WO2022006695A1 - 一种建于沙漠的海上浮冰利用系统及其方法 - Google Patents
一种建于沙漠的海上浮冰利用系统及其方法 Download PDFInfo
- Publication number
- WO2022006695A1 WO2022006695A1 PCT/CN2020/100387 CN2020100387W WO2022006695A1 WO 2022006695 A1 WO2022006695 A1 WO 2022006695A1 CN 2020100387 W CN2020100387 W CN 2020100387W WO 2022006695 A1 WO2022006695 A1 WO 2022006695A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- ice
- desert
- reservoir
- preheating
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B1/00—Equipment or apparatus for, or methods of, general hydraulic engineering, e.g. protection of constructions against ice-strains
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S10/00—Solar heat collectors using working fluids
- F24S10/70—Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B27/00—Machines, plants or systems, using particular sources of energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B29/00—Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C5/00—Working or handling ice
- F25C5/18—Storing ice
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C5/00—Working or handling ice
- F25C5/20—Distributing ice
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D1/00—Devices using naturally cold air or cold water
- F25D1/02—Devices using naturally cold air or cold water using naturally cold water, e.g. household tap water
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/44—Heat exchange systems
Definitions
- the preheating pool preheats the ice water to 20°C-40°C, and the solar water heater heats the preheated water to 50°C-80°C.
- the upper surface of the preheating pool directly faces the sunlight, and the height of the preheating pool is greater than 1 meter and less than 2 meters.
- the inner walls of the cold water pipeline, the preheating pipeline, the hot water input pipeline and the hot water output pipeline are provided with thermal insulation films.
- the ice By moving the floating ice from the sea to the desert near the land, the ice is melted into ice water in the desert, part of the ice water can be directly transported to neighboring countries, and the other part can be directly or indirectly heated (solar heating) by the desert's solar energy to be transported into domestic water. to neighboring countries.
- Water is transported through laid pipelines, which are less difficult and less expensive than natural gas, and have zero emissions.
- the evaporated water increases the air humidity in the desert, increases the growth of vegetation, and restores the desert to forest; cooling the nearby countries in summer and providing domestic hot water can improve the heating and bathing of 200 million people, reduce the use of air conditioners, and save energy and protect the environment. , and can save the use of natural gas.
- FIG. 1 is a schematic diagram of a system structure according to an embodiment of the present invention.
- a marine floating ice utilization system built in a desert includes a reservoir 2 built on the coast near the desert for storing melted ice water, the reservoir 2 is directly connected to the urban area through a cold water pipeline 5, and the reservoir 2
- the heat pipe 6 is connected to the preheating water tank 7
- the preheating water tank 7 is connected to the solar water heater 9 through the hot water input pipe 8
- the water heater 9 is connected to the urban area through the hot water output pipe 10 .
- the preheating pool 7 preheats the ice water to 20°C-40°C, and the solar water heater 9 heats the preheated water to 50°C-80°C.
- the water in the preheating pool 7 is heated to 20°C-40°C by sunlight, and then the water available for adult life is heated by the solar water heater 9, which makes full use of the solar energy and reduces the heating workload of the solar water heater.
- the solar water heater 9 is a flat plate or vacuum tube solar water heater.
- the inner walls of the cold water pipe 5, the preheating pipe 6, the hot water input pipe 8, and the hot water output pipe 10 are used to prevent the ice water or hot water from exchanging heat with the outside during the transportation of the cold water or hot water through the pipes, which changes the water quality. uses and effects.
- the present embodiment provides a method for utilizing sea ice floes built in a desert, including the following steps:
- the ice cubes in the Arctic can be moved to the Bennas desert, and the ice can be melted into ice water in the desert, and a part of the ice water can be directly transported to neighboring European countries (Spain/Portugal, France, Germany), Another part can use the solar energy of the desert to directly or indirectly heat the domestic water and send it to these neighboring European countries.
- Water is transported through laid pipelines. The difficulty and cost of laying water pipelines is lower than that of natural gas, and it is zero-emission. At present, the biggest bottleneck of carbon emissions in Europe is that the heating of bathing buildings cannot be reduced.
- Evaporation Moisture increase the air humidity in the desert, increase the growth of vegetation, and restore the desert to forest; cool the nearby countries in summer and provide domestic hot water, which can improve the heating and bathing of 200 million people, reduce the use of air conditioners, save energy and protect the environment.
- the use of natural gas can be saved.
- the water delivery pipeline of the invention can adopt the uncoupled power vacuum water delivery pipeline, the diameter of which can be more than 2 meters, and the gradient of 100 kilometers is 7 meters; the water can flow from low to high; according to the heat loss of the pipeline; every certain distance For example, set up a 100-kilometer distance to heat water (using solar water heater solar/wind power to provide power for heat pump), to ensure that the water temperature to the user is 40-45 °, if 1 billion tons of water per ton of hot water, if heating requires 60 cubic meters of natural gas , a total of 60 billion cubic meters of natural gas is needed, the current price of natural gas is about 300 euros/thousand cubic meters, and the comprehensive cost per ton of hot water is at least 20 euros.
- the cost of one ton of ice water is about 2 euros
- the cost of hot water is only 10 euros to the home, and there is no combustion equipment.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
Abstract
一种建于沙漠的海上浮冰利用系统及其方法,包括建设在沙漠附近海岸的用于存放融化冰水的水库(2),水库(2)通过冷水管道(5)直接连接城市区,水库(2)通过预热管道(6)连接预热水池(7),预热水池(7)通过热水输入管道(8)连接太阳能热水器(9),热水器(9)通过热水输出管道(10)连接城市区。通过将海上浮冰运动到临近陆地沙漠,在沙漠将冰融化成冰水,一部分冰水可以直接输送到相邻国家,另一部分可以利用沙漠的太阳能直接或者间接加热成生活用水输送到相邻国家。
Description
本发明涉及节能环保技术领域,尤其涉及一种建于沙漠的海上浮冰利用系统及其方法。
一直以来,欧洲因为它的气候以及平坦的地势,基本上所有人都认为欧洲是没有沙漠的。其实并不是这样的,欧洲有且仅有这么一个沙漠,它在西班牙的东南部,它的名字叫本纳斯沙漠,却不是很有名。
欧洲大陆所处的纬度是比较高的,因此这里的整体的气温就很低。同时欧洲还受大西洋暖流的影响,气候又比较湿润,这样看来这里确实不太可能有沙漠的存在。但是不可思议的是在西班牙却有沙漠的存在,西班牙的地势比较高,地形以山地和高原,它的东南部被山脉阻挡导致这里的降水比其他地方要少很多。而且本纳斯沙漠周围被很多的山阻挡,于是来自海洋的湿热气流也到达不了这里,于是这里成为了缺少降水的背风区,也就成为了沙漠。而且虽然来自地中海的暖流让欧洲南部地区气候湿润,但是还是没有给本纳斯带来雨水。沙漠中阳光暴烈,黄沙漫天遍地,几乎寸草不生,似乎没有什么可利用的价值。但是,如果将沙漠的太阳能很好利用,将能变废为宝,有效解决全球能源利用不足的问题,达到节能减排的效果。
目前德国每年需要近1千亿立方米天然气,按每立方米天然气具有10千瓦时的能级;其中超过90%为2200万栋建筑物作为燃料的,因此该行业的排放非常高。德国政府的目标是到2050年实现“近零排放的建筑”。但是,尽管建筑部门碳排放量自1990年以来下降了44%,但自2011年以来基本上停滞不前。在德国,建筑物中的空间和水加热几乎占最终总能耗的三分之一,在能源转型(Energiewende)中仅次于电力部门,可称为
(即供暖转型),对于德国到2050年实现其气候中和目标至关重要。
事实证明,让开发商、房主、房客参与建筑节能和改造是一项复杂的任务。自2008年以来, 政府提出了许多政策,但其后又撤销了。建筑部门涉及的清洁技术包括热泵、区域供热(生物质/太阳能/地热/工业)、电制气等,但成本仍然太高。因此,从政策角度来看,清洁技术必须继续提供补贴和税收优惠措施,并进一步提高二氧化碳税。二氧化碳价格从10欧元/吨上涨到25欧元/吨的价格,是朝着正确方向迈出的一步,但仍然太低了,无法消除使用化石燃料和可再生电力供暖之间的价格失衡。
英国的建筑供暖约占英国二氧化碳排放量的40%。可以说对于欧洲和其它国家,取暖热水以及空调用的能源占比高达1/3。
因此,如何找到一种规模低成本的为某些国家提供建筑的冷热水实现洗浴/洗涤以及供暖制冷,调解温度,而且不依赖石化能源,是一项艰巨的挑战,如果不能成功应对这一挑战,人类实现全面绿色能源就无法实现,几乎很难实现巴黎气候大会的目标。
发明内容:
本发明的目的在于提供一种建于沙漠的海上浮冰利用系统及其方法,利用南北极的大量的海上浮冰,以及沙漠的大面积太阳能,借助简单的热水器真空输水管,为人居建筑直接提供冷热水,实现温度调节洗浴,完全实现大量低成本的建筑能源供给。
本发明由如下技术方案实施:一种建于沙漠的海上浮冰利用系统,其特征在于,包括建设在沙漠附近海岸的用于存放融化冰水的水库,所述水库通过冷水管道直接连接城市区,所述水库通过预热管道连接预热水池,所述预热水池通过热水输入管道连接太阳能热水器,所述热水器通过热水输出管道连接城市区。
优选的,所述预热水池将冰水预热到20℃-40℃,太阳能热水器将预热后的水加热到50℃-80℃。
优选的,所述太阳能热水器为平板或者真空管太阳能热水器。
优选的,所述预热水池上表面直接对住太阳光,且预热水池的高度大于1米小于2米。
优选的,所述冷水管道、预热管道、热水输入管道、热水输出管道内壁设置隔热膜。
一种建于沙漠的海上浮冰利用方法,包括以下步骤:
a.将的海上浮冰运送的到沙漠最近的海岸,并修建一个水库用于存放融化的冰水;
b.将水库融化的冰水直接管道输送到沙漠的临近国家,用于夏季给用户制冷;
c.水库旁修建一个预热水池,并通过水道和冰水库连接,水道设置一个闸门控制调解到预热水池的冰水流量;
d.将水库融化的冰水预热几天后,达到一定稳定后,通过太阳能平板热水器加热后,输送到沙漠的临近国家,用于给用户洗浴或者暖水管道用于冬季供暖。
本发明的优点:
通过将海上浮冰运动到临近陆地沙漠,在沙漠将冰融化成冰水,一部分冰水可以直接输送到相邻国家,另一部分可以利用沙漠的太阳能直接或者间接加热(太阳能加热)成生活用水输送到相邻国家。水的运输通过铺设的管道,铺设输水管比天然气的困难程度和成本要低,而且是零排放。蒸发的水分,增加沙漠的空气湿度,增加植被的生长,沙漠得到还林;对附近国家进行夏季降温并提供生活用热水,可以改善2亿人的供暖、洗浴,减少空调的使用,节能环保,并可以节约天然气的使用。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的系统结构示意图;
图2为本发明实施例的方法流程图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实 施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,一种建于沙漠的海上浮冰利用系统,包括建设在沙漠附近海岸的用于存放融化冰水的水库2,水库2通过冷水管道5直接连接城市区,水库2通过预热管道6连接预热水池7,预热水池7通过热水输入管道8连接太阳能热水器9,热水器9通过热水输出管道10连接城市区。
本实施例中,预热水池7将冰水预热到20℃-40℃,太阳能热水器9将预热后的水加热到50℃-80℃。先通过阳光将预热水池7中的水照射加热到20℃-40℃,再通过太阳能热水器9加热成人生活可用的水,这样充分利用了太阳能,减少了太阳能热水器加热工作量。
本实施例中,太阳能热水器9为平板或者真空管太阳能热水器。
本实施例中,预热水池7上表面直接对住太阳光,且预热水池7的高度大于1米小于2米。为了使得预热水池7将冰水预热到20℃-40℃,因此预热水池7不宜过高,以免水池过深下层水接收不到阳光被加热。
本实施例中,冷水管道5、预热管道6、热水输入管道8、热水输出管道10内壁是为了防止冰水或者热水再通过管道运输过程中与外界进行热交换,改变了水的用途和效果。
如图2所示,本实施例提供一种建于沙漠的海上浮冰利用方法,包括以下步骤:
a.将的海上浮冰运送的到沙漠最近的海岸,并修建一个水库用于存放融化的冰水;
b.将水库融化的冰水直接管道输送到沙漠的临近国家,用于夏季给用户制冷;
c.水库旁修建一个预热水池,并通过水道和冰水库连接,水道设置一个闸门控制调解到预热水池的冰水流量;
d.将水库融化的冰水预热几天后,达到一定稳定后,通过太阳能平板热水器加热后,输送到沙漠的临近国家,用于给用户洗浴或者暖水管道用于冬季供暖。
使用本发明的方法,可以通过将北极的冰块运动到本纳斯沙漠,在沙漠将冰融化成冰水,一部分冰水可以直接输送到相邻欧洲国家(西班牙/葡萄牙,法国,德国),另一部分可以利用沙漠的太阳能直接或者间接加热生活用水输送到上述这些相邻欧洲国家。水的运输通过铺设的 管道,铺设输水管比天然气的困难程度和成本要低,而且是零排放,目前欧洲的碳排放最大的瓶颈就是洗浴建筑供暖无法降低,同时可以达到以下有益效果:蒸发的水分,增加沙漠的空气湿度,增加植被的生长,沙漠得到还林;对附近国家进行夏季降温并提供生活用热水,可以改善2亿人的供暖、洗浴,减少空调的使用,节能环保,并可以节约天然气的使用。
本发明的输水管道可以采用无偶动力真空输水管,其口径可以做到2米以上,百公里梯度7米;可以水往从低到高处流;根据管道的热损耗;每隔一定距离比如百公里设置中距加热水(用太阳能热水器太阳能/风电为热泵提供电力),确保到用户的水温在40-45°,如果10亿吨的水每吨热水如果加热需要60立方米的天然气,总共需要天然气600亿立方米,目前天然气的价格约为300欧元/千立方米,每吨热水的综合成本最少20欧元。
根据本发明人2016年申请在专利;一吨冰水的成本在2欧元左右,热水的成本只有10欧元到户成本,而且没有燃烧设备。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (5)
- 一种建于沙漠的海上浮冰利用系统,其特征在于,包括建设在沙漠附近海岸的用于存放融化冰水的水库(2),所述水库(2)通过冷水管道(5)直接连接城市区,所述水库(2)通过预热管道(6)连接预热水池(7),所述预热水池(7)通过热水输入管道(8)连接太阳能热水器(9),所述热水器(9)通过热水输出管道(10)连接城市区。
- 根据权利要求1所述的一种建于沙漠的海上浮冰利用系统,其特征在于,所述预热水池(7)将冰水预热到20℃-40℃,太阳能热水器(9)将预热后的水加热到50-80℃。
- 根据权利要求1所述的一种建于沙漠的海上浮冰利用系统,其特征在于,所述太阳能热水器(9)为平板或者真空管太阳能热水器。
- 根据权利要求1所述的一种建于沙漠的海上浮冰利用系统,其特征在于,预热水池(7)的高度大于1米小于2米。
- 一种建于沙漠的海上浮冰利用方法,其特征在于,包括以下步骤:a.将海上浮冰,运送的到沙漠最近的海岸,并修建一个水库用于存放融化的冰水;b.将水库融化的冰水直接管道输送到沙漠的临近国家,用于夏季给用户制冷;c.水库旁修建一个预热水池,并通过水道和冰水库连接,水道设置一个闸门控制调解预热水池的冰水流量;d.将水库融化的冰水预热几天后,达到一定稳定后,通过太阳能平板热水器加热后,输送到沙漠的临近国家,用于给用户洗浴或者暖水管道用于冬季供暖。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/100387 WO2022006695A1 (zh) | 2020-07-06 | 2020-07-06 | 一种建于沙漠的海上浮冰利用系统及其方法 |
AU2020102082A AU2020102082A4 (en) | 2020-07-06 | 2020-09-01 | system utilizing sea ice floe in desert and method thereof |
ZA2021/09728A ZA202109728B (en) | 2020-07-06 | 2021-11-29 | System utilizing sea ice floe in desert and method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/100387 WO2022006695A1 (zh) | 2020-07-06 | 2020-07-06 | 一种建于沙漠的海上浮冰利用系统及其方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022006695A1 true WO2022006695A1 (zh) | 2022-01-13 |
Family
ID=72663806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/100387 WO2022006695A1 (zh) | 2020-07-06 | 2020-07-06 | 一种建于沙漠的海上浮冰利用系统及其方法 |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU2020102082A4 (zh) |
WO (1) | WO2022006695A1 (zh) |
ZA (1) | ZA202109728B (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1417547A (zh) * | 2001-11-10 | 2003-05-14 | 余太辽 | 生态自然冷热循环系统 |
CN103216884A (zh) * | 2012-01-18 | 2013-07-24 | 周登荣 | 用于风塔发电站的太阳能热水利用系统 |
CN105926528A (zh) * | 2016-04-21 | 2016-09-07 | 周连惠 | 一种降低全球温度的方法 |
CN106014511A (zh) * | 2016-06-14 | 2016-10-12 | 周连惠 | 一种生物质能发电系统 |
CN106012979A (zh) * | 2016-06-14 | 2016-10-12 | 周连惠 | 一种修建沙漠运河的方法 |
US20170108233A1 (en) * | 2015-10-20 | 2017-04-20 | Reginald Bertram Howard | Portable Solar HVAC System with All-In-One Appliances |
CN210512197U (zh) * | 2019-04-29 | 2020-05-12 | 李启民 | 一种适用于沙漠及戈壁滩使用的高效管道集热装置 |
-
2020
- 2020-07-06 WO PCT/CN2020/100387 patent/WO2022006695A1/zh active Application Filing
- 2020-09-01 AU AU2020102082A patent/AU2020102082A4/en not_active Ceased
-
2021
- 2021-11-29 ZA ZA2021/09728A patent/ZA202109728B/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1417547A (zh) * | 2001-11-10 | 2003-05-14 | 余太辽 | 生态自然冷热循环系统 |
CN103216884A (zh) * | 2012-01-18 | 2013-07-24 | 周登荣 | 用于风塔发电站的太阳能热水利用系统 |
US20170108233A1 (en) * | 2015-10-20 | 2017-04-20 | Reginald Bertram Howard | Portable Solar HVAC System with All-In-One Appliances |
CN105926528A (zh) * | 2016-04-21 | 2016-09-07 | 周连惠 | 一种降低全球温度的方法 |
CN106014511A (zh) * | 2016-06-14 | 2016-10-12 | 周连惠 | 一种生物质能发电系统 |
CN106012979A (zh) * | 2016-06-14 | 2016-10-12 | 周连惠 | 一种修建沙漠运河的方法 |
CN210512197U (zh) * | 2019-04-29 | 2020-05-12 | 李启民 | 一种适用于沙漠及戈壁滩使用的高效管道集热装置 |
Also Published As
Publication number | Publication date |
---|---|
AU2020102082A4 (en) | 2020-10-08 |
ZA202109728B (en) | 2023-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN203823873U (zh) | 一种太阳能热泵蓄热采暖系统 | |
US10260763B2 (en) | Method and apparatus for retrofitting an air conditioning system using all-weather solar heating | |
Abdelhady et al. | Design of a small scale stand-alone solar thermal co-generation plant for an isolated region in Egypt | |
KR102211617B1 (ko) | 난방효율을 증대하는 저온 지역난방 시스템 | |
CN101893350B (zh) | 季节蓄能的地源热泵供暖或供冷方法及其装置 | |
CN105841222B (zh) | 一种基于跨季节水体储热的太阳能供热系统 | |
Zhang et al. | Dual-objective optimization of large-scale solar heating systems integrated with water-to-water heat pumps for improved techno-economic performance | |
CN201926005U (zh) | 一种城市供暖系统 | |
CN103712500B (zh) | 一种应用于极端条件下的模块化太阳能蓄热系统 | |
CN101387458A (zh) | 一种低品位热能直接利用系统及方法 | |
CN201973771U (zh) | 太阳能-地源热泵采暖及供热水装置 | |
WO2022006695A1 (zh) | 一种建于沙漠的海上浮冰利用系统及其方法 | |
Ibrahim et al. | Experimental and theoretical study of smart energy management solar water heating system for outdoor swimming pool application in Egypt | |
Chahine et al. | Use of parabolic troughs in HVAC applications–Design calculations and analysis | |
CN1936440A (zh) | 超节能舒适保健型区域空调 | |
CN106123367B (zh) | 一种结合太阳能和地热能的天然气地埋管道防冻胀系统 | |
CN209639102U (zh) | 新型太阳能与空气能联合供热供暖系统 | |
Karagusov et al. | Influence of clouds and air temperature on the performance of the radiation heating system | |
CN201753999U (zh) | 季节蓄能的地源热泵供暖或供冷装置 | |
CN116326394A (zh) | 一种基于聚光太阳能的温室储热系统 | |
CN203704386U (zh) | 储热式太阳能低温供热系统 | |
CN102853471B (zh) | 夏季蓄热式太阳能供暖洗浴系统 | |
CN208765043U (zh) | 一种太阳能和浅层地能相结合的采暖制冷及供水系统 | |
CN208154851U (zh) | 一种交叉联动供热管路系统 | |
Ramatullaevich et al. | DEVELOPMENT AND STRAPPING OF SOLAR HOT WATER SUPPLY IN THE EXAMPLE OF THE CITY OF NUKUS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20819601 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20819601 Country of ref document: EP Kind code of ref document: A1 |