WO2022007664A1 - Method executed by user equipment, and user equipment - Google Patents

Method executed by user equipment, and user equipment Download PDF

Info

Publication number
WO2022007664A1
WO2022007664A1 PCT/CN2021/103093 CN2021103093W WO2022007664A1 WO 2022007664 A1 WO2022007664 A1 WO 2022007664A1 CN 2021103093 W CN2021103093 W CN 2021103093W WO 2022007664 A1 WO2022007664 A1 WO 2022007664A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
carrier frequency
lte
communication
configuration information
Prior art date
Application number
PCT/CN2021/103093
Other languages
French (fr)
Chinese (zh)
Inventor
赵毅男
刘仁茂
罗超
Original Assignee
夏普株式会社
赵毅男
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 赵毅男 filed Critical 夏普株式会社
Publication of WO2022007664A1 publication Critical patent/WO2022007664A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the technical field of wireless communication, and in particular, to a method performed by a user equipment and a corresponding user equipment.
  • D2D communication (Device-to-Device communication, direct device-to-device communication) refers to a direct communication method between two user equipments without being forwarded by a base station or a core network.
  • 3GPP 3rd Generation Partnership Project
  • the upper layer supports unicast (Unicast) and multicast (Groupcast) communication functions.
  • LTE Release 13 eD2D The main features introduced by LTE Release 13 eD2D include:
  • V2X stands for Vehicle to everything, hoping to realize the exchange of information between vehicles and all entities that may affect vehicles, with the purpose of reducing accidents, slowing traffic congestion, reducing environmental pollution and providing other information services.
  • the application scenarios of V2X mainly include four aspects:
  • V2V Vehicle to Vehicle, that is, vehicle-to-vehicle communication
  • V2P Vehicle to Pedestrian, that is, the vehicle sends a warning to pedestrians or non-motor vehicles
  • V2N Vehicle to Network, that is, the vehicle is connected to the mobile network
  • V2I Vehicle to Infrastructure, that is, communication between vehicles and road infrastructure.
  • V2X stage 1 introduces a new D2D communication interface called the PC5 interface.
  • the PC5 interface is mainly used to solve the communication problems of cellular vehicle networking in high-speed (up to 250 km/h) and high-node density environments. Vehicles can interact with information such as position, speed and direction through the PC5 interface, that is, vehicles can communicate directly through the PC5 interface.
  • the functions introduced by LTE Release 14 V2X mainly include:
  • the second phase of the V2X research topic belongs to the research scope of LTE Release 15 (see Non-Patent Document 4).
  • the main features introduced include high-order 64QAM modulation, V2X carrier aggregation, short TTI transmission, and a feasibility study of transmit diversity.
  • the NR base station gNB is supported to schedule sideline communication user equipment to perform sideline communication in LTE sideline communication transmission mode 3 (mode 3, which only includes the case of semi-persistent scheduling SPS).
  • NR base station gNB activates/deactivates SPS semi-persistent scheduling in LTE sideline communication through DCI based on UE capabilities;
  • the above-mentioned DCI provides the indication field related to the LTE sideline communication SPS in LTE DCI format 5A;
  • the number of bits (size) of the DCI defined in the above-mentioned DCI and NR sideline communication by gNB scheduling NR sideline communication is the same;
  • ⁇ Z represents the time length offset in LTE sideline communication.
  • the solution of this patent mainly includes a method for the LTE sideline communication user equipment to determine the carrier (frequency) where the sideline communication is located when the NR base station gNB schedules the LTE sideline communication user equipment to perform the sideline communication of the LTE sideline communication transmission mode 3.
  • Non-patent document 1 RP-140518, Work item proposal on LTE Device to Device Proximity Services
  • Non-patent document 2 RP-142311, Work Item Proposal for Enhanced LTE Device to Device Proximity Services
  • Non-patent literature 3 RP-152293, New WI proposal: Support for V2V services based on LTE sidelink
  • Non-Patent Document 4 RP-170798, New WID on 3GPP V2X Phase 2
  • Non-Patent Document 5 RP-181480, New SID Proposal: Study on NR V2X
  • Non-Patent Document 6 RAN1#97, Chairman notes, section 7.2.4.7
  • the present invention provides a method performed by a user equipment and a user equipment.
  • a method performed by a user equipment comprising the following steps:
  • the user equipment receives a system information block sent by the base station, where the system information block includes configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 of a carrier frequency of sideline communication;
  • the user equipment performs sidelink communication using the carrier frequency corresponding to the configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 of the carrier frequency of one sidelink communication;
  • the user equipment receives downlink control information DCI.
  • the system information block is an NR system information block 13, namely SIB13, and the SIB13 includes configuration information s1-V2X-ConfigCommon-r16 of LTE sideline communication.
  • the configuration information of the LTE sideline communication includes the LTE sideline communication carrier frequency list v2x-InterFreqInfoList-r14;
  • Each sideline communication carrier frequency SL-InterFreqInfoV2X-r14 included in the LTE sideline communication carrier frequency list corresponds to an ARFCN type configuration information v2x-CommCarrierFreq-r14, and corresponds to a carrier bandwidth configuration information.
  • the configuration information of the LTE sidelink communication includes configuration information of the LTE sidelink communication resource pool.
  • the system information block includes configuration information sl-Bandwidth-r16 of a carrier bandwidth.
  • the bandwidth of the carrier corresponding to the configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 of the one sideline communication carrier frequency is the sl-Bandwidth-r16.
  • the user equipment uses a carrier frequency corresponding to the carrier frequency included in the LTE sideline communication carrier frequency list v2x-InterFreqInfoList-r14 or the one sideline communication carrier frequency
  • the configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 corresponds to the carrier frequency corresponding to the carrier frequency corresponding to the resource pool indicated by the configuration information of the LTE sidelink communication resource pool for sidelink communication.
  • the DCI includes a sideline communication carrier indication field, and the indication field is 3 bits,
  • the indication field equal to 0 corresponds to the sideline communication carrier corresponding to the configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 of the one sideline communication carrier frequency
  • the value of the indication field corresponds to the corresponding sideline communication carrier frequency SL-InterFreqInfoV2X-r14.
  • the configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 of one sideline communication carrier frequency is an ARFCN type of configuration information.
  • a user equipment comprising:
  • the instructions when executed by the processor, cause the user equipment to perform a method according to the above.
  • the solution of the present invention includes a method for the LTE sidelink communication user equipment to determine the carrier (frequency) where the sidelink communication is located when the NR base station schedules the LTE sidelink communication user equipment to perform the sidelink communication of the LTE sidelink communication transmission mode 3.
  • the NR base station can schedule the user equipment to perform LTE sidelink communication.
  • the NR base station can schedule the LTE sidelink communication user equipment to perform sidelink communication on the carrier frequency covered by the LTE cell, realizing spectrum sharing between LTE uplink and downlink communication and LTE sidelink communication, improving spectrum utilization efficiency and improving communication. quality.
  • FIG. 1 is a schematic diagram illustrating sideline communication of an LTE V2X UE.
  • FIG. 2 is a schematic diagram illustrating a resource allocation manner of LTE V2X.
  • FIG. 3 is a schematic diagram illustrating a basic process of a method performed by a user equipment in Embodiment 1 of the invention.
  • Fig. 4 is a schematic diagram showing the basic process of the method executed by the user equipment in the second embodiment of the invention.
  • FIG. 5 is a schematic diagram illustrating a basic process of a method executed by a user equipment in Embodiment 3 of the invention.
  • FIG. 6 is a block diagram illustrating a user equipment according to an embodiment of the present invention.
  • the 5G mobile communication system and its subsequent evolved versions are used as an example application environment to specifically describe various embodiments according to the present invention.
  • the present invention is not limited to the following embodiments, but can be applied to more other wireless communication systems, such as communication systems after 5G and 4G mobile communication systems before 5G.
  • LTE Long Term Evolution, long term evolution technology
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • DCI Downlink Control Information, downlink control information
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • UE User Equipment, user equipment
  • eNB evolved NodeB, evolved base station
  • gNB NR base station
  • TTI Transmission Time Interval, transmission time interval
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic Prefix Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing with Cyclic Prefix
  • C-RNTI Cell Radio Network Temporary Identifier, the temporary identifier of the cell wireless network
  • CSI Channel State Information, channel state information
  • CSI-RS Channel State Information Reference Signal, channel state information reference signal
  • CRS Cell Reference Signal, cell-specific reference signal
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • SCI Sidelink Control Information, side communication control information
  • PSCCH Physical Sidelink Control Channel, Physical Sidelink Communication Control Channel
  • MCS Modulation and Coding Scheme, modulation and coding scheme
  • RB Resource Block, resource block
  • CRB Common Resource Block, common resource block
  • CP Cyclic Prefix, cyclic prefix
  • PRB Physical Resource Block, physical resource block
  • PSSCH Physical Sidelink Shared Channel, Physical Sidelink Shared Channel
  • FDM Frequency Division Multiplexing, frequency division multiplexing
  • RRC Radio Resource Control
  • RSRP Reference Signal Receiving Power, reference signal receiving power
  • SRS Sounding Reference Signal, sounding reference signal
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • CRC Cyclic Redundancy Check, Cyclic Redundancy Check
  • PSDCH Physical Sidelink Discovery Channel, Physical Sidelink Communication Discovery Channel
  • PSBCH Physical Sidelink Broadcast Channel, Physical Sidelink Communication Broadcast Channel
  • TDD Time Division Duplexing
  • FDD Frequency Division Duplexing, frequency division duplexing
  • SIB1 System Information Block Type 1, system information block type 1
  • SLSS Sidelink synchronization Signal, side communication synchronization signal
  • PSSS Primary Sidelink Synchronization Signal, side communication main synchronization signal
  • SSSS Secondary Sidelink Synchronization Signal, side communication auxiliary synchronization signal
  • PCI Physical Cell ID, physical cell identification
  • PSS Primary Synchronization Signal, the main synchronization signal
  • SSS Secondary Synchronization Signal, secondary synchronization signal
  • BWP BandWidth Part, Bandwidth Fragment/Part
  • GNSS Global NaVigation Satellite System, global navigation satellite positioning system
  • SFN System Frame Nuimber, system (wireless) frame number
  • DFN Direct Frame Number, direct frame number
  • SSB Synchronization Signal Block, synchronization system information block
  • EN-DC EUTRA-NR Dual Connection, LTE-NR dual connection
  • MCG Master Cell Group, the main cell group
  • SCG Secondary Cell Group, secondary cell group
  • PCell Primary Cell, the main cell
  • SCell Secondary Cell, secondary cell
  • PSFCH Physical Sidelink Feedback Channel, Physical Sidelink Communication Feedback Channel
  • SPS Semi-Persistant Scheduling, semi-static scheduling
  • PT-RS Phase-Tracking Reference Signals, phase tracking reference signal
  • Transport Block transport block
  • CB Code Block, coding block/code block
  • QPSK Quadrature Phase Shift Keying, quadrature phase shift keying
  • 16/64/256 QAM 16/64/256 Quadrature Amplitude Modulation, Quadrature Amplitude Modulation
  • AGC Auto Gain Control, automatic gain control
  • ARFCN Absolute Radio Frequency Channel Number, absolute radio frequency channel number
  • V2X in the text can also represent sidelink; similarly, sidelink in the text can also represent V2X, and no specific distinction or limitation will be made in the following text.
  • the resource allocation mode of V2X (sidelink) communication in the specification of the present invention and the transmission mode of V2X (sidelink) communication can be equivalently replaced.
  • the resource allocation method referred to in the specification may represent the transmission mode, and the transmission mode referred to may represent the resource allocation method.
  • transmission mode 1 represents a transmission mode (resource allocation method) based on base station scheduling
  • transmission mode 2 represents a transmission mode (resource allocation method) based on user equipment sensing and resource selection.
  • the PSCCH in the specification of the present invention is used to carry the SCI.
  • the PSCCH involved in the description of the present invention corresponds to, or corresponds to, or is related to, or, the scheduled PSSCH indicates the same meaning, and both indicate associated PSSCH or corresponding PSSCH.
  • the PSSCH involved in the description corresponds to, or corresponds to, or has the same meaning as the related SCI (including the first-level SCI and the second-level SCI), which means associated SCI or corresponding SCI.
  • the first-level SCI is called 1st stage SCI or SCI format 0-1, and is transmitted in PSCCH;
  • the second-level SCI is called 2nd stage SCI or SCI format 0-2, and is transmitted in the corresponding PSSCH resources .
  • both UEs performing sidelink communication have network coverage (for example, the UE detects at least one cell that satisfies the "cell selection criterion" on the frequency where sidelink communication needs to be performed, Indicates that the UE has network coverage).
  • Partial-Coverage sidelink communication one of the UEs performing sidelink communication has no network coverage, and the other UE has network coverage.
  • the UE From the UE side, the UE has only two scenarios: no network coverage and network coverage. Part of the network coverage is described in terms of sidelink communication.
  • FIG. 1 is a schematic diagram illustrating sideline communication of an LTE V2X UE.
  • UE1 sends sideline communication control information (SCI format 1) to UE2, which is carried by the physical layer channel PSCCH.
  • SCI format 1 contains PSSCH scheduling information, such as PSSCH frequency domain resources.
  • UE1 sends sideline communication data to UE2, which is carried by the physical layer channel PSSCH.
  • the PSCCH and the corresponding PSSCH are in a frequency division multiplexing manner, that is, the PSCCH and the corresponding PSSCH are located in the same subframe in the time domain, and are located in different RBs in the frequency domain.
  • the specific design methods of PSCCH and PSSCH are as follows:
  • SCI format 1 can be carried in PSCCH, wherein SCI format 1 at least includes frequency domain resource information of PSSCH. For example, for the frequency domain resource indication field, SCI format 1 indicates the starting sub-channel number and the number of consecutive sub-channels of the PSSCH corresponding to the PSCCH.
  • PSSCH occupies one subframe in the time domain, and adopts frequency division multiplexing (FDM) with the corresponding PSCCH.
  • PSSCH occupies one or more consecutive sub-channels in the frequency domain, sub-channels represent n subCHsize consecutive RBs in the frequency domain, n subCHsize is configured by the RRC parameter, the number of starting sub-channels and consecutive sub-channels Indicated by the frequency domain resource indication field of SCIformat 1.
  • FIG. 2 shows two resource allocation methods of LTE V2X, which are respectively called resource allocation based on base station scheduling (Transmission Mode 3) and resource allocation based on UE sensing (Transmission Mode 4).
  • transmission mode 3 of LTE V2X corresponds to transmission mode 1 in NR V2X, which is based on base station scheduling
  • transmission mode 4 of LTE V2X corresponds to transmission mode 2 in NR V2X, which is based on UE perception. transfer mode.
  • the base station can configure the resource allocation mode of the UE through UE-level dedicated RRC signaling (dedicated RRC signaling) SL-V2X-ConfigDedicated, or the transmission mode of the UE. ,Specifically:
  • Resource allocation method based on base station scheduling indicates that the frequency domain resources used for sidelink communication come from the scheduling of the base station.
  • Transmission mode 3 includes two scheduling methods, namely dynamic scheduling and semi-persistent scheduling (SPS).
  • SPS semi-persistent scheduling
  • the UL grant (DCI format 5A) includes the frequency domain resources of PSSCH, and the CRC of the PDCCH or EPDCCH carrying the DCI format 5A is scrambled by SL-V-RNTI.
  • the base station configures one or more (up to 8) configured scheduling grants (configured grants) through IE: SPS-ConfigSL-r14, each configured scheduling grant contains a scheduling grant number (index) and scheduling grants Licensed resource period.
  • the UL grant (DCI format 5A) includes the frequency domain resources of the PSSCH, and the indication information (3 bits) of the scheduling grant number and the indication information of the SPS activation (activate) or release (release, or deactivation).
  • the CRC of the PDCCH or EPDCCH carrying DCI format 5A is scrambled by SL-SPS-V-RNTI.
  • the RRC signaling SL-V2X-ConfigDedicated when the RRC signaling SL-V2X-ConfigDedicated is set to scheduled-r14, it means that the UE is configured as a transmission mode based on base station scheduling.
  • the base station configures SL-V-RNTI or SL-SPS-V-RNTI through RRC signaling, and uses PDCCH or EPDCCH (DCI format 5A, CRC scrambled by SL-V-RNTI or scrambled by SL-SPS-V-RNTI) ) sends an uplink scheduling grant UL grant to the UE.
  • the above-mentioned uplink scheduling grant UL grant at least includes scheduling information of PSSCH frequency domain resources in sidelink communication.
  • the UE When the UE successfully monitors the PDCCH or EPDCCH scrambled by SL-V-RNTI or SL-SPS-V-RNTI, it uses the PSSCH frequency domain resource indication field in the uplink scheduling grant UL grant (DCI format 5A) as the PSCCH Indication information of the frequency domain resources of PSSCH in (SCI format 1), and send PSCCH (SCI format 1) and the corresponding PSSCH.
  • DCI format 5A the PSSCH frequency domain resource indication field in the uplink scheduling grant UL grant
  • the UE receives SL-SPS-V-RNTI scrambled DCI format 5A on downlink subframe n. If the indication information of SPS activation is included in the DCI format 5A, the UE determines the frequency domain resources of the PSSCH according to the indication information in the DCI format 5A, and determines the time domain resources of the PSSCH (the transmission subframe of the PSSCH) according to information such as subframe n.
  • Resource allocation method based on UE sensing indicates that the resources used for sidelink communication are based on the UE sensing process of the set of candidate available resources.
  • the RRC signaling SL-V2X-ConfigDedicated is set to ue-Selected-r14, it indicates that the UE is configured as the transmission mode based on UE sensing.
  • the base station configures the available transmission resource pool, and the UE determines the PSSCH sidelink transmission resources in the transmission resource pool (resource pool) according to certain rules (see the LTE V2X UE sensing process section for a detailed process description). , and send PSCCH (SCI format 1) and corresponding PSSCH.
  • the resources sent and received by the UE belong to the resource pool resource pool.
  • the base station schedules transmission resources for the sidelink UE in the resource pool, or, for the transmission mode based on UE perception in sidelink communication, the UE determines transmission resources in the resource pool.
  • the parameter set numerology includes the subcarrier spacing and the cyclic prefix CP length.
  • Table 4.2-1 shows the set of supported transmission parameters, as follows shown.
  • ⁇ ⁇ f 2 ⁇ ⁇ 15[kHz] CP (Cyclic Prefix) 0 15 normal 1 30 normal 2 60 normal, extended 3 120 normal 4 240 normal
  • each slot (slot) contains 14 OFDM symbols; for extended CP, each slot contains 12 OFDM symbols.
  • NR and LTE have the same definition of subframe, which means 1ms.
  • subframe For the subcarrier spacing configuration ⁇ , the slot number in a subframe (1ms) can be expressed as The range is 0 to The slot number in a system frame (frame, duration 10ms) can be expressed as The range is 0 to in, and The definitions of the cases at different subcarrier spacing ⁇ are shown in the table below.
  • Table 4.3.2-1 The number of symbols contained in each slot in normal CP, the number of slots contained in each system frame, and the number of slots contained in each subframe
  • Table 4.3.2-2 The number of symbols contained in each slot when the CP is extended (60kHz), the number of slots contained in each system frame, and the number of slots contained in each subframe
  • the numbered SFN of a system frame ranges from 0 to 1023.
  • the concept of direct system frame number DFN is introduced in sideline communication, and the numbering range is also from 0 to 1023.
  • the above description of the relationship between system frames and numerology can also be applied to direct system frames.
  • the duration of a direct system frame Also equal to 10ms, for a subcarrier spacing of 15kHz, a direct system frame includes 10 slots, and so on.
  • DFN is used for timing on sidelink carriers.
  • LTE only supports subcarrier spacing of 15kHz.
  • Extended CP is supported in LTE, and normal CP is also supported.
  • the subframe subframe has a duration of 1ms and includes two slots, each of which has a duration of 0.5ms.
  • each subframe contains 14 OFDM symbols, and each slot in the subframe contains 7 OFDM symbols; for extended CP, each subframe contains 12 OFDM symbols, and each slot in the subframe contains 6 OFDM symbols.
  • the resource block RB is defined in the frequency domain as consecutive sub-carriers, eg for a sub-carrier spacing of 15 kHz, the RB is 180 kHz in the frequency domain.
  • the resource element RE represents 1 subcarrier in the frequency domain and 1 OFDM symbol in the time domain.
  • the frequency where the sideline communication carrier is located corresponds to the uplink carrier.
  • the relationship between ARFCN and the upstream carrier frequency (carrier frequency, in MHz) is determined by the following formula:
  • F UL F UL_low +0.1 ⁇ (N UL -N Offs-UL ).
  • N UL represents ARFCN
  • F UL_low and N Offs-UL are given by the column corresponding to the uplink in the following table.
  • FIG. 3 is a schematic diagram illustrating a basic process of a method performed by a user equipment according to Embodiment 1 of the present invention.
  • the steps performed by the user equipment include:
  • step S101 the sideline communication user equipment receives the system information block sent by the base station gNB.
  • the system information block includes configuration information s1-V2X-ConfigCommon-r16 of LTE sideline communication.
  • the system information block is NR system information block 13 (SIB13), and the SIB13 includes configuration information s1-V2X-ConfigCommon-r16 of LTE sideline communication.
  • the configuration information of the LTE sideline communication includes an LTE sideline communication carrier frequency list (list) v2x-InterFreqInfoList-r14; wherein, optionally, each of the LTE sideline communication carrier frequencies included in the list
  • the sideline communication carrier frequency SL-InterFreqInfoV2X-r14 corresponds to (or includes) an ARFCN type configuration information v2x-CommCarrierFreq-r14.
  • each sideline communication carrier frequency SL-InterFreqInfoV2X-r14 included in the LTE sideline communication carrier frequency list corresponds to (or includes) configuration information of a carrier bandwidth (carrier bandwidth).
  • the configuration information of the LTE sideline communication includes configuration information of the LTE sideline communication resource pool resource pool.
  • the system information block (on the basis of including the LTE sideline communication carrier frequency list v2x-InterFreqInfoList-r14, in addition) includes a sideline communication carrier frequency configuration information ul-CarrierFreq or v2x-CommCarrierFreq- r14.
  • the configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 of the one sideline communication carrier frequency is ARFCN type configuration information.
  • the system information block includes configuration information sl-Bandwidth-r16 of a carrier bandwidth.
  • the bandwidth of the carrier corresponding to the configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 of the one sideline communication carrier frequency is the sl-Bandwidth-r16.
  • the sideline communication user equipment uses the carrier frequency included in the LTE sideline communication carrier frequency list v2x-InterFreqInfoList-r14 or the one sideline communication carrier frequency ul-CarrierFreq or v2x -CommCarrierFreq-r14 for sidelink communication (V2X sidelink transmission), or,
  • the sideline communication user equipment uses a carrier frequency that corresponds to (or, associates with) the LTE sideline communication carrier frequency list v2x-InterFreqInfoList-r14 or the one sideline communication carrier frequency ul-CarrierFreq Or the resource pool indicated by the configuration information of the LTE sidelink communication resource pool of the carrier frequency corresponding to v2x-CommCarrierFreq-r14 performs sidelink communication (V2X sidelink transmission).
  • FIG. 4 is a schematic diagram illustrating a basic process of a method performed by a user equipment according to Embodiment 2 of the present invention.
  • the steps performed by the user equipment include:
  • step S201 the sideline communication user equipment receives the system information block sent by the base station gNB.
  • the system information block includes configuration information s1-V2X-ConfigCommon-r16 of LTE sideline communication.
  • the system information block is NR system information block 13 (SIB13), and the SIB13 includes configuration information s1-V2X-ConfigCommon-r16 of LTE sideline communication.
  • the configuration information of the LTE sideline communication includes an LTE sideline communication carrier frequency list (list) v2x-InterFreqInfoList-r14; wherein, optionally, each of the LTE sideline communication carrier frequencies included in the list
  • the sideline communication carrier frequency SL-InterFreqInfoV2X-r14 corresponds to (or includes) an ARFCN type configuration information v2x-CommCarrierFreq-r14.
  • each sideline communication carrier frequency SL-InterFreqInfoV2X-r14 included in the LTE sideline communication carrier frequency list corresponds to (or includes) configuration information of a carrier bandwidth (carrier bandwidth).
  • the configuration information of the LTE sideline communication includes configuration information of the LTE sideline communication resource pool resource pool.
  • the system information block (on the basis of including the LTE sideline communication carrier frequency list v2x-InterFreqInfoList-r14, in addition) includes a sideline communication carrier frequency configuration information ul-CarrierFreq or v2x-CommCarrierFreq- r14.
  • the configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 of one sideline communication carrier frequency is ARFCN type configuration information.
  • the system information block includes configuration information sl-Bandwidth-r16 of a carrier bandwidth.
  • the bandwidth of the carrier corresponding to the configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 of the one sideline communication carrier frequency is the sl-Bandwidth-r16.
  • the sideline communication user equipment uses a carrier frequency included in the LTE sideline communication carrier frequency list v2x-InterFreqInfoList-r14 or the one sideline communication carrier frequency ul -CarrierFreq or v2x-CommCarrierFreq-r14 for sidelink communication (V2X sidelink transmission), or,
  • the sideline communication user equipment uses a carrier frequency that corresponds to (or, associates with) the LTE sideline communication carrier frequency list v2x-InterFreqInfoList-r14 or the one sideline communication carrier frequency ul-CarrierFreq Or the resource pool indicated by the configuration information of the LTE sidelink communication resource pool of the carrier frequency corresponding to v2x-CommCarrierFreq-r14 performs sidelink communication (V2X sidelink transmission).
  • step S203 optionally, the sideline communication user equipment receives downlink control information DCI.
  • the DCI is NR DCI format 3_1.
  • the DCI includes a sideline communication carrier indication field, and the indication field is 3 bits.
  • the indication field equal to 0 corresponds to the sideline communication carrier corresponding to the one sideline communication carrier frequency ul-CarrierFreq or v2x-CommCarrierFreq-r14; and, optionally, (the indication If the field is greater than 0), the value of the indication field corresponds to the corresponding sideline communication carrier frequency SL-InterFreqInfoV2X-r14.
  • FIG. 5 is a schematic diagram illustrating a basic process of a method performed by a user equipment according to Embodiment 3 of the present invention.
  • the steps performed by the user equipment include:
  • step S301 the sideline communication user equipment receives the system information block sent by the base station gNB.
  • the system information block includes configuration information s1-V2X-ConfigCommon-r16 of LTE sideline communication.
  • the system information block is NR system information block 13 (SIB13), and the SIB13 includes configuration information s1-V2X-ConfigCommon-r16 of LTE sideline communication.
  • the configuration information of the LTE sideline communication includes an LTE sideline communication carrier frequency list (list) v2x-InterFreqInfoList-r14; wherein, optionally, each of the LTE sideline communication carrier frequencies included in the list
  • the sideline communication carrier frequency SL-InterFreqInfoV2X-r14 corresponds to (or includes) an ARFCN type configuration information v2x-CommCarrierFreq-r14.
  • each sideline communication carrier frequency SL-InterFreqInfoV2X-r14 included in the LTE sideline communication carrier frequency list corresponds to (or includes) configuration information of a carrier bandwidth (carrier bandwidth).
  • the system information block includes configuration information sl-Bandwidth-r16 of a carrier bandwidth.
  • step S302 the user equipment ignores (ignores) the configuration information sl-Bandwidth-r16 of the carrier bandwidth in the system information block.
  • FIG. 6 is a block diagram showing a user equipment UE according to the present invention.
  • the user equipment UE80 includes a processor 801 and a memory 802 .
  • the processor 801 may include, for example, a microprocessor, a microcontroller, an embedded processor, or the like.
  • the memory 802 may include, for example, volatile memory (eg, random access memory RAM), a hard disk drive (HDD), non-volatile memory (eg, flash memory), or other memory, or the like.
  • Program instructions are stored on the memory 802 . When the instructions are executed by the processor 801, the above method described in detail in the present invention and executed by the user equipment can be executed.
  • the method and related apparatus of the present invention have been described above with reference to the preferred embodiments. Those skilled in the art can understand that the methods shown above are only exemplary, and the various embodiments described above can be combined with each other under the condition that no contradiction occurs.
  • the method of the present invention is not limited to the steps and sequences shown above.
  • the network node and user equipment shown above may include more modules, for example, may also include modules that can be developed or developed in the future and can be used for base stations, MMEs, or UEs, and so on.
  • the various identifiers shown above are only exemplary and not restrictive, and the present invention is not limited to the specific information elements exemplified by these identifiers. Numerous changes and modifications may occur to those skilled in the art in light of the teachings of the illustrated embodiments.
  • the above-described embodiments of the present invention may be implemented by software, hardware, or a combination of both.
  • the various components inside the base station and the user equipment in the above embodiments may be implemented by various devices, including but not limited to: analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, programmable processing Controllers, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), Programmable Logic Devices (CPLDs), etc.
  • DSP digital signal processing
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field Programmable Gate Arrays
  • CPLDs Programmable Logic Devices
  • base station may refer to a mobile communication data and control switching center with larger transmission power and wider coverage area, including functions such as resource allocation and scheduling, data reception and transmission, and the like.
  • User equipment may refer to a user mobile terminal, for example, including a mobile phone, a notebook, and other terminal equipment that can wirelessly communicate with a base station or a micro base station.
  • embodiments of the invention disclosed herein may be implemented on a computer program product.
  • the computer program product is a product having a computer-readable medium on which computer program logic is encoded that, when executed on a computing device, provides relevant operations to achieve The above technical solutions of the present invention.
  • the computer program logic When executed on at least one processor of a computing system, the computer program logic causes the processor to perform the operations (methods) described in the embodiments of the present invention.
  • Such arrangements of the present invention are typically provided as software, code and/or other data structures arranged or encoded on a computer readable medium such as an optical medium (eg CD-ROM), floppy or hard disk, or such as one or more Firmware or other medium of microcode on a ROM or RAM or PROM chip, or a downloadable software image in one or more modules, a shared database, etc.
  • Software or firmware or such a configuration may be installed on a computing device, so that one or more processors in the computing device execute the technical solutions described in the embodiments of the present invention.
  • each functional module or each feature of the base station device and the terminal device used in each of the above embodiments may be implemented or executed by a circuit, which is usually one or more integrated circuits.
  • Circuits designed to perform the various functions described in this specification may include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs) or general purpose integrated circuits, field programmable gate arrays (FPGAs) or other Program logic devices, discrete gate or transistor logic, or discrete hardware components, or any combination of the above.
  • a general-purpose processor may be a microprocessor, or the processor may be an existing processor, controller, microcontroller, or state machine.
  • the general-purpose processor or each circuit described above may be configured by digital circuits, or may be configured by logic circuits.
  • the present invention can also use the integrated circuit obtained by using the advanced technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided are a method executed by a user equipment, and a user equipment. The method comprises the following steps: a user equipment receiving a system information block sent by a base station, wherein the system information block includes configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 of a sidelink communication carrier frequency; the user equipment using a carrier frequency corresponding to the configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 of the sidelink communication carrier frequency to perform sidelink communication; and the user equipment receiving downlink control information (DCI).

Description

由用户设备执行的方法以及用户设备Method performed by user equipment and user equipment 技术领域technical field
本发明涉及无线通信技术领域,具体涉及由用户设备执行的方法以及相应的用户设备。The present invention relates to the technical field of wireless communication, and in particular, to a method performed by a user equipment and a corresponding user equipment.
背景技术Background technique
在传统的蜂窝网络中,所有的通信都必须经过基站。不同的是,D2D通信(Device-to-Device communication,设备到设备间直接通信)是指两个用户设备之间不经过基站或者核心网的转发而直接进行的通信方式。在2014年3月第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的RAN#63次全会上,关于利用LTE设备实现临近D2D通信业务的研究课题获得批准(参见非专利文献1)。LTE Release 12 D2D引入的功能包括:In traditional cellular networks, all communications must go through base stations. The difference is that D2D communication (Device-to-Device communication, direct device-to-device communication) refers to a direct communication method between two user equipments without being forwarded by a base station or a core network. At the RAN#63 plenary meeting of the 3rd Generation Partnership Project (3GPP) in March 2014, a research topic on implementing adjacent D2D communication services using LTE equipment was approved (see Non-Patent Document 1). Features introduced in LTE Release 12 D2D include:
1)LTE网络覆盖场景下临近设备之间的发现功能(Discovery);1) The discovery function (Discovery) between adjacent devices in the LTE network coverage scenario;
2)临近设备间的直接广播通信(Broadcast)功能;2) Direct broadcast communication (Broadcast) function between adjacent devices;
3)高层支持单播(Unicast)和组播(Groupcast)通信功能。3) The upper layer supports unicast (Unicast) and multicast (Groupcast) communication functions.
在2014年12月的3GPP RAN#66全会上,增强的LTE eD2D(enhanced D2D)的研究项目获得批准(参见非专利文献2)。LTE Release 13 eD2D引入的主要功能包括:At the 3GPP RAN#66 plenary meeting in December 2014, a research project for enhanced LTE eD2D (enhanced D2D) was approved (see Non-Patent Document 2). The main features introduced by LTE Release 13 eD2D include:
1)无网络覆盖场景和部分网络覆盖场景的D2D发现;1) D2D discovery of no network coverage scenarios and partial network coverage scenarios;
2)D2D通信的优先级处理机制。2) The priority processing mechanism of D2D communication.
基于D2D通信机制的设计,在2015年6月3GPP的RAN#68次全会上,批准了基于D2D通信的V2X可行性研究课题。V2X表示Vehicle to everything,希望实现车辆与一切可能影响车辆的实体信息交互,目的是减少事故发生,减缓交通拥堵,降低环境污染以及提供其他信息服务。V2X的应用场景主要包含4个方面:Based on the design of the D2D communication mechanism, at the RAN#68 plenary meeting of 3GPP in June 2015, the V2X feasibility study topic based on D2D communication was approved. V2X stands for Vehicle to everything, hoping to realize the exchange of information between vehicles and all entities that may affect vehicles, with the purpose of reducing accidents, slowing traffic congestion, reducing environmental pollution and providing other information services. The application scenarios of V2X mainly include four aspects:
1)V2V,Vehicle to Vehicle,即车-车通信;1) V2V, Vehicle to Vehicle, that is, vehicle-to-vehicle communication;
2)V2P,Vehicle to Pedestrian,即车给行人或非机动车发送警告;2) V2P, Vehicle to Pedestrian, that is, the vehicle sends a warning to pedestrians or non-motor vehicles;
3)V2N,Vehicle to Network,即车辆连接移动网络;3) V2N, Vehicle to Network, that is, the vehicle is connected to the mobile network;
4)V2I,Vehicle to Infrastructure,即车辆与道路基础设施等通信。4) V2I, Vehicle to Infrastructure, that is, communication between vehicles and road infrastructure.
3GPP将V2X的研究与标准化工作分为3个阶段。第一阶段于2016年9月完成,主要聚焦于V2V,基于LTE Release 12和Release 13 D2D(也可称为sidelink侧行通信),即邻近通信技术制定(参见非专利文献3)。V2X stage 1引入了一种新的D2D通信接口,称为PC5接口。PC5接口主要用于解决高速(最高250公里/小时)及高节点密度环境下的蜂窝车联网通信问题。车辆可以通过PC5接口进行诸如位置、速度和方向等信息的交互,即车辆间可通过PC5接口进行直接通信。相较于D2D设备间的临近通信,LTE Release 14 V2X引入的功能主要包含:3GPP divides the research and standardization of V2X into three stages. The first phase was completed in September 2016, mainly focusing on V2V, based on LTE Release 12 and Release 13 D2D (also known as sidelink communication), that is, the development of proximity communication technology (see Non-Patent Document 3). V2X stage 1 introduces a new D2D communication interface called the PC5 interface. The PC5 interface is mainly used to solve the communication problems of cellular vehicle networking in high-speed (up to 250 km/h) and high-node density environments. Vehicles can interact with information such as position, speed and direction through the PC5 interface, that is, vehicles can communicate directly through the PC5 interface. Compared with the proximity communication between D2D devices, the functions introduced by LTE Release 14 V2X mainly include:
1)更高密度的DMRS以支持高速场景;1) Higher density DMRS to support high-speed scenarios;
2)引入子信道(sub-channel),增强资源分配方式;2) Introduce sub-channels to enhance resource allocation;
3)引入具有半静态调度(semi-persistent)的用户设备感知(sensing)机制。3) Introduce a user equipment sensing mechanism with semi-persistent scheduling.
V2X研究课题的第二阶段归属于LTE Release 15研究范畴(参见非专利文献4),引入的主要特性包含高阶64QAM调制、V2X载波聚合、短TTI传输,同时包含发射分集的可行性研究。The second phase of the V2X research topic belongs to the research scope of LTE Release 15 (see Non-Patent Document 4). The main features introduced include high-order 64QAM modulation, V2X carrier aggregation, short TTI transmission, and a feasibility study of transmit diversity.
在2018年6月3GPP RAN#80全会上,相应的第三阶段基于5G NR网络技术的V2X可行性研究课题(参见非专利文献5)获得批准。在5G V2X标准化研究项目中,支持NR基站gNB调度侧行通信用户设备进行LTE侧行通信传输模式3(mode 3,仅包含半静态调度SPS的情况)的侧行通信。At the 3GPP RAN#80 plenary meeting in June 2018, the corresponding third-phase V2X feasibility study topic based on 5G NR network technology (see Non-Patent Document 5) was approved. In the 5G V2X standardization research project, the NR base station gNB is supported to schedule sideline communication user equipment to perform sideline communication in LTE sideline communication transmission mode 3 (mode 3, which only includes the case of semi-persistent scheduling SPS).
在2019年5月3GPP RAN1#97次会议上(参见非专利文献6),关于NR基站gNB调度LTE侧行通信传输模式3,达成了如下会议结论:At the 3GPP RAN1#97 meeting in May 2019 (see Non-Patent Document 6), regarding the scheduling of LTE sideline communication transmission mode 3 by the NR base station gNB, the following meeting conclusions were reached:
■不支持基于RRC信令指示的激活/去激活LTE侧行通信中的SPS半静态调度。■SPS semi-persistent scheduling in the activation/deactivation of LTE sideline communication based on RRC signaling is not supported.
■支持基于DCI指示的激活/去激活LTE侧行通信中的SPS半静态调度。■ Supports SPS semi-persistent scheduling in LTE sideline communication based on DCI indication activation/deactivation.
●NR基站gNB通过DCI激活/去激活LTE侧行通信中的 SPS半静态调度是基于UE能力的;NR base station gNB activates/deactivates SPS semi-persistent scheduling in LTE sideline communication through DCI based on UE capabilities;
●上述DCI中提供LTE DCI格式5A中和LTE侧行通信SPS相关的指示域;The above-mentioned DCI provides the indication field related to the LTE sideline communication SPS in LTE DCI format 5A;
●上述DCI和NR侧行通信中定义的gNB调度NR侧行通信的DCI的比特数目(size)相同;The number of bits (size) of the DCI defined in the above-mentioned DCI and NR sideline communication by gNB scheduling NR sideline communication is the same;
●激活/去激活应用于接收到上述DCI之后的(Z+X)ms的首个LTE子帧。• Activation/deactivation is applied to the first LTE subframe (Z+X)ms after receiving the above DCI.
○Z表示LTE侧行通信中的时间长度偏移量。○Z represents the time length offset in LTE sideline communication.
本专利的方案主要包括NR基站gNB在调度LTE侧行通信用户设备进行LTE侧行通信传输模式3的侧行通信时,该LTE侧行通信用户设备确定侧行通信所在载波(频率)的方法。The solution of this patent mainly includes a method for the LTE sideline communication user equipment to determine the carrier (frequency) where the sideline communication is located when the NR base station gNB schedules the LTE sideline communication user equipment to perform the sideline communication of the LTE sideline communication transmission mode 3.
现有技术文献prior art literature
非专利文献Non-patent literature
非专利文献1:RP-140518,Work item proposal on LTE Device to Device Proximity ServicesNon-patent document 1: RP-140518, Work item proposal on LTE Device to Device Proximity Services
非专利文献2:RP-142311,Work Item Proposal for Enhanced LTE Device to Device Proximity ServicesNon-patent document 2: RP-142311, Work Item Proposal for Enhanced LTE Device to Device Proximity Services
非专利文献3:RP-152293,New WI proposal:Support for V2V services based on LTE sidelinkNon-patent literature 3: RP-152293, New WI proposal: Support for V2V services based on LTE sidelink
非专利文献4:RP-170798,New WID on 3GPP V2X Phase 2Non-Patent Document 4: RP-170798, New WID on 3GPP V2X Phase 2
非专利文献5:RP-181480,New SID Proposal:Study on NR V2XNon-Patent Document 5: RP-181480, New SID Proposal: Study on NR V2X
非专利文献6:RAN1#97,Chairman notes,section 7.2.4.7Non-Patent Document 6: RAN1#97, Chairman notes, section 7.2.4.7
发明内容SUMMARY OF THE INVENTION
为了解决上述问题中的至少一部分,本发明提供了一种由用户设备执行的方法以及用户设备。In order to solve at least a part of the above problems, the present invention provides a method performed by a user equipment and a user equipment.
根据本发明的第一方面,提供一种由用户设备执行的方法,包括如下 步骤:According to a first aspect of the present invention, there is provided a method performed by a user equipment, comprising the following steps:
用户设备接收基站发送的系统信息块,其中,所述系统信息块包含一个侧行通信载波频率的配置信息ul-CarrierFreq、或者v2x-CommCarrierFreq-r14;The user equipment receives a system information block sent by the base station, where the system information block includes configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 of a carrier frequency of sideline communication;
所述用户设备使用所述一个侧行通信载波频率的配置信息ul-CarrierFreq或者v2x-CommCarrierFreq-r14所对应的载波频率进行侧行通信;The user equipment performs sidelink communication using the carrier frequency corresponding to the configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 of the carrier frequency of one sidelink communication;
所述用户设备接收下行控制信息DCI。The user equipment receives downlink control information DCI.
在上述的由用户设备执行的方法中,优选地,所述系统信息块为NR系统信息块13即SIB13,所述SIB13包含LTE侧行通信的配置信息sl-V2X-ConfigCommon-r16。In the above method performed by the user equipment, preferably, the system information block is an NR system information block 13, namely SIB13, and the SIB13 includes configuration information s1-V2X-ConfigCommon-r16 of LTE sideline communication.
在上述的由用户设备执行的方法中,优选地,所述LTE侧行通信的配置信息包括LTE侧行通信载波频率列表v2x-InterFreqInfoList-r14;In the above method performed by the user equipment, preferably, the configuration information of the LTE sideline communication includes the LTE sideline communication carrier frequency list v2x-InterFreqInfoList-r14;
所述LTE侧行通信载波频率列表中包含的每一个侧行通信载波频率SL-InterFreqInfoV2X-r14都对应一个ARFCN类型的配置信息v2x-CommCarrierFreq-r14,以及,都对应一个载波带宽的配置信息。Each sideline communication carrier frequency SL-InterFreqInfoV2X-r14 included in the LTE sideline communication carrier frequency list corresponds to an ARFCN type configuration information v2x-CommCarrierFreq-r14, and corresponds to a carrier bandwidth configuration information.
在上述的由用户设备执行的方法中,优选地,所述LTE侧行通信的配置信息包括LTE侧行通信资源池的配置信息。In the above method performed by the user equipment, preferably, the configuration information of the LTE sidelink communication includes configuration information of the LTE sidelink communication resource pool.
在上述的由用户设备执行的方法中,优选地,所述系统信息块包含一个载波带宽的配置信息sl-Bandwidth-r16。In the above method performed by the user equipment, preferably, the system information block includes configuration information sl-Bandwidth-r16 of a carrier bandwidth.
在上述的由用户设备执行的方法中,优选地,所述一个侧行通信载波频率的配置信息ul-CarrierFreq或者v2x-CommCarrierFreq-r14对应的载波的带宽为所述sl-Bandwidth-r16。In the above method performed by the user equipment, preferably, the bandwidth of the carrier corresponding to the configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 of the one sideline communication carrier frequency is the sl-Bandwidth-r16.
在上述的由用户设备执行的方法中,优选地,所述用户设备使用对应包含在所述LTE侧行通信载波频率列表v2x-InterFreqInfoList-r14中的载波频率或者所述一个侧行通信载波频率的配置信息ul-CarrierFreq或者v2x-CommCarrierFreq-r14所对应的载波频率的所述LTE侧行通信资源池的配置信息所指示的资源池进行侧行通信。In the above method performed by the user equipment, preferably, the user equipment uses a carrier frequency corresponding to the carrier frequency included in the LTE sideline communication carrier frequency list v2x-InterFreqInfoList-r14 or the one sideline communication carrier frequency The configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 corresponds to the carrier frequency corresponding to the carrier frequency corresponding to the resource pool indicated by the configuration information of the LTE sidelink communication resource pool for sidelink communication.
在上述的由用户设备执行的方法中,优选地,所述DCI包含侧行通信载波指示域,所述指示域为3个比特,In the above method performed by the user equipment, preferably, the DCI includes a sideline communication carrier indication field, and the indication field is 3 bits,
所述指示域等于0对应所述一个侧行通信载波频率的配置信息ul-CarrierFreq或者v2x-CommCarrierFreq-r14所对应的侧行通信载波,The indication field equal to 0 corresponds to the sideline communication carrier corresponding to the configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 of the one sideline communication carrier frequency,
所述指示域大于0的情况下,所述指示域的数值对应相应的所述侧行通信载波频率SL-InterFreqInfoV2X-r14。When the indication field is greater than 0, the value of the indication field corresponds to the corresponding sideline communication carrier frequency SL-InterFreqInfoV2X-r14.
在上述的由用户设备执行的方法中,优选地,所述一个侧行通信载波频率的配置信息ul-CarrierFreq、或者v2x-CommCarrierFreq-r14是一种ARFCN类型的配置信息。In the above method performed by the user equipment, preferably, the configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 of one sideline communication carrier frequency is an ARFCN type of configuration information.
根据本发明的第二方面,提供一种用户设备,包括:According to a second aspect of the present invention, a user equipment is provided, comprising:
处理器;以及processor; and
存储器,存储有指令,memory, storing instructions,
所述指令在由所述处理器运行时,使所述用户设备执行根据上文所描述的方法。The instructions, when executed by the processor, cause the user equipment to perform a method according to the above.
本发明的有益效果The beneficial effects of the present invention
本发明的方案包括NR基站在调度LTE侧行通信用户设备进行LTE侧行通信传输模式3的侧行通信时,该LTE侧行通信用户设备确定侧行通信所在载波(频率)的方法。根据本发明的方法,可以实现NR基站调度用户设备进行LTE侧行通信。同时,NR基站可以调度LTE侧行通信用户设备在有LTE小区覆盖的载波频率上进行侧行通信,实现了LTE上下行通信和LTE侧行通信的频谱共享,提升了频谱利用效率,改善了通信质量。The solution of the present invention includes a method for the LTE sidelink communication user equipment to determine the carrier (frequency) where the sidelink communication is located when the NR base station schedules the LTE sidelink communication user equipment to perform the sidelink communication of the LTE sidelink communication transmission mode 3. According to the method of the present invention, the NR base station can schedule the user equipment to perform LTE sidelink communication. At the same time, the NR base station can schedule the LTE sidelink communication user equipment to perform sidelink communication on the carrier frequency covered by the LTE cell, realizing spectrum sharing between LTE uplink and downlink communication and LTE sidelink communication, improving spectrum utilization efficiency and improving communication. quality.
附图说明Description of drawings
通过下文结合附图的详细描述,本发明的上述和其它特征将会变得更加明显,其中:The above and other features of the present invention will become more apparent from the following detailed description taken in conjunction with the accompanying drawings, wherein:
图1是示出了LTE V2X UE侧行通信的示意图。FIG. 1 is a schematic diagram illustrating sideline communication of an LTE V2X UE.
图2是示出了LTE V2X的资源分配方式的示意图。FIG. 2 is a schematic diagram illustrating a resource allocation manner of LTE V2X.
图3是示出了发明的实施例一中由用户设备执行的方法的基本过程的示意图。FIG. 3 is a schematic diagram illustrating a basic process of a method performed by a user equipment in Embodiment 1 of the invention.
图4是示出了发明的实施例二中由用户设备执行的方法的基本过程 的示意图。Fig. 4 is a schematic diagram showing the basic process of the method executed by the user equipment in the second embodiment of the invention.
图5是示出了发明的实施例三中由用户设备执行的方法的基本过程的示意图。FIG. 5 is a schematic diagram illustrating a basic process of a method executed by a user equipment in Embodiment 3 of the invention.
图6是示出了根据本发明的实施例的用户设备的框图。FIG. 6 is a block diagram illustrating a user equipment according to an embodiment of the present invention.
具体实施方式detailed description
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments. It should be noted that the present invention should not be limited to the specific embodiments described below. In addition, for the sake of brevity, detailed descriptions of well-known technologies not directly related to the present invention are omitted in order to avoid obscuring the understanding of the present invention.
下文以5G移动通信系统及其后续的演进版本作为示例应用环境,具体描述了根据本发明的多个实施方式。然而,需要指出的是,本发明不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如5G之后的通信系统以及5G之前的4G移动通信系统等。Hereinafter, the 5G mobile communication system and its subsequent evolved versions are used as an example application environment to specifically describe various embodiments according to the present invention. However, it should be pointed out that the present invention is not limited to the following embodiments, but can be applied to more other wireless communication systems, such as communication systems after 5G and 4G mobile communication systems before 5G.
下面描述本发明涉及的部分术语,如未特别说明,本发明涉及的术语采用此处定义。本发明给出的术语在LTE、LTE-Advanced、LTE-Advanced Pro、NR以及之后的通信系统中可能采用不同的命名方式,但本发明中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。Part of the terms involved in the present invention are described below. Unless otherwise specified, the terms involved in the present invention are defined here. The terms given in the present invention may adopt different naming methods in LTE, LTE-Advanced, LTE-Advanced Pro, NR and later communication systems, but unified terms are adopted in the present invention. When applied to a specific system, Can be substituted with the term used in the corresponding system.
3GPP:3rd Generation Partnership Project,第三代合作伙伴计划3GPP: 3rd Generation Partnership Project
LTE:Long Term Evolution,长期演进技术LTE: Long Term Evolution, long term evolution technology
NR:New Radio,新无线、新空口NR: New Radio, new wireless, new air interface
PDCCH:Physical Downlink Control Channel,物理下行控制信道PDCCH: Physical Downlink Control Channel, physical downlink control channel
DCI:Downlink Control Information,下行控制信息DCI: Downlink Control Information, downlink control information
PDSCH:Physical Downlink Shared Channel,物理下行共享信道PDSCH: Physical Downlink Shared Channel, physical downlink shared channel
UE:User Equipment,用户设备UE: User Equipment, user equipment
eNB:evolved NodeB,演进型基站eNB: evolved NodeB, evolved base station
gNB:NR基站gNB: NR base station
TTI:Transmission Time Interval,传输时间间隔TTI: Transmission Time Interval, transmission time interval
OFDM:Orthogonal Frequency Division Multiplexing,正交频分复用OFDM: Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
CP-OFDM:Cyclic Prefix Orthogonal Frequency Division Multiplexing,带有循环前缀的正交频分复用CP-OFDM: Cyclic Prefix Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing with Cyclic Prefix
C-RNTI:Cell Radio Network Temporary Identifier,小区无线网络临时标识C-RNTI: Cell Radio Network Temporary Identifier, the temporary identifier of the cell wireless network
CSI:Channel State Information,信道状态信息CSI: Channel State Information, channel state information
HARQ:Hybrid Automatic Repeat Request,混合自动重传请求HARQ: Hybrid Automatic Repeat Request, hybrid automatic repeat request
CSI-RS:Channel State Information Reference Signal,信道状态信息参考信号CSI-RS: Channel State Information Reference Signal, channel state information reference signal
CRS:Cell Reference Signal,小区特定参考信号CRS: Cell Reference Signal, cell-specific reference signal
PUCCH:Physical Uplink Control Channel,物理上行控制信道PUCCH: Physical Uplink Control Channel, physical uplink control channel
PUSCH:Physical Uplink Shared Channel,物理上行共享信道PUSCH: Physical Uplink Shared Channel, physical uplink shared channel
UL-SCH:Uplink Shared Channel,上行共享信道UL-SCH: Uplink Shared Channel, uplink shared channel
CG:Configured Grant,配置调度许可CG: Configured Grant, configure scheduling permission
Sidelink:侧行通信Sidelink: Sideline Communication
SCI:Sidelink Control Information,侧行通信控制信息SCI: Sidelink Control Information, side communication control information
PSCCH:Physical Sidelink Control Channel,物理侧行通信控制信道PSCCH: Physical Sidelink Control Channel, Physical Sidelink Communication Control Channel
MCS:Modulation and Coding Scheme,调制编码方案MCS: Modulation and Coding Scheme, modulation and coding scheme
RB:Resource Block,资源块RB: Resource Block, resource block
RE:Resource Element,资源单元RE: Resource Element, resource unit
CRB:Common Resource Block,公共资源块CRB: Common Resource Block, common resource block
CP:Cyclic Prefix,循环前缀CP: Cyclic Prefix, cyclic prefix
PRB:Physical Resource Block,物理资源块PRB: Physical Resource Block, physical resource block
PSSCH:Physical Sidelink Shared Channel,物理侧行通信共享信道PSSCH: Physical Sidelink Shared Channel, Physical Sidelink Shared Channel
FDM:Frequency Division Multiplexing,频分复用FDM: Frequency Division Multiplexing, frequency division multiplexing
RRC:Radio Resource Control,无线资源控制RRC: Radio Resource Control, Radio Resource Control
RSRP:Reference Signal Receiving Power,参考信号接收功率RSRP: Reference Signal Receiving Power, reference signal receiving power
SRS:Sounding Reference Signal,探测参考信号SRS: Sounding Reference Signal, sounding reference signal
DMRS:Demodulation Reference Signal,解调参考信号DMRS: Demodulation Reference Signal, demodulation reference signal
CRC:Cyclic Redundancy Check,循环冗余校验CRC: Cyclic Redundancy Check, Cyclic Redundancy Check
PSDCH:Physical Sidelink Discovery Channel,物理侧行通信发现信道PSDCH: Physical Sidelink Discovery Channel, Physical Sidelink Communication Discovery Channel
PSBCH:Physical Sidelink Broadcast Channel,物理侧行通信广播信道PSBCH: Physical Sidelink Broadcast Channel, Physical Sidelink Communication Broadcast Channel
SFI:Slot Format Indication,时隙格式指示SFI: Slot Format Indication, slot format indication
TDD:Time Division Duplexing,时分双工TDD: Time Division Duplexing
FDD:Frequency Division Duplexing,频分双工FDD: Frequency Division Duplexing, frequency division duplexing
SIB1:System Information Block Type 1,系统信息块类型1SIB1: System Information Block Type 1, system information block type 1
SLSS:Sidelink synchronization Signal,侧行通信同步信号SLSS: Sidelink synchronization Signal, side communication synchronization signal
PSSS:Primary Sidelink Synchronization Signal,侧行通信主同步信号PSSS: Primary Sidelink Synchronization Signal, side communication main synchronization signal
SSSS:Secondary Sidelink Synchronization Signal,侧行通信辅同步信号SSSS: Secondary Sidelink Synchronization Signal, side communication auxiliary synchronization signal
PCI:Physical Cell ID,物理小区标识PCI: Physical Cell ID, physical cell identification
PSS:Primary Synchronization Signal,主同步信号PSS: Primary Synchronization Signal, the main synchronization signal
SSS:Secondary Synchronization Signal,辅同步信号SSS: Secondary Synchronization Signal, secondary synchronization signal
BWP:BandWidth Part,带宽片段/部分BWP: BandWidth Part, Bandwidth Fragment/Part
GNSS:Global NaVigation Satellite System,全球导航卫星定位系统GNSS: Global NaVigation Satellite System, global navigation satellite positioning system
SFN:System Frame Nuimber,系统(无线)帧号SFN: System Frame Nuimber, system (wireless) frame number
DFN:Direct Frame Number,直接帧号DFN: Direct Frame Number, direct frame number
IE:Information Element,信息元素IE: Information Element, information element
SSB:Synchronization Signal Block,同步系统信息块SSB: Synchronization Signal Block, synchronization system information block
EN-DC:EUTRA-NR Dual Connection,LTE-NR双连接EN-DC: EUTRA-NR Dual Connection, LTE-NR dual connection
MCG:Master Cell Group,主小区组MCG: Master Cell Group, the main cell group
SCG:Secondary Cell Group,辅小区组SCG: Secondary Cell Group, secondary cell group
PCell:Primary Cell,主小区PCell: Primary Cell, the main cell
SCell:Secondary Cell,辅小区SCell: Secondary Cell, secondary cell
PSFCH:Physical Sidelink Feedback Channel,物理侧行通信反馈信道PSFCH: Physical Sidelink Feedback Channel, Physical Sidelink Communication Feedback Channel
SPS:Semi-Persistant Scheduling,半静态调度SPS: Semi-Persistant Scheduling, semi-static scheduling
TA:Timing Advance,上行定时提前量TA: Timing Advance, uplink timing advance
PT-RS:Phase-Tracking Reference Signals,相位跟踪参考信号PT-RS: Phase-Tracking Reference Signals, phase tracking reference signal
TB:Transport Block,传输块TB: Transport Block, transport block
CB:Code Block,编码块/码块CB: Code Block, coding block/code block
QPSK:Quadrature Phase Shift Keying,正交相移键控QPSK: Quadrature Phase Shift Keying, quadrature phase shift keying
16/64/256 QAM:16/64/256 Quadrature Amplitude Modulation,正交幅度调制16/64/256 QAM: 16/64/256 Quadrature Amplitude Modulation, Quadrature Amplitude Modulation
AGC:Auto Gain Control,自动增益控制AGC: Auto Gain Control, automatic gain control
TDRA(field):Time Domain Resource Assignment,时域资源分配指示(域)TDRA(field): Time Domain Resource Assignment, time domain resource allocation indication (field)
FDRA(field):Frequency Domain Resource Assignment,频域资源分配指示(域)FDRA(field): Frequency Domain Resource Assignment, frequency domain resource allocation indication (field)
ARFCN:Absolute Radio Frequency Channel Number,绝对无线频率信道编号ARFCN: Absolute Radio Frequency Channel Number, absolute radio frequency channel number
下文是与本发明方案相关联现有技术的描述。如无特别说明,具体实施例中与现有技术中相同术语的含义相同。The following is a description of the prior art associated with the aspects of the present invention. Unless otherwise specified, the meanings of the same terms in the specific embodiments are the same as those in the prior art.
值得指出的是,本发明说明书中涉及的V2X与sidelink含义相同。文中的V2X也可以表示sidelink;相似地,文中的sidelink也可以表示V2X,后文中不做具体区分和限定。It is worth pointing out that the V2X and sidelink involved in the description of the present invention have the same meaning. V2X in the text can also represent sidelink; similarly, sidelink in the text can also represent V2X, and no specific distinction or limitation will be made in the following text.
本发明的说明书中的V2X(sidelink)通信的资源分配方式与V2X(sidelink)通信的传输模式可以等同替换。说明书中涉及的资源分配方式可以表示传输模式,以及,涉及的传输模式可以表示资源分配方式。在NR侧行通信中,传输模式1表示基于基站调度的传输模式(资源分配方式);传输模式2表示基于用户设备感知(sensing)和资源选择的传输模式(资源分配方式)。The resource allocation mode of V2X (sidelink) communication in the specification of the present invention and the transmission mode of V2X (sidelink) communication can be equivalently replaced. The resource allocation method referred to in the specification may represent the transmission mode, and the transmission mode referred to may represent the resource allocation method. In NR sidelink communication, transmission mode 1 represents a transmission mode (resource allocation method) based on base station scheduling; transmission mode 2 represents a transmission mode (resource allocation method) based on user equipment sensing and resource selection.
本发明的说明书中的PSCCH用于携带SCI。本发明的说明书中涉及到的PSCCH对应的,或者,相应的,或者,相关的,或者,调度的PSSCH表示的含义均相同,都表示associated PSSCH或者corresponding PSSCH。类似地,说明书中涉及到的PSSCH对应的,或者,相应的,或者,相关的SCI(包括第一级SCI和第二级SCI)表示的含义均相同,都表示associated SCI或者corresponding SCI。值得指出的是,第一级SCI称为1st stage SCI或者SCI format 0-1,在PSCCH中传输;第二级SCI称为2nd stage SCI或者SCI format 0-2,在对应的PSSCH的资源中传输。The PSCCH in the specification of the present invention is used to carry the SCI. The PSCCH involved in the description of the present invention corresponds to, or corresponds to, or is related to, or, the scheduled PSSCH indicates the same meaning, and both indicate associated PSSCH or corresponding PSSCH. Similarly, the PSSCH involved in the description corresponds to, or corresponds to, or has the same meaning as the related SCI (including the first-level SCI and the second-level SCI), which means associated SCI or corresponding SCI. It is worth pointing out that the first-level SCI is called 1st stage SCI or SCI format 0-1, and is transmitted in PSCCH; the second-level SCI is called 2nd stage SCI or SCI format 0-2, and is transmitted in the corresponding PSSCH resources .
Sidelink通信的场景Scenario of Sidelink Communication
1)无网络覆盖(Out-of-Coverage)侧行通信:进行sidelink通信的两个UE都没有网络覆盖(例如,UE在需要进行sidelink通信的频率上检测不到任何满足“小区选择准则”的小区,表示该UE无网络覆盖)。1) Out-of-Coverage sideline communication: neither of the two UEs performing sidelink communication has network coverage (for example, the UE cannot detect any cell cell, indicating that the UE has no network coverage).
2)有网络覆盖(In-Coverage)侧行通信:进行sidelink通信的两个UE都有网络覆盖(例如,UE在需要进行sidelink通信的频率上至少检测到一个满足“小区选择准则”的小区,表示该UE有网络覆盖)。2) In-Coverage sideline communication: both UEs performing sidelink communication have network coverage (for example, the UE detects at least one cell that satisfies the "cell selection criterion" on the frequency where sidelink communication needs to be performed, Indicates that the UE has network coverage).
3)部分网络覆盖(Partial-Coverage)侧行通信:进行sidelink通信的其中一个UE无网络覆盖,另一个UE有网络覆盖。3) Partial-Coverage sidelink communication: one of the UEs performing sidelink communication has no network coverage, and the other UE has network coverage.
从UE侧来讲,该UE仅有无网络覆盖和有网络覆盖两种场景。部分网络覆盖是从sidelink通信的角度来描述的。From the UE side, the UE has only two scenarios: no network coverage and network coverage. Part of the network coverage is described in terms of sidelink communication.
LTE V2X(sidelink)通信的基本过程Basic process of LTE V2X (sidelink) communication
图1是示出了LTE V2X UE侧行通信的示意图。首先,UE1向UE2发送侧行通信控制信息(SCI format 1),由物理层信道PSCCH携带。SCI format 1包含PSSCH的调度信息,例如PSSCH的频域资源等。其次,UE1向UE2发送侧行通信数据,由物理层信道PSSCH携带。PSCCH和相应的PSSCH采用频分复用的方式,即PSCCH和相应的PSSCH在时域上位于相同的子帧上,在频域上位于不同的RB上。PSCCH和PSSCH的具体设计方式如下:FIG. 1 is a schematic diagram illustrating sideline communication of an LTE V2X UE. First, UE1 sends sideline communication control information (SCI format 1) to UE2, which is carried by the physical layer channel PSCCH. SCI format 1 contains PSSCH scheduling information, such as PSSCH frequency domain resources. Secondly, UE1 sends sideline communication data to UE2, which is carried by the physical layer channel PSSCH. The PSCCH and the corresponding PSSCH are in a frequency division multiplexing manner, that is, the PSCCH and the corresponding PSSCH are located in the same subframe in the time domain, and are located in different RBs in the frequency domain. The specific design methods of PSCCH and PSSCH are as follows:
1)PSCCH在时域上占据一个子帧,频域上占据两个连续的RB。加扰序列的初始化采用预定义数值510。PSCCH中可携带SCI format 1,其中SCI format 1至少包含PSSCH的频域资源信息。例如,对于频域资源指示域,SCI format 1指示该PSCCH对应的PSSCH的起始sub-channel编号和连续sub-channel的数目。1) The PSCCH occupies one subframe in the time domain and two consecutive RBs in the frequency domain. The initialization of the scrambling sequence takes the predefined value 510 . SCI format 1 can be carried in PSCCH, wherein SCI format 1 at least includes frequency domain resource information of PSSCH. For example, for the frequency domain resource indication field, SCI format 1 indicates the starting sub-channel number and the number of consecutive sub-channels of the PSSCH corresponding to the PSCCH.
2)PSSCH在时域上占据一个子帧,和对应的PSCCH采用频分复用(FDM)。PSSCH在频域上占据一个或者多个连续的sub-channel,sub-channel在频域上表示n subCHsize个连续的RB,n subCHsize由RRC参数配置,起始sub-channel和连续sub-channel的数目由SCIformat 1的频域资源指示域指示。 2) The PSSCH occupies one subframe in the time domain, and adopts frequency division multiplexing (FDM) with the corresponding PSCCH. PSSCH occupies one or more consecutive sub-channels in the frequency domain, sub-channels represent n subCHsize consecutive RBs in the frequency domain, n subCHsize is configured by the RRC parameter, the number of starting sub-channels and consecutive sub-channels Indicated by the frequency domain resource indication field of SCIformat 1.
LTE V2X的资源分配方式Transmission Mode 3/4LTE V2X resource allocation method Transmission Mode 3/4
图2是示出了LTE V2X的两种资源分配方式,分别称为基于基站调度的资源分配(Transmission Mode 3)和基于UE感知(sensing)的资源分配(Transmission Mode 4)。在NR侧行通信中,LTE V2X的传输模式3对应NR V2X中的传输模式1,为基于基站调度的传输模式;LTE V2X的传输模式4对应NR V2X中的传输模式2,为基于UE感知的传输模式。LTE V2X中,当存在eNB网络覆盖的情况下,基站可通过UE级的专有RRC信令(dedicated RRC signaling)SL-V2X-ConfigDedicated配置该UE的资源分配方式,或称为该UE的传输模式,具体为:Figure 2 shows two resource allocation methods of LTE V2X, which are respectively called resource allocation based on base station scheduling (Transmission Mode 3) and resource allocation based on UE sensing (Transmission Mode 4). In NR sideline communication, transmission mode 3 of LTE V2X corresponds to transmission mode 1 in NR V2X, which is based on base station scheduling; transmission mode 4 of LTE V2X corresponds to transmission mode 2 in NR V2X, which is based on UE perception. transfer mode. In LTE V2X, when there is eNB network coverage, the base station can configure the resource allocation mode of the UE through UE-level dedicated RRC signaling (dedicated RRC signaling) SL-V2X-ConfigDedicated, or the transmission mode of the UE. ,Specifically:
1)基于基站调度的资源分配方式(Transmission Mode 3):基于基站调度的资源分配方式表示sidelink侧行通信所使用的频域资源来自于基站的调度。传输模式3包含两种调度方式,分别为动态调度和半静态调度(SPS)。对于动态调度,UL grant(DCI format 5A)中包括PSSCH的频域资源,承载DCI format 5A的PDCCH或者EPDCCH的CRC由SL-V-RNTI加扰。对于SPS半静态调度,基站通过IE:SPS-ConfigSL-r14配置一个或者多个(至多8个)配置的调度许可(configured grant),每个配置的调度许可含有一个调度许可编号(index)和调度许可的资源周期。UL grant(DCI format 5A)中包括PSSCH的频域资源,以及,调度许可编号的指示信息(3bits)和SPS激活(activate)或者释放(release,或者,去激活)的指示信息。承载DCI format 5A的PDCCH或者EPDCCH的CRC由SL-SPS-V-RNTI加扰。1) Resource allocation method based on base station scheduling (Transmission Mode 3): The resource allocation method based on base station scheduling indicates that the frequency domain resources used for sidelink communication come from the scheduling of the base station. Transmission mode 3 includes two scheduling methods, namely dynamic scheduling and semi-persistent scheduling (SPS). For dynamic scheduling, the UL grant (DCI format 5A) includes the frequency domain resources of PSSCH, and the CRC of the PDCCH or EPDCCH carrying the DCI format 5A is scrambled by SL-V-RNTI. For SPS semi-persistent scheduling, the base station configures one or more (up to 8) configured scheduling grants (configured grants) through IE: SPS-ConfigSL-r14, each configured scheduling grant contains a scheduling grant number (index) and scheduling grants Licensed resource period. The UL grant (DCI format 5A) includes the frequency domain resources of the PSSCH, and the indication information (3 bits) of the scheduling grant number and the indication information of the SPS activation (activate) or release (release, or deactivation). The CRC of the PDCCH or EPDCCH carrying DCI format 5A is scrambled by SL-SPS-V-RNTI.
具体地,当RRC信令SL-V2X-ConfigDedicated置为scheduled-r14 时,表示该UE被配置为基于基站调度的传输模式。基站通过RRC信令配置SL-V-RNTI或者SL-SPS-V-RNTI,并通过PDCCH或者EPDCCH(DCI format 5A,CRC采用SL-V-RNTI加扰或者采用SL-SPS-V-RNTI加扰)向UE发送上行调度许可UL grant。上述上行调度许可UL grant中至少包含sidelink通信中PSSCH频域资源的调度信息。当UE成功监听到由SL-V-RNTI加扰或者SL-SPS-V-RNTI加扰的PDCCH或者EPDCCH后,将上行调度许可UL grant(DCI format 5A)中的PSSCH频域资源指示域作为PSCCH(SCI format 1)中PSSCH的频域资源的指示信息,并发送PSCCH(SCI format 1)和相应的PSSCH。Specifically, when the RRC signaling SL-V2X-ConfigDedicated is set to scheduled-r14, it means that the UE is configured as a transmission mode based on base station scheduling. The base station configures SL-V-RNTI or SL-SPS-V-RNTI through RRC signaling, and uses PDCCH or EPDCCH (DCI format 5A, CRC scrambled by SL-V-RNTI or scrambled by SL-SPS-V-RNTI) ) sends an uplink scheduling grant UL grant to the UE. The above-mentioned uplink scheduling grant UL grant at least includes scheduling information of PSSCH frequency domain resources in sidelink communication. When the UE successfully monitors the PDCCH or EPDCCH scrambled by SL-V-RNTI or SL-SPS-V-RNTI, it uses the PSSCH frequency domain resource indication field in the uplink scheduling grant UL grant (DCI format 5A) as the PSCCH Indication information of the frequency domain resources of PSSCH in (SCI format 1), and send PSCCH (SCI format 1) and the corresponding PSSCH.
对于传输模式3中的半静态调度SPS,UE在下行子帧n上接收SL-SPS-V-RNTI加扰的DCI format 5A。如果DCI format 5A中包含SPS激活的指示信息,该UE根据DCI format 5A中的指示信息确定PSSCH的频域资源,根据子帧n等信息确定PSSCH的时域资源(PSSCH的发送子帧)。For semi-persistently scheduled SPS in transmission mode 3, the UE receives SL-SPS-V-RNTI scrambled DCI format 5A on downlink subframe n. If the indication information of SPS activation is included in the DCI format 5A, the UE determines the frequency domain resources of the PSSCH according to the indication information in the DCI format 5A, and determines the time domain resources of the PSSCH (the transmission subframe of the PSSCH) according to information such as subframe n.
2)基于UE感知(sensing)的资源分配方式(Transmission Mode 4):基于UE sensing的资源分配方式表示用于sidelink通信的资源基于UE对候选可用资源集合的感知(sensing)过程。RRC信令SL-V2X-ConfigDedicated置为ue-Selected-r14时表示该UE被配置为基于UE sensing的传输模式。在基于UE sensing的传输模式中,基站配置可用的传输资源池,UE根据一定的规则(详细过程的描述参见LTE V2X UE sensing过程部分)在传输资源池(resource pool)中确定PSSCH的sidelink发送资源,并发送PSCCH(SCI format 1)和相应的PSSCH。2) Resource allocation method based on UE sensing (Transmission Mode 4): The resource allocation method based on UE sensing indicates that the resources used for sidelink communication are based on the UE sensing process of the set of candidate available resources. When the RRC signaling SL-V2X-ConfigDedicated is set to ue-Selected-r14, it indicates that the UE is configured as the transmission mode based on UE sensing. In the UE sensing-based transmission mode, the base station configures the available transmission resource pool, and the UE determines the PSSCH sidelink transmission resources in the transmission resource pool (resource pool) according to certain rules (see the LTE V2X UE sensing process section for a detailed process description). , and send PSCCH (SCI format 1) and corresponding PSSCH.
侧行通信资源池(sidelink resource pool)Sidelink resource pool
在侧行通信中,UE的发送和接收的资源均属于资源池resource pool。例如,对于侧行通信中基于基站调度的传输模式,基站在资源池中为sidelink UE调度传输资源,或者,对于侧行通信中基于UE感知的传输模 式,UE在资源池中确定传输资源。In sideline communication, the resources sent and received by the UE belong to the resource pool resource pool. For example, for the transmission mode based on base station scheduling in sidelink communication, the base station schedules transmission resources for the sidelink UE in the resource pool, or, for the transmission mode based on UE perception in sidelink communication, the UE determines transmission resources in the resource pool.
NR中(包含NR sidelink)的参数集合(numerology)和NR中(包含NR Parameter set (numerology) in NR (including NR sidelink) and NR (including NR sidelink)的时隙slotsidelink) slot
参数集合numerology包含子载波间隔和循环前缀CP长度两方面含义。其中,NR支持5种子载波间隔,分别为15k,30k,60k,120k,240kHz(对应μ=0,1,2,3,4),表格4.2-1示出了支持的传输参数集合,具体如下所示。The parameter set numerology includes the subcarrier spacing and the cyclic prefix CP length. Among them, NR supports 5 subcarrier intervals, which are 15k, 30k, 60k, 120k, 240kHz (corresponding to μ=0, 1, 2, 3, 4). Table 4.2-1 shows the set of supported transmission parameters, as follows shown.
表4.2-1 NR支持的子载波间隔Table 4.2-1 Subcarrier spacing supported by NR
μμ Δf=2 μ·15[kHz] Δf=2 μ ·15[kHz] CP(循环前缀)CP (Cyclic Prefix)
00 1515 正常normal
11 3030 正常normal
22 6060 正常,扩展normal, extended
33 120120 正常normal
44 240240 正常normal
仅当μ=2时,即60kHz子载波间隔的情况下支持扩展(Extended)CP,其他子载波间隔的情况仅支持正常CP。对于正常(Normal)CP,每个时隙(slot)含有14个OFDM符号;对于扩展CP,每个时隙含有12个OFDM符号。对于μ=0,即15kHz子载波间隔,1个时隙=1ms;μ=1,即30kHz子载波间隔,1个时隙=0.5ms;μ=2,即60kHz子载波间隔,1个时隙=0.25ms,以此类推。Extended CP is supported only when μ=2, that is, in the case of 60 kHz subcarrier spacing, and only normal CP is supported in other subcarrier spacings. For normal (Normal) CP, each slot (slot) contains 14 OFDM symbols; for extended CP, each slot contains 12 OFDM symbols. For μ=0, i.e. 15kHz subcarrier spacing, 1 slot=1ms; μ=1, i.e. 30kHz subcarrier spacing, 1 slot=0.5ms; μ=2, i.e. 60kHz subcarrier spacing, 1 slot =0.25ms, and so on.
NR和LTE对于子帧(subframe)的定义相同,表示1ms。对于子载波间隔配置μ,1个子帧内(1ms)的slot编号可以表示为
Figure PCTCN2021103093-appb-000001
范围为0到
Figure PCTCN2021103093-appb-000002
1个系统帧(frame,时长10ms)内的slot编号可以表示为
Figure PCTCN2021103093-appb-000003
范围为0到
Figure PCTCN2021103093-appb-000004
其中,
Figure PCTCN2021103093-appb-000005
Figure PCTCN2021103093-appb-000006
在不同子载波间隔μ的情况的定义如下表格所示。
NR and LTE have the same definition of subframe, which means 1ms. For the subcarrier spacing configuration μ, the slot number in a subframe (1ms) can be expressed as
Figure PCTCN2021103093-appb-000001
The range is 0 to
Figure PCTCN2021103093-appb-000002
The slot number in a system frame (frame, duration 10ms) can be expressed as
Figure PCTCN2021103093-appb-000003
The range is 0 to
Figure PCTCN2021103093-appb-000004
in,
Figure PCTCN2021103093-appb-000005
and
Figure PCTCN2021103093-appb-000006
The definitions of the cases at different subcarrier spacing μ are shown in the table below.
表格4.3.2-1:正常CP时每个slot包含的符号数,每个系统帧包含的slot数,每个子帧包含的slot数Table 4.3.2-1: The number of symbols contained in each slot in normal CP, the number of slots contained in each system frame, and the number of slots contained in each subframe
Figure PCTCN2021103093-appb-000007
Figure PCTCN2021103093-appb-000007
表格4.3.2-2:扩展CP时(60kHz)每个slot包含的符号数,每个系统帧包含的slot数,每个子帧包含的slot数Table 4.3.2-2: The number of symbols contained in each slot when the CP is extended (60kHz), the number of slots contained in each system frame, and the number of slots contained in each subframe
Figure PCTCN2021103093-appb-000008
Figure PCTCN2021103093-appb-000008
在NR载波上,系统帧(或者,简称为帧)的编号SFN范围为0至1023。在侧行通信中引入了直接系统帧号DFN的概念,编号范围同样为0至1023,上述对于系统帧和numerology之间关系的叙述同样可以应用于直接系统帧,例如,一个直接系统帧的时长同样等于10ms,对于15kHz的子载波间隔,一个直接系统帧包括10个时隙slot,等等。DFN应用于sidelink载波上的定时timing。On an NR carrier, the numbered SFN of a system frame (or, simply referred to as a frame) ranges from 0 to 1023. The concept of direct system frame number DFN is introduced in sideline communication, and the numbering range is also from 0 to 1023. The above description of the relationship between system frames and numerology can also be applied to direct system frames. For example, the duration of a direct system frame Also equal to 10ms, for a subcarrier spacing of 15kHz, a direct system frame includes 10 slots, and so on. DFN is used for timing on sidelink carriers.
LTE中(包含LTE V2X)的参数集和LTE中(包含LTE V2X)的时隙Parameter sets in LTE (including LTE V2X) and time slots in LTE (including LTE V2X) slot和子帧subframeslot and subframe subframe
LTE仅支持15kHz的子载波间隔。LTE中支持扩展(Extended)CP,也支持正常CP。子帧subframe时长为1ms,包含两个时隙slot,每个slot时长为0.5ms。LTE only supports subcarrier spacing of 15kHz. Extended CP is supported in LTE, and normal CP is also supported. The subframe subframe has a duration of 1ms and includes two slots, each of which has a duration of 0.5ms.
对于正常(Normal)CP,每个子帧含有14个OFDM符号,子帧中的每个slot包含7个OFDM符号;对于扩展CP,每个子帧含有12个OFDM符号,子帧中的每个slot包含6个OFDM符号。For normal CP, each subframe contains 14 OFDM symbols, and each slot in the subframe contains 7 OFDM symbols; for extended CP, each subframe contains 12 OFDM symbols, and each slot in the subframe contains 6 OFDM symbols.
资源块RB和资源单元REResource block RB and resource element RE
资源块RB在频域上定义为
Figure PCTCN2021103093-appb-000009
个连续的子载波,例如对于15kHz的子载波间隔,RB在频域上为180kHz。对于子载波间隔 15kHz×2 μ,资源单元RE在频域上表示1个子载波,在时域上表示1个OFDM符号。
The resource block RB is defined in the frequency domain as
Figure PCTCN2021103093-appb-000009
consecutive sub-carriers, eg for a sub-carrier spacing of 15 kHz, the RB is 180 kHz in the frequency domain. For a subcarrier spacing of 15 kHz×2 μ , the resource element RE represents 1 subcarrier in the frequency domain and 1 OFDM symbol in the time domain.
绝对无线频率信道编号(Absolute Radio Frequency Channel Number,Absolute Radio Frequency Channel Number (Absolute Radio Frequency Channel Number, ARFCN)ARFCN)
在LTE侧行通信中,侧行通信载波所在的频率对应为上行载波。对于ARFCN和上行载波频率(carrier frequency,单位为MHz)之间的关系,由如下公式确定:In the LTE sideline communication, the frequency where the sideline communication carrier is located corresponds to the uplink carrier. The relationship between ARFCN and the upstream carrier frequency (carrier frequency, in MHz) is determined by the following formula:
F UL=F UL_low+0.1×(N UL-N Offs-UL). F UL =F UL_low +0.1×(N UL -N Offs-UL ).
其中,N UL表示ARFCN;F UL_low和N Offs-UL由如下表格中对应上行的列给出,例如对于LTE operating band 1,假设ARFCN=18200,那么ARFCN(18200)对应的载波频率F UL=1920+0.1×(18200-18000)=1940(MHz)。 Among them, N UL represents ARFCN; F UL_low and N Offs-UL are given by the column corresponding to the uplink in the following table. For example, for LTE operating band 1, assuming ARFCN=18200, then the carrier frequency corresponding to ARFCN (18200) F UL =1920 +0.1×(18200-18000)=1940 (MHz).
Table 5.7.3-1: E-UTRA channel numbersTable 5.7.3-1: E-UTRA channel numbers
Figure PCTCN2021103093-appb-000010
Figure PCTCN2021103093-appb-000010
Figure PCTCN2021103093-appb-000011
Figure PCTCN2021103093-appb-000011
以下,对本发明所涉及的具体的示例以及实施例等进行详细说明。另外,如上所述,本公开中记载的示例以及实施例等是为了容易理解本发明而进行的示例性说明,并不是对本发明的限定。Hereinafter, specific examples, embodiments, and the like according to the present invention will be described in detail. In addition, as mentioned above, the example, the Example, etc. which are described in this disclosure are illustrative descriptions for easy understanding of this invention, and do not limit this invention.
[实施例一][Example 1]
图3是示出了本发明的实施例一的由用户设备执行的方法的基本过程的示意图。FIG. 3 is a schematic diagram illustrating a basic process of a method performed by a user equipment according to Embodiment 1 of the present invention.
下面,结合图3所示的基本过程图来详细说明本发明的实施例一的由用户设备执行的方法。Hereinafter, the method executed by the user equipment according to Embodiment 1 of the present invention will be described in detail with reference to the basic process diagram shown in FIG. 3 .
如图3所示,在本发明的实施例一中,用户设备执行的步骤包括:As shown in FIG. 3, in Embodiment 1 of the present invention, the steps performed by the user equipment include:
在步骤S101,侧行通信用户设备接收基站gNB发送的系统信息块。In step S101, the sideline communication user equipment receives the system information block sent by the base station gNB.
可选地,所述系统信息块包含LTE侧行通信的配置信息sl-V2X-ConfigCommon-r16。Optionally, the system information block includes configuration information s1-V2X-ConfigCommon-r16 of LTE sideline communication.
可选地,所述系统信息块为NR系统信息块13(SIB13),以及,所述SIB13包含LTE侧行通信的配置信息sl-V2X-ConfigCommon-r16。Optionally, the system information block is NR system information block 13 (SIB13), and the SIB13 includes configuration information s1-V2X-ConfigCommon-r16 of LTE sideline communication.
可选地,所述LTE侧行通信的配置信息包括LTE侧行通信载波频率列表(list)v2x-InterFreqInfoList-r14;其中,可选地,所述LTE侧行通信载波频率列表中包含的每一个侧行通信载波频率SL-InterFreqInfoV2X-r14都对应(或者,包含)一个ARFCN类型的配置信息v2x-CommCarrierFreq-r14。可选地,所述LTE侧行通信载波频率列表中包含的每一个侧行通信载波频率SL-InterFreqInfoV2X-r14都对应(或者,包含)一个载波带宽(carrier bandwidth)的配置信息。Optionally, the configuration information of the LTE sideline communication includes an LTE sideline communication carrier frequency list (list) v2x-InterFreqInfoList-r14; wherein, optionally, each of the LTE sideline communication carrier frequencies included in the list The sideline communication carrier frequency SL-InterFreqInfoV2X-r14 corresponds to (or includes) an ARFCN type configuration information v2x-CommCarrierFreq-r14. Optionally, each sideline communication carrier frequency SL-InterFreqInfoV2X-r14 included in the LTE sideline communication carrier frequency list corresponds to (or includes) configuration information of a carrier bandwidth (carrier bandwidth).
可选地,所述LTE侧行通信的配置信息包括LTE侧行通信资源池resource pool的配置信息。Optionally, the configuration information of the LTE sideline communication includes configuration information of the LTE sideline communication resource pool resource pool.
可选地,所述系统信息块(在包含所述LTE侧行通信载波频率列表v2x-InterFreqInfoList-r14的基础上,另外)包含一个侧行通信载波频率的配置信息ul-CarrierFreq或者v2x-CommCarrierFreq-r14。可选地,所述一 个侧行通信载波频率的配置信息ul-CarrierFreq或者v2x-CommCarrierFreq-r14为ARFCN类型的配置信息。Optionally, the system information block (on the basis of including the LTE sideline communication carrier frequency list v2x-InterFreqInfoList-r14, in addition) includes a sideline communication carrier frequency configuration information ul-CarrierFreq or v2x-CommCarrierFreq- r14. Optionally, the configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 of the one sideline communication carrier frequency is ARFCN type configuration information.
可选地,所述系统信息块包含一个载波带宽的配置信息sl-Bandwidth-r16。Optionally, the system information block includes configuration information sl-Bandwidth-r16 of a carrier bandwidth.
可选地,所述一个侧行通信载波频率的配置信息ul-CarrierFreq或者v2x-CommCarrierFreq-r14对应的载波的带宽为所述sl-Bandwidth-r16。Optionally, the bandwidth of the carrier corresponding to the configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 of the one sideline communication carrier frequency is the sl-Bandwidth-r16.
在步骤S102,所述侧行通信用户设备使用包含在(included in)所述LTE侧行通信载波频率列表v2x-InterFreqInfoList-r14中的载波频率或者所述一个侧行通信载波频率ul-CarrierFreq或者v2x-CommCarrierFreq-r14进行侧行通信(V2X sidelink transmission),或者,In step S102, the sideline communication user equipment uses the carrier frequency included in the LTE sideline communication carrier frequency list v2x-InterFreqInfoList-r14 or the one sideline communication carrier frequency ul-CarrierFreq or v2x -CommCarrierFreq-r14 for sidelink communication (V2X sidelink transmission), or,
所述侧行通信用户设备使用对应(correspond to,或者,associate with)包含在所述LTE侧行通信载波频率列表v2x-InterFreqInfoList-r14中的载波频率或者所述一个侧行通信载波频率ul-CarrierFreq或者v2x-CommCarrierFreq-r14所对应的载波频率的所述LTE侧行通信资源池的配置信息所指示的资源池进行侧行通信(V2X sidelink transmission)。The sideline communication user equipment uses a carrier frequency that corresponds to (or, associates with) the LTE sideline communication carrier frequency list v2x-InterFreqInfoList-r14 or the one sideline communication carrier frequency ul-CarrierFreq Or the resource pool indicated by the configuration information of the LTE sidelink communication resource pool of the carrier frequency corresponding to v2x-CommCarrierFreq-r14 performs sidelink communication (V2X sidelink transmission).
[实施例二][Example 2]
图4是示出了本发明的实施例二的由用户设备执行的方法的基本过程的示意图。FIG. 4 is a schematic diagram illustrating a basic process of a method performed by a user equipment according to Embodiment 2 of the present invention.
下面,结合图4所示的基本过程图来详细说明本发明的实施例二的由用户设备执行的方法。Hereinafter, the method executed by the user equipment according to Embodiment 2 of the present invention will be described in detail with reference to the basic process diagram shown in FIG. 4 .
如图4所示,在本发明的实施例二中,用户设备执行的步骤包括:As shown in FIG. 4 , in Embodiment 2 of the present invention, the steps performed by the user equipment include:
在步骤S201,侧行通信用户设备接收基站gNB发送的系统信息块。In step S201, the sideline communication user equipment receives the system information block sent by the base station gNB.
可选地,所述系统信息块包含LTE侧行通信的配置信息sl-V2X-ConfigCommon-r16。Optionally, the system information block includes configuration information s1-V2X-ConfigCommon-r16 of LTE sideline communication.
可选地,所述系统信息块为NR系统信息块13(SIB13),以及,所述SIB13包含LTE侧行通信的配置信息sl-V2X-ConfigCommon-r16。Optionally, the system information block is NR system information block 13 (SIB13), and the SIB13 includes configuration information s1-V2X-ConfigCommon-r16 of LTE sideline communication.
可选地,所述LTE侧行通信的配置信息包括LTE侧行通信载波频率 列表(list)v2x-InterFreqInfoList-r14;其中,可选地,所述LTE侧行通信载波频率列表中包含的每一个侧行通信载波频率SL-InterFreqInfoV2X-r14都对应(或者,包含)一个ARFCN类型的配置信息v2x-CommCarrierFreq-r14。可选地,所述LTE侧行通信载波频率列表中包含的每一个侧行通信载波频率SL-InterFreqInfoV2X-r14都对应(或者,包含)一个载波带宽(carrier bandwidth)的配置信息。Optionally, the configuration information of the LTE sideline communication includes an LTE sideline communication carrier frequency list (list) v2x-InterFreqInfoList-r14; wherein, optionally, each of the LTE sideline communication carrier frequencies included in the list The sideline communication carrier frequency SL-InterFreqInfoV2X-r14 corresponds to (or includes) an ARFCN type configuration information v2x-CommCarrierFreq-r14. Optionally, each sideline communication carrier frequency SL-InterFreqInfoV2X-r14 included in the LTE sideline communication carrier frequency list corresponds to (or includes) configuration information of a carrier bandwidth (carrier bandwidth).
可选地,所述LTE侧行通信的配置信息包括LTE侧行通信资源池resource pool的配置信息。Optionally, the configuration information of the LTE sideline communication includes configuration information of the LTE sideline communication resource pool resource pool.
可选地,所述系统信息块(在包含所述LTE侧行通信载波频率列表v2x-InterFreqInfoList-r14的基础上,另外)包含一个侧行通信载波频率的配置信息ul-CarrierFreq或者v2x-CommCarrierFreq-r14。可选地,所述一个侧行通信载波频率的配置信息ul-CarrierFreq或者v2x-CommCarrierFreq-r14为ARFCN类型的配置信息。Optionally, the system information block (on the basis of including the LTE sideline communication carrier frequency list v2x-InterFreqInfoList-r14, in addition) includes a sideline communication carrier frequency configuration information ul-CarrierFreq or v2x-CommCarrierFreq- r14. Optionally, the configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 of one sideline communication carrier frequency is ARFCN type configuration information.
可选地,所述系统信息块包含一个载波带宽的配置信息sl-Bandwidth-r16。Optionally, the system information block includes configuration information sl-Bandwidth-r16 of a carrier bandwidth.
可选地,所述一个侧行通信载波频率的配置信息ul-CarrierFreq或者v2x-CommCarrierFreq-r14对应的载波的带宽为所述sl-Bandwidth-r16。Optionally, the bandwidth of the carrier corresponding to the configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 of the one sideline communication carrier frequency is the sl-Bandwidth-r16.
在步骤S202,可选地,所述侧行通信用户设备使用包含在(included in)所述LTE侧行通信载波频率列表v2x-InterFreqInfoList-r14中的载波频率或者所述一个侧行通信载波频率ul-CarrierFreq或者v2x-CommCarrierFreq-r14进行侧行通信(V2X sidelink transmission),或者,In step S202, optionally, the sideline communication user equipment uses a carrier frequency included in the LTE sideline communication carrier frequency list v2x-InterFreqInfoList-r14 or the one sideline communication carrier frequency ul -CarrierFreq or v2x-CommCarrierFreq-r14 for sidelink communication (V2X sidelink transmission), or,
所述侧行通信用户设备使用对应(correspond to,或者,associate with)包含在所述LTE侧行通信载波频率列表v2x-InterFreqInfoList-r14中的载波频率或者所述一个侧行通信载波频率ul-CarrierFreq或者v2x-CommCarrierFreq-r14所对应的载波频率的所述LTE侧行通信资源池的配置信息所指示的资源池进行侧行通信(V2X sidelink transmission)。The sideline communication user equipment uses a carrier frequency that corresponds to (or, associates with) the LTE sideline communication carrier frequency list v2x-InterFreqInfoList-r14 or the one sideline communication carrier frequency ul-CarrierFreq Or the resource pool indicated by the configuration information of the LTE sidelink communication resource pool of the carrier frequency corresponding to v2x-CommCarrierFreq-r14 performs sidelink communication (V2X sidelink transmission).
在步骤S203,可选地,所述侧行通信用户设备接收下行控制信息DCI。In step S203, optionally, the sideline communication user equipment receives downlink control information DCI.
可选地,所述DCI是NR DCI格式3_1。Optionally, the DCI is NR DCI format 3_1.
可选地,所述DCI包含侧行通信载波指示域,以及,所述指示域为3 个比特。Optionally, the DCI includes a sideline communication carrier indication field, and the indication field is 3 bits.
可选地,所述指示域等于0对应(corresponds to)所述一个侧行通信载波频率ul-CarrierFreq或者v2x-CommCarrierFreq-r14所对应的侧行通信载波;以及,可选地,(所述指示域大于0的情况下),所述指示域的数值对应相应的所述侧行通信载波频率SL-InterFreqInfoV2X-r14。Optionally, the indication field equal to 0 corresponds to the sideline communication carrier corresponding to the one sideline communication carrier frequency ul-CarrierFreq or v2x-CommCarrierFreq-r14; and, optionally, (the indication If the field is greater than 0), the value of the indication field corresponds to the corresponding sideline communication carrier frequency SL-InterFreqInfoV2X-r14.
[实施例三][Example 3]
图5是示出了本发明的实施例三的由用户设备执行的方法的基本过程的示意图。FIG. 5 is a schematic diagram illustrating a basic process of a method performed by a user equipment according to Embodiment 3 of the present invention.
下面,结合图5所示的基本过程图来详细说明本发明的实施例三的由用户设备执行的方法。Hereinafter, the method executed by the user equipment according to Embodiment 3 of the present invention will be described in detail with reference to the basic process diagram shown in FIG. 5 .
如图5所示,在本发明的实施例三中,用户设备执行的步骤包括:As shown in FIG. 5 , in Embodiment 3 of the present invention, the steps performed by the user equipment include:
在步骤S301,侧行通信用户设备接收基站gNB发送的系统信息块。In step S301, the sideline communication user equipment receives the system information block sent by the base station gNB.
可选地,所述系统信息块包含LTE侧行通信的配置信息sl-V2X-ConfigCommon-r16。Optionally, the system information block includes configuration information s1-V2X-ConfigCommon-r16 of LTE sideline communication.
可选地,所述系统信息块为NR系统信息块13(SIB13),以及,所述SIB13包含LTE侧行通信的配置信息sl-V2X-ConfigCommon-r16。Optionally, the system information block is NR system information block 13 (SIB13), and the SIB13 includes configuration information s1-V2X-ConfigCommon-r16 of LTE sideline communication.
可选地,所述LTE侧行通信的配置信息包括LTE侧行通信载波频率列表(list)v2x-InterFreqInfoList-r14;其中,可选地,所述LTE侧行通信载波频率列表中包含的每一个侧行通信载波频率SL-InterFreqInfoV2X-r14都对应(或者,包含)一个ARFCN类型的配置信息v2x-CommCarrierFreq-r14。可选地,所述LTE侧行通信载波频率列表中包含的每一个侧行通信载波频率SL-InterFreqInfoV2X-r14都对应(或者,包含)一个载波带宽(carrier bandwidth)的配置信息。Optionally, the configuration information of the LTE sideline communication includes an LTE sideline communication carrier frequency list (list) v2x-InterFreqInfoList-r14; wherein, optionally, each of the LTE sideline communication carrier frequencies included in the list The sideline communication carrier frequency SL-InterFreqInfoV2X-r14 corresponds to (or includes) an ARFCN type configuration information v2x-CommCarrierFreq-r14. Optionally, each sideline communication carrier frequency SL-InterFreqInfoV2X-r14 included in the LTE sideline communication carrier frequency list corresponds to (or includes) configuration information of a carrier bandwidth (carrier bandwidth).
可选地,所述系统信息块包含一个载波带宽的配置信息sl-Bandwidth-r16。Optionally, the system information block includes configuration information sl-Bandwidth-r16 of a carrier bandwidth.
在步骤S302,所述用户设备忽略(ignore)所述系统信息块中的所述载波带宽的配置信息sl-Bandwidth-r16。In step S302, the user equipment ignores (ignores) the configuration information sl-Bandwidth-r16 of the carrier bandwidth in the system information block.
图6是表示本发明所涉及的用户设备UE的框图。如图6所示,该用户设备UE80包括处理器801和存储器802。处理器801例如可以包括微处理器、微控制器、嵌入式处理器等。存储器802例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器802上存储有程序指令。该指令在由处理器801运行时,可以执行本发明详细描述的由用户设备执行的上述方法。FIG. 6 is a block diagram showing a user equipment UE according to the present invention. As shown in FIG. 6 , the user equipment UE80 includes a processor 801 and a memory 802 . The processor 801 may include, for example, a microprocessor, a microcontroller, an embedded processor, or the like. The memory 802 may include, for example, volatile memory (eg, random access memory RAM), a hard disk drive (HDD), non-volatile memory (eg, flash memory), or other memory, or the like. Program instructions are stored on the memory 802 . When the instructions are executed by the processor 801, the above method described in detail in the present invention and executed by the user equipment can be executed.
上文已经结合优选实施例对本发明的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的,而且以上说明的各实施例在不发生矛盾的情况下能够相互组合。本发明的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本发明并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。The method and related apparatus of the present invention have been described above with reference to the preferred embodiments. Those skilled in the art can understand that the methods shown above are only exemplary, and the various embodiments described above can be combined with each other under the condition that no contradiction occurs. The method of the present invention is not limited to the steps and sequences shown above. The network node and user equipment shown above may include more modules, for example, may also include modules that can be developed or developed in the future and can be used for base stations, MMEs, or UEs, and so on. The various identifiers shown above are only exemplary and not restrictive, and the present invention is not limited to the specific information elements exemplified by these identifiers. Numerous changes and modifications may occur to those skilled in the art in light of the teachings of the illustrated embodiments.
应该理解,本发明的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。It should be understood that the above-described embodiments of the present invention may be implemented by software, hardware, or a combination of both. For example, the various components inside the base station and the user equipment in the above embodiments may be implemented by various devices, including but not limited to: analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, programmable processing Controllers, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), Programmable Logic Devices (CPLDs), etc.
在本申请中,“基站”可以指具有较大发射功率和较广覆盖面积的移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”可以指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。In this application, "base station" may refer to a mobile communication data and control switching center with larger transmission power and wider coverage area, including functions such as resource allocation and scheduling, data reception and transmission, and the like. "User equipment" may refer to a user mobile terminal, for example, including a mobile phone, a notebook, and other terminal equipment that can wirelessly communicate with a base station or a micro base station.
此外,这里所公开的本发明的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质,计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本发明的上述技术方案。当在计算系 统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本发明实施例所述的操作(方法)。本发明的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本发明实施例所描述的技术方案。Furthermore, embodiments of the invention disclosed herein may be implemented on a computer program product. More specifically, the computer program product is a product having a computer-readable medium on which computer program logic is encoded that, when executed on a computing device, provides relevant operations to achieve The above technical solutions of the present invention. When executed on at least one processor of a computing system, the computer program logic causes the processor to perform the operations (methods) described in the embodiments of the present invention. Such arrangements of the present invention are typically provided as software, code and/or other data structures arranged or encoded on a computer readable medium such as an optical medium (eg CD-ROM), floppy or hard disk, or such as one or more Firmware or other medium of microcode on a ROM or RAM or PROM chip, or a downloadable software image in one or more modules, a shared database, etc. Software or firmware or such a configuration may be installed on a computing device, so that one or more processors in the computing device execute the technical solutions described in the embodiments of the present invention.
此外,上述每个实施例中所使用的基站设备和终端设备的每个功能模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置,或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本发明也可以使用利用该先进技术得到的集成电路。In addition, each functional module or each feature of the base station device and the terminal device used in each of the above embodiments may be implemented or executed by a circuit, which is usually one or more integrated circuits. Circuits designed to perform the various functions described in this specification may include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs) or general purpose integrated circuits, field programmable gate arrays (FPGAs) or other Program logic devices, discrete gate or transistor logic, or discrete hardware components, or any combination of the above. A general-purpose processor may be a microprocessor, or the processor may be an existing processor, controller, microcontroller, or state machine. The general-purpose processor or each circuit described above may be configured by digital circuits, or may be configured by logic circuits. In addition, when an advanced technology that can replace the current integrated circuit appears due to the advancement of semiconductor technology, the present invention can also use the integrated circuit obtained by using the advanced technology.
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的技术人员将会理解,在不脱离本发明的精神和范围的情况下,可以对本发明进行各种修改、替换和改变。因此,本发明不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。Although the present invention has been shown in conjunction with the preferred embodiments thereof, those skilled in the art will appreciate that various modifications, substitutions and alterations can be made herein without departing from the spirit and scope of the invention. Therefore, the present invention should not be limited by the above-described embodiments, but should be defined by the appended claims and their equivalents.

Claims (10)

  1. 一种由用户设备执行的方法,包括如下步骤:A method performed by a user equipment, comprising the steps of:
    用户设备接收基站发送的系统信息块,其中,所述系统信息块包含一个侧行通信载波频率的配置信息ul-CarrierFreq、或者v2x-CommCarrierFreq-r14;The user equipment receives a system information block sent by the base station, where the system information block includes configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 of a carrier frequency of sideline communication;
    所述用户设备使用所述一个侧行通信载波频率的配置信息ul-CarrierFreq或者v2x-CommCarrierFreq-r14所对应的载波频率进行侧行通信;The user equipment performs sidelink communication using the carrier frequency corresponding to the configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 of the carrier frequency of one sidelink communication;
    所述用户设备接收下行控制信息DCI。The user equipment receives downlink control information DCI.
  2. 根据权利要求1所述的由用户设备执行的方法,其中,The method performed by user equipment according to claim 1, wherein,
    所述系统信息块为NR系统信息块13即SIB13,所述SIB13包含LTE侧行通信的配置信息sl-V2X-ConfigCommon-r16。The system information block is NR system information block 13, namely SIB13, and the SIB13 includes configuration information s1-V2X-ConfigCommon-r16 of LTE sideline communication.
  3. 根据权利要求2所述的由用户设备执行的方法,其中,The method performed by user equipment according to claim 2, wherein,
    所述LTE侧行通信的配置信息包括LTE侧行通信载波频率列表v2x-InterFreqInfoList-r14;The configuration information of the LTE sideline communication includes the LTE sideline communication carrier frequency list v2x-InterFreqInfoList-r14;
    所述LTE侧行通信载波频率列表中包含的每一个侧行通信载波频率SL-InterFreqInfoV2X-r14都对应一个ARFCN类型的配置信息v2x-CommCarrierFreq-r14,以及,都对应一个载波带宽的配置信息。Each sideline communication carrier frequency SL-InterFreqInfoV2X-r14 included in the LTE sideline communication carrier frequency list corresponds to an ARFCN type configuration information v2x-CommCarrierFreq-r14, and corresponds to a carrier bandwidth configuration information.
  4. 根据权利要求3所述的由用户设备执行的方法,其中,The method performed by user equipment according to claim 3, wherein,
    所述LTE侧行通信的配置信息包括LTE侧行通信资源池的配置信息。The configuration information of the LTE sideline communication includes configuration information of the LTE sideline communication resource pool.
  5. 根据权利要求2所述的由用户设备执行的方法,其中,The method performed by user equipment according to claim 2, wherein,
    所述系统信息块包含一个载波带宽的配置信息sl-Bandwidth-r16。The system information block includes configuration information sl-Bandwidth-r16 of a carrier bandwidth.
  6. 根据权利要求5所述的由用户设备执行的方法,其中,The method performed by user equipment according to claim 5, wherein,
    所述一个侧行通信载波频率的配置信息ul-CarrierFreq或者v2x-CommCarrierFreq-r14对应的载波的带宽为所述sl-Bandwidth-r16。The bandwidth of the carrier corresponding to the configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 of one sideline communication carrier frequency is the sl-Bandwidth-r16.
  7. 根据权利要求4所述的由用户设备执行的方法,其中,The method performed by user equipment according to claim 4, wherein,
    所述用户设备使用对应包含在所述LTE侧行通信载波频率列表v2x-InterFreqInfoList-r14中的载波频率或者所述一个侧行通信载波频率的配置信息ul-CarrierFreq或者v2x-CommCarrierFreq-r14所对应的载波 频率的所述LTE侧行通信资源池的配置信息所指示的资源池进行侧行通信。The user equipment uses the carrier frequency corresponding to the carrier frequency included in the LTE sideline communication carrier frequency list v2x-InterFreqInfoList-r14 or the configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 corresponding to the one sideline communication carrier frequency. The resource pool indicated by the configuration information of the LTE sidelink communication resource pool of the carrier frequency performs sidelink communication.
  8. 根据权利要求3所述的由用户设备执行的方法,其中,The method performed by user equipment according to claim 3, wherein,
    所述DCI包含侧行通信载波指示域,所述指示域为3个比特,The DCI includes a sideline communication carrier indication field, and the indication field is 3 bits,
    所述指示域等于0对应所述一个侧行通信载波频率的配置信息ul-CarrierFreq或者v2x-CommCarrierFreq-r14所对应的侧行通信载波,The indication field is equal to 0 and corresponds to the sideline communication carrier corresponding to the configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 of the one sideline communication carrier frequency,
    所述指示域大于0的情况下,所述指示域的数值对应相应的所述侧行通信载波频率SL-InterFreqInfoV2X-r14。When the indication field is greater than 0, the value of the indication field corresponds to the corresponding sideline communication carrier frequency SL-InterFreqInfoV2X-r14.
  9. 根据权利要求1所述的由用户设备执行的方法,其中,The method performed by user equipment according to claim 1, wherein,
    所述一个侧行通信载波频率的配置信息ul-CarrierFreq、或者v2x-CommCarrierFreq-r14是一种ARFCN类型的配置信息。The configuration information ul-CarrierFreq or v2x-CommCarrierFreq-r14 of one sideline communication carrier frequency is an ARFCN type of configuration information.
  10. 一种用户设备,包括:A user equipment comprising:
    处理器;以及processor; and
    存储器,存储有指令,memory, storing instructions,
    所述指令在由所述处理器运行时,使所述用户设备执行根据权利要求1-9中任一项所述的方法。The instructions, when executed by the processor, cause the user equipment to perform the method of any of claims 1-9.
PCT/CN2021/103093 2020-07-08 2021-06-29 Method executed by user equipment, and user equipment WO2022007664A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010654562.3A CN113923629A (en) 2020-07-08 2020-07-08 Method performed by user equipment and user equipment
CN202010654562.3 2020-07-08

Publications (1)

Publication Number Publication Date
WO2022007664A1 true WO2022007664A1 (en) 2022-01-13

Family

ID=79231850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103093 WO2022007664A1 (en) 2020-07-08 2021-06-29 Method executed by user equipment, and user equipment

Country Status (2)

Country Link
CN (1) CN113923629A (en)
WO (1) WO2022007664A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110140402A (en) * 2017-01-03 2019-08-16 三星电子株式会社 Information method of sending and receiving and equipment in communication system for V2X communication
US20200045674A1 (en) * 2018-08-03 2020-02-06 FG Innovation Company Limited Sidelink radio resource allocation
CN111148236A (en) * 2018-11-02 2020-05-12 华为技术有限公司 Data transmission method and device
WO2020107432A1 (en) * 2018-11-30 2020-06-04 Panasonic Intellectual Property Corporation Of America Communication apparatuses and communication methods for 5g nr based v2x communications
CN111385891A (en) * 2018-12-29 2020-07-07 华为技术有限公司 Configuration method, equipment and system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110140402A (en) * 2017-01-03 2019-08-16 三星电子株式会社 Information method of sending and receiving and equipment in communication system for V2X communication
US20200045674A1 (en) * 2018-08-03 2020-02-06 FG Innovation Company Limited Sidelink radio resource allocation
WO2020025064A1 (en) * 2018-08-03 2020-02-06 FG Innovation Company Limited Sidelink radio resource allocation
CN111148236A (en) * 2018-11-02 2020-05-12 华为技术有限公司 Data transmission method and device
WO2020107432A1 (en) * 2018-11-30 2020-06-04 Panasonic Intellectual Property Corporation Of America Communication apparatuses and communication methods for 5g nr based v2x communications
CN111385891A (en) * 2018-12-29 2020-07-07 华为技术有限公司 Configuration method, equipment and system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Miscellaneous general corrections and clarifications resulting from ASN.1 review", 3GPP DRAFT; 36331_CR2872R2_(REL-14)_R2-1706185, 19 May 2017 (2017-05-19), XP051285966 *

Also Published As

Publication number Publication date
CN113923629A (en) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2022028413A1 (en) Method executed by user device and user device
WO2022111630A1 (en) Method executed by user equipment and user equipment
WO2022143641A1 (en) Method executed by user equipment, and user equipment
WO2023040961A1 (en) Method executed by user equipment, and user equipment
WO2022017037A1 (en) Method executed by user equipment, and user equipment
WO2021190521A1 (en) Method executed by user equipment, and user equipment
WO2021136373A1 (en) Method executed by user equipment, and user equipment
WO2023131074A1 (en) Method executed by user equipment and user equipment
WO2022194243A1 (en) Method performed by user equipment, and user equipment
WO2022152163A1 (en) Method executed by user equipment and user equipment
WO2022267943A1 (en) Method executed by user equipment, and user equipment
WO2022028330A1 (en) Method executed by user equipment, and user equipment
WO2021228138A1 (en) Method executed by user equipment and user equipment
WO2021057838A1 (en) Method executed by user equipment, and user equipment
WO2022007664A1 (en) Method executed by user equipment, and user equipment
CN112291846A (en) Method performed by user equipment and user equipment
WO2022063070A1 (en) Method executed by user equipment, and user equipment
WO2022078292A1 (en) Method executed by user equipment, and user equipment
WO2022206817A1 (en) Method implemented by user equipment, and user equipment
WO2023078345A1 (en) Method executed by user equipment and user equipment
WO2023078389A1 (en) Method executed by user equipment, and user equipment
WO2023051452A1 (en) Method executed by user equipment and user equipment
WO2023098812A1 (en) Method executed by user equipment and user equipment
WO2022143643A1 (en) Method executed by user equipment and user equipment
WO2023001070A1 (en) Method executed by user equipment, and user equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21838711

Country of ref document: EP

Kind code of ref document: A1