WO2022009314A1 - 情報処理装置及び情報処理方法 - Google Patents
情報処理装置及び情報処理方法 Download PDFInfo
- Publication number
- WO2022009314A1 WO2022009314A1 PCT/JP2020/026580 JP2020026580W WO2022009314A1 WO 2022009314 A1 WO2022009314 A1 WO 2022009314A1 JP 2020026580 W JP2020026580 W JP 2020026580W WO 2022009314 A1 WO2022009314 A1 WO 2022009314A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radio wave
- unit
- information processing
- reservoir
- frequency signal
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims abstract description 37
- 238000003672 processing method Methods 0.000 title claims description 5
- 239000004065 semiconductor Substances 0.000 claims abstract description 67
- 239000002070 nanowire Substances 0.000 claims abstract description 32
- 230000004044 response Effects 0.000 claims abstract description 11
- 229910000673 Indium arsenide Inorganic materials 0.000 abstract description 24
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 abstract description 22
- 230000010354 integration Effects 0.000 abstract description 7
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000002041 carbon nanotube Substances 0.000 description 5
- 229910021393 carbon nanotube Inorganic materials 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- 238000013341 scale-up Methods 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 238000004260 weight control Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002074 nanoribbon Substances 0.000 description 1
- 239000013460 polyoxometalate Substances 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
- G06N3/065—Analogue means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
- H01Q9/28—Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
- H01Q9/285—Planar dipole
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/117—Shapes of semiconductor bodies
- H10D62/118—Nanostructure semiconductor bodies
- H10D62/119—Nanowire, nanosheet or nanotube semiconductor bodies
- H10D62/122—Nanowire, nanosheet or nanotube semiconductor bodies oriented at angles to substrates, e.g. perpendicular to substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/117—Shapes of semiconductor bodies
- H10D62/118—Nanostructure semiconductor bodies
- H10D62/119—Nanowire, nanosheet or nanotube semiconductor bodies
- H10D62/123—Nanowire, nanosheet or nanotube semiconductor bodies comprising junctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/82—Heterojunctions
- H10D62/824—Heterojunctions comprising only Group III-V materials heterojunctions, e.g. GaN/AlGaN heterojunctions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
Definitions
- the present invention relates to an information processing apparatus and an information processing method.
- Reservoir computing systems include networked devices consisting of non-linear elements called reservoirs.
- Non-Patent Document 1 CMOS (Complementary Metal-Oxide-Semiconductor) device.
- CMOS Complementary Metal-Oxide-Semiconductor
- the reservoir computing system by improving the integration of the equipment, it is possible to improve the performance such as facilitating the scale-up of the random network of the reservoir.
- the improvement of the integrateability is hindered by the increase in the number of parts and the complicated wiring.
- the carbon nanotubes are electrically connected to each other, and it is difficult to improve the integration property. , It is difficult to increase the number of multi-terminal inputs and random networks.
- an input unit that converts a first high-frequency signal into a first radio wave and emits it
- an output unit that converts a received second radio wave into a second high-frequency signal
- the device is provided between the output unit and has a plurality of semiconductor elements that modulate the first radio wave by performing a non-linear response to the first radio wave, and is obtained by the modulation with respect to the first radio wave.
- An information processing apparatus having a reservoir unit for outputting a second radio wave is provided.
- an information processing method is provided.
- the present invention can improve the integration of the information processing apparatus including the reservoir unit.
- FIG. 1 is a diagram showing an example of an information processing apparatus according to the first embodiment.
- the information processing apparatus 10 of the first embodiment functions as a reservoir computer, and has an input unit 11, a reservoir unit 12, and an output unit 13.
- the input unit 11 converts a high frequency signal into a radio wave and radiates it.
- the high frequency signal is, for example, a microwave or terahertz wave signal.
- the input unit 11 has one or a plurality of antennas depending on the number of high frequency signals to be converted into radio waves, and the antennas convert the high frequency signals into radio waves.
- the high frequency signal has, for example, an amplitude corresponding to the value of the input signal.
- the input signal is a signal according to the problem to be calculated, and may be, for example, a value of 1 or 0, or a signal such as a sine wave.
- the reservoir unit 12 is provided between the input unit 11 and the output unit 13, and outputs a radio wave modulated from the radio wave radiated by the input unit 11.
- the reservoir unit 12 has a plurality of semiconductor elements that modulate the radio wave by performing a non-linear response to the radio wave radiated by the input unit 11.
- Each of the plurality of semiconductor elements having a non-linear response is, for example, a one-dimensional semiconductor or a two-dimensional layered semiconductor.
- the one-dimensional semiconductor nanowires (for example, InAs (indium arsenide) semiconductor nanowires) can be used.
- pn hetero-nanowires also referred to as nanowire diodes
- p-GaAs gallium arsenide
- n-InAs which exhibit stronger nonlinearity than InAs semiconductor nanowires
- carbon nanotubes can also be used as the one-dimensional semiconductor.
- FIG. 1 shows an example in which a plurality of one-dimensional semiconductors (one-dimensional semiconductors 12a, 12b, etc.) are used as a plurality of semiconductor elements of the reservoir unit 12.
- the output unit 13 receives the radio wave (radio wave obtained by modulation) output by the reservoir unit 12 and converts the received radio wave into a high frequency signal.
- the output unit 13 has one or a plurality of antennas depending on the number of signals of the high frequency signal to be output, and the received radio waves are converted into high frequency signals by the antennas.
- the output unit 13 outputs a calculation result based on the amplitude of the high frequency signal.
- the output unit 13 converts a plurality of high-frequency signals obtained by a plurality of antennas into DC signals, weights each DC signal by a weight value obtained by learning, and adds them together. Is output as the calculation result of the information processing apparatus 10.
- the calculation result is, for example, an inference result when the calculation target is a problem of inferring something, and a classification result when the problem is to classify something.
- the signal processing in the reservoir unit 12 that functions as a neural network with the weight value (also called the coupling coefficient) between neurons as a fixed value is performed by the radio wave propagating in space.
- the high-frequency signal is converted into a radio wave by the input unit 11, and the converted radio wave is modulated by receiving a nonlinear response from a plurality of semiconductor elements of the reservoir unit 12, and is returned to the high-frequency signal by the output unit 13.
- Such an information processing device 10 is equivalent to a reservoir computing device connected by wiring, but since wiring is not required for the reservoir unit 12, integration can be improved by a simple process. Therefore, it is expected that the performance of the reservoir computer will be improved, such as facilitating the scale-up of the random network.
- the sizes of the plurality of semiconductor elements may be different from each other (manufacturing variation may be utilized), or the semiconductor elements may be sparsely arranged in the reservoir portion 12.
- a place to be arranged and a place to be densely arranged may be provided.
- the antenna effect of the semiconductor element itself causes a sufficient interaction between the semiconductor element that becomes each node of the random network and the propagating radio wave, thereby forming a network-like element.
- the same signal calculation as in the case of using can be performed inside the reservoir unit 12.
- learning is performed by adjusting the weight value for the output signal of the reservoir layer. Also in the above information processing apparatus 10, learning is possible by adjusting the weight value for the DC signal obtained by converting the high frequency signal obtained from the radio wave output by the reservoir unit 12. A configuration example for executing learning will be described later.
- FIG. 2 is a diagram showing an example of the information processing apparatus of the second embodiment.
- the information processing apparatus 20 of the second embodiment has an input unit 21, a reservoir unit 22, an output unit 23, and a learning unit 24.
- the input unit 21 has a high frequency power supply 21a1,21a2, ..., 21an, a multiplier 21b1,21b2, ..., 21bn, and a transmission antenna unit 21c.
- the high frequency power supplies 21a1 to 21an output high frequency signals.
- the frequencies of the high-frequency signals output by each of the high-frequency power supplies 21a1 to 21an are the same.
- the high frequency power supplies 21a1 to 21an may be one, and a common high frequency signal may be supplied from one high frequency power supply to the multipliers 21b1 to 21bn.
- Each of the multipliers 21b1 to 21bn outputs the product of the input high frequency signal and any of the input signals IN1, IN2, ..., INn.
- the intensities (amplitudes) of the n high-frequency signals output by the multipliers 21b1 to 21bn reflect the input signals IN1 to INn.
- the transmitting antenna unit 21c has an antenna that converts high-frequency signals output by the multipliers 21b1 to 21bn into radio waves and radiates them. Although there may be a plurality of antennas, it does not have to match the number of input signals IN1 to INn (the number of multipliers 21b1 to 21bn). For example, a high frequency signal output by one of the multipliers 21b1 to 21bn may be input to a plurality of antennas, or a high frequency signal output by a plurality of multipliers may be input to one antenna. It may be done. An example of the antenna will be described later.
- the reservoir unit 22 outputs a radio wave that is a modulation of the radio wave radiated by the antenna of the input unit 21.
- the reservoir unit 22 has a plurality of semiconductor elements that modulate the radio wave by performing a non-linear response to the radio wave radiated by the input unit 21. An example of the reservoir unit 22 will be described later.
- the output unit 23 has a receiving antenna unit 23a and a weighting unit 23b.
- the receiving antenna unit 23a receives the radio wave modulated by the reservoir unit 22 and converts the received radio wave into a high frequency signal.
- the output unit 13 has one or a plurality of antennas depending on the number of high-frequency signals that convert the received radio waves, and the antennas convert the received radio waves into high-frequency signals.
- the weighting unit 23b weights the DC signal obtained by converting the high frequency signal, and outputs the weighted signal or a signal obtained by adding a plurality of weighted signals as output signals OUT1, OUT2, ..., OUTn. do.
- the number of output signals OUT1 to OUTn does not have to match the number of antennas of the receiving antenna unit 23a. Further, the number of output signals OUT1 to OUTn does not have to match the number of input signals IN1 to INn. For example, the number of output signals OUT1 to OUTn may be one.
- the learning unit 24 acquires teacher data and adjusts the weighting magnitude of the weighting unit 23b based on the teacher data and the output signals OUT1 to OUTn of the output unit 23. Examples of the weighting unit 23b and the learning unit 24 will be described later.
- FIG. 3 is a diagram showing an example of a transmitting antenna unit, a reservoir unit, and a receiving antenna unit.
- the transmitting antenna unit 21c has bowtie antennas 21c1, 21, 21c2, 21c3.
- the bowtie antennas 21c1 to 21c3 are formed by a pair of electrodes having triangular vertices facing each other.
- the bowtie antennas 21c1 to 21c3 are formed on the substrate 21d.
- the reservoir portion 22 shown in FIG. 3 has a plurality of InAs semiconductor nanowires (for example, InAs semiconductor nanowires 22a, 22b, etc.) as a plurality of semiconductor elements that perform a non-linear response.
- the plurality of InAs semiconductor nanowires are formed so as to extend in the z direction by crystal growth on a substrate 22c such as a Si (silicon) substrate.
- the InAs semiconductor nanowires may be regularly arranged on the substrate 22c, but it is preferable that the InAs semiconductor nanowires are arranged randomly in order to promote the diversity of the random network.
- a semiconductor element that performs a non-linear response to a high-frequency signal converted into radio waves has a different strength of interaction with the high-frequency signal depending on the length in the long axis direction. The stronger the interaction, the better the performance of the reservoir 22.
- the length in the long axis direction is 1/10 or more of the effective wavelength of the high-frequency signal (the value obtained by dividing the wavelength by the refractive index of the semiconductor element), the antenna effect of the semiconductor element itself becomes remarkable, and the mutual with respect to the high-frequency signal becomes remarkable. The action becomes stronger, which is preferable.
- the wire length of general nanowires such as InAs semiconductor nanowires is several ⁇ m to 100 ⁇ m. Assuming high-frequency signals such as microwaves and terahertz waves, the wavelength of the high-frequency signal is several hundred ⁇ m to several cm. Therefore, when nanowires are used, the longer the length in the major axis direction, the more preferable. In particular, as described above, when the wire length, which is the length in the long axis direction, is 1/10 or more of the effective wavelength of the high frequency signal, the antenna effect of the nanowire itself becomes remarkable.
- the reservoir unit 22 is spatially separated from the input unit 21 including the transmitting antenna unit 21c by the substrate 21d, and is also spatially separated from the output unit 23 including the receiving antenna unit 23a by the substrate 22c. There is.
- a plurality of layers in which the above-mentioned semiconductor element is formed may be formed in the z direction.
- a plurality of layers in which InAs semiconductor nanowires are crystal-grown in the z direction may be provided on the substrate 22c. This makes it possible to increase the scale of the random network.
- FIG. 4 is a diagram showing an example in which the semiconductor elements arranged in the reservoir portion are densely packed.
- a nanowire diode having a pn heterojunction such as p-GaAs / n-InAs, which exhibits stronger nonlinearity than the InAs semiconductor nanowire, may be used instead of the InAs semiconductor nanowire.
- FIG. 5 is a diagram showing an example of a reservoir unit using a nanowire diode.
- the nanowire diode has a configuration in which a p-type semiconductor 22d1 and an n-type semiconductor 22d2 are bonded.
- the p-type semiconductor 22d1 is, for example, p-type GaAs
- the n-type semiconductor 22d2 is, for example, n-type InAs.
- the nanowire diode exhibits strong non-linearity, it is possible to realize a reservoir portion 22 with better performance.
- carbon nanotubes may be used as an example of the one-dimensional semiconductor.
- the receiving antenna unit 23a has the bowtie antennas 23a1, 23a2, 23a3.
- the bowtie antennas 23a1 to 23a3 are formed on the back surface of the substrate 22c on which InAs semiconductor nanowires are formed on the front surface.
- FIG. 6 is a diagram showing an example of a weighting unit and a learning unit.
- FIG. 6 shows an example in which one output signal OUT1 is generated from the high frequency signals converted by the three bowtie antennas 23a1 to 23a3 in order to simplify the explanation.
- the weighting unit 23b includes a DC (Direct Current) conversion unit 31, a weight adjusting unit 32, and an adder 33.
- the DC conversion unit 31 converts a high-frequency signal converted from a radio wave by the receiving antenna unit 23a into a DC signal (DC voltage / current amplitude signal).
- the DC conversion unit 31 has diodes 31a, 31b, 31c.
- the anode of the diode 31a is connected to one of the pair of electrodes of the bowtie antenna 23a3, and the cathode of the diode 31a is connected to the other of the pair of electrodes of the bowtie antenna 23a3.
- the anode of the diode 31b is connected to one of the pair of electrodes of the bowtie antenna 23a2, and the cathode of the diode 31b is connected to the other of the pair of electrodes of the bowtie antenna 23a2.
- the anode of the diode 31c is connected to one of the pair of electrodes of the bowtie antenna 23a1 and the cathode of the diode 31c is connected to the other of the pair of electrodes of the bowtie antenna 23a1.
- a DC signal which is the output of the DC conversion unit 31, can be obtained from the cathodes of the diodes 31a, 31b, and 31c.
- the weight adjusting unit 32 weights the DC signal that is the output of the DC conversion unit 31.
- the magnitude of the weighting is adjusted by the learning unit 24.
- the weight adjusting unit 32 has memristors (variable resistance memories) 32a, 32b, 32c as an example of an analog memory that holds the magnitude of weighting.
- Each DC signal output from the cathode of the diode 31a, 31b, 31c is weighted according to the magnitude of the resistance of the memristors 32a, 32b, 32c controlled by the learning unit 24.
- the adder 33 outputs the addition result of adding the weighted DC signals as the output signal OUT1 which is the calculation result of the information processing apparatus 20.
- the signal attenuated to a certain ratio through the output of the weight adjusting unit 32 or a resistor (not shown) is a signal line connected to the bowtie antennas 21c1 to 21c3 on the input side. It is added to the propagating high frequency signal. If there is such a feedback loop, the input will be made by directly associating the past output with the current input. Therefore, for example, in the training of time series data, it is possible to strongly learn the time correlation. Is. That is, for the problem that learning for such a correlation of time controls the performance, having such a feedback loop enables high-speed learning. Each feedback loop can be turned on and off individually by a switch (not shown) or the like.
- the weighting unit 23b as described above can be formed, for example, on the same surface as the surface on which the bowtie antennas 23a1 to 23a3 are formed on the substrate 22c as shown in FIG.
- the learning unit 24 has a comparison circuit 24a and a weight control circuit 24b.
- the comparison circuit 24a outputs a comparison result (for example, an error) comparing the input teacher data with the output signal OUT1.
- the weight control circuit 24b adjusts the weighting size (for example, the resistance size of the memristors 32a, 32b, 32c) in the weighting unit 23b so that the error is minimized based on the comparison result.
- the weighting size for example, the resistance size of the memristors 32a, 32b, 32c
- the learning unit 24 is separated from the weighting unit 23b by a switch (not shown) or the like.
- the learning unit 24 may be a computer realized by using a processor which is hardware such as a CPU (Central Processing Unit) and a DSP (Digital Signal Processor).
- the learning unit 24 may include an electronic circuit for a specific purpose such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
- the processor executes a program stored in a memory such as a RAM (Random Access Memory), and controls the magnitude of the weighting based on the comparison result between the teacher data and the output signal OUT1.
- FIG. 7 is a flowchart showing a flow of an example of arithmetic processing of the information processing apparatus according to the second embodiment.
- the input unit 21 receives the inputs of the input signals IN1 to INn (step S1). Then, the input unit 21 converts the high frequency signal reflecting the input signals IN1 to INn into a radio wave by the transmission antenna unit 21c and radiates it (step S2).
- the reservoir unit 22 modulates the radio wave by performing a non-linear response to the radio wave radiated by the input unit 21 (step S3).
- the output unit 23 receives the radio wave modulated by the reservoir unit 22 by the receiving antenna unit 23a, and converts the received radio wave into a high frequency signal (step S4).
- the output unit 23 weights the DC signal converted from the high frequency signal by the weighting unit 23b (step S5). Then, the output unit 23 outputs the weighted signal or the signal obtained by adding the weighted plurality of signals as output signals OUT1 to OUTn indicating the calculation result (step S6), and the information processing apparatus 20 performs the calculation process. To finish.
- wiring is not required for the reservoir portion 22 as in the information processing apparatus 10 of the first embodiment, so that the integration can be improved by a simple process. Therefore, it is expected that the performance of the reservoir computer will be improved, such as facilitating the scale-up of the random network.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Evolutionary Computation (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Neurology (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
リザバー部を含む情報処理装置の集積性を向上する。 情報処理装置(10)の入力部(11)が、第1の高周波信号を第1の電波に変換して放射し、入力部(11)と出力部(13)との間に設けられ、第1の電波に対して非線形応答を行うことで第1の電波を変調させる複数の半導体素子(図1ではInAs半導体ナノワイヤなどの1次元半導体(12a,12b))を有するリザバー部(12)が、第1の電波に対する変調によって得られる第2の電波を出力し、出力部(13)が、受信した第2の電波を第2の高周波信号に変換する。
Description
本発明は、情報処理装置及び情報処理方法に関する。
AI(Artificial Intelligence)向けのコンピューティングシステムの1つとして、RNN(Recurrent Neural Network)の一種であるリザバーコンピューティングシステムが知られている(たとえば、特許文献1)。リザバーコンピューティングシステムには、リザバーと呼ばれる非線形要素からなるネットワーク型デバイスが含まれる。
従来、リザバーをCMOS(Complementary Metal-Oxide-Semiconductor)デバイスにより実現する手法があった。一方、カーボンナノチューブのランダムネットワークを利用してリザバーを実現することが提案されている(たとえば、非特許文献1参照)。
また、従来、ニューラルネットワークにおいて各ニューロン間の信号の授受を電波によって行う技術があった(たとえば、特許文献2参照)。
Hirofumi Tanaka et al., "A molecular neuromorphic network device consisting of single-walled carbon nanotubes complexed with polyoxometalate", Nature Communications volume 9, Article number: 2693, 2018
リザバーコンピューティングシステムでは、装置の集積性を向上させることで、リザバーのランダムネットワークの大規模化が容易になるなど、性能を向上させることができる。しかし、リザバーをCMOSデバイスにより実現する場合、部品点数の増加や配線の複雑化により集積性の向上が妨げられる。また、リザバーをカーボンナノチューブにより実現する従来の手法は、カーボンナノチューブを導電性の配線として機能させるために、カーボンナノチューブ同士を電気的に接続させることになり、集積性を向上させることが困難であり、多端子入力化やランダムネットワークの大規模化が難しい。
1つの側面では、本発明は、装置の集積性を向上可能な、リザバー部を含む情報処理装置及び情報処理方法を提供することを目的とする。
1つの実施態様では、第1の高周波信号を第1の電波に変換して放射する入力部と、受信した第2の電波を第2の高周波信号に変換する出力部と、前記入力部と前記出力部との間に設けられ、前記第1の電波に対して非線形応答を行うことで前記第1の電波を変調させる複数の半導体素子を有し、前記第1の電波に対する変調によって得られる前記第2の電波を出力するリザバー部と、を有する情報処理装置が提供される。
また、1つの実施態様では情報処理方法が提供される。
1つの側面では、本発明は、リザバー部を含む情報処理装置の集積性を向上できる。
本発明の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
本発明の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
以下、発明を実施するための形態を、図面を参照しつつ説明する。
(第1の実施の形態)
図1は、第1の実施の形態の情報処理装置の一例を示す図である。
(第1の実施の形態)
図1は、第1の実施の形態の情報処理装置の一例を示す図である。
第1の実施の形態の情報処理装置10は、リザバーコンピュータとして機能するものであり、入力部11、リザバー部12、出力部13を有する。
入力部11は、高周波信号を電波に変換して放射する。高周波信号は、たとえば、マイクロ波やテラヘルツ波の信号である。入力部11は、電波に変換する高周波信号の数に応じて、1または複数のアンテナを有し、アンテナにより高周波信号を電波に変換する。なお、高周波信号は、たとえば、入力信号の値に応じた振幅となっている。入力信号は、演算対象の問題に応じた信号であり、たとえば、1または0の値であってもよいし、サイン波などの信号であってもよい。
入力部11は、高周波信号を電波に変換して放射する。高周波信号は、たとえば、マイクロ波やテラヘルツ波の信号である。入力部11は、電波に変換する高周波信号の数に応じて、1または複数のアンテナを有し、アンテナにより高周波信号を電波に変換する。なお、高周波信号は、たとえば、入力信号の値に応じた振幅となっている。入力信号は、演算対象の問題に応じた信号であり、たとえば、1または0の値であってもよいし、サイン波などの信号であってもよい。
リザバー部12は、入力部11と出力部13との間に設けられ、入力部11が放射した電波を変調させた電波を出力する。リザバー部12は、入力部11が放射した電波に対して非線形応答を行うことでその電波を変調させる複数の半導体素子を有する。
非線形応答を行う複数の半導体素子のそれぞれは、たとえば、1次元半導体または2次元層状半導体である。
1次元半導体として、ナノワイヤ(たとえば、InAs(インジウム砒素)半導体ナノワイヤ)を用いることができる。また、InAs半導体ナノワイヤよりも強い非線形性を示すp-GaAs(ガリウム砒素)/n-InAsなどのpnヘテロナノワイヤ(ナノワイヤダイオードとも呼ばれる)を、1次元半導体として用いてもよい。また、1次元半導体として、カーボンナノチューブを用いることもできる。
1次元半導体として、ナノワイヤ(たとえば、InAs(インジウム砒素)半導体ナノワイヤ)を用いることができる。また、InAs半導体ナノワイヤよりも強い非線形性を示すp-GaAs(ガリウム砒素)/n-InAsなどのpnヘテロナノワイヤ(ナノワイヤダイオードとも呼ばれる)を、1次元半導体として用いてもよい。また、1次元半導体として、カーボンナノチューブを用いることもできる。
2次元層状半導体として、たとえば、グラフェンナノリボンなどがある。
図1には、複数の1次元半導体(1次元半導体12a,12bなど)をリザバー部12の複数の半導体素子として用いた例が示されている。
図1には、複数の1次元半導体(1次元半導体12a,12bなど)をリザバー部12の複数の半導体素子として用いた例が示されている。
出力部13は、リザバー部12が出力した電波(変調によって得られた電波)を受信し、受信した電波を高周波信号に変換する。たとえば、出力部13は、出力する高周波信号の信号数に応じて、1または複数のアンテナを有し、アンテナにより、受信した電波を高周波信号に変換する。出力部13は、高周波信号の振幅に基づいた演算結果を出力する。たとえば、出力部13は、複数のアンテナによって得られた複数の高周波信号を直流信号に変換するとともに、各直流信号に対して学習によって得られた重み値による重み付けを行い、それらを足し合わせた値を情報処理装置10の演算結果として出力する。演算結果は、たとえば、演算対象が何かを推論する問題である場合には推論結果、何かを分類する問題である場合には分類結果である。
上記のような情報処理装置10を用いることで、ニューロン間の重み値(結合係数とも呼ばれる)を固定値としたニューラルネットワークとして機能するリザバー部12内の信号処理が、空間を伝搬する電波によって行われることになる。つまり、高周波信号が入力部11により電波に変換され、その変換された電波は、リザバー部12の複数の半導体素子による非線形応答を受けて変調され、出力部13により高周波信号に戻される。このような情報処理装置10は、配線によって接続されたリザバーコンピューティングデバイスと等価となるが、リザバー部12に配線が不要となるため、簡単な工程にて集積性を向上できる。このため、ランダムネットワークの大規模化が容易になるなど、リザバーコンピュータの性能向上が期待できる。
また、複数の半導体素子のサイズ(たとえば、1次元半導体の長軸方向の長さ)を互いに異ならせてもよいし(製造ばらつきを利用してもよい)、リザバー部12において半導体素子を疎に配置する箇所と密に配置する箇所を設けてもよい。これにより、ランダムネットワークの多様性が高まり、より高性能なリザバーコンピュータが実現できる。
また、半導体素子として1次元半導体を用いることで、半導体素子自体のアンテナ効果により、ランダムネットワークの各ノードとなる半導体素子と伝搬電波との間に十分な相互作用が生じることで、ネットワーク状素子を用いた場合と同様な信号演算をリザバー部12の内部で行わせることができる。
なお、リザバーコンピューティングではリザバー層の出力信号に対する重み値を調整することで学習が行われる。上記の情報処理装置10においても、リザバー部12が出力する電波から得られる高周波信号を変換した直流信号に対する重み値を調整することで、学習が可能である。学習を実行する構成例については後述する。
(第2の実施の形態)
図2は、第2の実施の形態の情報処理装置の一例を示す図である。
第2の実施の形態の情報処理装置20は、入力部21、リザバー部22、出力部23、学習部24を有する。
図2は、第2の実施の形態の情報処理装置の一例を示す図である。
第2の実施の形態の情報処理装置20は、入力部21、リザバー部22、出力部23、学習部24を有する。
入力部21は、高周波電源21a1,21a2,…,21an、乗算器21b1,21b2,…,21bn、送信アンテナ部21cを有する。
高周波電源21a1~21anは、高周波信号を出力する。高周波電源21a1~21anのそれぞれが出力する高周波信号の周波数は同一である。なお、高周波電源21a1~21anは1つであってもよく、1つの高周波電源から乗算器21b1~21bnに共通の高周波信号を供給してもよい。
高周波電源21a1~21anは、高周波信号を出力する。高周波電源21a1~21anのそれぞれが出力する高周波信号の周波数は同一である。なお、高周波電源21a1~21anは1つであってもよく、1つの高周波電源から乗算器21b1~21bnに共通の高周波信号を供給してもよい。
乗算器21b1~21bnのそれぞれは、入力される高周波信号と、入力信号IN1,IN2,…,INnの何れかとの積を出力する。これによって乗算器21b1~21bnが出力するn個の高周波信号の強度(振幅)は、入力信号IN1~INnを反映したものとなる。
送信アンテナ部21cは、乗算器21b1~21bnが出力する高周波信号を電波に変換して放射するアンテナを有する。
なお、アンテナは複数あってもよいが、入力信号IN1~INnの数(乗算器21b1~21bnの数)と一致していなくてもよい。たとえば、乗算器21b1~21bnのうちのある1つの乗算器が出力する高周波信号が複数のアンテナに入力されるようにしてもよいし、複数の乗算器が出力する高周波信号が1つのアンテナに入力されるようにしてもよい。アンテナの例については後述する。
なお、アンテナは複数あってもよいが、入力信号IN1~INnの数(乗算器21b1~21bnの数)と一致していなくてもよい。たとえば、乗算器21b1~21bnのうちのある1つの乗算器が出力する高周波信号が複数のアンテナに入力されるようにしてもよいし、複数の乗算器が出力する高周波信号が1つのアンテナに入力されるようにしてもよい。アンテナの例については後述する。
リザバー部22は、入力部21のアンテナが放射した電波を変調させた電波を出力する。リザバー部22は、入力部21が放射した電波に対して非線形応答を行うことでその電波を変調させる複数の半導体素子を有する。リザバー部22の例については後述する。
出力部23は、受信アンテナ部23aと重み付け部23bを有する。
受信アンテナ部23aは、リザバー部22によって変調された電波を受信し、受信した電波を高周波信号に変換する。たとえば、出力部13は、受信した電波を変換する高周波信号の数に応じて、1または複数のアンテナを有し、アンテナにより、受信した電波を高周波信号に変換する。
受信アンテナ部23aは、リザバー部22によって変調された電波を受信し、受信した電波を高周波信号に変換する。たとえば、出力部13は、受信した電波を変換する高周波信号の数に応じて、1または複数のアンテナを有し、アンテナにより、受信した電波を高周波信号に変換する。
重み付け部23bは、高周波信号を変換した直流の信号に対して重み付けを行い、重み付け後の信号、または重み付け後の複数の信号を足し合わせた信号を、出力信号OUT1,OUT2,…,OUTnとして出力する。
なお、出力信号OUT1~OUTnの数は、受信アンテナ部23aのアンテナ数と一致していなくてもよい。また、出力信号OUT1~OUTnの数は、入力信号IN1~INnの数と一致していなくてもよい。たとえば、出力信号OUT1~OUTnの数は、1つであってもよい。
学習部24は、教師データを取得し、教師データと出力部23の出力信号OUT1~OUTnとに基づいて、重み付け部23bの重み付けの大きさを調整する。
重み付け部23bと学習部24の例については後述する。
重み付け部23bと学習部24の例については後述する。
図3は、送信アンテナ部、リザバー部及び受信アンテナ部の一例を示す図である。
送信アンテナ部21cは、ボウタイアンテナ21c1,21c2,21c3を有する。ボウタイアンテナ21c1~21c3は、三角形の頂点が対向する一対の電極によって形成される。ボウタイアンテナ21c1~21c3は、基板21d上に形成されている。
送信アンテナ部21cは、ボウタイアンテナ21c1,21c2,21c3を有する。ボウタイアンテナ21c1~21c3は、三角形の頂点が対向する一対の電極によって形成される。ボウタイアンテナ21c1~21c3は、基板21d上に形成されている。
ボウタイアンテナ21c1~21c3を用いることで、ボウタイアンテナ効果によって、リザバー部22に効率よく高周波信号を変換した電波を照射することができる。
図3に示されているリザバー部22は、非線形応答を行う複数の半導体素子として、複数のInAs半導体ナノワイヤ(たとえば、InAs半導体ナノワイヤ22a,22bなど)を有する。複数のInAs半導体ナノワイヤは、たとえば、Si(シリコン)基板などの基板22c上に結晶成長によって、z方向に伸びるように形成されている。
図3に示されているリザバー部22は、非線形応答を行う複数の半導体素子として、複数のInAs半導体ナノワイヤ(たとえば、InAs半導体ナノワイヤ22a,22bなど)を有する。複数のInAs半導体ナノワイヤは、たとえば、Si(シリコン)基板などの基板22c上に結晶成長によって、z方向に伸びるように形成されている。
なお、InAs半導体ナノワイヤは基板22c上に規則的に配列されていてもよいが、ランダムに配列されていたほうがランダムネットワークの多様性を促進するために好ましい。
また、電波に変換された高周波信号に対して非線形応答を行う半導体素子は、長軸方向の長さによって、高周波信号に対する相互作用の強さが変わってくる。相互作用の強さが強いほど、性能のよいリザバー部22が得られる。
特に、長軸方向の長さが高周波信号の実効波長(波長を半導体素子の屈折率で割った値)の1/10以上であれば、半導体素子自体のアンテナ効果が顕著となり、高周波信号に対する相互作用が強くなり、好ましい。
InAs半導体ナノワイヤなどの一般的なナノワイヤのワイヤ長は、数μm~100μmである。マイクロ波やテラヘルツ波の高周波信号を想定すると、高周波信号の波長は数百μmから数cmとなる。このため、ナノワイヤが用いられる場合、上記長軸方向の長さは長いほど好ましい。特に、上記のように、長軸方向の長さであるワイヤ長が高周波信号の実効波長の1/10以上であれば、ナノワイヤ自体のアンテナ効果が顕著となる。そのため、たとえば、InAs半導体ナノワイヤのワイヤ長は、高周波信号の周波数として250GHz(波長は1200μm)を最小周波数として用いる場合、InAsの屈折率が3.5であるため、1200/(3.5×10)=34(μm)以上とすればよい。
これにより、より少ないInAs半導体ナノワイヤで性能のよいリザバー部22を実現できる。一方で、たとえば、ワイヤ長を3.4μmとした場合、InAs半導体ナノワイヤの密度を、ワイヤ長を34μmとした場合の10倍にすることで、同じ性能を得ることができる。
リザバー部22は、基板21dによって送信アンテナ部21cを含む入力部21に対して空間的に分離されているとともに、基板22cによって受信アンテナ部23aを含む出力部23に対して空間的に分離されている。
なお、リザバー部22において、上記のような半導体素子が形成される領域が、z方向に複数層形成されていてもよい。たとえば、基板22cにInAs半導体ナノワイヤをz方向に結晶成長させた層を、z方向に複数層設けるようにしてもよい。これによりランダムネットワークの大規模化が可能になる。
また、リザバー部22において、半導体素子を疎に配置する箇所と密に配置する箇所とが混在していてもよい。
図4は、リザバー部に配置される半導体素子に粗密が生じている例を示す図である。
図4は、リザバー部に配置される半導体素子に粗密が生じている例を示す図である。
図4の例では、InAs半導体ナノワイヤ(InAs半導体ナノワイヤ22aなど)が密に配置されるエリアと、疎に配置されるエリアとが混在している例が示されている。
このようにすることで、ランダムネットワークの多様性が高まり、より高性能なリザバーコンピュータが実現できる。
このようにすることで、ランダムネットワークの多様性が高まり、より高性能なリザバーコンピュータが実現できる。
また、ナノワイヤとして、InAs半導体ナノワイヤの代わりにInAs半導体ナノワイヤよりも強い非線形性を示すp-GaAs/n-InAsなどのpnヘテロ接合を有するナノワイヤダイオードを用いてもよい。
図5は、ナノワイヤダイオードを用いたリザバー部の一例を示す図である。
ナノワイヤダイオードは、p型半導体22d1とn型半導体22d2とが接合された構成となっている。p型半導体22d1は、たとえば、p型GaAsであり、n型半導体22d2は、たとえば、n型InAsである。
ナノワイヤダイオードは、p型半導体22d1とn型半導体22d2とが接合された構成となっている。p型半導体22d1は、たとえば、p型GaAsであり、n型半導体22d2は、たとえば、n型InAsである。
ナノワイヤダイオードは強い非線形性を示すため、より性能のよいリザバー部22を実現できる。
なお、1次元半導体の例として、カーボンナノチューブを用いてもよい。
なお、1次元半導体の例として、カーボンナノチューブを用いてもよい。
図3において、受信アンテナ部23aは、ボウタイアンテナ23a1,23a2,23a3を有する。ボウタイアンテナ23a1~23a3は、InAs半導体ナノワイヤが表面に形成される基板22cの裏面に形成されている。
ボウタイアンテナ23a1~23a3を用いることで、ボウタイアンテナ効果によって、リザバー部22から効率よく電波に変換された高周波信号を受信できる。
図6は、重み付け部と学習部の一例を示す図である。
図6は、重み付け部と学習部の一例を示す図である。
なお、図6では、説明を簡略化するために、3つのボウタイアンテナ23a1~23a3よって変換された高周波信号から1つの出力信号OUT1を生成する例が示されている。
重み付け部23bは、DC(Direct Current)変換部31、重み調整部32、加算器33を有する。
DC変換部31は、受信アンテナ部23aによって電波から変換された高周波信号を直流信号(直流の電圧・電流振幅信号)に変換する。
DC変換部31は、受信アンテナ部23aによって電波から変換された高周波信号を直流信号(直流の電圧・電流振幅信号)に変換する。
図6の例では、DC変換部31は、ダイオード31a,31b,31cを有する。ダイオード31aのアノードは、ボウタイアンテナ23a3の一対の電極のうちの一方に接続され、ダイオード31aのカソードは、ボウタイアンテナ23a3の一対の電極のうちの他方に接続されている。ダイオード31bのアノードは、ボウタイアンテナ23a2の一対の電極のうちの一方に接続され、ダイオード31bのカソードは、ボウタイアンテナ23a2の一対の電極のうちの他方に接続されている。ダイオード31cのアノードは、ボウタイアンテナ23a1の一対の電極のうちの一方に接続され、ダイオード31cのカソードは、ボウタイアンテナ23a1の一対の電極のうちの他方に接続されている。ダイオード31a,31b,31cのそれぞれのカソードからDC変換部31の出力である直流信号が得られる。
重み調整部32は、DC変換部31の出力である直流信号に対して重み付けを行う。重み付けの大きさは、学習部24によって調整される。
図6において、重み調整部32は、重み付けの大きさを保持するアナログメモリの例として、メモリスタ(抵抗可変メモリ)32a,32b,32cを有する。学習部24によって制御されるメモリスタ32a,32b,32cの抵抗の大きさに応じて、ダイオード31a,31b,31cのカソードから出力される各直流信号が重み付けされる。
図6において、重み調整部32は、重み付けの大きさを保持するアナログメモリの例として、メモリスタ(抵抗可変メモリ)32a,32b,32cを有する。学習部24によって制御されるメモリスタ32a,32b,32cの抵抗の大きさに応じて、ダイオード31a,31b,31cのカソードから出力される各直流信号が重み付けされる。
加算器33は、重み付けされた各直流信号を足し合わせた加算結果を、情報処理装置20の演算結果である出力信号OUT1として出力する。
なお、図6に示すように、たとえば、重み調整部32の出力、または図示しない抵抗を介して一定の割合に減衰させた信号は、入力側のボウタイアンテナ21c1~21c3に接続される信号線を伝搬する高周波信号に足しこまれる。このようなフィードバックループがあると、過去の出力を現在の入力に直接関連付けた形で入力が行われることになるため、たとえば、時系列データの学習において、時間の相関を強く学習させることが可能である。すなわち、そのような時間の相関に対する学習が性能を支配する問題に対しては、このようなフィードバックループを有することで高速な学習が可能となる。なお各フィードバックループは、図示しないスイッチなどによって個々にオンオフ可能である。
なお、図6に示すように、たとえば、重み調整部32の出力、または図示しない抵抗を介して一定の割合に減衰させた信号は、入力側のボウタイアンテナ21c1~21c3に接続される信号線を伝搬する高周波信号に足しこまれる。このようなフィードバックループがあると、過去の出力を現在の入力に直接関連付けた形で入力が行われることになるため、たとえば、時系列データの学習において、時間の相関を強く学習させることが可能である。すなわち、そのような時間の相関に対する学習が性能を支配する問題に対しては、このようなフィードバックループを有することで高速な学習が可能となる。なお各フィードバックループは、図示しないスイッチなどによって個々にオンオフ可能である。
上記のような重み付け部23bは、たとえば、図3に示したような基板22cにおいてボウタイアンテナ23a1~23a3が形成される面と同一面上に形成できる。
学習部24は、比較回路24aと、重み制御回路24bとを有する。比較回路24aは、入力される教師データと出力信号OUT1とを比較した比較結果(たとえば、誤差)を出力する。
学習部24は、比較回路24aと、重み制御回路24bとを有する。比較回路24aは、入力される教師データと出力信号OUT1とを比較した比較結果(たとえば、誤差)を出力する。
重み制御回路24bは比較結果に基づいて、誤差が最小になるように重み付け部23bにおける重み付けの大きさ(たとえば、メモリスタ32a,32b,32cの抵抗の大きさ)を調整する。
なお、学習終了後は、学習部24は、図示しないスイッチなどによって重み付け部23bから切り離される。
学習部24は、CPU(Central Processing Unit)やDSP(Digital Signal Processor)などのハードウェアであるプロセッサなどを用いて実現されるコンピュータであってもよい。ただし、学習部24は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)などの特定用途の電子回路を含んでもよい。プロセッサは、RAM(Random Access Memory)などのメモリに記憶されたプログラムを実行して、教師データと出力信号OUT1との比較結果に基づいて、重み付けの大きさを制御する。
学習部24は、CPU(Central Processing Unit)やDSP(Digital Signal Processor)などのハードウェアであるプロセッサなどを用いて実現されるコンピュータであってもよい。ただし、学習部24は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)などの特定用途の電子回路を含んでもよい。プロセッサは、RAM(Random Access Memory)などのメモリに記憶されたプログラムを実行して、教師データと出力信号OUT1との比較結果に基づいて、重み付けの大きさを制御する。
次に、第2の実施の形態の情報処理装置20による演算処理の流れを説明する。
図7は、第2の実施の形態の情報処理装置の演算処理の一例の流れを示すフローチャートである。
図7は、第2の実施の形態の情報処理装置の演算処理の一例の流れを示すフローチャートである。
入力部21は、入力信号IN1~INnの入力を受け付ける(ステップS1)。
そして、入力部21は、入力信号IN1~INnを反映させた高周波信号を、送信アンテナ部21cによって電波に変換して放射する(ステップS2)。
そして、入力部21は、入力信号IN1~INnを反映させた高周波信号を、送信アンテナ部21cによって電波に変換して放射する(ステップS2)。
リザバー部22は、入力部21が放射した電波に対して非線形応答を行うことでその電波を変調させる(ステップS3)。
出力部23は、リザバー部22によって変調された電波を受信アンテナ部23aにより受信し、受信した電波を高周波信号に変換する(ステップS4)。
出力部23は、リザバー部22によって変調された電波を受信アンテナ部23aにより受信し、受信した電波を高周波信号に変換する(ステップS4)。
さらに、出力部23は、重み付け部23bによって、高周波信号を変換した直流信号に対して重み付けを行う(ステップS5)。
そして、出力部23は、重み付け後の信号または、重み付け後の複数の信号を足し合わせた信号を、演算結果を示す出力信号OUT1~OUTnとして出力し(ステップS6)、情報処理装置20は演算処理を終える。
そして、出力部23は、重み付け後の信号または、重み付け後の複数の信号を足し合わせた信号を、演算結果を示す出力信号OUT1~OUTnとして出力し(ステップS6)、情報処理装置20は演算処理を終える。
以上のような、情報処理装置20によれば、第1の実施の形態の情報処理装置10と同様に、リザバー部22に配線が不要となるため、簡単な工程にて集積性を向上できる。このため、ランダムネットワークの大規模化が容易になるなど、リザバーコンピュータの性能向上が期待できる。
上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
10 情報処理装置
11 入力部
12 リザバー部
12a,12b 1次元半導体
13 出力部
11 入力部
12 リザバー部
12a,12b 1次元半導体
13 出力部
Claims (8)
- 第1の高周波信号を第1の電波に変換して放射する入力部と、
受信した第2の電波を第2の高周波信号に変換する出力部と、
前記入力部と前記出力部との間に設けられ、前記第1の電波に対して非線形応答を行うことで前記第1の電波を変調させる複数の半導体素子を有し、前記第1の電波に対する変調によって得られる前記第2の電波を出力するリザバー部と、
を有する情報処理装置。 - 前記複数の半導体素子のそれぞれは、1次元半導体または2次元層状半導体である、請求項1に記載の情報処理装置。
- 前記1次元半導体はナノワイヤダイオードである、請求項2に記載の情報処理装置。
- 前記リザバー部において、前記複数の半導体素子が疎に配置される箇所と、密に配置される箇所とが混在する、請求項1乃至3の何れか一項に記載の情報処理装置。
- 前記入力部または前記出力部は、1または複数のボウタイアンテナを有する、請求項1乃至4の何れか一項に記載の情報処理装置。
- 前記出力部は、前記第2の高周波信号を直流信号に変換し、変換した直流信号に重み付けを行う、請求項1乃至5の何れか一項に記載の情報処理装置。
- 教師データに基づいて、前記直流信号に対する重み付けの大きさを調整する学習部を有し、重み付けされた前記直流信号は、前記入力部において前記第1の高周波信号に足しこまれる、請求項6に記載の情報処理装置。
- 入力部が、第1の高周波信号を第1の電波に変換して放射し、
前記第1の電波に対して非線形応答を行うことで前記第1の電波を変調させる複数の半導体素子を有するリザバー部が、前記第1の電波に対する変調によって得られる第2の電波を出力し、
出力部が、受信した前記第2の電波を第2の高周波信号に変換する、
情報処理方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/026580 WO2022009314A1 (ja) | 2020-07-07 | 2020-07-07 | 情報処理装置及び情報処理方法 |
JP2022534539A JP7425370B2 (ja) | 2020-07-07 | 2020-07-07 | 情報処理装置及び情報処理方法 |
EP20944413.2A EP4181023B1 (en) | 2020-07-07 | 2020-07-07 | Information processing device and information processing method |
US18/082,612 US20230117769A1 (en) | 2020-07-07 | 2022-12-16 | Information processing apparatus and information processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/026580 WO2022009314A1 (ja) | 2020-07-07 | 2020-07-07 | 情報処理装置及び情報処理方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/082,612 Continuation US20230117769A1 (en) | 2020-07-07 | 2022-12-16 | Information processing apparatus and information processing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022009314A1 true WO2022009314A1 (ja) | 2022-01-13 |
Family
ID=79552330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/026580 WO2022009314A1 (ja) | 2020-07-07 | 2020-07-07 | 情報処理装置及び情報処理方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230117769A1 (ja) |
EP (1) | EP4181023B1 (ja) |
JP (1) | JP7425370B2 (ja) |
WO (1) | WO2022009314A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06243117A (ja) * | 1993-02-18 | 1994-09-02 | Fuji Xerox Co Ltd | ニューラルネットワークシステム |
JP2018180701A (ja) | 2017-04-05 | 2018-11-15 | 株式会社日立製作所 | 計算機システム及び再帰型ニューラルネットワークを用いた演算方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6243117B2 (ja) | 2012-12-17 | 2017-12-06 | 京楽産業.株式会社 | 遊技機 |
EP2821942B1 (en) * | 2013-07-05 | 2020-11-04 | Universiteit Gent | Reservoir computing using passive optical systems |
-
2020
- 2020-07-07 JP JP2022534539A patent/JP7425370B2/ja active Active
- 2020-07-07 EP EP20944413.2A patent/EP4181023B1/en active Active
- 2020-07-07 WO PCT/JP2020/026580 patent/WO2022009314A1/ja unknown
-
2022
- 2022-12-16 US US18/082,612 patent/US20230117769A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06243117A (ja) * | 1993-02-18 | 1994-09-02 | Fuji Xerox Co Ltd | ニューラルネットワークシステム |
JP2018180701A (ja) | 2017-04-05 | 2018-11-15 | 株式会社日立製作所 | 計算機システム及び再帰型ニューラルネットワークを用いた演算方法 |
Non-Patent Citations (2)
Title |
---|
HIROFUMI TANAKA ET AL.: "A molecular neuromorphic network device consisting of single-walled carbon nanotubes complexed with polyoxometalate", NATURE COMMUNICATIONS, vol. 9, 2018 |
KATUMBA, ANDREW ET AL.: "Neuromorphic Computing Based on Silicon Photonics and Reservoir Computing", IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, vol. 24, no. 6, November 2018 (2018-11-01), XP011681811, DOI: 10.1109/JSTQE.2018.2821843 * |
Also Published As
Publication number | Publication date |
---|---|
EP4181023A4 (en) | 2023-07-12 |
JP7425370B2 (ja) | 2024-01-31 |
EP4181023B1 (en) | 2024-07-17 |
EP4181023A1 (en) | 2023-05-17 |
US20230117769A1 (en) | 2023-04-20 |
JPWO2022009314A1 (ja) | 2022-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhukov et al. | Algorithmic simulation of far-from-equilibrium dynamics using quantum computer | |
Hua et al. | Sine-transform-based chaotic system with FPGA implementation | |
Lamata et al. | Digital-analog quantum simulations with superconducting circuits | |
Razmjooy et al. | An improved quantum evolutionary algorithm based on invasive weed optimization | |
CN110649976B (zh) | 适用于多量子计算机芯片的位态测量读取装置及方法 | |
US10891536B1 (en) | Artificial neural network for reservoir computing using stochastic logic | |
CN110535486B (zh) | 基于超表面神经网络的射频信号直接处理式无线收发机 | |
US11790220B2 (en) | Artificial neural networks | |
CN103023839B (zh) | 基于输出反馈偏置型复连续反馈神经网络结构的无线光通信系统盲均衡方法 | |
CN114037082A (zh) | 量子计算任务处理方法、系统及计算机设备 | |
Deibuk et al. | Design of a ternary reversible/quantum adder using genetic algorithm | |
JP7425370B2 (ja) | 情報処理装置及び情報処理方法 | |
Behrman et al. | Quantum neural computation of entanglement is robust to noise and decoherence | |
US6876989B2 (en) | Back-propagation neural network with enhanced neuron characteristics | |
Yan et al. | Quantum chaos on complexity geometry | |
Singh et al. | Complexity analysis of quantum teleportation via different entangled channels in the presence of noise | |
He et al. | Implementation of quantum operations on single-photon qudits | |
Hellbach et al. | Quantum-correlated photons generated by nonlocal electron transport | |
Lee et al. | Wireless link scheduling for D2D communications with graph embedding technique | |
Roqui et al. | Estimation of small antenna performance using a machine learning approach | |
Moraga | Mixed polarity reversible Peres gates | |
He et al. | Entanglement transformation with no classical communication | |
CN115426012A (zh) | 基带芯片、混合预编码方法及终端设备 | |
Rácz et al. | A full-stack neuromorphic prototype architecture for low-power wireless sensors | |
NirmalaDevi et al. | Modeling and analysis of neuro–genetic hybrid system on FPGA |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20944413 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022534539 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020944413 Country of ref document: EP Effective date: 20230207 |