WO2022011660A1 - 一种双向车载充电机、放电方法和电动汽车 - Google Patents

一种双向车载充电机、放电方法和电动汽车 Download PDF

Info

Publication number
WO2022011660A1
WO2022011660A1 PCT/CN2020/102551 CN2020102551W WO2022011660A1 WO 2022011660 A1 WO2022011660 A1 WO 2022011660A1 CN 2020102551 W CN2020102551 W CN 2020102551W WO 2022011660 A1 WO2022011660 A1 WO 2022011660A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
discharge port
power
vehicle
electric vehicle
Prior art date
Application number
PCT/CN2020/102551
Other languages
English (en)
French (fr)
Inventor
张辉
吴壬华
宋安国
Original Assignee
深圳欣锐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳欣锐科技股份有限公司 filed Critical 深圳欣锐科技股份有限公司
Priority to PCT/CN2020/102551 priority Critical patent/WO2022011660A1/zh
Priority to CN202080005569.0A priority patent/CN112912272A/zh
Publication of WO2022011660A1 publication Critical patent/WO2022011660A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present application relates to the technical field of chargers, and in particular, to a bidirectional vehicle-mounted charger, a discharging method and an electric vehicle.
  • the existing two-way on-board charger can realize the charging mode to the power battery pack of the electric vehicle when the power consumption of the power grid is low, and can also realize that when the electric vehicle is off the grid, the power battery pack can supply power to household or external appliances (V2L, Vehicle to Load), to meet the needs of electricity consumption such as outings and entertainment.
  • V2L Vehicle to Load
  • electric vehicles can be used as emergency power supplies in natural disasters such as earthquakes and typhoons, and supply power to households through existing two-way on-board chargers (V2H, Vehicle to Home).
  • V2H Vehicle to Home
  • the two-way on-board charger in the prior art can only supply power to an external load when the electric vehicle is parked, but cannot supply power to in-vehicle entertainment devices such as computers and mobile phones while the electric vehicle is running, which greatly limits the two-way Application range of car chargers.
  • the present application provides a two-way on-board charger, a discharging method and an electric vehicle.
  • the two-way on-board charger can provide electrical energy for external loads such as mobile phones and computers in the vehicle during the driving process of the electric vehicle.
  • the present application provides a two-way vehicle-mounted charger, which may include: a first AC interface, a second AC interface, a DC interface, and a switch circuit; the first AC interface and the second AC interface are respectively connected to the The switch circuit is connected: the first AC interface is connected to the first discharge port, the second AC interface is connected to the second discharge port, and the first discharge port and the second discharge port are used to connect external loads;
  • the first discharge port is arranged outside the body of the electric vehicle, the second discharge port is arranged inside the body of the electric vehicle, and the DC interface is used to connect the power battery of the electric vehicle; when the electric vehicle is in a running state , the two-way vehicle charger is used for receiving the electric energy of the power battery through the DC interface, and for controlling the second discharge port connected with the second AC interface through the switch circuit to charge the power
  • the electric energy of the battery is transmitted to the external load; when the electric vehicle is in a parking state, the two-way on-board charger is used to receive the electric energy of the power battery through the DC
  • the first discharge port is also used to connect to an external power grid; when the electric vehicle is in a parked state, the two-way on-board charger is also used to control communication with the electric vehicle through the switch circuit.
  • the first discharge port connected to the first AC interface receives the electric energy of the external power grid, and is used for transmitting the electric power of the external power grid to the power battery through the DC interface.
  • the first discharge port and the second discharge port are specifically used to connect the external load through a plug-in board, and are specifically used to connect the power battery through the plug-in board
  • the electrical energy is transmitted to the external load; the external load includes one or more electrical consumers.
  • the bidirectional on-board charger further includes a power converter, the DC interface is connected to the power converter, and the first AC interface and the second AC interface pass through the A switch circuit is connected to the power converter; when the electric vehicle is in a running state, the power converter is configured to receive the electric energy of the power battery through the DC interface, and process the electric energy of the power battery;
  • the switch circuit is used to transmit the electric energy of the power battery processed by the power converter to the external load through the second discharge port connected to the second AC interface; when the electric vehicle When in the parking state, the power converter is used to receive the electric energy of the power battery through the DC interface, and process the electric energy of the power battery; the switch circuit is used to The electric energy of the power battery is transmitted to the external load through the second discharge port connected with the second AC interface and/or the first discharge port connected with the first AC interface.
  • the switch circuit when the electric vehicle is in a parking state, is further configured to receive the electric energy of the external power grid through the first discharge port connected to the first AC interface, and transmit the electrical energy of the external power grid to the power converter; the power converter is also used to process the electrical energy of the external power grid, and convert the power of the external power grid processed by the power converter to the power converter. The electrical energy is transmitted to the power battery through the DC interface.
  • the first AC interface is connected in parallel with the second AC interface;
  • the switch circuit includes at least one switch connected to the first AC interface and connected to the second AC interface at least one switch; the first AC interface and the second AC interface are respectively connected to the power converter through the at least one switch respectively connected.
  • the at least one switch includes one or more of a relay, a mechanical switch, a triode, a metal-oxide semiconductor field effect transistor, an insulated gate bipolar transistor, and a thyristor.
  • the external power grid includes a charging pile, and the charging pile is connected to the ground through a ground wire; the charging pile, the first discharge port and the second discharge port all include an AC live wire and AC neutral.
  • the present application provides a method for discharging based on a two-way on-board charger, which may include: when an electric vehicle is in a driving state, connecting a DC interface of the two-way on-board charger with a power battery of the electric vehicle, and connecting The second discharge port is connected to an external load; receives the power of the power battery through the DC interface, and controls the second discharge port to transmit the power of the power battery to the power battery through the switch circuit of the bidirectional on-board charger.
  • the external load wherein, the second discharge port is arranged in the body of the electric vehicle and is connected to the second AC interface of the two-way on-board charger; when the electric vehicle is in a parked state, the DC The interface is connected to the power battery, and the second discharge port and/or the first discharge port is connected to an external load; the power of the power battery is received through the DC interface, and the switch circuit is used to control the power battery.
  • the second discharge port and/or the first discharge port transmits the electric energy of the power battery to the external load; wherein, the first discharge port is arranged outside the body of the electric vehicle, and is connected with the two-way vehicle body The first AC interface of the charger is connected.
  • the present application provides an electric vehicle, which includes a first discharge port, a second discharge port, a power battery, and the bidirectional vehicle-mounted charger according to any one of the first aspect above.
  • the two-way vehicle-mounted charger provided by the present application adds a second AC interface on the basis of the existing first AC interface of the existing two-way vehicle-mounted charger. And on the basis of the existing first discharge port disposed outside the vehicle body, a second discharge port disposed inside the vehicle body is added, and the second AC interface is connected to the second discharge port.
  • the second discharge port can be arranged in the middle of the driver's seat and the passenger seat, for example, or in the back seat of the vehicle, etc., through which external loads such as mobile phones, computers, and tablets in the car can be connected. Therefore, during the running process of the electric vehicle, the electric energy of the power battery of the electric vehicle can be transmitted to the external load connected to the second discharge port through the second discharge port through the bidirectional on-board charger.
  • the original first discharge port and/or the added second discharge port can also be controlled to supply power to an external load through a switch circuit connected to the first AC port and the second AC port.
  • the embodiment of the present invention satisfies the user's demand for supplying power to in-vehicle loads (such as mobile devices such as mobile phones, tablets, and computers) through the two-way on-board charger during the driving of the electric vehicle, and greatly expands the application range of the two-way on-board charger.
  • FIG. 1 is a schematic structural diagram of a two-way vehicle-mounted charger provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a bidirectional vehicle-mounted charger in a charging state provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of charging of an electric vehicle in a parking state provided by an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of another bidirectional vehicle-mounted charger provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the discharge of an electric vehicle in a running state provided by an embodiment of the present application
  • FIG. 6 is a schematic diagram of discharge of an electric vehicle in a parked state provided by an embodiment of the present application.
  • On Board Changer is mainly used for conventional charging, and its general requirements are high efficiency, large power factor, small output ripple and large allowable range of input voltage.
  • the ideal on-board charger that meets the requirements of lithium-ion power batteries can not only improve the efficiency of the whole vehicle, but also effectively prolong the cycle life of the battery, reduce the use cost of the battery, and shorten the charging time, which is beneficial to increasing the driving range of electric vehicles. It is very important to say that it provides effective support for the practicalization and popularization of electric vehicles.
  • the most special feature of an electric vehicle is that it has a high-capacity power battery pack, and this battery pack can be repeatedly charged and discharged, so an electric vehicle can become an electrical energy storage device.
  • Electric vehicle technology is becoming more and more mature, and people's demand for electric vehicles is also increasing.
  • each electric vehicle can be regarded as a distributed generator.
  • the two-way on-board charger can be used to charge the power battery pack of the electric vehicle when the power consumption of the power grid is low (charging mode). Vehicle to Load) to meet the electricity demand for outings and entertainment.
  • electric vehicles can be used as an emergency power source during natural disasters such as earthquakes and typhoons, supplying power to households through existing two-way on-board chargers (V2H, Vehicle to Home).
  • V2H Vehicle to Home
  • the two-way on-board charger can realize the two-way flow of energy, effectively adjust the peak-to-valley difference of the power grid, and improve the quality of the power grid.
  • FIG. 1 is a schematic structural diagram of a bidirectional vehicle-mounted charger provided by an embodiment of the present application.
  • the two-way vehicle charger 100 may include a first AC interface 101 , a second AC interface 102 , a DC interface 103 , a switch circuit 104 and a power converter 105 .
  • the first AC interface 101 and the second AC interface 102 can be respectively connected to the switch circuit 104 .
  • the first AC port 101 is connected to the first discharge port 106 of the electric vehicle
  • the second AC port 102 is connected to the second discharge port 107 of the electric vehicle.
  • the first discharge port 106 can be a discharge port in the existing electric vehicle charging and discharging technology, and is generally disposed outside the body of the electric vehicle (for example, it can be analogous to the fuel tank filler port of a common motor vehicle).
  • the second discharge port 107 is an additional discharge port in the embodiment of the application, and can be disposed in the body of the electric vehicle (for example, it can be disposed around the driver's seat or the passenger seat, or can be disposed at the bottom of the rear seat of the electric car, or It can be set at positions such as the inner side of the vehicle door, which is not specifically limited in this embodiment of the present application).
  • the first discharge port 106 and the second discharge port 107 can be used to connect external loads (such as mobile phones, tablets, laptops, Bluetooth headsets, lamps, induction cookers, kettles, game consoles, power banks, smart wearable devices, etc. ).
  • the first AC interface 101 , the second AC interface 102 , the first discharge port 106 and the second discharge port 107 all include an AC live wire (AC_L) and an AC neutral wire (AC_N), which can generally provide 220 volts of alternating current (220VAC).
  • AC_L AC live wire
  • AC_N AC neutral wire
  • 220VAC 220 volts of alternating current
  • the power converter 105 is connected to the switch circuit 104 and the DC interface 103 , and the DC interface 103 is used for connecting the power battery 108 of the electric vehicle.
  • the power battery 108 can be generally divided into two categories, including batteries and fuel cells.
  • the batteries are suitable for pure electric vehicles, such as lead-acid batteries, nickel-hydrogen batteries, sodium-sulfur batteries, secondary lithium batteries, air batteries, three primary lithium batteries, etc., which are not specifically limited in the embodiments of the present application.
  • the electric vehicle in the embodiment of the present application may be a pure electric vehicle driven entirely by electricity, or may be a hybrid vehicle driven by both fuel and electricity.
  • a hybrid vehicle that is, a hybrid vehicle
  • a hybrid vehicle also known as a hybrid vehicle (Hybrid Power Automobile)
  • the current hybrid vehicle generally refers to a diesel locomotive generator, plus a battery car.
  • the DC interface 103 and the power battery 108 can generally be connected all the time.
  • the DC interface 103 can include a positive high voltage direct current (HV_DC+) line and a negative high voltage direct current (HV_DC-) as shown in FIG. 1 . )String.
  • the bidirectional on-board charger can only be used to send the electric vehicle to the electric vehicle through the first discharge port 106 when the electric vehicle is parked.
  • the external load connected to the first discharge port 106 supplies power.
  • the two-way on-board charger can be used to pass through the second discharge port 107 during the driving of the electric vehicle through the additional second AC interface 102 and the additional second discharge port 107 provided in the body of the electric vehicle.
  • Supply power to the external load connected to the second discharge port 107 (for example, mobile devices such as mobile phones, tablets, notebook computers and Bluetooth headsets in the car), which solves the problem that the discharge function of the two-way car charger can only be used when parking. Therefore, the application range of the two-way vehicle charger is greatly expanded, and the user's demand for charging the mobile device in the vehicle is satisfied while driving.
  • the circuit connection between the second AC interface 102 and the power converter 105 can be controlled through the switch circuit 104 , so that the power battery 108 can be received through the DC interface 103
  • the electric energy of the power battery 108 is converted into alternating current through the power converter 105 (for example, it may include a bidirectional AC-DC converter), and the second AC interface 102 and the second AC interface connected to the power converter 105 in turn
  • the discharge port 107 supplies power to the external load (for example, it can charge the mobile phone, computer and other devices connected to the second discharge port 107 ), that is, the electric energy of the power battery 108 can be charged by the two-way on-board charger when the electric vehicle is running. transfer to an external load.
  • FIG. 2 is a schematic diagram of a bidirectional on-board charger in a charging state provided by an embodiment of the present application.
  • the first discharge port 106 can also be used to connect to an external power grid, so as to charge the power battery 108 of the electric vehicle.
  • the external power grid may be, for example, a charging pile 20 disposed in a garage or on the side of the road.
  • the charging pile 20 may include a ground wire for connecting to the power grid, and may also include a charging interface 109 for connecting an electric vehicle the first discharge port 106 .
  • FIG. 1 is a schematic diagram of a bidirectional on-board charger in a charging state provided by an embodiment of the present application.
  • the first discharge port 106 can also be used to connect to an external power grid, so as to charge the power battery 108 of the electric vehicle.
  • the external power grid may be, for example, a charging pile 20 disposed in a garage or on the side of the road.
  • the charging pile 20 may include a ground wire for connecting to the power grid
  • the circuit connection between the first AC interface 101 and the power converter 105 can be controlled through the switch circuit 104 , so that the electric energy of the external power grid can be received through the first discharge port 106 , and then the power can be received through the power converter 105 Convert the electrical energy (usually alternating current) of the external power grid into direct current, and transmit the direct current to the power battery 108 of the electric vehicle through the DC interface 103 connected to the power converter 105, that is, to transmit the electrical energy of the external power grid to the power battery 108 , the power battery 108 of the electric vehicle is charged by the bidirectional on-board charger, thereby realizing the bidirectional flow of electric energy.
  • FIG. 3 is a schematic diagram of charging of an electric vehicle in a parking state provided by an embodiment of the present application.
  • the first discharge port 106 can be connected to the external power grid through a device such as a charging gun (in FIG. 3 , the charging pile 20 set on the ground is taken as an example, and the embodiment of the present application does not do this).
  • a device such as a charging gun
  • the electric power of the external power grid can be received through the first discharge port 106, and the power of the external power grid can be transferred to the power battery 108 of the electric vehicle through the two-way on-board charger 100 in the electric vehicle 10, and the power supply of the electric vehicle can be completed.
  • the charging of the power battery 108 ensures the driving of the electric vehicle 10 .
  • the first AC interface 101 may be connected in parallel with the second AC interface 102
  • the switch circuit 104 may include at least one switch connected to the first AC interface 101 , and at least one switch connected to the second AC interface 102 . a switch.
  • the first AC interface 101 can be connected to the power converter 105 through the at least one switch
  • the second AC interface 102 can be connected to the power converter 105 through the at least one switch. Therefore, the circuits between the first AC interface 101 and the second AC interface 102 and the power converter 105 can be controlled through at least one switch connected to the first AC interface 101 and the second AC interface 102 respectively. Connect and disconnect.
  • the switch circuit 104 may include, for example, a switch 1 connected to the first AC interface 101 , and a switch 2 connected to the second AC interface 102 .
  • the first AC interface 101 and the second AC interface 102 is connected to the power converter 105 through switch 1 and switch 2 respectively.
  • the first AC interface 101 and the second AC interface 102 are in a parallel relationship.
  • FIG. 4 only exemplarily shows a possible implementation manner, and in other possible implementation manners, the switch circuit 104 may further include more or less or even different switching devices than those shown in FIG. 4 .
  • the switching devices included in the switch circuit 104 can be relays, mechanical switches, triodes, metal-oxide semiconductor field effect transistors, insulated gate bipolar transistors, and thyristors Any one or more of the above, which are not specifically limited in this embodiment of the present application.
  • the connection relationship between the first AC interface 101 and the second AC interface 102 may also be any other feasible solution, which is not specifically limited in this embodiment of the present application.
  • switch 1 when the electric vehicle is in a driving state, switch 1 can be opened and switch 2 can be closed, so that the circuit between the first AC interface 101 and the power converter 105 is disconnected, and the second AC interface 101 is disconnected.
  • the circuit between the interface 102 and the power converter 105 is connected to transmit the electric energy of the power battery 108 to an external load connected to the second discharge port 107 .
  • the second discharge port 107 can be connected with a plug-in board (for example, it can be a special plug-in board in the discharge technology of electric vehicles, etc., and the plug-in board can be provided with a plurality of double-hole or three-hole sockets).
  • the external load can be connected to the plug-in board (for example, the plug of the plug-in board is connected to the second discharge port 107, and the charger of the mobile phone or computer is connected to the socket on the plug-in board), so as to realize the driving of the electric vehicle.
  • the plug-in board for example, the plug of the plug-in board is connected to the second discharge port 107, and the charger of the mobile phone or computer is connected to the socket on the plug-in board
  • power is supplied to the equipment in the electric vehicle through the second discharge port 107 and the two-way vehicle charger 100 .
  • the second discharge port 107 can also be directly set as a common socket in the car, and chargers of devices such as mobile phones and tablets can be directly connected to the second discharge port 107 .
  • the second discharge port 107 when the second discharge port 107 is set as a common socket in the car, it can also be connected to the second discharge port 107 through a general plug-in board to increase the number of sockets, so as to provide more power in the car.
  • the device is charged to meet the actual needs of the user, etc., which are not specifically limited in this embodiment of the present application.
  • FIG. 5 is a schematic diagram of discharge under a running state of an electric vehicle provided by an embodiment of the present application.
  • the conventional first discharge port 106 is disposed outside the body of the electric vehicle 10 , it is impossible to supply power to the equipment in the vehicle through the first discharge port 106 when the electric vehicle 10 is running.
  • the second discharge port 107 added in the embodiment of the present application is disposed in the body of the electric vehicle 10 , the equipment in the vehicle can be supplied to the electric vehicle 10 through the second discharge port 107 when the electric vehicle 10 is running. powered by.
  • FIG. 4 when the electric vehicle is in a parking state, switch 1 can be closed and switch 2 can be opened, so that the circuit between the first AC interface 101 and the power converter 105 is connected, and the second AC interface is connected. The circuit between 102 and the power converter 105 is disconnected, so as to transmit the electric energy of the power battery 108 to the external load connected to the first discharge port 106 .
  • FIG. 6 is a schematic diagram of the discharge of an electric vehicle in a parking state provided by an embodiment of the present application. As shown in FIG. The special plug-in board in the technology, etc. In FIG.
  • the plug-in board 30 provided with a two-hole socket and two three-hole sockets is used as an example) connection, and external loads can be connected with the plug-in board, so as to realize the electric power
  • power is supplied to an external load through the first discharge port 106 .
  • the plug of the plug-in board 30 can be connected to the first discharge port 106, and external loads such as induction cookers, kettles and lamps can be connected to the sockets of the plug-in board 30, so as to realize electric
  • power is supplied to devices outside the electric car 10 through the second discharge port 107 and the bidirectional on-board charger 100 .
  • the electric energy stored in the power battery 108 of the electric vehicle 10 can be fully utilized to supply power to external loads such as induction cookers, kettles, lamps, etc. through the first discharge port 106, so as to satisfy the user's outdoor life And the electricity demand for entertainment.
  • switch 1 when the electric vehicle is in a parking state, switch 1 can be opened and switch 2 can be closed, so that the circuit between the first AC interface 101 and the power converter 105 is disconnected, and the second AC interface 101 is disconnected.
  • the circuit between the interface 102 and the power converter 105 is connected to transmit the electric energy of the power battery 108 to the external load connected to the second discharge port 107 .
  • the second discharge port 107 when the electric vehicle is parked, the second discharge port 107 can be connected to an external load (in FIG. 6 , mobile devices such as mobile phones and tablets in the vehicle are taken as an example), so that the electric vehicle can pass through the discharge port 107 when the electric vehicle is parked.
  • the second discharge port 107 and the bidirectional on-board charger supply power to an external load, which will not be repeated here.
  • switch 1 and switch 2 may also be closed, so that the circuit between the first AC interface 101 and the power converter 105 is connected, and the second The circuit between the AC interface 102 and the power converter 105 is also connected to transmit the power of the power battery 108 to the external loads connected to the first discharge port 106 and the second discharge port 107 respectively.
  • FIG. 6 when the electric vehicle 10 is parked, and the switch 1 and the switch 2 are both closed, the electric energy of the power battery 108 can be passed through the first discharge port 106 and the second discharge port 106 through the two-way on-board charger 100 , respectively.
  • the second discharge port 107 transmits power to external loads, for example, it can supply power to devices such as induction cookers, kettles and lamps connected to the first discharge port 106, and can also supply power to devices such as mobile phones and tablets connected to the second discharge port 107. Utilizing the electric energy stored in the power battery 108 greatly improves the power supply efficiency and meets the user's demand for supplying power to multiple devices inside and outside the vehicle.
  • the above-mentioned switch circuit 104 (for example, the switch circuit 104 composed of switch 1 and switch 2 shown in FIG. 4 ) can be connected to a control switch (not shown in FIG. 4 ) provided in the electric vehicle, and the user can use the The control switch 1 and switch 2 are in the open or closed state according to the corresponding operation of the control switch.
  • the control switch can be a general push button switch, which can be arranged around the steering wheel of the electric vehicle 10. In the initial state, that is, when both switch 1 and switch 2 are in the off state, if the user (for example, the driver or the passenger) By pressing the button switch once, the switch 1 can be closed, and the switch 2 can be turned off.
  • the electric vehicle 10 can be discharged or charged through the first discharge port 106 when the electric vehicle 10 is parked; if the user presses the button If the switch is pressed twice in a row, the switch 2 can be closed and the switch 1 is in the open state. If the user presses the button switch three times continuously, both switch 1 and switch 2 can be closed.
  • the first discharge port 106 and the second discharge port 107 The electric vehicle 10 can be discharged at the same time when it is parked, or it can be discharged only through the first discharge port 106 when the electric vehicle 10 is running; if the user presses the button switch four times in a row, both switch 1 and switch 2 can be turned off, At this time, the circuits between the first discharge port 106 and the second discharge port 107 and the power converter 105 are all disconnected (that is, the circuits between the first AC interface 101 and the second AC interface 102 and the power converter 105 are all disconnected). disconnected), charging through the first discharge port 106 and discharge through the first discharge port 106 or the second discharge port 107 is not possible.
  • a corresponding indicator light can also be set around the button switch to remind the user of the current closed or open state of the switch 1 and the switch 2, that is, to remind the current work of the first discharge port 106 and the second discharge port 107. or idle state.
  • the control switch can also be a multi-position switch, such as a 4-position switch. When the position switch is pushed to the first position, switch 1 can be closed, and switch 2 is in an open state. , the electric vehicle can be discharged or charged through the first discharge port 106 when the electric vehicle is parked; when the user pushes the gear switch to the second gear, the switch 2 can be closed and the switch 1 is in the off state.
  • the electric vehicle 10 can be discharged through the second discharge port 107 when driving or parking to supply power to external loads such as mobile phones, computers, and tablets; when the user pushes the gear switch to the third gear, the switch 1 can be set to and switch 2 are closed, at this time, the electric vehicle 10 can be discharged through the first discharge port 106 and the second discharge port 107 at the same time when the electric vehicle 10 is parked, or the electric vehicle 10 can be discharged only through the first discharge port 106 when the electric vehicle 10 is running. ; When the user pushes the gear switch to the fourth gear (for example, the off gear), both switch 1 and switch 2 can be turned off.
  • the gear switch to the fourth gear for example, the off gear
  • the control switch may also be any other feasible switch such as a rotary switch, or a switch combination including a plurality of different switches, etc., which is not specifically limited in this embodiment of the present application.
  • the user can control the closing or opening of each switch in the two-way on-board charger 100 very conveniently and simply through the control switch provided in the car, that is, control the first AC interface 101 and the second in the two-way on-board charger 100.
  • the circuit between the AC interface 102 and the power converter 105 is turned on or off, so that the circuit between the first discharge port 106 and the second discharge port 107 and the power converter 105 is controlled to be turned on or off.
  • the user can conveniently close the switch 2 and open the switch 1 through the control switch, so as to select the second discharge port 107.
  • the second discharge port 107 and the two-way on-board charger 100 in the electric vehicle 10 supply power to the mobile phone connected to the second discharge port 107 ; for another example, when the electric vehicle 10 is parked, the user can use the control switch to close switch 1 and disconnect it. Switch 2 to select the first discharge port 106 for charging or discharging.
  • the user can connect the first discharge port 106 to the external power grid (such as a charging pile installed in a garage). 20) Connect, charge the power battery 108 through the first discharge port 106 and the two-way on-board charger 100 in the electric vehicle 10; for example, when the user wants to camp in the wild and needs to supply power to the lamp, the user can use the first discharge port 106 to charge the power battery 108; When the discharge port 106 is connected to the lamp, power is supplied to the lamp connected to the first discharge port 106 through the first discharge port 106 and the bidirectional vehicle charger 100 , etc., which will not be repeated here.
  • the external power grid such as a charging pile installed in a garage
  • the first discharge port 106 can be controlled to discharge or charge during parking, and can be controlled during driving The first discharge port 106 and/or the second discharge port 107 discharge.
  • the first discharge port 106 is a conventional discharge port, that is, an existing discharge port in the existing charging and discharging technology of electric vehicles, which can generally be used for both discharge and charging (when charging, the first discharge port 106 is used for charging and discharging).
  • the discharge port 106 may also be referred to as a charge port).
  • the second discharge port 107 is an additional discharge port in the embodiment of the application, and is disposed inside the body of the electric vehicle.
  • the second discharge port 107 is the same as the second discharge port 107 added in the bidirectional vehicle charger 100 provided in the embodiment of the application.
  • the two AC ports 102 are connected to each other.
  • the second discharge port 107 is only used for discharging in a driving or parking state, that is, for supplying power to an external load connected thereto in a driving or parking state.
  • the second discharge port 107 can also be used for charging, that is, the second discharge port 107 can also be connected to an external power grid, receive electrical energy from the external power grid, and supply power through the two-way on-board charger 100 .
  • the power battery 108 of the electric vehicle 10 is charged, etc., which are not specifically limited in this embodiment of the present application.
  • the structure of the two-way on-board charger 100 provided in the embodiments of the present application is only exemplary, and in some possible implementations, the two-way on-board charger 100 may further include a filter circuit, a communication module and a display screen and so on for other components.
  • the electric vehicle 10 in the embodiment of the present application may include the above-mentioned first discharge port 106 , the second discharge port 107 , the power battery 108 and the two-way on-board charger 100 , and may also include the above-mentioned control switch and indicator light, and so on.
  • the electric vehicle 10 may be a vehicle in the form of a car, a bus, a van, a battery car, a tricycle, a water motorcycle, etc., or even a vehicle set to be partially or fully autonomous, and so on. There is no specific limitation.
  • an embodiment of the present application further provides a discharging method based on the bi-directional on-board charger.
  • the method may include the following steps S11-S13:
  • Step S11 when the electric vehicle is in a driving state, connect the DC interface of the two-way on-board charger to the power battery of the electric vehicle, and connect the second discharge port to an external load; receive the power battery through the DC interface and control the second discharge port to transmit the power of the power battery to the external load through the switch circuit of the bidirectional on-board charger.
  • the second discharge port is arranged in the body of the electric vehicle and is connected to the second AC interface of the two-way on-board charger.
  • step S11 reference may be made to the above description of the relevant embodiments of the two-way on-board charger, which will not be repeated here.
  • Step S12 when the electric vehicle is in a stopped state, connect the DC interface to the power battery, and connect the second discharge port and/or the first discharge port to an external load; through the DC interface receiving the power of the power battery, and controlling the second discharge port and/or the first discharge port to transmit the power of the power battery to the external load through the switch circuit.
  • the first discharge port is disposed outside the body of the electric vehicle, and is connected to the first AC interface of the two-way on-board charger.
  • step S12 reference may be made to the above description of the relevant embodiments of the two-way on-board charger, which will not be repeated here.
  • Step S13 when the electric vehicle is in a parked state, connect the DC interface to the power battery, and connect the first discharge port to an external power grid; control the first discharge port through the switch circuit The electric power of the external power grid is received, and the power of the external power grid is transmitted to the power battery through the DC interface.
  • step S13 reference may be made to the above description of the relevant embodiments of the two-way vehicle-mounted charger, which will not be repeated here.
  • steps S11-S13 discuss the related operation methods for discharging or charging the electric vehicle during driving or parking provided by the embodiments of the present application. It can be understood that the above steps S11-S13 are in a parallel relationship in different situations, and the order of discussion thereof cannot constitute a limitation on the execution order of steps S11-S13.
  • the two-way vehicle-mounted charger provided by the embodiment of the present application adds a second AC interface on the basis of the existing first AC interface of the existing two-way vehicle-mounted charger. And on the basis of the existing first discharge port disposed outside the vehicle body, a second discharge port disposed inside the vehicle body is added, and the second AC interface is connected to the second discharge port.
  • the second discharge port can be arranged in the middle of the driver's seat and the passenger seat, for example, or in the back seat of the vehicle, etc., through which external loads such as mobile phones, computers, and tablets in the car can be connected.
  • the electric energy of the power battery of the electric vehicle can be transmitted to the external load connected to the second discharge port through the second discharge port through the bidirectional on-board charger. That is, during the driving process of the electric vehicle, power can be supplied to the equipment in the vehicle through the two-way on-board charger and the second discharge port. Further, when the electric vehicle is parked, the original first discharge port and/or the added second discharge port can also be controlled to supply power to an external load through a switch circuit connected to the first AC port and the second AC port.
  • the embodiments of the present application meet the needs of users to supply power to in-vehicle loads (such as mobile devices such as mobile phones, tablets, and computers) through the bidirectional on-board charger during the driving of the electric vehicle, and greatly expand the application scope of the bi-directional on-board charger.
  • in-vehicle loads such as mobile devices such as mobile phones, tablets, and computers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请公开了一种双向车载充电机,包括:第一交流接口、第二交流接口、直流接口和开关电路;当电动汽车处于行驶状态时,所述双向车载充电机用于通过所述直流接口接收动力电池的电能,且用于通过所述开关电路控制与所述第二交流接口连接的所述第二放电口将所述动力电池的电能传输至外部负载;当所述电动汽车处于停车状态时,所述双向车载充电机用于通过所述直流接口接收所述动力电池的电能,且用于通过所述开关电路控制与所述第二交流接口连接的所述第二放电口和/或与所述第一交流接口连接的所述第一放电口将所述动力电池的电能传输至所述外部负载。解决了双向车载充电机无法在电动汽车行驶过程中为外部负载提供能量的技术问题。

Description

一种双向车载充电机、放电方法和电动汽车 技术领域
本申请涉及充电机技术领域,尤其涉及一种双向车载充电机、放电方法和电动汽车。
背景技术
随着电动汽车技术的逐渐发展,世界各国对电动汽车的开发也逐步迈向了更高的台阶。人们不仅努力使电动汽车更好的投放市场,而且对动力电池组安全、可靠充电的关键技术也提出了更高的要求。因而,连接电网和电动汽车的充电机作为能量传递的中间环节已引起了更大的重视,人们对充电机的功能也提出了更高的要求。
现有的双向车载充电机就可以实现在电网用电低谷时向电动汽车的动力电池组充电(charging mode),也可以实现在电动汽车离网时,由动力电池组给家庭或车外电器供电(V2L,Vehicle to Load),满足郊游娱乐等用电的需求。或者,电动汽车可以在地震、台风等自然灾害下作为应急电源,通过现有的双向车载充电机向家庭供电(V2H,Vehicle to Home)。如此,通过现有的双向车载充电机可以实现能量的双向流动,有效调节电网峰谷差,改善电网质量。
然而,现有技术中的双向车载充电机只能在电动汽车停车时向外部负载供电,而无法在电动汽车行驶过程中给电脑和手机等车上娱乐设备供电,这极大程度上限制了双向车载充电机的应用范围。
发明内容
本申请提供了一种双向车载充电机、放电方法和电动汽车,可以通过该双向车载充电机在电动汽车行驶过程中为车内的手机、电脑等外部负载提供电能。
第一方面,本申请提供了一种双向车载充电机,可以包括:第一交流接口、第二交流接口、直流接口和开关电路;所述第一交流接口和所述第二交流接口分别与所述开关电路连接:所述第一交流接口与第一放电口连接,所述第二交流接口与第二放电口连接,所述第一放电口和所述第二放电口用于连接外部负载;所述第一放电口设置于电动汽车车身外,所述第二放电口设置于所述电动汽车车身内,所述直流接口用于连接电动汽车的动力电池;当所述电动汽车处于行驶状态时,所述双向车载充电机用于通过所述直流接口接收所述动力电池的电能,且用于通过所述开关电路控制与所述第二交流接口连接的所述第二放电口将所述动力电池的电能传输至所述外部负载;当所述电动汽车处于停车状态时,所述双向车载充电机用于通过所述直流接口接收所述动力电池的电能,且用于通过所述开关电路控制与所述第二交流接口连接的所述第二放电口和/或与所述第一交流接口连接的所述第一放电口将所述动力电池的电能传输至所述外部负载。
在一种可能的实现方式中,所述第一放电口还用于连接外界电网;当所述电动汽车处于停车状态时,所述双向车载充电机还用于通过所述开关电路控制与所述第一交流接口连 接的所述第一放电口接收所述外界电网的电能,且用于通过所述直流接口将所述外界电网的电能传输至所述动力电池。
在一种可能的实现方式中,所述第一放电口和所述第二放电口具体用于通过插电板连接所述外部负载,且具体用于通过所述插电板将所述动力电池的电能传输至所述外部负载;所述外部负载包括一个或多个用电器。
在一种可能的实现方式中,所述双向车载充电机还包括功率变换器,所述直流接口与所述功率变换器连接,所述第一交流接口和所述第二交流接口分别通过所述开关电路与所述功率变换器连接;当所述电动汽车处于行驶状态时,所述功率变换器用于通过所述直流接口接收所述动力电池的电能,并对所述动力电池的电能进行处理;所述开关电路用于将经所述功率变换器处理后的所述动力电池的电能通过与所述第二交流接口连接的所述第二放电口传输至所述外部负载;当所述电动汽车处于停车状态时,所述功率变换器用于通过所述直流接口接收所述动力电池的电能,并对所述动力电池的电能进行处理;所述开关电路用于将经所述功率变换器处理后的所述动力电池的电能通过与所述第二交流接口连接的所述第二放电口和/或与所述第一交流接口连接的所述第一放电口传输至所述外部负载。
在一种可能的实现方式中,当所述电动汽车处于停车状态时,所述开关电路还用于通过与所述第一交流接口连接的所述第一放电口接收所述外界电网的电能,并将所述外界电网的电能传输至所述功率变换器;所述功率变换器还用于对所述外界电网的电能进行处理,并将经所述功率变换器处理后的所述外界电网的电能通过所述直流接口传输至所述动力电池。
在一种可能的实现方式中,所述第一交流接口与所述第二交流接口并联;所述开关电路包括与所述第一交流接口连接的至少一个开关以及与所述第二交流接口连接的至少一个开关;所述第一交流接口和所述第二交流接口分别通过各自连接的所述至少一个开关与所述功率变换器连接。
在一种可能的实现方式中,所述至少一个开关包括继电器、机械开关、三极管、金属-氧化物半导体场效应晶体管、绝缘栅双极型晶体管和晶闸管中的一种或多种。
在一种可能的实现方式中,所述外界电网包括充电桩,所述充电桩通过接地线与地连接;所述充电桩、所述第一放电口和所述第二放电口均包括交流火线和交流零线。
第二方面,本申请提供了一种基于双向车载充电机的放电方法,可以包括:当电动汽车处于行驶状态时,将双向车载充电机的直流接口与所述电动汽车的动力电池连接,并将第二放电口与外部负载连接;通过所述直流接口接收所述动力电池的电能,以及通过所述双向车载充电机的开关电路控制所述第二放电口将所述动力电池的电能传输至所述外部负载;其中,所述第二放电口设置于所述电动汽车车身内,并与所述双向车载充电机的第二交流接口连接;当所述电动汽车处于停车状态时,将所述直流接口与所述动力电池连接,并将所述第二放电口和/或第一放电口与外部负载连接;通过所述直流接口接收所述动力电池的电能,以及通过所述开关电路控制所述第二放电口和/或所述第一放电口将所述动力电池的电能传输至所述外部负载;其中,所述第一放电口设置于所述电动汽车车身外,并与所述双向车载充电机的第一交流接口连接。
第三方面,本申请提供了一种电动汽车,该电动汽车包括第一放电口、第二放电口、 动力电池以及上述第一方面中任意一项所述的双向车载充电机。
本申请提供的一种双向车载充电机在现有双向车载充电机已有的第一交流接口的基础上,增设了一个第二交流接口。并且在已有的设置于车身外的第一放电口的基础上,增设了一个设置于车身内部的第二放电口,该第二交流接口与该第二放电口连接。该第二放电口例如可以设置于驾驶位和副驾驶位的中间,还例如可以设置于车辆后座等等,通过该第二放电口可以连接车内的手机、电脑和平板等外部负载。由此,在电动汽车行驶过程中,可以通过该双向车载充电机将电动汽车的动力电池的电能经由该第二放电口传输至与该第二放电口连接的外部负载。也即在电动汽车行驶过程中可以通过该双向车载充电机和该第二放电口向车内的设备供电。进一步地,在电动汽车停车时,还可以通过与该第一交流接口和该第二交流接口连接的开关电路控制原有的第一放电口和/或增设的第二放电口向外部负载供电。本发明实施例满足了用户在电动汽车行驶过程中通过双向车载充电机向车内负载(例如手机、平板和电脑等等移动设备)供电的需求,大大扩展了双向车载充电机的应用范围。
附图说明
图1是本申请实施例提供的一种双向车载充电机的结构示意图;
图2是本申请实施例提供的一种充电状态下的双向车载充电机示意图;
图3是本申请实施例提供的一种电动汽车停车状态下的充电示意图;
图4是本申请实施例提供的另一种双向车载充电机的结构示意图;
图5是本申请实施例提供的一种电动汽车行驶状态下的放电示意图;
图6是本申请实施例提供的一种电动汽车停车状态下的放电示意图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
下面将结合本申请实施例中的附图,对本申请实施例进行描述。
本申请的说明书和权利要求书及所述附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。需要说明的是,当一个元件被称作与另一个或多个元件“耦合”、“连接”时,它可以是一个元件直接连接到另一个或多个元件,也可以是间接连接至该另一个或多个元件。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本邻域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
首先,对本申请中的部分用语进行解释说明,以便于本邻域技术人员理解。
(1)车载充电机(On Board Changer,OBC),主要用于常规充电,其一般要求是效率高、功率因数大、输出纹波小和输入电压容许范围大。符合锂离子动力电池要求的理想车载充电机,不仅能够提高整车的效率,还能有效延长电池的循环使用寿命,降低电池的使用成本,缩短充电时间,这对增加电动汽车的续驶里程来说是十分重要的,从而为电动汽车的实用化和普及化提供了有效的支持。其中,电动汽车最特别之处就是它本身有一个高容量的动力电池组,而且这个电池组可以进行反复的充电和放电,因此电动汽车可成为一种电能的存储设备。电动汽车技术越来越成熟,人们对电动汽车的需求量也在不断的增大。当电动汽车的数量增加到一定程度时,就可以把每个电动汽车看作是一个分布式电源(Distributed generator)。双向车载充电机就可以实现在电网用电低谷时向电动汽车的动力电池组充电(charging mode),也可以实现在电动汽车离网时,由动力电池组给家庭或车外电器供电(V2L,Vehicle to Load),满足郊游娱乐等用电的需求。或者,电动汽车可以在地震,台风等自然灾害下作为应急电源,通过现有的双向车载充电机向家庭供电(V2H,Vehicle to Home)。通过双向车载充电机可以实现能量的双向流动,有效调节电网峰谷差,改善电网质量。
请参阅图1,图1是本申请实施例提供的一种双向车载充电机的结构示意图。如图1所示,该双向车载充电机100可以包括第一交流接口101、第二交流接口102、直流接口103、开关电路104和功率变换器105。该第一交流接口101和该第二交流接口102可以分别与开关电路104连接。并且,该第一交流接口101与电动汽车的第一放电口106连接,该第二交流接口102与电动汽车的第二放电口107连接。该第一放电口106可以为现有电动汽车的充放电技术中的放电口,一般设置于电动汽车车身外(例如可以类比于普通机动车辆的汽车油箱加油口)。该第二放电口107为本申请实施例中增设的放电口,可以设置于该电动汽车车身内(例如可以设置于驾驶位或副驾驶位周围,还可以设置于电动汽车的后座底部,也可以设置于车门内侧等等位置,本申请实施例对此不作具体限定)。该第一放电口106和该第二放电口107可以用于连接外部负载(例如手机、平板、笔记本电脑、蓝牙耳机、灯具、电磁炉、烧水壶、游戏机、充电宝、智能可穿戴设备等等)。如图1所示,该第一交流接口101、第二交流接口102、第一放电口106和第二放电口107均包括交流火线(AC_L)和交流零线(AC_N),一般可以提供220伏特的交流电(220VAC)。通常情况下,当该双向车载充电机100安装至该电动汽车内时,该第一交流接口101可以与该第一放电口106一直处于连接状态,该第二交流接口102可以与该第二放电口107一直处于连接状态。如图1所示,该功率变换器105与开关电路104和直流接口103连接,该直流接口103用于连接电动汽车的动力电池108。其中,动力电池108一般可以分为两大类,包括蓄电池和燃料电池,蓄电池适用于纯电动汽车,例如可以包括铅酸蓄电池、镍氢电池、钠硫电池、二次锂电池、空气电池、三元锂电池等等,本申请实施例对此不作具体限定。需要说明的是,本申请实施例中的电动汽车,可以为完全电力驱动的纯电动汽车,也可以为燃料和电力双驱动的混动汽车。其中,混动汽车(也即混合动力汽车),亦称复合动力汽车(Hybrid  Power Automobile),是指车上装有两个以上动力源,例如包括蓄电池、燃料电池、太阳能电池、内燃机车的发电机组,当前复合动力汽车一般是指内燃机车发电机,再加上蓄电池的汽车。如图1所示,该直流接口103与该动力电池108一般情况下可以一直处于连接状态,该直流接口103可以包括如图1所示的正高压直流(HV_DC+)线和负高压直流(HV_DC-)线。
显然,由于原有的电动汽车的充放电技术中的第一放电口106设置于电动汽车车身外,因此,只能在电动汽车停车时,利用该双向车载充电机通过该第一放电口106向与该第一放电口106连接的外部负载供电。而本申请实施例可以通过增设的第二交流接口102以及增设的设置于电动汽车车身内的第二放电口107,实现在电动汽车行驶过程中利用该双向车载充电机通过该第二放电口107向与该第二放电口107连接的外部负载(例如为车内的手机、平板、笔记本电脑和蓝牙耳机等等移动设备)供电,解决了只能在停车时使用双向车载充电机的放电功能的缺陷,从而大大扩展了双向车载充电机的应用范围,满足了用户在行车时向车内的移动设备充电的需求。
例如,如图1所示,当电动汽车处于行驶状态时,可以通过开关电路104控制第二交流接口102与该功率变换器105之间的电路连通,从而可以通过该直流接口103接收动力电池108的电能,再通过该功率变换器105(例如可以包括双向交流-直流转换器)将动力电池108的电能转换为交流电,并通过与该功率变换器105依次连接的第二交流接口102和第二放电口107向外部负载供电(例如可以向与该第二放电口107连接的手机、电脑等设备充电),也即实现了在电动汽车行驶状态下,通过双向车载充电机将动力电池108的电能传输至外部负载。
可选的,请参见图2,图2是本申请实施例提供的一种充电状态下的双向车载充电机示意图。如图1和图2所示,一般第一放电口106还可以用于连接外界电网,从而给电动汽车的动力电池108充电。如图2所示,该外界电网例如可以为设置于车库内或者路边的充电桩20,该充电桩20可以包括接地线,用于连接电网,还可以包括充电接口109,用于连接电动汽车的第一放电口106。如图2所示,可以通过开关电路104控制第一交流接口101与功率变换器105之间的电路连通,从而可以通过该第一放电口106接收外界电网的电能,再通过该功率变换器105将外界电网的电能(一般为交流电)转换为直流电,并通过与该功率变换器105连接的直流接口103将该直流电传输至电动汽车的动力电池108,也即将外界电网的电能传输至动力电池108,实现了通过双向车载充电机向电动汽车的动力电池108充电,由此实现了电能的双向流动。
可选的,请参见图3,图3是本申请实施例提供的一种电动汽车停车状态下的充电示意图。如图3所示,在电动汽车10停车时,可以通过充电枪等设备连接第一放电口106和外界电网(图3中以设置于地面的充电桩20为例,本申请实施例对此不作具体限定),从而可以通过该第一放电口106接收外界电网的电能,并通过该电动汽车10内的双向车载充电机100将该外界电网的电能传输至电动汽车的动力电池108中,完成对动力电池108的充电,保障电动汽车10的行驶。
可选的,该第一交流接口101可以与该第二交流接口102并联,该开关电路104可以包括与该第一交流接口101连接的至少一个开关,以及与该第二交流接口102连接的至少 一个开关。该第一交流接口101可以通过该至少一个开关与该功率变换器105连接,该第二交流接口102可以通过该至少一个开关与该功率变换器105连接。由此,可以通过与该第一交流接口101和该第二交流接口102分别连接的至少一个开关分别控制该第一交流接口101和该第二交流接口102与该功率变换器105之间的电路连通以及断开。例如,请参见图4,图4是本申请实施例提供的另一种双向车载充电机的结构示意图。如图4所示,该开关电路104例如可以包括与该第一交流接口101连接的开关1,以及与该第二交流接口102连接的开关2,该第一交流接口101和该第二交流接口102分别通过开关1和开关2与该功率变换器105连接,显然,该第一交流接口101与该第二交流接口102为并联关系。需要说明的是,图4仅仅示例性的表明了一种可能的实现方式,在其他可能的实现方式中,该开关电路104还可以包括比图4所示更多或者更少甚至不同的开关器件。并且,该开关电路104包括的开关器件(例如为图4所示的开关1和开关2)可以为继电器、机械开关、三极管、金属-氧化物半导体场效应晶体管、绝缘栅双极型晶体管和晶闸管等等中的任意一种或多种,本申请实施例对此不作具体限定。与此同时,该第一交流接口101和该第二交流接口102的连接关系还可以是其他任何可行的方案,本申请实施例对此不作具体限定。
可选的,如图4所示,当电动汽车处于行驶状态时,可以断开开关1,闭合开关2,从而使得第一交流接口101与功率变换器105之间的电路断开,第二交流接口102与功率变换器105之间的电路连通,以将动力电池108的电能传输至与第二放电口107连接的外部负载。可选的,该第二放电口107可以与插电板(例如可以为电动汽车的放电技术中的专用插电板等等,该插电板可以设置有多个双孔或者三孔插座)连接,外部负载可以与该插电板连接(比如插电板的插头连接至该第二放电口107,手机或者电脑等的充电器与该插电板上的插座连接),从而实现在电动汽车行驶过程中通过该第二放电口107和该双向车载充电机100向电动汽车内的设备供电。可选的,该第二放电口107也可以直接设置成车内的一个普通插座,手机和平板等设备的充电器可以直接与该第二放电口107连接。可选的,当该第二放电口107被设置成车内的一个普通插座时,也可以通过一般的插电板与该第二放电口107连接以增加插座数量,从而给更多的车内设备充电,满足用户的实际需求,等等,本申请实施例对此不作具体限定。
例如,请参见图5,图5是本申请实施例提供的一种电动汽车行驶状态下的放电示意图。如图5所示,显然,由于常规的第一放电口106设置于电动汽车10车身外,无法通过该第一放电口106在电动汽车10行驶时给车内的设备供电。然而,如图5所示,由于本申请实施例中增设的第二放电口107设置于电动汽车10车身内,因此,可以通过该第二放电口107在电动汽车10行驶时给车内的设备供电。
可选的,如图4所示,当电动汽车处于停车状态时,可以闭合开关1,断开开关2,从而使得第一交流接口101与功率变换器105之间的电路连通,第二交流接口102与功率变换器105之间的电路断开,以将动力电池108的电能传输至与该第一放电口106连接的外部负载。请参见图6,图6是本申请实施例提供的一种电动汽车停车状态下的放电示意图,如图6所示,该第一放电口106可以与插电板(例如可以为电动汽车的放电技术中的专用插电板等等,图6中以设置有一个双孔插座和两个三孔插座的插电板30为例)连接,外部负载可以与该插电板连接,从而实现在电动汽车停车时通过该第一放电口106向外部负载 供电。例如,如图6所示,插电板30的插头可以连接至该第一放电口106,电磁炉、烧水壶和灯具等等外部负载可以连接至该插电板30的插座上,从而实现在电动汽车10停车时通过该第二放电口107和该双向车载充电机100向电动汽车10外的设备供电。例如,在野外烧烤或者露营时,可以充分利用该电动汽车10的动力电池108中存储的电能,通过该第一放电口106给电磁炉、烧水壶和灯具等等外部负载供电,满足用户在户外生活以及娱乐的用电需求。
可选的,如图4所示,当电动汽车处于停车状态时,可以断开开关1,闭合开关2,从而使得第一交流接口101与功率变换器105之间的电路断开,第二交流接口102与功率变换器105之间的电路连通,以将动力电池108的电能传输至与该第二放电口107连接的外部负载。如图6所示,在电动汽车停车时,该第二放电口107可以与外部负载连接(图6中以车内的手机、平板等移动设备为例),从而实现在电动汽车停车时通过该第二放电口107和该双向车载充电机向外部负载供电,此处不再进行赘述。
可选的,如图4所示,当电动汽车处于停车状态时,还可以闭合开关1,并且闭合开关2,从而使得第一交流接口101与功率变换器105之间的电路连通,并且第二交流接口102与功率变换器105之间的电路也连通,以将动力电池108的电能传输至与该第一放电口106和该第二放电口107分别连接的外部负载。例如,如图6所示,在电动汽车10停车时,并且开关1和开关2均闭合的情况下,可以通过该双向车载充电机100将动力电池108的电能分别经由第一放电口106和第二放电口107传输至外部负载,比如可以给与第一放电口106连接的电磁炉、烧水壶和灯具等设备供电,同时还可以给与第二放电口107连接的手机、平板等设备供电,充分利用动力电池108中存储的电能,大大提高了供电效率,满足了用户给车内以及车外多个设备供电的需求。
可选的,上述开关电路104(例如图4所示的开关1和开关2构成的开关电路104)可以与设置于电动汽车内的调控开关(图4中未示出)相连接,用户可以通过对该调控开关的相应操作,控制开关1和开关2处于断开或闭合状态。例如,该调控开关可以为一般的按钮开关,可以设置于电动汽车10的方向盘周围,在初始状态,也即开关1和开关2均处于断开状态时,若用户(例如为驾驶员或者乘客)对该按钮开关执行一次按压操作,则可以令开关1闭合,而开关2处于断开状态,此时,可以通过第一放电口106在电动汽车10停车时进行放电或者充电;若用户对该按钮开关连续执行两次按压操作,则可以令开关2闭合,而开关1处于断开状态,此时,可以通过第二放电口107在电动汽车10行驶时或者停车时进行放电,以给手机、电脑、平板等外部负载供电;若用户对该按钮开关连续执行三次按压操作,则可以令开关1和开关2均闭合,此时,可以通过第一放电口106和第二放电口107在电动汽车10停车时同时进行放电,或者还可以仅通过第一放电口106在电动汽车10行驶时进行放电;若用户对该按钮开关连续执行四次按压操作,则可以令开关1和开关2均断开,此时,第一放电口106和第二放电口107与功率变换器105之间的电路均断开(也即第一交流接口101和第二交流接口102与功率变换器105之间的电路均断开),不可通过第一放电口106进行充电,也不可通过第一放电口106或第二放电口107进行放电。可选的,该按钮开关周围还可以设置有相应的指示灯,以提示用户当前开关1和开关2的闭合或者断开状态,也即提示当前第一放电口106和第二放电口107的工作或者闲置 状态。可选的,该调控开关还可以是多档位开关,例如4档位开关,当推动该档位开关至第一档位时,可以令开关1闭合,而开关2处于断开状态,此时,可以通过第一放电口106在电动汽车停车时进行放电或者充电;当用户推动该档位开关至第二档位时,则可以令开关2闭合,而开关1处于断开状态,此时,可以通过第二放电口107在电动汽车10行驶时或者停车时进行放电,以给手机、电脑、平板等外部负载供电;当用户推动该档位开关至第三档位时,则可以令开关1和开关2均闭合,此时,可以通过第一放电口106和第二放电口107在电动汽车10停车时同时进行放电,或者还可以仅通过第一放电口106在电动汽车10行驶时进行放电;当用户推动该档位开关至第四档位(例如为off档位)时,则可以令开关1和开关2均断开,此时,第一放电口106和第二放电口107与功率变换器105之间的电路均断开,不可通过第一放电口106进行充电,也不可通过第一放电口106或第二放电口107进行放电。可选的,该调控开关还可以是旋转式开关等等其他任何可行的开关或者包括多个不同开关的开关组合,等等,本申请实施例对此不作具体限定。用户可以通过该设置于车内的调控开关,十分方便、简单的控制双向车载充电机100中的各个开关的闭合或断开,也即控制双向车载充电机100中第一交流接口101和第二交流接口102与功率变换器105之间的电路导通或者断开,从而控制第一放电口106和第二放电口107与功率变换器105之间的电路导通或者断开。如此,例如在电动汽车10行驶时,用户想要给自己的手机充电,此时用户可以十分方便的通过该调控开关闭合开关2、断开开关1,从而选择第二放电口107,通过该第二放电口107和电动汽车10内的双向车载充电机100向与该第二放电口107连接的手机供电;又例如,在电动汽车10停车时,用户可以通过该调控开关闭合开关1、断开开关2,从而选择第一放电口106进行充电或者放电,比如当电动汽车10内的动力电池108没电时,用户可以将该第一放电口106与外界电网(比如设置于车库内的充电桩20)连接,通过该第一放电口106和电动汽车10内的双向车载充电机100向动力电池108充电;又比如,当用户想在野外露营,需要给灯具供电时,用户可以将该第一放电口106与该灯具连接时,通过该第一放电口106和双向车载充电机100向与该第一放电口106连接的灯具供电,等等,此处不再进行赘述。
如上所述,通过图4所示的双向车载充电机100中的开关电路104(包括开关1和开关2),可以在停车时控制第一放电口106进行放电或者充电,并且可以在行驶时控制第一放电口106和/或第二放电口107进行放电。需要说明的是,第一放电口106为常规的放电口,也即现有电动汽车的充放电技术中已有的放电口,一般既可用来放电也可以用来充电(充电时,该第一放电口106也可称为充电口)。而该第二放电口107为本申请实施例中增设的放电口,设置于电动汽车的车身内部,该第二放电口107与本申请实施例提供的一种双向车载充电机100中增设的第二交流接口102相连接。一般情况下,该第二放电口107仅用于在行驶或者停车状态下进行放电,也即用于在行驶或者停车状态下给与其连接的外部负载供电。但是,在一些可能的实施方式中,该第二放电口107也可用来充电,也即该第二放电口107也可以与外界电网连接,接收外界电网的电能并通过该双向车载充电机100给电动汽车10的动力电池108充电,等等,本申请实施例对此不作具体限定。
可以理解的是,本申请实施例中提供的双向车载充电机100的结构仅仅为示例性的,在一些可能的实施方式中,该双向车载充电机100还可以包括滤波电路、通信模块和显示 屏等等其他的组成。本申请实施例中的电动汽车10可以包括上述的第一放电口106、第二放电口107、动力电池108和该双向车载充电机100,还可以包括上述的调控开关和指示灯,等等。该电动汽车10可以为轿车、公交车、面包车、电瓶车、三轮车和水上摩托车等等形式的车辆,甚至可以为设置成部分自动驾驶或者完全自动驾驶的车辆,等等,本申请实施例对此不作具体限定。
结合上述对双向车载充电机的相关实施例的描述,本申请实施例还提供了一种基于双向车载充电机的放电方法。该方法可以包括以下步骤S11-S13:
步骤S11,当电动汽车处于行驶状态时,将双向车载充电机的直流接口与所述电动汽车的动力电池连接,并将第二放电口与外部负载连接;通过所述直流接口接收所述动力电池的电能,以及通过所述双向车载充电机的开关电路控制所述第二放电口将所述动力电池的电能传输至所述外部负载。可选的,所述第二放电口设置于所述电动汽车车身内,并与所述双向车载充电机的第二交流接口连接。可选的,步骤S11可以参考上述对双向车载充电机的相关实施例的描述,此处不再进行赘述。
步骤S12,当所述电动汽车处于停车状态时,将所述直流接口与所述动力电池连接,并将所述第二放电口和/或第一放电口与外部负载连接;通过所述直流接口接收所述动力电池的电能,以及通过所述开关电路控制所述第二放电口和/或所述第一放电口将所述动力电池的电能传输至所述外部负载。可选的,所述第一放电口设置于所述电动汽车车身外,并与所述双向车载充电机的第一交流接口连接。可选的,步骤S12可以参考上述对双向车载充电机的相关实施例的描述,此处不再进行赘述。
步骤S13,当所述电动汽车处于停车状态时,将所述直流接口与所述动力电池连接,并将所述第一放电口与外界电网连接;通过所述开关电路控制所述第一放电口接收所述外界电网的电能,并通过所述直流接口将所述外界电网的电能传输至所述动力电池。可选的,步骤S13可以参考上述对双向车载充电机的相关实施例的描述,此处不再进行赘述。
需要说明的是,上述步骤S11-S13论述了本申请实施例所提供的在电动汽车行驶或者停车过程中进行放电或者充电的相关操作方法。可以理解的是,上述步骤S11-S13为不同情况下的并列关系,其论述的先后顺序不能构成对步骤S11-S13的执行顺序的限定。
本申请实施例提供的一种双向车载充电机在现有双向车载充电机已有的第一交流接口的基础上,增设了一个第二交流接口。并且在已有的设置于车身外的第一放电口的基础上,增设了一个设置于车身内部的第二放电口,该第二交流接口与该第二放电口连接。该第二放电口例如可以设置于驾驶位和副驾驶位的中间,还例如可以设置于车辆后座等等,通过该第二放电口可以连接车内的手机、电脑和平板等外部负载。由此,在电动汽车行驶过程中,可以通过该双向车载充电机将电动汽车的动力电池的电能经由该第二放电口传输至与该第二放电口连接的外部负载。也即在电动汽车行驶过程中可以通过该双向车载充电机和该第二放电口向车内的设备供电。进一步地,在电动汽车停车时,还可以通过与该第一交流接口和该第二交流接口连接的开关电路控制原有的第一放电口和/或增设的第二放电口向外部负载供电。本申请实施例满足了用户在电动汽车行驶过程中通过双向车载充电机向车内负载(例如手机、平板和电脑等等移动设备)供电的需求,大大扩展了双向车载充电 机的应用范围。
综上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本邻域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种双向车载充电机,其特征在于,包括:第一交流接口、第二交流接口、直流接口和开关电路;所述第一交流接口和所述第二交流接口分别与所述开关电路连接:所述第一交流接口与第一放电口连接,所述第二交流接口与第二放电口连接,所述第一放电口和所述第二放电口用于连接外部负载;所述第一放电口设置于电动汽车车身外,所述第二放电口设置于所述电动汽车车身内,所述直流接口用于连接所述电动汽车的动力电池;
    当所述电动汽车处于行驶状态时,所述双向车载充电机用于通过所述直流接口接收所述动力电池的电能,且用于通过所述开关电路控制与所述第二交流接口连接的所述第二放电口将所述动力电池的电能传输至所述外部负载;
    当所述电动汽车处于停车状态时,所述双向车载充电机用于通过所述直流接口接收所述动力电池的电能,且用于通过所述开关电路控制与所述第二交流接口连接的所述第二放电口和/或与所述第一交流接口连接的所述第一放电口将所述动力电池的电能传输至所述外部负载。
  2. 根据权利要求1所述的双向车载充电机,其特征在于,所述第一放电口还用于连接外界电网;当所述电动汽车处于停车状态时,所述双向车载充电机还用于通过所述开关电路控制与所述第一交流接口连接的所述第一放电口接收所述外界电网的电能,且用于通过所述直流接口将所述外界电网的电能传输至所述动力电池。
  3. 根据权利要求所述2的双向车载充电机,其特征在于,所述第一放电口和所述第二放电口具体用于通过插电板连接所述外部负载,且具体用于通过所述插电板将所述动力电池的电能传输至所述外部负载;所述外部负载包括一个或多个用电器。
  4. 根据权利要求所述3的双向车载充电机,其特征在于,所述双向车载充电机还包括功率变换器,所述直流接口与所述功率变换器连接,所述第一交流接口和所述第二交流接口分别通过所述开关电路与所述功率变换器连接;
    当所述电动汽车处于行驶状态时,所述功率变换器用于通过所述直流接口接收所述动力电池的电能,并对所述动力电池的电能进行处理;所述开关电路用于将经所述功率变换器处理后的所述动力电池的电能通过与所述第二交流接口连接的所述第二放电口传输至所述外部负载;
    当所述电动汽车处于停车状态时,所述功率变换器用于通过所述直流接口接收所述动力电池的电能,并对所述动力电池的电能进行处理;所述开关电路用于将经所述功率变换器处理后的所述动力电池的电能通过与所述第二交流接口连接的所述第二放电口和/或与所述第一交流接口连接的所述第一放电口传输至所述外部负载。
  5. 根据权利要求所述4的双向车载充电机,其特征在于,当所述电动汽车处于停车状态时,所述开关电路还用于通过与所述第一交流接口连接的所述第一放电口接收所述外界 电网的电能,并将所述外界电网的电能传输至所述功率变换器;所述功率变换器还用于对所述外界电网的电能进行处理,并将经所述功率变换器处理后的所述外界电网的电能通过所述直流接口传输至所述动力电池。
  6. 根据权利要求5所述的双向车载充电机,其特征在于,所述第一交流接口与所述第二交流接口并联;所述开关电路包括与所述第一交流接口连接的至少一个开关以及与所述第二交流接口连接的至少一个开关;所述第一交流接口和所述第二交流接口分别通过各自连接的所述至少一个开关与所述功率变换器连接。
  7. 根据权利要求6所述的双向车载充电机,其特征在于,所述至少一个开关包括继电器、机械开关、三极管、金属-氧化物半导体场效应晶体管、绝缘栅双极型晶体管和晶闸管中的一种或多种。
  8. 根据权利要求7所述的双向车载充电机,其特征在于,所述外界电网包括充电桩,所述充电桩通过接地线与地连接;所述充电桩、所述第一放电口和所述第二放电口均包括交流火线和交流零线。
  9. 一种基于双向车载充电机的放电方法,其特征在于,包括:
    当电动汽车处于行驶状态时,将双向车载充电机的直流接口与所述电动汽车的动力电池连接,并将第二放电口与外部负载连接;通过所述直流接口接收所述动力电池的电能,以及通过所述双向车载充电机的开关电路控制所述第二放电口将所述动力电池的电能传输至所述外部负载;其中,所述第二放电口设置于所述电动汽车车身内,并与所述双向车载充电机的第二交流接口连接;
    当所述电动汽车处于停车状态时,将所述直流接口与所述动力电池连接,并将所述第二放电口和/或第一放电口与外部负载连接;通过所述直流接口接收所述动力电池的电能,以及通过所述开关电路控制所述第二放电口和/或所述第一放电口将所述动力电池的电能传输至所述外部负载;其中,所述第一放电口设置于所述电动汽车车身外,并与所述双向车载充电机的第一交流接口连接。
  10. 一种电动汽车,其特征在于,包括第一放电口、第二放电口、动力电池以及如权利要求1-8任意一项所述的双向车载充电机。
PCT/CN2020/102551 2020-07-17 2020-07-17 一种双向车载充电机、放电方法和电动汽车 WO2022011660A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/102551 WO2022011660A1 (zh) 2020-07-17 2020-07-17 一种双向车载充电机、放电方法和电动汽车
CN202080005569.0A CN112912272A (zh) 2020-07-17 2020-07-17 一种双向车载充电机、放电方法和电动汽车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/102551 WO2022011660A1 (zh) 2020-07-17 2020-07-17 一种双向车载充电机、放电方法和电动汽车

Publications (1)

Publication Number Publication Date
WO2022011660A1 true WO2022011660A1 (zh) 2022-01-20

Family

ID=76112885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102551 WO2022011660A1 (zh) 2020-07-17 2020-07-17 一种双向车载充电机、放电方法和电动汽车

Country Status (2)

Country Link
CN (1) CN112912272A (zh)
WO (1) WO2022011660A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114726035A (zh) * 2022-03-31 2022-07-08 岚图汽车科技有限公司 充放电系统、接口及设备
CN114744733A (zh) * 2022-05-24 2022-07-12 小米汽车科技有限公司 充放电控制方法、装置、介质以及芯片
CN114771326A (zh) * 2022-04-29 2022-07-22 东风柳州汽车有限公司 一种交直流兼容的充电控制方法、装置、车载终端及系统
CN117002291A (zh) * 2022-04-28 2023-11-07 比亚迪股份有限公司 充放电电路、双向车载充电机及车辆
WO2024113703A1 (zh) * 2022-11-29 2024-06-06 深圳威迈斯新能源股份有限公司 带充放电功能的双向车载obc控制电路及其控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114851878A (zh) * 2022-06-07 2022-08-05 中国第一汽车股份有限公司 混合动力汽车及其放电控制方法、控制装置和存储介质
WO2024065226A1 (zh) * 2022-09-27 2024-04-04 宁德时代(上海)智能科技有限公司 电力设备、供电系统及车辆
CN118511413A (zh) * 2022-09-30 2024-08-16 宁德时代新能源科技股份有限公司 充电装置及其控制方法、用电设备及其供电系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013017357A (ja) * 2011-07-06 2013-01-24 Toyota Motor Corp プラグイン車両
CN105576731A (zh) * 2014-10-17 2016-05-11 天宝电子(惠州)有限公司 一种车载充电与逆变双向变流电源系统
CN110014977A (zh) * 2017-08-15 2019-07-16 比亚迪股份有限公司 车辆和车辆的车载充电系统及其控制方法
CN110614930A (zh) * 2019-09-30 2019-12-27 重庆长安新能源汽车科技有限公司 一种充放电方法、系统、控制器及电动汽车

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5990786B2 (ja) * 2012-09-05 2016-09-14 株式会社キャプテックス 充放電システム
CN107264308B (zh) * 2017-05-31 2020-03-06 北京新能源汽车股份有限公司 一种车载供电系统及汽车
CN209150750U (zh) * 2018-11-16 2019-07-23 宝沃汽车(中国)有限公司 车载充电机和电动车辆
CN212969087U (zh) * 2020-07-17 2021-04-13 深圳欣锐科技股份有限公司 一种双向车载充电机和电动汽车

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013017357A (ja) * 2011-07-06 2013-01-24 Toyota Motor Corp プラグイン車両
CN105576731A (zh) * 2014-10-17 2016-05-11 天宝电子(惠州)有限公司 一种车载充电与逆变双向变流电源系统
CN110014977A (zh) * 2017-08-15 2019-07-16 比亚迪股份有限公司 车辆和车辆的车载充电系统及其控制方法
CN110614930A (zh) * 2019-09-30 2019-12-27 重庆长安新能源汽车科技有限公司 一种充放电方法、系统、控制器及电动汽车

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114726035A (zh) * 2022-03-31 2022-07-08 岚图汽车科技有限公司 充放电系统、接口及设备
CN117002291A (zh) * 2022-04-28 2023-11-07 比亚迪股份有限公司 充放电电路、双向车载充电机及车辆
CN114771326A (zh) * 2022-04-29 2022-07-22 东风柳州汽车有限公司 一种交直流兼容的充电控制方法、装置、车载终端及系统
CN114771326B (zh) * 2022-04-29 2024-04-09 东风柳州汽车有限公司 一种交直流兼容的充电控制方法、装置、车载终端及系统
CN114744733A (zh) * 2022-05-24 2022-07-12 小米汽车科技有限公司 充放电控制方法、装置、介质以及芯片
WO2024113703A1 (zh) * 2022-11-29 2024-06-06 深圳威迈斯新能源股份有限公司 带充放电功能的双向车载obc控制电路及其控制方法

Also Published As

Publication number Publication date
CN112912272A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
WO2022011660A1 (zh) 一种双向车载充电机、放电方法和电动汽车
EP2800227B1 (en) Electric automobile and discharging device thereof
CN212969087U (zh) 一种双向车载充电机和电动汽车
CN108407625B (zh) 一种用于新能源汽车双向充放电系统
EP3116739B1 (en) Portable bi-directional multiport ac/dc charging cable system
CN106042885B (zh) 一种插电式混合动力汽车用双向供电系统
CN112955346B (zh) 新能源汽车及其高压电控总成
KR102304746B1 (ko) 전기차 충전파일 출력 파워 제어 시스템 및 방법
CN109274090A (zh) 一种基于电动汽车的智能家庭供电系统
CN112721837B (zh) 一种车辆配电系统
CN208324913U (zh) 车载充电系统以及汽车
CN213007972U (zh) 一种充电电路及车辆
CN213413530U (zh) 新能源车辆的充放电系统、新能源车辆及车车互充系统
CN212874675U (zh) 一种动力电池、电池系统及车辆
CN201112530Y (zh) 车载多功能可充电电池
CN209756815U (zh) 一种纯电动车用增程式系统
CN201150006Y (zh) 锂离子电池组的充放电装置
CN212950173U (zh) 新能源汽车及其高压电控总成
CN213973600U (zh) 一种高压控制装置
CN113752885B (zh) 一种可支持直流充电国标的电动汽车充电宝
CN212796560U (zh) 一种集成控制装置和新能源汽车
CN214647707U (zh) 一种电动车用双电池控制模块
CN112383135A (zh) 一种房车电源集成控制系统
KR101466432B1 (ko) 충전 케이블
CN206865194U (zh) 一种便携式储能应急电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945620

Country of ref document: EP

Kind code of ref document: A1