WO2022007719A1 - Apparatus and method of wireless communication - Google Patents

Apparatus and method of wireless communication Download PDF

Info

Publication number
WO2022007719A1
WO2022007719A1 PCT/CN2021/104321 CN2021104321W WO2022007719A1 WO 2022007719 A1 WO2022007719 A1 WO 2022007719A1 CN 2021104321 W CN2021104321 W CN 2021104321W WO 2022007719 A1 WO2022007719 A1 WO 2022007719A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
positioning reference
uplink positioning
idle state
uplink
Prior art date
Application number
PCT/CN2021/104321
Other languages
French (fr)
Inventor
Li Guo
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp., Ltd. filed Critical Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Publication of WO2022007719A1 publication Critical patent/WO2022007719A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0045Transmission from base station to mobile station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0236Assistance data, e.g. base station almanac
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/287TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission when the channel is in stand-by
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present disclosure relates to the field of communication systems, and more particularly, to an apparatus and a method of wireless communication, which can provide a good communication performance and/or high reliability.
  • New radio (NR) system introduces a multi-transmission/reception point (TRP) based non-coherent joint transmission.
  • TRP multi-transmission/reception point
  • Multiple TRPs are connected through backhaul link for coordination.
  • the backhaul link can be ideal or non-ideal.
  • the TRPs can exchange dynamic physical downlink shared channel (PDSCH) scheduling information with short latency and thus different TRPs can coordinate a PDSCH transmission per PDSCH transmission.
  • PDSCH physical downlink shared channel
  • the information exchange between TRPs has large latency and thus the coordination between TRPs can only be semi-static or static.
  • an issue for NR positioning is a user equipment (UE) can send a sounding reference signal (SRS) for positioning when the UE is in radio resource control_connected (RRC_CONNECTED) state. Therefore, uplink-based positioning methods can only be used when the UE is in the RRC_CONNETED state. For a UE in an RRC_IDLE state, if a positioning service is needed, the UE would re-connect and resume to the RRC_CONNECT state and then the UE can send the SRS for positioning to support the service of positioning. That has significant negative impact on a system and an UE performance.
  • a UE power consumption is increased because the UE needs to re-establish or resume the RRC connection, large latency in NR positioning is expected due to an extra latency caused by an RRC connection re-establishment, large signaling overhead is caused by re-connecting the RRC connection, and thus a system throughput is impaired.
  • an apparatus such as a user equipment (UE) and/or a base station
  • a method of wireless communication which can solve issues in the prior art, reach a good balance between a resource overhead and a good positioning performance in a system deployment, provide a good communication performance, and/or provide high reliability.
  • An object of the present disclosure is to propose an apparatus (such as a user equipment (UE) and/or a base station) and a method of wireless communication, which can solve issues in the prior art, reach a good balance between a resource overhead and a good positioning performance in a system deployment, provide a good communication performance, and/or provide high reliability.
  • UE user equipment
  • a method of wireless communication by a user equipment comprises being configured, by a base station, with a configuration of an uplink positioning reference signal for the UE in a radio resource control (RRC) idle state and transmitting, to the base station, the uplink positioning reference signal according to the configuration of the uplink positioning reference signal when the UE is in the RRC idle state.
  • RRC radio resource control
  • a method of wireless communication by a base station comprises configuring, to a user equipment (UE) , a configuration of an uplink positioning reference signal for the UE in a radio resource control (RRC) idle state and receiving, from the UE, the uplink positioning reference signal, wherein the uplink positioning reference signal is according to the configuration of the uplink positioning reference signal when the UE is in the RRC idle state.
  • RRC radio resource control
  • a user equipment comprises a memory, a transceiver, and a processor coupled to the memory and the transceiver.
  • the processor is configured, by a base station, with a configuration of an uplink positioning reference signal for the UE in a radio resource control (RRC) idle state
  • RRC radio resource control
  • the transceiver is configured to transmit, to the base station, the uplink positioning reference signal according to the configuration of the uplink positioning reference signal when the UE is in the RRC idle state.
  • RRC radio resource control
  • a base station comprises a memory, a transceiver, and a processor coupled to the memory and the transceiver.
  • the processor is configured to configure, to a user equipment (UE) , a configuration of an uplink positioning reference signal for the UE in a radio resource control (RRC) idle state
  • the transceiver is configured to receive, from the UE, the uplink positioning reference signal, wherein the uplink positioning reference signal is according to the configuration of the uplink positioning reference signal when the UE is in the RRC idle state.
  • RRC radio resource control
  • a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
  • a chip includes a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the above method.
  • a computer readable storage medium in which a computer program is stored, causes a computer to execute the above method.
  • a computer program product includes a computer program, and the computer program causes a computer to execute the above method.
  • a computer program causes a computer to execute the above method.
  • FIG. 1A is a schematic diagram illustrating that example of multi-transmission/reception point (TRP) transmission according to an embodiment of the present disclosure.
  • FIG. 1B is a schematic diagram illustrating that example of multi-transmission/reception point (TRP) transmission according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram of one or more user equipments (UEs) and a base station (e.g., gNB or eNB) of communication in a communication network system according to an embodiment of the present disclosure.
  • UEs user equipments
  • base station e.g., gNB or eNB
  • FIG. 3 is a flowchart illustrating a method of wireless communication by a user equipment (UE) according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart illustrating a method of wireless communication by a base station according to an embodiment of the present disclosure.
  • FIG. 5 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
  • TRPs transmission/reception points
  • PDCCHs physical downlink control channels
  • PDSCH physical downlink sharing channel
  • DCI downlink control information
  • PDSCHs from different TRPs can be scheduled in the same slot or different slots.
  • Two different PDSCH transmissions from different TRPs can be fully overlapped or partially overlapped in PDSCH resource allocation.
  • UE user equipment
  • the UE can feedback a hybrid automatic repeat request-acknowledge (HARQ-ACK) information to a network.
  • HARQ-ACK hybrid automatic repeat request-acknowledge
  • the UE can feedback the HARQ-ACK information for each PDSCH transmission to the TRP transmitting the PDSCH.
  • the UE can also feedback the HARQ-ACK information for a PDSCH transmission sent from any TRP to one particular TRP.
  • FIG. 1A An example of multi-TRP based non-coherent joint transmission is illustrated in FIG. 1A.
  • a UE receives a PDSCH based on non-coherent joint transmission from two TRPs: TRP1 and TRP2.
  • the TRP1 sends one DCI to schedule a transmission of PDSCH 1 to the UE and the TRP2 sends one DCI to schedule a transmission of PDSCH 2 to the UE.
  • the UE receives and decodes DCI from both TRPs. Based on the DCI from the TRP1, the UE receives and decodes the PDSCH 1 and based on the DCI from the TRP2, the UE receives and decodes the PDSCH 2.
  • the UE reports HARQ-ACK for PDSCH 1 and PDSCH2 to the TRP1 and the TRP 2, respectively.
  • the TRP1 and the TRP 2 use different control resource sets (CORESETs) and search spaces to transmit DCI scheduling PDSCH transmission to the UE. Therefore, the network can configure multiple CORESETs and search spaces.
  • Each TRP can be associated with one or more CORESETs and also the related search spaces. With such configuration, the TRP would use the associated CORESET to transmit DCI to schedule a PDSCH transmission to the UE.
  • the UE can be requested to decode DCI in CORESETs associated with TRP to obtain PDSCH scheduling information.
  • FIG. 1B Another example of multi-TRP transmission is illustrated in FIG. 1B.
  • a UE receives PDSCH based on non-coherent joint transmission from two TRPs: TRP1 and TRP2.
  • the TRP1 sends one DCI to schedule a transmission of PDSCH 1 to the UE and the TRP2 sends one DCI to schedule the transmission of PDSCH 2 to the UE.
  • the UE receives and decodes DCI from both TRPs. Based on the DCI from the TRP1, the UE receives and decodes the PDSCH 1 and based on the DCI from the TRP2, the UE receives and decodes the PDSCH 2.
  • FIG. 1B A UE receives PDSCH based on non-coherent joint transmission from two TRPs: TRP1 and TRP2.
  • the TRP1 sends one DCI to schedule a transmission of PDSCH 1 to the UE
  • the TRP2 sends one DCI to schedule the transmission of PDSCH 2 to
  • the UE reports HARQ-ACK for both PDSCH 1 and PDSCH2 to the TRP, which is different from the HARQ-ACK reporting in the example illustrated in FIG. 1A.
  • the example illustrated in FIG. 1B needs ideal backhaul between the TRP 1 and the TRP 2, while the example illustrated in FIG. 1A can be deployed in the scenarios that the backhaul between the TRP 1 and the TRP 2 is ideal or non-ideal.
  • radio access technology (RAT) -dependent positioning methods are specified.
  • the following positioning methods are supported in 3GPP NR systems: 1.
  • E-CID enhanced cell identifier
  • TDOA time difference of arrival
  • AoD NR DL angle of departure
  • RTT multi-round trip time
  • downlink positioning reference signal PRS
  • the UE can be configured to measure a downlink (DL) reference signal time difference (RSTD) , a DL PRS reference signal received power (RSRP) , and a UE receive-transmission (Rx-Tx) time difference.
  • DL PRS downlink reference signal time difference
  • RSRP DL PRS reference signal received power
  • Rx-Tx UE receive-transmission time difference
  • the UE be configured with one or more DL PRS resource set configurations as indicated by higher layer parameters.
  • Each DL PRS resource set comprises K ⁇ 1 DL PRS resource (s) where each has an associated spatial transmission filter.
  • the UE can be configured with one or more DL PRS positioning frequency layer configurations as indicated by a higher layer parameter.
  • a DL PRS positioning frequency layer is defined as a collection of DL PRS Resource Sets which have common parameters configured for the frequency layer.
  • the UE For each DL PRS resource set, the UE is provided with the following configuration parameters: 1. A DL PRS resource set ID. 2. DL PRS periodicity that defines the DL PRS resource periodicity. All the DL PRS resource within the same DL PRS resource set can be configured with the same periodicity. 3. A DL PRS resource set slot offset that defines the slot offset with respect to SFN slot 0, which is used by the UE to determine the slot location of DL PRS resources within the DL PRS resource set. 4. A DL PRS resource repetition factor that defines how many times each DL PRS resource is repeated for a single instance of the DL PRS resource.
  • All the DL PRS resources within the same DL PRS resource set can have the same resource repetition factor. 5. DL PRS resource time gap that is used to define the slot offset between two repeated instances of the same DL PRS resource. 6. DL PRS resource muting pattern the defines a bitmap of the time location where the DL PRS resource is expected to not be transmitted for a DL PRS resource set.
  • the UE For a DL PRS resource, the UE is provided with the following configuration parameters: 1. A DL PRS resource ID.2. A DL PRS RE offset that defines the starting RE offset of the first symbol within a DL PRS resource in frequency. 3. A DL PRS resource slot offset that defines the starting slot of the DL PRS resource with respect to the slot offset of the DL PRS resource set. 4. A DL PRS resource symbol offset that defines the starting symbol of the DL PRS resource within one slot. 5. A number of DL PRS symbols that defines the number of symbols of the DL PRS resource within a slot. 6. QCL configuration information for a PRS resource that defines quasi-colocation information of the DL PRS resource with other reference signals.
  • a UE For the measurement on DL PRS, a UE can be provided with PRS measurement assistance information by the system.
  • the UE may be indicated by the network that a DL PRS resources can be used as the reference for the DL RSTD, DL PRS-RSRP, and UE Rx-Tx time difference measurements.
  • the reference time indicated by the network to the UE can also be used by the UE to determine how to apply expected RSTD range and expected RSTD uncertainty.
  • the UE expects the reference time to be indicated whenever it is expected to receive the DL PRS.
  • the UE may use different DL PRS resources or a different DL PRS resource set to determine the reference time for the RSTD measurement as long as the condition that the DL PRS resources used belong to a single DL PRS resource set is met. If the UE chooses to use a different reference time than indicated by the network, it can report the reference time selected by the UE.
  • SRS sounding reference signal
  • the SRS signal for positioning is transmitted by UE and received by different TRPs, which could be the serving cell for non-serving cell for the UE.
  • TRPs which could be the serving cell for non-serving cell for the UE.
  • the UE can be requested to send to one TRP that is the serving cell or non-serving cell.
  • the UE can be configured with the following information: A spatial relation info that is used to provide information for the UE to determine the uplink transmit beam.
  • the spatial relation info for a SRS resource for positioning can be a SS/PBCH block or CSI-RS resource or SRS resource of the serving cell or a SS/PBCH block or DL PRS of a non-serving cell.
  • the system can use the spatial relation info to guide the transmission of each SRS for positioning.
  • a pathloss reference signal that is used by the UE to determine the pathloss used in determining the uplink transmit power for the transmission of SRS for positioning.
  • the pathloss reference signal for SRS for positioning can be SS/PBCH block or DL PRS of the serving cell or non-serving cell.
  • DL PRS-RSRP DL PRS reference signal received power
  • DL RSTD DL reference signal time difference
  • UE Rx-Tx time difference it is the relative timing difference between the UE received timing of downlink and the UE transmit timing of uplink, which is measured by the UE based on measuring DL PRS and transmitting SRS for positioning.
  • UL relative time of arrival it is uplink timing of SRS for positioning relative to a reference timing, which is measured by positioning gNB.
  • gNB Rx-Tx time difference it is the relative timing difference between the gNB received timing of uplink and the gNB transmit timing of downlink, which is measured by the gNB based on measuring SRS for positioning and downlink transmission.
  • UL angle of arrival it is the estimated azimuth and vertical angle of a UE with reference to a reference direction, which is measured by a gNB.
  • UL SRS reference signal received power it is reference signal received power that the gNB measures from SRS for positioning.
  • FIG. 2 illustrates that, in some embodiments, one or more user equipments (UEs) 10 and a base station (e.g., gNB or eNB) 20 for transmission adjustment in a communication network system 30 according to an embodiment of the present disclosure are provided.
  • the communication network system 30 includes the one or more UEs 10 and the base station 20.
  • the one or more UEs 10 may include a memory 12, a transceiver 13, and a processor 11 coupled to the memory 12 and the transceiver 13.
  • the base station 20 may include a memory 22, a transceiver 23, and a processor 21 coupled to the memory 22 and the transceiver 23.
  • the processor 11 or 21 may be configured to implement proposed functions, procedures and/or methods described in this description.
  • Layers of radio interface protocol may be implemented in the processor 11 or 21.
  • the memory 12 or 22 is operatively coupled with the processor 11 or 21 and stores a variety of information to operate the processor 11 or 21.
  • the transceiver 13 or 23 is operatively coupled with the processor 11 or 21, and the transceiver 13 or 23 transmits and/or receives a radio signal.
  • the processor 11 or 21 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device.
  • the memory 12 or 22 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device.
  • the transceiver 13 or 23 may include baseband circuitry to process radio frequency signals.
  • modules e.g., procedures, functions, and so on
  • the modules can be stored in the memory 12 or 22 and executed by the processor 11 or 21.
  • the memory 12 or 22 can be implemented within the processor 11 or 21 or external to the processor 11 or 21 in which case those can be communicatively coupled to the processor 11 or 21 via various means as is known in the art.
  • the processor 11 is configured, by the base station 20, with a configuration of an uplink positioning reference signal for the UE 10 in a radio resource control (RRC) idle state
  • the transceiver 13 is configured to transmit, to the base station 20, the uplink positioning reference signal according to the configuration of the uplink positioning reference signal when the UE 10 is in the RRC idle state.
  • the processor 21 is configured to configure, to the UE 10, a configuration of an uplink positioning reference signal for the UE 10 in a radio resource control (RRC) idle state
  • the transceiver 23 is configured to receive, from the UE 10, the uplink positioning reference signal, wherein the uplink positioning reference signal is according to the configuration of the uplink positioning reference signal when the UE 10 is in the RRC idle state.
  • FIG. 3 illustrates a method 200 of wireless communication by a user equipment (UE) 10 according to an embodiment of the present disclosure.
  • the method 200 includes: a block 202, being configured, by a base station, with a configuration of an uplink positioning reference signal for the UE in a radio resource control (RRC) idle state, and a block 204, transmitting, to the base station, the uplink positioning reference signal according to the configuration of the uplink positioning reference signal when the UE is in the RRC idle state.
  • RRC radio resource control
  • FIG. 4 illustrates a method 300 of wireless communication by a base station 20 according to an embodiment of the present disclosure.
  • the method 300 includes: a block 302, configuring, to a user equipment (UE) , a configuration of an uplink positioning reference signal for the UE in a radio resource control (RRC) idle state, and a block 304, receiving, from the UE, the uplink positioning reference signal, wherein the uplink positioning reference signal is according to the configuration of the uplink positioning reference signal when the UE is in the RRC idle state.
  • RRC radio resource control
  • the UE in the RRC idle state is configured, by the base station, with at least one of the following parameters: a frequency domain resource allocation for the uplink positioning reference signal; a time domain resource allocation for the uplink positioning reference signal; one or more uplink positioning reference signal resources; a signal sequence of the uplink positioning reference signal; a transmission periodicity for a transmission of the uplink positioning reference signal; a slot offset for the transmission of the uplink positioning reference signal; information of a transmit beam for the uplink positioning reference signal; information of an uplink transmit power for sending the uplink positioning reference signal; or a subcarrier spacing and a cyclic prefix (CP) length for the transmission of the uplink positioning reference signal.
  • a frequency domain resource allocation for the uplink positioning reference signal a time domain resource allocation for the uplink positioning reference signal
  • one or more uplink positioning reference signal resources a signal sequence of the uplink positioning reference signal
  • a transmission periodicity for a transmission of the uplink positioning reference signal
  • a slot offset for the transmission of the uplink positioning reference signal
  • the uplink positioning reference signal comprises a sounding reference signal (SRS) or a random access channel (RACH) .
  • the UE is configured, by the base station, with one or more SRS resource sets for positioning for the UE in the RRC idle state.
  • the UE is configured to transmit, to the base station, the one or more SRS resource sets for positioning when the UE is in the RRC idle state.
  • the UE is configured, by the base station, with a configuration of the RACH for positioning for the UE in the RRC idle state.
  • the configuration of the RACH for positioning comprises a sequence of an RACH preamble, a time-domain and frequency domain location for an RACH resource allocation in one slot, and/or information for the UE to determine indices of slots where an allocated RACH resource is located.
  • the UE when the UE is in the RRC idle state, the UE transmits the RACH preamble in the allocated RACH resource in assigned slots.
  • the configuration of the uplink positioning reference signal for the UE in the RRC idle state is associated with a cell identifier (ID) , a tracking area identifier (TAI) , or a group of cell IDs.
  • the UE is configured to transmit the uplink positioning reference signal according to the configuration of the uplink positioning reference signal associated with the cell ID, the TAI, or the group of the cell IDs that a cell selected by the UE during mobility function of the RRC idle state is same or in.
  • an uplink transmit power for the uplink positioning reference signal for the UE in the RRC idle state follows a pathloss measured from one synchronization signal/physical broadcast channel (SS/PBCH) block of a cell selected by the UE during mobility function.
  • an uplink transmit power for the uplink positioning reference signal for the UE in the RRC idle state follows a pathloss measured from one SS/PBCH block of a cell configured to an uplink positioning reference signal resource.
  • a spatial relation information for the uplink positioning reference signal for the UE in the RRC idle state comprises one SS/PBCH block of a cell selected by the UE during mobility function.
  • a spatial relation information for the uplink positioning reference signal for the UE in the RRC idle state comprises one SS/PBCH block of a cell configured to an uplink positioning reference signal resource.
  • the UE requests the configuration of the uplink positioning reference signal if the UE enters one cell that has no associated uplink positioning reference signal configuration for the UE in the RRC idle state.
  • the UE is configured to control the base station to use a multi-transmission/reception point (TRP) to measure an uplink relative time of arrival, an angle of arrival of the uplink positioning reference signal, a reference signal received power (RSRP) , and/or a base station receive-transmission (Rx-Tx) time difference based on measuring the uplink positioning reference sent by the UE in the RRC idle state.
  • TRP multi-transmission/reception point
  • RSRP reference signal received power
  • Rx-Tx base station receive-transmission
  • the UE in the RRC idle state is configured, by the base station, with at least one of the following power control configuration parameters: a maximal transmit power for transmitting the uplink positioning reference signal for the UE in the RRC idle state; a target power level that indicates an expected signal power at a receive side of the base station; a power control adjustment parameter; or a configuration information providing a pathloss reference signal.
  • the configuration information providing the pathloss reference signal comprises a physical cell ID and an SS/PBCH block index; the physical cell Id and a downlink positioning reference signal resource ID; or the physical cell ID.
  • the UE in the RRC idle state is configured, by the base station, with at least one of the following parameters: an ID for the uplink positioning reference signal resource; a parameter used to identify a time and frequency resource location for the UE to transmit the uplink positioning reference signal resource; parameters used to configure a signal sequence; a subcarrier spacing for the uplink positioning reference signal resource; a configuration of a spatial relation information that is used by the UE to determine a spatial domain transmit filter for the uplink positioning reference signal resource; or a configuration of power control parameters.
  • the configuration of the spatial relation information comprises one physical cell ID and a SS/PBCH block index; one physical cell ID; or one downlink positioning reference signal resource.
  • methods of transmitting uplink positioning reference signal in an RRC_IDLE state is presented in the present disclosure.
  • the benefit of the proposed methods comprises that: system signaling overhead, and UE power are saved and thus the NR system efficiency are improved because the UE does not need to waste signaling overhead and power to re-connect to an RRC_CONNECTED state for sending uplink positioning reference signals.
  • a UE can be provided with configurations of uplink positioning reference signal for the UE to transmit when the UE is in RRC_IDLE state.
  • the UE can be requested to transmit uplink positioning reference signal according to the provided configuration when the UE is RRC_IDLE state.
  • the UE can be provided with one or more of the following parameters: 1. The frequency domain resource allocation for the uplink positioning reference signal. 2. The time domain resource allocation for the uplink positioning reference signal. 3.
  • the UE can be configured with one or more uplink positioning reference signal resources. 4.
  • the signal sequence of the uplink positioning reference signal 5.
  • the transmission periodicity (for example in terms of numbers of slots) for the transmission of uplink positioning reference signal. 6.
  • the slot offset for the transmission of uplink positioning reference signal. 7.
  • the information of transmit beam for the uplink positioning reference signal for example, that can be provided through a parameter called spatial relation info that is configured by a SS/PBCK block index and a cell Id.
  • the information of uplink transmit power for sending the uplink positioning reference signal for example, the p0, alpha and pathloss reference signal.
  • Subcarrier spacing and CP length for the transmission of the uplink positioning reference signal.
  • the uplink positioning reference signal for RRC_IDLE state comprises SRS and the UE can be configured with one or more SRS resource sets for positioning for RRC_IDLE state.
  • the UE can transmit the SRS resource for positioning according to the configuration when the UE is in RRC_IDLE state.
  • One example of the uplink positioning reference signal for RRC_IDLE state is a transmission of RACH msg1 preamble transmission.
  • the UE can be configured with configuration of RACH for positioning in RRC_IDLE state.
  • the configuration can include the sequence of RACH preamble, time-domain and frequency domain location for the RACH resource allocation in one slot, the information for the UE to determine the indices of slots where the allocated RACH resource is located.
  • the UE when the UE is in RRC_IDLE state, the UE can transmit the configured RACH preamble in the allocated RACH resource in assigned slots and the system can measure the preamble sent by that UE to measure the positioning measurement, for example, RSRP measurement of uplink positioning reference signal in RRC_IDLE state, angle of arrival of uplink positioning reference signal in RRC_IDLE state and uplink relative time of arrival of uplink positioning reference signal in RRC_IDLE state.
  • the positioning measurement for example, RSRP measurement of uplink positioning reference signal in RRC_IDLE state, angle of arrival of uplink positioning reference signal in RRC_IDLE state and uplink relative time of arrival of uplink positioning reference signal in RRC_IDLE state.
  • the UE can be provided with a list of one or more configurations of uplink positioning reference signals for RRC_IDLE state.
  • Each of the configuration of uplink positioning reference signal is associated with a physical cell Id and the association between the configuration of uplink positioning reference signal and physical cell Id is also provided to the UE.
  • the UE can use the physical cell Id of the cell that is selected by the UE through mobility function to derive the configuration of uplink positioning reference signal.
  • the UE evaluates the radio conditions and select suitable cell for connecting and once the UE found better suitable cell than the serving cell, then that cell is selected by following the cell reselection process.
  • the UE can transmit the uplink positioning reference signal according to the derived configuration.
  • the UE is provided with a first configuration of uplink positioning uplink signal associated with a first physical cell Id and a second configuration of uplink positioning uplink signal associated with a second physical cell Id for RRC_IDLE state.
  • the UE can first determine a physical cell Id of the cell that is selected by the UE through the mobility function and then the UE can transmit uplink positioning reference signal according to the configuration associated with the physical cell Id of the cell selected by the UE.
  • the UE can be provided with a list of one or more configurations of uplink positioning reference signals for RRC_IDLE state.
  • Each of the configuration of uplink positioning reference signal is associated with tracking area identifier (TAI) and the association between the configuration of uplink positioning reference signal and tracking area identifier is also provided to the UE.
  • TAI tracking area identifier
  • the UE can use the tracking area where the cell selected by the UE through mobility function is in to derive the configuration of uplink positioning reference signal. Then the UE can transmit the uplink positioning reference signal according to the derived configuration.
  • the UE is provided with a first configuration of uplink positioning uplink signal associated with a first tracking area identifier and a second configuration of uplink positioning uplink signal associated with a second tracking area identifier for RRC_IDLE state.
  • the UE can first determine tracking area identifier of the cell that is selected by the UE through the mobility function and then the UE can transmit uplink positioning reference signal according to the configuration associated with tracking area identifier of the cell selected by the UE.
  • the UE can be provided with a list of one or more configurations of uplink positioning reference signals for RRC_IDLE state.
  • Each of the configuration of uplink positioning reference signal is associated with a group of physical cell Ids and the association between the configuration of uplink positioning reference signal and a group of physical cell Ids is also provided to the UE.
  • the UE can use the physical cell Id of the cell that is selected by the UE through mobility function to derive the configuration of uplink positioning reference signal. Then the UE can transmit the uplink positioning reference signal according to the derived configuration.
  • the UE is provided with a first configuration of uplink positioning uplink signal associated with a first group of physical cell Ids and a second configuration of uplink positioning uplink signal associated with a second group of physical cell Ids for RRC_IDLE state.
  • the UE can first determine a physical cell Id of the cell that is selected by the UE through the mobility function and then the UE can transmit uplink positioning reference signal according to the configuration associated with the group of physical cell Ids that the physical cell Id of the cell selected by the UE belongs to.
  • the UE can determine transmit beam direction for each transmission.
  • the UE can be provided with spatial relation info for each uplink positioning reference signal resource.
  • the UE can be provided with physical cell Id and an SS/PBCH block index or a DL PRS resource ID as the spatial relation info for a uplink positioning reference signal.
  • the UE can use the SS/PBCH block or DL PRS resource sent by one TRP identified by the physical cell Id to determine the spatial domain transmit filter for the transmission of the uplink positioning reference signal.
  • the UE can be provided with a physical cell Id as the spatial relation info for one uplink positioning reference signal.
  • the UE can first select a first SS/PBCH block index from the SS/PBCH blocks sent by the TRP identified by the provided physical cell Id and then the UE uses the selected SS/PBCH block to determine the spatial domain transmit filter for the transmission of the uplink positioning reference signal.
  • One example of method for selecting a SS/PBCH block is to select the SS/PBCH block with largest RSRP.
  • the uplink transmit power can be properly determined to avoid unnecessary interference to other signal transmission and UE power waste.
  • the UE can be provided with one or more of the following power control configuration parameters: 1. A maximal transmit power for transmitting uplink positioning reference signal during RRC_IDLE state. That is the maximal transmit power that the UE can apply on transmitting uplink positioning reference signal when the UE is in RRC_IDLE state. 2. A target power level P 0 that indicates the expected signal power at the gNB receive side. 3. A power control adjustment parameter ⁇ . 4. A configuration information providing pathloss reference signal. In one example, it can be a physical cell Id and a SS/PBCH block index. In one example, it can be a physical cell Id and a DL PRS resource Id. In one example, it can be a physical cell Id.
  • the UE when a UE is in RRC_IDLE state, for transmission of a uplink positioning reference signal, the UE can determine the transmit power as follows: is the maximal transmit power for uplink positioning reference signal for the UE in RRC_IDLE state.
  • P 0 is the target receive signal power level for uplink positioning reference signal for the UE in RRC_IDLE state.
  • is the power control adjustment parameter configured for uplink positioning reference signal for the UE in RRC_IDLE state.
  • the PL is the pathloss that is measured from one path loss reference signal.
  • a UE can be provided with configuration of uplink positioning reference for RRC_IDLE state based on the configuration of RACH.
  • the UE can be provided with configurations of one or more uplink positioning reference signal resources.
  • the UE can be provided with one or more of the following parameters: 1. An Id for the uplink positioning reference signal resource. 2. Parameter to identify the time and frequency resource location for the UE to transmit the uplink positioning reference signal resource. For example, it can include one PRACH configuration index, one parameter of msg1-FDM and one parameter of msg1-FrequencyStart. 3. The parameters to configure the signal sequence.
  • it can include a parameter to indicate the root sequence index and a RACH preamble index. 4.
  • the UE can be configured with one or more uplink positioning reference signal resource sets and those sets can be associated with one physical cell Id (or tracking area identifier or a group of physical cell Ids) and in each uplink positioning reference signal resource, the UE can be provided with one or more uplink positioning reference signal resources.
  • the UE When the UE is in RRC_IDLE state, the UE can transmit uplink signal according to the configuration of uplink positioning reference signal resources that is provided for RRC_IDLE state.
  • the UE when the UE is in RRC_IDLE state, the UE can request the system to provide configuration of uplink positioning reference signal.
  • the UE when the UE is in RRC_IDLE state, the UE selects a first cell through the process of cell reselection. If the UE does not have configuration of uplink positioning reference that is associated with the physical cell Id of the first cell, the UE can send message to the system to request configuration of uplink positioning reference signal.
  • the UE can send a first MAC CE command in msg3 of random access procedure and the first MAC CE command can indicate that the UE requests configuration of uplink positioning reference signal for RRC_IDLE state.
  • the system After the system receives the first MAC CE command, the system can provide configuration of uplink positioning reference signal for RRC_IDLE state to the UE.
  • the UE when the UE is in RRC_IDLE state or RRC_INACTIVE state, the UE can be requested to transmit SRS for positioning according to configuration provided by the system.
  • the UE can transmit the SRS resource for positioning in RRC_IDLE state or RRC_INACTIVE state according one or more of the following methods:
  • Exemplary method #1 The UE can transmit the SRS for positioning with the timing advance that is determined from the information of n-TimingAdvanceOffset obtained from the system configuration received from the cell that is selected by the UE during cell reselection when the UE is in RRC_IDLE or RRC_INACTIVE state.
  • the UE can send one MAC CE to request timing advance command for the transmission of SRS for positioning.
  • the UE can send a MAC CE requesting timing advance command in RACH msg3 and then the system can send a MAC CE command carrying a timing advance command through RACH msg4.
  • the UE can send a MAC CE requesting timing advance command in msgA of a 2 step-RACH and then the system can send a MAC CE command carrying a timing advance command through msgB in 2-step RACH.
  • some exemplary methods for sending uplink positioning reference signal in RRC_IDLE state are presented in this disclosure: 1.
  • the UE can be provided with configurations of uplink positioning reference signal for RRC_IDLE state.
  • Example of uplink positioning reference signal can be SRS or RACH msg1 preamble.
  • the UE can transmit the uplink positioning reference signal according to the configuration when the UE is in RRC_IDLE state.
  • the configuration of uplink positioning reference signal for RRC_IDLE state is associated with a cell Id, or a tracking area identifier (TAI) or a group of cell Ids.
  • TAI tracking area identifier
  • the UE transmit the uplink positioning reference signal according to the configuration associated with the cell Id, a tracking area identifier (TAI) , or a group of cell Ids that the cell selected by the UE during mobility function of RRC_IDLE state is same or in. 3.
  • the uplink transmit power for the uplink positioning reference signal in RRC_IDLE state can follow the pathloss measured from one SS/PBCH block of the cell selected by the UE during mobility function.
  • Another method is the uplink transmit power for one uplink positioning reference signal in RRC_IDLE state can follow the pathloss measured from one SS/PBCH block of the cell configured to that uplink positioning reference signal resource. 4.
  • the spatial relation info for the uplink positioning reference signal in RRC_IDLE state can be one SS/PBCH block of the cell selected by the UE during mobility function. Another method is the spatial relation info for one uplink positioning reference signal in RRC_IDLE state can be one SS/PBCH block of the cell configured to that uplink positioning reference signal resource. 5.
  • the UE can request configuration of uplink positioning reference signal if the UE enters one cell that has no associated uplink positioning reference signal configuration in RRC_IDLE state. 6.
  • the TRP can be requested to measure uplink relative time of arrival, angle of arrival of the uplink positioning reference signal, RSRP and/or gNB Rx-Tx time difference based on measuring the uplink positioning reference sent by the UE in RRC_IDLE state.
  • 3GPP TS 38.211 V16.1.0 “NR; Physical channels and modulation”
  • 3GPP TS 38.212 V16.1.0 “NR; Multiplexing and channel coding”
  • 3GPP TS 38.213 V16.1.0 “NR; Physical layer procedures for control”
  • 3GPP TS 38.214 V16.1.0 “NR; Physical layer procedures for data”
  • 3GPP TS 38.215 V16.1.0 “NR; Physical layer measurements”
  • 3GPP TS 38.321 V16.1.0 “NR; Medium Access Control (MAC) protocol specification”
  • RRC Radio Resource Control
  • Some embodiments of the present disclosure are used by 5G-NR chipset vendors, V2X communication system development vendors, automakers including cars, trains, trucks, buses, bicycles, moto-bikes, helmets, and etc., drones (unmanned aerial vehicles) , smartphone makers, communication devices for public safety use, AR/VR device maker for example gaming, conference/seminar, education purposes.
  • the deployment scenarios include, but not limited to, indoor hotspot, dense urban, urban micro, urban macro, rural, factor hall, and indoor D2D scenarios.
  • Some embodiments of the present disclosure are a combination of “techniques/processes” that can be adopted in 3GPP specification to create an end product. Some embodiments of the present disclosure could be adopted in 5G NR licensed and non-licensed or shared spectrum communications. Some embodiments of the present disclosure propose technical mechanisms. The present example embodiment is applicable to NR in unlicensed spectrum (NR-U) . The present disclosure can be applied to other mobile networks, in particular to mobile network of any further generation cellular network technology (6G, etc. ) .
  • FIG. 5 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software.
  • FIG. 5 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated.
  • the application circuitry 730 may include a circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors.
  • the processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
  • the baseband circuitry 720 may include circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include a baseband processor.
  • the baseband circuitry may handle various radio control functions that enables communication with one or more radio networks via the RF circuitry.
  • the radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc.
  • the baseband circuitry may provide for communication compatible with one or more radio technologies.
  • the baseband circuitry may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) .
  • EUTRAN evolved universal terrestrial radio access network
  • WMAN wireless metropolitan area networks
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as
  • the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency.
  • baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium.
  • the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
  • the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency.
  • RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the user equipment, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitry, the baseband circuitry, and/or the application circuitry.
  • “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality.
  • ASIC Application Specific Integrated Circuit
  • the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules.
  • some or all of the constituent components of the baseband circuitry, the application circuitry, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
  • SOC system on a chip
  • the memory/storage 740 may be used to load and store data and/or instructions, for example, for system.
  • the memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory.
  • DRAM dynamic random access memory
  • the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system.
  • User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc.
  • Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
  • the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system.
  • the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit.
  • the positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
  • GPS global positioning system
  • the display 750 may include a display, such as a liquid crystal display and a touch screen display.
  • the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, an AR/VR glasses, etc.
  • system may have more or less components, and/or different architectures.
  • methods described herein may be implemented as a computer program.
  • the computer program may be stored on a storage medium, such as a non-transitory storage medium.
  • the units as separating components for explanation are or are not physically separated.
  • the units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments.
  • each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
  • the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer.
  • the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product.
  • one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product.
  • the software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure.
  • the storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.

Abstract

An apparatus and a method of wireless communication are provided. The method by a user equipment (UE) includes being configured, by a base station, with a configuration of an uplink positioning reference signal for the UE in a radio resource control (RRC) idle state and transmitting, to the base station, the uplink positioning reference signal according to the configuration of the uplink positioning reference signal when the UE is in the RRC idle state. This can solve issues in the prior art, reach a good balance between a resource overhead and a good positioning performance in a system deployment, provide a good communication performance, and/or provide high reliability.

Description

APPARATUS AND METHOD OF WIRELESS COMMUNICATION
BACKGROUND OF DISCLOSURE
1. Field of the Disclosure
The present disclosure relates to the field of communication systems, and more particularly, to an apparatus and a method of wireless communication, which can provide a good communication performance and/or high reliability.
2. Description of the Related Art
New radio (NR) system introduces a multi-transmission/reception point (TRP) based non-coherent joint transmission. Multiple TRPs are connected through backhaul link for coordination. The backhaul link can be ideal or non-ideal. In the case of ideal backhaul, the TRPs can exchange dynamic physical downlink shared channel (PDSCH) scheduling information with short latency and thus different TRPs can coordinate a PDSCH transmission per PDSCH transmission. While, in non-ideal backhaul case, the information exchange between TRPs has large latency and thus the coordination between TRPs can only be semi-static or static.
In current designs, an issue for NR positioning is a user equipment (UE) can send a sounding reference signal (SRS) for positioning when the UE is in radio resource control_connected (RRC_CONNECTED) state. Therefore, uplink-based positioning methods can only be used when the UE is in the RRC_CONNETED state. For a UE in an RRC_IDLE state, if a positioning service is needed, the UE would re-connect and resume to the RRC_CONNECT state and then the UE can send the SRS for positioning to support the service of positioning. That has significant negative impact on a system and an UE performance. A UE power consumption is increased because the UE needs to re-establish or resume the RRC connection, large latency in NR positioning is expected due to an extra latency caused by an RRC connection re-establishment, large signaling overhead is caused by re-connecting the RRC connection, and thus a system throughput is impaired.
Therefore, there is a need for an apparatus (such as a user equipment (UE) and/or a base station) and a method of wireless communication, which can solve issues in the prior art, reach a good balance between a resource overhead and a good positioning performance in a system deployment, provide a good communication performance, and/or provide high reliability.
SUMMARY
An object of the present disclosure is to propose an apparatus (such as a user equipment (UE) and/or a base station) and a method of wireless communication, which can solve issues in the prior art, reach a good balance between a resource overhead and a good positioning performance in a system deployment, provide a good communication performance, and/or provide high reliability.
In a first aspect of the present disclosure, a method of wireless communication by a user equipment (UE) comprises being configured, by a base station, with a configuration of an uplink positioning reference signal for the UE in a radio resource control (RRC) idle state and transmitting, to the base station, the uplink positioning reference signal according to the configuration of the uplink positioning reference signal when the UE is in the RRC idle state.
In a second aspect of the present disclosure, a method of wireless communication by a base station comprises configuring, to a user equipment (UE) , a configuration of an uplink positioning reference signal for the UE in a radio resource control (RRC) idle state and receiving, from the UE, the uplink positioning reference signal, wherein the uplink positioning reference signal is according to the configuration of the uplink positioning reference signal when the UE is in the RRC idle state.
In a third aspect of the present disclosure, a user equipment comprises a memory, a transceiver, and a processor coupled to the memory and the transceiver. The processor is configured, by a base station, with a configuration of an uplink positioning reference signal for the UE in a radio resource control (RRC) idle state, and the transceiver is configured to transmit, to the base station, the uplink positioning reference signal according to the configuration of the uplink positioning reference signal when the UE is in the RRC idle state.
In a fourth aspect of the present disclosure, a base station comprises a memory, a transceiver, and a processor coupled to the memory and the transceiver. The processor is configured to configure, to a user equipment (UE) , a configuration of an uplink positioning reference signal for the UE in a radio resource control (RRC) idle state, and the transceiver is configured to receive, from the UE, the uplink positioning reference signal, wherein the uplink positioning reference signal is according to the configuration of the uplink positioning reference signal when the UE is in the RRC idle state.
In a fifth aspect of the present disclosure, a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
In a sixth aspect of the present disclosure, a chip includes a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the above method.
In a seventh aspect of the present disclosure, a computer readable storage medium, in which a computer program is stored, causes a computer to execute the above method.
In an eighth aspect of the present disclosure, a computer program product includes a computer program, and the computer program causes a computer to execute the above method.
In a ninth aspect of the present disclosure, a computer program causes a computer to execute the above method.
BRIEF DESCRIPTION OF DRAWINGS
In order to illustrate the embodiments of the present disclosure or related art more clearly, the following figures will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some embodiments of the present disclosure, a person having ordinary skill in this field can obtain other figures according to these figures without paying the premise.
FIG. 1A is a schematic diagram illustrating that example of multi-transmission/reception point (TRP) transmission according to an embodiment of the present disclosure.
FIG. 1B is a schematic diagram illustrating that example of multi-transmission/reception point (TRP) transmission according to an embodiment of the present disclosure.
FIG. 2 is a block diagram of one or more user equipments (UEs) and a base station (e.g., gNB or eNB) of communication in a communication network system according to an embodiment of the present disclosure.
FIG. 3 is a flowchart illustrating a method of wireless communication by a user equipment (UE) according to an embodiment of the present disclosure.
FIG. 4 is a flowchart illustrating a method of wireless communication by a base station according to an embodiment of the present disclosure.
FIG. 5 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the present disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the  embodiments of the present disclosure are merely for describing the purpose of the certain embodiment, but not to limit the disclosure.
In non-coherent joint transmission, different transmission/reception points (TRPs) use different physical downlink control channels (PDCCHs) to schedule physical downlink sharing channel (PDSCH) transmission independently. Each TRP can send one downlink control information (DCI) to schedule one PDSCH transmission. PDSCHs from different TRPs can be scheduled in the same slot or different slots. Two different PDSCH transmissions from different TRPs can be fully overlapped or partially overlapped in PDSCH resource allocation. To support multi-TRP based non-coherent joint transmission, a user equipment (UE) is requested to receive PDCCH from multiple TRPs and then receive PDSCH sent from multiple TRPs. For each PDSCH transmission, the UE can feedback a hybrid automatic repeat request-acknowledge (HARQ-ACK) information to a network. In multi-TRP transmission, the UE can feedback the HARQ-ACK information for each PDSCH transmission to the TRP transmitting the PDSCH. The UE can also feedback the HARQ-ACK information for a PDSCH transmission sent from any TRP to one particular TRP.
An example of multi-TRP based non-coherent joint transmission is illustrated in FIG. 1A. A UE receives a PDSCH based on non-coherent joint transmission from two TRPs: TRP1 and TRP2. As illustrated in FIG. 1A, the TRP1 sends one DCI to schedule a transmission of PDSCH 1 to the UE and the TRP2 sends one DCI to schedule a transmission of PDSCH 2 to the UE. At the UE side, the UE receives and decodes DCI from both TRPs. Based on the DCI from the TRP1, the UE receives and decodes the PDSCH 1 and based on the DCI from the TRP2, the UE receives and decodes the PDSCH 2. In the example illustrated in FIG. 1A, the UE reports HARQ-ACK for PDSCH 1 and PDSCH2 to the TRP1 and the TRP 2, respectively. The TRP1 and the TRP 2 use different control resource sets (CORESETs) and search spaces to transmit DCI scheduling PDSCH transmission to the UE. Therefore, the network can configure multiple CORESETs and search spaces. Each TRP can be associated with one or more CORESETs and also the related search spaces. With such configuration, the TRP would use the associated CORESET to transmit DCI to schedule a PDSCH transmission to the UE. The UE can be requested to decode DCI in CORESETs associated with TRP to obtain PDSCH scheduling information.
Another example of multi-TRP transmission is illustrated in FIG. 1B. A UE receives PDSCH based on non-coherent joint transmission from two TRPs: TRP1 and TRP2. As illustrated in FIG. 1B, the TRP1 sends one DCI to schedule a transmission of PDSCH 1 to the UE and the TRP2 sends one DCI to schedule the transmission of PDSCH 2 to the UE. At the UE side, the UE receives and decodes DCI from both TRPs. Based on the DCI from the TRP1, the UE receives and decodes the PDSCH 1 and based on the DCI from the TRP2, the UE receives and decodes the PDSCH 2. In the example illustrated in FIG. 1B, the UE reports HARQ-ACK for both PDSCH 1 and PDSCH2 to the TRP, which is different from the HARQ-ACK reporting in the example illustrated in FIG. 1A. The example illustrated in FIG. 1B needs ideal backhaul between the TRP 1 and the TRP 2, while the example illustrated in FIG. 1A can be deployed in the scenarios that the backhaul between the TRP 1 and the TRP 2 is ideal or non-ideal.
In 3GPP NR, radio access technology (RAT) -dependent positioning methods are specified. The following positioning methods are supported in 3GPP NR systems: 1. NR uplink positioning: where the positioning is based on a measurement on an SRS transmission for positioning. 2. NR enhanced cell identifier (E-CID) positioning. 3. NR DL time difference of arrival (TDOA) positioning. 4. NR DL angle of departure (AoD) positioning. 5. NR multi-round trip time (RTT) positioning.
To support the NR positioning, downlink positioning reference signal (PRS) is introduced, and the UE can be configured to measure a downlink (DL) reference signal time difference (RSTD) , a DL PRS reference signal received power (RSRP) , and a UE receive-transmission (Rx-Tx) time difference. For the configuration of DL PRS, the UE be configured with one or more DL PRS resource set configurations as indicated by higher layer parameters. Each DL PRS resource set comprises K≥1 DL PRS resource (s) where each has an associated spatial transmission filter. The UE can be configured with  one or more DL PRS positioning frequency layer configurations as indicated by a higher layer parameter. A DL PRS positioning frequency layer is defined as a collection of DL PRS Resource Sets which have common parameters configured for the frequency layer. For each DL PRS resource set, the UE is provided with the following configuration parameters: 1. A DL PRS resource set ID. 2. DL PRS periodicity that defines the DL PRS resource periodicity. All the DL PRS resource within the same DL PRS resource set can be configured with the same periodicity. 3. A DL PRS resource set slot offset that defines the slot offset with respect to SFN slot 0, which is used by the UE to determine the slot location of DL PRS resources within the DL PRS resource set. 4. A DL PRS resource repetition factor that defines how many times each DL PRS resource is repeated for a single instance of the DL PRS resource. All the DL PRS resources within the same DL PRS resource set can have the same resource repetition factor. 5. DL PRS resource time gap that is used to define the slot offset between two repeated instances of the same DL PRS resource. 6. DL PRS resource muting pattern the defines a bitmap of the time location where the DL PRS resource is expected to not be transmitted for a DL PRS resource set.
For a DL PRS resource, the UE is provided with the following configuration parameters: 1. A DL PRS resource ID.2. A DL PRS RE offset that defines the starting RE offset of the first symbol within a DL PRS resource in frequency. 3. A DL PRS resource slot offset that defines the starting slot of the DL PRS resource with respect to the slot offset of the DL PRS resource set. 4. A DL PRS resource symbol offset that defines the starting symbol of the DL PRS resource within one slot. 5. A number of DL PRS symbols that defines the number of symbols of the DL PRS resource within a slot. 6. QCL configuration information for a PRS resource that defines quasi-colocation information of the DL PRS resource with other reference signals.
For the measurement on DL PRS, a UE can be provided with PRS measurement assistance information by the system. The UE may be indicated by the network that a DL PRS resources can be used as the reference for the DL RSTD, DL PRS-RSRP, and UE Rx-Tx time difference measurements. The reference time indicated by the network to the UE can also be used by the UE to determine how to apply expected RSTD range and expected RSTD uncertainty. The UE expects the reference time to be indicated whenever it is expected to receive the DL PRS. The UE may use different DL PRS resources or a different DL PRS resource set to determine the reference time for the RSTD measurement as long as the condition that the DL PRS resources used belong to a single DL PRS resource set is met. If the UE chooses to use a different reference time than indicated by the network, it can report the reference time selected by the UE.
In 3GPP NR, sounding reference signal (SRS) for positioning is introduced to support uplink time difference-based positioning technology. The SRS signal for positioning is transmitted by UE and received by different TRPs, which could be the serving cell for non-serving cell for the UE. For a particular SRS for positioning, the UE can be requested to send to one TRP that is the serving cell or non-serving cell. For the transmission of SRS for positioning, the UE can be configured with the following information: A spatial relation info that is used to provide information for the UE to determine the uplink transmit beam. The spatial relation info for a SRS resource for positioning can be a SS/PBCH block or CSI-RS resource or SRS resource of the serving cell or a SS/PBCH block or DL PRS of a non-serving cell. The system can use the spatial relation info to guide the transmission of each SRS for positioning. A pathloss reference signal that is used by the UE to determine the pathloss used in determining the uplink transmit power for the transmission of SRS for positioning. The pathloss reference signal for SRS for positioning can be SS/PBCH block or DL PRS of the serving cell or non-serving cell.
For the configuration of SRS resource for positioning, three comb sizes are supported: Comb-2, Comb-4, and Comb-8. The number of symbols configured in one SRS resource for positioning can be 1, 2, 4, 8, or 12 symbols. For NR positioning, the following measurements are supported, which are measured either by UE or by the TRP: 1. DL PRS reference signal received power (DL PRS-RSRP) : it is reference signal received power the UE measures from DL PRS. 2. DL reference signal time difference (DL RSTD) : it is the DL relative timing difference between two positioning nodes that  is measured by the UE based on measuring DL PRS. 3. UE Rx-Tx time difference: it is the relative timing difference between the UE received timing of downlink and the UE transmit timing of uplink, which is measured by the UE based on measuring DL PRS and transmitting SRS for positioning. 4. UL relative time of arrival: it is uplink timing of SRS for positioning relative to a reference timing, which is measured by positioning gNB. 5. gNB Rx-Tx time difference: it is the relative timing difference between the gNB received timing of uplink and the gNB transmit timing of downlink, which is measured by the gNB based on measuring SRS for positioning and downlink transmission. 6. UL angle of arrival: it is the estimated azimuth and vertical angle of a UE with reference to a reference direction, which is measured by a gNB. 7. UL SRS reference signal received power: it is reference signal received power that the gNB measures from SRS for positioning.
FIG. 2 illustrates that, in some embodiments, one or more user equipments (UEs) 10 and a base station (e.g., gNB or eNB) 20 for transmission adjustment in a communication network system 30 according to an embodiment of the present disclosure are provided. The communication network system 30 includes the one or more UEs 10 and the base station 20. The one or more UEs 10 may include a memory 12, a transceiver 13, and a processor 11 coupled to the memory 12 and the transceiver 13. The base station 20 may include a memory 22, a transceiver 23, and a processor 21 coupled to the memory 22 and the transceiver 23. The  processor  11 or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the  processor  11 or 21. The  memory  12 or 22 is operatively coupled with the  processor  11 or 21 and stores a variety of information to operate the  processor  11 or 21. The  transceiver  13 or 23 is operatively coupled with the  processor  11 or 21, and the  transceiver  13 or 23 transmits and/or receives a radio signal.
The  processor  11 or 21 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device. The  memory  12 or 22 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device. The  transceiver  13 or 23 may include baseband circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The modules can be stored in the  memory  12 or 22 and executed by the  processor  11 or 21. The  memory  12 or 22 can be implemented within the  processor  11 or 21 or external to the  processor  11 or 21 in which case those can be communicatively coupled to the  processor  11 or 21 via various means as is known in the art.
In some embodiments, the processor 11 is configured, by the base station 20, with a configuration of an uplink positioning reference signal for the UE 10 in a radio resource control (RRC) idle state, and the transceiver 13 is configured to transmit, to the base station 20, the uplink positioning reference signal according to the configuration of the uplink positioning reference signal when the UE 10 is in the RRC idle state. This can solve issues in the prior art, reach a good balance between a resource overhead and a good positioning performance in a system deployment, provide a good communication performance, and/or provide high reliability.
In some embodiments, the processor 21 is configured to configure, to the UE 10, a configuration of an uplink positioning reference signal for the UE 10 in a radio resource control (RRC) idle state, and the transceiver 23 is configured to receive, from the UE 10, the uplink positioning reference signal, wherein the uplink positioning reference signal is according to the configuration of the uplink positioning reference signal when the UE 10 is in the RRC idle state. This can solve issues in the prior art, reach a good balance between a resource overhead and a good positioning performance in a system deployment, provide a good communication performance, and/or provide high reliability.
FIG. 3 illustrates a method 200 of wireless communication by a user equipment (UE) 10 according to an embodiment of the present disclosure. In some embodiments, the method 200 includes: a block 202, being configured, by a base station, with a configuration of an uplink positioning reference signal for the UE in a radio resource control (RRC) idle state, and a block 204, transmitting, to the base station, the uplink positioning reference signal according to the configuration  of the uplink positioning reference signal when the UE is in the RRC idle state. This can solve issues in the prior art, reach a good balance between a resource overhead and a good positioning performance in a system deployment, provide a good communication performance, and/or provide high reliability.
FIG. 4 illustrates a method 300 of wireless communication by a base station 20 according to an embodiment of the present disclosure. In some embodiments, the method 300 includes: a block 302, configuring, to a user equipment (UE) , a configuration of an uplink positioning reference signal for the UE in a radio resource control (RRC) idle state, and a block 304, receiving, from the UE, the uplink positioning reference signal, wherein the uplink positioning reference signal is according to the configuration of the uplink positioning reference signal when the UE is in the RRC idle state. This can solve issues in the prior art, reach a good balance between a resource overhead and a good positioning performance in a system deployment, provide a good communication performance, and/or provide high reliability.
In some embodiments, in the configuration of the uplink positioning reference signal for the UE in the RRC idle state, the UE in the RRC idle state is configured, by the base station, with at least one of the following parameters: a frequency domain resource allocation for the uplink positioning reference signal; a time domain resource allocation for the uplink positioning reference signal; one or more uplink positioning reference signal resources; a signal sequence of the uplink positioning reference signal; a transmission periodicity for a transmission of the uplink positioning reference signal; a slot offset for the transmission of the uplink positioning reference signal; information of a transmit beam for the uplink positioning reference signal; information of an uplink transmit power for sending the uplink positioning reference signal; or a subcarrier spacing and a cyclic prefix (CP) length for the transmission of the uplink positioning reference signal. In some embodiments, the uplink positioning reference signal comprises a sounding reference signal (SRS) or a random access channel (RACH) . In some embodiments, the UE is configured, by the base station, with one or more SRS resource sets for positioning for the UE in the RRC idle state.
In some embodiments, the UE is configured to transmit, to the base station, the one or more SRS resource sets for positioning when the UE is in the RRC idle state. In some embodiments, the UE is configured, by the base station, with a configuration of the RACH for positioning for the UE in the RRC idle state. In some embodiments, the configuration of the RACH for positioning comprises a sequence of an RACH preamble, a time-domain and frequency domain location for an RACH resource allocation in one slot, and/or information for the UE to determine indices of slots where an allocated RACH resource is located. In some embodiments, when the UE is in the RRC idle state, the UE transmits the RACH preamble in the allocated RACH resource in assigned slots. In some embodiments, the configuration of the uplink positioning reference signal for the UE in the RRC idle state is associated with a cell identifier (ID) , a tracking area identifier (TAI) , or a group of cell IDs. In some embodiments, the UE is configured to transmit the uplink positioning reference signal according to the configuration of the uplink positioning reference signal associated with the cell ID, the TAI, or the group of the cell IDs that a cell selected by the UE during mobility function of the RRC idle state is same or in.
In some embodiments, an uplink transmit power for the uplink positioning reference signal for the UE in the RRC idle state follows a pathloss measured from one synchronization signal/physical broadcast channel (SS/PBCH) block of a cell selected by the UE during mobility function. In some embodiments, an uplink transmit power for the uplink positioning reference signal for the UE in the RRC idle state follows a pathloss measured from one SS/PBCH block of a cell configured to an uplink positioning reference signal resource. In some embodiments, a spatial relation information for the uplink positioning reference signal for the UE in the RRC idle state comprises one SS/PBCH block of a cell selected by the UE during mobility function. In some embodiments, a spatial relation information for the uplink positioning reference signal for the UE in the RRC idle state comprises one SS/PBCH block of a cell configured to an uplink positioning reference signal resource. In some embodiments, the UE requests the configuration of the uplink positioning reference signal if the UE enters one cell that has no associated uplink positioning reference signal configuration for the UE in the RRC idle state.
In some embodiments, the UE is configured to control the base station to use a multi-transmission/reception point (TRP) to measure an uplink relative time of arrival, an angle of arrival of the uplink positioning reference signal, a reference signal received power (RSRP) , and/or a base station receive-transmission (Rx-Tx) time difference based on measuring the uplink positioning reference sent by the UE in the RRC idle state. In some embodiments, in the configuration of the uplink positioning reference signal for the UE in the RRC idle state, the UE in the RRC idle state is configured, by the base station, with at least one of the following power control configuration parameters: a maximal transmit power for transmitting the uplink positioning reference signal for the UE in the RRC idle state; a target power level that indicates an expected signal power at a receive side of the base station; a power control adjustment parameter; or a configuration information providing a pathloss reference signal. In some embodiments, the configuration information providing the pathloss reference signal comprises a physical cell ID and an SS/PBCH block index; the physical cell Id and a downlink positioning reference signal resource ID; or the physical cell ID.
In some embodiments, for each uplink positioning reference signal resource, the UE in the RRC idle state is configured, by the base station, with at least one of the following parameters: an ID for the uplink positioning reference signal resource; a parameter used to identify a time and frequency resource location for the UE to transmit the uplink positioning reference signal resource; parameters used to configure a signal sequence; a subcarrier spacing for the uplink positioning reference signal resource; a configuration of a spatial relation information that is used by the UE to determine a spatial domain transmit filter for the uplink positioning reference signal resource; or a configuration of power control parameters. In some embodiments, the configuration of the spatial relation information comprises one physical cell ID and a SS/PBCH block index; one physical cell ID; or one downlink positioning reference signal resource. In some embodiments, methods of transmitting uplink positioning reference signal in an RRC_IDLE state is presented in the present disclosure. The benefit of the proposed methods comprises that: system signaling overhead, and UE power are saved and thus the NR system efficiency are improved because the UE does not need to waste signaling overhead and power to re-connect to an RRC_CONNECTED state for sending uplink positioning reference signals.
In one embodiment, a UE can be provided with configurations of uplink positioning reference signal for the UE to transmit when the UE is in RRC_IDLE state. The UE can be requested to transmit uplink positioning reference signal according to the provided configuration when the UE is RRC_IDLE state. For the configuration of uplink positioning reference, the UE can be provided with one or more of the following parameters: 1. The frequency domain resource allocation for the uplink positioning reference signal. 2. The time domain resource allocation for the uplink positioning reference signal. 3. The UE can be configured with one or more uplink positioning reference signal resources. 4. The signal sequence of the uplink positioning reference signal. 5. The transmission periodicity (for example in terms of numbers of slots) for the transmission of uplink positioning reference signal. 6. The slot offset for the transmission of uplink positioning reference signal. 7. The information of transmit beam for the uplink positioning reference signal, for example, that can be provided through a parameter called spatial relation info that is configured by a SS/PBCK block index and a cell Id. 8. The information of uplink transmit power for sending the uplink positioning reference signal, for example, the p0, alpha and pathloss reference signal. 9. Subcarrier spacing and CP length for the transmission of the uplink positioning reference signal.
One example of the uplink positioning reference signal for RRC_IDLE state comprises SRS and the UE can be configured with one or more SRS resource sets for positioning for RRC_IDLE state. The UE can transmit the SRS resource for positioning according to the configuration when the UE is in RRC_IDLE state. One example of the uplink positioning reference signal for RRC_IDLE state is a transmission of RACH msg1 preamble transmission. The UE can be configured with configuration of RACH for positioning in RRC_IDLE state. The configuration can include the sequence of RACH preamble, time-domain and frequency domain location for the RACH resource allocation in one slot, the information for the UE to determine the indices of slots where the allocated RACH resource is located. Then when the UE is in RRC_IDLE  state, the UE can transmit the configured RACH preamble in the allocated RACH resource in assigned slots and the system can measure the preamble sent by that UE to measure the positioning measurement, for example, RSRP measurement of uplink positioning reference signal in RRC_IDLE state, angle of arrival of uplink positioning reference signal in RRC_IDLE state and uplink relative time of arrival of uplink positioning reference signal in RRC_IDLE state.
In one exemplary method, the UE can be provided with a list of one or more configurations of uplink positioning reference signals for RRC_IDLE state. Each of the configuration of uplink positioning reference signal is associated with a physical cell Id and the association between the configuration of uplink positioning reference signal and physical cell Id is also provided to the UE. When the UE is in RRC_IDLE state, the UE can use the physical cell Id of the cell that is selected by the UE through mobility function to derive the configuration of uplink positioning reference signal. During the RRC_IDLE state, the UE evaluates the radio conditions and select suitable cell for connecting and once the UE found better suitable cell than the serving cell, then that cell is selected by following the cell reselection process. The UE can transmit the uplink positioning reference signal according to the derived configuration. In one example, the UE is provided with a first configuration of uplink positioning uplink signal associated with a first physical cell Id and a second configuration of uplink positioning uplink signal associated with a second physical cell Id for RRC_IDLE state. When the UE is in RRC_IDLE state, the UE can first determine a physical cell Id of the cell that is selected by the UE through the mobility function and then the UE can transmit uplink positioning reference signal according to the configuration associated with the physical cell Id of the cell selected by the UE.
In one exemplary method, the UE can be provided with a list of one or more configurations of uplink positioning reference signals for RRC_IDLE state. Each of the configuration of uplink positioning reference signal is associated with tracking area identifier (TAI) and the association between the configuration of uplink positioning reference signal and tracking area identifier is also provided to the UE. When the UE is in RRC_IDLE state, the UE can use the tracking area where the cell selected by the UE through mobility function is in to derive the configuration of uplink positioning reference signal. Then the UE can transmit the uplink positioning reference signal according to the derived configuration. In one example, the UE is provided with a first configuration of uplink positioning uplink signal associated with a first tracking area identifier and a second configuration of uplink positioning uplink signal associated with a second tracking area identifier for RRC_IDLE state. When the UE is in RRC_IDLE state, the UE can first determine tracking area identifier of the cell that is selected by the UE through the mobility function and then the UE can transmit uplink positioning reference signal according to the configuration associated with tracking area identifier of the cell selected by the UE.
In one exemplary method, the UE can be provided with a list of one or more configurations of uplink positioning reference signals for RRC_IDLE state. Each of the configuration of uplink positioning reference signal is associated with a group of physical cell Ids and the association between the configuration of uplink positioning reference signal and a group of physical cell Ids is also provided to the UE. When the UE is in RRC_IDLE state, the UE can use the physical cell Id of the cell that is selected by the UE through mobility function to derive the configuration of uplink positioning reference signal. Then the UE can transmit the uplink positioning reference signal according to the derived configuration. In one example, the UE is provided with a first configuration of uplink positioning uplink signal associated with a first group of physical cell Ids and a second configuration of uplink positioning uplink signal associated with a second group of physical cell Ids for RRC_IDLE state. When the UE is in RRC_IDLE state, the UE can first determine a physical cell Id of the cell that is selected by the UE through the mobility function and then the UE can transmit uplink positioning reference signal according to the configuration associated with the group of physical cell Ids that the physical cell Id of the cell selected by the UE belongs to.
In some embodiments, for the transmission of uplink positioning reference signal in beamformed system, for example FR2, the UE can determine transmit beam direction for each transmission. In the configuration of uplink positioning  reference signal for RRC_IDLE state, the UE can be provided with spatial relation info for each uplink positioning reference signal resource. In one example, the UE can be provided with physical cell Id and an SS/PBCH block index or a DL PRS resource ID as the spatial relation info for a uplink positioning reference signal. During RRC_IDLE state, the UE can use the SS/PBCH block or DL PRS resource sent by one TRP identified by the physical cell Id to determine the spatial domain transmit filter for the transmission of the uplink positioning reference signal. In another example, the UE can be provided with a physical cell Id as the spatial relation info for one uplink positioning reference signal. During RRC_IDLE state, the UE can first select a first SS/PBCH block index from the SS/PBCH blocks sent by the TRP identified by the provided physical cell Id and then the UE uses the selected SS/PBCH block to determine the spatial domain transmit filter for the transmission of the uplink positioning reference signal. One example of method for selecting a SS/PBCH block is to select the SS/PBCH block with largest RSRP.
In some embodiments, for the transmission of uplink positioning reference signal during RRC_IDLE state, the uplink transmit power can be properly determined to avoid unnecessary interference to other signal transmission and UE power waste. In the configuration of uplink positioning reference signal for RRC_IDLE state, the UE can be provided with one or more of the following power control configuration parameters: 1. A maximal transmit power for transmitting uplink positioning reference signal during RRC_IDLE state. That is the maximal transmit power that the UE can apply on transmitting uplink positioning reference signal when the UE is in RRC_IDLE state. 2. A target power level P 0 that indicates the expected signal power at the gNB receive side. 3. A power control adjustment parameter α. 4. A configuration information providing pathloss reference signal. In one example, it can be a physical cell Id and a SS/PBCH block index. In one example, it can be a physical cell Id and a DL PRS resource Id. In one example, it can be a physical cell Id.
In some embodiments, when a UE is in RRC_IDLE state, for transmission of a uplink positioning reference signal, the UE can determine the transmit power as follows: 
Figure PCTCN2021104321-appb-000001
is the maximal transmit power for uplink positioning reference signal for the UE in RRC_IDLE state. P 0 is the target receive signal power level for uplink positioning reference signal for the UE in RRC_IDLE state. α is the power control adjustment parameter configured for uplink positioning reference signal for the UE in RRC_IDLE state. The PL is the pathloss that is measured from one path loss reference signal.
In some embodiments, a UE can be provided with configuration of uplink positioning reference for RRC_IDLE state based on the configuration of RACH. In one method, the UE can be provided with configurations of one or more uplink positioning reference signal resources. And for each uplink positioning reference signal resource, the UE can be provided with one or more of the following parameters: 1. An Id for the uplink positioning reference signal resource. 2. Parameter to identify the time and frequency resource location for the UE to transmit the uplink positioning reference signal resource. For example, it can include one PRACH configuration index, one parameter of msg1-FDM and one parameter of msg1-FrequencyStart. 3. The parameters to configure the signal sequence. For example, it can include a parameter to indicate the root sequence index and a RACH preamble index. 4. The subcarrier spacing for the positioning reference signal resource. 5. A configuration of spatial relation info that is used by the UE to determine the spatial domain transmit filter for the uplink positioning reference signal resource. It can be one physical cell Id and a SS/PBCH block index. It can be one physical cell Id and the UE can be requested to select one SS/PBCH block from the cell corresponding to the configured physical cell Id to determine spatial setting. It can be one DL PRS resource. 6. A configuration of power control parameters.
In some embodiments, the UE can be configured with one or more uplink positioning reference signal resource sets and those sets can be associated with one physical cell Id (or tracking area identifier or a group of physical cell Ids) and in each uplink positioning reference signal resource, the UE can be provided with one or more uplink positioning reference signal resources. When the UE is in RRC_IDLE state, the UE can transmit uplink signal according to the configuration of uplink positioning reference signal resources that is provided for RRC_IDLE state.
In one embodiment, when the UE is in RRC_IDLE state, the UE can request the system to provide configuration of uplink positioning reference signal. In one example, when the UE is in RRC_IDLE state, the UE selects a first cell through the process of cell reselection. If the UE does not have configuration of uplink positioning reference that is associated with the physical cell Id of the first cell, the UE can send message to the system to request configuration of uplink positioning reference signal. In one exemplary method, the UE can send a first MAC CE command in msg3 of random access procedure and the first MAC CE command can indicate that the UE requests configuration of uplink positioning reference signal for RRC_IDLE state. After the system receives the first MAC CE command, the system can provide configuration of uplink positioning reference signal for RRC_IDLE state to the UE.
In one embodiment, when the UE is in RRC_IDLE state or RRC_INACTIVE state, the UE can be requested to transmit SRS for positioning according to configuration provided by the system. The UE can transmit the SRS resource for positioning in RRC_IDLE state or RRC_INACTIVE state according one or more of the following methods:
Exemplary method #1: The UE can transmit the SRS for positioning with the timing advance that is determined from the information of n-TimingAdvanceOffset obtained from the system configuration received from the cell that is selected by the UE during cell reselection when the UE is in RRC_IDLE or RRC_INACTIVE state. The uplink timing adjustment that the UE applies on the transmission of SRS for positioning is N TA, offsetT c, where N TA, offset is the determined based on information of n-TimingAdvanceOffset obtained from the system configuration received from the cell that is selected by the UE during cell reselection and T c=0.509ns.
Exemplary method #2: the UE can send one MAC CE to request timing advance command for the transmission of SRS for positioning. In one example, the UE can send a MAC CE requesting timing advance command in RACH msg3 and then the system can send a MAC CE command carrying a timing advance command through RACH msg4. In another example, the UE can send a MAC CE requesting timing advance command in msgA of a 2 step-RACH and then the system can send a MAC CE command carrying a timing advance command through msgB in 2-step RACH.
In summary, in some embodiments of this disclosure, some exemplary methods for sending uplink positioning reference signal in RRC_IDLE state are presented in this disclosure: 1. The UE can be provided with configurations of uplink positioning reference signal for RRC_IDLE state. Example of uplink positioning reference signal can be SRS or RACH msg1 preamble. The UE can transmit the uplink positioning reference signal according to the configuration when the UE is in RRC_IDLE state. 2. The configuration of uplink positioning reference signal for RRC_IDLE state is associated with a cell Id, or a tracking area identifier (TAI) or a group of cell Ids. The UE transmit the uplink positioning reference signal according to the configuration associated with the cell Id, a tracking area identifier (TAI) , or a group of cell Ids that the cell selected by the UE during mobility function of RRC_IDLE state is same or in. 3. The uplink transmit power for the uplink positioning reference signal in RRC_IDLE state can follow the pathloss measured from one SS/PBCH block of the cell selected by the UE during mobility function. Another method is the uplink transmit power for one uplink positioning reference signal in RRC_IDLE state can follow the pathloss measured from one SS/PBCH block of the cell configured to that uplink positioning reference signal resource. 4. The spatial relation info for the uplink positioning reference signal in RRC_IDLE state can be one SS/PBCH block of the cell selected by the UE during mobility function. Another method is the spatial relation info for one uplink positioning reference signal in RRC_IDLE state can be one SS/PBCH block of the cell configured to that uplink positioning reference signal resource. 5. The UE can request configuration of uplink positioning reference signal if the UE enters one cell that has no associated uplink positioning reference signal configuration in RRC_IDLE state. 6. The TRP can be requested to measure uplink relative time of arrival, angle of arrival of the uplink positioning reference signal, RSRP and/or gNB Rx-Tx time difference based on measuring the uplink positioning reference sent by the UE in RRC_IDLE state.
The following 3GPP standards are incorporated in some embodiments of this disclosure by reference in their entireties: 3GPP TS 38.211 V16.1.0: "NR; Physical channels and modulation" , 3GPP TS 38.212 V16.1.0: "NR; Multiplexing and channel coding" , 3GPP TS 38.213 V16.1.0: "NR; Physical layer procedures for control" , 3GPP TS 38.214 V16.1.0: "NR; Physical layer procedures for data" , 3GPP TS 38.215 V16.1.0: "NR; Physical layer measurements" , 3GPP TS 38.321 V16.1.0: "NR; Medium Access Control (MAC) protocol specification" , and 3GPP TS 38.331 V16.1.0: "NR; Radio Resource Control (RRC) protocol specification" .
The following table includes some abbreviations, which may be used in some embodiments of the present disclosure:
3GPP 3 rd Generation Partnership Project
5G 5 th Generation
NR New Radio
LTE Long term evolution
gNB Next generation NodeB
DL Downlink
UL Uplink
CSI Channel state information
CSI-RS Channel state information reference signal
CORESET Control Resource Set
DCI Downlink control information
TRP Transmission/reception point
RRC Radio Resource Control
RB Resource Block
RACH Random Access Channel
PRB Physical Resource Block
RBG Resource Block Group
LCS Location services
DL-TDOA Downlink Time difference of arrival
NW Network
RSTD Reference signal time difference
DL PRS Downlink Positioning reference signal
QCL Quasi co-locate
SS/PBCH Synchronization Signal/Physical Broadcast Channel
SRS Sounding Reference Signal
Commercial interests for some embodiments are as follows. 1. Solving issues in the prior art. 2. Reaching a good balance between a resource overhead and a good positioning performance in a system deployment. 3. Providing a good communication performance. 4. Providing high reliability. 5. Some embodiments of the present disclosure are used by 5G-NR chipset vendors, V2X communication system development vendors, automakers including cars, trains, trucks, buses, bicycles, moto-bikes, helmets, and etc., drones (unmanned aerial vehicles) , smartphone makers, communication devices for public safety use, AR/VR device maker for example gaming, conference/seminar, education purposes. The deployment scenarios include, but not limited to, indoor hotspot, dense urban, urban micro, urban macro, rural, factor hall, and indoor D2D scenarios. Some embodiments of the present disclosure are a combination of “techniques/processes” that can be adopted in 3GPP specification to create an end product. Some embodiments of the present disclosure could be adopted in  5G NR licensed and non-licensed or shared spectrum communications. Some embodiments of the present disclosure propose technical mechanisms. The present example embodiment is applicable to NR in unlicensed spectrum (NR-U) . The present disclosure can be applied to other mobile networks, in particular to mobile network of any further generation cellular network technology (6G, etc. ) .
FIG. 5 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software. FIG. 5 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated. The application circuitry 730 may include a circuitry such as, but not limited to, one or more single-core or multi-core processors. The processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors. The processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
The baseband circuitry 720 may include circuitry such as, but not limited to, one or more single-core or multi-core processors. The processors may include a baseband processor. The baseband circuitry may handle various radio control functions that enables communication with one or more radio networks via the RF circuitry. The radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc. In some embodiments, the baseband circuitry may provide for communication compatible with one or more radio technologies. For example, in some embodiments, the baseband circuitry may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) . Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry.
In various embodiments, the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency. For example, in some embodiments, baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency. The RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium. In various embodiments, the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network. In various embodiments, the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency. For example, in some embodiments, RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
In various embodiments, the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the user equipment, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitry, the baseband circuitry, and/or the application circuitry. As used herein, “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality. In some embodiments, the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules. In some embodiments, some or all of the constituent components of the baseband circuitry, the application circuitry, and/or the memory/storage may be implemented together on a system on a chip (SOC) . The memory/storage 740 may be used to load and store data and/or instructions, for example, for system. The memory/storage  for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory.
In various embodiments, the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system. User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc. Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface. In various embodiments, the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system. In some embodiments, the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit. The positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
In various embodiments, the display 750 may include a display, such as a liquid crystal display and a touch screen display. In various embodiments, the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, an AR/VR glasses, etc. In various embodiments, system may have more or less components, and/or different architectures. Where appropriate, methods described herein may be implemented as a computer program. The computer program may be stored on a storage medium, such as a non-transitory storage medium.
A person having ordinary skill in the art understands that each of the units, algorithm, and steps described and disclosed in the embodiments of the present disclosure are realized using electronic hardware or combinations of software for computers and electronic hardware. Whether the functions run in hardware or software depends on the condition of application and design requirement for a technical plan. A person having ordinary skill in the art can use different ways to realize the function for each specific application while such realizations should not go beyond the scope of the present disclosure. It is understood by a person having ordinary skill in the art that he/she can refer to the working processes of the system, device, and unit in the above-mentioned embodiment since the working processes of the above-mentioned system, device, and unit are basically the same. For easy description and simplicity, these working processes will not be detailed.
It is understood that the disclosed system, device, and method in the embodiments of the present disclosure can be realized with other ways. The above-mentioned embodiments are exemplary only. The division of the units is merely based on logical functions while other divisions exist in realization. It is possible that a plurality of units or components are combined or integrated in another system. It is also possible that some characteristics are omitted or skipped. On the other hand, the displayed or discussed mutual coupling, direct coupling, or communicative coupling operate through some ports, devices, or units whether indirectly or communicatively by ways of electrical, mechanical, or other kinds of forms.
The units as separating components for explanation are or are not physically separated. The units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments. Moreover, each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units.
If the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer. Based on this understanding, the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product. Or, one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product. The software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure. The storage medium includes  a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.
While the present disclosure has been described in connection with what is considered the most practical and preferred embodiments, it is understood that the present disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.

Claims (85)

  1. A wireless communication method by a user equipment (UE) , comprising:
    being configured, by a base station, with a configuration of an uplink positioning reference signal for the UE in a radio resource control (RRC) idle state; and
    transmitting, to the base station, the uplink positioning reference signal according to the configuration of the uplink positioning reference signal when the UE is in the RRC idle state.
  2. The method of claim 1, wherein in the configuration of the uplink positioning reference signal for the UE in the RRC idle state, the UE in the RRC idle state is configured, by the base station, with at least one of the following parameters:
    a frequency domain resource allocation for the uplink positioning reference signal;
    a time domain resource allocation for the uplink positioning reference signal;
    one or more uplink positioning reference signal resources;
    a signal sequence of the uplink positioning reference signal;
    a transmission periodicity for a transmission of the uplink positioning reference signal;
    a slot offset for the transmission of the uplink positioning reference signal;
    information of a transmit beam for the uplink positioning reference signal;
    information of an uplink transmit power for sending the uplink positioning reference signal; or
    a subcarrier spacing and a cyclic prefix (CP) length for the transmission of the uplink positioning reference signal.
  3. The method of claim 1, wherein the uplink positioning reference signal comprises a sounding reference signal (SRS) or a random access channel (RACH) .
  4. The method of claim 3, wherein the UE is configured, by the base station, with one or more SRS resource sets for positioning for the UE in the RRC idle state.
  5. The method of claim 4, wherein the UE is configured to transmit, to the base station, the one or more SRS resource sets for positioning when the UE is in the RRC idle state.
  6. The method of claim 3, wherein the UE is configured, by the base station, with a configuration of the RACH for positioning for the UE in the RRC idle state.
  7. The method of claim 6, wherein the configuration of the RACH for positioning comprises a sequence of an RACH preamble, a time-domain and frequency domain location for an RACH resource allocation in one slot, and/or information for the UE to determine indices of slots where an allocated RACH resource is located.
  8. The method of claim 7, wherein when the UE is in the RRC idle state, the UE transmits the RACH preamble in the allocated RACH resource in assigned slots.
  9. The method of claim 1, wherein the configuration of the uplink positioning reference signal for the UE in the RRC idle state is associated with a cell identifier (ID) , a tracking area identifier (TAI) , or a group of cell IDs.
  10. The method of claim 9, wherein the UE is configured to transmit the uplink positioning reference signal according to the configuration of the uplink positioning reference signal associated with the cell ID, the TAI, or the group of the cell IDs that a cell selected by the UE during mobility function of the RRC idle state is same or in.
  11. The method of claim 1, wherein an uplink transmit power for the uplink positioning reference signal for the UE in the RRC idle state follows a pathloss measured from one synchronization signal/physical broadcast channel (SS/PBCH) block of a cell selected by the UE during mobility function.
  12. The method of claim 1, wherein an uplink transmit power for the uplink positioning reference signal for the UE in the RRC idle state follows a pathloss measured from one SS/PBCH block of a cell configured to an uplink positioning reference signal resource.
  13. The method of claim 1, wherein a spatial relation information for the uplink positioning reference signal for the UE in the RRC idle state comprises one SS/PBCH block of a cell selected by the UE during mobility function.
  14. The method of claim 1, wherein a spatial relation information for the uplink positioning reference signal for the UE in the RRC idle state comprises one SS/PBCH block of a cell configured to an uplink positioning reference signal resource.
  15. The method of claim 1, wherein the UE requests the configuration of the uplink positioning reference signal if the UE enters one cell that has no associated uplink positioning reference signal configuration for the UE in the RRC idle state.
  16. The method of claim 1, wherein the UE is configured to control the base station to use a multi-transmission/reception point (TRP) to measure an uplink relative time of arrival, an angle of arrival of the uplink positioning reference signal, a reference signal received power (RSRP) , and/or a base station receive-transmission (Rx-Tx) time difference based on measuring the uplink positioning reference sent by the UE in the RRC idle state.
  17. The method of claim 1, wherein in the configuration of the uplink positioning reference signal for the UE in the RRC idle state, the UE in the RRC idle state is configured, by the base station, with at least one of the following power control configuration parameters:
    a maximal transmit power for transmitting the uplink positioning reference signal for the UE in the RRC idle state;
    a target power level that indicates an expected signal power at a receive side of the base station;
    a power control adjustment parameter; or
    a configuration information providing a pathloss reference signal.
  18. The method of claim 17, wherein the configuration information providing the pathloss reference signal comprises a physical cell ID and an SS/PBCH block index; the physical cell Id and a downlink positioning reference signal resource ID; or the physical cell ID.
  19. The method of claim 1, wherein for each uplink positioning reference signal resource, the UE in the RRC idle state is configured, by the base station, with at least one of the following parameters:
    an ID for the uplink positioning reference signal resource;
    a parameter used to identify a time and frequency resource location for the UE to transmit the uplink positioning reference signal resource;
    parameters used to configure a signal sequence;
    a subcarrier spacing for the uplink positioning reference signal resource;
    a configuration of a spatial relation information that is used by the UE to determine a spatial domain transmit filter for the uplink positioning reference signal resource; or
    a configuration of power control parameters.
  20. The method of claim 19, wherein the configuration of the spatial relation information comprises one physical cell ID and a SS/PBCH block index; one physical cell ID; or one downlink positioning reference signal resource.
  21. A wireless communication method by a base station, comprising:
    configuring, to a user equipment (UE) , a configuration of an uplink positioning reference signal for the UE in a radio resource control (RRC) idle state; and
    receiving, from the UE, the uplink positioning reference signal, wherein the uplink positioning reference signal is according to the configuration of the uplink positioning reference signal when the UE is in the RRC idle state.
  22. The method of claim 21, wherein in the configuration of the uplink positioning reference signal for the UE in the RRC idle state, the base station is configured to configure, to the UE in the RRC idle state, at least one of the following parameters:
    a frequency domain resource allocation for the uplink positioning reference signal;
    a time domain resource allocation for the uplink positioning reference signal;
    one or more uplink positioning reference signal resources;
    a signal sequence of the uplink positioning reference signal;
    a transmission periodicity for a transmission of the uplink positioning reference signal;
    a slot offset for the transmission of the uplink positioning reference signal;
    information of a transmit beam for the uplink positioning reference signal;
    information of an uplink transmit power for sending the uplink positioning reference signal; or
    a subcarrier spacing and a cyclic prefix (CP) length for the transmission of the uplink positioning reference signal.
  23. The method of claim 21, wherein the uplink positioning reference signal comprises a sounding reference signal (SRS) or a random access channel (RACH) .
  24. The method of claim 23, wherein the base station is configured to configure, to the UE, one or more SRS resource sets for positioning for the UE in the RRC idle state.
  25. The method of claim 24, wherein the base station is configured to receive, form the UE, the one or more SRS resource sets for positioning when the UE is in the RRC idle state.
  26. The method of claim 23, wherein the base station is configured to receive, form the UE, a configuration of the RACH for positioning for the UE in the RRC idle state.
  27. The method of claim 26, wherein the configuration of the RACH for positioning comprises a sequence of an RACH preamble, a time-domain and frequency domain location for an RACH resource allocation in one slot, and/or information for the UE to determine indices of slots where an allocated RACH resource is located.
  28. The method of claim 27, wherein when the UE is in the RRC idle state, the base station controls the UE to transmit the RACH preamble in the allocated RACH resource in assigned slots.
  29. The method of claim 21, wherein the configuration of the uplink positioning reference signal for the UE in the RRC idle state is associated with a cell identifier (ID) , a tracking area identifier (TAI) , or a group of cell IDs.
  30. The method of claim 29, wherein the base station is configured to control the UE to transmit the uplink positioning reference signal according to the configuration of the uplink positioning reference signal associated with the cell ID, the TAI, or the group of the cell IDs that a cell selected by the UE during mobility function of the RRC idle state is same or in.
  31. The method of claim 21, wherein an uplink transmit power for the uplink positioning reference signal for the UE in the RRC idle state follows a pathloss measured from one synchronization signal/physical broadcast channel (SS/PBCH) block of a cell selected by the UE during mobility function.
  32. The method of claim 21, wherein an uplink transmit power for the uplink positioning reference signal for the UE in the RRC idle state follows a pathloss measured from one SS/PBCH block of a cell configured to an uplink positioning reference signal resource.
  33. The method of claim 21, wherein a spatial relation information for the uplink positioning reference signal for the UE in the RRC idle state comprises one SS/PBCH block of a cell selected by the UE during mobility function.
  34. The method of claim 21, wherein a spatial relation information for the uplink positioning reference signal for the UE in the RRC idle state comprises one SS/PBCH block of a cell configured to an uplink positioning reference signal resource.
  35. The method of claim 21, wherein the base station controls the UE to request the configuration of the uplink positioning reference signal if the UE enters one cell that has no associated uplink positioning reference signal configuration for the UE in the RRC idle state.
  36. The method of claim 21, wherein the base station is configured to use a multi-transmission/reception point (TRP) to measure an uplink relative time of arrival, an angle of arrival of the uplink positioning reference signal, a reference signal received power (RSRP) , and/or a base station receive-transmission (Rx-Tx) time difference based on measuring the uplink positioning reference sent by the UE in the RRC idle state.
  37. The method of claim 21, wherein in the configuration of the uplink positioning reference signal for the UE in the RRC idle state, the base station is configured to configure, to the UE in the RRC idle state, at least one of the following power control configuration parameters:
    a maximal transmit power for transmitting the uplink positioning reference signal for the UE in the RRC idle state;
    a target power level that indicates an expected signal power at a receive side of the base station;
    a power control adjustment parameter; or
    a configuration information providing a pathloss reference signal.
  38. The method of claim 37, wherein the configuration information providing the pathloss reference signal comprises a physical cell ID and an SS/PBCH block index; the physical cell Id and a downlink positioning reference signal resource ID; or the physical cell ID.
  39. The method of claim 21, wherein for each uplink positioning reference signal resource, the base station is configured to configure, to the UE in the RRC idle state, at least one of the following parameters:
    an ID for the uplink positioning reference signal resource;
    a parameter used to identify a time and frequency resource location for the UE to transmit the uplink positioning reference signal resource;
    parameters used to configure a signal sequence;
    a subcarrier spacing for the uplink positioning reference signal resource;
    a configuration of a spatial relation information that is used by the UE to determine a spatial domain transmit filter for the uplink positioning reference signal resource; or
    a configuration of power control parameters.
  40. The method of claim 39, wherein the configuration of the spatial relation information comprises one physical cell ID and a SS/PBCH block index; one physical cell ID; or one downlink positioning reference signal resource.
  41. A user equipment (UE) , comprising:
    a memory;
    a transceiver; and
    a processor coupled to the memory and the transceiver;
    wherein the processor is configured, by a base station, with a configuration of an uplink positioning reference signal for the UE in a radio resource control (RRC) idle state; and
    wherein the transceiver is configured to transmit, to the base station, the uplink positioning reference signal according to the configuration of the uplink positioning reference signal when the UE is in the RRC idle state.
  42. The method of claim 41, wherein in the configuration of the uplink positioning reference signal for the UE in the RRC idle state, the UE in the RRC idle state is configured, by the base station, with at least one of the following parameters:
    a frequency domain resource allocation for the uplink positioning reference signal;
    a time domain resource allocation for the uplink positioning reference signal;
    one or more uplink positioning reference signal resources;
    a signal sequence of the uplink positioning reference signal;
    a transmission periodicity for a transmission of the uplink positioning reference signal;
    a slot offset for the transmission of the uplink positioning reference signal;
    information of a transmit beam for the uplink positioning reference signal;
    information of an uplink transmit power for sending the uplink positioning reference signal; or
    a subcarrier spacing and a cyclic prefix (CP) length for the transmission of the uplink positioning reference signal.
  43. The method of claim 41, wherein the uplink positioning reference signal comprises a sounding reference signal (SRS) or a random access channel (RACH) .
  44. The method of claim 43, wherein the processor is configured, by the base station, with one or more SRS resource sets for positioning for the UE in the RRC idle state.
  45. The method of claim 44, wherein the transceiver is configured to transmit, to the base station, the one or more SRS resource sets for positioning when the UE is in the RRC idle state.
  46. The method of claim 43, wherein the processor is configured, by the base station, with a configuration of the RACH for  positioning for the UE in the RRC idle state.
  47. The method of claim 46, wherein the configuration of the RACH for positioning comprises a sequence of an RACH preamble, a time-domain and frequency domain location for an RACH resource allocation in one slot, and/or information for the processor to determine indices of slots where an allocated RACH resource is located.
  48. The method of claim 47, wherein when the UE is in the RRC idle state, the transceiver transmits the RACH preamble in the allocated RACH resource in assigned slots.
  49. The method of claim 41, wherein the configuration of the uplink positioning reference signal for the UE in the RRC idle state is associated with a cell identifier (ID) , a tracking area identifier (TAI) , or a group of cell IDs.
  50. The method of claim 49, wherein the transceiver is configured to transmit the uplink positioning reference signal according to the configuration of the uplink positioning reference signal associated with the cell ID, the TAI, or the group of the cell IDs that a cell selected by the UE during mobility function of the RRC idle state is same or in.
  51. The method of claim 41, wherein an uplink transmit power for the uplink positioning reference signal for the UE in the RRC idle state follows a pathloss measured from one synchronization signal/physical broadcast channel (SS/PBCH) block of a cell selected by the UE during mobility function.
  52. The method of claim 41, wherein an uplink transmit power for the uplink positioning reference signal for the UE in the RRC idle state follows a pathloss measured from one SS/PBCH block of a cell configured to an uplink positioning reference signal resource.
  53. The method of claim 41, wherein a spatial relation information for the uplink positioning reference signal for the UE in the RRC idle state comprises one SS/PBCH block of a cell selected by the UE during mobility function.
  54. The method of claim 41, wherein a spatial relation information for the uplink positioning reference signal for the UE in the RRC idle state comprises one SS/PBCH block of a cell configured to an uplink positioning reference signal resource.
  55. The method of claim 41, wherein the processor requests the configuration of the uplink positioning reference signal if the processor enters one cell that has no associated uplink positioning reference signal configuration for the UE in the RRC idle state.
  56. The method of claim 41, wherein the processor is configured to control the base station to use a multi-transmission/reception point (TRP) to measure an uplink relative time of arrival, an angle of arrival of the uplink positioning reference signal, a reference signal received power (RSRP) , and/or a base station receive-transmission (Rx-Tx) time difference based on measuring the uplink positioning reference sent by the UE in the RRC idle state.
  57. The method of claim 41, wherein in the configuration of the uplink positioning reference signal for the UE in the RRC idle state, the UE in the RRC idle state is configured, by the base station, with at least one of the following power control configuration parameters:
    a maximal transmit power for transmitting the uplink positioning reference signal for the UE in the RRC idle state;
    a target power level that indicates an expected signal power at a receive side of the base station;
    a power control adjustment parameter; or
    a configuration information providing a pathloss reference signal.
  58. The method of claim 57, wherein the configuration information providing the pathloss reference signal comprises a physical cell ID and an SS/PBCH block index; the physical cell Id and a downlink positioning reference signal resource ID; or the physical cell ID.
  59. The method of claim 41, wherein for each uplink positioning reference signal resource, the UE in the RRC idle state is configured, by the base station, with at least one of the following parameters:
    an ID for the uplink positioning reference signal resource;
    a parameter used to identify a time and frequency resource location for the UE to transmit the uplink positioning reference signal resource;
    parameters used to configure a signal sequence;
    a subcarrier spacing for the uplink positioning reference signal resource;
    a configuration of a spatial relation information that is used by the UE to determine a spatial domain transmit filter for the uplink positioning reference signal resource; or
    a configuration of power control parameters.
  60. The method of claim 59, wherein the configuration of the spatial relation information comprises one physical cell ID and a SS/PBCH block index; one physical cell ID; or one downlink positioning reference signal resource.
  61. A base station, comprising:
    a memory;
    a transceiver; and
    a processor coupled to the memory and the transceiver;
    wherein the processor is configured to configure, to a user equipment (UE) , a configuration of an uplink positioning reference signal for the UE in a radio resource control (RRC) idle state; and
    wherein the transceiver is configured to receive, from the UE, the uplink positioning reference signal, wherein the uplink positioning reference signal is according to the configuration of the uplink positioning reference signal when the UE is in the RRC idle state.
  62. The method of claim 61, wherein in the configuration of the uplink positioning reference signal for the UE in the RRC idle state, the processor is configured to configure, to the UE in the RRC idle state, at least one of the following parameters:
    a frequency domain resource allocation for the uplink positioning reference signal;
    a time domain resource allocation for the uplink positioning reference signal;
    one or more uplink positioning reference signal resources;
    a signal sequence of the uplink positioning reference signal;
    a transmission periodicity for a transmission of the uplink positioning reference signal;
    a slot offset for the transmission of the uplink positioning reference signal;
    information of a transmit beam for the uplink positioning reference signal;
    information of an uplink transmit power for sending the uplink positioning reference signal; or
    a subcarrier spacing and a cyclic prefix (CP) length for the transmission of the uplink positioning reference signal.
  63. The method of claim 61, wherein the uplink positioning reference signal comprises a sounding reference signal (SRS) or a random access channel (RACH) .
  64. The method of claim 63, wherein the processor is configured to configure, to the UE, one or more SRS resource sets for positioning for the UE in the RRC idle state.
  65. The method of claim 64, wherein the transceiver is configured to receive, form the UE, the one or more SRS resource sets for positioning when the UE is in the RRC idle state.
  66. The method of claim 63, wherein the transceiver is configured to receive, form the UE, a configuration of the RACH for positioning for the UE in the RRC idle state.
  67. The method of claim 66, wherein the configuration of the RACH for positioning comprises a sequence of an RACH preamble, a time-domain and frequency domain location for an RACH resource allocation in one slot, and/or information for the UE to determine indices of slots where an allocated RACH resource is located.
  68. The method of claim 67, wherein when the UE is in the RRC idle state, the processor controls the UE to transmit the RACH preamble in the allocated RACH resource in assigned slots.
  69. The method of claim 61, wherein the configuration of the uplink positioning reference signal for the UE in the RRC idle state is associated with a cell identifier (ID) , a tracking area identifier (TAI) , or a group of cell IDs.
  70. The method of claim 69, wherein the processor is configured to control the UE to transmit the uplink positioning  reference signal according to the configuration of the uplink positioning reference signal associated with the cell ID, the TAI, or the group of the cell IDs that a cell selected by the UE during mobility function of the RRC idle state is same or in.
  71. The method of claim 61, wherein an uplink transmit power for the uplink positioning reference signal for the UE in the RRC idle state follows a pathloss measured from one synchronization signal/physical broadcast channel (SS/PBCH) block of a cell selected by the UE during mobility function.
  72. The method of claim 61, wherein an uplink transmit power for the uplink positioning reference signal for the UE in the RRC idle state follows a pathloss measured from one SS/PBCH block of a cell configured to an uplink positioning reference signal resource.
  73. The method of claim 61, wherein a spatial relation information for the uplink positioning reference signal for the UE in the RRC idle state comprises one SS/PBCH block of a cell selected by the UE during mobility function.
  74. The method of claim 61, wherein a spatial relation information for the uplink positioning reference signal for the UE in the RRC idle state comprises one SS/PBCH block of a cell configured to an uplink positioning reference signal resource.
  75. The method of claim 61, wherein the base station controls the UE to request the configuration of the uplink positioning reference signal if the UE enters one cell that has no associated uplink positioning reference signal configuration for the UE in the RRC idle state.
  76. The method of claim 61, wherein the processor is configured to use a multi-transmission/reception point (TRP) to measure an uplink relative time of arrival, an angle of arrival of the uplink positioning reference signal, a reference signal received power (RSRP) , and/or a base station receive-transmission (Rx-Tx) time difference based on measuring the uplink positioning reference sent by the UE in the RRC idle state.
  77. The method of claim 61, wherein in the configuration of the uplink positioning reference signal for the UE in the RRC idle state, the processor is configured to configure, to the UE in the RRC idle state, at least one of the following power control configuration parameters:
    a maximal transmit power for transmitting the uplink positioning reference signal for the UE in the RRC idle state;
    a target power level that indicates an expected signal power at a receive side of the base station;
    a power control adjustment parameter; or
    a configuration information providing a pathloss reference signal.
  78. The method of claim 77, wherein the configuration information providing the pathloss reference signal comprises a physical cell ID and an SS/PBCH block index; the physical cell Id and a downlink positioning reference signal resource ID; or the physical cell ID.
  79. The method of claim 61, wherein for each uplink positioning reference signal resource, the processor is configured to configure, to the UE in the RRC idle state, at least one of the following parameters:
    an ID for the uplink positioning reference signal resource;
    a parameter used to identify a time and frequency resource location for the UE to transmit the uplink positioning reference signal resource;
    parameters used to configure a signal sequence;
    a subcarrier spacing for the uplink positioning reference signal resource;
    a configuration of a spatial relation information that is used by the UE to determine a spatial domain transmit filter for the uplink positioning reference signal resource; or
    a configuration of power control parameters.
  80. The method of claim 79, wherein the configuration of the spatial relation information comprises one physical cell ID and a SS/PBCH block index; one physical cell ID; or one downlink positioning reference signal resource.
  81. A non-transitory machine-readable storage medium having stored thereon instructions that, when executed by a computer, cause the computer to perform the method of any one of claims 1 to 40.
  82. A chip, comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the method of any one of claims 1 to 40.
  83. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a computer to execute the method of any one of claims 1 to 40.
  84. A computer program product, comprising a computer program, wherein the computer program causes a computer to execute the method of any one of claims 1 to 40.
  85. A computer program, wherein the computer program causes a computer to execute the method of any one of claims 1 to 40.
PCT/CN2021/104321 2020-07-10 2021-07-02 Apparatus and method of wireless communication WO2022007719A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063050715P 2020-07-10 2020-07-10
US63/050,715 2020-07-10

Publications (1)

Publication Number Publication Date
WO2022007719A1 true WO2022007719A1 (en) 2022-01-13

Family

ID=79553530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104321 WO2022007719A1 (en) 2020-07-10 2021-07-02 Apparatus and method of wireless communication

Country Status (1)

Country Link
WO (1) WO2022007719A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190053071A1 (en) * 2017-08-10 2019-02-14 Qualcomm Incorporated Uplink-based positioning reference signaling in multi-beam systems
WO2020047080A1 (en) * 2018-08-28 2020-03-05 Hua Zhou Uplink transmission in a wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190053071A1 (en) * 2017-08-10 2019-02-14 Qualcomm Incorporated Uplink-based positioning reference signaling in multi-beam systems
WO2020047080A1 (en) * 2018-08-28 2020-03-05 Hua Zhou Uplink transmission in a wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOMI COMMUNICATIONS: "Positioning enhancements for RRC IDLE and RRC INACTIVE state UE", 3GPP DRAFT; R1-2003977, vol. RAN WG1, 15 May 2020 (2020-05-15), pages 1 - 3, XP051885739 *

Similar Documents

Publication Publication Date Title
US20220229146A1 (en) Prs transmission-based sidelink positioning of server terminal in nr v2x
US10368195B2 (en) Electronic device in wireless communication system and wireless communication method
US20220386093A1 (en) Positioning method in wireless communication system, and device therefor
US11844058B2 (en) Apparatus and method of wireless communication of same
WO2022052650A1 (en) Apparatus and method of wireless communication
CN113923632B (en) User equipment, base station and wireless communication method thereof
US20230112171A1 (en) Apparatus and method of wireless communication
US10306646B2 (en) Method for device-to-device communication, base station and user equipment
WO2021197053A1 (en) Apparatus and method of wireless communication
US20210176738A1 (en) Data Transmission Method and Apparatus
WO2022007666A1 (en) Apparatus and method of wireless communication
WO2022001967A1 (en) Apparatus and method of wireless communication
CN116671201A (en) Method and related device for configuring uplink reference signal resource
WO2022001973A1 (en) Apparatus and method of wireless communication
CN114375040A (en) Partial bandwidth switching method, device and system
WO2022007719A1 (en) Apparatus and method of wireless communication
CN114600472B (en) Communication method and device
EP4340477A1 (en) Method and device for positioning in wireless communication system
WO2021208697A1 (en) Apparatus and method of wireless communication
WO2024031633A1 (en) Methods for rtt based sidelink positioning
WO2024031624A1 (en) Methods for rtt based passive sidelink positioning
WO2024040449A1 (en) Method, device and computer readable medium for sidelink communications
WO2023201597A1 (en) Method, device and computer readable medium for communications
WO2024065459A1 (en) Method, device, and medium for communication
CN117136611A (en) Method and apparatus for wireless communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21837030

Country of ref document: EP

Kind code of ref document: A1