or wirelessly.
  • the status acquisition device (12) transmits the acquired status data to the communication unit (11).
  • Each of the memories of the communication unit (11) and the state acquisition device (12) may be a built-in device provided inside the housing of the air processing device (10), and may be a built-in device of the housing of the air processing device (10). It may be an external device provided externally.
  • Each of the communication unit (11) and the state acquisition device (12) may be provided in the air treatment device (10) from the time of product shipment of the air treatment device (10), and may be provided in the air treatment device (10). It may be added to the air treatment device (10) after shipment as a retrofit.
  • the measuring device (20) includes a detection unit (21), a display unit (22), an operation unit (23), a communication unit (24), a storage unit (25), and a control unit. It has a part (26).
  • the detection unit (21) is a device having a function of sensing the environment.
  • the detection unit (21) detects the measured value representing the environment of the target space (indoor) where the air is processed by the air processing device (10), and generates the measurement data indicating the measured value.
  • the detection unit (21) is at least one of temperature, humidity, CO concentration, CO 2 concentration, dust concentration, airflow, illuminance, noise, and VOC (Volatile Organic Compounds) concentration in the target space.
  • a measured value representing one is detected and measurement data indicating the measured value is generated.
  • the display unit (22) includes a display panel such as a liquid crystal panel.
  • the display unit (22) displays, for example, an operation screen of the measuring device (20) and information (measurement data) indicating a detection result by the detection unit (21).
  • the operation unit (23) receives an external instruction to the measuring device (20).
  • the operation unit (23) includes, for example, a touch panel provided on the display unit (22) and operation buttons.
  • the communication unit (24) further includes a radio communication module for communicating with the communication unit (11).
  • the communication unit (24) includes a wireless communication module according to a short-range wireless communication standard such as BLE (Bluetooth Low Energy) (registered trademark).
  • the communication unit (24) is paired with the communication unit (11) so as to be wirelessly connected to the communication unit (11) using, for example, a USB dongle.
  • the storage unit (25) includes a main storage device such as a flash memory, a ROM, and a RAM, and may further include an auxiliary storage device.
  • the storage unit (25) stores various computer programs executed by the control unit (26).
  • the storage unit (25) includes a CPU and a processor such as an MPU.
  • the control unit (26) controls each element of the measuring device (20) by executing the computer program stored in the storage unit (25).
  • the measuring device (20) is separate from the air processing device (10) and is a movable device. In other words, the measuring device (20) is a portable device. After carrying the measuring device (20) to the target space, the measurer measures the target space using the measuring device (20). As a result, the measuring device (20) detects a measured value representing the environment of the target space.
  • the measurement work in the target space is performed regularly based on the provisions (laws) such as the Law Concerning Ensuring a Sanitary Environment in Buildings (abbreviation, Building Sanitation Management Law).
  • the measurer is, for example, a maintenance company, a measurement company, or a user.
  • the subject that moves the measuring device (20) is not limited to the measuring person, and may be, for example, a self-propelled robot.
  • the server (30) manages the air treatment device (10).
  • the server (30) has a communication unit (31), a storage unit (32), and a control unit (33).
  • the communication unit (31) includes, for example, a communication module such as a LAN board.
  • the communication unit (31) communicates with the air processing device (10) via a network such as the Internet.
  • the storage unit (32) includes a main storage device such as a flash memory, a ROM, and a RAM, and may further include an auxiliary storage device.
  • the storage unit (32) stores various computer programs executed by the control unit (33).
  • the storage unit (32) stores management information (Y) for managing the air treatment device (10). As shown in FIG.
  • the management information (Y) corresponds to, for example, the identification information of the air treatment device (10) and the information indicating the installation location of the air treatment device (10) (hierarchical information, position information, etc.). Includes attached information.
  • the control unit (33) includes a processor such as a CPU and an MPU.
  • the control unit (33) controls each element of the server (30) by executing the computer program stored in the storage unit (32).
  • the server (30) may be a unique server, a VPS (Virtual Private Server), or a cloud server distributed on the net.
  • FIG. 3 is a schematic cross-sectional view showing an example of an air treatment device (10) and a state acquisition device (12).
  • the state acquisition device (12) is a camera.
  • the air treatment device (10) includes an indoor unit housing (13), a fan (14), a heat exchanger (15), and a drain pan (16). Inside the housing (13), a fan (14), a heat exchanger (15), a drain pan (16), and a camera, which is a state acquisition device (12), are installed.
  • the fan (14) sends indoor air to the inside of the housing (13).
  • the heat exchanger (15) exchanges heat between the air sent to the inside of the housing (13) by the fan (14) and the refrigerant.
  • the drain pan (16) receives the condensed water generated in the vicinity of the heat exchanger.
  • the state acquisition device (12) which is a camera, acquires image data representing the state of the drain pan (16) by taking an image of the drain pan (16). Then, the state acquisition device (12) transmits image data representing the state of the drain pan (16) to the communication unit (11).
  • the image data showing the state of the drain pan (16) is an example of the state data of the air processing device (10).
  • FIG. 4 is a flow chart showing a state data transmission process.
  • the state data transmission process is a process for the communication unit (11) to transmit the state data (specifically, the first correspondence data including the state data) of the air processing device (10) to the server (30).
  • step S1 the state acquisition device (12) acquires the state data of the air processing device (10).
  • step S2 the state acquisition device (12) transmits the state data of the air processing device (10) to the communication unit (11). As a result, the communication unit (111) of the communication unit (11) receives the status data.
  • step S3 the control unit (113) of the communication unit (11) assigns the unique information (X) to the measurement data, so that the unique information (X) and the state data of the air processing device (10) can be obtained.
  • the associated first association data is created.
  • step S4 the communication unit (111) of the communication unit (11) transmits the first association data to the server (30). As a result, the communication unit (31) of the server (30) receives the first association data.
  • step S5 the storage unit (32) of the server (30) stores the first association data. As a result, the state data transmission process ends.
  • the server (30) manages the air treatment device (10) based on the first correspondence data.
  • the state acquisition device (12) acquires the state data of the air treatment device (10) every predetermined period (for example, every week or every month). Then, the state data transmission processing shown in steps S1 to S6 is performed at predetermined intervals.
  • FIG. 5 is a flow chart showing a first example of the measurement data transmission process.
  • the measurement data transmission process is a process for the communication unit (11) to transmit the measurement data (specifically, the second association data including the measurement data) of the measurement device (20) to the server (30).
  • step S101 the detection unit (21) of the measuring device (20) detects the measured value representing the environment of the target space and generates the measurement data indicating the measured value.
  • the target space indicates a space in which air treatment such as temperature adjustment is performed by the air treatment device (10).
  • step S102 the communication unit (24) of the measuring device (20) transmits data transmission request information to the communication unit (11).
  • the communication unit (111) of the communication unit (11) receives the data transmission request information.
  • the data transmission request information is information that the measuring device (20) requests the communication unit (11) to make a communication connection with the measuring device (20).
  • the measuring device (20) transmits data transmission request information in order to perform a process of transmitting measurement data to the communication unit (11).
  • step S103 the communication unit (111) of the communication unit (11) transmits the request information and the connection permission key to the server (30). As a result, the communication unit (31) of the server (30) receives the request information and the connection permission key.
  • the request information is information that the communication unit (11) requests the server (30) to make a communication connection with the communication unit (11).
  • the communication unit (11) transmits request information in order to perform a process of transmitting (uploading) measurement data to the server (30).
  • the connection permission key is information indicating that the measuring device (20) and the communication unit (11) are permitted to be connected by communication.
  • the connection permission key contains, for example, encrypted cryptographic information.
  • step S104 the communication unit (31) of the server (30) transmits the permission information to the communication unit (11).
  • the communication unit (111) of the communication unit (11) receives the permission information.
  • the permission information is a response to the request information, and is information indicating that the server (30) and the communication unit (11) are permitted to be connected by communication.
  • step S105 the communication unit (111) of the communication unit (11) transmits the connection permission key, which is a response to the data transmission request information (see step S102), to the measuring device (20).
  • the communication unit (24) of the measuring device (20) receives the connection permission key, and the measuring device (20) and the communication unit (11) are communicated and connected.
  • the communication connection indicates that a telegram such as measurement data can be transmitted and received, and processing based on the telegram (for example, the processing shown in steps S106 to S108) can be performed.
  • step S106 the communication unit (24) of the measuring device (20) transmits the measurement data to the communication unit (11).
  • the communication unit (111) of the communication unit (11) receives the measurement data.
  • the measuring device (20) receives the connection permission key (see step S105)
  • data transmission enable information indicating that the measurement data can be transmitted is displayed on the display unit (22) of the measuring device (20). May be good.
  • the measurer confirms the display of the data transmittable information on the display unit (22) and operates the operation unit (23) to perform the process shown in step S106.
  • the control unit (26) of the measuring device (20) changes to the communication unit (24) without going through the operation of the measurer (operation of the operation unit (23)). May be controlled to perform the process shown in step S106.
  • step S107 the control unit (113) of the communication unit (11) assigns the unique information (X) to the measurement data, so that the unique information (X) and the measurement data are associated with each other. Create data.
  • step S108 the communication unit (111) of the communication unit (11) transmits the second correspondence data and the connection permission key to the server (30).
  • the communication unit (31) of the server (30) receives the second association data and the connection permission key.
  • connection permission key received by the control unit (33) of the server (30) in step S109 matches the connection permission key received together with the request information in step S108 and the connection permission key received together with the second association data in step S108. To judge. If the connection permission keys match each other (Yes in step S109), the process proceeds to step S110. If the connection permission keys do not match each other, the first example of the measurement data transmission process ends. If the connection permission keys do not match each other, the control unit (33) of the server (30) determines that the second association data received in step S108 is error data, and creates a report to be described later. Do not adopt.
  • step S110 the storage unit (32) of the server (30) stores the second association data. As a result, the first example of the measurement data transmission process is completed.
  • the communication unit (111) of the communication unit (11) has information unique to the air processing device (10) with respect to the server (30).
  • the measurement data (second correspondence data) associated with (X) is transmitted.
  • the control unit (33) of the server (30) can easily specify or estimate the measurement location of the measurement data by the measuring device (20) based on the unique information (X).
  • the unique information (X) includes information indicating the installation location of the air treatment device (10) such as hierarchical information and location information
  • the control unit (33) of the server (30) has the unique information (X).
  • the information on the installation location of the air treatment device (10) is specified as the measurement location of the measurement data.
  • the control unit (33) of the server (30) stores the management information (Y) (Y) stored in the storage unit (32). (See FIG. 2), the installation location of the air treatment device (10) associated with the identification information of the air treatment device (10) included in the unique information (X) is specified as the measurement location of the measurement data.
  • step S107 the control unit (113) of the communication unit (11) associates the unique information (X) with the measurement data.
  • the control unit (113) of the communication unit (11) associates the unique information (X) with the measurement data.
  • control unit (33) of the server (30) can specify the measurement location of the measurement data by the measuring device (20) based on the unique information (X).
  • the measurer performs the measurement work of the measurement data
  • the work of specifying the measurement location of the measurement data for example, the measurement data and the information indicating the measurement location of the measurement data are associated with each other to create information. There is no need to do work).
  • the measurer can easily perform the measurement work of the measurement data.
  • the administrator of the server (30) manages the measurement data on the server (30)
  • he / she can easily recognize where the measurement data was measured based on the unique information (X).
  • the control unit (33) of the server (30) has the first association data (state data associated with the unique information (X)) stored in the storage unit (32) in the state data transmission process (see FIG. 4). ) And the second correspondence data (measurement data associated with the unique information (X)) stored in the storage unit (32) in the first example of the measurement data transmission process (see FIG. 5). You may create it.
  • the report is data that is required to be submitted to a designated institution (for example, a public institution such as a health center) by provisions (laws) such as the Act on Ensuring a Sanitary Environment in Buildings (abbreviation, Building Sanitation Management Act). be.
  • the report contains measurement data and status data that match the corresponding unique information (X).
  • the report also contains information indicating the measurement location of the measurement data.
  • the information indicating the measurement location of the measurement data the information indicating the installation location of the air treatment device (10) included in the unique information (X) is used. If the unique information (X) is composed only of the identification information of the air treatment device (10) and does not include the information indicating the installation location of the air treatment device (10), the management information (Y) (see FIG. 2). ), The installation location of the air treatment apparatus (10) associated with the identification information of the air treatment apparatus (10) is used as the measurement location of the measurement data in the report.
  • each of the state data (see FIG. 4) included in the first correspondence data and the measurement data (see FIG. 5) included in the second correspondence data correspond to the unique information (X)
  • the server Since each of the state data (see FIG. 4) included in the first correspondence data and the measurement data (see FIG. 5) included in the second correspondence data correspond to the unique information (X), the server.
  • the control unit (33) of (30) easily identifies the measurement data and the state data to be adopted for creating the report by comparing each of the measurement data and the state data with the corresponding unique information (X). can. Specifically, the control unit (33) of the server (30) adopts the measurement data and the state data having the same unique information (X) as the data used for creating the report. As a result, the control unit (33) of the server (30) can easily create a report including the measurement data and the state data corresponding to the same air treatment device (10).
  • the measurer had to perform the work of recording the measurement location of the measurement data every time the measurement work of the measurement data was performed, which was complicated.
  • the control unit (33) of the server (30) identifies the measurement location of the measurement data based on the unique information (X)
  • the measurer records the measurement location of the measurement data. No need to do. As a result, reports can be easily created.
  • FIG. 6 is a flow chart showing a second example of the measurement data transmission process.
  • the communication unit (11) creates the second association data.
  • the second example of the measurement data transmission process differs from the first example in that the measuring device (20) creates the second associated data.
  • step S201 the detection unit (21) of the measuring device (20) detects the measured value representing the environment of the target space and generates the measurement data indicating the measured value.
  • step S202 the communication unit (24) of the measuring device (20) transmits data transmission request information to the communication unit (11).
  • step S203 the communication unit (111) of the communication unit (11) transmits the request information and the connection permission key to the server (30).
  • step S204 the communication unit (31) of the server (30) transmits the permission information to the communication unit (11).
  • step S205 the communication unit (111) of the communication unit (11) transmits the unique information (X) and the connection permission key to the measuring device (20).
  • the communication unit (24) of the measuring device (20) receives the unique information (X) and the connection permission key.
  • step S206 the control unit (26) of the measuring device (20) creates the second association data by associating the unique information (X) with the measurement data.
  • step S207 the communication unit (24) of the measuring device (20) transmits the second association data to the communication unit (11).
  • the communication unit (111) of the communication unit (11) receives the second association data.
  • step S208 the communication unit (111) of the communication unit (11) transmits the second correspondence data and the connection permission key to the server (30).
  • connection permission key received by the control unit (33) of the server (30) in step S209 matches with the connection permission key received together with the request information in step S208 and the connection permission key received together with the second association data in step S208. Is determined. If the connection permission keys match each other (Yes in step S209), the process proceeds to step S210. If the connection permission keys do not match each other (No in step S209), the second example of the measurement data transmission process ends.
  • step S210 the storage unit (32) of the server (30) stores the second association data. As a result, the second example of the measurement data transmission process is completed.
  • step S207 the measuring device (20) associates the communication unit (11) with the unique information (X) and the measurement data (second association). Data) is sent. Therefore, the communication unit (111) of the communication unit (11) can transmit the second association data transmitted from the measuring device (20) to the server (30) as it is without data processing. As a result, the accuracy of the measurement data included in the second association data can be ensured.
  • FIG. 7 is a flow chart showing a third example of the measurement data transmission process.
  • the third example of the measurement data transmission process is a modification of the first example of the measurement data transmission process.
  • the first example of the measurement data transmission process see FIG. 5
  • the communication unit is transmitted from the measurement device (20). Measurement data cannot be sent to (11).
  • the measurement data can be transmitted from the measuring device (20) to the communication unit (11) even when the permission information is not transmitted from the server (30). The point is different from the first example.
  • step S301 the detection unit (21) of the measuring device (20) detects the measured value representing the environment of the target space and generates the measurement data indicating the measured value.
  • step S302 the communication unit (24) of the measuring device (20) transmits data transmission request information to the communication unit (11).
  • step S303 the communication unit (111) of the communication unit transmits the connection permission key to the measuring device (20), and also transmits the request information and the connection permission key to the server (30).
  • the communication unit (24) of the measuring device (20) receives the connection permission key
  • the communication unit (31) of the server (30) receives the request information and the connection permission key.
  • step S304 the communication unit (24) of the measuring device (20) transmits measurement data to the communication unit (11).
  • step S305 the storage unit (112) of the communication unit (11) stores the measurement data.
  • step S306 the communication unit (111) of the communication unit (11) transmits the first completion information to the measuring device (20).
  • the communication unit (24) of the measuring device (20) receives the first completion information.
  • the first completion information is information indicating that the process of storing the measurement data in the storage unit (112) of the communication unit (11) has been completed.
  • step S307 the display unit (22) of the measuring device (20) displays the first completion information.
  • the measurer confirms the display content of the display unit (22) to indicate that the measurement work of the measurement data by the measuring device (20) is completed. Can be recognized.
  • step S308 the communication unit (31) of the server (30) transmits the permission information to the communication unit (11).
  • step S309 the control unit (113) of the communication unit (11) creates the second correspondence data by associating the unique information (X) with the measurement data.
  • step S310 the communication unit (111) of the communication unit (11) transmits the second correspondence data and the connection permission key to the server (30).
  • connection permission key received by the control unit (33) of the server (30) in step S311 together with the request information in step S303 matches the connection permission key received together with the second association data in step S310. Is determined. If the connection permission keys match each other (Yes in step S311), the process proceeds to step S312. If the connection permission keys do not match each other (No in step S311), the third example of the measurement data transmission process ends.
  • step S312 the storage unit (32) of the server (30) stores the second association data. As a result, the third example of the measurement data transmission process is completed.
  • the storage unit (112) of the communication unit (11) stores the measurement data. Therefore, the communication unit (111) of the communication unit (11) can transmit the measurement data to the server (30) at the periodic communication timing. Further, the communication unit (111) of the communication unit (11) transmits the measurement data to the server (30) at the periodic communication timing, so that the communication unit (11) and the server (30) can communicate with each other. Since the communication frequency can be reduced, the communication cost can be suppressed.
  • the communication unit (11) transmits the received measurement data to the server (30) every time the measurement data is received from the measurement device (20).
  • the measurement data is sent to the server (30) at the time when it is not necessary and the line is not busy, or when other data (for example, status data (image data of the drain pan camera image)) is transmitted to the server (30). Can be sent to.
  • the measurement data can be efficiently transmitted to the server (30).
  • step S305 when the storage process for storing the measurement data in the storage unit (112) of the communication unit (11) is completed, in step S306, the communication unit (111) of the communication unit (11) changes to the measuring device (20).
  • the first completion information indicating that the storage process is completed is transmitted to the user.
  • the measurer can confirm that the measurement device (20) has received the first completion information, and can recognize that the measurement data has been stored in the storage unit (112) of the communication unit (11).
  • the measurer does not have to wait at the measurement location until the measurement data is transmitted to the server (30), and if the work of transmitting the measurement data from the measurement device (20) to the communication unit (11) is completed.
  • the measurement work can be completed.
  • step S303 the transmission unit (111) of the communication unit (11) provides the measuring device (20) with a connection permission key (connection permission information) for permitting communication connection with the communication unit (11).
  • request information requesting communication connection with the communication unit (11) is transmitted to the server (30).
  • the communication unit (11) can acquire the measurement data from the measuring device (20) without waiting for the response (permission information) of the communication permission to the request information from the server (30) (step S304 in FIG. 7).
  • step S308) As a result, even if the communication line between the server (30) and the communication unit (11) is congested and it is difficult for the communication unit (11) to communicate with the server (30), the measurer can use the measuring device (20).
  • the measurement data can be transmitted to the communication unit (11).
  • the measurer can easily transmit the measurement data from the measuring device (20) without waiting for the communication state between the server (30) and the communication unit (11) to be restored. Can be sent.
  • FIG. 8 is a flow chart showing a fourth example of the measurement data transmission process.
  • the fourth example of the measurement data transmission process is a modification of the second example of the measurement data transmission process.
  • the measurement device (20) when the permission information is not transmitted from the server (30), the measurement device (20) sends the second correspondence data (see FIG. 6) to the communication unit (11). Measurement data and unique information (X)) cannot be transmitted.
  • the second association data is transmitted from the measuring device (20) to the communication unit (11) even when the permission information is not transmitted from the server (30). It differs from the second example in that it is possible.
  • step S401 the detection unit (21) of the measuring device (20) detects the measured value representing the environment of the target space and generates the measurement data indicating the measured value.
  • step S402 the communication unit (24) of the measuring device (20) transmits data transmission request information to the communication unit (11).
  • step S403 the communication unit (111) of the communication unit transmits the unique information (X) and the connection permission key to the measuring device (20), and the request information and the connection permission to the server (30). Send with the key.
  • the communication unit (24) of the measuring device (20) receives the unique information (X) and the connection permission key
  • the communication unit (31) of the server (30) receives the request information and the connection permission key. Receive.
  • step S404 the control unit (26) of the measuring device (20) creates the second association data by associating the unique information (X) with the measurement data.
  • step S405 the communication unit (24) of the measuring device (20) transmits the second association data to the communication unit (11).
  • step S406 the storage unit (112) of the communication unit (11) stores the second association data.
  • step S407 the communication unit (111) of the communication unit (11) transmits the second completion information to the measuring device (20).
  • the communication unit (24) of the measuring device (20) receives the second completion information.
  • the second completion information is information indicating that the process of storing the second association data in the storage unit (112) of the communication unit (11) has been completed.
  • step S408 the display unit (22) of the measuring device (20) displays the second completion information.
  • the measurer can check the display contents of the display unit (22) to obtain the measurement data by the measurement device (20). You can recognize that the measurement work has been completed.
  • step S409 the communication unit (31) of the server (30) transmits the permission information to the communication unit (11).
  • step S410 the communication unit (111) of the communication unit (11) transmits the second correspondence data and the connection permission key to the server (30).
  • connection permission key received by the control unit (33) of the server (30) in step S411 together with the request information in step S403 matches the connection permission key received together with the second association data in step S410. To judge. If the connection permission keys match each other (Yes in step S411), the process proceeds to step S412. If the connection permission keys do not match each other (No in step S411), the fourth example of the measurement data transmission process ends.
  • step S412 the storage unit (32) of the server (30) stores the second association data. As a result, the fourth example of the measurement data transmission process is completed.
  • control unit (33) of the server (30) becomes the storage unit (32) in the state data transmission process (see FIG. 4) as in the first embodiment.
  • the stored first association data and the second association data stored in the storage unit (32) in each of the second to third examples (see FIGS. 6 to 8) of the measurement data transmission process are used. You may create a report.
  • the measurement data is stored in the storage unit (112) (see step S305).
  • the present invention is not limited to this.
  • the control unit (113) of the communication unit (11) creates the second association data, and the created second correspondence.
  • the attached data may be configured to be stored in the storage unit (112).
  • step S103 of the first embodiment see FIG. 5
  • step S203 of the second embodiment see FIG. 6
  • step S303 of the third embodiment and step S403 of the fourth embodiment
  • the communication unit (11). May send the unique information (X) along with the request information to the server (30).
  • unique information (X) may be transmitted to the server (30) instead of the connection permission key.
  • the communication unit (11) secondly corresponds to the server (30).
  • the connection permission key does not have to be sent when the attached data is sent.
  • step S109 of the first embodiment see FIG. 5
  • step S209 of the second embodiment see FIG. 6
  • step S311 of the third embodiment the transmission is performed together with the request information. It is determined whether or not the unique information (X) that has been created and the unique information (X) included in the second association data match each other. Then, when the unique information (X) matches each other (Yes in each of step S109, step S209, step S311, and step S411), the second association data is stored in the storage unit (30) of the server (30). 32) (see step S110, step S210, step S312, and step S412).
  • step S109 when the unique information (X) does not match each other (No in each of step S109, step S209, step S311, and step S411), each process (first example to first of the measurement data transmission process). Each of the four cases) is completed.
  • the configuration for pairing the communication unit (11) and the measuring device (20) is not particularly limited.
  • a plurality of communication units (11) of the air processing device (X) located within the communication range of the communication unit (24) of the measuring device (20) are displayed on the display unit (22) of the measuring device (20).
  • the measurer operates the operation unit (23) to communicate with the measuring device (20) from among the plurality of communication units (11). ) May be selected.
  • the measurer may select the communication unit (11) located closest to the measuring device (20) among the plurality of communication units (11).
  • the process of selecting the communication unit (11) for communication connection with the measuring device (20) may be performed by the control unit (26) of the measuring device (20) instead of the measuring person.
  • the control unit (26) of the measuring device (20) selects, for example, the communication unit (11) located closest to the measuring device (20) among the plurality of communication units (11).
  • the communication unit (11) is selected based on the predetermined control program specified in.
  • the communication unit (11) when the communication unit (11) is located within the communication range of the communication unit (24) of the measuring device (20) in the storage unit (25) of the measuring device (20), the communication unit (24) becomes the communication unit (11).
  • An application (application) that operates the communication unit (24) so as to start an access for transmitting the measurement data to the) may be stored.
  • the configuration for the measuring device (20) to communicate with the communication unit (11) is not particularly limited.
  • the measuring device (20) communicates using, for example, a communication method such as NFC (Near field communication), Bluetooth (registered trademark), Wi-Fi (registered trademark), ZigBee (registered trademark), IrDA (Infrared Data Association), or the like. Wireless communication may be performed with the unit (11).
  • the measurer when the first to fourth examples of the measurement data transmission process are performed (see FIGS. 5 to 8), the measurer performs the communication unit (24) of the measuring device (20). ) And the communication unit (111) of the communication unit (11) may be connected by wire with a communication cable or the like, so that wired communication may be performed between the measuring device (20) and the communication unit (11).
  • the air treatment device may have a configuration of at least one of a humidity control device, a ventilation device, and an air purifier.
  • the humidity control device regulates the humidity of the air in the target space.
  • the ventilator ventilates the target space.
  • the air purifier purifies the air in the target space.
  • the server (30) may be capable of storing the received measurement data in the file format at the time of reception.
  • the storage unit (25) of the server (30) The validity of the stored measurement data can be effectively ensured.
  • step S106 In the first embodiment shown in FIG. 5, after the communication unit (11) receives the measurement data (see step S106), the measurement data is stored in the storage unit (112) of the communication unit (11). Even if the process of transmitting the first completion information from the communication unit (11) to the measuring device (20) and the process of displaying the first completion information on the display unit (22) of the measuring device (20) are performed. good. That is, in the first embodiment, after the processing shown in step S106 (see FIG. 5) is performed, the processing shown in steps S305 to S307 (see FIG. 7) may be performed.
  • the measurer can check the display contents of the display unit (22) to display the measurement data to the communication unit (11) by the measurement device (20). It is possible to recognize that the transmission is completed and finish the measurement work.
  • step S207 In the second embodiment shown in FIG. 6, after the communication unit (11) receives the second association data (see step S207), the second association data is stored in the storage unit (112) of the communication unit (11). Is stored, the second completion information is transmitted from the communication unit (11) to the measuring device (20), and the second completion information is displayed on the display unit (22) of the measuring device (20). Processing may be performed. That is, in the second embodiment, after the processing shown in step S207 (see FIG. 6) is performed, the processing shown in steps S406 to S408 (see FIG. 8) may be performed.
  • the measurer confirms the display content of the display unit (22), and the measuring device (20) makes a second response to the communication unit (11). It can be recognized that the transmission of the attached data is completed, and the measurement work can be completed.
  • the present disclosure is useful for a communication unit, an air treatment device, a communication system for an air treatment device, and a communication method for the air treatment device.
  • Air processing device 11 Communication unit 12 Status acquisition device 20 Measuring device 30 Server 111 Communication unit (transmitter, receiver) 112 Storage 113 Control

Abstract

通信ユニット(11)は、空気処理装置(10)に設けられている。通信ユニット(11)は、前記空気処理装置(10)とは別体の移動可能な測定装置(20)から送られる測定データを受信する受信部(111)と、前記空気処理装置(10)の固有の情報と対応付いた前記測定データをサーバ(30)へ送信する送信部(111)とを備えることを特徴とする。

Description

通信ユニット、空気処理装置、空気処理装置の通信システム、及び空気処理装置の通信方法
 本開示は、通信ユニット、空気処理装置、空気処理装置の通信システム、及び空気処理装置の通信方法に関する。
 特許文献1に記載の装置は、空気質測定装置と、無線端末機とを備える。空気質測定装置は、大気中の各種ガスの種類、濃度、温度、湿度、微細ホコリ等を検出し、検出した各種データに基づいて空気質の測定値を導出する。空気質測定装置(測定装置)は、無線端末機に対して、空気質の測定値(測定データ)を送信する。無線端末機は、表示部を備える。表示部は、空気質の測定値と、空気質の測定値に応じた状況説明と対処方案と表示する。
特表2017-527051号公報
 しかし、測定データには、測定データの測定場所を特定するための情報が含まれていない。これにより、測定データの受信側の機器である無線端末機は、受信した測定データに基づいて測定データの測定場所を特定できない。
 本開示の目的は、測定装置による測定データの測定場所を特定できるようにすることにある。
 本開示の第1の態様は、通信ユニット(11)を対象とする。通信ユニット(11)は、空気処理装置(10)に設けられる。通信ユニット(11)は、前記空気処理装置(10)とは別体の移動可能な測定装置(20)から送られる測定データを受信する受信部(111)と、前記空気処理装置(10)の固有の情報と対応付いた前記測定データをサーバ(30)へ送信する送信部(111)とを備えることを特徴とする。
 第1の態様では、通信ユニット(11)がサーバ(30)に対して空気処理装置(10)の固有の情報と対応付いた測定データを送信する。サーバ(30)は、空気処理装置(10)の固有の情報に基づいて測定装置(20)による測定データの測定場所を特定できる。
 本開示の第2の態様は、第1の態様において、前記通信ユニット(11)は、前記測定データを記憶する記憶部(112)をさらに備えることを特徴とする。
 第2の態様では、通信ユニットは測定装置から送られるデータを記憶することができる。
 本開示の第3の態様は、第2の態様において、前記記憶部(112)に前記測定データが記憶される記憶処理が完了すると、前記送信部(111)が前記測定装置(20)に前記記憶処理が完了したことを示す情報を送信することを特徴とする。
 第3の態様では、測定者が、測定データの通信ユニット(11)への送信処理が完了したことを認識できる。
 本開示の第4の態様は、第1~第3の態様のいずれか1つにおいて、前記測定データに前記固有の情報を付与することで前記測定データと前記固有の情報とを対応付ける制御部(113)をさらに備えることを特徴とする。
 第4の態様では、制御部(113)により測定データと固有の情報とが対応付けられるので、測定データに対して測定場所を特定するための情報を容易に付与することができる。
 本開示の第5の態様は、第1~第3の態様のいずれか1つにおいて、前記送信部(111)は、前記測定装置(20)へ前記固有の情報を送信し、前記受信部(111)は、前記測定装置(20)から送信される前記固有の情報と対応付いた前記測定データを受信することを特徴とする。
 第5の態様では、通信ユニット(11)は、固有の情報と対応付いた測定データを測定装置(20)から取得することができる。
 本開示の第6の態様は、第1~第5の態様のいずれか1つにおいて、通信ユニット(11)は、水平の通信距離が2m以上かつ10m以下の無線通信を介して前記測定装置(20)と通信することを特徴とする。
 第6の態様では、測定装置(20)から通信ユニット(11)に測定データが送信される際、測定装置(20)の測定場所から離れた場所(例えば、ビル内において測定装置(20)の測定場所のフロアとは異なるフロア)に設置される空気処理装置(10)の通信ユニット(11)に測定データが送信されることを抑制できる。
 本開示の第7の態様は、第1~第6の態様のいずれか1つにおいて、前記空気処理装置(10)の固有の情報は、前記空気処理装置(10)が設置されている階層情報、前記空気処理装置(10)が設置されている位置情報、及び、前記空気処理装置(10)の識別情報のうちの少なくとも1つの情報を含むことを特徴とする。
 本開示の第8の態様は、第1~第7の態様のいずれか1つにおいて、前記受信部(111)は、前記空気処理装置(10)により空気の処理が行われる対象空間における、温度、湿度、CO濃度、CO濃度、粉塵濃度、気流、照度、騒音、及び、VOC濃度のうちの少なくとも1つを表すデータを、前記測定データとして受信することを特徴とする。
 第8の態様では、通信ユニット(11)は、対象空間の温度、湿度等の環境を表す測定データを受信できる。
 本開示の第9の態様は、第1~第8の態様のいずれか1つにおいて、前記受信部(111)は、前記空気処理装置(10)に設けられた状態取得装置(12)から前記空気処理装置(10)の状態を表す状態データをさらに受信し、前記送信部(111)は、前記固有の情報と対応付いた前記状態データを前記サーバ(30)へさらに送信することを特徴とする。
 第9の態様では、固有の情報と対応付いた空気処理装置の状態データをサーバ(30)に送信することができる。
 本開示の第10の態様は、第9の態様において、前記状態データには、前記空気処理装置(10)の内部の状態を表す画像データが含まれることを特徴とする。
 第10の態様では、サーバ(30)により空気処理装置(10)の内部の状態を監視できる。
 本開示の第11の態様は、空気処理装置(10)を対象とする。空気処理装置(10)は、前記通信ユニット(11)を備えることを特徴とする。
 本開示の第12の態様は、空気処理装置(10)の通信システム(100)を対象とする。空気処理装置(10)の通信システム(100)は、前記通信ユニット(11)と、前記サーバ(30)と、前記測定装置(20)とを備えることを特徴とする。
 第12の態様では、通信ユニット(11)がサーバ(30)に対して空気処理装置(10)の固有の情報と対応付いた測定データを送信することで、サーバ(30)が空気処理装置(10)の固有の情報に基づいて測定装置(20)による測定データの測定場所を容易に特定できる。
 本開示の第13の態様は、空気処理装置(10)の通信システム(100)を対象とする。空気処理装置(10)の通信システム(100)は、前記通信ユニット(11)と、前記サーバ(30)と、前記測定装置(20)と、前記状態取得装置(12)とを備え、前記サーバ(30)は、前記固有の情報が一致する前記測定データと前記状態データとを含んだレポートを作成することを特徴とする。
 第13の態様では、サーバ(30)は、同じ空気処理装置(10)に対応する測定データと状態データとを含むレポートを作成できる。
 本開示の第14の態様は、第12または第13の態様において、前記測定装置(20)は、前記通信ユニット(11)と通信する通信部(24)と、前記通信部(24)の通信圏内に位置している複数の前記通信ユニット(11)のうち前記測定装置(20)と通信接続する前記通信ユニット(11)の選択を受け付ける操作部(23)とを備え、前記測定装置(20)の測定データと、前記操作部(23)により選択された前記通信ユニット(11)を含む前記空気処理装置(10)の固有の情報とが対応付けられることを特徴とする。
 第14の態様では、測定者は、操作部(23)を操作して、複数の通信ユニット(11)のうち所望の通信ユニット(11)を測定装置(20)と通信接続させることができる。
 本開示の第15の態様は、第12または第13の態様において、前記測定装置(20)は、前記通信ユニット(11)と通信する通信部(24)と、前記通信部(24)の通信圏内に位置している複数の前記通信ユニット(11)のうち前記測定装置(20)と通信接続する前記通信ユニット(11)を選択する制御部(26)とを備え、前記測定装置(20)の測定データと、前記制御部(26)により選択された前記通信ユニット(11)を含む前記空気処理装置(10)の固有の情報とが対応付けられることを特徴とする。
 第15の態様では、通信部(24)の通信圏内に複数の通信ユニット(11)が存在する場合、制御部(26)により測定装置(20)と通信接続する前記通信ユニット(11)が選択されるので、測定装置(20)と通信接続する前記通信ユニット(11)を選択する測定者の手間を省くことができる。
 本開示の第16の態様は、空気処理装置(10)の通信方法を対象とする。空気処理装置(10)の通信方法は、空気処理装置(10)に設けられた通信ユニット(11)を用いる。空気処理装置(10)の通信方法は、前記空気処理装置(10)とは別体の移動可能な測定装置(20)から送信された測定データを前記通信ユニット(11)の受信部(111)が受信するステップと、前記通信ユニット(11)の制御部(113)が、前記測定データに前記空気処理装置(10)の固有の情報を付与することで前記測定データと前記固有の情報とを対応付けるステップと、前記通信ユニット(11)の送信部(111)がサーバ(30)に対して前記固有の情報が対応付いた前記測定データを送信するステップとを含むことを特徴とする。
 第16の態様では、通信ユニット(11)がサーバ(30)に対して空気処理装置(10)の固有の情報と対応付いた測定データを送信することで、サーバ(30)が空気処理装置(10)の固有の情報に基づいて測定装置(20)による測定データの測定場所を容易に特定できる。
 本開示の第17の態様は、空気処理装置(10)の通信方法を対象とする。空気処理装置(10)の通信方法は、空気処理装置(10)に設けられた通信ユニット(11)を用いる。空気処理装置(10)の通信方法は、前記通信ユニット(11)の送信部(111)が、前記空気処理装置(10)とは別体の移動可能な測定装置(20)に対して、前記空気処理装置(10)の固有の情報を送信するステップと、前記通信ユニット(11)の受信部(111)が前記固有の情報と対応付いた前記測定装置(20)の測定データを受信するステップと、前記通信ユニット(11)の送信部(111)がサーバ(30)に対して、前記固有の情報と対応付いた前記測定データを送信するステップとを含むことを特徴とする。
 第17の態様では、通信ユニット(11)は、測定装置(20)から送信された固有の情報と対応付いた測定データをサーバ(30)に送信できる。
 本開示の第18の態様は、第16又は第17の態様において、前記通信ユニット(11)の記憶部(112)が前記測定データを記憶するステップと、前記通信ユニット(11)の送信部(111)が前記測定装置(20)に対して、前記記憶部(112)に前記測定データを記憶する記憶処理が完了したことを示す完了情報を送信するステップとをさらに含むことを特徴とする。
 第18の態様では、測定者は、測定装置(20)により受信された完了情報を確認することで、通信ユニット(11)への測定データの送信処理が終了したことを認識できる。
 本開示の第19の態様は、第16~第18の態様のいずれか1つにおいて、前記通信ユニット(11)の送信部(111)が、前記測定装置(20)から前記通信ユニット(11)へ前記測定データを送信させるために、前記測定装置(20)に対して、前記通信ユニット(11)と通信接続することを許可する接続許可情報を送信すると共に、前記通信ユニット(11)から前記サーバ(30)へ前記測定データを送信するために、前記サーバ(30)に対して、前記通信ユニット(11)と通信接続することを要求するリクエスト情報を送信するステップをさらに含むことを特徴とする。
 第19の態様では、通信ユニットが測定装置に対して接続許可情報を送信すると共に、サーバに対してリクエスト情報を送信するため、サーバ(30)からリクエスト情報に対する通信許可の応答を待つことがなく、通信ユニット(11)が測定装置(20)から測定データを取得できる。これにより、サーバ(30)と通信ユニット(11)との通信が困難な状態でも、測定者が測定装置(20)から通信ユニット(11)へ測定データを送信させることができる。
図1は、本発明の実施形態1に係る通信システムの構成を示すブロック図である。 図2は、管理情報を示す図である。 図3は、空気処理装置及び状態取得装置の一例を示す模式的断面図である。 図4は、状態データ送信処理を示すフロー図である。 図5は、測定データ送信処理の第1例を示すフロー図である。 図6は、測定データ送信処理の第2例を示すフロー図である。 図7は、測定データ送信処理の第3例を示すフロー図である。 図8は、測定データ送信処理の第4例を示すフロー図である。
 本発明の実施形態について、図面を参照しながら説明する。なお、図中、同一又は相当部分については同一の参照符号を付し、詳細な説明及びそれに付随する効果等の説明は繰り返さない。
 《実施形態1》
 図1を参照して、本発明の実施形態1に係る空気処理装置(10)の通信システム(100)について説明する。以下では、空気処理装置(10)の通信システム(100)を、通信システム(100)と記載することがある。図1は、通信システム(100)の構成を示すブロック図である。
 図1に示すように、通信システム(100)は、空気処理装置(10)と、測定装置(20)と、サーバ(30)とを備える。
 実施形態1では、空気処理装置(10)は、空気の温度を高くする暖房機能、及び、空気の温度を低くする冷房機能のうちの少なくとも1つの機能を含む空気調和装置である。空気処理装置(10)は、通信ユニット(11)と、状態取得装置(12)とを有する。
 通信ユニット(11)は、通信部(111)と、記憶部(112)と、制御部(113)とを有する。
 通信部(111)は、例えば、LANボ-ドのような通信モジュ-ルを含む。通信部(111)は、インターネットなどのネットワーク網を介してサーバ(30)と通信する。
 通信部(111)は、測定装置(20)と通信するための無線通信モジュ-ルをさらに含む。無線通信モジュ-ルは、例えば、BLE(Bluetooth Low Energy)(登録商標)のような近距離無線通信規格に準じた機器である。実施形態1では、通信部(111)は、水平の通信距離が2m以上かつ10m以下の無線通信を介して測定装置(20)と通信する。その結果、測定装置(20)から通信ユニット(11)に測定データが送信される際、測定装置(20)の測定場所から離れた場所(例えば、ビル内において測定装置(20)の測定場所のフロアとは異なるフロア)に設置される空気処理装置(10)の通信ユニット(11)に測定データが送信されることを抑制できる。なお、通信部(111)と測定装置(20)とが互いに通信する際に採用する通信方式としては、2.4GHz帯域以上の無線通信方式が好ましい。2.4GHz帯域以上の無線通信方式としては、具体的には、UWB(Ultra Wide Band)、ZigBee(登録商標)、特定小電力無線などがある。
 通信部(111)は、状態取得装置(12)と接続され、状態取得装置(12)と通信可能である。通信部(111)は、例えば、通信ポートを含み、通信ポート及び通信ポートに接続される通信ケーブルを介して状態取得装置(12)と有線接続されてもよい。通信部(111)は、例えば、Bluetooth(登録商標)(BLEを含む)、Wi-Fi(登録商標)(Wireless Fidelity)等の通信方式を用いて状態取得装置(12)と無線接続されてもよい。
 記憶部(112)は、フラッシュメモリ、ROM(Read Only Memory)、及びRAM(Random Access Memory)のような主記憶装置(例えば、半導体メモリ)を含み、補助記憶装置(例えば、ハ-ドディスクドライブ、SSD(Solid State Drive)、SD(Secure Digital)メモリカード、又は、USB(Universal Seral Bus)フラッシメモリ)をさらに含んでもよい。記憶部(112)は、制御部(113)によって実行される種々のコンピュータープログラムを記憶する。
 記憶部(112)は、空気処理装置(10)の固有の情報(X)を記憶する。固有の情報(X)は、例えば、空気処理装置(10)が設置されている階層情報、空気処理装置(10)が設置されている位置情報、及び、空気処理装置(10)の識別情報のうちのいずれかを含む。階層情報は、空気処理装置(10)が設置されている建造物(例えば、ビル)の階を示す。位置情報は、緯度、経度、及び高度、又は、建造物内の西側のフロアのような空気処理装置(10)が設置されている場所を示す。空気処理装置(10)の識別情報は、例えば、空気処理装置(10)のID情報、空気処理装置(10)のシリアルナンバー情報、及び、セキュリティーキーのうちの少なくとも1つを含む。制御部(113)は、CPU及びMPUのようなプロセッサーを含む。制御部(113)は、記憶部(112)に記憶されたコンピュータープログラムを実行することにより、通信ユニット(11)の各要素を制御する。
 状態取得装置(12)は、例えば、カメラ、及び/又は、メモリを含む。状態取得装置(12)は、空気処理装置(10)の状態を監視して、空気処理装置(10)の状態を表す状態データを取得する。
 状態データには、空気処理装置(10)の筐体の内部の状態を表す画像データが含まれていてもよい。この場合、状態取得装置(12)がカメラを含み、当該カメラが、空気処理装置(10)の筐体の内部を撮像することで、状態データである筐体の内部の状態を表す画像データを取得する。
 状態データには、空気処理装置(10)の運転データ(冷房・暖房運転メニューの実行履歴、サーモON/OFFの状態履歴等)が含まれていてもよい。この場合、状態取得装置(12)がメモリを含み、当該メモリが、空気処理装置(10)の運転データを記憶することで、状態データである運転データを取得する。
 空気処理装置(10)の運転データには、例えば、空気処理装置(10)に備えられるアクチュエータ類の動作履歴、又は、センサ類の検出結果が含まれていてもよい。
 状態取得装置(12)は、通信ユニット(11)と通信するための通信モジュールをさらに含み、通信ユニット(11)と有線又は無線で通信可能に接続される。状態取得装置(12)は、取得した状態データを通信ユニット(11)に対して送信する。
 通信ユニット(11)、及び状態取得装置(12)のメモリの各々は、空気処理装置(10)の筐体の内部に設けられる内蔵型の機器でもよく、空気処理装置(10)の筐体の外部に設けられる外付け型の機器でもよい。通信ユニット(11)、及び状態取得装置(12)の各々は、空気処理装置(10)の製品出荷時から空気処理装置(10)に設けられていてもよく、空気処理装置(10)の製品出荷後に空気処理装置(10)に後付けで追加されてもよい。
 図1に示すように、測定装置(20)は、検出部(21)と、表示部(22)と、操作部(23)と、通信部(24)と、記憶部(25)と、制御部(26)とを有する。
 検出部(21)は、環境をセンシングする機能を有するデバイスである。検出部(21)は、空気処理装置(10)により空気の処理が行われる対象空間(室内)の環境を表す測定値を検出して当該測定値を示す測定データを生成する。実施形態1では、検出部(21)は、対象空間における、温度、湿度、CO濃度、CO濃度、粉塵濃度、気流、照度、騒音、及び、VOC(Volatile Organic Compounds)濃度のうちの少なくとも1つを表す測定値を検出して当該測定値を示す測定データを生成する。
 表示部(22)は、液晶パネルのような表示パネルを含む。表示部(22)は、例えば、測定装置(20)の操作画面、及び、検出部(21)による検出結果を示す情報(測定データ)を表示する。操作部(23)は、測定装置(20)に対する外部からの指示を受け付ける。操作部(23)は、例えば、表示部(22)に設けられるタッチパネル、及び操作ボタンを含む。通信部(24)は、通信ユニット(11)と通信するための無線通信モジュ-ルをさらに含む。通信部(24)は、例えば、BLE(Bluetooth Low Energy)(登録商標)のような近距離無線通信規格に準じた無線通信モジュ-ルを含む。通信部(24)は、例えば、USBドングルを用いて通信ユニット(11)と無線接続されるように、通信ユニット(11)とペアリングされている。記憶部(25)は、フラッシュメモリ、ROM、及びRAMのような主記憶装置を含み、補助記憶装置をさらに含んでもよい。記憶部(25)は、制御部(26)によって実行される種々のコンピュータープログラムを記憶する。記憶部(25)は、CPU及びMPUのようなプロセッサーを含む。制御部(26)は、記憶部(25)に記憶されたコンピュータープログラムを実行することにより、測定装置(20)の各要素を制御する。
 測定装置(20)は、空気処理装置(10)とは別体であり、移動可能な装置である。言い換えると、測定装置(20)は可搬式の装置である。測定者は、測定装置(20)を対象空間まで運んだ後、測定装置(20)を用いて対象空間を測定する。その結果、測定装置(20)が対象空間の環境を表す測定値を検出する。対象空間における測定作業は、例えば、建築物における衛生的環境の確保に関する法律(略称、ビル衛生管理法)のような規定(法令)に基づいて、定期的に行われる。測定者は、例えば、メンテナンス業者、計測業者、又は、ユーザである。測定装置(20)を移動させる主体は測定者に限定されず、例えば、自走式のロボットでもよい。
 サーバ(30)は、空気処理装置(10)を管理する。サーバ(30)は、通信部(31)と、記憶部(32)と、制御部(33)とを有する。通信部(31)は、例えば、LANボ-ドのような通信モジュ-ルを含む。通信部(31)は、インターネットなどのネットワーク網を介して空気処理装置(10)と通信する。記憶部(32)は、フラッシュメモリ、ROM、及びRAMのような主記憶装置を含み、補助記憶装置をさらに含んでもよい。記憶部(32)は、制御部(33)によって実行される種々のコンピュータープログラムを記憶する。記憶部(32)は、空気処理装置(10)を管理するための管理情報(Y)を記憶する。図2に示すように、管理情報(Y)は、例えば、空気処理装置(10)の識別情報と、空気処理装置(10)の設置場所を示す情報(階層情報、位置情報等)とを対応付けた情報を含む。制御部(33)は、CPU及びMPUのようなプロセッサーを含む。制御部(33)は、記憶部(32)に記憶されたコンピュータープログラムを実行することにより、サーバ(30)の各要素を制御する。サーバ(30)は固有のサーバやVPS(Virtual Private Server)の他、ネット上に分散されたクラウドサーバーであってもよい。
 図1及び図3を参照して、空気処理装置(10)及び状態取得装置(12)の一例について説明する。図3は、空気処理装置(10)及び状態取得装置(12)の一例を示す模式的断面図である。
 図1及び図3に示すように、実施形態1では、状態取得装置(12)はカメラである。空気処理装置(10)は、室内機の筐体(13)と、ファン(14)と、熱交換器(15)と、ドレンパン(16)とを備える。筐体(13)の内部には、ファン(14)と、熱交換器(15)と、ドレンパン(16)と、状態取得装置(12)であるカメラとが設置される。ファン(14)は、筐体(13)の内部に室内の空気を送る。熱交換器(15)は、ファン(14)により筐体(13)の内部に送られた空気と冷媒との熱交換を行う。ドレンパン(16)は、熱交換器の近傍で発生した凝縮水を受ける。カメラである状態取得装置(12)は、ドレンパン(16)を撮像することで、ドレンパン(16)の状態を表す画像データを取得する。そして、状態取得装置(12)は、ドレンパン(16)の状態を表す画像データを、通信ユニット(11)へ送信する。ドレンパン(16)の状態を表す画像データは、空気処理装置(10)の状態データの一例である。
 図1及び図4を参照して、状態データ送信処理について説明する。図4は、状態データ送信処理を示すフロー図である。状態データ送信処理は、通信ユニット(11)がサーバ(30)へ空気処理装置(10)の状態データ(詳細には、状態データを含む第1対応付けデータ)を送信するための処理である。
 図1及び図4に示すように、ステップS1において、状態取得装置(12)が、空気処理装置(10)の状態データを取得する。
 ステップS2において、状態取得装置(12)が通信ユニット(11)に対して、空気処理装置(10)の状態データを送信する。その結果、通信ユニット(11)の通信部(111)が状態データを受信する。
 ステップS3において、通信ユニット(11)の制御部(113)が、測定データに固有の情報(X)を付与することで、固有の情報(X)と空気処理装置(10)の状態データとを対応付けた第1対応付けデータを作成する。
 ステップS4において、通信ユニット(11)の通信部(111)がサーバ(30)に対して第1対応付けデータを送信する。その結果、サーバ(30)の通信部(31)が第1対応付けデータを受信する。
 ステップS5において、サーバ(30)の記憶部(32)が第1対応付けデータを記憶する。その結果、状態データ送信処理が終了する。サーバ(30)は、第1対応付けデータに基づいて、空気処理装置(10)を管理する。
 実施形態1では、状態取得装置(12)は、所定期間毎(例えば、一週間毎、又は一ヶ月毎)に空気処理装置(10)の状態データを取得する。そして、ステップS1~ステップS6に示す状態データ送信処理が、所定期間毎に行われる。
 図1及び図5を参照して、測定データ送信処理の第1例について説明する。図5は、測定データ送信処理の第1例を示すフロー図である。測定データ送信処理は、通信ユニット(11)がサーバ(30)へ測定装置(20)の測定データ(詳細には、測定データを含む第2対応付けデータ)を送信するための処理である。
 図1及び図5に示すように、ステップS101において、測定装置(20)の検出部(21)が、対象空間の環境を表す測定値を検出して当該測定値を示す測定データを生成する。対象空間は、空気処理装置(10)により温度調整等の空気の処理が行われる空間を示す。
 ステップS102において、測定装置(20)の通信部(24)が通信ユニット(11)に対してデータ送信要求情報を送信する。その結果、通信ユニット(11)の通信部(111)がデータ送信要求情報を受信する。
 データ送信要求情報は、測定装置(20)が通信ユニット(11)に対して、測定装置(20)と通信接続することを要求する情報である。測定装置(20)は、通信ユニット(11)に測定データを送信する処理を行うために、データ送信要求情報を送信する。
 ステップS103において、通信ユニット(11)の通信部(111)がサーバ(30)に対して、リクエスト情報と、接続許可キーとを送信する。その結果、サーバ(30)の通信部(31)が、リクエスト情報と、接続許可キーとを受信する。
 リクエスト情報は、通信ユニット(11)がサーバ(30)に対して、通信ユニット(11)と通信接続することを要求する情報である。通信ユニット(11)は、サーバ(30)に測定データを送信(アップロード)する処理を行うために、リクエスト情報を送信する。接続許可キーは、測定装置(20)と通信ユニット(11)とが通信接続されることを許可することを示す情報である。接続許可キーは、例えば、暗号化された暗号情報を含む。
 ステップS104において、サーバ(30)の通信部(31)が、通信ユニット(11)に対して、許可情報を送信する。その結果、通信ユニット(11)の通信部(111)が許可情報を受信する。
 許可情報は、リクエスト情報に対する応答であり、サーバ(30)と通信ユニット(11)とが通信接続されることを許可することを示す情報である。
 ステップS105において、通信ユニット(11)の通信部(111)が、測定装置(20)に対して、データ送信要求情報(ステップS102参照)に対する応答である接続許可キーを送信する。その結果、測定装置(20)の通信部(24)が接続許可キーを受信し、測定装置(20)と通信ユニット(11)とが通信接続される。通信接続されることは、測定データのような電文を送受信でき、かつ、当該電文に基づいた処理(例えば、ステップS106~ステップS108に示す処理)を行うことができる状態になることを示す。
 ステップS106において、測定装置(20)の通信部(24)が通信ユニット(11)に対して測定データを送信する。その結果、通信ユニット(11)の通信部(111)が測定データを受信する。例えば、測定装置(20)が接続許可キーを受信すると(ステップS105参照)、測定装置(20)の表示部(22)に測定データを送信可能であることを示すデータ送信可能情報が表示されてもよい。この場合、測定者が、表示部(22)上でデータ送信可能情報の表示を確認して、操作部(23)を操作することで、ステップS106に示す処理が行われる。なお、測定装置(20)が接続許可キーを受信すると、測定者の動作(操作部(23)の操作)を介することなく、測定装置(20)の制御部(26)が通信部(24)を制御して、ステップS106に示す処理を行ってもよい。
 ステップS107において、通信ユニット(11)の制御部(113)が、測定データに固有の情報(X)を付与することで、固有の情報(X)と測定データとを対応付けた第2対応付けデータを作成する。
 ステップS108において、通信ユニット(11)の通信部(111)がサーバ(30)に対して、第2対応付けデータと、接続許可キーとを送信する。その結果、サーバ(30)の通信部(31)が、第2対応付けデータと、接続許可キーとを受信する。
 ステップS109において、サーバ(30)の制御部(33)が、ステップS103においてリクエスト情報と共に受信した接続許可キーと、ステップS108において第2対応付けデータと共に受信した接続許可キーとが一致するか否かを判定する。各接続許可キーが互いに一致する場合は(ステップS109で、Yes)、処理がステップS110に移行する。各接続許可キーが互いに一致しない場合は、測定データ送信処理の第1例が終了する。なお、各接続許可キーが互いに一致しない場合、サーバ(30)の制御部(33)は、ステップS108において受信した第2対応付けデータを、エラーデータと判定して、後述するレポートの作成には採用しない。
 ステップS110において、サーバ(30)の記憶部(32)が、第2対応付けデータを記憶する。その結果、測定データ送信処理の第1例が終了する。
 ―実施形態1の効果―
 以上、図1及び図5を参照して説明したように、ステップS108において、通信ユニット(11)の通信部(111)がサーバ(30)に対して、空気処理装置(10)の固有の情報(X)と対応付いた測定データ(第2対応付けデータ)を送信する。その結果、サーバ(30)の制御部(33)が固有の情報(X)に基づいて、測定装置(20)による測定データの測定場所を容易に特定ないしは推定できる。固有の情報(X)に、階層情報及び位置情報のような空気処理装置(10)の設置場所を示す情報が含まれる場合、サーバ(30)の制御部(33)は、固有の情報(X)に含まれる空気処理装置(10)の設置場所の情報を、測定データの測定場所として特定する。固有の情報(X)が空気処理装置(10)の識別情報のみで構成される場合、サーバ(30)の制御部(33)は、記憶部(32)に記憶される管理情報(Y)(図2参照)において、固有の情報(X)に含まれる空気処理装置(10)の識別情報と対応付けられた空気処理装置(10)の設置場所を、測定データの測定場所に特定する。
 また、ステップS107において、通信ユニット(11)の制御部(113)が、固有の情報(X)と測定データとを対応付ける。その結果、測定場所を特定するための情報を測定データに対して容易に付与することができる。
 また、サーバ(30)の制御部(33)が固有の情報(X)に基づいて、測定装置(20)による測定データの測定場所を特定できる。これにより、測定者が測定データの測定作業を行う際に、測定データの測定場所を特定する作業(例えば、測定データと、測定データの測定場所を示す情報と、を対応付けた情報を作成する作業)を行う必要がない。その結果、測定者は、測定データの測定作業を容易に行うことができる。また、サーバ(30)の管理者が、サーバ(30)上で測定データを管理する作業を行う際に、固有の情報(X)に基づいて、どこで測定した測定データかを容易に認識できる。
 ―レポート作成―
 なお、サーバ(30)の制御部(33)は、状態データ送信処理(図4参照)において記憶部(32)に記憶した第1対応付けデータ(固有の情報(X)と対応付いた状態データ)と、測定データ送信処理の第1例(図5参照)において記憶部(32)に記憶した第2対応付けデータ(固有の情報(X)と対応付いた測定データ)とを用いてレポートを作成してもよい。レポートは建築物における衛生的環境の確保に関する法律(略称、ビル衛生管理法)のような規定(法令)により所定機関(例えば、保健所等の公的機関)に提出することが義務付けられたデータである。
 レポートは、対応付いた固有の情報(X)が一致する測定データと状態データとを含む。
 また、レポートは、測定データの測定場所を示す情報をさらに含む。レポートにおいて、測定データの測定場所を示す情報は、固有の情報(X)に含まれる空気処理装置(10)の設置場所を示す情報が用いられる。なお、固有の情報(X)が空気処理装置(10)の識別情報のみで構成され、空気処理装置(10)の設置場所を示す情報を含まない場合は、管理情報(Y)(図2参照)において空気処理装置(10)の識別情報と対応付けられる空気処理装置(10)の設置場所が、レポートにおける測定データの測定場所として用いられる。
 第1対応付けデータに含まれる状態データ(図4参照)と、第2対応付けデータに含まれる測定データ(図5参照)との各々が固有の情報(X)と対応づいているため、サーバ(30)の制御部(33)は、測定データ及び状態データの各々と対応付いた固有の情報(X)を比較することで、レポートの作成に採用する測定データと状態データとを容易に特定できる。具体的には、サーバ(30)の制御部(33)は、同じ固有の情報(X)を有する測定データと状態データとを、レポートの作成に用いるデータとして採用する。その結果、サーバ(30)の制御部(33)が、同じ空気処理装置(10)に対応する測定データと状態データとを含んだレポートを容易に作成できる。
 また、従来は、測定者は、測定データの測定作業を行う毎に、測定データの測定場所を記録する作業を行わなければならず、煩雑であった。しかし、実施形態1では、サーバ(30)の制御部(33)が固有の情報(X)に基づいて測定データの測定場所を特定するので、測定者が測定データの測定場所を記録する作業を行う必要がない。その結果、レポートを容易に作成できる。
 《実施形態2》
 図1及び図6を参照して、測定データ送信処理の第2例について説明する。図6は、測定データ送信処理の第2例を示すフロー図である。測定データ送信処理の第1例では、通信ユニット(11)が第2対応付けデータを作成する。これに対し、測定データ送信処理の第2例では、測定装置(20)が第2対応付けデータを作成する点が第1例と異なる。
 図1及び図6に示すように、ステップS201において、測定装置(20)の検出部(21)が、対象空間の環境を表す測定値を検出して当該測定値を示す測定データを生成する。
 ステップS202において、測定装置(20)の通信部(24)が通信ユニット(11)に対してデータ送信要求情報を送信する。
 ステップS203において、通信ユニット(11)の通信部(111)がサーバ(30)に対して、リクエスト情報と、接続許可キーとを送信する。
 ステップS204において、サーバ(30)の通信部(31)が、通信ユニット(11)に対して、許可情報を送信する。
 ステップS205において、通信ユニット(11)の通信部(111)が、測定装置(20)に対して、固有の情報(X)と、接続許可キーとを送信する。その結果、測定装置(20)の通信部(24)が固有の情報(X)と、接続許可キーとを受信する。
 ステップS206において、測定装置(20)の制御部(26)が、固有の情報(X)と測定データとを対応付けることで、第2対応付けデータを作成する。
 ステップS207において、測定装置(20)の通信部(24)が通信ユニット(11)に対して第2対応付けデータを送信する。その結果、通信ユニット(11)の通信部(111)が第2対応付けデータを受信する。
 ステップS208において、通信ユニット(11)の通信部(111)がサーバ(30)に対して、第2対応付けデータと、接続許可キーとを送信する。
 ステップS209において、サーバ(30)の制御部(33)が、ステップS203においてリクエスト情報と共に受信した接続許可キーと、ステップS208において第2対応付けデータと共に受信した接続許可キーとが一致するか否かを判定する。各接続許可キーが互いに一致する場合は(ステップS209で、Yes)、処理がステップS210に移行する。各接続許可キーが互いに一致しない場合は(ステップS209で、No)、測定データ送信処理の第2例が終了する。
 ステップS210において、サーバ(30)の記憶部(32)が、第2対応付けデータを記憶する。その結果、測定データ送信処理の第2例が終了する。
 ―実施形態2の効果―
 以上、図1及び図6を参照して説明したように、ステップS207において、測定装置(20)が通信ユニット(11)に、固有の情報(X)と対応付いた測定データ(第2対応付けデータ)を送信する。従って、通信ユニット(11)の通信部(111)は、測定装置(20)から送信された第2対応付けデータを、データ加工することなく、そのままの状態でサーバ(30)に送信できる。その結果、第2対応付けデータに含まれる測定データの正確性を確保できる。
 《実施形態3》
 図1及び図7を参照して、測定データ送信処理の第3例について説明する。図7は、測定データ送信処理の第3例を示すフロー図である。測定データ送信処理の第3例は、測定データ送信処理の第1例の変形例である。測定データ送信処理の第1例(図5参照)では、サーバ(30)から許可情報(サーバ(30)に対する測定データのアップロード許可)が送信されていない状態では、測定装置(20)から通信ユニット(11)に対して測定データを送信することができない。これに対し、測定データ送信処理の第3例では、サーバ(30)から許可情報が送信されていない状態でも、測定装置(20)から通信ユニット(11)に対して測定データを送信可能である点が第1例と異なる。
 図1及び図7に示すように、ステップS301において、測定装置(20)の検出部(21)が、対象空間の環境を表す測定値を検出して当該測定値を示す測定データを生成する。
 ステップS302において、測定装置(20)の通信部(24)が通信ユニット(11)に対してデータ送信要求情報を送信する。
 ステップS303において、通信ユニットの通信部(111)が、測定装置(20)に対して接続許可キーを送信すると共に、サーバ(30)に対してリクエスト情報と接続許可キーとを送信する。その結果、測定装置(20)の通信部(24)が接続許可キーを受信し、さらに、サーバ(30)の通信部(31)がリクエスト情報と接続許可キーとを受信する。
 ステップS304において、測定装置(20)の通信部(24)が通信ユニット(11)に対して測定データを送信する。
 ステップS305において、通信ユニット(11)の記憶部(112)が測定データを記憶する。
 ステップS306において、通信ユニット(11)の通信部(111)が、測定装置(20)に対して第1完了情報を送信する。その結果、測定装置(20)の通信部(24)が第1完了情報を受信する。第1完了情報は、通信ユニット(11)の記憶部(112)に測定データを記憶する処理が完了したことを示す情報である。
 ステップS307において、測定装置(20)の表示部(22)が、第1完了情報を表示する。その結果、測定データがサーバ(30)へ未送信の状態でも、測定者は表示部(22)の表示内容を確認することで、測定装置(20)による測定データの測定作業が完了したことを認識できる。
 ステップS308において、サーバ(30)の通信部(31)が、通信ユニット(11)に対して、許可情報を送信する。
 ステップS309において、通信ユニット(11)の制御部(113)が、固有の情報(X)と測定データとを対応付けることで、第2対応付けデータを作成する。
 ステッップS310において、通信ユニット(11)の通信部(111)がサーバ(30)に対して、第2対応付けデータと、接続許可キーとを送信する。
 ステップS311において、サーバ(30)の制御部(33)が、ステップS303においてリクエスト情報と共に受信した接続許可キーと、ステップS310において第2対応付けデータと共に受信した接続許可キーとが一致するか否かを判定する。各接続許可キーが互いに一致する場合は(ステップS311で、Yes)、処理がステップS312に移行する。各接続許可キーが互いに一致しない場合は(ステップS311で、No)、測定データ送信処理の第3例が終了する。
 ステップS312において、サーバ(30)の記憶部(32)が、第2対応付けデータを記憶する。その結果、測定データ送信処理の第3例が終了する。
 ―実施形態3の効果―
 以上、図1及び図7を参照して説明したように、ステップS305において、通信ユニット(11)の記憶部(112)が測定データを記憶する。従って、通信ユニット(11)の通信部(111)は、定期的な通信タイミングに合わせてサーバ(30)に測定データを送信できる。また、通信ユニット(11)の通信部(111)がサーバ(30)に対して、定期的な通信タイミングに合わせて測定データを送信することで、通信ユニット(11)とサーバ(30)との通信頻度を低減できるので、通信費を抑制できる。
 また、記憶部(112)に測定データが記憶されることで、通信ユニット(11)は、測定装置(20)から測定データを受信する毎に、受信した測定データをサーバ(30)へ送信する必要がなく、回線が混んでいない時間帯や、他のデータ(例えば、状態データ(ドレンパンカメラ画像の画像データ))をサーバ(30)へ送信するタイミングに合わせて、測定データをサーバ(30)へ送信できる。その結果、測定データをサーバ(30)へ効率的に送信できる。
 また、ステップS305において、通信ユニット(11)の記憶部(112)に測定データを記憶する記憶処理が完了すると、ステップS306において、通信ユニット(11)の通信部(111)が測定装置(20)に対して、記憶処理が完了したことを示す第1完了情報を送信する。これにより、測定者が測定装置(20)による第1完了情報の受信を確認することで、通信ユニット(11)の記憶部(112)に測定データが記憶されたことを認識できる。その結果、測定者は、測定データがサーバ(30)に送信されるまで、測定場所で待つ必要がなく、測定データを測定装置(20)から通信ユニット(11)へ送信する作業を完了すれば測定作業を終了させることができる。
 また、ステップS303において、通信ユニット(11)の送信部(111)が、測定装置(20)に対して、通信ユニット(11)と通信接続することを許可する接続許可キー(接続許可情報)を送信すると共に、サーバ(30)に対して、通信ユニット(11)と通信接続することを要求するリクエスト情報を送信する。これによると、サーバ(30)からリクエスト情報に対する通信許可の応答(許可情報)を待つことがなく、通信ユニット(11)が測定装置(20)から測定データを取得できる(図7のステップS304、及びステップS308参照)。これにより、サーバ(30)と通信ユニット(11)との通信回線が混んでおり、通信ユニット(11)がサーバ(30)との通信が困難な状態でも、測定者が測定装置(20)から通信ユニット(11)へ測定データを送信させることができる。その結果、測定者が、サーバ(30)と通信ユニット(11)との通信状態が回復するまで待つことなく、測定装置(20)から測定データを送信する作業を行えるので、測定データを容易に送信できる。
 《実施形態4》
 図1及び図8を参照して、測定データ送信処理の第4例について説明する。図8は、測定データ送信処理の第4例を示すフロー図である。測定データ送信処理の第4例は、測定データ送信処理の第2例の変形例である。測定データ送信処理の第2例(図6参照)では、サーバ(30)から許可情報が送信されていない状態では、測定装置(20)から通信ユニット(11)に対して第2対応付けデータ(測定データ及び固有情報(X))を送信することができない。これに対し、測定データ送信処理の第4例では、サーバ(30)から許可情報が送信されていない状態でも、測定装置(20)から通信ユニット(11)に対して第2対応付けデータを送信可能である点が第2例と異なる。
 図1及び図8に示すように、ステップS401において、測定装置(20)の検出部(21)が、対象空間の環境を表す測定値を検出して当該測定値を示す測定データを生成する。
 ステップS402において、測定装置(20)の通信部(24)が通信ユニット(11)に対してデータ送信要求情報を送信する。
 ステップS403において、通信ユニットの通信部(111)が、測定装置(20)に対して固有の情報(X)と接続許可キーとを送信すると共に、サーバ(30)に対してリクエスト情報と接続許可キーとを送信する。その結果、測定装置(20)の通信部(24)が固有の情報(X)と接続許可キーを受信し、さらに、サーバ(30)の通信部(31)がリクエスト情報と接続許可キーとを受信する。
 ステップS404において、測定装置(20)の制御部(26)が、固有の情報(X)と測定データとを対応付けることで、第2対応付けデータを作成する。
 ステップS405において、測定装置(20)の通信部(24)が通信ユニット(11)に対して第2対応付けデータを送信する。
 ステップS406において、通信ユニット(11)の記憶部(112)が第2対応付けデータを記憶する。
 ステップS407において、通信ユニット(11)の通信部(111)が、測定装置(20)に対して第2完了情報を送信する。その結果、測定装置(20)の通信部(24)が第2完了情報を受信する。第2完了情報は、通信ユニット(11)の記憶部(112)に第2対応付けデータを記憶する処理が完了したことを示す情報である。
 ステップS408において、測定装置(20)の表示部(22)が、第2完了情報を表示する。その結果、測定データを含む第2対応付けデータがサーバ(30)へ未送信の状態でも、測定者は表示部(22)の表示内容を確認することで、測定装置(20)による測定データの測定作業が完了したことを認識できる。
 ステップS409において、サーバ(30)の通信部(31)が、通信ユニット(11)に対して、許可情報を送信する。
 ステッップS410において、通信ユニット(11)の通信部(111)がサーバ(30)に対して、第2対応付けデータと、接続許可キーとを送信する。
 ステップS411において、サーバ(30)の制御部(33)が、ステップS403においてリクエスト情報と共に受信した接続許可キーと、ステップS410において第2対応付けデータと共に受信した接続許可キーとが一致するか否かを判定する。各接続許可キーが互いに一致する場合は(ステップS411で、Yes)、処理がステップS412に移行する。各接続許可キーが互いに一致しない場合は(ステップS411で、No)、測定データ送信処理の第4例が終了する。
 ステップS412において、サーバ(30)の記憶部(32)が、第2対応付けデータを記憶する。その結果、測定データ送信処理の第4例が終了する。
 ―実施形態4の効果―
 実施形態4は、実施形態2及び実施形態3と同様の効果を有するので、効果の記載は省略する。
 《その他の実施形態》
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう(例えば、(1)~(10))。また、以上の実施形態および変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。
 (1)実施形態2~実施形態4の各々においても、実施形態1と同様に、サーバ(30)の制御部(33)が、状態データ送信処理(図4参照)において記憶部(32)に記憶された第1対応付けデータと、測定データ送信処理の第2例~第3例の各々(図6~図8参照)において記憶部(32)に記憶された第2対応付けデータとを用いてレポートを作成してもよい。
 (2)実施形態3において(図7参照)、測定データが記憶部(112)に記憶される(ステップS305参照)。しかし、本発明はこれに限定されない。通信ユニット(11)の通信部(111)が測定データを受信すると(ステップS304参照)、通信ユニット(11)の制御部(113)が第2対応付けデータを作成して、作成した第2対応付けデータを記憶部(112)に記憶させるように構成してもよい。
 (3)実施形態1のステップS103(図5参照)、実施形態2のステップS203(図6参照)、実施形態3のステップS303、及び、実施形態4のステップS403の各々において、通信ユニット(11)からサーバ(30)へ、リクエスト情報と共に固有の情報(X)が送信されてもよい。言い換えれば、ステップS103、ステップS203、ステップS303、及び、ステップS403の各々において、サーバ(30)に対して、接続許可キーの代わりに固有の情報(X)が送信されてもよい。
 この場合、実施形態1のステップS108、実施形態2のステップS208、実施形態3のステップS310、及び、実施形態4のステップS410の各々において、通信ユニット(11)からサーバ(30)へ第2対応付けデータが送信される際、接続許可キーが送信されなくてもよい。
 この場合、実施形態1のステップS109(図5参照)、実施形態2のステップS209(図6参照)、実施形態3のステップS311、及び、実施形態4のステップS411の各々において、リクエスト情報と共に送信された固有の情報(X)と、第2対応付けデータに含まれる固有の情報(X)とが互いに一致するか否かが判定される。そして、各固有の情報(X)が互いに一致する場合は(ステップS109、ステップS209、ステップS311、及び、ステップS411の各々で、Yes)、第2対応付けデータがサーバ(30)の記憶部(32)に記憶される(ステップS110、ステップS210、ステップS312、及び、ステップS412参照)。これに対し、各固有の情報(X)が互いに一致しない場合(ステップS109、ステップS209、ステップS311、及び、ステップS411の各々で、No)、各処理(測定データ送信処理の第1例~第4例の各々)が終了する。
 (4)実施形態1~実施形態4において、通信ユニット(11)と測定装置(20)とをペアリングするための構成については特に限定されない。例えば、測定装置(20)の通信部(24)の通信圏内に位置している空気処理装置(X)の通信ユニット(11)が測定装置(20)の表示部(22)に表示され、複数の通信ユニット(11)が表示される場合は、測定者が操作部(23)を操作して、複数の通信ユニット(11)のうちから、測定装置(20)と通信接続する通信ユニット(11)を選択するように構成してもよい。この場合、測定者は、複数の通信ユニット(11)のうち測定装置(20)に最も近い場所に位置している通信ユニット(11)を選択してもよい。また、測定装置(20)と通信接続する通信ユニット(11)を選択する処理は、測定者ではなく、測定装置(20)の制御部(26)が行ってもよい。この場合、測定装置(20)の制御部(26)は、例えば、複数の通信ユニット(11)のうち測定装置(20)に最も近い場所に位置している通信ユニット(11)を選択するように規定された所定の制御プログラムに基づいて、通信ユニット(11)を選択する。
 また、測定装置(20)の記憶部(25)には、測定装置(20)の通信部(24)の通信圏内に通信ユニット(11)が位置すると、通信部(24)が通信ユニット(11)に対して測定データを送信するためのアクセスを開始するように通信部(24)を動作させるアプリ(アプリケーション)が記憶されていてもよい。
 (5)実施形態1~実施形態4において、測定装置(20)が通信ユニット(11)と通信を行うための構成は特に限定されない。測定装置(20)が、例えば、NFC(Near field communication)、Bluetooth(登録商標)、Wi-Fi(登録商標)、ZigBee(登録商標)、IrDA(Infrared Data Association)等の通信方式を用いて通信ユニット(11)と無線通信を行ってもよい。
 また、実施形態1~実施形態4において、測定データ送信処理の第1例から第4例が行われる際に(図5~図8参照)、測定者が測定装置(20)の通信部(24)と通信ユニット(11)の通信部(111)とを通信ケーブル等で有線接続することで、測定装置(20)と通信ユニット(11)との間で有線通信が行われてもよい。
 (6)空気処理装置は、調湿装置、換気装置、及び空気清浄機のうちの少なくとも1つの機器の構成を有していてもよい。調湿装置は、対象空間の空気の湿度を調節する。換気装置は、対象空間を換気する。空気清浄機は、対象空間の空気を浄化する。
 (7)サーバ(30)は、受信した測定データを受信時のファイル形式のままストレージが可能なものであってもよい。その結果、ステップS110(図5参照)、ステップS210(図6参照)、ステップS312(図7参照)、及びステップS412(図8参照)の各々において、サーバ(30)の記憶部(25)に記憶された測定データの正当性を効果的に確保することができる。
 (8)以上に述べた「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。
 (9)図5に示す実施形態1において、通信ユニット(11)が測定データを受信した後(ステップS106参照)、通信ユニット(11)の記憶部(112)に測定データが記憶される処理、通信ユニット(11)から測定装置(20)に第1完了情報が送信される処理、及び、測定装置(20)の表示部(22)に第1完了情報が表示される処理が行われてもよい。すなわち、第1実施形態において、ステップS106に示す処理(図5参照)が行われた後、ステップS305~ステップS307に示す処理(図7参照)が行われてもよい。その結果、測定データがサーバ(30)へ未送信の状態でも、測定者は表示部(22)の表示内容を確認することで、測定装置(20)による通信ユニット(11)への測定データの送信が完了したことを認識でき、測定作業を終了できる。
 (10)図6に示す実施形態2において、通信ユニット(11)が第2対応付けデータを受信した後(ステップS207参照)、通信ユニット(11)の記憶部(112)に第2対応付けデータが記憶される処理、通信ユニット(11)から測定装置(20)に第2完了情報が送信される処理、及び、測定装置(20)の表示部(22)に第2完了情報が表示される処理が行われてもよい。すなわち、第2実施形態において、ステップS207に示す処理(図6参照)が行われた後、ステップS406~ステップS408に示す処理(図8参照)が行われてもよい。その結果、測定データがサーバ(30)へ未送信の状態でも、測定者は表示部(22)の表示内容を確認することで、測定装置(20)による通信ユニット(11)への第2対応付けデータの送信が完了したことを認識でき、測定作業を終了できる。
 以上説明したように、本開示は、通信ユニット、空気処理装置、空気処理装置の通信システム、及び空気処理装置の通信方法について有用である。
 10 空気処理装置
 11 通信ユニット
 12 状態取得装置
 20 測定装置
 30 サーバ
 111 通信部(送信部、受信部)
 112 記憶部
 113 制御部

Claims (19)

  1.  空気処理装置(10)に設けられる通信ユニット(11)であって、
     前記空気処理装置(10)とは別体の移動可能な測定装置(20)から送られる測定データを受信する受信部(111)と、
     前記空気処理装置(10)の固有の情報と対応付いた前記測定データをサーバ(30)へ送信する送信部(111)と
     を備えることを特徴とする通信ユニット。
  2.  請求項1において、
     前記測定データを記憶する記憶部(112)をさらに備えることを特徴とする通信ユニット。
  3.  請求項2において、
     前記記憶部(112)に前記測定データが記憶される記憶処理が完了すると、前記送信部(111)が前記測定装置(20)に前記記憶処理が完了したことを示す情報を送信することを特徴とする通信ユニット。
  4.  請求項1~3のいずれか1項において、
     前記測定データに前記固有の情報を付与することで前記測定データと前記固有の情報とを対応付ける制御部(113)をさらに備えることを特徴とする通信ユニット。
  5.  請求項1~3のいずれか1項において、
     前記送信部(111)は、前記測定装置(20)へ前記固有の情報を送信し、
     前記受信部(111)は、前記測定装置(20)から送信される前記固有の情報と対応付いた前記測定データを受信することを特徴とする通信ユニット。
  6.  請求項1~5のいずれか1項において、
     水平の通信距離が2m以上かつ10m以下の無線通信を介して前記測定装置(20)と通信することを特徴とする通信ユニット。
  7.  請求項1~6のいずれか1項において、
     前記空気処理装置(10)の固有の情報は、前記空気処理装置(10)が設置されている階層情報、前記空気処理装置(10)が設置されている位置情報、及び、前記空気処理装置(10)の識別情報のうちの少なくとも1つの情報を含むことを特徴とする通信ユニット。
  8.  請求項1~7のいずれか1項において、
     前記受信部(111)は、前記空気処理装置(10)により空気の処理が行われる対象空間における、温度、湿度、CO濃度、CO濃度、粉塵濃度、気流、照度、騒音、及び、VOC濃度のうちの少なくとも1つを表すデータを、前記測定データとして受信することを特徴とする通信ユニット。
  9.  請求項1~8のいずれか1項において、
     前記受信部(111)は、前記空気処理装置(10)に設けられた状態取得装置(12)から前記空気処理装置(10)の状態を表す状態データをさらに受信し、
     前記送信部(111)は、前記固有の情報と対応付いた前記状態データを前記サーバ(30)へさらに送信することを特徴とする通信ユニット。
  10.  請求項9において、
     前記状態データには、前記空気処理装置(10)の内部の状態を表す画像データが含まれることを特徴とする通信ユニット。
  11.  請求項1~10のいずれか1項に記載の通信ユニット(11)を備えることを特徴とする空気処理装置。
  12.  請求項1~10のいずれか1項に記載の通信ユニット(11)と、
     前記サーバ(30)と、
     前記測定装置(20)と
     を備えることを特徴とする空気処理装置の通信システム。
  13.  請求項9または10に記載の通信ユニット(11)と、
     前記サーバ(30)と、
     前記測定装置(20)と、
     前記状態取得装置(12)と
     を備え、
     前記サーバ(30)は、前記固有の情報が一致する前記測定データと前記状態データとを含んだレポートを作成することを特徴とする空気処理装置の通信システム。
  14.  請求項12または請求項13に記載の通信システムであって、
     前記測定装置(20)は、
     前記通信ユニット(11)と通信する通信部(24)と、
     前記通信部(24)の通信圏内に位置している複数の前記通信ユニット(11)のうち前記測定装置(20)と通信接続する前記通信ユニット(11)の選択を受け付ける操作部(23)と
     を備え、
     前記測定装置(20)の測定データと、前記操作部(23)により選択された前記通信ユニット(11)を含む前記空気処理装置(10)の固有の情報とが対応付けられることを特徴とする通信システム。
  15.  請求項12または請求項13に記載の通信システムであって、
     前記測定装置(20)は、
     前記通信ユニット(11)と通信する通信部(24)と、
     前記通信部(24)の通信圏内に位置している複数の前記通信ユニット(11)のうち前記測定装置(20)と通信接続する前記通信ユニット(11)を選択する制御部(26)と
     を備え、
     前記測定装置(20)の測定データと、前記制御部(26)により選択された前記通信ユニット(11)を含む前記空気処理装置(10)の固有の情報とが対応付けられることを特徴とする通信システム。
  16.  空気処理装置(10)に設けられた通信ユニット(11)を用いる通信方法であって、
     前記空気処理装置(10)とは別体の移動可能な測定装置(20)から送信された測定データを前記通信ユニット(11)の受信部(111)が受信するステップと、
     前記通信ユニット(11)の制御部(113)が、前記測定データに前記空気処理装置(10)の固有の情報を付与することで前記測定データと前記固有の情報とを対応付けるステップと、
     前記通信ユニット(11)の送信部(111)がサーバ(30)に対して前記固有の情報が対応付いた前記測定データを送信するステップと
     を含むことを特徴とする空気処理装置の通信方法。
  17.  空気処理装置(10)に設けられた通信ユニット(11)を用いる通信方法であって、
     前記通信ユニット(11)の送信部(111)が、前記空気処理装置(10)とは別体の移動可能な測定装置(20)に対して、前記空気処理装置(10)の固有の情報を送信するステップと、
     前記通信ユニット(11)の受信部(111)が前記固有の情報と対応付いた前記測定装置(20)の測定データを受信するステップと、
     前記通信ユニット(11)の送信部(111)がサーバ(30)に対して、前記固有の情報と対応付いた前記測定データを送信するステップと
     を含むことを特徴とする空気処理装置の通信方法。
  18.  請求項16または17において、
     前記通信ユニット(11)の記憶部(112)が前記測定データを記憶するステップと、
     前記通信ユニット(11)の送信部(111)が前記測定装置(20)に対して、前記記憶部(112)に前記測定データを記憶する記憶処理が完了したことを示す完了情報を送信するステップと
     をさらに含むことを特徴とする空気処理装置の通信方法。
  19.  請求項16から18のいずれか1項において、
     前記通信ユニット(11)の送信部(111)が、前記測定装置(20)から前記通信ユニット(11)へ前記測定データを送信させるために、前記測定装置(20)に対して、前記通信ユニット(11)と通信接続することを許可する接続許可情報を送信すると共に、前記通信ユニット(11)から前記サーバ(30)へ前記測定データを送信するために、前記サーバ(30)に対して、前記通信ユニット(11)と通信接続することを要求するリクエスト情報を送信するステップをさらに含むことを特徴とする空気処理装置の通信方法。
PCT/JP2021/026682 2020-07-16 2021-07-15 通信ユニット、空気処理装置、空気処理装置の通信システム、及び空気処理装置の通信方法 WO2022014690A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21843298.7A EP4164238A4 (en) 2020-07-16 2021-07-15 COMMUNICATION UNIT, AIR HANDLING DEVICE, COMMUNICATION SYSTEM FOR AIR HANDLING DEVICE, AND COMMUNICATION METHOD FOR AIR HANDLING DEVICE
CN202180048979.8A CN115812313A (zh) 2020-07-16 2021-07-15 通信单元、空气处理装置、空气处理装置的通信系统及空气处理装置的通信方法
US18/097,115 US20230151991A1 (en) 2020-07-16 2023-01-13 Communication unit, air treatment apparatus, communication system for air treatment apparatus, and communication method for air treatment apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-122200 2020-07-16
JP2020122200A JP7057524B2 (ja) 2020-07-16 2020-07-16 通信ユニット、空気処理装置、空気処理装置の通信システム、及び空気処理装置の通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/097,115 Continuation US20230151991A1 (en) 2020-07-16 2023-01-13 Communication unit, air treatment apparatus, communication system for air treatment apparatus, and communication method for air treatment apparatus

Publications (1)

Publication Number Publication Date
WO2022014690A1 true WO2022014690A1 (ja) 2022-01-20

Family

ID=79555660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026682 WO2022014690A1 (ja) 2020-07-16 2021-07-15 通信ユニット、空気処理装置、空気処理装置の通信システム、及び空気処理装置の通信方法

Country Status (5)

Country Link
US (1) US20230151991A1 (ja)
EP (1) EP4164238A4 (ja)
JP (1) JP7057524B2 (ja)
CN (1) CN115812313A (ja)
WO (1) WO2022014690A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150590A (ja) * 2007-12-19 2009-07-09 Daikin Ind Ltd 空調システム
JP2015148396A (ja) * 2014-02-07 2015-08-20 富士通株式会社 制御システム、および制御方法
JP2017527051A (ja) 2014-07-08 2017-09-14 ヨンウン キム 空気質測定装置と無線端末機とを連動した空気質報知装置及びその空気質報知方法
WO2019049363A1 (ja) * 2017-09-11 2019-03-14 三菱電機株式会社 空気調和機および空気調和機の制御方法
JP2019060539A (ja) * 2017-09-26 2019-04-18 株式会社富士通ゼネラル 空気調和装置
JP2019517917A (ja) * 2016-05-31 2019-06-27 ブルーエアー・エービー エアフィルターの利用能力を決定するための方法
JP2020088803A (ja) * 2018-11-30 2020-06-04 Kddi株式会社 遠隔監視システム、遠隔監視制御装置、コンピュータプログラム及び遠隔監視方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100526824B1 (ko) * 2003-06-23 2005-11-08 삼성전자주식회사 실내환경조절시스템 및 그 제어방법
CN105444350A (zh) * 2015-12-01 2016-03-30 杭州钛合智造电器有限公司 一种空气净化器、空气质量控制方法及系统
US20170284690A1 (en) * 2016-04-01 2017-10-05 Softarex Technologies, Inc. Mobile environment monitoring system
WO2020110424A1 (ja) * 2018-11-30 2020-06-04 日立ジョンソンコントロールズ空調株式会社 漏洩検知装置及び漏洩検知システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150590A (ja) * 2007-12-19 2009-07-09 Daikin Ind Ltd 空調システム
JP2015148396A (ja) * 2014-02-07 2015-08-20 富士通株式会社 制御システム、および制御方法
JP2017527051A (ja) 2014-07-08 2017-09-14 ヨンウン キム 空気質測定装置と無線端末機とを連動した空気質報知装置及びその空気質報知方法
JP2019517917A (ja) * 2016-05-31 2019-06-27 ブルーエアー・エービー エアフィルターの利用能力を決定するための方法
WO2019049363A1 (ja) * 2017-09-11 2019-03-14 三菱電機株式会社 空気調和機および空気調和機の制御方法
JP2019060539A (ja) * 2017-09-26 2019-04-18 株式会社富士通ゼネラル 空気調和装置
JP2020088803A (ja) * 2018-11-30 2020-06-04 Kddi株式会社 遠隔監視システム、遠隔監視制御装置、コンピュータプログラム及び遠隔監視方法

Also Published As

Publication number Publication date
US20230151991A1 (en) 2023-05-18
EP4164238A1 (en) 2023-04-12
CN115812313A (zh) 2023-03-17
JP2022018824A (ja) 2022-01-27
EP4164238A4 (en) 2023-11-08
JP7057524B2 (ja) 2022-04-20

Similar Documents

Publication Publication Date Title
KR101892345B1 (ko) 근거리 무선통신을 이용한 미세먼지 측정 시스템
CN110057033B (zh) 空调系统及计算机可读取的存储介质
KR101765454B1 (ko) 스마트 환경 센서 시스템
JP5755556B2 (ja) 空調制御装置、空調制御システム及び空調制御プログラム
KR101885720B1 (ko) Iot환경 개별 실내 공기질 제어가 가능한 원격 빌딩 제어 시스템
KR101737748B1 (ko) 설치 장소 책정 지원 방법, 단말 장치, 설치 장소 책정 지원 시스템 및 프로그램
KR101898101B1 (ko) Iot 상호작용 시스템
JP2005179026A (ja) 機器管理システム
JP6005208B2 (ja) 遠隔制御システム、電気機器、および、プログラム
JP2011247515A (ja) 環境制御システム、システムコントローラ及び環境制御方法
JP2014195227A (ja) 電気機器の遠隔操作システム
WO2022014690A1 (ja) 通信ユニット、空気処理装置、空気処理装置の通信システム、及び空気処理装置の通信方法
WO2019008960A1 (ja) 空調制御装置、環境設定端末、空調制御方法及びプログラム
JP2006340060A (ja) 制御対象機器およびその監視制御システム
JP2015148396A (ja) 制御システム、および制御方法
JP2020193743A (ja) データ収集装置、無人航空機、データ収集システム、データ収集方法、運転状態データ取得方法及びプログラム
JP2010033279A (ja) 空調機の運転監視装置、運転監視システム及び運転監視方法
JP7086187B2 (ja) 監視システム及び監視方法
JP7370173B2 (ja) 空気調和機管理装置、空気調和システム、空気調和機管理方法およびプログラム
JP5933142B2 (ja) 通信装置及び通信方法及びプログラム
WO2017168668A1 (ja) 室内機管理システム
JP7228461B2 (ja) 空調制御システム及び空調制御方法
JP2015081718A (ja) センサシステム
KR20190103501A (ko) 사물인터넷에 기반하여 환기장치를 제어하는 관제시스템 및 이를 포함하는 실내 공기질 개선 시스템
KR102554606B1 (ko) 측정된 실내공기질을 기반으로 다수의 공기 관리 장치를 연동하여 자동 관리할 수 있는 스마트 실내공기질 관리 시스템 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21843298

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021843298

Country of ref document: EP

Effective date: 20230105

NENP Non-entry into the national phase

Ref country code: DE