WO2022001266A1 - 一种通信控制方法、装置、通信设备及存储介质 - Google Patents

一种通信控制方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2022001266A1
WO2022001266A1 PCT/CN2021/085242 CN2021085242W WO2022001266A1 WO 2022001266 A1 WO2022001266 A1 WO 2022001266A1 CN 2021085242 W CN2021085242 W CN 2021085242W WO 2022001266 A1 WO2022001266 A1 WO 2022001266A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
uplink
base station
time slot
downlink
Prior art date
Application number
PCT/CN2021/085242
Other languages
English (en)
French (fr)
Inventor
张永升
张桥
陈加轩
梁新发
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Priority to US18/003,814 priority Critical patent/US20230224816A1/en
Publication of WO2022001266A1 publication Critical patent/WO2022001266A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/223TPC being performed according to specific parameters taking into account previous information or commands predicting future states of the transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication control method, an apparatus, a communication device, and a storage medium.
  • the indoor distribution system can be used to improve the mobile communication signal in the indoor environment.
  • the base station signal can be evenly distributed in every corner of the room, thereby ensuring ideal signal coverage in the indoor environment.
  • the signal sources of the indoor distribution system mainly include the following: access the indoor distribution system with the macro cell as the signal source; access the indoor distribution system with the micro cell as the signal source; access the indoor distribution system with the repeater as the signal source.
  • the repeater utilizes the spatial coupling of the donor antenna or the coupling device to directly couple the signal of the base station with excess capacity, and then amplifies the received signal, thereby providing it to the indoor distribution system.
  • the indoor distribution system can be directly connected to the base station signal, or the repeater can provide the base station signal for the indoor distribution system after the repeater is connected to the base station signal.
  • the embodiments of the present application provide a communication control method, apparatus, communication device, and storage medium, so as to realize 5G communication control on the basis of 4G.
  • a communication control method comprising:
  • the 4G chip is used to control the switching states of the uplink amplification link and the downlink amplification link according to the time slot allocation information.
  • the use of the 4G chip to control the switching states of the uplink amplification link and the downlink amplification link according to the time slot allocation information includes:
  • the time when the 4G chip is used to control the opening of the downlink amplification link includes the transmission time of all downlink time slots, and the time when the uplink amplification link is controlled to be opened includes the transmission time of all the uplink time slots;
  • the use of the 5G chip to obtain the time slot ratio information of the uplink time slot and the downlink time slot includes:
  • the 5G chip is used to read the broadcast signal of the base station, and the time slot ratio information of the uplink time slot and the downlink time slot is obtained from the broadcast signal of the base station.
  • the method further includes:
  • the 4G chip is used to control whether the front-stage low noise amplifier LNA is in the normal working mode or in the bypass mode according to the RSSI value.
  • the use of the 4G chip to control whether the front-stage low-noise amplifier LNA is in the normal operation mode or in the bypass mode according to the RSSI value includes:
  • the 4G chip is used to control the front-end LNA to be in normal working mode, and if the RSSI value is not less than the set value, the 4G chip is used to control the front-end LNA to be in bypass mode.
  • the method further includes:
  • the 4G chip is used to determine the maximum uplink transmission power according to the expected uplink power of the base station.
  • the 4G chip is used to amplify the uplink transmission signal based on the uplink transmission maximum power.
  • the determining the maximum uplink transmission power according to the expected uplink power of the base station by using the 4G chip includes:
  • the 4G chip is used to select the smallest value from the uplink open-loop power control power and the set uplink maximum transmission power as the uplink transmission maximum power.
  • the base station synchronization using the 5G chip includes:
  • the 5G chip is used to receive downlink base station signals, and base station synchronization is performed according to the downlink base station signals.
  • the embodiment of the present application also provides a communication control device, including:
  • the search and synchronization module is used to search for cells and synchronize base stations with 5G chips;
  • the allocation information acquisition module is used to obtain the time slot allocation information of the uplink time slot and the downlink time slot by using the 5G chip;
  • the control module is configured to use the 4G chip to control the switching states of the uplink amplification link and the downlink amplification link according to the time slot allocation information.
  • Embodiments of the present application also provide a communication device, including: a 5G chip and a 4G chip;
  • the 5G chip is used to search for cells and perform base station synchronization; obtain time slot allocation information of uplink time slots and downlink time slots;
  • the 4G chip is used to control the switching states of the uplink amplification link and the downlink amplification link according to the time slot allocation information.
  • An embodiment of the present application further provides a storage medium, where the storage medium stores one or more computer-executable instructions, where the one or more computer-executable instructions are used to execute the communication control method described in any one of the above.
  • a communication device (such as a repeater or an indoor distribution system) can use a 5G chip to search for cells and perform base station synchronization, and obtain time slot allocation information of uplink time slots and downlink time slots; Therefore, after the communication device establishes a 5G connection and synchronization with the base station based on the 5G chip, the communication device can use the 4G chip to control the switching states of the uplink amplification link and the downlink amplification link according to the time slot ratio information.
  • the uplink amplification link and downlink amplification chain of the communication device can be realized.
  • the outdoor base station signal can be amplified and transmitted to the indoor through the downlink amplification link, and the indoor signal can also be transmitted to the outdoor through the uplink amplification link, realizing 5G communication control based on 4G.
  • Figure 1 is a schematic diagram of an indoor distribution system or a repeater
  • Fig. 2 is an example diagram of an indoor distribution system
  • FIG. 3 is a flowchart of a communication control method provided by an embodiment of the present application.
  • Fig. 4 is an example diagram of controlling the switching states of uplink and downlink amplification links based on time slot allocation information
  • FIG. 5 is another flowchart of a communication control method provided by an embodiment of the present application.
  • FIG. 6 is still another flowchart of a communication control method provided by an embodiment of the present application.
  • FIG. 7 is a flowchart of determining the maximum power of uplink transmission provided by an embodiment of the present application.
  • FIG. 8 is a block diagram of a communication control apparatus provided by an embodiment of the present application.
  • FIG. 9 is another block diagram of a communication control apparatus provided by an embodiment of the present application.
  • FIG. 10 is still another block diagram of a communication control apparatus provided by an embodiment of the present application.
  • FIG. 11 is an example diagram of a communication device.
  • the indoor distribution system can directly connect the outdoor base station signal, and after the indoor distribution system processes the base station signal, the base station signal is covered indoors; the repeater can also be connected to the outdoor base station. The signal is processed by the repeater and then transmitted to the indoor indoor distribution system, and the indoor distribution system realizes the indoor coverage of the base station signal;
  • FIG. 1 An example of the principle of an indoor distribution system or a repeater can be shown in Figure 1.
  • PA Power Amplifier
  • LNA Low Noise Amplifier
  • PMU Power Amplifier
  • Management Unit is the power management unit. It can be seen from Figure 1 that the outdoor radio frequency part receives the outdoor base station signal and sends it to the baseband chip. The baseband chip synchronizes and resides in a suitable cell, and then turns on the indoor radio frequency part to connect the base station to the baseband chip.
  • the outdoor base station signal is amplified and transmitted to the indoor link, which can be called the downlink amplification link, and the indoor signal amplified and transmitted to the outdoor link can be called the uplink amplification link, wherein,
  • the uplink amplification link transmits the amplified signal to the outdoor, the signal also enters the baseband chip, and the baseband chip performs frequency tracking and power control processing according to the received signal.
  • the indoor distribution system mainly includes a master node 01 and a plurality of slave nodes 02, wherein the master node is connected to the base station signal (the master node can be directly connected to the outdoor base station signal, or can be directly connected to the base station signal).
  • the base station signal provided by the station is sent to the slave node, and the slave node processes the received base station signal and sends it to the air interface to complete the coverage of the base station signal in the indoor environment.
  • the indoor distribution system can be connected to the base station signal by the master node, and then transmitted to the slave node after processing.
  • the indoor distribution system can directly connect to the outdoor base station signal or the base station signal provided by the repeater.
  • 5G high frequency band is not supported, and the loss of passive components is large, the quality is uneven, and the end coverage cannot meet the requirements;
  • the current indoor distribution system does not support 5G MIMO (Multiple-In Multiple-Out)
  • MIMO Multiple-In Multiple-Out
  • two passive indoor distribution systems are completely built to support MIMO (multiple-in-multiple-out)
  • the cost is high and the construction is difficult, and it is difficult to achieve complete real-time monitoring of network management. Management and maintenance troubleshooting are also difficult.
  • the communication device can be provided with a 5G chip and a 4G chip, and the 5G chip can realize cell search and base station synchronization, so that the 4G chip performs communication control based on the information provided by the 5G chip, so as to realize 5G communication control on the basis of 4G.
  • the cell search and base station synchronization can be completed by the 5G chip, and the communication control can be completed by the 4G chip;
  • the communication device may be a repeater or an indoor distribution system, and the communication device is an indoor When distributing the system, the communication device may specifically be the master node in the indoor distribution system;
  • FIG. 3 shows a flow of a communication control method provided by an embodiment of the present application, and the flow may be executed by a communication device.
  • the flow may include:
  • Step S100 using the 5G chip to search for a cell and perform base station synchronization.
  • Step S100 can be implemented by a 5G chip of the communication device; optionally, after the communication device is powered on, the 5G chip in the communication device can search for cells and perform base station synchronization.
  • the embodiment of the present application may use a 5G chip to receive downlink base station signals, and perform base station synchronization according to the downlink base station signals; The embodiment does not limit this.
  • the uplink and downlink amplification links of the communication equipment remain closed, that is, the communication equipment does not amplify the indoor signal and transmit it to the outdoors, nor does it amplify the outdoor base station signal. and transmitted indoors.
  • Step S110 using the 5G chip to obtain the time slot ratio information of the uplink time slot and the downlink time slot.
  • Step S110 can be realized by the 5G chip of the communication device; after the communication device is synchronized with the base station based on the 5G chip, the communication device can use the 5G chip to read the broadcast signal of the base station, and obtain the time slot ratio information of the uplink time slot and the downlink time slot from the broadcast signal of the base station , the time slot allocation information may indicate the time slot allocation relationship between the uplink and the downlink.
  • the embodiment of the present application may use a 5G chip to read the first system information block (SIB1), and obtain the time slot allocation information from the first system information block .
  • SIB1 first system information block
  • Step S120 using the 4G chip to control the switch states of the uplink amplification link and the downlink amplification link according to the time slot allocation information.
  • Step S120 can be implemented by the 4G chip of the communication device; the 4G chip can obtain the time slot ratio information determined by the 5G chip, so that the 4G chip can control the uplink and downlink amplification links based on the time slot ratio information. switch status.
  • the 4G chip of the communication device can be synchronized with the base station in the 5G chip of the communication device, and based on the time slot ratio information of the uplink time slot and the downlink time slot obtained by the 5G chip, the switch of the uplink amplification link and the downlink amplification link can be controlled. Therefore, after the 5G chip establishes the 5G connection and synchronization with the base station, in the case of 5G communication, the switch control of the uplink amplification link and the downlink amplification link of the communication equipment can be realized, so that the outdoor base station signal can pass through.
  • the downlink amplification link is amplified and transmitted indoors, and the indoor signal can also be transmitted to the outdoor through the uplink amplification link, realizing 5G communication control based on 4G.
  • At least one of the following principles can be paid attention to:
  • the time for controlling the opening of the down-amplifying link shall include the transmission time of all down-slots, and similarly, the time for controlling the opening of the up-amplifying link shall include the transmission time of all the up-slots;
  • guard interval time is shown in Figure 4
  • guard interval time is shown in Figure 4
  • the GP Guard Space, guard interval
  • the GP can be determined according to the length of the uplink time slot and the downlink time slot, and the size of the GP determines the size of the cell radius supported by the communication device.
  • a communication device (such as a repeater or an indoor distribution system) can use a 5G chip to search for cells and perform base station synchronization, and obtain time slot allocation information of uplink time slots and downlink time slots; Therefore, after the communication device establishes a 5G connection and synchronization with the base station based on the 5G chip, the communication device can use the 4G chip to control the switching states of the uplink amplification link and the downlink amplification link according to the time slot ratio information.
  • the uplink amplification link and downlink amplification chain of the communication device can be realized.
  • the outdoor base station signal can be amplified and transmitted to the indoor through the downlink amplification link, and the indoor signal can also be transmitted to the outdoor through the uplink amplification link, realizing 5G communication control based on 4G.
  • the 5G chip of the communication device can also obtain the RSSI (Received Signal Strength Indication) value and provide it to the 4G chip of the communication device; thus, the 4G chip can obtain the RSSI value provided by the 5G chip, according to the RSSI value
  • the value controls whether the front-end LNA (low noise amplifier) of the communication device is in the normal working mode or in the bypass mode; optionally, FIG. 5 shows another flow of the communication control method provided by the embodiment of the present application , with reference to Figure 5, the process may include:
  • Step S200 using the 5G chip to obtain the RSSI value.
  • Step S210 using the 4G chip to determine whether the RSSI value is less than the set value, if yes, go to step S220, if not, go to step S230.
  • Step S220 using the 4G chip to control the front-stage LNA to be in a normal working mode.
  • Step S230 using the 4G chip to control the front-stage LNA to be in the bypass mode.
  • the 4G chip can control the front-end LNA to be in the normal working mode; if the RSSI value is not less than the set value, the 4G chip can control the front-end LNA The stage LNA is in the bypass mode; the specific value of the set value can be determined according to the actual situation, such as -45dbm, etc., which is not limited in the embodiment of the present application.
  • the front-end LNA of the communication device is used to amplify the signal transmitted from the outdoor to the indoor in the downlink amplification link, and the signal transmitted from the indoor to the outdoor in the uplink amplification link.
  • the 4G chip determines whether the front-stage LNA is in the normal working mode or the bypass mode based on the RSSI value provided by the 5G chip, and can further control the uplink amplification link and the downlink amplification link to achieve further 5G communication control based on 4G.
  • the 5G chip can obtain the expected uplink power of the base station from the broadcast signal of the base station and provide it to the 4G chip; thus, the 4G chip can determine the expected uplink power of the base station based on the base station. The maximum uplink transmission power, and then the 4G chip can amplify the uplink transmission signal based on the determined uplink transmission maximum power, so as to realize the uplink transmission of 5G communication signals based on 4G; Still another flow of the communication control method, referring to FIG. 6, the flow may include:
  • Step S300 using the 5G chip to obtain the expected uplink power of the base station from the broadcast signal of the base station.
  • Step S310 using the 4G chip to determine the maximum uplink transmission power according to the expected uplink power of the base station.
  • the 5G chip can transmit the expected uplink power of the base station to the 4G chip, so that the 4G chip can calculate the maximum uplink transmission power based on the expected uplink power of the base station.
  • step S310 may be as shown in FIG. 7 , including:
  • Step S400 using the 4G chip to determine the uplink open-loop power control power according to the expected uplink power of the base station.
  • the expected uplink power of the base station may represent the power strength of the signal that the base station expects to reach the base station.
  • the embodiment of the present application may determine the uplink open-loop power control power, and the uplink open-loop power control power may be considered as a communication device.
  • the open-loop power control function the open-loop power control power of the uplink amplification link;
  • formula 1 may be used to calculate the uplink open-loop power control power:
  • Power_ul_open is the uplink open-loop power control power
  • Power_p0n_pusch is the expected uplink power of the base station, indicating the power strength of the base station's expected signal reaching the base station
  • is the path loss correction coefficient, and the value of ⁇ can be set according to the actual situation, such as taking ⁇ as 1
  • PL can be expressed as Power_rs–RSRP, where Power_rs is the reference signal transmit power, which can be obtained from the broadcast signal of the base station, and RSRP is the reference signal received power, which can be obtained by measurement
  • 10log10(RBnum) represents the SRS (sounding reference signal) configuration Power offset after a certain number of RBs (resource blocks); offset is the set offset value.
  • Step S410 using the 4G chip to select a minimum value from the uplink open-loop power control power and the set uplink maximum transmission power as the calculated uplink transmission maximum power.
  • the set uplink maximum transmit power can be selected in this embodiment of the present application, and the value of the set uplink maximum transmit power can be set according to the actual situation. From the uplink open-loop power control power and the set uplink maximum transmission power, the minimum value can be selected as the uplink transmission maximum power, that is, the smaller value of the uplink open-loop power control power and the set uplink maximum transmission power is used as the uplink transmission.
  • Maximum power
  • the following formula 2 may be used to calculate the maximum uplink transmission power:
  • Power_ul_max min(Power_ul_max_set, Power_ul_open), formula 2;
  • Power_ul_max is the calculated upstream transmission maximum power
  • Power_ul_max_set is the upstream maximum transmission power set
  • Power_ul_max_set can be preset according to the situation, such as setting 17dbm etc., the embodiment of the present application is not limited
  • Power_ul_open is the upstream open-loop power control power.
  • step S320 use a 4G chip to amplify the transmission signal in the uplink based on the maximum uplink transmission power.
  • this embodiment of the present application can amplify the uplink transmission signal based on the uplink transmission maximum power, so that the transmission from indoor to outdoor can be achieved.
  • the signal arrives at the base station, it can meet the power intensity that the base station expects the signal to reach at the base station, and realize accurate 4G-based 5G communication control in the uplink amplification link.
  • the 5G chip of the communication device can obtain the downlink power of the base station from the broadcast signal of the base station, so that the 4G chip can calculate the maximum downlink power based on the downlink power of the base station; further, based on the calculated maximum downlink power, 4G The chip can amplify the link in the downlink and transmit the signal with the maximum power in the downlink, so as to realize accurate 4G-based 5G communication control in the downlink amplifying link.
  • the communication control method provided by the embodiment of the present application can also control the 2/3/4G signal by the 4G chip, and control the 5G signal communication synchronously, so as to realize the multi-function 5G synchronization and control;
  • the transformation of the playback station or indoor distribution system which can be used for the near-end control combining unit system and the remote control combining unit system of the repeater or indoor distribution system, to realize 2/3/4G signal control and 5G based on 4G chips Signal control, where the near end of the indoor distribution system refers to the master node end, and the far end refers to the slave node end.
  • the communication control apparatus provided by the embodiments of the present application will be introduced below.
  • the communication control apparatus described below can be considered as the functional modules that the communication equipment needs to set up to implement the communication control method provided by the embodiments of the present application; the content of the communication control apparatus described below , which can be referred to in correspondence with the content of the communication control method described above.
  • FIG. 8 shows an optional block diagram of a communication control apparatus provided by an embodiment of the present application.
  • the apparatus may include:
  • the search and synchronization module 100 is used for using the 5G chip to search for cells and perform base station synchronization;
  • the matching information obtaining module 110 is used for obtaining the time slot matching information of the uplink time slot and the downlink time slot by using the 5G chip;
  • the control module 120 is configured to use the 4G chip to control the switching states of the uplink amplification link and the downlink amplification link according to the time slot allocation information.
  • control module 120 is configured to use the 4G chip to control the switching states of the uplink amplification link and the downlink amplification link according to the time slot allocation information, including:
  • the time when the 4G chip is used to control the opening of the downlink amplification link includes the transmission time of all downlink time slots, and the time when the uplink amplification link is controlled to be opened includes the transmission time of all the uplink time slots;
  • the allocation information acquisition module 110 used to obtain the time slot allocation information of the uplink time slot and the downlink time slot by using the 5G chip, includes:
  • the 5G chip is used to read the broadcast signal of the base station, and the time slot ratio information of the uplink time slot and the downlink time slot is obtained from the broadcast signal of the base station.
  • the matching information acquisition module 110 is used to read the base station broadcast signal by using the 5G chip, and obtain the time slot matching information of the uplink time slot and the downlink time slot from the base station broadcast signal, including:
  • the 5G chip is used to read the first system information block, and the time slot allocation information is obtained from the first system information block.
  • FIG. 9 shows another optional block diagram of the communication control apparatus provided by the embodiment of the present application.
  • the apparatus may further include:
  • the RSSI value obtaining module 130 is used to obtain the RSSI value by using the 5G chip;
  • the mode control module 140 is configured to use the 4G chip to control whether the front-stage LNA is in the normal working mode or in the bypass mode according to the RSSI value.
  • the mode control module 140 configured to use a 4G chip to control whether the front-stage LNA is in the normal working mode or in the bypass mode according to the RSSI value includes:
  • the 4G chip is used to control the front-end LNA to be in normal operation mode, and if the RSSI value is not less than the set value, the 4G chip is used to control the front-end LNA to be in bypass mode.
  • the above communication control method may be implemented by a software program, and the software program runs in a processor integrated inside a chip or a chip module.
  • FIG. 10 shows another optional block diagram of the communication control apparatus provided by the embodiment of the present application.
  • the apparatus may further include:
  • the expected uplink power acquisition module 150 is used to obtain the expected uplink power of the base station from the broadcast signal of the base station by using the 5G chip;
  • the uplink transmission maximum power determination module 160 is configured to use the 4G chip to determine the uplink transmission maximum power according to the expected uplink power of the base station.
  • the uplink transmission signal module 170 is configured to use the 4G chip to amplify the uplink transmission signal based on the uplink transmission maximum power.
  • the uplink transmission maximum power determination module 160 is configured to use the 4G chip to determine the uplink transmission maximum power according to the expected uplink power of the base station, including:
  • the 4G chip is used to select the minimum value from the uplink open-loop power control power and the set uplink maximum transmission power as the calculated uplink transmission maximum power.
  • the search and synchronization module 100 used for synchronizing base stations with 5G chips, includes:
  • the 5G chip is used to receive downlink base station signals, and base station synchronization is performed according to the downlink base station signals.
  • the above-mentioned communication control apparatus may correspond to a chip with a data processing function in the user equipment, such as a baseband chip; or a chip module including a chip with a data processing function in the user equipment, or correspond to the user equipment.
  • the communication device may be a repeater or an indoor distribution system (such as a master node of an indoor distribution system). As shown in FIG. 11 , the communication device may include a 5G chip 10 and an indoor distribution system. 4G chip 20;
  • the 5G chip is used to search for cells and synchronize base stations; to obtain the time slot ratio information of uplink time slots and downlink time slots;
  • the 4G chip is used to control the switching states of the uplink amplification link and the downlink amplification link according to the time slot allocation information.
  • the 4G chip is used to control the switching states of the uplink amplification link and the downlink amplification link according to the time slot allocation information, including:
  • the time when the downlink amplification link is controlled to be opened includes all the downlink timeslot transmission times, and the time when the uplink amplification link is controlled to be opened includes all the uplink timeslot transmission times;
  • the 5G chip is used to obtain the time slot ratio information of the uplink time slot and the downlink time slot, including:
  • the 5G chip is used to read the broadcast signal of the base station, and obtain the time slot ratio information of the uplink time slot and the downlink time slot from the broadcast signal of the base station, including:
  • the first system information block is read, and the time slot allocation information is obtained from the first system information block.
  • the 5G chip can also be used to obtain the RSSI value
  • the 4G chip can also be used to control whether the front-stage LNA is in the normal working mode or in the bypass mode according to the RSSI value.
  • the 4G chip is used to control whether the front-stage LNA is in the normal working mode or in the bypass mode according to the RSSI value, including:
  • the previous stage LNA is controlled to be in the normal working mode, and if the RSSI value is not less than the set value, the previous stage LNA is controlled to be in the bypass mode.
  • the 5G chip can also be used to obtain the expected uplink power of the base station from the broadcast signal of the base station;
  • the 4G chip can also be used to determine the maximum power of uplink transmission according to the expected uplink power of the base station; and based on the maximum power of uplink transmission, to amplify the transmission signal in the uplink.
  • the 4G chip is used to determine the maximum uplink transmission power according to the expected uplink power of the base station, including:
  • the 5G chip used for base station synchronization includes:
  • a downlink base station signal is received, and base station synchronization is performed according to the downlink base station signal.
  • the embodiments of the present application can implement 5G communication control based on 4G.
  • the embodiment of the present application further provides a storage medium, where the storage medium can store one or more computer-executable instructions, and the one or more computer-executable instructions can be used to execute the communication control method provided by the embodiment of the present application.
  • the 5G chip and the 4G chip may call and execute corresponding instructions in the one or more computer-executable instructions, so as to implement the communication control method provided by the embodiment of the present application.
  • each module/unit included in each device and product described in the above embodiments it may be a software module/unit, a hardware module/unit, or a part of a software module/unit and a part of a hardware module/unit .
  • each module/unit included therein may be implemented by hardware such as circuits, or at least some modules/units may be implemented by a software program.
  • the remaining (if any) part of the modules/units can be implemented by hardware such as circuits; for each device and product applied to or integrated in the chip module, the modules/units contained therein can be They are all implemented by hardware such as circuits, and different modules/units can be located in the same component (such as a chip, circuit module, etc.) or in different components of the chip module, or at least some modules/units can be implemented by software programs.
  • the software program runs on the processor integrated inside the chip module, and the remaining (if any) part of the modules/units can be implemented by hardware such as circuits; for each device and product applied to or integrated in the terminal, each module contained in it
  • the units/units may all be implemented in hardware such as circuits, and different modules/units may be located in the same component (eg, chip, circuit module, etc.) or in different components in the terminal, or at least some of the modules/units may be implemented in the form of software programs Realization, the software program runs on the processor integrated inside the terminal, and the remaining (if any) part of the modules/units can be implemented in hardware such as circuits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信控制方法、装置、通信设备及存储介质,其中方法包括:利用5G芯片搜索小区及进行基站同步;利用5G芯片获取上行时隙和下行时隙的时隙配比信息;利用4G芯片根据所述时隙配比信息,控制上行放大链路和下行放大链路的开关状态。本申请实施例可实现在4G基础上的5G通信控制。

Description

一种通信控制方法、装置、通信设备及存储介质
本申请要求2020年6月30日提交中国专利局、申请号为CN202010616401.5、发明名称为“一种通信控制方法、装置、通信设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,具体涉及一种通信控制方法、装置、通信设备及存储介质。
背景技术
在大型建筑物、地下商场、地下停车场等室内环境下,移动通信信号较弱,极易形成移动通信的盲区和阴影区,导致手机等利用移动通信信号的终端无法正常使用。室内分布系统可用于改善室内环境的移动通信信号,利用室内分布系统可将基站信号均匀分布在室内每个角落,从而保证室内环境下拥有理想的信号覆盖。
室内分布系统的信号源主要有以下几种:以宏蜂窝作为信号源接入室内分布系统;以微蜂窝作为信号源接入室内分布系统;以直放站作为信号源接入室内分布系统。其中,直放站是利用施主天线空间耦合或利用耦合器件直接耦合存在富余容量的基站信号,再对接收到的信号进行放大,从而提供给室内分布系统。可见,室内分布系统可直接连接基站信号,也可是直放站连接基站信号后,再由直放站为室内分布系统提供基站信号。
随着5G(第五代移动通信技术)建设的加速,在由室内分布系统连接基站信号,或者由直放站连接基站信号时,如何在4G(第四 代移动通信技术)基础上实现5G通信控制,成为了本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本申请实施例提供一种通信控制方法、装置、通信设备及存储介质,以在4G基础上实现5G通信控制。
为实现上述目的,本申请实施例提供如下技术方案:
一种通信控制方法,包括:
利用5G芯片搜索小区及进行基站同步;
利用5G芯片获取上行时隙和下行时隙的时隙配比信息;
利用4G芯片根据所述时隙配比信息,控制上行放大链路和下行放大链路的开关状态。
可选的,所述利用4G芯片根据所述时隙配比信息,控制上行放大链路和下行放大链路的开关状态包括:
利用4G芯片控制下行放大链路打开的时间包含所有的下行时隙传输时间,控制上行放大链路打开的时间包含所有的上行时隙传输时间;
和/或,利用4G芯片控制下行放大链路的结束时间和上行放大链路的起始时间之间存在预设的保护间隔时间。
可选的,所述利用5G芯片获取上行时隙和下行时隙的时隙配比信息包括:
利用5G芯片读取基站广播信号,从基站广播信号中获取上行时隙和下行时隙的时隙配比信息。
可选的,所述利用5G芯片读取基站广播信号,从基站广播信号中获取上行时隙和下行时隙的时隙配比信息包括:
利用5G芯片读取第一系统信息块,从所述第一系统信息块中获 取所述时隙配比信息。
可选的,所述方法还包括:
利用5G芯片获取接受信号强度RSSI值;
利用4G芯片根据所述RSSI值控制前级低噪声放大器LNA是处于正常工作模式,还是处于旁路模式。
可选的,所述利用4G芯片根据所述RSSI值控制前级低噪声放大器LNA是处于正常工作模式,还是处于旁路模式包括:
若所述RSSI值小于设定值,则利用4G芯片控制前级LNA处于正常工作模式,若所述RSSI值不小于设定值,则利用4G芯片控制前级LNA处于旁路模式。
可选的,所述方法还包括:
利用5G芯片从基站广播信号中获取基站期望上行功率;
利用4G芯片根据所述基站期望上行功率,确定上行发送最大功率。
利用4G芯片基于所述上行发送最大功率,在上行放大链路传输信号。
可选的,所述利用4G芯片根据所述基站期望上行功率,确定上行发送最大功率包括:
利用4G芯片根据所述基站期望上行功率确定上行开环功控功率;
利用4G芯片从所述上行开环功控功率和设置的上行最大发射功率中,选取最小值作为所述上行发送最大功率。
可选的,所述利用5G芯片进行基站同步包括:
利用5G芯片接收下行基站信号,根据所述下行基站信号进行基站同步。
本申请实施例还提供一种通信控制装置,包括:
搜索及同步模块,用于利用5G芯片搜索小区及进行基站同步;
配比信息获取模块,用于利用5G芯片获取上行时隙和下行时隙的时隙配比信息;
控制模块,用于利用4G芯片根据所述时隙配比信息,控制上行放大链路和下行放大链路的开关状态。
本申请实施例还提供一种通信设备,包括:5G芯片和4G芯片;
所述5G芯片用于,搜索小区及进行基站同步;获取上行时隙和下行时隙的时隙配比信息;
所述4G芯片用于,根据所述时隙配比信息,控制上行放大链路和下行放大链路的开关状态。
本申请实施例还提供一种存储介质,所述存储介质存储一条或多条计算机可执行指令,所述一条或多条计算机可执行指令用于执行如上述任一项所述的通信控制方法。
本申请实施例提供的通信控制方法中,通信设备(如直放站或者室内分布系统)可利用5G芯片搜索小区及进行基站同步,并获取上行时隙和下行时隙的时隙配比信息;从而,在通信设备基于5G芯片建立与基站的5G连接和同步后,通信设备可利用4G芯片根据所述时隙配比信息,控制上行放大链路和下行放大链路的开关状态。可见,在本申请实施例中,通信设备的4G芯片可在通信设备的5G芯片建立与基站的5G连接和同步后,在5G通信的情况下,实现通信设备的上行放大链路和下行放大链路的开关控制,使得室外的基站信号能够通过下行放大链路放大传输到室内,而室内信号也可通过上行放大链路传输到室外,实现在4G基础上的5G通信控制。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而 易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为室内分布系统或者直放站的原理示例图;
图2为室内分布系统的示例图;
图3为本申请实施例提供的通信控制方法的流程图;
图4为基于时隙配比信息控制上、下行放大链路的开关状态的示例图;
图5为本申请实施例提供的通信控制方法的另一流程图;
图6为本申请实施例提供的通信控制方法的再一流程图;
图7为本申请实施例提供的确定上行发送最大功率的流程图;
图8为本申请实施例提供的通信控制装置的框图;
图9为本申请实施例提供的通信控制装置的另一框图;
图10为本申请实施例提供的通信控制装置的再一框图;
图11为通信设备的示例图。
具体实施方式
在实现室内信号覆盖时,本申请实施例可直接由室内分布系统连接室外的基站信号,由室内分布系统对基站信号进行处理后,将基站信号覆盖在室内;也可由直放站连接室外的基站信号,由直放站对基站信号进行处理后传输给室内的室内分布系统,由室内分布系统实现基站信号在室内的覆盖;
在一种示例中,室内分布系统或者直放站的原理示例可如图1所示,图1中PA(Power Amplifier)为功率放大器,LNA为(Low Noise Amplifier)为低噪声放大器,PMU(Power Management Unit)为电源管理单元,从图1可以看出:室外射频部分接收室外的基站信号,并 送入基带芯片,基带芯片同步并驻留在合适的小区上,然后打开室内射频部分,将基站信号放大后送入室内;图1示例的室外的基站信号通过放大传输到室内的链路可称为下行放大链路,室内信号放大传输到室外的链路可称为上行放大链路,其中,在上行放大链路传输放大信号到室外时,信号也进入基带芯片,基带芯片根据接收到的信号做频率跟踪和功率控制等处理。
在更进一步的说明中,如图2所示,室内分布系统主要包括主节点01和多个从节点02,其中,主节点连接基站信号(主节点可以直接连接室外的基站信号,也可以连接直放站提供的基站信号),将基站信号发送到从节点,从节点将接收到的基站信号处理后,发送到空口,完成基站信号在室内环境的覆盖。可见,室内分布系统可由主节点连接基站信号,并进行处理后传输给从节点。
在实现室内信号覆盖的场景下,室内分布系统可以直接连接室外的基站信号,也可连接直放站提供的基站信号,而随着5G建设的加速,由于目前直放站或室内分布系统大都建立在4G基础上,并不支持5G高频段,且无源器件损耗大,质量参差不齐,末端覆盖不能满足要求;同时随着5G高速率的要求,目前的室内分布系统并不支持5G的MIMO(Multiple-In Multiple-Out,多进多出),若完全新建两条无源室内分布系统来支持MIMO(多进多出),则成本高且施工难,并难以实现完整的网管实时监控,管理和维护排障也存在困难。可见,目前4G基础上的直放站或室内分布系统难以实现5G通信控制,这将导致诸多进一步问题的产生,因此在直放站或室内分布系统的4G基础上实现5G通信控制,成为了本领域技术人员亟需解决的技术问题。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部 分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请实施例中,通信设备可以设置5G芯片和4G芯片,由5G芯片实现小区搜索和基站同步,从而4G芯片基于5G芯片提供的信息进行通信控制,以实现在4G基础上实现5G通信控制,即在本申请实施例中,小区搜索与基站同步可由5G芯片完成,通信控制可由4G芯片完成;需要说明的是,所述通信设备可以是直放站或者室内分布系统,在通信设备为室内分布系统时,通信设备可以具体为室内分布系统中的主节点;
在可选实现中,图3示出了本申请实施例提供的通信控制方法的流程,该流程可由通信设备执行,参照图3,该流程可以包括:
步骤S100、利用5G芯片搜索小区及进行基站同步。
步骤S100可由通信设备的5G芯片实现;可选的,通信设备在开机上电后,通信设备中的5G芯片可以搜索小区及进行基站同步。
在进行基站同步的可选实现中,本申请实施例可利用5G芯片接收下行基站信号,根据所述下行基站信号进行基站同步;当然,本申请实施例也可采用其他方式实现基站同步,本申请实施例对此并不设限。
在利用5G芯片搜索小区及进行基站同步的过程中,通信设备的上行放大链路和下行放大链路保持关闭状态,即通信设备不对室内信号进行放大并传输到室外,也不对室外基站信号进行放大并传输到室内。
步骤S110、利用5G芯片获取上行时隙和下行时隙的时隙配比信息。
步骤S110可由通信设备的5G芯片实现;通信设备基于5G芯片 与基站进行同步后,可利用5G芯片读取基站广播信号,从基站广播信号中获取上行时隙和下行时隙的时隙配比信息,所述时隙配比信息可以表示上行与下行的时隙配比关系。
在更为具体的可选实现中,在进行基站同步后,本申请实施例可利用5G芯片读取第一系统信息块(SIB1),从第一系统信息块中获取所述时隙配比信息。
步骤S120、利用4G芯片根据所述时隙配比信息,控制上行放大链路和下行放大链路的开关状态。
步骤S120可由通信设备的4G芯片实现;4G芯片可获取5G芯片确定的所述时隙配比信息,从而4G芯片可基于所述时隙配比信息,控制上行放大链路和下行放大链路的开关状态。
可见,通信设备的4G芯片可在通信设备的5G芯片与基站同步,并基于5G芯片获取的上行时隙和下行时隙的时隙配比信息,控制上行放大链路和下行放大链路的开关状态,从而4G芯片可在5G芯片建立与基站的5G连接和同步后,在5G通信的情况下,实现通信设备的上行放大链路和下行放大链路的开关控制,使得室外的基站信号能够通过下行放大链路放大传输到室内,而室内信号也可通过上行放大链路传输到室外,实现在4G基础上的5G通信控制。
在可选实现中,结合图4所示,根据所述时隙配比信息,控制上行放大链路和下行放大链路的开关状态可以注意以下至少一项原则:
控制下行放大链路打开的时间应包含所有的下行时隙传输时间,同样,控制上行放大链路打开的时间应包含所有的上行时隙传输时间;
控制下行放大链路的结束时间和上行放大链路的起始时间之间存在预设的保护间隔时间(保护间隔时间如图4所示t),以防止上行放大链路和下行放大链路在很短的时间处于同时打开状态,形成上下行闭环的自激。
需要说明的是,图4中GP(Guard Space,保护间隔)可以根据上行时隙、下行时隙的长度决定,GP大小决定了通信设备支持的小区半径的大小。
本申请实施例提供的通信控制方法中,通信设备(如直放站或者室内分布系统)可利用5G芯片搜索小区及进行基站同步,并获取上行时隙和下行时隙的时隙配比信息;从而,在通信设备基于5G芯片建立与基站的5G连接和同步后,通信设备可利用4G芯片根据所述时隙配比信息,控制上行放大链路和下行放大链路的开关状态。可见,在本申请实施例中,通信设备的4G芯片可在通信设备的5G芯片建立与基站的5G连接和同步后,在5G通信的情况下,实现通信设备的上行放大链路和下行放大链路的开关控制,使得室外的基站信号能够通过下行放大链路放大传输到室内,而室内信号也可通过上行放大链路传输到室外,实现在4G基础上的5G通信控制。
在可选实现中,通信设备的5G芯片还可获取RSSI(Received Signal Strength Indication,接受信号强度)值,并提供给通信设备的4G芯片;从而4G芯片可获取5G芯片提供的RSSI值,根据RSSI值控制通信设备的前级LNA(低噪声放大器)是处于正常工作模式,还是处于旁路(Bypass)模式;可选的,图5示出了本申请实施例提供的通信控制方法的另一流程,参照图5,该流程可以包括:
步骤S200、利用5G芯片获取RSSI值。
步骤S210、利用4G芯片判断所述RSSI值是否小于设定值,若是,执行步骤S220,若否,执行步骤S230。
步骤S220、利用4G芯片控制前级LNA处于正常工作模式。
步骤S230、利用4G芯片控制前级LNA处于旁路模式。
在具体的可选实现中,若所述RSSI值小于设定值,则利用4G芯片可控制前级LNA处于正常工作模式,若所述RSSI值不小于设定 值,则利用4G芯片可控制前级LNA处于旁路模式;设定值的具体数值可根据实际情况确定,例如-45dbm等,本申请实施例并不限制。
需要说明的是,结合图1所示,通信设备的前级LNA用于在下行放大链路中对由室外传输向室内的信号进行放大,在上行放大链路中对由室内传输向室外的信号进行放大;本申请实施例由4G芯片基于5G芯片提供的RSSI值,决定前级LNA是处于正常工作模式还是旁路模式,能够对上行放大链路和下行放大链路进行进一步的控制,实现进一步在4G基础上的5G通信控制。
在可选实现中,如果通信设备采用开环功控功能,则5G芯片可从基站广播信号中获取基站期望上行功率,并提供给4G芯片;从而4G芯片可基于所述基站期望上行功率,确定上行发送最大功率,进而4G芯片可基于确定的上行发送最大功率,在上行放大链路传输信号,以实现基于4G的5G通信信号上行传输;可选的,图6示出了本申请实施例提供的通信控制方法的再一流程,参照图6,该流程可以包括:
步骤S300、利用5G芯片从基站广播信号中获取基站期望上行功率。
步骤S310、利用4G芯片根据所述基站期望上行功率,确定上行发送最大功率。
可选的,5G芯片在获取基站期望上行功率后,可将所述基站期望上行功率传输给4G芯片,从而4G芯片可基于所述基站期望上行功率,计算上行发送最大功率。
在更为具体的可选实现中,步骤S310的可选实现可如图7所示,包括:
步骤S400、利用4G芯片根据所述基站期望上行功率确定上行开环功控功率。
可选的,基站期望上行功率可以表示基站期望信号到达基站处的功率强度,基于基站期望上行功率,本申请实施例可确定上行开环功控功率,上行开环功控功率可以认为是通信设备采用开环功控功能的情况下,上行放大链路的开环功控功率;
可选的,本申请实施例可采用如下公式1计算上行开环功控功率:
Power_ul_open=Power_p0n_pusch+α*PL+
10log10(RBnum)+offset,公式1;
其中,Power_ul_open为上行开环功控功率;Power_p0n_pusch为基站期望上行功率,表示基站期望信号到达基站处的功率强度;α为路损纠正系数,可根据实际情况设置α的值,如取α为1;PL可以表示为Power_rs–RSRP,其中,Power_rs为参考信号发送功率,可从基站广播信号中获取,RSRP为参考信号接收功率,可通过测量获得;10log10(RBnum)表示SRS(探测参考信号)配置一定数量的RB(资源块)之后的功率偏置;offset为设定的偏移值。
步骤S410、利用4G芯片从所述上行开环功控功率和设置的上行最大发射功率中,选取最小值作为计算的上行发送最大功率。
在基于基站期望上行功率确定上行开环功控功率后,本申请实施例可调取设置的上行最大发射功率,所述设置的上行最大发射功率的数值可根据实际情况设置,从而本申请实施例可从所述上行开环功控功率和设置的上行最大发射功率中,选取最小值作为上行发送最大功率,即上行开环功控功率和设置的上行最大发射功率中数值较小的作为上行发送最大功率;
可选的,本申请实施例可采用如下公式2计算上行发送最大功率:
Power_ul_max=min(Power_ul_max_set,Power_ul_open),公式2;
其中,Power_ul_max为计算的上行发送最大功率;Power_ul_max_set为设置的上行最大发射功率,Power_ul_max_set可 以根据情况预先设置,例如设置17dbm等,本申请实施例并不限制;Power_ul_open为上行开环功控功率。
回到图6,本申请实施例可执行步骤S320:利用4G芯片基于所述上行发送最大功率,在上行放大链路传输信号。
在计算出上行发送最大功率,明确了基站期望信号到达基站处的功率强度后,本申请实施例可基于所述上行发送最大功率,在上行放大链路传输信号,从而使得由室内传输向室外的信号到达基站处时,能够符合基站期望信号到达基站处的功率强度,实现在上行放大链路,精准的基于4G的5G通信控制。
在进一步的可选实现中,通信设备的5G芯片可从基站广播信号中获取基站下行功率,从而4G芯片可基于所述基站下行功率,计算下行最大功率;进而,基于计算的下行最大功率,4G芯片可在下行放大链路,以所述下行最大功率传输信号,实现在下行放大链路,精准的基于4G的5G通信控制。
本申请实施例提供的通信控制方法也可由4G芯片控制2/3/4G信号,并同步控制5G信号通信,从而实现多功能5G同步和控制;本申请实施例的方案可以用于无线拉远直放站或者室内分布系统的改造,具体可用于直放站或者室内分布系统的近端控制合路单元系统和远端控制合路单元系统,实现基于4G芯片的2/3/4G信号控制和5G信号控制,其中室内分布系统的近端是指主节点端,远端是指从节点端。
通过应用本申请实施例的方案,可以实现控制转发2/3/4G信号和5G信号;实现与基站同步后查询4/5G模式通道的上下行时隙配比、4/5G帧头位置偏移量、额定输出功率、增益、设备输入信号频段、频点、RSRP(参考信号接收功率)、SINR(信号与干扰加噪声比)、CellID(小区ID)等网络参数;并且,本申请实施例可根据 RSSI值的,决定前级LNA在正常工作模式还是在Bypass模式;同时,从基站广播信号中获取基站期望上行功率和基站下行功率,计算上行放大链路的上行发送最大功率,实现在上行放大链路的精准通信控制,和在下行放大链路的精准通信控制。
上文描述了本申请实施例提供的多个实施例方案,各实施例方案介绍的各可选方式可在不冲突的情况下相互结合、交叉引用,从而延伸出多种可能的实施例方案,这些均可认为是本申请实施例披露、公开的实施例方案。
下面对本申请实施例提供的通信控制装置进行介绍,下文描述的通信控制装置可以认为是通信设备为实现本申请实施例提供的通信控制方法所需设置的功能模块;下文描述的通信控制装置的内容,可与上文描述的通信控制方法的内容相互对应参照。
在可选实现中,图8示出了本申请实施例提供的通信控制装置的可选框图,参照图8,该装置可以包括:
搜索及同步模块100,用于利用5G芯片搜索小区及进行基站同步;
配比信息获取模块110,用于利用5G芯片获取上行时隙和下行时隙的时隙配比信息;
控制模块120,用于利用4G芯片根据所述时隙配比信息,控制上行放大链路和下行放大链路的开关状态。
可选的,控制模块120,用于利用4G芯片根据所述时隙配比信息,控制上行放大链路和下行放大链路的开关状态包括:
利用4G芯片控制下行放大链路打开的时间包含所有的下行时隙传输时间,控制上行放大链路打开的时间包含所有的上行时隙传输时间;
和/或,利用4G芯片控制下行放大链路的结束时间和上行放大链 路的起始时间之间存在预设的保护间隔时间。
可选的,配比信息获取模块110,用于利用5G芯片获取上行时隙和下行时隙的时隙配比信息包括:
利用5G芯片读取基站广播信号,从基站广播信号中获取上行时隙和下行时隙的时隙配比信息。
可选的,配比信息获取模块110,用于利用5G芯片读取基站广播信号,从基站广播信号中获取上行时隙和下行时隙的时隙配比信息包括:
利用5G芯片读取第一系统信息块,从所述第一系统信息块中获取所述时隙配比信息。
可选的,图9示出了本申请实施例提供的通信控制装置的另一可选框图,结合图8和图9所示,该装置还可以包括:
RSSI值获取模块130,用于利用5G芯片获取RSSI值;
模式控制模块140,用于利用4G芯片根据所述RSSI值控制前级LNA是处于正常工作模式,还是处于旁路模式。
可选的,模式控制模块140,用于利用4G芯片根据所述RSSI值控制前级LNA是处于正常工作模式,还是处于旁路模式包括:
若所述RSSI值小于设定值,则利用4G芯片控制前级LNA处于正常工作模式,若所述RSSI值不小于设定值,则利用4G芯片控制前级LNA处于旁路模式。
需要说明的是,上述通信控制方法可以采用软件程序的方式实现,该软件程序运行于芯片或芯片模组内部集成的处理器中。
可选的,图10示出了本申请实施例提供的通信控制装置的再一可选框图,结合图8和图10所示,该装置还可以包括:
期望上行功率获取模块150,用于利用5G芯片从基站广播信号中获取基站期望上行功率;
上行发送最大功率确定模块160,用于利用4G芯片根据所述基站期望上行功率,确定上行发送最大功率。
上行链路传输信号模块170,用于利用4G芯片基于所述上行发送最大功率,在上行放大链路传输信号。
可选的,上行发送最大功率确定模块160,用于利用4G芯片根据所述基站期望上行功率,确定上行发送最大功率包括:
利用4G芯片根据所述基站期望上行功率确定上行开环功控功率;
利用4G芯片从所述上行开环功控功率和设置的上行最大发射功率中,选取最小值作为计算的上行发送最大功率。
可选的,搜索及同步模块100,用于利用5G芯片进行基站同步包括:
利用5G芯片接收下行基站信号,根据所述下行基站信号进行基站同步。
在具体实施中,上述通信控制装置可以对应于用户设备中具有数据处理功能的芯片,如基带芯片;或者对应于用户设备中包括具有数据处理功能芯片的芯片模组,或者对应于用户设备。
本申请实施例还提供一种通信设备,所述通信设备可以是直放站或者室内分布系统(如室内分布系统的主节点),如图11所示,所述通信设备可以包括5G芯片10和4G芯片20;
其中,5G芯片用于,搜索小区及进行基站同步;获取上行时隙和下行时隙的时隙配比信息;
4G芯片用于,根据所述时隙配比信息,控制上行放大链路和下行放大链路的开关状态。
可选的,4G芯片,用于根据所述时隙配比信息,控制上行放大链路和下行放大链路的开关状态包括:
控制下行放大链路打开的时间包含所有的下行时隙传输时间,控 制上行放大链路打开的时间包含所有的上行时隙传输时间;
和/或,控制下行放大链路的结束时间和上行放大链路的起始时间之间存在预设的保护间隔时间。
可选的,5G芯片,用于获取上行时隙和下行时隙的时隙配比信息包括:
读取基站广播信号,从基站广播信号中获取上行时隙和下行时隙的时隙配比信息。
可选的,5G芯片,用于读取基站广播信号,从基站广播信号中获取上行时隙和下行时隙的时隙配比信息包括:
读取第一系统信息块,从所述第一系统信息块中获取所述时隙配比信息。
可选的,在本申请实施例中,5G芯片还可用于,获取RSSI值;
4G芯片还可用于,根据所述RSSI值控制前级LNA是处于正常工作模式,还是处于旁路模式。
可选的,4G芯片,用于根据所述RSSI值控制前级LNA是处于正常工作模式,还是处于旁路模式包括:
若所述RSSI值小于设定值,则控制前级LNA处于正常工作模式,若所述RSSI值不小于设定值,则控制前级LNA处于旁路模式。
可选的,在本申请实施例中,5G芯片还可用于,从基站广播信号中获取基站期望上行功率;
4G芯片还可用于,根据所述基站期望上行功率,确定上行发送最大功率;基于所述上行发送最大功率,在上行放大链路传输信号。
可选的,4G芯片用于,根据所述基站期望上行功率,确定上行发送最大功率包括:
根据所述基站期望上行功率确定上行开环功控功率;
从所述上行开环功控功率和设置的上行最大发射功率中,选取最 小值作为计算的上行发送最大功率。
可选的,5G芯片用于进行基站同步包括:
接收下行基站信号,根据所述下行基站信号进行基站同步。
本申请实施例可实现在4G基础上的5G通信控制。
本申请实施例还提供一种存储介质,所述存储介质可存储一条或多条计算机可执行指令,所述一条或多条计算机可执行指令可用于执行本申请实施例提供的通信控制方法。可选的,5G芯片和4G芯片可调用所述一条或多条计算机可执行指令中相应的指令并执行,以实现执行本申请实施例提供的通信控制方法。
关于上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
虽然本申请实施例披露如上,但本申请并非限定于此。任何本领 域技术人员,在不脱离本申请的精神和范围内,均可作各种更动与修改,因此本申请的保护范围应当以权利要求所限定的范围为准。

Claims (12)

  1. 一种通信控制方法,其特征在于,包括:
    利用5G芯片搜索小区及进行基站同步;
    利用5G芯片获取上行时隙和下行时隙的时隙配比信息;
    利用4G芯片根据所述时隙配比信息,控制上行放大链路和下行放大链路的开关状态。
  2. 根据权利要求1所述的通信控制方法,其特征在于,所述利用4G芯片根据所述时隙配比信息,控制上行放大链路和下行放大链路的开关状态包括:
    利用4G芯片控制下行放大链路打开的时间包含所有的下行时隙传输时间,控制上行放大链路打开的时间包含所有的上行时隙传输时间;
    和/或,利用4G芯片控制下行放大链路的结束时间和上行放大链路的起始时间之间存在预设的保护间隔时间。
  3. 根据权利要求1所述的通信控制方法,其特征在于,所述利用5G芯片获取上行时隙和下行时隙的时隙配比信息包括:
    利用5G芯片读取基站广播信号,从基站广播信号中获取上行时隙和下行时隙的时隙配比信息。
  4. 根据权利要求3所述的通信控制方法,其特征在于,所述利用5G芯片读取基站广播信号,从基站广播信号中获取上行时隙和下行时隙的时隙配比信息包括:
    利用5G芯片读取第一系统信息块,从所述第一系统信息块中获取所述时隙配比信息。
  5. 根据权利要求1所述的通信控制方法,其特征在于,还包括:
    利用5G芯片获取接受信号强度RSSI值;
    利用4G芯片根据所述RSSI值控制前级低噪声放大器LNA是处于正常工作模式,还是处于旁路模式。
  6. 根据权利要求5所述的通信控制方法,其特征在于,所述利用4G芯片根据所述RSSI值控制前级低噪声放大器LNA是处于正常工作模式,还是处于旁路模式包括:
    若所述RSSI值小于设定值,则利用4G芯片控制前级LNA处于正常工作模式,若所述RSSI值不小于设定值,则利用4G芯片控制前级LNA处于旁路模式。
  7. 根据权利要求1所述的通信控制方法,其特征在于,还包括:
    利用5G芯片从基站广播信号中获取基站期望上行功率;
    利用4G芯片根据所述基站期望上行功率,确定上行发送最大功率;
    利用4G芯片基于所述上行发送最大功率,在上行放大链路传输信号。
  8. 根据权利要求7所述的通信控制方法,其特征在于,所述利用4G芯片根据所述基站期望上行功率,确定上行发送最大功率包括:
    利用4G芯片根据所述基站期望上行功率确定上行开环功控功率;
    利用4G芯片从所述上行开环功控功率和设置的上行最大发射功率中,选取最小值作为所述上行发送最大功率。
  9. 根据权利要求1所述的通信控制方法,其特征在于,所述利用5G芯片进行基站同步包括:
    利用5G芯片接收下行基站信号,根据所述下行基站信号进行基站同步。
  10. 一种通信控制装置,其特征在于,包括:
    搜索及同步模块,用于利用5G芯片搜索小区及进行基站同步;
    配比信息获取模块,用于利用5G芯片获取上行时隙和下行时隙的 时隙配比信息;
    控制模块,用于利用4G芯片根据所述时隙配比信息,控制上行放大链路和下行放大链路的开关状态。
  11. 一种通信设备,其特征在于,包括:5G芯片和4G芯片;
    所述5G芯片用于,搜索小区及进行基站同步;获取上行时隙和下行时隙的时隙配比信息;
    所述4G芯片用于,根据所述时隙配比信息,控制上行放大链路和下行放大链路的开关状态。
  12. 一种存储介质,其特征在于,所述存储介质存储一条或多条计算机可执行指令,所述一条或多条计算机可执行指令用于执行如权利要求1-9任一项所述的通信控制方法。
PCT/CN2021/085242 2020-06-30 2021-04-02 一种通信控制方法、装置、通信设备及存储介质 WO2022001266A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/003,814 US20230224816A1 (en) 2020-06-30 2021-04-02 Communication control method and apparatus, communication device and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010616401.5A CN111740791B (zh) 2020-06-30 2020-06-30 一种通信控制方法、装置、通信设备及存储介质
CN202010616401.5 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022001266A1 true WO2022001266A1 (zh) 2022-01-06

Family

ID=72653809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085242 WO2022001266A1 (zh) 2020-06-30 2021-04-02 一种通信控制方法、装置、通信设备及存储介质

Country Status (3)

Country Link
US (1) US20230224816A1 (zh)
CN (1) CN111740791B (zh)
WO (1) WO2022001266A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114828032A (zh) * 2021-01-28 2022-07-29 中国移动通信有限公司研究院 信息处理方法、装置、相关设备及存储介质
CN112911694A (zh) * 2021-02-05 2021-06-04 陕西天基通信科技有限责任公司 一种利用4g场强计算5g直放站上行发射开环功率控制的方法
CN114374443B (zh) * 2021-12-14 2023-06-30 四川天邑康和通信股份有限公司 一种直放站信号监测装置、系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180145818A1 (en) * 2016-11-22 2018-05-24 Samsung Electronics Co., Ltd. Method and apparatus for multiplexing uplink channels in wireless cellular communication system
US20180309409A1 (en) * 2017-04-25 2018-10-25 Qorvo Us, Inc. Multi-mode power management system supporting fifth-generation new radio
CN111316755A (zh) * 2017-11-09 2020-06-19 谷歌有限责任公司 使能同时使用多种蜂窝网络技术
CN111342862A (zh) * 2019-12-17 2020-06-26 锐石创芯(重庆)科技有限公司 支持lte/nr双连接的射频前端模组及移动终端

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102457972B (zh) * 2010-11-01 2014-06-25 中国移动通信集团上海有限公司 一种不同时隙配比的同频组网方法及装置
EP2903227B1 (en) * 2014-01-30 2018-10-17 Sony Corporation Method for operating a base station in a wireless radio network
CN105338612B (zh) * 2014-08-08 2019-12-27 中国移动通信集团有限公司 一种无线直放站的同步和控制方法、装置以及无线直放站
CN106162815B (zh) * 2015-03-30 2019-07-12 展讯通信(上海)有限公司 无线蜂窝网络及其通信方法
US11051211B2 (en) * 2017-04-13 2021-06-29 Samsung Electronics Co., Ltd Method and system for managing 4G-5G inter-network switching
CN108540254B (zh) * 2018-04-23 2019-06-04 电子科技大学 基于高低频混合组网的小区搜索方法
CN109769287A (zh) * 2019-02-27 2019-05-17 维沃移动通信有限公司 小区选择方法及终端
CN110337141B (zh) * 2019-06-17 2022-06-07 Oppo广东移动通信有限公司 一种通信控制方法、终端、基站以及计算机存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180145818A1 (en) * 2016-11-22 2018-05-24 Samsung Electronics Co., Ltd. Method and apparatus for multiplexing uplink channels in wireless cellular communication system
US20180309409A1 (en) * 2017-04-25 2018-10-25 Qorvo Us, Inc. Multi-mode power management system supporting fifth-generation new radio
CN111316755A (zh) * 2017-11-09 2020-06-19 谷歌有限责任公司 使能同时使用多种蜂窝网络技术
CN111342862A (zh) * 2019-12-17 2020-06-26 锐石创芯(重庆)科技有限公司 支持lte/nr双连接的射频前端模组及移动终端

Also Published As

Publication number Publication date
CN111740791B (zh) 2022-06-10
US20230224816A1 (en) 2023-07-13
CN111740791A (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
WO2022001266A1 (zh) 一种通信控制方法、装置、通信设备及存储介质
WO2020143835A1 (zh) 功率控制方法及功率控制装置
EP2018714B1 (en) Wireless repeater with master/slave configuration
CN111770506B (zh) 近端及远端控制合路单元、近端及远端子系统和室分系统
CN101166059B (zh) 一种光纤拉远软基站自动时延测量方法及系统
CN113746522B (zh) 一种5g直放站信号处理方法
CN116711388A (zh) 一种中继通信方法及装置
CN107484237A (zh) 一种上下行链路不平衡的自适应系统及其方法
CN102802241B (zh) 一种高能效无线中继选择方法
JP2970653B1 (ja) スペクトラム拡散通信システムとその基地局
KR20100080062A (ko) 기지국 및 이를 이용한 기지국 시스템
CN112867127A (zh) 点对多点微波通信系统、通信方法和存储介质
CN106686713B (zh) 一种上行干扰控制方法及装置
CN215734275U (zh) 一种高隔离度通用5g直放站
CN104301910A (zh) 一种catv共缆多制式室分复用方法与系统
CN201118584Y (zh) 一种td-scdma干线放大器
CN112911694A (zh) 一种利用4g场强计算5g直放站上行发射开环功率控制的方法
CN206547100U (zh) 一种基于bts无线基站同步技术的视频同步播放系统
CN101388721A (zh) 在td-scdma网络中实现室内覆盖的系统及方法
US20220224400A1 (en) Repeater system for use with 5g new radio base station
CN215734272U (zh) 一种带网管的5g直放站
CN110572802B (zh) 脱网直通模式下的中继通信方法及系统
CN104144487A (zh) 一种接收通道增益自动控制方法和设备
US20230145768A1 (en) Shifting a frequency band of an interference signal out of a pass band of a signal path
JP2001197000A (ja) 移動端末用通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21834485

Country of ref document: EP

Kind code of ref document: A1