WO2022000599A1 - 一种mems麦克风芯片 - Google Patents

一种mems麦克风芯片 Download PDF

Info

Publication number
WO2022000599A1
WO2022000599A1 PCT/CN2020/103089 CN2020103089W WO2022000599A1 WO 2022000599 A1 WO2022000599 A1 WO 2022000599A1 CN 2020103089 W CN2020103089 W CN 2020103089W WO 2022000599 A1 WO2022000599 A1 WO 2022000599A1
Authority
WO
WIPO (PCT)
Prior art keywords
blocking structure
mems microphone
sensing area
microphone chip
diaphragm
Prior art date
Application number
PCT/CN2020/103089
Other languages
English (en)
French (fr)
Inventor
柏杨
张睿
Original Assignee
瑞声声学科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022000599A1 publication Critical patent/WO2022000599A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use

Definitions

  • This patent relates to the field of microphone design, in particular to the design of a MEMS microphone chip.
  • An object of the present invention is to provide a MEMS microphone chip that prevents foreign matter from entering.
  • a MEMS microphone chip the chip includes a substrate with a back cavity formed in the middle, a diaphragm disposed on the substrate, and a back plate disposed on a side away from the substrate relative to the diaphragm, so A first vibration space is formed between the vibrating film and its opposite base, the vibrating film extends in a direction close to the base to form a blocking structure spaced from the base, and the blocking structure vibrates along the vibration of the vibrating film.
  • the orthographic projection of the direction is on the edge of the side of the substrate close to the cavity.
  • the diaphragm includes a sensing area located in the middle and a non-sensing area surrounding the sensing area and being spaced from the sensing area to form a first gap.
  • the blocking structure is disposed in the sensing area.
  • the blocking structure includes a first blocking structure disposed in the sensing area and a second blocking structure disposed in the non-sensing area.
  • first blocking structure and the second blocking structure are spaced apart to form a second gap.
  • the first slit communicates with the second slit, and the width of the second slit is smaller than the width of the first slit.
  • the blocking structure is one or a combination of a column blocking structure or a wall blocking structure.
  • the blocking structures are arranged in one or more rows.
  • the cross section of the columnar blocking structure is one or a combination of a circle, a sector or a polygon.
  • the back plate and the vibrating membrane are spaced apart to form a second vibration space, a plurality of spaced through holes are formed in the middle of the back plate corresponding to the second vibration space, and the back plate is at multiple intervals.
  • An anti-adhesion post is formed between each of the through holes extending toward the end close to the vibrating membrane.
  • the beneficial effect of the present invention is that: the present invention forms a first vibration space between the vibrating membrane and its opposite substrate, and extends the vibrating membrane toward the substrate to form a blocking structure spaced from the substrate to isolate the substrate from The back cavity and the first vibration space prevent foreign objects from entering the first vibration space through the back cavity, thereby improving the reliability of the MEMS microphone chip structure.
  • FIG. 1 is a top view of the base structure of the present invention.
  • FIG. 2 is a top view of the diaphragm structure of the present invention.
  • FIG. 3 is a partial enlarged schematic diagram of the C area in FIG. 2 .
  • FIG. 4 is a cross-sectional view of the structure along the line A-A in FIG. 1 where the base is combined with the diaphragm and the back plate, and the sensing area is set as a wall blocking structure.
  • FIG. 5 is a cross-sectional view of the structure of the substrate combined with the diaphragm and the back plate along the line B-B in FIG. 1 .
  • FIG. 6 is a cross-sectional view of the structure corresponding to the sensing region of FIG. 4 set as a columnar blocking structure.
  • FIG. 7 is a cross-sectional view of the structure corresponding to FIG. 4 where both the sensing area and the non-sensing area are set as wall blocking structures.
  • FIG. 8 is a cross-sectional view of the structure corresponding to FIG. 4 where both the sensing area and the non-sensing area are configured as columnar blocking structures.
  • FIG. 9 is a cross-sectional view of both the sensing area and the non-sensing area corresponding to FIG. 4 set as a wall blocking structure according to an embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing that both the sensing area and the non-sensing area corresponding to FIG. 4 are configured as columnar blocking structures in another embodiment of the present invention.
  • FIG. 11 is a partial enlarged schematic diagram of the D area in FIG. 9 .
  • the present invention provides a MEMS microphone chip 100 .
  • the chip 100 includes a substrate 10 , a back plate 20 and a diaphragm 30 .
  • the substrate 10 includes a back cavity 12 formed in the middle of the substrate 10 and a diaphragm 30 .
  • the back plate 20 and the diaphragm 30 Surrounding the fixing portion 11 of the back cavity 12 , the back plate 20 and the diaphragm 30 are fixed on the fixing portion 11 , and the diaphragm 30 is arranged between the base 10 and the back plate 20 ,
  • the vibrating film 30 is spaced apart from the back plate 20 to form a capacitor structure, the vibrating film 30 is spaced apart from the substrate 10 facing it to form a first vibration space 41 , and the vibrating film 30 is spaced apart from the back plate 20 to form a first vibration space 41 .
  • Two vibration spaces 44 Two vibration spaces 44 .
  • the back plate 20 and the vibrating membrane 30 form a capacitor structure
  • the second vibration space 44 formed by the gap between the back plate 20 and the vibrating membrane 30 corresponds to the second vibration space 44 .
  • a plurality of through holes 21 are formed in the middle of the back plate 20, and the plurality of through holes 21 are arranged at intervals to pass the external sound pressure through the through holes 21 in the back plate 20 to cause the diaphragm 30 to move.
  • the distance between the backplanes 20 changes the capacitance and finally converts it into an electrical signal.
  • the back plate 20 is formed with an anti-adhesion column 22 in the second vibration space 44 close to one end of the diaphragm 30 , and the anti-adhesion column 22 is formed by the back plate 20 in a plurality of the passages.
  • the holes 21 are formed to extend toward one end of the diaphragm 30 to prevent the diaphragm 30 from adhering to the back plate 20 during vibration.
  • the diaphragm 30 extends in a direction close to the substrate 10 to form a blocking structure 50 , the blocking structure 50 is spaced from the substrate 10 , and the blocking structure 50 is along the diaphragm 30 .
  • the orthographic projection of the vibration direction is located on the edge 12a of the substrate 10 on the side close to the back cavity 12 .
  • the blocking structure 50 reduces the distance between the diaphragm 30 and the base 10 at the edge 12a, which can effectively block foreign objects and avoid the influence of foreign objects on the performance of the microphone.
  • the diaphragm 30 includes a sensing area 31 and a non-sensing area 32 spaced around the sensing area 31 .
  • the sensing area 31 includes an anchor portion 311 , and the anchor portion 311 extends to the surface of the substrate 10 .
  • the fixing portion 11 is fixed, and the anchor portion 311 of the sensing area 31 is fixed with the fixing portion 11 of the substrate 10 .
  • the non-sensing area 32 surrounds the sensing area 31 , and a first gap 43 is formed between the sensing area 31 and the non-sensing area 32 , and the non-sensing area 32 is fixed to the substrate 10 .
  • the blocking structure 50 may only be disposed in the sensing area 31 of the diaphragm 30 , or may be disposed in the sensing area 31 and the non-sensing area 32 of the diaphragm 30 at the same time.
  • the blocking structure 50 is arranged in the sensing area 31, which can effectively prevent foreign objects from entering the sensing diaphragm, prevent foreign objects from entering the sensing diaphragm and affect the microphone, and prevent foreign objects from piercing the diaphragm and causing the entire microphone to fail.
  • the blocking structure 50 is arranged in the non-inductive area 32 to prevent foreign objects from entering and reduce the width of the first gap, thereby affecting the low frequency performance of the microphone.
  • the blocking structure 50 when the blocking structure 50 is only disposed in the sensing area 31 of the diaphragm 30 , the blocking structure 50 is close to the back cavity 12 by the sensing area 31 of the diaphragm 30 corresponding to the first vibration space 41 .
  • the position is extended to the direction close to the substrate 10, and the foreign matter will be blocked by the blocking structure 50 when entering from the back cavity 12, so that it is difficult for foreign matter to enter the first vibration space 41, that is, it is prevented from entering the vibration through the back cavity 12. between the film 30 and the substrate 10 .
  • the blocking structure 50 when the blocking structure 50 is disposed on the sensing area 31 and the non-sensing area 32 of the diaphragm 30 at the same time, the blocking structure 50 includes a first blocking structure 51 and a second blocking structure 52 , The first blocking structure 51 is disposed in the sensing area 31 , and the second blocking structure 52 is disposed in the non-sensing area 32 .
  • the position of the first blocking structure 51 in the sensing area 31 and the position of the second blocking structure 52 in the non-sensing area 32 both correspond to the position where the first vibration space 41 is close to the back cavity 12 , thereby preventing foreign objects from passing through.
  • the back cavity 12 enters between the diaphragm 30 and the base 10 .
  • the first blocking structure 51 and the second blocking structure 52 are spaced apart to form a second slit 53 , and the first slit 43 communicates with the second slit 53 .
  • the width W2 of the second slit 53 is smaller or larger than the width W1 of the first slit 43 .
  • FIGS. 7 and 8 when the width W2 of the second slit 53 is When it is greater than the width W1 of the first slit 43 , foreign matter can be effectively prevented from entering the second vibration space 44 between the diaphragm 30 and the back plate 20 through the second slit 53 . Referring to FIG. 9 and FIG.
  • the blocking structure 50 is one or a combination of the column blocking structure or the wall blocking structure.
  • the blocking structure 50 is configured as a wall blocking structure to effectively prevent most foreign objects from entering the first vibration space 41; in another embodiment, the blocking structure 50 is configured as a column-shaped blocking structure using The narrow gap between the cylinders blocks foreign objects with a large volume and prevents foreign objects from entering the first vibration space 41 .
  • the blocking structures 50 of the sensing region 31 are arranged in one or more rows, and the blocking structures 50 in this embodiment are arranged in two rows.
  • the cross section of the columnar blocking structure is one or a combination of a circle, a sector or a polygon.
  • the cylindrical blocking structure in this embodiment has a circular cross section along a direction parallel to the top surface 11 of the substrate, so that the narrow gaps between the cylinders are used to block large foreign objects from entering the first vibration space 41 .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Abstract

本发明提供了一种MEMS麦克风芯片,该芯片包括中部形成背腔的基底、设置于所述基底上的振膜以及相对所述振膜远离所述基底一侧设置的背板,所述振膜与其正对的基底之间间隔形成第一振动空间,所述振膜向靠近所述基底的方向延伸形成与所述基底间隔的阻挡结构,所述阻挡结构沿所述振膜的振动方向的正投影位于所述基底靠近所述背腔一侧的边缘上。通过在振膜上设置的阻挡结构,有效的避免异物经由背腔进入第一振动空间,提高了MEMS麦克风芯片的可靠性。

Description

一种MEMS麦克风芯片 技术领域
本专利涉及麦克风设计领域,具体涉及一种MEMS麦克风芯片设计。
背景技术
近年来移动通信技术已经得到快速发展,消费者越来越多地使用移动通信设备,例如便携式电话、能上网的便携式电话、个人数字助理或专用通信网络进行通信的其他设备,其中麦克风则是其中重要的部件之一,特别是MEMS麦克风。
技术问题
现有MEMS麦克风芯片在实际工作场景中,外界的异物通过背腔进入振膜和基底之间,改变了系统的电容从而影响麦克风的性能,甚至会带来短路的风险。外来的异物会长期存在于振膜和基底之间,工作状态下与振膜产生反复的接触甚至碰撞,使振膜产生裂纹。初始微裂纹会在交变应力作用下发生缓慢扩展,最终振膜会发生断裂,造成MEMS麦克风芯片的失效,存在严重的可靠性隐患。
因此,有必要提供一种防止异物进入的MEMS麦克风芯片。
技术解决方案
本发明的目的在于提供一种防止异物进入的MEMS麦克风芯片。
本发明的技术方案如下:一种MEMS麦克风芯片,该芯片包括中部形成背腔的基底、设置于所述基底上的振膜以及相对所述振膜远离所述基底一侧设置的背板,所述振膜与其正对的基底之间间隔形成第一振动空间,所述振膜向靠近所述基底的方向延伸形成与所述基底间隔的阻挡结构,所述阻挡结构沿所述振膜的振动方向的正投影位于所述基底靠近所述背腔一侧的边缘上。
更优地,所述振膜包括位于中部的感应区域及环绕所述感应区域并与所述感应区域相间隙设置形成第一缝隙的非感应区域。
更优地,所述阻挡结构设置于所述感应区域。
更优地,所述阻挡结构包括设置于所述感应区域的第一阻挡结构和设置于非感应区域第二阻挡结构。
更优地,所述第一阻挡结构与所述第二阻挡结构相间隔形成第二缝隙。
更优地,所述第一缝隙与所述第二缝隙连通,且所述第二缝隙的宽度小于所述第一缝隙的宽度。
更优地,其特征在于:所述阻挡结构为柱状阻挡结构或墙体阻挡结构中的一种或两种的组合。
更优地,所述阻挡结构设置为一排或多排。
更优地,所述柱状阻挡结构的横截面为圆形、扇形或多边形中的一种或多种的组合。
更优地,所述背板与所述振膜间隔设置形成第二振动空间,与所述第二振动空间相对应的背板中部形成有多个间隔设置的通孔,所述背板在多个所述通孔之间向靠近所述振膜的一端延伸形成防黏连柱。
有益效果
本发明的有益效果在于:本发明通过在振膜与其正对的基底之间间隔形成第一振动空间,在振膜向靠近基底的方向延伸形成与所述基底间隔的阻挡结构,以隔离基底的背腔与所述第一振动空间,避免异物经由背腔进入第一振动空间,提高了MEMS麦克风芯片结构的可靠性。
附图说明
图1为本发明基底结构俯视图。
图2为本发明振膜结构的俯视图。
图3为图2中C区域的局部放大示意图。
图4为图1中沿A-A线的基底结合振膜及背板且感应区域设置为墙体阻挡结构的结构剖面图。
图5为图1中沿B-B线的基底结合振膜及背板的结构剖面图。
图6为对应图4的感应区域设置为柱状阻挡结构的结构剖面图。
图7为对应图4的感应区域和非感应区域均设置为墙体阻挡结构的结构剖面图。
图8为对应图4的感应区域和非感应区域均设置为柱状阻挡结构的结构剖面图。
图9为本发明的一种实施方式中对应图4的感应区域和非感应区域均设置为墙体阻挡结构的剖面图。
图10为本发明的另一种实施方式中对应图4的感应区域和非感应区域均设置为柱状阻挡结构的剖面图。
图11为图9中D区域的局部放大示意图。
本发明的最佳实施方式
下面结合附图和实施方式对本发明作进一步说明。
参见图1,图4以及图5,本发明提供一种MEMS麦克风芯片100,该芯片100包括基底10、背板20和振膜30,所述基底10包括形成于基底10中部的背腔12及环绕所述背腔12的固定部11,所述背板20以及所述振膜30固定于所述固定部11上,,所述振膜30设置于所述基底10与背板20之间,所述振膜30与所述背板20相对间隔设置以形成电容结构,所述振膜30与其正对的基底10间隔形成第一振动空间41,所述振膜30与背板20间隔形成第二振动空间44。
具体地,所述背板20与所述振膜30组成了电容结构,通过背板20与振膜30之间间隙设置形成的第二振动空间44,与所述第二振动空间44相对应的背板20中部形成有多个通孔21,多个通孔21间隔设置,以将外来的声压通过背板20中的通孔21,引起振膜30运动,这种运动改变振膜30与背板20之间的距离,进而改变电容并最终转化为电信号。
参见图4至图10,所述背板20在靠近振膜30一端的第二振动空间44内形成有防黏连柱22,所述防黏连柱22由背板20在多个所述通孔21之间向靠近所述振膜30的一端延伸形成,避免振膜30振动过程中与背板20相黏连。
参见图4至图10,所述振膜30向靠近所述基底10的方向延伸形成阻挡结构50,所述阻挡结构50与所述基底10相间隔,所述阻挡结构50沿所述振膜30的振动方向的正投影位于所述基底10靠近所述背腔12一侧的边缘12a上。所述阻挡结构50减小了所述振膜30与所述基底10在边缘12a处的间隔距离,能够有效的对异物起到阻挡的功能,避免异物对麦克风性能的影响。
参见图2,所述振膜30包括感应区域31和环绕所述感应区域31间隔设置的非感应区域32,所述感应区域31包括锚部311,所述锚部311延伸至所述基底10的固定部11,且所述感应区域31的锚部311与基底10的固定部11相固定。所述非感应区域32环绕所述感应区域31,且所述感应区域31与所述非感应区域32相间隙设置形成第一缝隙43,所述非感应区域32与基底10相固定。
更优地,所述阻挡结构50既可以只设置于所述振膜30的感应区域31,也可以同时设置于所述振膜30的感应区域31与非感应区域32。所述阻挡结构50设置在感应区域31,能够有效防止异物进入感应振膜,避免异物进入感应振膜对麦克风造成影响,防止异物扎破振膜,导致整个麦克风失效。所述阻挡结构50设置在非感应区域32能够防止异物进入并减小第一缝隙的宽度,从而影响麦克风的低频性能。
参见图4~图6,当所述阻挡结构50仅设置于振膜30的感应区域31时,所述阻挡结构50由振膜30的感应区域31对应第一振动空间41靠近所述背腔12的位置向靠近所述基底10的方向延伸形成,异物从背腔12进入时会受到阻挡结构50的阻挡,使得异物难以进入所述第一振动空间41,即避免了异物经背腔12进入振膜30与基底10之间。
参见图7和图8,当所述阻挡结构50同时设置于所述振膜30的感应区域31与非感应区域32时,所述阻挡结构50包括第一阻挡结构51和第二阻挡结构52,所述第一阻挡结构51设置于所述感应区域31,所述第二阻挡结构52设置于所述非感应区域32。所述第一阻挡结构51在感应区域31的位置与所述第二阻挡结构52位于所述非感应区域32的位置均对应第一振动空间41靠近所述背腔12的位置,从而避免异物经背腔12进入振膜30与基底10之间。
更优地,所述第一阻挡结构51与所述第二阻挡结构52相间隔形成第二缝隙53,所述第一缝隙43与所述第二缝隙53相连通。如图7~图11所示,所述第二缝隙53的宽度W2小于或大于所述第一缝隙43的宽度W1,参见图7和图8,当所述所述第二缝隙53的宽度W2大于所述第一缝隙43的宽度W1时,可以有效防止异物通过第二缝隙53进入振膜30与背板20之间的第二振动空间44。参见图9和图10,当所述所述第二缝隙53的宽度W2小于所述第一缝隙43的宽度W1时,可以有效防止异物通过第一缝隙43进入振膜30与背板20之间的第二振动空间44。
参见图4~图10,所述阻挡结构50为柱状阻挡结构或墙体阻挡结构中的一种或两种的组合。在一种实施方式中,所述阻挡结构50设置为墙体阻挡结构有效阻止了大部分异物进入第一振动空间41;在另一种实施方式中,所述阻挡结构50设置为柱状阻挡结构利用圆柱之间狭小的间隙阻挡了体积较大的异物,避免异物进入第一振动空间41。参见图5所述感应区域31的阻挡结构50为一排或多排设置,本实施例中的阻挡结构50为两排设置。所述柱状阻挡结构的横截面为圆形、扇形或多边形中的一种或多种的组合。本实施例中的柱状阻挡结构沿平行于基底顶面11方向的横截面为圆形,从而利用圆柱之间狭小的间隙阻挡体积较大的异物进入第一振动空间41。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (10)

  1. 一种MEMS麦克风芯片,其特征在于,该芯片包括中部形成背腔的基底、设置于所述基底上的振膜以及相对所述振膜远离所述基底一侧设置的背板,所述振膜与其正对的基底之间间隔形成第一振动空间,所述振膜向靠近所述基底的方向延伸形成与所述基底间隔的阻挡结构,所述阻挡结构沿所述振膜的振动方向的正投影位于所述基底靠近所述背腔一侧的边缘上。
  2. 根据权利要求1所述的MEMS麦克风芯片,其特征在于:所述振膜包括位于中部的感应区域及环绕所述感应区域并与所述感应区域相间隙设置形成第一缝隙的非感应区域。
  3. 根据权利要求2所述的MEMS麦克风芯片,其特征在于:所述阻挡结构设置于所述感应区域。
  4. 根据权利要求2所述的MEMS麦克风芯片,其特征在于:所述阻挡结构包括设置于所述感应区域的第一阻挡结构和设置于非感应区域第二阻挡结构。
  5. 据权利要求4所述的MEMS麦克风芯片,其特征在于:所述第一阻挡结构与所述第二阻挡结构相间隔形成第二缝隙。
  6. 据权利要求5所述的MEMS麦克风芯片,其特征在于:所述第一缝隙与所述第二缝隙连通,且所述第二缝隙的宽度小于所述第一缝隙的宽度。
  7. 根据权利要求1至6中任一项所述的MEMS麦克风芯片,其特征在于:所述阻挡结构为柱状阻挡结构或墙体阻挡结构中的一种或两种的组合。
  8. 根据权利要求7所述的MEMS麦克风芯片,其特征在于:所述阻挡结构设置为一排或多排。
  9. 根据权利要求7所述的MEMS麦克风芯片,其特征在于:所述柱状阻挡结构的横截面为圆形、扇形或多边形中的一种或多种的组合。
  10. 根据权利要求1所述的MEMS麦克风芯片,其特征在于:所述背板与所述振膜间隔设置形成第二振动空间,与所述第二振动空间相对应的背板中部形成有多个间隔设置的通孔,所述背板在多个所述通孔之间向靠近所述振膜的一端延伸形成防黏连柱。
PCT/CN2020/103089 2020-06-30 2020-07-20 一种mems麦克风芯片 WO2022000599A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010615637.7A CN111757223B (zh) 2020-06-30 2020-06-30 一种mems麦克风芯片
CN202010615637.7 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022000599A1 true WO2022000599A1 (zh) 2022-01-06

Family

ID=72676834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103089 WO2022000599A1 (zh) 2020-06-30 2020-07-20 一种mems麦克风芯片

Country Status (2)

Country Link
CN (1) CN111757223B (zh)
WO (1) WO2022000599A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214177565U (zh) * 2020-11-17 2021-09-10 瑞声声学科技(深圳)有限公司 Mems麦克风芯片
CN112492474A (zh) * 2020-11-23 2021-03-12 瑞声新能源发展(常州)有限公司科教城分公司 Mems麦克风芯片
CN112584282B (zh) * 2020-11-30 2022-07-08 瑞声新能源发展(常州)有限公司科教城分公司 硅麦克风及其加工方法
CN112995869B (zh) * 2021-02-23 2023-05-30 歌尔微电子股份有限公司 Mems芯片及其制作方法、mems麦克风模组和电子设备
CN219124365U (zh) * 2022-12-29 2023-06-02 瑞声科技(新加坡)有限公司 Mems麦克风

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102932724A (zh) * 2012-11-15 2013-02-13 歌尔声学股份有限公司 一种微机电传声器芯片及其制作方法
US20160212542A1 (en) * 2013-08-06 2016-07-21 Goertek Inc. Anti-impact silicon based mems microphone, a system and a package with the same
US20160241965A1 (en) * 2015-02-16 2016-08-18 Memsen Electronics Inc Mems microphone and method for forming the same
CN107244646A (zh) * 2017-03-09 2017-10-13 歌尔科技有限公司 一种mems芯片
CN109956447A (zh) * 2017-12-25 2019-07-02 中芯国际集成电路制造(上海)有限公司 一种mems器件及制备方法、电子装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203206467U (zh) * 2013-03-25 2013-09-18 北京卓锐微技术有限公司 一种可防水汽的电容式微型麦克风
KR101496817B1 (ko) * 2013-08-09 2015-02-27 삼성전기주식회사 음향 변환기
US9930453B2 (en) * 2014-07-15 2018-03-27 Goertek Inc. Silicon microphone with high-aspect-ratio corrugated diaphragm and a package with the same
CN105493519B (zh) * 2014-08-27 2020-08-25 歌尔微电子有限公司 带阀门机制的mems器件
KR101610129B1 (ko) * 2014-11-26 2016-04-20 현대자동차 주식회사 마이크로폰 및 그 제조방법
JP6701825B2 (ja) * 2016-03-10 2020-05-27 オムロン株式会社 静電容量型トランスデューサ及び音響センサ
JP6809008B2 (ja) * 2016-07-08 2021-01-06 オムロン株式会社 Mems構造及び、mems構造を有する静電容量型センサ、圧電型センサ、音響センサ
CN206350115U (zh) * 2016-12-05 2017-07-21 歌尔科技有限公司 一种mems麦克风
CN207475874U (zh) * 2017-11-03 2018-06-08 歌尔科技有限公司 一种mems麦克风中的背极及mems麦克风
CN109379684B (zh) * 2018-10-09 2020-05-29 歌尔股份有限公司 麦克风和电子设备
CN110958548A (zh) * 2019-12-02 2020-04-03 杭州士兰集成电路有限公司 Mems麦克风及其制造方法
CN111031460B (zh) * 2019-12-27 2024-06-25 歌尔微电子有限公司 一种mems芯片、制备方法及包括其的mems麦克风
CN110944276A (zh) * 2019-12-31 2020-03-31 歌尔股份有限公司 用于mems器件的防尘结构及mems麦克风封装结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102932724A (zh) * 2012-11-15 2013-02-13 歌尔声学股份有限公司 一种微机电传声器芯片及其制作方法
US20160212542A1 (en) * 2013-08-06 2016-07-21 Goertek Inc. Anti-impact silicon based mems microphone, a system and a package with the same
US20160241965A1 (en) * 2015-02-16 2016-08-18 Memsen Electronics Inc Mems microphone and method for forming the same
CN107244646A (zh) * 2017-03-09 2017-10-13 歌尔科技有限公司 一种mems芯片
CN109956447A (zh) * 2017-12-25 2019-07-02 中芯国际集成电路制造(上海)有限公司 一种mems器件及制备方法、电子装置

Also Published As

Publication number Publication date
CN111757223A (zh) 2020-10-09
CN111757223B (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
WO2022000599A1 (zh) 一种mems麦克风芯片
US11212623B2 (en) Piezoelectric MEMS microphone
US9549263B2 (en) Acoustic transducer and microphone
JP6311375B2 (ja) 静電容量型トランスデューサ
KR101265420B1 (ko) 음향 센서 및 마이크로폰
US8627725B2 (en) Capacitance type vibration sensor
JP5252104B1 (ja) 静電容量型センサ、音響センサ及びマイクロフォン
JP6332549B2 (ja) 静電容量型トランスデューサ及び音響センサ
JP6028479B2 (ja) 静電容量型センサ、音響センサ及びマイクロフォン
US8861753B2 (en) Acoustic transducer, and microphone using the acoustic transducer
JP5987572B2 (ja) 音響トランスデューサ
JP2015177336A (ja) 静電容量型トランスデューサ
KR101807040B1 (ko) 마이크로폰
JP2016066969A (ja) 音響トランスデューサ及びマイクロフォン
KR20150113185A (ko) 멤브레인 구조물을 구비한 마이크로 기계 부품
US20100237447A1 (en) Mems device and process
EP3334184B1 (en) Acoustic sensor and capacitive transducer
JP2008172696A (ja) 音響検出機構及びその製造方法
US10645499B2 (en) MEMS microphone
JP2007267252A (ja) コンデンサマイクロホン
JP2023171205A (ja) Memsマイクロフォン
JP2021015899A (ja) 圧電素子
KR20180053212A (ko) 멤스 마이크로폰

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942845

Country of ref document: EP

Kind code of ref document: A1