WO2021261510A1 - 標的分子の酸化還元方法、及び、標的分子酸化還元装置 - Google Patents

標的分子の酸化還元方法、及び、標的分子酸化還元装置 Download PDF

Info

Publication number
WO2021261510A1
WO2021261510A1 PCT/JP2021/023751 JP2021023751W WO2021261510A1 WO 2021261510 A1 WO2021261510 A1 WO 2021261510A1 JP 2021023751 W JP2021023751 W JP 2021023751W WO 2021261510 A1 WO2021261510 A1 WO 2021261510A1
Authority
WO
WIPO (PCT)
Prior art keywords
target molecule
electrode
redox
liquid
electron carrier
Prior art date
Application number
PCT/JP2021/023751
Other languages
English (en)
French (fr)
Inventor
文哉 和山
紀幸 初谷
泰章 奥村
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP21828862.9A priority Critical patent/EP4170011A4/en
Priority to AU2021297442A priority patent/AU2021297442A1/en
Priority to CN202180043581.5A priority patent/CN115702344A/zh
Priority to CA3187861A priority patent/CA3187861A1/en
Priority to JP2022532510A priority patent/JPWO2021261510A1/ja
Publication of WO2021261510A1 publication Critical patent/WO2021261510A1/ja
Priority to US18/082,785 priority patent/US20230117095A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/008Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions for determining co-enzymes or co-factors, e.g. NAD, ATP

Definitions

  • the present disclosure relates to the redox of an electron carrier using an electrochemical method.
  • An electron donor which is a reducer of an electron carrier, reduces an electron acceptor by donating an electron to the electron acceptor.
  • the electron donor itself is oxidized to become an oxidant, the new target molecule (that is, the electron acceptor) cannot be reduced.
  • the in vivo redox reaction since multiple types of substances function as electron donors and electron acceptors, even if the reducer of the electron carrier is oxidized by the transfer of electrons between these substances. There is a mechanism that is reduced again and returns to the reduced form. Since such a mechanism does not exist in the redox reaction in vitro, the oxidant is usually reduced by donating electrons from the electrode to the oxidant of the electron carrier using an electrochemical measuring device or the like.
  • An object of the present disclosure is to provide a redox method for a target molecule and a target molecule redox apparatus capable of efficiently oxidizing or reducing the target molecule in the entire reaction system.
  • the redox method for a target molecule is to put a liquid containing an inactive target molecule into a non-fluid state and to use an electron carrier fixed to an electrode connected to an external power source outside the liquid.
  • a redox method for a target molecule and a target molecule redox apparatus capable of efficiently oxidizing or reducing the target molecule in the entire reaction system are provided.
  • FIG. 1 is a diagram showing an example of the configuration of the target molecule redox apparatus according to the embodiment.
  • FIG. 2 is a perspective view of the voltage application unit according to the embodiment.
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG.
  • FIG. 5 is a diagram showing an example of the functional configuration of the target molecule redox apparatus according to the embodiment.
  • FIG. 6 is a flowchart showing an example of the operation of the target molecule redox apparatus according to the embodiment.
  • FIG. 7 is a diagram showing absorption spectra of the target molecular solution in the vicinity of the cathode electrode and the vicinity of the counter electrode (far from the cathode electrode) of Example 1.
  • FIG. 8 is a graph showing the absorbance of the entire target molecular solution of Example 1, Comparative Example 1, and Comparative Example 2 at 340 nm.
  • FIG. 9 is a diagram showing absorption spectra of the target molecular solution in the vicinity of the cathode electrode and the vicinity of the counter electrode (far from the cathode electrode) of Comparative Example 1.
  • FIG. 10 is a diagram showing absorption spectra of the target molecular solution in the vicinity of the cathode electrode and the vicinity of the counter electrode (far from the cathode electrode) of Comparative Example 2.
  • the oxidant is reduced by donating electrons to the oxidant of the electron carrier from the cathode electrode of the electrochemical measuring device.
  • the oxidant it is difficult for the oxidant to receive electrons directly from the cathode electrode. Therefore, by fixing the electron donor to the cathode electrode, the electron donor donates the electrons received from the cathode electrode to the target molecule (that is, the electron acceptor).
  • the target molecule indirectly receives an electron from the electrode and is reduced.
  • the electron transfer reaction between the electron donor fixed to the cathode electrode and the target molecule is a very local reaction that occurs only around the cathode electrode, and many of the target molecules occur in the entire reaction system. Is not reduced (ie, low activation efficiency). Therefore, it is required to construct a reaction system having a high reduction efficiency of the target molecule in the entire reaction system.
  • an object of the present disclosure is to provide a redox method for a target molecule and a target molecule redox apparatus capable of efficiently oxidizing or reducing the target molecule in the entire reaction system.
  • One aspect of the present disclosure is as follows.
  • the redox method for a target molecule is a method in which a liquid containing the target molecule is put into a non-fluid state, an electron carrier fixed to an electrode connected to an external power source outside the liquid, and the target molecule.
  • the first step and the second step include a first step of oxidizing or reducing the target molecule and a second step of making the liquid in a fluid state by exchanging electrons between the two. Is repeated sequentially.
  • the first step when the liquid is in a non-fluid state, an electron transfer reaction is performed between the electron carrier immobilized on the electrode and the target molecule, so that a stable reaction field is likely to be formed. Become. As a result, the activation efficiency of the target molecule is improved. Further, by making the liquid in a fluid state in the second step, the activated target molecule is diffused from the vicinity of the electrode, and other target molecules in the liquid are easily moved to the vicinity of the electrode. This allows more target molecules in the liquid to undergo an electron transfer reaction with the electron carrier, thus improving the efficiency of the electron transfer reaction between the target molecule and the electron carrier. Further, since the first step and the second step are sequentially and repeatedly executed, the target molecule can be continuously activated. Therefore, according to the redox method of the target molecule, the target molecule can be efficiently activated in the entire reaction system (that is, the liquid).
  • the liquid in the second step, may be brought into a fluid state by stirring or shaking the liquid.
  • the active target molecule is diffused from the vicinity of the electrode, and other target molecules in the liquid move to the vicinity of the electrode.
  • the target molecule can be activated with high activity efficiency.
  • the execution time of the first step may be longer than the execution time of the second step.
  • the ratio of the execution time of the first step to the execution time of the second step may be 10 to 100: 1.
  • the execution time of the first step is 30 minutes or more and 90 minutes or less
  • the execution time of the second step is 1 minute or more and 2 minutes or less. good.
  • the target molecule may be NADP +.
  • NADPH can be obtained as an active target substance, so that redox molecules, redox enzymes, redox proteins, etc. involved in various redox reactions can be activated.
  • the electrode may have a substrate containing gold.
  • the electron carrier may be a 4,4'-bipyridinium derivative.
  • the electron carrier may be 1-methyl-1'-hexyl-4,4'-bipyridinium.
  • the electron carrier has a high affinity for the enzyme. Therefore, the electron carrier tends to interact not only with the coenzyme (NADP + ) involved in the redox reaction, but also with the enzyme, the protein, and the like. Further, by using 1-methyl-1'-hexyl-4,4'-bipyridinium as an electron carrier, fixing to the substrate becomes easy.
  • the voltage application by the external power source may be performed in the first step.
  • the target molecule is transferred by transferring electrons between the stirring unit that stirs the liquid containing the target molecule to make it in a fluid state and the target molecule.
  • the control unit includes an electrode to which an electron transmitter reducing an active target molecule is fixed, a power source for applying a voltage to the electrode, and a control unit for controlling the power supply and the stirring unit. By repeating stirring and stopping of stirring by the stirring unit, the fluid state and the non-fluid state of the liquid are switched.
  • the liquid when the liquid is in a non-fluid state, an electron transfer reaction is performed between the electron carrier immobilized on the electrode and the target molecule, so that a stable reaction field is easily formed. As a result, the activation efficiency of the target molecule is improved. Further, by controlling the liquid to be switched between the fluid state and the non-fluid state, the activated target molecule is diffused from the vicinity of the electrode, and other target molecules in the liquid are easily moved to the vicinity of the electrode. This allows more target molecules in the liquid to undergo an electron transfer reaction with the electron carrier, thus improving the efficiency of the electron transfer reaction between the target molecule and the electron carrier.
  • the target molecule can be efficiently activated in the entire reaction system (that is, the liquid).
  • the target molecule may be NADP +.
  • NADPH can be obtained as an active target substance, so that redox molecules, redox enzymes, redox proteins, etc. involved in various redox reactions can be activated.
  • the electrode may include a substrate containing gold.
  • the electron carrier may be a 4,4'-bipyridinium derivative.
  • the electron carrier may be 1-methyl-1'-hexyl-4,4'-bipyridinium.
  • the electron carrier has a high affinity for the enzyme. Therefore, the electron carrier tends to interact not only with a coenzyme (for example, NADP + ) involved in a redox reaction, but also with an enzyme, a protein, and the like. Further, by using 1-methyl-1'-hexyl-4,4'-bipyridinium as an electron carrier, fixing to the substrate becomes easy.
  • a coenzyme for example, NADP +
  • a recording medium such as a system, method, device, integrated circuit, computer program or computer-readable CD-ROM, and the system, method, device, integrated. It may be realized by any combination of a circuit, a computer program and a recording medium.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction which are orthogonal to each other, will be described as appropriate.
  • the plus side in the Z-axis direction may be described as the upper side, and the minus side may be described as the lower side.
  • the broken line represents the boundary between the object and the area that cannot be seen from the surface.
  • FIG. 1 is a diagram showing an example of the configuration of the target molecule redox device 100 in the embodiment.
  • the target molecule redox apparatus 100 applies a voltage to the electrode in a non-fluid state of the liquid containing the target molecule, so that electrons can be transferred between the electron carrier immobilized on the electrode and the target molecule. Oxidizes or reduces the target molecule. Then, by switching the liquid from the non-fluid state to the fluid state, the active target molecule is diffused into the liquid. By repeating the switching of the flow state of the liquid in this way, the target molecule can be efficiently activated in the entire liquid.
  • the liquid when the liquid is in a non-fluid state, for example, the liquid is not agitated or shaken (that is, it is not subjected to an external force such as shearing force or vibration), and movement such as fluctuation on the liquid surface is caused. A state that cannot be seen.
  • the target molecule redox apparatus 100 oxidizes or reduces the target molecule by exchanging electrons between the stirring unit 40 that stirs the liquid containing the target molecule to make it in a fluid state and the target molecule. It includes an electrode (cathode electrode 1) to which an electron transmitter is fixed, a power supply 20 that applies a voltage to the electrodes, and a control unit 30 that controls the power supply 20 and the stirring unit 40.
  • the electrode to which the electron carrier is fixed (hereinafter referred to as the cathode electrode 1) is one configuration of the voltage application unit 10.
  • FIG. 2 is a perspective view of the voltage application unit 10 according to the embodiment.
  • the voltage application unit 10 transfers electrons to and from the target molecule via an electron carrier fixed to the electrode (cathode electrode 1). In this way, the target molecule is oxidized or reduced by the transfer of electrons between the electron carrier and the target molecule.
  • the voltage application unit 10 includes, for example, a cathode electrode 1 (also referred to as a working electrode), a reference electrode 2, a counter electrode 3, a cell 4, a lid 5, terminals 6a, 6b, 6c, and leads 7a, 7b, 7c. It is an electrode type cell.
  • the voltage application unit 10 may be, for example, a two-electrode cell provided with a working electrode (cathode electrode 1) and a counter electrode 3.
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG.
  • the cathode electrode 1 includes a glass substrate 11, a titanium-deposited layer 12 deposited on the glass substrate 11, a cathode substrate 13 formed on the titanium-deposited layer 12, and an electron carrier fixed to the cathode substrate 13. It has a layer 14.
  • the cathode electrode 1 fixes a low molecular weight compound or an enzyme capable of activating an inactivated target molecule (so-called inactive target molecule) on the cathode substrate 13 as an electron carrier (also referred to as an electron mediator). can get.
  • a conductive substrate made of a conductive material may be used as the cathode substrate 13.
  • the conductive material may be, for example, a carbon material, a conductive polymer material, a semiconductor, a metal, or the like.
  • the carbon material may be carbon nanotube, Ketjen black, glassy carbon, graphene, fullerene, carbon fiber, carbon fabric, carbon aerogel, or the like.
  • the conductive polymer material polyaniline, polyacetylene, polypyrrole, poly (3,4-ethylenedioxythiophene), poly (p-phenylene vinylene), polythiophene, poly (p-phenylene sulfide) and the like can be used.
  • the semiconductor may be silicone, germanium, indium tin oxide (ITO: Indium Tin Oxide), titanium oxide, copper oxide, silver oxide or the like.
  • the metal may be gold, platinum, silver, titanium, aluminum, tungsten, copper, iron, palladium or the like.
  • the conductive substance is not particularly limited as long as the conductive substance is not decomposed by its own oxidation reaction.
  • the thickness of the cathode substrate 13 is not particularly limited.
  • the electron carrier fixed to the cathode substrate 13 is particularly limited as long as it is a substance that enables electron transfer between the target molecule in the sample solution (also referred to as a liquid) and the cathode substrate 13 (the above-mentioned conductive substrate). Not done.
  • the electron carrier include a viologen compound, a bipyridine salt derivative, a quinone, an indophenol, and the like.
  • the viologen compound is a trivial name for N, N'-disubstituted -4,4'-bipyridinium in which a substituent is introduced into two pyridine ring nitrogen atoms of 4,4'-bipyridine.
  • the bipyridinium salt derivative may have two chloride ions or bromide ions as counter ions.
  • the viologen compound is, for example, a 4,4'-bipyridinium derivative, 1,1'-dimethyl-4,4'-bipyridinium (methylviologen), 1-methyl-1'-carboxymethyl-4,4'-bipyridinium.
  • the reference electrode 2 is an electrode that does not react with the components in the sample solution 9 and maintains a constant potential, and is used to control the potential difference between the cathode electrode 1 and the reference electrode 2 to be constant by the power supply 20. ..
  • the reference electrode 2 is a silver / silver chloride electrode.
  • the counter electrode 3 is, for example, a platinum electrode.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG.
  • the cathode electrode 1, the reference electrode 2, and the counter electrode 3 are arranged in the cylindrical cell 4 so as to surround the vertical center of the cell 4.
  • a stirrer 8 is arranged at the bottom of the cell 4.
  • the reaction layer containing the electron carrier fixed to the cathode electrode 1 is arranged so as to face the center of the vertical axis of the cell.
  • a stirrer 8 driven by controlling the flowing state and the non-flowing state of the sample solution for improving the reaction efficiency is provided, and the surface area of the cathode electrode 1 (working electrode) is sufficiently larger than that of the anode electrode (counting electrode 3). It may be large.
  • Cell 4 is a holding unit that holds the sample solution 9 in which the inactive target molecule is present.
  • a stirrer 8 for stirring the sample solution 9 is arranged in the cell 4. 1 and 2 show an example in which the cell 4 has a cylindrical shape, but the shape of the cell 4 is not limited to this. The stirrer 8 will be described later.
  • the inactive target molecule is, for example, NADP + .
  • the inactive target molecule may be NAD + or an inactive ferredoxin.
  • the lid portion 5 has terminals 6a, 6b, and 6c for electrically connecting the cathode electrode 1, the reference electrode 2, and the counter electrode 3 to the power supply 20, respectively.
  • Leads extend from each terminal, connecting the terminal to the battery.
  • the lead of the reference pole 2 is not shown in FIGS. 1 and 2, the lead extends from the terminal 6b toward the reference pole 2, and the reference pole 2 is connected to the terminal 6b via the lead (not shown). It is connected.
  • the cathode electrode 1 is connected to the terminal 6a via the lead 7a
  • the counter electrode 3 is connected to the terminal 6c via the lead 7c.
  • FIG. 5 is a diagram showing an example of the functional configuration of the target molecule redox device 100 according to the embodiment.
  • the power supply 20 applies a voltage to the electrode (cathode electrode 1). More specifically, the power supply 20 applies a voltage between the cathode electrode 1 and the counter electrode 3 of the voltage application unit 10 according to the control signal output from the control unit 30, and the cathode electrode 1 and the reference electrode 2 are connected to each other. The potential between them is controlled to a predetermined value.
  • the power supply 20 includes, for example, an acquisition unit 21, an information processing unit 22, a voltage control unit 23, and an output unit 24.
  • the acquisition unit 21 acquires the control signal output from the control unit 30, and outputs the acquired control signal to the information processing unit 22. Further, the acquisition unit 21 may acquire data such as the potential of each electrode in the voltage application unit 10 and the current value flowing through the sample solution 9. In this case, the output unit 24 outputs the data acquired by the acquisition unit 21 to the control unit 30. The processing of the data in the control unit 30 will be described later.
  • the information processing unit 22 processes the information acquired by the acquisition unit 21. For example, when the information processing unit 22 acquires a control signal from the acquisition unit 21, the information processing unit 22 outputs the acquired control signal to the voltage control unit 23.
  • the voltage control unit 23 starts applying a voltage to each electrode of the voltage application unit 10
  • the information processing unit 22 transfers the potential of each electrode in the voltage application unit 10 acquired from the acquisition unit 21 and the current flowing through the sample solution 9. Data such as a value is acquired, and the voltage applied to the cathode electrode 1 is derived based on the acquired data. Then, the information processing unit 22 outputs a control signal for controlling the voltage of the cathode electrode 1 with the derived voltage to the voltage control unit 23.
  • the voltage control unit 23 applies a voltage to each electrode of the voltage application unit 10 based on the control signal output from the information processing unit 22.
  • FIG. 1 shows an example in which the power supply 20 and the control unit 30 are separate bodies
  • the power supply 20 may include the control unit 30.
  • the stirring unit 40 stirs the liquid containing the inactive target molecule (here, the sample solution 9) into a fluid state. More specifically, the stirring unit 40 controls the operation of the motor 43 according to the control signal output from the control unit 30, so that the rotation speed and rotation of the stirring element 8 set in the voltage applying unit 10 Control the time.
  • the stirring unit 40 includes, for example, an acquisition unit 41, a stirring control unit 42, and a motor 43.
  • the acquisition unit 41 acquires the control signal output from the control unit 30, and outputs the acquired control signal to the stirring control unit 42.
  • the stirring control unit 42 processes the information acquired by the acquisition unit 41. For example, when the stirring control unit 42 acquires a control signal from the acquisition unit 41, the stirring control unit 42 derives the control conditions of the motor 43 based on the acquired control signal and controls the operation of the motor 43. Specifically, the stirring control unit 42 controls the movement of the stirrer 8 (that is, the rotation speed and the rotation time) by controlling the rotation speed, the rotation time, and the like of the motor 43.
  • FIG. 1 shows an example in which the stirring unit 40 is separate from the voltage applying unit 10, it may be integrated with the voltage applying unit 10.
  • the stirring unit 40 may be arranged in, for example, the lid portion 5 of the voltage applying unit 10, and the stirring element 8 may be, for example, a stirring blade detachable from the lid portion 5.
  • the control unit 30 performs information processing for applying a voltage of the power supply 20 and controlling the movement of the motor 43 of the stirring unit 40.
  • the control unit 30 is realized by, for example, a processor, a microcomputer, or a dedicated circuit.
  • FIG. 1 shows an example in which the control unit 30 is a computer device.
  • the control unit 30 includes, for example, an acquisition unit 31, an information processing unit 32, a storage unit 33, and an output unit 34.
  • the acquisition unit 31 acquires, for example, information regarding instructions input by the user (hereinafter referred to as instruction information), potential of each electrode in the voltage application unit 10, and data such as a current value flowing through the sample solution 9.
  • instruction information information regarding instructions input by the user
  • potential of each electrode in the voltage application unit 10 potential of each electrode in the voltage application unit 10
  • data such as a current value flowing through the sample solution 9.
  • the acquired instruction information and data are output to the information processing unit 32.
  • the information processing unit 32 has, for example, a condition for applying a voltage to each electrode of the voltage application unit 10 (also referred to as a voltage application condition) based on the instruction information acquired by the acquisition unit 31, and a flow state of the sample solution 9. Derivation of liquid flow conditions such as switching and flow rate.
  • the instruction information may be, for example, the type of target molecule, the amount of the sample solution 9, the completion time of the treatment, or the completion time.
  • the information processing unit 32 derives the reduction rate of the target molecule in the sample solution based on the data acquired by the acquisition unit 31, for example, and the voltage application condition and the liquid flow condition are obtained according to the derived reduction rate. May be changed.
  • the information processing unit 32 may change the voltage application time among the voltage application conditions derived based on the instruction information, or may change the voltage applied to each electrode. Further, for example, the information processing unit 32 may change the timing of switching the flow state of the sample solution among the liquid flow conditions derived based on the instruction information, or may change the flow rate.
  • control unit 30 can re-derive (that is, change) the voltage application conditions and the liquid flow conditions derived based on the instruction information according to the reduction state (reduction rate) of the target molecule. , The target molecule in the sample solution can be reduced more efficiently.
  • the information processing unit 32 may derive a control signal for controlling the voltage application of the power supply 20 under the voltage application condition, and may derive a control signal for controlling the operation of the motor 43 under the liquid flow condition.
  • the voltage application condition and the liquid flow condition may be derived based on the instruction information or data acquired by the acquisition unit 31, or may be preset by the user.
  • the information processing unit 32 outputs these control signals to the output unit 34.
  • the output unit 34 acquires the control signal derived from the information processing unit 32 and outputs it to the power supply 20 and the stirring unit 40.
  • the storage unit 33 stores the data acquired by the acquisition unit 31, the computer program executed by the control unit 30, (for example, an application program for controlling the power supply 20), and the like.
  • FIG. 6 is a flowchart showing an example of the operation of the target molecule redox device 100 according to the embodiment.
  • the preparation step may be performed by the user.
  • the sample solution 9 is prepared.
  • the user introduces the sample solution 9 containing the inactive target molecule into the cell 4 of the voltage application unit 10.
  • the electrodes are a cathode electrode 1, a reference electrode 2, and a counter electrode 3.
  • the cathode electrode 1 is connected to the lead 7a extending from the terminal 6a arranged on the lid 5
  • the reference electrode 2 is connected to the lead 7b extending from the terminal 6b arranged on the lid 5
  • the counter electrode 3 is connected to the lead 7b. It is connected to a lead 7c extending from a terminal 6c arranged on the lid portion 5.
  • the user inputs information regarding instructions such as the type of the target molecule, the amount of the sample solution, the completion time of the treatment, and the completion time into the target molecule redox apparatus 100a.
  • the target molecule redox apparatus 100 may introduce the sample solution 9 into the cell 4. That is, although the above-mentioned preparation step has been described as an example performed by the user, it may be executed by the target molecule redox device 100.
  • the target molecule redox device 100 may further include an introduction unit (not shown), a recovery unit (not shown), an introduction port (not shown), and a discharge port (not shown). ..
  • the introduction unit may introduce the sample solution 9 containing the inactive target molecule into the cell 4 from the introduction port provided in the cell 4.
  • the recovery unit may reduce the inactive target molecule and recover the sample solution 9 containing the active target molecule from the discharge port provided in the cell 4 to the outside of the cell 4.
  • the control unit 30 sets a condition for applying a voltage to each electrode of the voltage application unit 10 and a liquid flow condition (step S101).
  • the control unit 30 derives the voltage application condition and the liquid flow condition based on the input instruction information.
  • the control unit 30 outputs a control signal for controlling the voltage application of the power supply 20 to the power supply 20 under the derived voltage application condition.
  • the control unit 30 outputs a control signal for controlling the operation of the stirring unit 40 under the derived liquid flow condition to the stirring unit 40.
  • the user selects a program number associated with the set of the voltage application condition and the liquid flow condition, so that the control unit 30 acquires the program number and sets the voltage application condition and the liquid flow condition. It may be set.
  • step S102 when the power supply 20 and the stirring unit 40 acquire the control signal output from the control unit 30, they start applying voltage to the electrodes and controlling the motor 43, respectively, according to the control signal (step S102).
  • the control unit 20 starts applying a voltage, and the stirring unit 40 controls to stop the motor 43 (that is, puts the sample solution 9 in a non-fluid state) (step S103).
  • step S103 for example, the power supply 20 applies a voltage between the cathode electrode 1 and the counter electrode 3 of the voltage application unit 10 to control the potential between the cathode electrode 1 and the reference electrode 2 to a predetermined value.
  • the predetermined value may be determined depending on the combination of electron carrier and target molecule used.
  • the stirring unit 40 does not operate the motor 43, or rotates the motor 43 at a speed that does not cause fluctuations in the liquid level.
  • the inactive target molecule in the sample solution 9 becomes an active target molecule by receiving electrons via the electron carrier fixed to the cathode electrode 1 while the sample solution 9 is in a non-fluid state. Be reduced.
  • This step is also referred to as a first step.
  • the stirring unit 40 controls to rotate the motor 43 at a predetermined rotation speed, and the sample solution 9 is stirred by the stirrer 8 (step S104).
  • the target molecule (active target molecule) activated in step S103 is diffused into the sample solution 9, and the inactive target molecule in the sample solution 9 moves in the vicinity of the cathode electrode 1.
  • the stirring unit 40 switches between stirring and stopping stirring based on the liquid flow conditions, and switches the sample solution 9 from the non-fluid state to the fluid state.
  • the stirring unit 40 controls the rotational operation of the motor 43, and controls the rotational speed and time of the stirrer 8.
  • the power supply 20 may be controlled to stop the voltage application or may be controlled to continue the voltage application.
  • the power supply 20 and the stirring unit 40 sequentially repeat the processes of steps S103 and S104 (not shown).
  • the execution time of step S103 may be longer than the execution time of step S104, and their ratio may be 10 to 100: 1. More specifically, the execution time of step S103 is 30 minutes or more and 90 minutes or less, and the execution time of step S104 is 1 minute or more and 2 minutes or less.
  • step S103 more inactive target molecules are reduced to active target molecules, and active target molecules in the vicinity of the cathode electrode 1 are diffused into the sample solution 9 by stirring, and newly. Inactive target molecules move to the vicinity of the cathode electrode 1.
  • the activation efficiency that is, reduction efficiency
  • control unit 30 determines whether or not the processing under the set conditions is completed (step S105).
  • the set conditions are, for example, the period (time) of voltage application, the number of times of voltage application (for example, pulse voltage), or the number of times of switching the flow state of the sample solution 9.
  • the control unit 30 determines that the processing of the set conditions has not been completed (No in step S105)
  • the control unit 30 continues to apply the voltage to the power supply 20 and operates the stirring unit 40 based on the liquid flow conditions (simply). , Also referred to as operation) (step S106).
  • steps S103 and S104 are repeated until the next determination (step S105) is performed.
  • control unit 30 determines that the processing under the set conditions is completed (Yes in step S105)
  • the control unit 30 ends the voltage application to the power supply 20 and causes the stirring unit 40 to stop the operation (step S107).
  • oxidized nicotinamide adenine dinucleotide phosphate (hereinafter, also simply referred to as the target molecule).
  • Example 1 preparation of target molecular solution
  • the target molecular solution was prepared by dissolving NADP + in phosphate buffered saline (PBS) having a pH of 7.4 to 1.0 mmol / liter.
  • PBS phosphate buffered saline
  • Titanium and gold were vapor-deposited on a glass substrate in this order to prepare a gold substrate.
  • 4-mercaptopyridine was modified on the prepared gold substrate to prepare a 4-mercaptopyridine-modified gold substrate.
  • 1-methyl-1'hexyl-4,4'bipyridinium was immobilized on a 4-mercaptopyridine monolayer on the surface of the gold substrate to obtain a cathode electrode 1.
  • 1-methyl-1'hexyl-4,4'bipyridinium is an electron carrier that donates electrons to NADP + and reduces it to NADPH (in other words, reactivates NADP +).
  • a target molecular solution (1.0 mM NADP + -PBS solution) was introduced into cell 4 of the voltage application unit 10 shown in FIG. 1, and an electrode was set.
  • the electrode a three-electrode system electrode was used in which the produced cathode electrode 1 was used as a working electrode, a Pt (platinum) electrode was used as a counter electrode, and an Ag / AgCl (silver / silver chloride) electrode was used as a reference electrode.
  • a stirrer was placed in the target molecular solution, and a voltage was applied to the target molecular solution while rotating the stirrer at a predetermined rotation speed (rpm).
  • the non-fluid state and the fluid state of the target molecular solution are controlled by controlling the movement of the stirrer by two types of rotation control, rotation stop and rotation, while applying a predetermined voltage to the target molecular solution. I switched. This adjusted the switching between the non-fluid state and the fluid state of the target molecular solution.
  • the time for applying the voltage to the target molecular solution in the non-flowing state was sufficiently longer than the time for applying the voltage in the flowing state. While repeating these two types of control in sequence, a predetermined voltage was continuously applied to the target molecular solution.
  • the target molecular solution was sampled from around the working electrode (cathode electrode), around the counter electrode, and around the reference electrode, respectively. Then, the absorbance of the sampled target molecular solution in the wavelength range including 340 nm (hereinafter, simply referred to as absorbance) was measured. The measurement was performed using a 1 mm cell. 340 nm is an absorption wavelength peculiar to NADPH.
  • FIG. 7 shows the measurement results of the absorbance of the target molecular solution sampled around the working electrode (cathode electrode) and the absorbance of the target molecular solution sampled around the counter electrode located farthest from the working electrode.
  • an absorption peak was observed at 340 nm in both the target molecular solution around the working electrode (near the cathode electrode in the figure) and the target molecular solution around the counter electrode (far from the cathode electrode in the figure).
  • the absorbance of the target molecular solution was 0.08 around the working electrode and 0.07 around the counter electrode farthest from the working electrode.
  • NADP + which is a target molecule
  • the absorbance of the entire target molecular solution As the absorbance of the entire target molecular solution, the average value of the absorbance of the target molecular solution around the triode at 340 nm was calculated. The calculation result is shown in FIG. As shown in FIG. 8, in Example 1, the absorbance of the entire target molecular solution after applying the voltage was 0.072.
  • Comparative Example 1 Comparative Example 1 was carried out under the same conditions as in Example 1 except that the stirrer was constantly rotated (that is, the target molecular solution was always in a flowing state).
  • FIG. 9 shows the measurement results of the absorbance of the target molecular solution sampled around the working electrode (cathode electrode) and the absorbance of the target molecular solution sampled around the counter electrode located farthest from the working electrode.
  • the target molecular solution around the working electrode near the cathode electrode in the figure
  • the target molecular solution around the counter electrode far from the cathode electrode in the figure
  • the average value of the absorbance of the target molecular solution around the three poles was calculated as the absorbance of the entire target molecular solution.
  • the calculation result is shown in FIG.
  • the absorbance of the entire target molecular solution after applying the voltage was 0.056.
  • Comparative Example 2 Comparative Example 2 was carried out under the same conditions as in Example 1 except that the stirrer was not rotated.
  • FIG. 10 shows the measurement results of the absorbance of the target molecular solution sampled around the working electrode (cathode electrode) and the absorbance of the target molecular solution sampled around the counter electrode located farthest from the working electrode.
  • the target molecular solution around the working electrode near the cathode electrode in the figure
  • the target molecular solution around the counter electrode far from the cathode electrode in the figure
  • No absorption peak was seen.
  • NADP + which is a target molecule
  • NADPH which is an active form
  • the absorbance of the entire target molecular solution As the absorbance of the entire target molecular solution, the average value of the absorbance of the target molecular solution around the triode at 340 nm was calculated. The calculation result is shown in FIG. As shown in FIG. 8, in Comparative Example 2, the absorbance of the entire target molecular solution after applying the voltage was 0.063.
  • Comparative Example 2 the absorbance of the entire target molecular solution was higher than that in Comparative Example 1.
  • the target molecule NADP +
  • the target molecule undergoes an electron transfer reaction. Can stay around the working pole for the required time. Therefore, it is considered that the electron transfer efficiency from the electron carrier fixed to the working electrode to the target molecule has increased.
  • the absorbance was similar to that of Comparative Example 1 around the counter electrode away from the working electrode, it was found that the electron transfer reaction was performed only around the working electrode. Therefore, it is considered that some stirring is necessary to improve the reaction efficiency.
  • Example 1 the absorbance of the entire target molecular solution at 340 nm was the highest.
  • two types of control of stopping and rotating the rotation speed of the stirrer were alternately repeated at predetermined time intervals (stop time> rotation time). Therefore, while the stirrer is in a stopped state (that is, the target molecule solution is in a non-fluid state), the electron transfer body at the working electrode and the target molecule undergo an electron transfer reaction, and the stirrer is rotating (that is, the target molecule). During the fluid state of the solution), it is believed that the target molecule activated around the working electrode is diffused throughout the target molecule solution. From this, it was found that the electron transfer reaction between the electron carrier and the target molecule was efficiently performed in the entire target molecule solution.
  • the activation efficiency of the target molecule is improved by making the time during which the target molecule solution is applied in the non-fluid state longer than the time during which the target molecule solution is in the fluid state.
  • the present disclosure is not limited to these embodiments. As long as the gist of the present disclosure is not deviated, various modifications that can be conceived by those skilled in the art are applied to the embodiment, and other embodiments constructed by combining some components in the embodiment are also within the scope of the present disclosure. included.
  • the electron carrier since the electron carrier can be repeatedly activated, it can be widely used in all fields in which the electron transfer reaction by the electron carrier is used.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

標的分子の酸化還元方法は、標的分子を含む液体を非流動状態にして、液体外の外部電源に接続された電極に固定された電子伝達体と、標的分子との間で電子授受を行わせることにより、標的分子を酸化又は還元する第1工程(S103)と、液体を流動状態にする第2工程(S104)と、を含み、第1工程(S103)と第2工程(S104)とを順次繰り返して実行する。

Description

標的分子の酸化還元方法、及び、標的分子酸化還元装置
 本開示は、電気化学的手法を用いた、電子伝達体の酸化還元に関する。
 電子伝達体の還元体である電子供与体は、電子受容体に電子を供与することにより電子受容体を還元する。このとき、電子供与体は、自身が酸化されて酸化体となるため、新たな標的分子(つまり、電子受容体)を還元することができなくなる。一方、生体内レドックス反応においては、複数種類の物質が電子供与体、及び、電子受容体として機能するため、それらの物質間での電子の授受により、電子伝達体の還元体が酸化されても再度還元されて還元体に戻る機構が存在する。このような機構が生体外でのレドックス反応において存在しないため、通常、電気化学測定装置などを用いて電極から電子伝達体の酸化体に電子を供与することにより酸化体を還元する。
 本開示の目的は、反応系全体で標的分子を効率良く酸化又は還元できる標的分子の酸化還元方法及び標的分子酸化還元装置を提供することにある。
 本開示の一態様に係る標的分子の酸化還元方法は、不活性型の標的分子を含む液体を非流動状態にして、前記液体外の外部電源に接続された電極に固定された電子伝達体と、前記不活性型の標的分子との間で電子授受を行わせることにより、前記不活性型の標的分子を酸化又は還元する第1工程と、前記液体を流動状態にする第2工程と、を含み、前記第1工程と前記第2工程とを順次繰り返して実行する。
 本開示によれば、反応系全体で標的分子を効率良く酸化又は還元できる標的分子の酸化還元方法及び標的分子酸化還元装置が提供される。
図1は、実施の形態に係る標的分子酸化還元装置の構成の一例を示す図である。 図2は、実施の形態における電圧印加部の斜視図である。 図3は、図2のIII-III線における断面図である。 図4は、図2のIV-IV線における断面図である。 図5は、実施の形態に係る標的分子酸化還元装置の機能構成の一例を示す図である。 図6は、実施の形態に係る標的分子酸化還元装置の動作の一例を示すフローチャートである。 図7は、実施例1のカソード電極付近と対極付近(カソード電極の遠方)の標的分子溶液の吸収スペクトルを示す図である。 図8は、実施例1、比較例1、及び比較例2の標的分子溶液全体の340nmにおける吸光度を示すグラフである。 図9は、比較例1のカソード電極付近と対極付近(カソード電極の遠方)の標的分子溶液の吸収スペクトルを示す図である。 図10は、比較例2のカソード電極付近と対極付近(カソード電極の遠方)の標的分子溶液の吸収スペクトルを示す図である。
 (本開示の基礎となった知見)
 上述のように、従来技術においては、電気化学測定装置のカソード電極から、電子伝達体の酸化体に電子を供与することにより酸化体を還元する。しかしながら、酸化体がカソード電極から直接電子を受容することは難しい。そのため、電子供与体をカソード電極に固定することにより、電子供与体は、カソード電極から受容した電子を標的分子(つまり、電子受容体)に供与する。これにより、標的分子は、電極から間接的に電子を受容して還元される。
 このようなカソード電極に固定された電子供与体と標的分子との間の電子授受反応は、カソード電極の周りでしか起こらない非常に局所的な反応であり、反応系全体では、標的分子の多くは還元されていない(つまり、活性化効率が低い)。したがって、反応系全体で標的分子の還元効率の高い反応系を構築することが求められている。
 そこで、本開示は、反応系全体で標的分子を効率良く酸化又は還元できる標的分子の酸化還元方法及び標的分子酸化還元装置を提供することを目的とする。
 (本開示の一態様)
 本開示の一態様は、以下の通りである。
 本開示の一態様に係る標的分子の酸化還元方法は、標的分子を含む液体を非流動状態にして、前記液体外の外部電源に接続された電極に固定された電子伝達体と、前記標的分子との間で電子授受を行わせることにより、前記標的分子を酸化又は還元する第1工程と、前記液体を流動状態にする第2工程と、を含み、前記第1工程と前記第2工程とを順次繰り返して実行する。
 これにより、第1工程において、液体が非流動状態であるときに、電極に固定化された電子伝達体と標的分子との間で電子授受反応が行われるため、安定した反応場が形成されやすくなる。その結果、標的分子の活性化効率が向上する。また、第2工程において液体を流動状態にすることにより、活性化された標的分子が電極の近傍から拡散され、液体中の他の標的分子が電極の近傍に移動しやすくなる。これにより、液体中のより多くの標的分子が電子伝達体と電子授受反応を行うことができるようになるため、標的分子と電子伝達体との間の電子授受反応の効率が向上する。また、第1工程と第2工程とが順次繰り返して実行されるため、標的分子を連続して活性化することができる。したがって、標的分子の酸化還元方法によれば、反応系(つまり、液体)全体で標的分子を効率良く活性化することができる。
 本開示の一態様に係る標的分子の酸化還元方法は、前記第2工程では、前記液体を撹拌又は振盪することにより前記液体を流動状態にしてもよい。
 これにより、活性型の標的分子が電極近傍から拡散され、液体中の他の標的分子が電極の近傍に移動する。これにより、標的分子を活性効率良く活性化することができる。
 本開示の一態様に係る標的分子の酸化還元方法は、前記第1工程の実行時間は、前記第2工程の実行時間よりも長くてもよい。
 これにより、標的分子の活性化に長めに時間を取ることができるため、より多くの標的分子を活性化することができる。
 本開示の一態様に係る標的分子の酸化還元方法は、前記第1工程の実行時間と前記第2工程の実行時間の比は、10~100:1であってもよい。
 これにより、電子伝達体と標的分子との間の電子授受反応の時間を十分に取ることができるため、より多くの標的分子を活性化することができる。
 本開示の一態様に係る標的分子の酸化還元方法では、前記第1工程の実行時間は30分以上90分以下であり、前記第2工程の実行時間は1分以上2分以下であってもよい。
 これにより、電子伝達体と標的分子との間の電子授受反応の時間を十分に取ることができるため、より多くの標的分子を活性化することができる。
 本開示の一態様に係る標的分子の酸化還元方法では、前記標的分子は、NADPであってもよい。
 これにより、活性型の標的物質としてNADPHが得られるため、様々なレドックス反応に関与する酸化還元分子、酸化還元酵素、酸化還元タンパク質などを活性化することができる。
 本開示の一態様に係る標的分子の酸化還元方法では、前記電極は、金を含む基板を有してもよい。
 これにより、化学反応性が低く、腐食しにくい電極を得ることができる。また、金は、硫黄、窒素又は酸素原子を有する分子に対して高い結合親和性を有するため、表面修飾が容易であるため、機能性を付与した電極を得ることができる。
 本開示の一態様に係る標的分子の酸化還元方法では、前記電子伝達体は、4,4’-ビピリジニウム誘導体であってもよい。例えば、前記電子伝達体は、1-メチル-1’-ヘキシル-4,4’-ビピリジニウムであってもよい。
 このように、電子伝達体として4,4’-ビピリジニウム誘導体を使用することにより、電子伝達体は、酵素に対する親和性が高くなる。そのため、電子伝達体は、例えば、酸化還元反応に関与する補酵素(NADP)だけでなく、酵素、及び、タンパク質などとも相互作用しやすくなる。さらに、電子伝達体として、1-メチル-1’-ヘキシル-4,4’-ビピリジニウムを使用することにより、基板との固定が容易になる。
 本開示の一態様に係る標的分子の酸化還元方法では、前記外部電源による電圧印加は、前記第1工程において行われてもよい。
 これにより、電極から電子伝達体に電子が供与されるため、電子伝達体と標的分子との間の効率的に電子授受反応を行わせることができる。
 また、本開示の一態様に係る標的分子酸化還元装置は、標的分子を含む液体を撹拌して流動状態にする撹拌部と、前記標的分子との間で電子授受を行うことにより前記標的分子を活性型の標的分子に還元する電子伝達体が固定された電極と、前記電極に電圧を印加する電源と、前記電源及び前記撹拌部を制御する制御部と、を備え、前記制御部は、前記撹拌部による撹拌及び撹拌の停止を繰り返させることで、前記液体の流動状態及び非流動状態を切り替える。
 これにより、液体が非流動状態であるときに、電極に固定化された電子伝達体と標的分子との間で電子授受反応が行われるため、安定した反応場が形成されやすくなる。その結果、標的分子の活性化効率が向上する。また、液体を流動状態と非流動状態に切り替える制御を行うことにより、活性化された標的分子が電極の近傍から拡散され、液体中の他の標的分子が電極の近傍に移動しやすくなる。これにより、液体中のより多くの標的分子が電子伝達体と電子授受反応を行うことができるようになるため、標的分子と電子伝達体との間の電子授受反応の効率が向上する。さらに、液体の流動状態と非流動状態とを切り替えることにより、標的分子の活性化と拡散とを繰り返して実行可能であるため、標的分子を連続して活性化することができる。したがって、標的分子酸化還元装置によれば、反応系(つまり、液体)全体で標的分子を効率良く活性化することができる。
 例えば、本開示の一態様に係る標的分子酸化還元装置では、前記標的分子は、NADPであってもよい。
 これにより、活性型の標的物質としてNADPHが得られるため、様々なレドックス反応に関与する酸化還元分子、酸化還元酵素、酸化還元タンパク質などを活性化することができる。
 例えば、本開示の一態様に係る標的分子酸化還元装置では、前記電極は、金を含む基板を備えていてもよい。
 これにより、化学反応性が低く、腐食しにくい電極を得ることができる。また、金は、硫黄、窒素又は酸素原子を有する分子に対して高い結合親和性を有するため、表面修飾が容易であるため、機能性を付与した電極を得ることができる。
 例えば、本開示の一態様に係る標的分子酸化還元装置では、前記電子伝達体は、4,4’-ビピリジニウム誘導体であってもよい。例えば、前記電子伝達体は、1-メチル-1’-ヘキシル-4,4’-ビピリジニウムであってもよい。
 このように、電子伝達体として4,4’-ビピリジニウム誘導体を使用することにより、電子伝達体は、酵素に対する親和性が高くなる。そのため、電子伝達体は、例えば、酸化還元反応に関与する補酵素(例えば、NADP)だけでなく、酵素、及び、タンパク質などとも相互作用しやすい。さらに、電子伝達体として、1-メチル-1’-ヘキシル-4,4’-ビピリジニウムを使用することにより、基板との固定が容易になる。
 なお、これらの包括的又は具体的な態様は、システム、方法、装置、集積回路、コンピュータプログラム又はコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、装置、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
 以下、実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、請求の範囲を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図は、必ずしも厳密に図示したものではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略又は簡略化される場合がある。
 また、各図において、それぞれ互いに直交するX軸方向、Y軸方向、及びZ軸方向を適宜用いて説明する。特に、Z軸方向のプラス側を上側、マイナス側を下側として説明する場合がある。
 また、本開示において、平行及び垂直などの要素間の関係性を示す用語、及び、矩形などの要素の形状を示す用語、並びに、数値は、厳格な意味のみを表すのではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する。
 また、本開示の図面において、破線は、表面から見えないもの及び領域の境界を表す。
 (実施の形態)
 以下、実施の形態について、図1から図5を参照しながら具体的に説明する。
 [標的分子酸化還元装置]
 [1.概要]
 まず、図1を参照しながら、実施の形態における標的分子酸化還元装置の概要について説明する。図1は、実施の形態における標的分子酸化還元装置100の構成の一例を示す図である。
 標的分子酸化還元装置100は、標的分子を含む液体を非流動状態で、電極に電圧を印加することで、電極に固定化された電子伝達体と標的分子との間で電子授受が行われ、標的分子を酸化又は還元する。そして、液体を非流動状態から流動状態に切り替えることにより、活性型の標的分子を液体中に拡散させる。このように、液体の流動状態の切り替えを繰り返すことで、液体全体で、標的分子を効率良く活性化することができる。
 なお、液体が非流動状態であるとは、例えば、液体が撹拌又は振盪されておらず(つまり、剪断力、又は、振動などの外力を受けておらず)、液面にゆらぎなどの動きが見られない状態をいう。
 [2.構成]
 続いて、実施の形態に係る標的分子酸化還元装置100の構成について図1から図3を参照しながら説明する。
 実施の形態に係る標的分子酸化還元装置100は、標的分子を含む液体を撹拌して流動状態にする撹拌部40と、標的分子との間で電子授受を行うことにより標的分子を酸化又は還元する電子伝達体が固定された電極(カソード電極1)と、電極に電圧を印加する電源20と、電源20及び撹拌部40を制御する制御部30と、を備える。なお、電子伝達体が固定された電極(以下、カソード電極1)は、電圧印加部10の一構成である。
 [電圧印加部]
 まず、電圧印加部10について図2を参照しながら説明する。図2は、実施の形態における電圧印加部10の斜視図である。電圧印加部10は、電極(カソード電極1)に固定された電子伝達体を介して標的分子と電子の授受を行う。このように、電子伝達体と標的分子との間で電子授受が行われることにより、標的分子が酸化又は還元される。
 電圧印加部10は、例えば、カソード電極1(作用極ともいう)、参照極2、対極3、セル4、蓋部5、端子6a、6b、6c、及び、リード7a、7b、7cを備える三電極式セルである。なお、電圧印加部10は、例えば、作用極(カソード電極1)及び対極3を備える二電極式セルであってもよい。
 カソード電極1について、図3を参照しながら説明する。図3は、図2のIII-III線における断面図である。
 カソード電極1は、ガラス基板11と、ガラス基板11上に蒸着されたチタン蒸着層12と、チタン蒸着層12に形成されたカソード基板13と、カソード基板13に固定された電子伝達体を含む反応層14とを有する。
 カソード電極1は、失活した標的分子(いわゆる、不活性型の標的分子)を活性化可能な低分子化合物又は酵素を電子伝達体(電子メディエータともいう)としてカソード基板13上に固定することにより得られる。カソード基板13は、導電性材料から構成された導電性基板を用いてもよい。導電性材料としては、例えば、炭素材料、導電性ポリマー材料、半導体、又は、金属などであってもよい。例えば、炭素材料としては、カーボンナノチューブ、ケッチェンブラック、グラッシーカーボン、グラフェン、フラーレン、カーボンファイバー、カーボンファブリック、又は、カーボンエアロゲル等であってもよい。また、例えば、導電性ポリマー材料としては、ポリアニリン、ポリアセチレン、ポリピロール、ポリ(3,4-エチレンジオキシチオフェン)、ポリ(p-フェニレンビニレン)、ポリチオフェン、又は、ポリ(p-フェニレンスルフィド)等であってもよい。また、例えば、半導体としては、シリコーン、ゲルマニウム、酸化インジウムスズ(ITO:Indium Tin Oxide)、酸化チタン、酸化銅、又は、酸化銀等であってもよい。また、例えば、金属としては、金、白金、銀、チタン、アルミニウム、タングステン、銅、鉄、又は、パラジウム等であってもよい。なお、導電性物質は、導電性物質が自身の酸化反応によって分解されないものであればよく、特に限定されない。カソード基板13の厚みは、特に限定されない。
 カソード基板13に固定される電子伝達体は、試料溶液(液体ともいう)中の標的分子とカソード基板13(上記の導電性基板)との間の電子授受を可能とする物質であれば特に限定されない。電子伝達体は、例えば、ビオローゲン化合物、ビピリジン塩誘導体、キノン、又は、インドフェノールなどが挙げられる。ビオローゲン化合物は、4,4’-ビピリジンの二つのピリジン環窒素原子に置換基を導入したN,N’-二置換-4,4’-ビピリジニウムの慣用名である。置換基の導入により環窒素原子が正に帯電し、電子伝達体として機能する。ビピリジニウム塩誘導体として、2つの塩化物イオンあるいは臭化物イオンを対イオンに持つものであってもよい。ビオローゲン化合物は、例えば、4,4’-ビピリジニウム誘導体であり、1,1’-ジメチル-4,4’-ビピリジニウム(メチルビオローゲン)、1-メチル-1’-カルボキシルメチル-4,4’-ビピリジニウム、1,1’-ジカルボキシメチル-4,4’-ビピリジニウム、1-メチル-1’-アミノエチル-4,4’-ビピリジニウム、1,1’-ジアミノエチル-4,4’-ビピリジニウム、1-メチル-1’-エチル-4,4’-ビピリジニウム、1-メチル-1’-プロピル-4,4’-ビピリジニウム、1-メチル-1’-ブチル-4,4’-ビピリジニウム、1-メチル-1’-ペンチルヘキシル-4,4’-ビピリジニウム、1-メチル-1’-ヘキシル-4,4’-ビピリジニウム、1-メチル-1’-ヘプチル-4,4’-ビピリジニウム、1-メチル-1’-オクチル-4,4’-ビピリジニウム、1-メチル-1’-ノニル-4,4’-ビピリジニウム、1-メチル-1’-デシル-4,4’-ビピリジニウムであってもよく、これらの化合物の1位のメチル基がエチル基に置換された化合物であってもよい。中でも、電子伝達体は、1-メチル-1’-ヘキシル-4,4’-ビピリジニウムであってもよい。
 参照極2は、試料溶液9中の成分と反応せず、一定電位を維持する電極であり、電源20によりカソード電極1と参照極2との間の電位差を一定に制御するために使用される。ここでは、参照極2は、銀/塩化銀電極である。対極3は、例えば、白金電極である。
 ここで、上記の三つの電極の配置について、図4を参照しながら説明する。図4は、図2のIV-IV線における断面図である。図4に示されるように、カソード電極1、参照極2及び対極3は、円筒形のセル4内にセル4の縦方向の中心を囲むように配置されている。セル4の底部には、撹拌子8が配置されている。カソード電極1に固定された電子伝達体を含む反応層は、セルの縦軸の中心に対向して配置されている。
 本実施形態の電気化学測定は、標的分子を再活性可能な電子伝達体としての低分子化合物および酵素を電極表面に固定化したカソード電極1と、対極3としてアノード電極と、参照極2と、反応効率向上のために試料溶液の流動状態及び非流動状態の制御により駆動される撹拌子8と、を備え、カソード電極1(作用極)の表面積は、アノード電極(対極3)よりも十分に大きくてもよい。
 セル4は、不活性型の標的分子が存在する試料溶液9を保持する保持部である。セル4内には、試料溶液9を撹拌する撹拌子8が配置されている。図1及び図2では、セル4は、円筒形である例を示しているが、セル4の形状はこれに限定されない。なお、撹拌子8については、後述する。
 不活性型の標的分子は、例えば、NADPである。不活性型の標的分子は、NADであってもよく、不活性型のフェレドキシンであってもよい。
 再び、図1及び図2を参照すると、蓋部5にはカソード電極1、参照極2、及び、対極3をそれぞれ電源20に電気的に接続する端子6a、端子6b、及び、端子6cが配置されている。各端子からリードが伸びており、端子と電池とを接続している。図1及び図2では、参照極2のリードが図示されていないが、端子6bから参照極2に向かってリードが伸びており、参照極2は、リード(不図示)を介して端子6bに接続されている。カソード電極1は、リード7aを介して端子6aと接続され、対極3は、リード7cを介して端子6cと接続されている。
 [電源]
 続いて、図5を参照しながら、電源20について説明する。図5は、実施の形態に係る標的分子酸化還元装置100の機能構成の一例を示す図である。
 電源20は、電極(カソード電極1)に電圧を印加する。より具体的には、電源20は、制御部30から出力された制御信号に従って、電圧印加部10のカソード電極1と対極3との間に電圧を印加し、カソード電極1と参照極2との間の電位を所定の値に制御する。
 図5に示されるように、電源20は、例えば、取得部21、情報処理部22、電圧制御部23、及び、出力部24を備える。
 取得部21は、制御部30から出力された制御信号を取得し、取得した制御信号を情報処理部22に出力する。また、取得部21は、電圧印加部10における各電極の電位、及び、試料溶液9に流れる電流値などのデータを取得してもよい。この場合、出力部24は、取得部21により取得されたデータを制御部30に出力する。制御部30における当該データの処理については、後述する。
 情報処理部22は、取得部21により取得された情報を処理する。例えば、情報処理部22は、取得部21から制御信号を取得すると、取得した制御信号を電圧制御部23に出力する。電圧制御部23が電圧印加部10の各電極に電圧印加を開始すると、情報処理部22は、取得部21から取得された電圧印加部10における各電極の電位、及び、試料溶液9に流れる電流値などのデータを取得し、取得したデータに基づいて、カソード電極1に印加する電圧を導出する。そして、情報処理部22は、導出した電圧でカソード電極1の電圧を制御する制御信号を電圧制御部23に出力する。
 電圧制御部23は、情報処理部22から出力された制御信号に基づいて、電圧印加部10の各電極に電圧を印加する。
 なお、図1では、電源20と制御部30とは別体である例を示しているが、電源20は、制御部30を備えてもよい。
 [撹拌部]
 撹拌部40は、不活性型の標的分子を含む液体(ここでは、試料溶液9)を撹拌して流動状態にする。より具体的には、撹拌部40は、制御部30から出力された制御信号に従って、モータ43の動作を制御することにより、電圧印加部10の中にセットされた撹拌子8の回転速度及び回転時間を制御する。
 図5に示されるように、撹拌部40は、例えば、取得部41、撹拌制御部42、及び、モータ43を備える。
 取得部41は、制御部30から出力された制御信号を取得し、取得した制御信号を撹拌制御部42に出力する。
 撹拌制御部42は、取得部41により取得された情報を処理する。例えば、撹拌制御部42は、取得部41から制御信号を取得すると、取得した制御信号に基づいてモータ43の制御条件を導出し、モータ43の動作を制御する。具体的には、撹拌制御部42は、モータ43の回転速度、回転時間などを制御することにより、撹拌子8の動き(つまり、回転速度及び回転時間)を制御する。
 なお、図1では、撹拌部40は、電圧印加部10と別体である例を示しているが、電圧印加部10と一体であってもよい。この場合、撹拌部40は、例えば、電圧印加部10の蓋部5内に配置され、撹拌子8は、例えば、蓋部5に脱着可能な撹拌羽であってもよい。
 [制御部]
 制御部30は、電源20の電圧印加及び撹拌部40のモータ43の動きを制御するための情報処理を行う。制御部30は、例えば、プロセッサ、マイクロコンピュータ、又は、専用回路によって実現される。図1では、制御部30は、コンピュータ装置である例を示している。
 制御部30は、例えば、取得部31と、情報処理部32と、記憶部33と、出力部34と、を備える。
 取得部31は、例えば、ユーザにより入力された指示に関する情報(以下、指示情報)、並びに、電圧印加部10における各電極の電位、及び、試料溶液9に流れる電流値などのデータを取得し、取得した指示情報及びデータを情報処理部32に出力する。
 情報処理部32は、例えば、取得部31により取得された指示情報に基づいて、電圧印加部10の各電極に電圧を印加する条件(電圧印加条件ともいう)、及び、試料溶液9の流動状態の切り替え、流動速度など液体流動条件を導出する。指示情報は、例えば、標的分子の種類、試料溶液9の量、処理の完了時間、又は、完了時刻などであってもよい。
 また、情報処理部32は、例えば、取得部31により取得されたデータに基づいて、試料溶液中の標的分子の還元率を導出し、導出した還元率に応じて、電圧印加条件及び液体流動条件を変更してもよい。例えば、情報処理部32は、指示情報に基づいて導出された電圧印加条件のうちの電圧印加時間を変更してもよく、各電極への印加電圧を変更してもよい。また、例えば、情報処理部32は、指示情報に基づいて導出された液体流動条件のうちの試料溶液の流動状態の切り替えのタイミングを変更してもよく、流動速度を変更してもよい。これにより、制御部30は、指示情報に基づいて導出された電圧印加条件及び液体流動条件を、標的分子の還元状態(還元率)に応じて導出し直す(つまり、変更する)ことができるため、試料溶液中の標的分子をより効率良く還元することができる。
 さらに、情報処理部32は、電圧印加条件で電源20の電圧印加を制御する制御信号を導出し、液体流動条件でモータ43の動作を制御する制御信号を導出してもよい。電圧印加条件及び液体流動条件は、上述したように、取得部31により取得された指示情報又はデータに基づいて導出されてもよく、ユーザにより予め設定されてもよい。情報処理部32は、これらの制御信号を出力部34に出力する。
 出力部34は、情報処理部32により導出された制御信号を取得し、電源20及び撹拌部40に出力する。
 記憶部33は、取得部31が取得したデータ、及び、制御部30が実行するコンピュータプログラム(例えば、電源20を制御するためのアプリケーションプログラム)などを記憶している。
 [3.動作]
 続いて、実施の形態に係る標的分子酸化還元装置100の動作について図1から図5と併せて図6を参照しながら具体的に説明する。図6は、実施の形態に係る標的分子酸化還元装置100の動作の一例を示すフローチャートである。
 図示していないが、まず、標的分子酸化還元装置100を動作させる前の準備工程について説明する。例えば、準備工程は、ユーザによって行われてもよい。準備工程では、まず、試料溶液9を調製する。ユーザは、不活性型の標的分子を含む試料溶液9を電圧印加部10のセル4に導入する。
 次いで、ユーザは、電極を試料溶液9に差し込み、セットする。電極は、カソード電極1、参照極2、及び、対極3である。カソード電極1は、蓋部5に配置された端子6aから伸びたリード7aに接続され、参照極2は、蓋部5に配置された端子6bから伸びたリード7bに接続され、対極3は、蓋部5に配置された端子6cから伸びたリード7cに接続されている。
 次いで、ユーザは、例えば、標的分子の種類、試料溶液の量、処理の完了時間、完了時刻などの指示に関する情報を標的分子酸化還元装置100aに入力する。
 なお、上記の準備工程では、ユーザがセル4内に標的分子を含む試料溶液9を導入したが、標的分子酸化還元装置100がセル4内に試料溶液9を導入してもよい。つまり、上記の準備工程は、ユーザが行う例を説明したが、標的分子酸化還元装置100により実行されてもよい。この場合、標的分子酸化還元装置100は、さらに、導入部(不図示)と、回収部(不図示)と、導入口(不図示)と、排出口(不図示)と、を備えてもよい。例えば、導入部は、不活性型の標的分子を含む試料溶液9を、セル4に設けられた導入口からセル4内に導入してもよい。また、例えば、回収部は、不活性型の標的分子を還元して活性型の標的分子を含む試料溶液9を、セル4に設けられた排出口からセル4の外に回収してもよい。
 続いて、標的分子酸化還元装置100の動作について説明する。制御部30は、ユーザにより指示情報が入力されると、電圧印加部10の各電極に電圧を印加する条件及び液体流動条件を設定する(ステップS101)。条件の設定では、制御部30は、入力された指示情報に基づいて、電圧印加条件及び液体流動条件を導出する。そして、制御部30は、導出した電圧印加条件で電源20の電圧印加を制御する制御信号を電源20に出力する。また、制御部30は、導出した液体流動条件で撹拌部40の動作を制御する制御信号を撹拌部40に出力する。なお、ステップS101では、ユーザにより電圧印加条件及び液体流動条件の組と対応付けられたプログラム番号が選択されることにより、制御部30は、プログラム番号を取得し、電圧印加条件及び液体流動条件を設定してもよい。
 次いで、電源20及び撹拌部40は、制御部30から出力された制御信号を取得すると、当該制御信号に従って、それぞれ、電極への電圧印加及びモータ43の制御を開始する(ステップS102)。制御部20は、電圧印加を開始し、撹拌部40は、モータ43を停止する制御を行う(つまり、試料溶液9を非流動状態にする)(ステップS103)。ステップS103では、例えば、電源20は、電圧印加部10のカソード電極1と対極3との間に電圧を印加し、カソード電極1と参照極2との間の電位を所定の値に制御する。所定の値は、使用される電子伝達体及び標的分子の組み合わせに応じて決定されてもよい。このとき、撹拌部40は、モータ43を動作させない、又は、液面にゆらぎが生じない程度の速度でモータ43を回転させる。これにより、試料溶液9中の不活性型の標的分子は、試料溶液9が非流動状態で、カソード電極1に固定された電子伝達体を介して電子が受容して、活性型の標的分子に還元される。このステップを第1工程ともいう。
 次いで、撹拌部40は、モータ43を所定の回転速度で回転させる制御を行い、試料溶液9を撹拌子8で撹拌する(ステップS104)。これにより、ステップS103で活性化された標的分子(活性型の標的分子)を試料溶液9中に拡散し、試料溶液9中の不活性型の標的分子がカソード電極1の近傍に移動する。このステップでは、撹拌部40は、液体流動条件に基づいて撹拌及び撹拌の停止を切り替えて、試料溶液9を非流動状態から流動状態に切り替える。このとき、撹拌部40は、モータ43の回転動作を制御し、撹拌子8の回転速度及び時間を制御する。これにより、セル4内の試料溶液9が撹拌されて流動状態となり、カソード電極1の近傍に存在する活性型の標的分子が試料溶液9中に拡散される。このとき、試料溶液9中の不活性型の標的分子がカソード電極1の近傍に移動しやすくなる。なお、ステップS104において、電源20は、電圧印加を停止する制御をしてもよいし、電圧印加を継続する制御をしてもよい。
 電源20及び撹拌部40は、ステップS103及びステップS104の処理を順次繰り返す(不図示)。
 例えば、ステップS103の実行時間は、ステップS104の実行時間よりも長く、それらの比は、10~100:1であってもよい。より具体的には、ステップS103の実行時間は、30分以上90分以下であり、ステップS104の実行時間は1分以上2分以下である。これにより、ステップS103において、より多くの不活性型の標的分子が活性型の標的分子に還元され、カソード電極1の近傍における活性型の標的分子が撹拌により試料溶液9中に拡散して、新たな不活性型の標的分子がカソード電極1の近傍に移動してくる。これらの処理を繰り返すことで、試料溶液9全体で、不活性型の標的分子の活性化効率(つまり、還元効率)が向上する。
 次いで、制御部30は、設定された条件での処理が完了したか否かを判定する(ステップS105)。設定された条件は、例えば、電圧印加の期間(時間)、電圧印加(例えばパルス電圧)の回数、又は、試料溶液9の流動状態の切り替えの回数などである。制御部30は、設定された条件の処理が完了していないと判定した場合(ステップS105でNo)、電源20に電圧印加を継続させ、かつ、撹拌部40に液体流動条件に基づく動作(単に、動作ともいう)を継続させる(ステップS106)。そして、次の判定(ステップS105)が行われるまでの間、ステップS103及びステップS104が繰り返される。
 一方、制御部30は、設定された条件での処理が完了したと判定した場合(ステップS105でYes)、電源20に電圧印加を終了させ、かつ、撹拌部40に動作を停止させる(ステップS107)。これにより、試料溶液9中の不活性型の標的分子の活性化が終了する。
 以下、実施例にて本開示の標的物質の酸化還元方法について具体的に説明するが、以下の実施例は一例であって、本開示は以下の実施例のみに何ら限定されるものではない。
 以下の実施例及び比較例では、不活性型の標的分子(以下、単に標的分子ともいう)として、酸化型ニコチンアミドアデニンジヌクレオチドリン酸(NADP)を用いた。
 (実施例1)
 (標的分子溶液の調製)
 標的分子溶液は、NADPをpH7.4のリン酸緩衝生理食塩水(PBS)に溶解して1.0ミリモル/リットルに調製した。
 (カソード電極の作製)
 ガラス基板に、チタンと金とをこの順に蒸着して金基板を作製した。次いで、作製された金基板上に4-メルカプトピリジンを修飾して4-メルカプトピリジン修飾金基板を作製した。次いで、金基板表面の4-メルカプトピリジン単分子膜上に1-メチル-1’ヘキシル-4,4’ビピリジニウムを固定してカソード電極1を得た。なお、1-メチル-1’ヘキシル-4,4’ビピリジニウムは、NADPに電子を供与してNADPHに還元する(言い換えると、NADPを再活性化する)電子伝達体である。
 (標的分子溶液への電圧の印加)
 図1に示される電圧印加部10のセル4に、標的分子溶液(1.0mM NADP-PBS溶液)を導入し、電極をセットした。電極は、作製されたカソード電極1を作用極とし、Pt(白金)電極を対極とし、Ag/AgCl(銀/塩化銀)電極を参照極とした三電極系の電極を用いた。次いで、標的分子溶液に撹拌子を入れ、撹拌子を所定の回転速度(rpm)で回転させながら標的分子溶液に電圧を印加した。具体的には、標的分子溶液に所定の電圧を印加しながら、回転の停止及び回転の2種類の回転制御で撹拌子の動きを制御することにより、標的分子溶液の非流動状態及び流動状態を切り替えた。これにより、標的分子溶液の非流動状態及び流動状態の切り替えを調整した。非流動状態で標的分子溶液に電圧を印加する時間は、流動状態で電圧を印加する時間よりも十分長い時間であった。この2種類の制御を順次繰り返しながら、標的分子溶液に所定の電圧を印加し続けた。
 (標的分子の再活性化の確認)
 標的分子溶液への電圧印加が終了した後、作用極(カソード電極)周り、対極周り、及び、参照極周りから、それぞれ、標的分子溶液をサンプリングした。そして、サンプリングした標的分子溶液の340nmを含む波長域の吸光度(以下、単に、吸光度という)を測定した。測定は、1mmセルを用いて行った。340nmは、NADPH特有の吸収波長である。
 作用極(カソード電極)周りでサンプリングされた標的分子溶液の吸光度と、作用極から最も離れた位置にある対極周りでサンプリングされた標的分子溶液の吸光度との測定結果を図7に示す。図7に示されるように、作用極周り(図のカソード電極付近)の標的分子溶液も、対極周り(図のカソード電極遠方)の標的分子溶液も、340nmに吸収ピークが見られた。標的分子溶液の吸光度は、作用極周りで0.08、作用極から最も離れた対極周りで0.07であった。これにより、標的分子溶液全体で、標的分子であるNADPが還元されて活性型であるNADPHが生成されたことが確認された。
 また、標的分子溶液全体の吸光度として、三極周りの標的分子溶液の340nmにおける吸光度の平均値を算出した。算出結果を図8に示す。図8に示されるように、実施例1では、電圧印加後の標的分子溶液全体の吸光度は、0.072であった。
 (比較例1)
 比較例1は、撹拌子を常に回転させる(つまり、標的分子溶液が常に流動状態)こと以外は、実施例1と同様の条件で行った。
 作用極(カソード電極)周りでサンプリングされた標的分子溶液の吸光度と、作用極から最も離れた位置にある対極周りでサンプリングされた標的分子溶液の吸光度の測定結果を図9に示す。図9に示されるように、作用極周り(図のカソード電極付近)の標的分子溶液も、対極周り(図のカソード電極遠方)の標的分子溶液も、340nmに吸収ピークが見られなかった。これにより、標的分子溶液全体で、標的分子であるNADPが還元されなかったことが確認された。
 また、標的分子溶液全体の吸光度として、三極周りの標的分子溶液の吸光度の平均値を算出した。算出結果を図8に示す。図8に示されるように、比較例1では、電圧印加後の標的分子溶液全体の吸光度は、0.056であった。
 (比較例2)
 比較例2は、撹拌子を回転させないこと以外は、実施例1と同様の条件で行った。
 作用極(カソード電極)周りでサンプリングされた標的分子溶液の吸光度と、作用極から最も離れた位置にある対極周りでサンプリングされた標的分子溶液の吸光度の測定結果を図10に示す。図10に示されるように、作用極周り(図のカソード電極付近)の標的分子溶液は340nmに吸収ピークが見られたが、対極周り(図のカソード電極遠方)の標的分子溶液は、340nmに吸収ピークが見られなかった。これにより、作用極周りで、標的分子であるNADPが還元されて活性型であるNADPHが生成されたことが確認された。
 また、標的分子溶液全体の吸光度として、三極周りの標的分子溶液の340nmにおける吸光度の平均値を算出した。算出結果を図8に示す。図8に示されるように、比較例2では、電圧印加後の標的分子溶液全体の吸光度は、0.063であった。
 (考察)
 図8に示されるように、比較例1は、標的分子溶液全体の吸光度が実施例1及び比較例2よりも低かった。比較例1のように、撹拌子を回転させて標的分子溶液を撹拌しながら(つまり、標的分子溶液が流動状態)標的分子溶液に電圧を印加すると、標的分子であるNADPが電子の授受反応に必要な時間、作用極(カソード電極)周りに留まることができない。そのため、作用極に固定された電子伝達体と標的分子との電子授受反応が起こりにくく、電子伝達体から標的分子への電子供与効率が悪くなったと考えられる。
 また、図8に示されるように、比較例2は、標的分子溶液全体の吸光度が比較例1よりも高かった。比較例2のように、撹拌子を回転させず(つまり、標的分子溶液を撹拌せず非流動状態にする)に標的分子溶液に電圧を印加すると、標的分子(NADP)が電子の授受反応に必要な時間、作用極周りに留まることができる。そのため、作用極に固定された電子伝達体から標的分子への電子供与効率が高くなったと考えられる。一方で、作用極から離れた対極周りでは、比較例1と同様の吸光度を示しているため、作用極周りでしか電子授受反応が行われていないことが分かった。したがって、反応効率を向上させるために、ある程度の撹拌は必要であると考えられる。
 また、図8に示されるように、実施例1は、標的分子溶液全体の340nmにおける吸光度が最も高かった。実施例1では、撹拌子の回転速度の停止及び回転の2種類の制御を所定の時間間隔(停止の時間>回転の時間)で交互に繰り返した。そのため、撹拌子が停止状態(つまり、標的分子溶液が非流動状態)の間、作用極上の電子伝達体と標的分子とが電子授受反応を行い、撹拌子が回転している(つまり、標的分子溶液が流動状態)の間に、作用極周りで活性化された標的分子が標的分子溶液全体に拡散されると考えられる。これにより、標的分子溶液全体において、電子伝達体と標的分子との間の電子授受反応が効率的に行われたことが分かった。
 以上より、標的分子溶液が非流動状態で印加される時間を標的分子溶液が流動状態である時間よりも長くすると、標的分子の活性化効率が向上することが確認できた。
 以上、本開示に係る標的分子の酸化還元方法、及び、標的分子酸化還元装置について、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態に施したものや、実施の形態における一部の構成要素を組み合わせて構築される別の形態も、本開示の範囲に含まれる。
 本開示によれば、電子伝達体を繰り返し活性化することができるため、電子伝達体による電子授受反応を利用するあらゆる分野で広く利用可能である。
 1 カソード電極
 2 参照極
 3 対極
 4 セル
 5 蓋部
 6a、6b、6c 端子
 7a、7b、7c リード
 8 撹拌子
 9 試料溶液
 10 電圧印加部
 11 ガラス基板
 12 チタン蒸着層
 13 カソード基板
 14 反応層
 20 電源
 21 取得部
 22 情報処理部
 23 電圧制御部
 24 出力部
 30 制御部
 31 取得部
 32 情報処理部
 33 記憶部
 34 出力部
 40 撹拌部
 41 取得部
 42 撹拌制御部
 43 モータ
 100 標的分子酸化還元装置

Claims (15)

  1.  標的分子を含む液体を非流動状態にして、前記液体外の外部電源に接続された電極に固定された電子伝達体と、前記標的分子との間で電子授受を行わせることにより、前記標的分子を酸化又は還元する第1工程と、
     前記液体を流動状態にする第2工程と、
     を含み、
     前記第1工程と前記第2工程とを順次繰り返して実行する、
     標的分子の酸化還元方法。
  2.  前記第2工程では、前記液体を撹拌又は振盪することにより前記液体を流動状態にする、
     請求項1に記載の標的分子の酸化還元方法。
  3.  前記第1工程の実行時間は、前記第2工程の実行時間よりも長い、
     請求項1又は2に記載の標的分子の酸化還元方法。
  4.  前記第1工程の実行時間と前記第2工程の実行時間の比は、10~100:1である、
     請求項3に記載の標的分子の酸化還元方法。
  5.  前記第1工程の実行時間は30分以上90分以下であり、
     前記第2工程の実行時間は1分以上2分以下である、
     請求項4に記載の標的分子の酸化還元方法。
  6.  前記標的分子は、NADPである、
     請求項1~5のいずれか1項に記載の標的分子の酸化還元方法。
  7.  前記電極は、金を含む基板を有する、
     請求項1~6のいずれか1項に記載の標的分子の酸化還元方法。
  8.  前記電子伝達体は、4,4’-ビピリジニウム誘導体である、
     請求項1~7のいずれか1項に記載の標的分子の酸化還元方法。
  9.  前記電子伝達体は、1-メチル-1’-ヘキシル-4,4’-ビピリジニウムである、
     請求項8に記載の標的分子の酸化還元方法。
  10.  前記外部電源による電圧印加は、前記第1工程において行われる、
     請求項1~9のいずれか1項に記載の標的分子の酸化還元方法。
  11.  標的分子を含む液体を撹拌して流動状態にする撹拌部と、
     前記標的分子との間で電子授受を行うことにより前記標的分子を酸化又は還元する電子伝達体が固定された電極と、
     前記電極に電圧を印加する電源と、
     前記電源及び前記撹拌部を制御する制御部と、
     を備え、
     前記制御部は、前記撹拌部による撹拌及び撹拌の停止を繰り返させることで、前記液体の流動状態及び非流動状態を切り替える、
     標的分子酸化還元装置。
  12.  前記標的分子は、NADPである、
     請求項11に記載の標的分子酸化還元装置。
  13.  前記電極は、金を含む基板を有する、
     請求項11又は12に記載の標的分子酸化還元装置。
  14.  前記電子伝達体は、4,4’-ビピリジニウム誘導体である、
     請求項11~13のいずれか1項に記載の標的分子酸化還元装置。
  15.  前記電子伝達体は、1-メチル-1’-ヘキシル-4,4’-ビピリジニウムである、
     請求項14に記載の標的分子酸化還元装置。
PCT/JP2021/023751 2020-06-23 2021-06-23 標的分子の酸化還元方法、及び、標的分子酸化還元装置 WO2021261510A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP21828862.9A EP4170011A4 (en) 2020-06-23 2021-06-23 METHOD FOR OXIDATION OR REDUCTION OF TARGET MOLECULES AND DEVICE FOR OXIDATION OR REDUCTION OF TARGET MOLECULES
AU2021297442A AU2021297442A1 (en) 2020-06-23 2021-06-23 Method for oxidizing or reducing target molecule and device for oxidation or reduction of target molecule
CN202180043581.5A CN115702344A (zh) 2020-06-23 2021-06-23 靶分子的氧化还原方法及靶分子氧化还原装置
CA3187861A CA3187861A1 (en) 2020-06-23 2021-06-23 Target molecule redox method and target molecule redox device
JP2022532510A JPWO2021261510A1 (ja) 2020-06-23 2021-06-23
US18/082,785 US20230117095A1 (en) 2020-06-23 2022-12-16 Target molecule redox method and target molecule redox device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-108218 2020-06-23
JP2020108218 2020-06-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/082,785 Continuation US20230117095A1 (en) 2020-06-23 2022-12-16 Target molecule redox method and target molecule redox device

Publications (1)

Publication Number Publication Date
WO2021261510A1 true WO2021261510A1 (ja) 2021-12-30

Family

ID=79281285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023751 WO2021261510A1 (ja) 2020-06-23 2021-06-23 標的分子の酸化還元方法、及び、標的分子酸化還元装置

Country Status (7)

Country Link
US (1) US20230117095A1 (ja)
EP (1) EP4170011A4 (ja)
JP (1) JPWO2021261510A1 (ja)
CN (1) CN115702344A (ja)
AU (1) AU2021297442A1 (ja)
CA (1) CA3187861A1 (ja)
WO (1) WO2021261510A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982003729A1 (en) * 1981-04-08 1982-10-28 Lo Gorton Electrode for the electrochemical regeneration of co-enzyme,a method of making said electrode,and the use thereof
JPH02312592A (ja) * 1989-05-29 1990-12-27 Dai Ichi Kogyo Seiyaku Co Ltd 補酵素再生用電解槽を付置したレドックス系バイオリアクター〔登録商標〕

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621215A (zh) * 2012-03-16 2012-08-01 湖南师范大学 一种双通道阳极溶出伏安法
CN102901768B (zh) * 2012-10-25 2015-08-12 厦门斯坦道科学仪器股份有限公司 电化学溶出伏安法快速检测重金属的检测方法
CN104326636B (zh) * 2014-09-22 2016-08-24 同济大学 一种能控制氧化还原电位促进污泥干法厌氧发酵的装置及方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982003729A1 (en) * 1981-04-08 1982-10-28 Lo Gorton Electrode for the electrochemical regeneration of co-enzyme,a method of making said electrode,and the use thereof
JPH02312592A (ja) * 1989-05-29 1990-12-27 Dai Ichi Kogyo Seiyaku Co Ltd 補酵素再生用電解槽を付置したレドックス系バイオリアクター〔登録商標〕

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GAJDZIK J., LENZ J., NATTER H., WALCARIUS A., KOHRING G. W., GIFFHORN F., GÖLLÜ M., DEMIR A. S., HEMPELMANN R.: "Electrochemical Screening of Redox Mediators for Electrochemical Regeneration of NADH", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 159, no. 2, 19 December 2011 (2011-12-19), pages F10 - F16, XP055895830, ISSN: 0013-4651, DOI: 10.1149/2.056202jes *
KOCHIUS, S. ET AL.: "Immobilized redox mediators for electrochemical NAD(P)+ regeneration", APPL MICROBIOL BIOTECHNOL, vol. 93, 2012, pages 2251 - 2264, XP035024523, DOI: 10.1007/s00253-012-3900-z *
SAKURAI, NOBUKI; TANAKA, ERI; TOUJOU, NAOKI; YOSHIDA, KENTAROU; ONO, TETSUYA; KASHIWAGI, YOSHITOMO: "4A32a10 Continuous reduction reaction with enzyme modified electrode", ANNUAL MEETING OF THE JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY AND AGROCHEMISTRY (JSBBA 2015), vol. 2015, 5 March 2015 (2015-03-05), pages 1904, XP009541574 *
See also references of EP4170011A4 *
YUAN MENGWEI, KUMMER MATTHEW J., MILTON ROSS D., QUAH TIMOTHY, MINTEER SHELLEY D.: "Efficient NADH Regeneration by a Redox Polymer-Immobilized Enzymatic System", ACS CATALYSIS, AMERICAN CHEMICAL SOCIETY, US, vol. 9, no. 6, 7 June 2019 (2019-06-07), US , pages 5486 - 5495, XP055895829, ISSN: 2155-5435, DOI: 10.1021/acscatal.9b00513 *

Also Published As

Publication number Publication date
CN115702344A (zh) 2023-02-14
US20230117095A1 (en) 2023-04-20
JPWO2021261510A1 (ja) 2021-12-30
EP4170011A1 (en) 2023-04-26
AU2021297442A2 (en) 2023-02-16
CA3187861A1 (en) 2021-12-30
AU2021297442A1 (en) 2023-02-02
EP4170011A4 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
Ramanavicius et al. Polypyrrole-entrapped quinohemoprotein alcohol dehydrogenase. Evidence for direct electron transfer via conducting-polymer chains
Hall et al. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part IV: phosphate buffer dependence
Ali et al. Direct electrochemical regeneration of the cofactor NADH on bare Ti, Ni, Co and Cd electrodes: The influence of electrode potential and electrode material
JP4839219B2 (ja) 酵素的電気化学的バイオセンサ
Munteanu et al. Effect of pH on the catalytic electrooxidation of NADH using different two-electron mediators immobilised on zirconium phosphate
Majdi et al. Electrocatalytic oxidation of some amino acids on a nickel–curcumin complex modified glassy carbon electrode
Janda et al. Quinone-mediated glucose oxidase electrode with the enzyme immobilized in polypyrrole
Ferapontova et al. Effect of pH on direct electron transfer in the system gold electrode–recombinant horseradish peroxidase
Liu et al. A biofuel cell with enhanced power output by grape juice
Lawrence et al. Biocatalytic carbon paste sensors based on a mediator pasting liquid
Hibino et al. Mutation of heme c axial ligands in d-fructose dehydrogenase for investigation of electron transfer pathways and reduction of overpotential in direct electron transfer-type bioelectrocatalysis
Tsujimura et al. Electrochemical oxygen reduction catalyzed by bilirubin oxidase with the aid of 2, 2′-azinobis (3-ethylbenzothiazolin-6-sulfonate) on a MgO-template carbon electrode
Casella Electrocatalytic oxidation of oxalic acid on palladium-based modified glassy carbon electrode in acidic medium
Mano et al. Electrodes modified with nitrofluorenone derivatives as a basis for new biosensors
Sakuta et al. Multi-enzyme anode composed of FAD-dependent and NAD-dependent enzymes with a single ruthenium polymer mediator for biofuel cells
Varničić et al. Gluconic acid synthesis in an electroenzymatic reactor
Malinauskas et al. An in situ spectroelectrochemical study of redox reactions at polyaniline-modified ITO electrodes
Munteanu et al. Mediator-modified electrodes for catalytic NADH oxidation: high rate constants at interesting overpotentials
WO2021261510A1 (ja) 標的分子の酸化還元方法、及び、標的分子酸化還元装置
Hajizadeh et al. chemical cross-linking of a redox mediator thionin for electrocatalytic oxidation of reduced β-nicotinamide adenine dinucleotide
Korani et al. Guanine/ionic liquid derived ordered mesoporous carbon decorated with AuNPs as efficient NADH biosensor and suitable platform for enzymes immobilization and biofuel cell design
Hossain et al. Effect of pore size of MgO-templated porous carbon electrode on immobilized crosslinked enzyme–mediator redox network
Raj et al. Facilitated electrochemical oxidation of NADH and its model compound at gold electrode modified with terminally substituted electroinactive self-assembled monolayers
Lima et al. Electrochemical investigations of the reaction mechanism and kinetics between NADH and redox-active (NC) 2C6H3–NHOH/(NC) 2C6H3–NO from 4-nitrophthalonitrile–(NC) 2C6H3–NO2-modified electrode
Shamsipur et al. Electrocatalytic reduction of dioxygen at carbon paste electrode modified with a novel cobalt (III) Schiff's base complex

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828862

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022532510

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3187861

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021828862

Country of ref document: EP

Effective date: 20230123

ENP Entry into the national phase

Ref document number: 2021297442

Country of ref document: AU

Date of ref document: 20210623

Kind code of ref document: A