WO2021261067A1 - 溶接構造体及びこれに用いられるFe-Mn-Cr-Ni-Si系合金 - Google Patents

溶接構造体及びこれに用いられるFe-Mn-Cr-Ni-Si系合金 Download PDF

Info

Publication number
WO2021261067A1
WO2021261067A1 PCT/JP2021/016266 JP2021016266W WO2021261067A1 WO 2021261067 A1 WO2021261067 A1 WO 2021261067A1 JP 2021016266 W JP2021016266 W JP 2021016266W WO 2021261067 A1 WO2021261067 A1 WO 2021261067A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
volume
deformation
phase
repeated
Prior art date
Application number
PCT/JP2021/016266
Other languages
English (en)
French (fr)
Inventor
孝宏 澤口
照美 中村
吾郎 荒金
晋 高森
奎貴 吉中
淳道 櫛部
泰彦 井上
達 本村
史朗 大須賀
Original Assignee
国立研究開発法人物質・材料研究機構
株式会社竹中工務店
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構, 株式会社竹中工務店 filed Critical 国立研究開発法人物質・材料研究機構
Priority to KR1020227038885A priority Critical patent/KR20230029598A/ko
Priority to JP2022532343A priority patent/JP7468874B2/ja
Priority to EP21829952.7A priority patent/EP4174204A1/en
Publication of WO2021261067A1 publication Critical patent/WO2021261067A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon

Definitions

  • the present invention relates to a welded structure and a Fe-Mn-Cr-Ni-Si alloy used therein.
  • the vibration damping damper is a building member built in to protect the building from earthquakes, and converts the shaking of the building due to the earthquake into heat energy and absorbs it.
  • the vibration damping dampers include a steel vibration damping damper that absorbs vibrations based on the history of elasto-plastic deformation of steel materials, a viscoelastic system vibration damper that absorbs vibrations due to viscoelastic deformation of polymer materials, and oil that absorbs vibrations due to the viscoelastic flow of oil.
  • dampers There are types such as dampers, and they are used by making the best use of their characteristics. Of these, steel damping dampers have the features of low cost, maintenance-free, and high rigidity, and are widely applied to various damping structures.
  • vibration damping alloys having a fatigue life about 10 times longer than those of conventional vibration damping steel materials and general steel materials for building structures (hereinafter, also referred to as "conventional steel materials”) have been developed (see Patent Document 1).
  • a new type of vibration damping damper using this as a core material is applied to large building structures such as skyscrapers and large-scale exhibition halls. It is expected to become more widespread as a vibration damping damper with a long fatigue life that can withstand repeated long-period ground motions, aftershocks after large earthquakes, and interlocking earthquakes.
  • FMS alloys Welding wires corresponding to the components of alloys (hereinafter, also referred to as "FMS alloys") as described in Patent Document 1 have also been developed (see, for example, Patent Document 2), and the building frame of the vibration damping damper plate material.
  • a brace-type anti-vibration damper has also been developed in which carbon steel is welded to the joint to form a cross cross section to improve the resistance and buckling resistance of the joint.
  • the brace type vibration damping damper is used by incorporating it into the brace, and during an earthquake, it absorbs the energy of seismic motion by undergoing repeated elasto-plastic deformation such as repeated tensile compression, repeated alternating shear, and repeated bending due to the shaking of the building.
  • damping dampers are required to have higher yield strength and higher rigidity. It is necessary to let it.
  • the vibration damping damper developed so far using FMS alloy is a one-character cross-section type that uses the FMS alloy plate as it is (as rolled) for the core material, and bears the axial force without changing the finding width of the damper. While there is no other way to increase the area than to increase the plate thickness of the FMS alloy plate material, there are restrictions on the plate thickness of the plate material that can be manufactured. Further, as a method of increasing the axial force bearing area of the damper, it is effective to make the cross section of the core material portion cross-shaped or H-shaped. A cross section or an H-shaped cross section can be manufactured by welding and assembling an alloy plate material.
  • the welded portion has a component composition different from that of the FMS alloy which is a vibration damping alloy.
  • the problem is that the fatigue resistance mechanism of the FMS alloy does not work, and the fatigue life may be reduced to the same level as that of conventional steel materials. Further, as a result of forming welding defects such as solidification cracks, segregation, and precipitates in the welded portion, it is liable to become a weak point of metal fatigue, and there is a problem that the fatigue life may be further shortened.
  • a welded structure such as a vibration damping damper assembled by a welding method, which exhibits excellent fatigue characteristics equivalent to those of a steel base material even in a welded portion. do.
  • Another object of the present invention is to provide an alloy steel used for the welded structure.
  • Another object of the present invention is to provide a welded structure using the alloy steel and a welded material.
  • welded structure In a structure assembled by using a welding method (hereinafter referred to as "welded structure”), as a means for making the fatigue characteristics of the welded portion equivalent to that of the base metal, the present inventors have used the welded structure.
  • welded structure We focused on the microstructural structure of the weld before repeated elasto-plastic deformation (hereinafter, also simply referred to as “deformation”) and the deformation mechanism of the microstructure of the weld when the deformation was received.
  • deformation tensile compression elasto-plastic deformation may be taken up as a specific example of repeated elasto-plastic deformation received by a welded structure, but the present invention also describes deformation modes other than tensile compression such as shearing and bending described above.
  • the “welded portion” refers to the weld metal (metal melt-solidified during welding) and the weld heat-affected zone (not melted) among the welded parts (welded parts). , A region of the base metal whose microstructure and characteristics have changed due to welding operations. Also called HAZ).
  • the welded portion is generally a continuous aggregate of the weld and the base metal that is the outer region of the weld heat affected zone and is not heat affected. It is known.
  • the present inventors have determined the solidification mode of the weld metal, the microstructure of the weld before deformation, and the deformation mechanism of the microstructure of the weld when deformed. It has been found that, by satisfying the conditions, it is possible to operate the same fatigue resistance mechanism as the vibration damping alloy of the base metal even in the welded portion of the welded structure, and the present invention has been completed.
  • the gist of the present invention is the following [1] to [12].
  • the composition of the weld metal is FA solidification mode
  • the base metal before repeated elasto-plastic deformation, the weld heat-affected zone (HAZ), and the metallographic structure of the weld metal have a ⁇ -austenite phase (FCC structure) of 85% by volume or more and less than 100% by volume, and a ⁇ ferrite phase (BCC structure or BCT).
  • FCC structure ⁇ -austenite phase
  • BCC structure or BCT ⁇ ferrite phase
  • Structure initial ⁇ martensite phase total 0% by volume or more and less than 14.5% by volume, and unavoidable precipitates / inclusions such as carbides, nitrides, oxides, silicates, etc.
  • Deformation-induced ⁇ -martensite phase (HCP structure) is 10% by volume or more and less than 90% by volume, deformation-induced ⁇ 'martensite
  • the phase (BCC structure or BCT structure) is 0% by volume or more and less than 12% by volume
  • the residual ⁇ austenite phase is 10% by volume or more and 90% by volume or less
  • the total of ⁇ ferrite phase and initial ⁇ martensite phase is 0% by volume or more and 14.5.
  • the microstructure changes from the metal structure before the repeated elasto-plastic deformation to the metal structure immediately before or at the time of the fatigue-break, and ⁇ according to the successive repeated elasto-plastic deformation.
  • a welded structure characterized in that the deformation-induced martensite transformation from the austenite phase to the ⁇ -martensite phase and the alternating generation of this reverse transformation are repeated, and the volume ratio of the deformation-induced ⁇ -martensite phase is gradually increased.
  • the composition of the base material, the weld heat-affected zone, and the weld metal before repeated elasto-plastic deformation is It contains 12% by mass ⁇ Mn ⁇ 18% by mass, 5% by mass ⁇ Cr ⁇ 15% by mass, 5% by mass ⁇ Ni ⁇ 12% by mass, 2% by mass ⁇ Si ⁇ 6% by mass, as essential elements.
  • impurity elements Al, Co, Cu, Nb, Ta, V, Ti, Mo are 0% by mass or more and 1% by mass or less in total, and C, N, B are 0 in total. Contains% by mass or more and 0.2% by mass or less, It consists of the balance Fe and unavoidable impurities.
  • impurity elements Al, Co, Cu, Nb, Ta, V, Ti, Mo are 0% by mass or more and 1% by mass or less in total, and C, N, B are 0 in total.
  • Structure. [11] The welded structure according to [9] or [10], which is a vibration damping member.
  • the solidification mode of the weld metal, the microstructure of the weld before deformation, and the deformation mechanism of the microstructure of the weld when deformed satisfy certain conditions in the weld.
  • a fatigue resistance mechanism similar to that of the base steel can be activated. Therefore, according to the present invention, it is possible to provide a welded structure that exhibits excellent fatigue characteristics equivalent to those of a steel material as a base material even in a welded portion. Further, according to the present invention, it is also possible to provide an alloy steel used for the welded structure. Further, according to the present invention, it is also possible to provide a welded structure and a welded material using the above alloy steel.
  • a welded material (so-called common gold welded material) having the same or similar composition as the steel material of the base material in order to make the fatigue characteristics of the welded portion equivalent to that of the base material. Is considered to be.
  • common gold welded material a welded material having the same or similar composition as the steel material of the base material.
  • Welded portions are prone to weld defects such as solidification cracks, segregation, and precipitates, and these weld defects may cause fatigue crack defects.
  • the component composition of the weld metal is the A solidification mode, that is, the solidification mode of the weld metal starts with solidification from the liquid phase to the ⁇ phase and ends with solidification to the ⁇ phase. It was found that it was the cause of the defect.
  • the present inventors need to satisfy completely different conditions in the microstructure and the deformation mechanism of the microstructure in order for the welded structure to exhibit excellent fatigue characteristics as a whole.
  • the welded portion also exhibits excellent fatigue characteristics equivalent to those of the base material.
  • the present condition was found and the present invention was completed.
  • the welded structure according to the embodiment of the present invention (hereinafter, also referred to as “welded structure of the present embodiment”) is a welded structure in which a plurality of steel materials are welded with the welded material, and the component composition of the weld metal is FA.
  • the base metal before repeated elasto-plastic deformation, the weld heat affected part (HAZ), and the metallographic structure of the weld metal contain 85% by volume or more and less than 100% by volume of the ⁇ austenite phase (FCC structure), and the ⁇ ferrite phase.
  • BCC structure or BCT structure initial ⁇ -martensite phase total 0% by volume or more and less than 14.5% by volume, and unavoidable precipitates / inclusions such as carbides, nitrides, oxides, and silicates total 0% by volume. More than 0.5% by volume, the metallographic structure of the base metal, the weld heat affected part, and the weld metal immediately before or at the time of fatigue break contains 10% by volume or more of the deformation-induced ⁇ -martensite phase (HCP structure) and 90 volumes.
  • HCP structure deformation-induced ⁇ -martensite phase
  • Deformation-induced ⁇ 'martensite phase (BCC structure or BCT structure) is 0% by volume or more and less than 12% by volume, residual ⁇ austenite phase is 10% by volume or more and 90% by volume or less, ⁇ -ferrite phase and initial ⁇ -martensite phase.
  • the microstructure changes from the metal structure before the repeated elasto-plastic deformation to the metal structure immediately before or at the time of the fatigue break, and the ⁇ -austenite phase changes according to the successive repeated elasto-plastic deformation. It is characterized in that the volume ratio of the deformation-induced ⁇ -martensite phase increases sequentially by repeating the deformation-induced maltensite transformation from to the ⁇ -martensite phase and the alternating generation of this reverse transformation.
  • the ⁇ ferrite phase is intended to be formed by the manufacturing process of the base metal and the cooling treatment after welding. Further, the initial ⁇ -martensite phase is distinguished from the deformation-induced ⁇ -martensite phase formed by the deformation-induced martensite transformation from the ⁇ -austenite phase to the ⁇ -martensite phase, which will be described later, after heat treatment in the base metal manufacturing process. It is intended to be an ⁇ -martensite phase that is formed while being cooled to room temperature and has existed before repeated elasto-plastic deformation and is not derived from the deformation-induced martensite transformation.
  • the deformation-induced ⁇ 'martensite phase is intended to be formed by a part of the deformation-induced ⁇ -martensite phase undergoing a secondary ⁇ ⁇ ⁇ 'martensite transformation.
  • the residual ⁇ -austenite phase is intended to be a phase in which the ⁇ -austenite phase before the repeated elasto-plastic deformation remains untransformed even after the repeated elasto-plastic deformation.
  • the component composition of the weld metal in the welded portion is the FA solidification mode.
  • the FA solidification mode is a solidification mode in which the ferrite phase is first crystallized from the liquid phase and then the austenite phase is crystallized in the solidification of the steel material.
  • the characteristics of the weld metal can be grasped by plotting on a Schaeffler-type organization chart showing the composition of the weld metal.
  • the solidification mode generated in a weld metal changes depending on the composition of the weld metal. Therefore, in order to suppress solidification cracking of the weld metal, the weld metal is FA based on the composition of the base metal (material to be welded).
  • the component composition of the weld material is selected so that it is in the solidification mode. Further, since the component composition of the weld metal differs depending on the welding conditions, the groove shape, the dilution ratio, etc., the component composition of the weld material is selected so that the weld metal is in the FA solidification mode in consideration of these factors.
  • the dilution ratio is the ratio of the melted amount of the base metal to the total amount of weld metal. Since the component composition of the weld metal is the FA solidification mode, the susceptibility to solidification cracking in the weld metal portion can be reduced.
  • the component composition of the welded material when the base material is a steel material whose component composition is the FA solidification mode and the base materials are welded to each other, the component composition of the welded material. May be the same as the base metal.
  • “same” with respect to the component composition of the steel material means that the difference in the content (mass%) of each component element of the target steel material is less than ⁇ 0.5.
  • the component composition of the weld metal can be regarded as substantially the same as the component composition of the base metal, the component composition of the weld metal is in the FA solidification mode. Further, it can be said that the component composition of the weld heat affected zone is also in the FA solidification mode.
  • the component composition of the welded material may be different from that of the base material.
  • the component composition of the welded material may be in the FA solidification mode or in a solidification mode other than the FA solidification mode.
  • the base metal whose component composition is the FA solidification mode is a welded structure welded by the welding material whose component composition is the FA solidification mode
  • the component composition of the weld metal is the FA solidification mode. be. Further, it can be said that the component composition of the weld heat affected zone is also in the FA solidification mode.
  • the composition of the weld material is selected so that the weld metal is in the FA solidification mode in consideration of the dilution ratio (for example, 20% or more and 40% or less, 20% or more and 30% or less, etc.). good.
  • a plurality of types of base materials whose component composition is the FA coagulation mode, a plurality of types of base materials whose component composition is other than the FA coagulation mode, or a base material whose component composition is the FA coagulation mode and the component composition are the FA coagulation mode.
  • the weld metal is set to the FA solidification mode in consideration of the welding conditions, groove shape, dilution rate, etc.
  • the component composition may be selected.
  • the base metal before repeated elasto-plastic deformation, the weld heat-affected portion (HAZ), and the metallographic structure of the weld metal have the ⁇ -austenite phase (FCC structure) as the main phase and are tensile-compressed elasto-plastic.
  • FCC structure ⁇ -austenite phase
  • the shockley partial dislocations present in the ⁇ -austenite phase reciprocate on the same crystal plane, thereby exhibiting a reversible deformation mechanism in which metal fatigue does not easily progress.
  • the motion of partial dislocations is accompanied by transformation-induced martensitic transformations from the ⁇ austenite phase to the ⁇ -martensite phase (deformation-induced ⁇ -martensite phase with HCP structure), twin crystal transformations, extended dislocation slips, etc.
  • the highest reversibility is when the bidirectional martensitic transformation between the ⁇ austenite phase and the deformation-induced ⁇ martensitic phase is the dominant deformation mechanism.
  • lattice dislocation slip is suppressed because it is a deformation accompanied by irreversible dislocation motion such as cross slip that changes the slip surface.
  • the formation of the deformation-induced ⁇ 'martensite phase causes dislocations in and around the ⁇ 'phase due to volume expansion accompanying the change in crystal structure from the FCC structure to the BCC structure, and once ⁇ '.
  • the transformation alone does not reverse transform to the ⁇ phase, but is suppressed because it is an irreversible transformation. That is, in the welded structure of the present embodiment, a state is created in which the change in the microstructural structure due to repeated elasto-plastic deformation progresses reversibly by the two-way martensitic transformation between the ⁇ -austenite phase and the deformation-induced ⁇ -martensite phase. By doing so, it is possible to suppress repeated curing and increase the number of repeated breaks. As a result, the welded structure of the present embodiment achieves a fracture repetition rate of 4000 cycles or more for strain-controlled repeated tensile-compressive deformation with an amplitude of 1%.
  • the term "bidirectional martensite transformation” is used when focusing on the reversibility of the martensite transformation between the ⁇ austenite phase and the ⁇ martensite phase under repeated elasto-plastic deformation, and ⁇ austenite.
  • the term “deformation-induced martensitic transformation” is used when focusing on the fact that the martensitic transformation from the phase to the ⁇ -martensite phase is induced by the repeated elasto-plastic deformation. Note that the deformation mechanisms are essentially the same.
  • transformation-induced martensitic transformation from the ⁇ -austenite phase to the ⁇ -martensite phase and this reverse transformation are described as “ ⁇ ⁇ ⁇ transformation” and “ ⁇ ⁇ ⁇ reverse transformation”, respectively, using arrow symbols. May be done.
  • the metallographic structure of the base metal, the weld heat affected part, and the weld metal before deformation is the ⁇ ferrite phase, the initial ⁇ martensite phase, and unavoidable precipitates / inclusions such as carbides, nitrides, oxides, and silicates.
  • the total of the ⁇ ferrite phase and the initial ⁇ martensite phase is 0% by volume or more and less than 14.5% by volume, and carbonites, nitrides, oxides, silicates, etc. are inevitable.
  • the target precipitates / inclusions may contain a total of 0% by volume or more and less than 0.5% by volume.
  • the volume ratio of the deformation-induced martensite phase due to repeated deformation is slow. It only rises (that is, the volume ratio of the deformation-induced ⁇ -martensite phase increases sequentially in response to successive repeated elasto-plastic deformations), and the deformation-induced deformation is formed even if the deformation is repeated immediately before fatigue fracture or until fatigue fracture.
  • the volume ratio of the ⁇ -martensite phase is less than 90% by volume, and the untransformed ⁇ -austenite phase is characterized by remaining 10% by volume or more.
  • the degree of deformation-induced martensite transformation is not particularly limited, and the metallographic structure of the base metal, the weld heat-affected portion, and the weld metal immediately before or at the time of fatigue fracture is the deformation-induced ⁇ -martensite phase. May be contained in an amount of 10% by volume or more, 15% by volume or more, 20% by volume or more, 25% by volume or more, or 30% by volume or more. , 40% by volume or more, 50% by volume or more, 60% by volume or more, 70% by volume or more, or 80% by volume or more may be contained. ..
  • the metal structure of the base metal, the weld heat-affected zone, and the weld metal immediately before or at the time of fatigue fracture may contain less than 12% by volume of the deformation-induced ⁇ 'martensite phase.
  • the deformation-induced ⁇ 'martensite transformation has the property of causing a further chain reaction of the deformation-induced ⁇ 'martensite transformation by a self-catalyzed reaction and remarkably work-hardening the material due to a rapid increase in volume ratio.
  • a chain reaction does not occur and the ⁇ ⁇ ⁇ transformation and the ⁇ ⁇ ⁇ reverse transformation are reversible. This is because it does not interfere with sex.
  • the volume ratio of the deformation-induced ⁇ -martensite phase is 10% by volume in the microstructure after fatigue fracture due to strain-controlled repeated tensile-compression deformation with an amplitude of 1%. It is preferably less than 90% by volume.
  • the condition that the microstructure after fatigue fracture satisfies the condition is that the change in the microstructure of the welded structure due to repeated elasto-plastic deformation is reversible due to the bidirectional martensitic transformation between the ⁇ -austenite phase and the deformation-induced ⁇ -martensite phase. It is an index showing the progress to the above, and was newly discovered by the present inventors.
  • the volume ratio of the deformation-induced ⁇ -martensite can be measured by an X-ray diffraction method, an electron backscatter diffraction method, or the like.
  • an X-ray diffraction method various analysis methods and software for accurately obtaining the volume fraction have been developed based on the principle of the relationship between the volume fraction of the constituent phase and the diffraction peak intensity ratio.
  • the electron backscatter diffraction method the constituent phases of a local region of several hundred microns square in the sample and their distribution and volume ratio are measured using the electron backscatter detector built into the scanning electron microscope and dedicated software. You can ask.
  • the volume fraction of the deformation-induced ⁇ -martensite phase gradually increases in response to the successive repeated elasto-plastic deformation, which means that the volume fraction does not necessarily increase at a constant rate. Note that it does not mean anything.
  • the number of fracture repetitions for strain-controlled repeated tensile compression deformation with an amplitude of 1% is 4000 cycles, and the volume ratio of the deformation-induced ⁇ -martensite phase is 90% by volume in the microstructure after fatigue fracture. Assuming the case, it can be said that the increase is 0.0225% by volume per cycle on average.
  • the welded structure of the present embodiment has fineness after fatigue fracture due to strain-controlled repeated tensile compression deformation with an amplitude of 1% with respect to an increase in the volume ratio of the deformation-induced ⁇ -martensite phase under repeated elasto-plastic deformation.
  • one index can be that the average rate of increase per cycle is less than 0.0225% by volume.
  • the base metal, the weld heat-affected portion, and the weld metal are repeated.
  • a mechanism that reversibly responds to tensile compression elasto-plastic deformation and delays the progress of metal fatigue is built into the metal structure before elasto-plastic deformation, in other words, repeated elasto-plastic deformation (tensile compression bullets). It is important to appropriately design the microstructure structure before undergoing plastic deformation) and the deformation mechanism of the metal structure (particularly the microstructure of the weld) when the deformation is received.
  • Patent Document 1 and Non-Patent Document 1 mutual conversion between the ⁇ -austenite phase of the FCC structure and the ⁇ -martensite phase of the HCP structure by bidirectional martensitic transformation exists at the interface between the ⁇ -austenite phase and the deformation-induced ⁇ -martensite phase. It is disclosed that it is effective in dramatically improving the fatigue life by reversibly advancing the repetitive motion of the shockley partial transformation.
  • Patent Document 1 and Non-Patent Document 1 describe a long life of a rolled plate material of an FMS alloy whose components and crystal structure are homogenized by hot forging, hot rolling, and homogenizing heat treatment after melting and casting. It describes the composition, structure, and deformed structure of the alloy that should be satisfied for the conversion. Since the structure such as component segregation and welding defects are formed, the long life of the welded structure is not guaranteed even if the components, structure, and deformed structure of the rolled plate material satisfy the conditions for long life. In particular, solidification cracks and precipitation promote the generation and propagation of fatigue cracks and cause a significant decrease in fatigue life.
  • component segregation does not participate in the bidirectional martensitic transformation required for longevity, such as ⁇ ferrite phase, initial ⁇ martensite phase, and deformation-induced ⁇ 'martensite phase, or may adversely affect longevity. It causes the formation of a phase.
  • the ⁇ -austenite phase contains the deformation-induced maltensite transformation from the ⁇ -austenite phase to the ⁇ -martensite phase and its reverse transformation with respect to repeated elasto-plastic deformation. If the property of responding by alternating generation can be incorporated in advance, even if a phase that is not involved in this two-way martensite transformation is formed as a result of component segregation or precipitation during welding solidification, fatigue as a welded structure As for the lifetime, it was found that the number of repeated breaks for strain-controlled repeated tensile compression deformation with an amplitude of 1% can achieve 4000 cycles or more.
  • the volume ratio of the deformation-induced ⁇ -martensite is 90 in the microstructure after fatigue fracture due to strain-controlled repeated tensile-compressive deformation with an amplitude of 1%. It was confirmed that it was less than% by volume, and it was found that this was an index showing a reversible response to repeated elasto-plastic deformation (tensile compression elasto-plastic deformation).
  • a ⁇ ferrite phase or an initial ⁇ martensite phase can be formed in the region where Cr is concentrated due to component segregation during welding solidification. Since the ⁇ -ferrite phase does not exhibit a reversible deformation mechanism such as the alternating generation of deformation-induced martensitic transformation from the ⁇ -austenite phase to the ⁇ -martensite phase and its reverse transformation, it does not contribute to the extension of life. Further, the initial ⁇ -martensite phase formed in the cooling process after welding has a function of inhibiting the development of the deformation-induced ⁇ -martensite phase formed by the deformation-induced martensitic transformation from the ⁇ -austenite phase.
  • metal materials inevitably contain precipitates / inclusions such as carbides, nitrides, oxides, and silicates, and especially in welded structures, these inevitable precipitates / inclusions as a result of the weld solidification phenomenon. Inclusions are more likely to occur, but if their volume ratio is less than 0.5% by volume in total, then the transformation-induced martensitic transformation from the main phase ⁇ -austenite phase to the ⁇ -martensite phase and its reverse transformation The effect of delaying metal fatigue is not impaired by alternating occurrence.
  • part of the deformation-induced ⁇ -martensite may change to the deformation-induced ⁇ 'martensite phase while the volume ratio increases sequentially in response to successive repeated elasto-plastic deformation (secondary ⁇ ⁇ ⁇ ). 'Martensite transformation).
  • the deformation-induced ⁇ 'martensite phase causes dislocations in and around the ⁇ 'phase due to volume expansion accompanying the change in crystal structure from the FCC structure to the BCC structure, and once transformed into the ⁇ 'phase, it deforms. It does not reverse-transform to the ⁇ phase by itself.
  • the autocatalytic reaction causes a chain reaction of further deformation-induced ⁇ 'martensite transformation, and has the property of remarkably work-hardening the material due to a rapid increase in volume fraction.
  • the shockley partial dislocations present at the interface between the ⁇ -autenite phase and the deformation-induced ⁇ -martensite phase are repeated. It inhibits motion and reduces fatigue life, but if the volume ratio in the fatigue-breaking material is less than 12% by volume, it means that the increase in ⁇ 'phase due to harmful chain reaction did not occur during repeated deformation.
  • Such a low volume ratio deformation-induced ⁇ 'martensite phase does not impair the effect of delaying metal fatigue of the welded structure.
  • the content of the deformation-induced ⁇ 'martensite phase is not particularly limited, and the metal structure of the base metal, the welding heat-affected portion, and the weld metal immediately before or at the time of fatigue break is deform-induced ⁇ .
  • the martensite phase may be contained in an amount of 0% by volume or more and less than 12% by volume, 0% by volume or more and less than 10% by volume, 0% by volume or more and less than 8% by volume, 0% by volume. It may contain more than 7.5% by volume, may contain 0% by volume or more and less than 6% by volume, may contain 0% by volume or more and less than 5% by volume, and may contain 0% by volume or more and less than 4% by volume.
  • the volume ratio of the deformation-induced ⁇ 'martensite phase is 0 in the microstructure after fatigue fracture due to strain-controlled repeated tensile-compression deformation with an amplitude of 1%. It is preferably 0% by volume or more and less than 12% by volume, more preferably 0% by volume or more and less than 6% by volume, further preferably 0% by volume or more and less than 2% by volume, and 0% by volume or more and 1 volume.
  • a measuring instrument such as a ferrite meter can be used to measure the content of the deformation-induced ⁇ 'martensite phase.
  • the ferrite meter is a device that can easily measure the content of the ⁇ 'martensite phase (the content of the ⁇ 'martensite phase in the sample), which is the magnetic phase, by measuring the strength of magnetization.
  • the residual ⁇ -austenite phase in the fatigue-breaking material is a trace that the alternating occurrence of deformation-induced martensitic transformation from the ⁇ -austenite phase to the ⁇ -martensite phase and its reverse transformation effectively acts to delay metal fatigue.
  • the Gibbs free energy difference ⁇ G ⁇ ⁇ ⁇ between the ⁇ phase and the ⁇ phase decreases, the volume of the residual ⁇ austenite phase in the base metal, the martensitic part of the welding heat, and the martensitic structure of the weld metal immediately before or during the fatigue break. The rate drops.
  • the ⁇ -martensite phase generated by deformation-induced martensitic transformation from the ⁇ -austenite phase becomes less likely to undergo reverse transformation, and is affected by the base metal and welding heat immediately before or during fatigue fracture.
  • the volume ratio of the residual ⁇ -austenite phase is less than 10% in the metal structure of the portion and the weld metal.
  • the weld structure of the present embodiment can be obtained. It is a structure with a long fatigue life in which fatigue defects in welds are suppressed. Therefore, the welded structure of the present embodiment can be preferably used as a vibration damping member for a building structure.
  • the welded structure of the present embodiment is used as a vibration damping member.
  • the composition of the base metal, the weld heat-affected zone, and the weld metal before repeated elasto-plastic deformation is It contains 12% by mass ⁇ Mn ⁇ 18% by mass, 5% by mass ⁇ Cr ⁇ 15% by mass, 5% by mass ⁇ Ni ⁇ 12% by mass, 2% by mass ⁇ Si ⁇ 6% by mass, as essential elements.
  • impurity elements Al, Co, Cu, Nb, Ta, V, Ti, Mo are 0% by mass or more and 1% by mass or less in total, and C, N, B are 0 in total. Contains% by mass or more and 0.2% by mass or less, It consists of the balance Fe and unavoidable impurities.
  • the condition that is, and The ratio ([% Cr] eq / [% Ni] eq) of the Cr equivalent ([% Cr] eq) specified by the following equation 6 to the Ni equivalent ([% Ni] eq) specified by the following equation 7 is 1.33 ⁇ [% Cr] eq / [% Ni] eq ⁇ 1.96 It is preferable to satisfy the above condition.
  • the value of the stacking defect energy ( ⁇ SFE ) of the ⁇ phase determined by the composition of the alloy is a condition for the above-mentioned deformation-induced martensitic transformation and ⁇ -bicrystal deformation.
  • the plastic deformation mechanism is predicted using.
  • the stacking defect energy ( ⁇ SFE ) is associated with the Gibbs free energy difference ⁇ G ⁇ ⁇ ⁇ between the ⁇ phase and the ⁇ phase by the following equations 8 to 9.
  • Non-Patent Document 4 new thermodynamic parameter sets are proposed in Non-Patent Document 4 for the calculation of ⁇ SFE of Fe—Mn—C based alloys.
  • the conditions under which deformation-induced martensitic transformation from the ⁇ -austenite phase to the ⁇ -martensite phase occurs in monotonic tension are ⁇ SFE ⁇ 18 mJ / m 2 , ⁇ twin crystal deformation. The conditions that occur are 12 mJ / m 2 ⁇ SFE ⁇ 35 mJ / m 2 and the like.
  • thermodynamic parameter sets proposed so far unknown parameters are optimized from the results of monotonic tensile tests in a specific component system, so that the prediction accuracy is constant within the component range of the target component system.
  • a highly universal thermodynamic parameter set applicable to different component systems has not yet been established.
  • the conditions under which the above-mentioned deformation-induced martensitic transformation and ⁇ twinning transformation occur are largely based on the findings in a specific component system, and the range of ⁇ SFE presented by the researchers is different.
  • Non-Patent Document 1 the present inventors describe the transformation-induced martensitic transformation from the ⁇ -austenite phase to the ⁇ -martensite phase and its reverse transformation in order to prolong the fatigue life of the Fe—Mn—Cr—Ni—Si alloy. It was shown that the alternating generation with and is playing an important role, and that the value of the stacking defect energy ( ⁇ SFE ) is about 20 mJ / m 2 as a thermodynamic condition for that purpose. However, since the calculated values of stacking defect energy ( ⁇ SFE ) differ depending on the thermodynamic parameter set used, a more accurate alloy component design guideline for achieving a predetermined fatigue life has not been clarified.
  • thermodynamic parameters it is possible to calculate the Gibbs free energy difference ⁇ G ⁇ ⁇ ⁇ that best matches the results of the repeated tensile compression deformation test (low cycle fatigue test) of Fe-Mn-Cr-Ni-Si-Al based alloys.
  • Table 1 thermodynamic parameters
  • thermodynamic parameters used in the present invention
  • thermodynamic parameters used in the model described in Non-Patent Document 2
  • the thermodynamic parameters used are compared and shown.
  • the value of the stacking defect energy ( ⁇ SFE ) of the ⁇ phase can be calculated using the relationship of the above equation 8.
  • the interfacial entropy ( ⁇ ⁇ / ⁇ ) of ⁇ / ⁇ required for this calculation it is preferable to use the following equation 10 described in Non-Patent Document 2.
  • the Gibbs free energy difference ⁇ G ⁇ ⁇ ⁇ between the ⁇ phase and the ⁇ phase having a fatigue life (that is, the number of repeated breaks for strain-controlled repeated tensile compression deformation with an amplitude of 1%) is 4000 cycles or more.
  • the stacking defect energy ( ⁇ SFE ) of the ⁇ phase the following conditions are derived. 10mJ / m 2 ⁇ SFE ⁇ 22.5mJ / m 2
  • thermodynamic parameter set in the present invention a predetermined fatigue life can be obtained by using the laminated defect energy ( ⁇ SFE ), which is a thermodynamic parameter conventionally used for predicting the plastic deformation mode in monotonic tension. It is possible to predict the range of values.
  • This value includes the value (20 mJ / m 2 ) relating to the Fe—Mn—Cr—Ni—Si based alloy disclosed in Non-Patent Document 1, and can accurately predict the alloy component range. Will be.
  • the present inventors have described the thermodynamic parameter set as an alloy other than the Fe—Mn—Cr—Ni—Si—Al alloy, specifically, a Fe—Mn—Cr—Ni—Si alloy.
  • thermodynamic parameter set in the present invention has high universality applicable to a plurality of component systems.
  • a plurality of component systems more specifically, Fe—Mn—Cr—Ni—Si alloy, Fe—Mn—Si alloy, Fe—Mn— It is new and superior to the conventional model in that the temperature dependence and composition dependence related to the fatigue life of Si—Al alloys, Fe—Mn—Si—Cr alloys, etc. can be evaluated equivalently. Is.
  • the present inventors conducted a low cycle fatigue test on an alloy having the component composition shown below under the same procedure and conditions as in the examples described later, and fatigue life (breakage) under various temperature conditions.
  • measurement of the number of repetitions Nf) (total test number 23)
  • the value of ⁇ G ⁇ ⁇ ⁇ is within the range of -150J / mol ⁇ G ⁇ ⁇ ⁇ 50J / mol
  • the value of Nf is 4000 cycles or more
  • Mn manganese
  • Mn is an essential element for causing transformation-induced martensitic transformation from the ⁇ -austenite phase to the ⁇ -martensite phase. Mn most stabilizes the ⁇ -austenite phase, then stabilizes the deformation-induced ⁇ -martensite phase, and has the effect of strongly suppressing the formation of the deformation-induced ⁇ 'martensite phase. Therefore, by adjusting the Mn content, the ⁇ -austenite phase is stabilized, and the deformation-induced martensitic transformation from the ⁇ -austenite phase to the ⁇ -martensite phase during repeated elasto-plastic deformation of the welded structure and vice versa. Fatigue characteristics can be improved by alternately generating transformations and suppressing the formation of the deformation-induced ⁇ 'martensite phase.
  • Mn stabilizes the ⁇ -austenite phase, and the action of alternately generating deformation-induced martensitic transformation from the ⁇ -austenite phase to the ⁇ -martensite phase and this reverse transformation during repeated elasto-plastic deformation of the welded structure is partly Ni. It can be replaced with (nickel) and Cr (chrome). In this embodiment, from the viewpoint of the steel material and the welded material constituting the welded structure, it is preferable to contain Cr and Ni as alternative elements of Mn in order to reduce the melting cost. Further, Al (aluminum), which is known to have an effect of improving the vibration damping characteristics of the conventional Fe—Mn—Si shape memory alloy, may be added as a substitute element for Mn, if necessary.
  • Mn equivalent ([% Mn] eq) [% Mn] + [% Cr] + 2 [% Ni] + 5 [% Al]
  • [% Mn], [% Cr], [% Ni], and [% Al] mean the mass% of Mn, Cr, Ni, and Al in the above component composition.
  • the condition represented by the following formula is satisfied as the range of Mn equivalents for expressing the bidirectional deformation-induced martensitic transformation between the ⁇ -austenite phase and the ⁇ -martensite phase. 36 ⁇ [% Mn] eq ⁇ 50
  • the thermodynamic stability of the ⁇ -martensite phase becomes very high, so that the ⁇ -martensite phase once deformed is reversed to the ⁇ -austenite phase even if it is subsequently deformed in the opposite direction. It will not be transformed.
  • the volume ratio of the deformation-induced ⁇ -martensite phase increases monotonically due to repeated elasto-plastic deformation, and the crack generation probability and crack extension rate increase at the points where the formed deformation-induced ⁇ -martensite phases collide with each other. The number of repeated breaks decreases.
  • an initial ⁇ -martensite phase having a volume ratio of 10% by volume or more is already formed when the steel material constituting the welded structure is cooled from the solution heat treatment temperature to room temperature. Therefore, it becomes an inhibitory factor on the formation of the deformation-induced ⁇ -martensite phase in the welded structure, so that the number of repeated breaks decreases.
  • the Mn equivalent is 50% by mass or more, the ⁇ -austenite phase is too strongly stabilized, and the deformation-induced ⁇ -martensite phase is not formed.
  • the range of Mn equivalent is set to 37 ⁇ [% Mn] eq ⁇ 45 under the condition that the number of repeated fractures is 2000 cycles or more in the Fe—Mn— (Cr, Ni) —Si based alloy. It is disclosed to do. Therefore, in the welded structure of the present embodiment, it is satisfactory when setting a condition that the number of repeated fractures for strain-controlled repeated tensile-compressive deformation with an amplitude of 1% is 4000 cycles or more with Mn equivalent as the first index. It was naturally expected that the range of Mn equivalent to be should be narrower than the range described in Patent Document 1.
  • the formula of Mn equivalent found mainly by focusing on the influence of the contents of Mn and Al in the component composition of the alloy and the condition of the Mn equivalent range for obtaining a long life are that Al is an essential component element. It was found that it is difficult to secure the prediction accuracy in the component range of the present invention, which mainly focuses on the change in the contents of Mn, Cr, and Ni. Therefore, as a result of diligent research, the inventors have developed a fatigue life prediction technology by Gibbs free energy calculation using a new thermodynamic parameter set, and used this as the first index, and if necessary. It was found that the prediction accuracy can be further improved by combining the conditions of Mn equivalent, and the present invention has been completed.
  • the preferred range of Mn equivalent is 36 ⁇ [% Mn] eq ⁇ 50, and more preferably 38 ⁇ [% Mn] eq ⁇ 44.
  • Si silicon
  • Si has almost no effect on the Mn equivalent, but by containing Si, the reversibility of the bidirectional martensitic transformation between the ⁇ -austenite phase and the ⁇ -martensite phase is improved, and the number of repeated breaks is improved. can do.
  • Si is excessively contained, there may be problems such as a decrease in the number of repeated fractures and a significant hardening of the alloy (welded metal or the like) to increase the stress amplitude of repeated elasto-plastic deformation.
  • the contents of Mn, Cr, Ni, and Si are stabilized by austenite so that the base metal before repeated elasto-plastic deformation, the heat-affected zone of the weld, and the metallographic structure of the weld metal have the ⁇ -austenite phase as the main phase. It is important to adjust the balance between the total amount of the elements Mn and Ni and the total amount of the ferrite stabilizing elements Cr and Si. The higher the ferrite stabilizing element concentration and the lower the austenite stabilizing element concentration, the easier it is to form a ⁇ ferrite phase, and when both the ferrite stabilizing element concentration and the austenite stabilizing element concentration are low, a deformation-induced ⁇ 'martensite phase is formed. It becomes easy to be done.
  • the component composition of the welded structure is adjusted so that the component composition of the weld metal is in the FA solidification mode.
  • the characteristics of the weld metal are the points of Cr equivalent ([% Cr] eq) specified by the following formula 6 and Ni equivalent ([% Ni] eq) specified by the following formula 7 based on the composition of the weld metal. It can be grasped by plotting the coordinates ([% Cr] eq, [% Ni] eq) on the Scheffler-type structure diagram.
  • the ratio of Cr equivalent to Ni equivalent ([% Cr] eq / [% Ni] eq) is 1.33 ⁇ [% Cr] eq /. It is assumed that the condition that [% Ni] eq ⁇ 1.96 is satisfied.
  • the significant figure of the value of the ratio of Cr equivalent to Ni equivalent ([% Cr] eq / [% Ni] eq) is 3 digits. However, if the value is less than zero, the third decimal place shall be rounded off. Further, in the following examples, an example in which point coordinates ([% Cr] eq, [% Ni] eq) are plotted on a Schaeffler-type organization chart based on the composition of alloy components is shown.
  • the content of each component element of Mn, Cr, Ni, and Si is limited due to restrictions on the production of the steel material and the welded material constituting the welded structure. This will be described in detail below.
  • Mn manganese
  • Mn manganese
  • the Mn content is set to 18% by mass or less in consideration of the Cr and Ni contents described later.
  • the Mn yield will decrease due to evaporation and oxidation of Mn, and reaction with refractories in the melting furnace will inevitably occur, making it practical. It is difficult to dissolve at a reasonable cost. Therefore, by setting the Mn content to 18% by mass or less, the melting cost can be reduced, and the alloy can be produced by melting in an arc furnace suitable for mass production.
  • the Mn content is at least 12% by mass or more.
  • the Mn content is in the range of 12% by mass ⁇ Mn ⁇ 18% by mass.
  • Mn alternately causes deformation-induced martensitic transformation from the ⁇ -austenite phase to ⁇ -martensite and this reverse transformation during repeated elasto-plastic deformation of the welded structure, resulting in fatigue of the welded structure of this embodiment. It is an element that substitutes for the action of improving properties. Further, Cr further contributes to the improvement of corrosion resistance and high temperature oxidation resistance. However, when the Cr content exceeds 15% by mass, it becomes difficult to suppress the formation of the deformation-induced ⁇ 'martensite phase no matter how the other components are adjusted. Further, from the viewpoint of the steel material and the welded material constituting the welded structure, it is difficult to melt the alloy because it forms an intermetallic compound having a low melting point with Si.
  • the Cr content is in the range of 5% by mass ⁇ Cr ⁇ 15% by mass.
  • Mn stabilizes the ⁇ -austenite phase, and during repeated elasto-plastic deformation of the welded structure, deformation-induced martensitic transformation from the ⁇ -austenite phase to ⁇ -martensite and this reverse transformation occur alternately.
  • the Mn content is 18% by mass or less, so unless Ni as an austenite stabilizing element is contained in an amount of 5% by mass or more, the state before elasto-plastic deformation is fine with the ⁇ -austenite phase as the main phase. The organizational structure cannot be obtained.
  • Ni which is an expensive element
  • the Ni content is in the range of 5% by mass ⁇ Ni ⁇ 12% by mass, more preferably 5% by mass ⁇ Ni ⁇ 10% by mass.
  • Si silicon
  • Si is an essential element for imparting reversibility to the reversible motion of shockley partial dislocations and improving fatigue life, and the content at which the effect can be obtained is 2% by mass ⁇ Si ⁇ 6% by mass. .. If the Si content is less than 2% by mass, the effect of improving the reversibility is insufficient, and if it exceeds 6% by mass, brittle silicide is formed and the fatigue life is shortened.
  • the Si content is set in the range of 2% by mass ⁇ Si ⁇ 6% by mass in order to set the number of repeated fractures for strain-controlled repeated tensile compression deformation with an amplitude of 1% to 4000 cycles or more.
  • the number of repeated fractures of the steel material itself constituting the welded structure can be 4000 cycles or more.
  • Al aluminum
  • Co cobalt
  • Cu copper
  • impurity element Nb (niobium), Ta (tantalum), V (vanadium), Ti (titanium), Mo (molybdenum) total 1% by mass or less, C (carbon), N (nitrogen), B (boron) total 0 It may contain 2% by mass or less.
  • the metal structure of the base metal, the weld heat-affected zone, and the weld metal before repeated elasto-plastic deformation may have the ⁇ austenite phase as the main phase, and the ⁇ ferrite phase or The initial ⁇ martensite phase may be included.
  • the alloy whose composition has been adjusted so that deformation-induced martensitic transformation from the ⁇ -austenite phase to the ⁇ -martensite phase due to the above deformation is likely to occur is located at the location where Cr and Si are concentrated due to component segregation during welding solidification.
  • ⁇ ferrite phase is likely to be formed during cooling after welding, and in places where Mn and Ni are concentrated due to component segregation during welding solidification, due to cooling after welding, subsequent environmental temperature changes, and the effects of processing, etc.
  • the initial ⁇ -martensite phase may be unintentionally formed.
  • ⁇ -ferrite phase and early ⁇ -martensite phase do not contribute to the alternate generation of transformation-induced martensitic transformation and reverse transformation from the ⁇ -austenite phase to the ⁇ -martensite phase, which is effective in delaying metal fatigue, but ⁇ -ferrite. If the volume ratio of the phase and the initial ⁇ -martensite phase is less than 14.5% by volume in total, it does not inhibit the bidirectional martensitic transformation between the main phase ⁇ austenite phase and the deformation-induced ⁇ -martensite phase.
  • the unintentionally formed early ⁇ -martensite phase is different from the deformation-induced ⁇ -martensite phase, which usually has a crystalline orientation subsequently manifested by repeated elasto-plastic deformation, with respect to the growth of the deformation-induced ⁇ -martensite phase. Since it serves as a barrier, its volume ratio is preferably 10% by volume or less.
  • the repetitive elasto-plastic deformation of the welded structure of this embodiment is mainly carried out by alternating deformation-induced martensitic transformation from the ⁇ -austenite phase to the ⁇ -martensite phase and its reverse transformation. Specifically, when subjected to tensile compression elasto-plastic deformation, the ⁇ -martensite phase induced during tensile deformation reversely transforms into the ⁇ -austenite phase when the deformation direction is reversed to compression.
  • compressive deformation causes a reverse transformation of the tensile-induced ⁇ -martensite phase, and at the same time, a new ⁇ -martensite phase with a crystal orientation different from that at the time of tensile deformation is generated.
  • This compression-induced ⁇ -martensite phase also reversely transforms into the ⁇ -austenite phase when the deformation is reversed to tension again. In this way, tension-induced ⁇ and compression-induced ⁇ alternately occur and disappear due to repeated tensile compression, and the shockley partial dislocations existing at the interface between the ⁇ austenite phase and the deformation-induced ⁇ martensite phase are damaged by metal fatigue.
  • the state of reversible bidirectional martensite transformation is repeated elasto-plastic deformation because the deformation-induced ⁇ -martensite phase increase in cumulative volume ratio due to repeated tensile-compression elasto-plastic deformation is small. It is the reason why the welded structure of this embodiment is excellent in fatigue characteristics because it is maintained for a while.
  • the volume fraction of the deformation-induced ⁇ -martensite phase gradually increases, and when it exceeds 90% by volume, the crack generation probability and crack extension rate increase, leading to fracture. There is. Therefore, in order to set the number of repeated breaks for strain-controlled repeated tensile-compressive deformation with an amplitude of 1% to 4000 cycles or more, it is desirable that the volume ratio of the deformation-induced ⁇ -martensite after 4000 cycles of deformation is less than 90% by volume. ..
  • the deformation-induced ⁇ 'martensite phase appears at the intersection of the deformation-induced ⁇ -martensite phases with different crystal orientations. May be formed (secondary ⁇ ⁇ ⁇ 'martensite transformation).
  • the deformation-induced ⁇ 'martensite phase causes dislocations in and around the ⁇ 'phase due to volume expansion accompanying the change in crystal structure from the FCC structure to the BCC structure, and once transformed into the ⁇ 'phase, it deforms. It does not reverse-transform to the ⁇ phase by itself.
  • the autocatalytic reaction causes a chain reaction of further deformation-induced ⁇ 'martensite transformation, which has the property of remarkably work-hardening the material due to a rapid increase in volume fraction.
  • it also leads to a decrease in the number of repeated breaks.
  • the shockley partial dislocations present at the interface between the ⁇ -autenite phase and the deformation-induced ⁇ -martensite phase are repeated.
  • the volume ratio in the fatigue-breaking material is less than 12% by volume, it means that the increase in ⁇ 'phase due to harmful chain reaction did not occur during repeated deformation.
  • Such a low volume ratio deformation-induced ⁇ 'martensite phase does not impair the effect of delaying metal fatigue of the welded structure. Therefore, the volume fraction of the deformation-induced ⁇ 'martensite phase should be less than 12% by volume.
  • the welded structure of this embodiment is intended to be used as a vibration damping member for a vibration damping device for a large building structure such as a skyscraper or a large-scale exhibition hall, strain control with an amplitude of 1% is repeated.
  • the final number of iterations leading to breakage or buckling with respect to tensile-compressive deformation shall be 4000 cycles or more.
  • the component compositions of the base metal, the weld heat-affected zone, and the weld metal before repeated elasto-plastic deformation may be substantially the same.
  • substantially the same with respect to the component compositions of the base metal, the weld heat affected zone, and the weld metal means that the difference in the content of each component element is within the range of ⁇ 0.5% by mass. It is more preferably in the range of ⁇ 0.3% by mass, further preferably in the range of ⁇ 0.25% by mass, and particularly preferably in the range of ⁇ 0.2% by mass. preferable.
  • the component compositions of the base metal, the weld heat-affected zone, and the weld metal before repeated elasto-plastic deformation may be different from each other.
  • the alloy steel according to the embodiment of the present invention is an alloy used in the above-mentioned welded structure of the present embodiment, contains Mn, Cr, Ni, and Si as constituent elements, and is composed of the balance Fe and unavoidable impurities. It is a Fe—Mn—Cr—Ni—Si based alloy.
  • the Fe—Mn—Cr—Ni—Si based alloy according to the present embodiment (hereinafter, also referred to as “alloy of the present embodiment”) has a component composition of repeated elasto-plastic deformation in the welded structure of the present embodiment described above. It satisfies the component composition conditions of the previous base metal, the weld heat affected part, and the weld metal.
  • the alloy of this embodiment has a component composition of It contains 12% by mass ⁇ Mn ⁇ 18% by mass, 5% by mass ⁇ Cr ⁇ 15% by mass, 5% by mass ⁇ Ni ⁇ 12% by mass, 2% by mass ⁇ Si ⁇ 6% by mass, as essential elements.
  • impurity elements Al, Co, Cu, Nb, Ta, V, Ti, Mo are 0% by mass or more and 1% by mass or less in total, and C, N, B are 0 in total. Contains% by mass or more and 0.2% by mass or less, It consists of the balance Fe and unavoidable impurities.
  • the condition that is, and The ratio ([% Cr] eq / [% Ni] eq) of the Cr equivalent ([% Cr] eq) specified by the following equation 6 to the Ni equivalent ([% Ni] eq) specified by the following equation 7 is 1.33 ⁇ [% Cr] eq / [% Ni] eq ⁇ 1.96 It is preferable to satisfy the above condition.
  • the alloy of the present embodiment can be preferably used as a steel material or a welded material used for the welded structure of the present embodiment. More specifically, in the embodiment in which the welded structure of the present embodiment is used as a vibration damping member, the alloy of the present embodiment is suitable for use as a steel material to be welded with a welded material, and the steel material is welded. Suitable for use as a welding material for
  • the alloy of the present embodiment when applied to a steel material or a welded material constituting the welded structure of the present embodiment, it is used as a core material for a vibration damping member such as a vibration damping damper that can cope with long-period ground motion. Therefore, it is preferable that the final number of repetitions leading to fracture or buckling is 4000 cycles or more with respect to strain-controlled repeated tensile compression deformation with an amplitude of 1%.
  • the alloys (Fe-Mn-Cr-Ni-Si based alloys) having the component compositions of Examples 1-1 to 1-22 shown in Table 3 below are melted in 10 kg each using a high-frequency vacuum induction heating furnace to form gold. After casting into a mold, each ingot is hot forged and hot rolled at 1000 ° C to form a plate with a thickness of 20 mm, a width of 50 mm, and a length of 900 mm. By heat-treating for hours and cooling with water, a uniform material having an initial ⁇ -phase structure of random equiaxed grains was obtained.
  • a dockbone type fatigue test piece with a gauge part diameter of 8 mm was cut out from the plate material of each example, and the gauge part was smooth-polished and subjected to a low cycle fatigue test.
  • a weld Meltlandi experiment was conducted with a restraint tensile stress applied to the surface of the milled plate to investigate whether solidification cracks would occur due to welding.
  • the unit of the content of each component element is mass%
  • the unit of ⁇ G ⁇ ⁇ ⁇ is J / mol
  • the ⁇ 'volume fraction content rate of deformation-induced ⁇ 'martensite phase.
  • the unit is%, and "-" means unmeasured.
  • symbols indicating the characteristics of the component composition and the like are also shown.
  • Example 1-1 As shown in Table 3, in Example 1-1, a high value of the number of repeated fractures of 11000 cycles or more was obtained, but solidification cracking occurred in the weld melt run experiment. From this result, in Example 1-1, the value of ⁇ G ⁇ ⁇ ⁇ (-65.0 J / mol) satisfies the above-mentioned preferable condition ( ⁇ 150 J / mol ⁇ G ⁇ ⁇ ⁇ ⁇ 50 J / mol). A fatigue life of 4000 cycles or more was obtained, but the value (1.31) of the ratio of Cr equivalent to Ni equivalent ([% Cr] eq / [% Ni] eq) was the above-mentioned preferable condition (1.33 ⁇ [.
  • Example 1-5 Since% Cr] eq / [% Ni] eq ⁇ 1.96) is not satisfied, it can be understood that solidification cracking has occurred. Further, in Example 1-5, since the alloy was embrittled in the low cycle fatigue test, the number of repeated fractures could not be measured, and solidification cracking occurred in the weld melt run experiment. From this result, in Example 1-5, since the Cr content (16% by mass) exceeds 15% by mass, the formation of the deformation-induced ⁇ 'martensite phase becomes excessive, causing embrittlement of the alloy, and the Cr equivalent.
  • the value (2.39) of the ratio of Ni equivalents ([% Cr] eq / [% Ni] eq) is the above-mentioned preferable condition (1.33 ⁇ [% Cr] eq / [% Ni] eq ⁇ 1.96). It can be understood that solidification cracking has occurred because the above conditions are not satisfied. On the other hand, in Examples 1-2, 1-3, and 1-4, the number of repeated fractures significantly exceeding 4000 cycles was obtained, and solidification cracking did not occur in the weld melt run experiment.
  • the value of Mn equivalent is 41, which is the above-mentioned preferable condition (36 ⁇ [% Mn] eq ⁇ 50, more preferably 38 ⁇ . Since [% Mn] eq ⁇ 44) is satisfied, it is suggested that the bidirectional deformation-induced martensitic transformation between the ⁇ -austenite phase and the ⁇ -martensite phase was effectively expressed.
  • FIGS. 1 (a) and 1 (b) are microscopic images showing the results of confirmation of the presence or absence of solidification cracks in the welding melt run experiment of Example 1-1 and Example 1-2, respectively.
  • point coordinates ([% Cr] eq, [% Ni] eq) based on the composition of the alloys of Examples 1-1 to 1-5 are plotted on the Scheffler-type microstructure diagram to show the boundaries of the solidification mode.
  • a range of Mn equivalents (36 ⁇ [% Mn] eq ⁇ 50, or corresponding to the composition of the alloys of Examples 1-1 to 1-5) when the straight line and the Si content are 4% by mass. , 38 ⁇ [% Mn] eq ⁇ 44) was created.
  • the test materials of Examples 1-1 to 1-3 were measured. In the case of more than 0% by volume and less than 1% by volume (described as " ⁇ 1" in Table 3), it was 1.26% by volume in the test material of Example 1-4. Further, as a result of measuring the volume fraction of the ⁇ -martensite phase of the test materials of Examples 1-1 and 1-4 after fatigue fracture by the electron backscatter diffraction method, they were 61% by volume and 74% by volume, respectively. rice field.
  • FIG. 2 point coordinates ([% Cr] eq, [% Ni] eq) are shown in Schaeffler based on the composition of the alloys of Examples 1-1 to 1-10 and Examples 1-15 to 1-22.
  • the figure plotted on the type organization chart is shown.
  • the five plots indicated by circles are, in order from the left side along the x-axis (Cr equivalent), Example 1-1, Example 1-2, Example 1-3, Example 1-4, Example 1-5. It corresponds to.
  • the five plots indicated by the square marks correspond to Example 1-6, Example 1-7, Example 1-8, Example 1-9, and Example 1-10 in order from the top along the y-axis (Ni equivalent). is doing.
  • the four plots indicated by the upward triangle marks correspond to Examples 1-18, Example 1-17, Example 1-16, and Example 1-15 in order from the left side along the x-axis (Cr equivalent).
  • the four plots indicated by diamonds correspond to Example 1-22, Example 1-21, Example 1-20, and Example 1-19 in order from the left side along the x-axis (Cr equivalent).
  • two straight lines indicating the boundary of the solidification mode are also drawn.
  • the alloy satisfies the preferable composition conditions of the alloy steel according to the embodiment of the present invention described above, and has a value of ⁇ G ⁇ ⁇ ⁇ and a ratio of Cr equivalent to Ni equivalent ([% Cr] eq / [% Ni] eq). ) Satisfyes the above-mentioned preferable conditions, the number of repeated fractures significantly exceeding 4000 cycles is achieved, and the component composition of the weld metal is set to the FA solidification mode in the weld melt run experiment, and solidification cracks do not occur. I understand.
  • the effect obtained by the present invention is not brought about by a mere combination of the above-mentioned individual conditions, indexes, parameters, etc., but rather in a welded structure using a vibration damping alloy typified by an FMS alloy as a base material.
  • a vibration damping alloy typified by an FMS alloy as a base material.
  • the value of ⁇ G ⁇ ⁇ ⁇ is the above-mentioned preferable condition ( ⁇ 150J / mol ⁇ G ⁇ ⁇ ⁇ 50J). / Mol) is satisfied, but the number of repeated breaks is 3487 cycles, 1622 cycles, and 890 cycles, respectively.
  • the content of the ⁇ 'martensite phase for each test material after fatigue fracture using a ferrite meter it was 12.5% by volume, 58.8% by volume, and 70.4% by volume, respectively.
  • the volume ratio of the deformation-induced ⁇ 'martensite phase increased, the fatigue life tended to decrease.
  • Example 1-1 and Example 1-3 are drawn to prepare a welded wire, and a welded joint is manufactured by combining a plate material having the same composition and a welded wire by MIG welding.
  • a microfatigue test piece (a dogbone type fatigue test piece having a gauge portion diameter of 3 mm) was cut out from the weld metal of the welded portion and subjected to a fatigue test.
  • the fatigue test conditions are the same as above.
  • the presence or absence of solidification cracks in the weld metal of the welded part of each welded joint was investigated.
  • Example 2-1 the alloy of Example 1-1 having a long fatigue life is used for both the plate material (base material) and the welding wire (welding material). As described above, this alloy is used. Has the property that solidification cracks are likely to occur due to welding, so solidification cracks occur in the weld metal of the welded part of the manufactured welded joint, and the fatigue life of the welded joint is 3130 cycles of repeated breaks, and the plate material itself. It was significantly lower than the fatigue life (number of repeated breaks of 11,000 cycles or more).
  • the plate material (base material) and the welding wire (welded material) selected to satisfy both the conditions of the long fatigue life and the solidification mode in which solidification cracking due to welding is unlikely to occur. In the combination, solidification cracking did not occur in the weld metal of the welded portion of the welded joint, and a high fatigue life significantly exceeding 4000 cycles was obtained even in the welded portion of the welded joint.
  • the welded structure of the present invention exhibits excellent fatigue characteristics equivalent to the steel material of the base material even in the welded portion, it is suitable as an elasto-plastic damper for suppressing vibration of the building structure due to an earthquake, wind sway, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Arc Welding In General (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本発明は、溶接部においても母材の鋼材と同等の優れた疲労特性を示す溶接構造体を提供する。 本発明の溶接構造体は、複数の鋼材が溶接材で溶接された溶接構造体であって、溶接金属の成分組成はFA凝固モードであり、繰り返し弾塑性変形前の母材、溶接熱影響部及び溶接金属の金属組織は、γオーステナイト相を85体積%以上100体積%未満含む一方、疲労破断直前又は疲労破断時の金属組織は、変形誘起εマルテンサイト相を10体積%以上90体積%未満、変形誘起α'マルテンサイト相を0体積%以上12体積%未満、残留γオーステナイト相を10体積%以上90体積%以下含み、繰り返し弾塑性変形を受けると、繰り返し弾塑性変形前の金属組織から疲労破断直前又は疲労破断時の金属組織へと変化し、逐次の繰り返し弾塑性変形に応じて、γオーステナイト相からεマルテンサイト相への変形誘起マルテンサイト変態と、この逆変態とを繰り返し、変形誘起εマルテンサイト相の体積率が逐次増加することを特徴とする。

Description

溶接構造体及びこれに用いられるFe-Mn-Cr-Ni-Si系合金
 本発明は、溶接構造体及びこれに用いられるFe-Mn-Cr-Ni-Si系合金に関する。
 制振ダンパーは建物を地震から守るために組み込まれた建築部材であり、地震による建物の揺れを熱エネルギーに変換して吸収する。制振ダンパーとしては、鋼材の弾塑性変形履歴によって振動を吸収する鋼材制振ダンパー、ポリマー系材料の粘弾性変形により振動を吸収する粘弾性体制振ダンパー、オイルの粘性流動により振動を吸収するオイルダンパーなどの種類があり、それぞれの特徴を生かして使用される。このうち、鋼材制振ダンパーは、低コスト、メインテナンスフリー、高剛性の特長があり、各種制振構造に広く適用されている。
 最近、従来の制振用鋼材及び建築構造用の一般鋼材(以下、「従来鋼材」とも称する。)に比べて約10倍の疲労寿命を有する制振合金が開発され(特許文献1参照)、これを心材に用いた新型制振ダンパーが超高層ビルや大規模展示場などの大型建築構造物に適用されている。長周期地震動や大地震後の余震や連動地震にも繰り返し耐えられる長疲労寿命の制振ダンパーとしてさらなる普及が期待されている。また、特許文献1に記載されるような合金(以下、「FMS合金」とも称する。)の成分に対応させた溶接ワイヤも開発され(例えば、特許文献2参照)、制振ダンパー板材の建物躯体への接合部に炭素鋼を溶接施工して十字断面とすることにより、接合部の耐力や座屈に対する耐久性を高めたブレース型制振ダンパーも開発されている。
特開2014-129567号公報 特開2015-150586号公報
T. Sawaguchi, et al., Designing Fe-Mn-Si alloys with improved low-cycle fatigue lives, Scripta Mater 99(0) (2015) 49-52. D.T. Pierce, J.A. Jimenez, J. Bentley, D. Raabe, C. Oskay, J.E. Wittig, The influence of manganese content on the stacking fault and austenite/epsilon-martensite interfacial energies in Fe-Mn-(Al-Si) steels investigated by experiment and theory, Acta Mater 68(15) (2014) 238-253. S. Curtze, V.T. Kuokkala, A. Oikari, J. Talonen, H. Hanninen, Thermodynamic modeling of the stacking fault energy of austenitic steels, Acta Mater, 59(3) (2011) 1068-1076. S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys, Materi Sci Eng A 387 (2004) 158-162.
 ブレース型制振ダンパーは筋交い部に組み込んで使用され、地震時には建物の揺れによって繰り返し引張圧縮、繰り返し交番せん断、繰り返し曲げなどの繰り返し弾塑性変形を受けて地震動のエネルギーを吸収する。近年、大型建築構造物への適用や大規模地震への対応を背景に、制振ダンパーには更なる高耐力・高剛性化が求められており、そのために、ダンパーの軸力負担面積を増大させることが必要である。
 FMS合金を用いてこれまでに開発された制振ダンパーは、心材部にFMS合金板材をそのまま(圧延ままの状態で)使用する断面一文字タイプであり、ダンパーの見つけ幅を変えること無く軸力負担面積を増大させるためにはFMS合金板材の板厚を増す以外に方法は無い一方で、製造可能な板材の板厚に制約があった。また、ダンパーの軸力負担面積を増大させる方法としては心材部断面を十字またはH型とすることが有効である。十字断面やH型断面は合金板材を溶接組み立てすることで作製可能である。しかし、FMS合金を炭素鋼などの成分が異なる板材と、FMS合金とは成分組成が異なる溶接ワイヤを用いて溶接すると、溶接部は、制振合金であるFMS合金とは異なる成分組成となる結果、FMS合金の耐疲労メカニズムが作動しなくなり、疲労寿命が従来鋼材並みに低下する場合があることが課題であった。また、溶接部は凝固割れ、偏析、析出物などの溶接欠陥が形成される結果、金属疲労の弱点になりやすく、疲労寿命の更なる低下をもたらす場合があることが課題であった。
 そこで、本発明は、溶接法を用いて組み立てられた制振ダンパーなどの構造体において、溶接部においても母材の鋼材と同等の優れた疲労特性を示す溶接構造体を提供することを課題とする。
 また、本発明は、上記溶接構造体に用いられる合金鋼を提供することも課題とする。
 また、本発明は、上記合金鋼を用いた溶接構造体、及び溶接材を提供することも課題とする。
 溶接法を用いて組み立てられた構造体(以下、「溶接構造体」という。)において、溶接部の疲労特性を母材と同等にするための手段として、本発明者らは、溶接構造体が繰り返し弾塑性変形(以下、単に「変形」ともいう。)を受ける前の溶接部の微細組織構造、及び、当該変形を受けたときの溶接部の微細組織の変形機構に着目した。なお、以下では、溶接構造体が受ける繰り返し弾塑性変形の具体例として引張圧縮弾塑性変形を取り上げて説明することがあるが、上述したせん断、曲げなどの引張圧縮以外の変形モードについても本発明の対象に含まれる点に留意されたい。また、本明細書において、「溶接部」とは、溶接が施された部分(溶接施工箇所)のうち、溶接金属(溶接中に溶融凝固した金属)及び溶接熱影響部(溶融していないが、溶接操作によってその微細組織構造及び特性が変化した母材の領域。HAZとも呼ばれる。)からなる部分をいう。当該技術分野において、溶接が施された部分は、一般的に、溶接部と、溶接熱影響部の外側の領域であって熱影響を受けていない母材との、連続的な集合体であることが知られている。
 そして、本発明者らは、鋭意検討を行なった結果、溶接金属の凝固モード、溶接部の変形前の微細組織構造、ならびに、変形を受けたときの溶接部の微細組織の変形機構が一定の条件を満たすことで、溶接構造体の溶接部においても、母材の制振合金と同様の耐疲労メカニズムを作動させることが可能であることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の[1]~[12]を要旨とする。
[1] 複数の鋼材が溶接材で溶接された溶接構造体において、
 溶接金属の成分組成がFA凝固モードであり、
 繰り返し弾塑性変形前の母材、溶接熱影響部(HAZ)、及び溶接金属の金属組織が、γオーステナイト相(FCC構造)を85体積%以上100体積%未満、δフェライト相(BCC構造もしくはBCT構造)と初期εマルテンサイト相を合計0体積%以上14.5体積%未満、炭化物、窒化物、酸化物、ケイ化物等の不可避的析出物・介在物を合計0体積%以上0.5体積%未満含み、
 疲労破断直前または疲労破断時における母材、溶接熱影響部、及び溶接金属の金属組織が、変形誘起εマルテンサイト相(HCP構造)を10体積%以上90体積%未満、変形誘起α’マルテンサイト相(BCC構造もしくはBCT構造)を0体積%以上12体積%未満、残留γオーステナイト相を10体積%以上90体積%以下、δフェライト相と初期εマルテンサイト相を合計0体積%以上14.5体積%未満、炭化物、窒化物、酸化物、ケイ化物等の不可避的析出物・介在物を合計0体積%以上0.5体積%未満含み、そして、
 繰り返し弾塑性変形を受けると、微細組織構造が、前記繰り返し弾塑性変形前の金属組織から、前記疲労破断直前または疲労破断時における金属組織へ変化し、逐次の繰り返し弾塑性変形に応じて、γオーステナイト相からεマルテンサイト相への変形誘起マルテンサイト変態と、この逆変態の交互発生を繰り返し、変形誘起εマルテンサイト相の体積率が逐次増加することを特徴とする、溶接構造体。
[2] 前記繰り返し弾塑性変形前の母材、溶接熱影響部、及び溶接金属の成分組成が、
 必須元素として、12質量%≦Mn≦18質量%、5質量%≦Cr≦15質量%、5質量%≦Ni<12質量%、2質量%≦Si≦6質量%を含有し、
 任意元素、あるいは、不可避的に含まれる不純物元素として、Al、Co、Cu、Nb、Ta、V、Ti、Moを合計で0質量%以上1質量%以下、C、N、Bを合計で0質量%以上0.2質量%以下含有し、
 残部Fe及び不可避不純物からなり、
 次式1~5と表1の熱力学パラメーターで規定されるγ相とε相のギブス自由エネルギー差ΔGγ→εが、
   -150J/mol<ΔGγ→ε<50J/mol
である条件、かつ、
 次式6で規定されるCr当量([%Cr]eq)と次式7で規定されるNi当量([%Ni]eq)の比([%Cr]eq/[%Ni]eq)が、
   1.33<[%Cr]eq/[%Ni]eq≦1.96
である条件を満足することを特徴とする[1]に記載の溶接構造体。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
[3] 前記繰り返し弾塑性変形前の母材、溶接熱影響部、及び溶接金属の成分組成が、実質的に同一であることを特徴とする[2]に記載の溶接構造体。
[4] 前記繰り返し弾塑性変形前の母材、溶接熱影響部、及び溶接金属の成分組成が、互いに異なることを特徴とする[2]に記載の溶接構造体。
[5] 振幅1%のひずみ制御繰り返し引張圧縮変形に対する破断繰り返し数が4000サイクル以上であることを特徴とする[1]~[4]のいずれかに記載の溶接構造体。
[6] [1]~[5]のいずれかに記載の溶接構造体に用いられるFe-Mn-Cr-Ni-Si系合金であって、成分組成が、
 必須元素として、12質量%≦Mn≦18質量%、5質量%≦Cr≦15質量%、5質量%≦Ni<12質量%、2質量%≦Si≦6質量%を含有し、
 任意元素、あるいは、不可避的に含まれる不純物元素として、Al、Co、Cu、Nb、Ta、V、Ti、Moを合計で0質量%以上1質量%以下、C、N、Bを合計で0質量%以上0.2質量%以下含有し、
 残部Fe及び不可避不純物からなり、
 次式1~5と表1の熱力学パラメーターで規定されるγ相とε相のギブス自由エネルギー差ΔGγ→εが、
   -150J/mol<ΔGγ→ε<50J/mol
である条件、かつ、
 次式6で規定されるCr当量([%Cr]eq)と次式7で規定されるNi当量([%Ni]eq)の比([%Cr]eq/[%Ni]eq)が、
   1.33<[%Cr]eq/[%Ni]eq≦1.96
である条件を満足することを特徴とするFe-Mn-Cr-Ni-Si系合金。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
[7] 11質量%≦Cr≦14質量%、6質量%≦Ni≦7.5質量%を含有することを特徴とする[6]に記載のFe-Mn-Cr-Ni-Si系合金。
[8] 振幅1%のひずみ制御繰り返し引張圧縮変形に対する破断繰り返し数が4000サイクル以上であることを特徴とする[6]または[7]に記載のFe-Mn-Cr-Ni-Si系合金。
[9] [6]~[8]のいずれかに記載のFe-Mn-Cr-Ni-Si系合金が溶接材で溶接されたことを特徴とする溶接構造体。
[10] 前記溶接材が、[6]~[8]のいずれかに記載のFe-Mn-Cr-Ni-Si系合金を用いて作製されたことを特徴とする[9]に記載の溶接構造体。
[11] 制振部材であることを特徴とする[9]または[10]に記載の溶接構造体。
[12] [6]~[8]のいずれかに記載のFe-Mn-Cr-Ni-Si系合金を用いて作製されたことを特徴とする溶接材。
 本発明によれば、溶接金属の凝固モード、溶接部の変形前の微細組織構造、ならびに、変形を受けたときの溶接部の微細組織の変形機構が一定の条件を満たすことにより、溶接部において、母材の鋼材と同様の耐疲労メカニズムを作動させることができる。
 このため、本発明によれば、溶接部においても母材の鋼材と同等の優れた疲労特性を示す溶接構造体を提供することができる。
 また、本発明によれば、上記溶接構造体に用いられる合金鋼を提供することもできる。
 また、本発明によれば、上記合金鋼を用いた溶接構造体、及び溶接材を提供することもできる。
溶接メルトラン実験における凝固割れの有無の確認結果を示す顕微鏡画像:(a)例1-1、(b)例1-2 例1-1~例1-10、及び例1-15~例1-22の合金の成分組成に基づいて点座標([%Cr]eq,[%Ni]eq)をシェフラー型組織図上にプロットした図
 以下、本発明の実施の形態について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施形態に基づいてなされることがあるが、本発明はそのような実施形態に制限されるものではない。
 一般に、溶接構造体において、溶接部の疲労特性を母材と同等にするためには、母材の鋼材と同一または類似の成分組成を有する溶接材(いわゆる共金溶接材)を用いることが有効であると考えられる。しかし、本発明者らの予備実験によれば、引用文献1に記載のFMS合金の板材同士を、当該FMS合金と類似の成分組成を有する共金溶接ワイヤを用いて同材溶接を行うと、溶接部は凝固割れ、偏析、析出物などの溶接欠陥が発生しやすく、これらの溶接欠陥に起因して疲労き裂の欠陥が生じる場合があった。そして、様々に検討したところ、溶接金属の成分組成がA凝固モードであること、すなわち、溶接金属の凝固モードが、液相からγ相への凝固で始まりγ相への凝固で終わることが上記欠陥の原因であることを知見した。
 この知見から、本発明者らは、溶接構造体が全体として優れた疲労特性を発揮するためには、その微細組織構造、ならびに、微細組織の変形機構において、従来とは全く異なる条件を満たす必要があることを着想し、様々に検討を重ねた結果、FMS合金に代表される制振合金を母材とする溶接構造体において、溶接部においても母材と同等の優れた疲労特性を示すための条件を見出し、本発明を完成させた。
[溶接構造体]
 本発明の実施形態に係る溶接構造体(以下、「本実施形態の溶接構造体」ともいう。)は、複数の鋼材が溶接材で溶接された溶接構造体において、溶接金属の成分組成がFA凝固モードであり、繰り返し弾塑性変形前の母材、溶接熱影響部(HAZ)、及び溶接金属の金属組織が、γオーステナイト相(FCC構造)を85体積%以上100体積%未満、δフェライト相(BCC構造もしくはBCT構造)と初期εマルテンサイト相を合計0体積%以上14.5体積%未満、炭化物、窒化物、酸化物、ケイ化物等の不可避的析出物・介在物を合計0体積%以上0.5体積%未満含み、疲労破断直前または疲労破断時における母材、溶接熱影響部、及び溶接金属の金属組織が、変形誘起εマルテンサイト相(HCP構造)を10体積%以上90体積%未満、変形誘起α’マルテンサイト相(BCC構造もしくはBCT構造)を0体積%以上12体積%未満、残留γオーステナイト相を10体積%以上90体積%以下、δフェライト相と初期εマルテンサイト相を合計0体積%以上14.5体積%未満、炭化物、窒化物、酸化物、ケイ化物等の不可避的析出物・介在物を合計0体積%以上0.5体積%未満含み、そして、繰り返し弾塑性変形を受けると、微細組織構造が、前記繰り返し弾塑性変形前の金属組織から、前記疲労破断直前または疲労破断時における金属組織へ変化し、逐次の繰り返し弾塑性変形に応じて、γオーステナイト相からεマルテンサイト相への変形誘起マルテンサイト変態と、この逆変態の交互発生を繰り返し、変形誘起εマルテンサイト相の体積率が逐次増加することを特徴とする。
 本実施形態の溶接構造体において、δフェライト相は、母材の製造工程や溶接後の冷却処理によって形成されたものを意図する。
 また、初期εマルテンサイト相とは、後述するγオーステナイト相からεマルテンサイト相への変形誘起マルテンサイト変態によって形成される変形誘起εマルテンサイト相とは区別され、母材の製造工程における熱処理後、室温まで冷却される間に形成されて、繰り返し弾塑性変形前から存在するものであり、当該変形誘起マルテンサイト変態に由来しないεマルテンサイト相を意図する。
 また、変形誘起α’マルテンサイト相は、変形誘起εマルテンサイト相の一部が二次ε→α’マルテンサイト変態して形成されたものを意図する。
 また、残留γオーステナイト相とは、繰り返し弾塑性変形前のγオーステナイト相が、繰り返し弾塑性変形後も未変態のまま残留したものを意図する。
 本実施形態の溶接構造体では、溶接部の溶接金属の成分組成はFA凝固モードである。ここで、FA凝固モードとは、鋼材の凝固において、液相からまずフェライト相が晶出し、その後オーステナイト相が晶出する凝固モードである。溶接金属の特性は、溶接金属の成分組成を示すシェフラー型組織図上にプロットすることにより把握することができる。一般に、溶接金属で生じる凝固モードは当該溶接金属の成分組成によって変化するため、溶接金属の凝固割れを抑制するためには、母材(被溶接材)の成分組成を基に、溶接金属がFA凝固モードとなるように溶接材の成分組成を選定することが有効である。また、溶接金属の成分組成は、溶接条件や開先形状、希釈率などによって異なるため、これらを考慮して溶接金属がFA凝固モードとなるように溶接材の成分組成を選択する。なお、希釈率とは、全溶接金属量に対する母材溶融量の割合である。溶接金属の成分組成がFA凝固モードであることにより、溶接金属部における凝固割れ感受性を低くすることができる。
 言い換えると、本実施形態の溶接構造体において、母材が、成分組成がFA凝固モードである鋼材であり、かつ、当該母材同士が溶接された同材溶接である場合、溶接材の成分組成は、母材と同一であってよい。ここで、鋼材の成分組成に関して「同一」とは、対象の鋼材の各成分元素の含有量(質量%)の差が±0.5未満であることを意図する。この場合、溶接金属の成分組成は、母材の成分組成と実質的に同一であるとみなすことができるので、溶接金属の成分組成はFA凝固モードである。また、溶接熱影響部の成分組成も同様に、FA凝固モードであると言える。
 また、成分組成がFA凝固モードである母材同士が溶接された同材溶接の場合、溶接材の成分組成は、母材と異なっていてもよい。この場合、溶接材の成分組成は、FA凝固モードであってもよく、FA凝固モード以外の凝固モードであってもよい。前者の場合には、成分組成がFA凝固モードである母材同士が、成分組成がFA凝固モードである溶接材で溶接された溶接構造体であるので、溶接金属の成分組成はFA凝固モードである。また、溶接熱影響部の成分組成も同様に、FA凝固モードであると言える。後者の場合には、例えば希釈率を考慮して(例えば、20%以上40%以下、20%以上30%以下など)溶接金属がFA凝固モードとなるように溶接材の成分組成を選択すればよい。
 また、成分組成がFA凝固モードである複数種の母材、成分組成がFA凝固モード以外である複数種の母材、あるいは、成分組成がFA凝固モードである母材と成分組成がFA凝固モード以外である母材が溶接された異材溶接である場合には、上述したように、溶接条件や開先形状、希釈率などを考慮して、溶接金属がFA凝固モードとなるように溶接材の成分組成を選択すればよい。
 本実施形態の溶接構造体では、繰り返し弾塑性変形前の母材、溶接熱影響部(HAZ)、及び溶接金属の金属組織は、γオーステナイト相(FCC構造)を主相とし、引張圧縮弾塑性変形を受けると当該γオーステナイト相中に存在するショックレー部分転位が同一結晶面上を往復運動することにより、金属疲労が進行しにくい可逆的な変形機構を発現する。部分転位の運動は、γオーステナイト相からεマルテンサイト相(HCP構造を有する変形誘起εマルテンサイト相)への変形誘起マルテンサイト変態、双晶変形、拡張転位すべりなどを伴うが、部分転位運動の可逆性が最も高いのは、γオーステナイト相と変形誘起εマルテンサイト相との二方向マルテンサイト変態が支配的な変形機構となる場合である。一方、格子転位すべりはすべり面を変化させる交差すべりなどの不可逆な転位運動を伴う変形であるため抑制される。また、変形誘起α’マルテンサイト相の形成は、FCC構造からBCC構造への結晶構造変化に伴う体積膨張のためにα'相内や周辺のγ相に転位を発生させ、しかも、ひとたびα’相に変態すると変形だけではγ相に逆変態することはなく、不可逆な変形であるため抑制される。つまり、本実施形態の溶接構造体では、繰り返し弾塑性変形による微細組織構造の変化が、γオーステナイト相と変形誘起εマルテンサイト相との二方向マルテンサイト変態によって、可逆的に進行する状態を作り出すことにより、繰り返し硬化の抑制と破断繰り返し数の増加をはかる。これにより、本実施形態の溶接構造体は、振幅1%のひずみ制御繰り返し引張圧縮変形に対する破断繰り返し数が4000サイクル以上を達成する。
 なお、本明細書では、繰り返し弾塑性変形下でのγオーステナイト相とεマルテンサイト相とのマルテンサイト変態の可逆性に着目する場合に「二方向マルテンサイト変態」との用語を用い、γオーステナイト相からεマルテンサイト相へのマルテンサイト変態が当該繰り返し弾塑性変形によって誘起されることに着目する場合に「変形誘起マルテンサイト変態」との用語を用いるが、両者の用語が意味する微細組織の変形機構は、本質的には同一である点に留意されたい。
 また、γオーステナイト相からεマルテンサイト相への変形誘起マルテンサイト変態、及び、この逆変態を、それぞれ、矢印記号を用いて「γ→ε変態」、及び、「ε→γ逆変態」と表記する場合がある。
 上記変形前の母材、溶接熱影響部、及び溶接金属の金属組織は、δフェライト相、初期εマルテンサイト相、及び炭化物、窒化物、酸化物、ケイ化物等の不可避的析出物・介在物を、二方向マルテンサイト変態には関与しない構成相として、δフェライト相と初期εマルテンサイト相は合計0体積%以上14.5体積%未満、炭化物、窒化物、酸化物、ケイ化物等の不可避的析出物・介在物は合計0体積%以上0.5体積%未満含んでいてもよい。また、上記変形を受けることによるγオーステナイト相からεマルテンサイト相への変形誘起マルテンサイト変態は、その逆変態と交互発生するため、変形の繰り返しによる変形誘起εマルテンサイト相の体積率はゆっくりとしか上昇せず(すなわち、逐次の繰り返し弾塑性変形に応じて、変形誘起εマルテンサイト相の体積率は逐次増加し)、疲労破断直前または疲労破断まで変形を繰り返しても、形成される変形誘起εマルテンサイト相の体積率は90体積%未満であり、未変態のγオーステナイト相が10体積%以上残留することに特徴がある。この体積率未満であれば変形誘起マルテンサイト変態の程度は特に制限されず、疲労破断直前または疲労破断時における母材、溶接熱影響部、及び溶接金属の金属組織は、変形誘起εマルテンサイト相を10体積%以上含んでいてもよく、15体積%以上含んでいてもよく、20体積%以上含んでいてもよく、25体積%以上含んでいてもよく、30体積%以上含んでいてもよく、40体積%以上含んでいてもよく、50体積%以上含んでいてもよく、60体積%以上含んでいてもよく、70体積%以上含んでいてもよく、80体積%以上含んでいてもよい。また、疲労破断直前または疲労破断時における母材、溶接熱影響部、及び溶接金属の金属組織は、変形誘起α’マルテンサイト相を12体積%未満含んでいてもよい。変形誘起α'マルテンサイト変態は、自己触媒反応によってさらなる変形誘起α’マルテンサイト変態の連鎖反応を生じて、急激な体積率増加により材料を著しく加工硬化させる性質を有するが、変形誘起ε→α’変態の進行が体積率で12体積%未満の変形誘起α'マルテンサイト相を生じる程度であれば、そのような連鎖反応を生じることはなく、γ→ε変態とε→γ逆変態の可逆性を妨害することもないためである。
 より具体的には、本実施形態の溶接構造体は、振幅1%のひずみ制御繰り返し引張圧縮変形によって疲労破断にいたった後の微細組織において、変形誘起εマルテンサイト相の体積率が10体積%以上90体積%未満であることが好ましい。疲労破断後の微細組織が当該条件を満たすことは、繰り返し弾塑性変形による溶接構造体の微細組織構造の変化が、γオーステナイト相と変形誘起εマルテンサイト相との二方向マルテンサイト変態によって可逆的に進行したことを示す指標であり、本発明者らが新たに見出したものである。なお、本実施形態の溶接構造体において、変形誘起εマルテンサイトの体積率は、X線回折法、電子線後方散乱回折法などにより測定することができる。例えば、X線回折法では、構成相の体積率と回折ピーク強度比の関係に関する原理に基づき、精度良く体積率を求める解析方法やソフトウェアが種々開発されている。また、電子線後方散乱回折法では、走査電子顕微鏡に組み込まれた電子線後方散乱検出器と専用ソフトウェアを用いて、試料中の数100ミクロン平方の局所領域の構成相とその分布や体積率を求めることができる。
 ここで、本実施形態の溶接構造体において、逐次の繰り返し弾塑性変形に応じて変形誘起εマルテンサイト相の体積率が逐次増加することは、必ずしも当該体積率が一定の割合で増加することを意味するものではない点に留意されたい。一方、振幅1%のひずみ制御繰り返し引張圧縮変形に対する破断繰り返し数が4000サイクルであり、かつ、疲労破断にいたった後の微細組織において、変形誘起εマルテンサイト相の体積率が90体積%である場合を仮定すると、平均して、1サイクルあたり0.0225体積%の増加であると言うことができる。従って、本実施形態の溶接構造体は、繰り返し弾塑性変形下での変形誘起εマルテンサイト相の体積率の増加に関し、振幅1%のひずみ制御繰り返し引張圧縮変形によって疲労破断にいたった後の微細組織において、1サイクルあたりの平均増加率が0.0225体積%未満であることを一つの指標とすることができる。
 本実施形態の溶接構造体において、振幅1%のひずみ制御繰り返し引張圧縮変形に対する破断繰り返し数が4000サイクル以上の長寿命を達成するためには、母材、溶接熱影響部、及び溶接金属の繰り返し弾塑性変形前の金属組織に、引張圧縮弾塑性変形に対して可逆的に応答して金属疲労の進行を遅延させる仕組みが予め組み込まれていること、換言すると、繰り返し弾塑性変形(引張圧縮弾塑性変形)を受ける前の微細組織構造、及び、当該変形を受けたときの金属組織(特に、溶接部の微細組織)の変形機構を適切に設計することが重要である。特許文献1や非特許文献1には、FCC構造のγオーステナイト相とHCP構造のεマルテンサイト相の二方向マルテンサイト変態による相互変換が、γオーステナイト相と変形誘起εマルテンサイト相の界面に存在するショックレー部分転位の反復運動を可逆的に進行させることで、疲労寿命の飛躍的な改善に有効であることが開示されている。
 しかし、特許文献1や非特許文献1は、溶解、鋳造の後に熱間鍛造、熱間圧延、均一化熱処理を行って、成分や結晶組織を均質化させたFMS合金の圧延板材に関して、長寿命化のために満足すべき合金の成分、組織、変形組織について述べられたものであって、溶接構造体においては、溶接凝固現象の結果、溶接金属や溶接熱影響部には、凝固割れ、析出、成分偏析などの組織や溶接欠陥が形成されるため、圧延板材の成分、組織、変形組織が長寿命化の条件を満足していても溶接構造体の長寿命は保証されない。特に、凝固割れや析出は疲労き裂発生・伝播を促進して疲労寿命を大幅に低下させる原因となる。また、成分偏析は、δフェライト相、初期εマルテンサイト相、変形誘起α’マルテンサイト相など、長寿命化に必要な二方向マルテンサイト変態には関与しない、もしくは長寿命化に悪影響を及ぼし得る相を形成させる原因となる。
 本発明者らは、鋭意検討を進めた結果、溶接欠陥の中で溶接構造体の疲労寿命に最も致命的な影響を及ぼすか、疲労寿命がたとえ長くとも工業製品の管理上最も回避すべき問題は凝固割れであって、溶接金属の成分組成をFA凝固モードで設計することにより凝固割れを回避し、かつ、母材、溶接熱影響部、及び溶接金属の金属組織が、繰り返し弾塑性変形前に85体積%以上のγオーステナイト相を含み、かつ、そのγオーステナイト相に、繰り返し弾塑性変形に対して、γオーステナイト相からεマルテンサイト相への変形誘起マルテンサイト変態と、その逆変態との交互発生で応答する性質を予め組み込むことができれば、残部にこの二方向マルテンサイト変態には関与しない相などが溶接凝固時の成分偏析や析出の結果形成されたとしても、溶接構造体としての疲労寿命は、振幅1%のひずみ制御繰り返し引張圧縮変形に対する破断繰り返し数が4000サイクル以上を達成できることを見出した。
 そして、このような優れた疲労特性を発揮する溶接構造体においては、振幅1%のひずみ制御繰り返し引張圧縮変形によって疲労破断にいたった後の微細組織において、変形誘起εマルテンサイトの体積率が90体積%未満であることを確認し、このことが、繰り返し弾塑性変形(引張圧縮弾塑性変形)に対する可逆的な応答を示す指標となることを見出した。
 二方向マルテンサイト変態に関与しない相として、溶接凝固時の成分偏析によりCrが濃化した領域には、δフェライト相や初期εマルテンサイト相が形成されうる。δフェライト相はγオーステナイト相からεマルテンサイト相への変形誘起マルテンサイト変態とその逆変態の交互発生のような可逆的な変形メカニズムを発現しないため長寿命化には寄与しない。また、溶接後の冷却過程で形成される初期εマルテンサイト相は、γオーステナイト相から変形誘起マルテンサイト変態によって形成される変形誘起εマルテンサイト相の発達を阻害する働きがある。これは、変形誘起εマルテンサイト相も初期εマルテンサイト相も薄板状形態に発達する性質を有するが、これらの母相結晶に対する発達方向が異なるために、通常、先行形成した薄板状の初期εマルテンサイト相は、その後発達しようとする薄板状の変形誘起εマルテンサイト相に対して障壁として作用するためである。しかし、δフェライト相や初期εマルテンサイト相は、合計で14.5体積%未満であれば、主相であるγオーステナイト相からεマルテンサイト相への変形誘起マルテンサイト変態とその逆変態の交互発生により金属疲労を遅延させる効果を損なわない。
 また、金属材料は炭化物、窒化物、酸化物、ケイ化物等の析出物・介在物を不可避的に含有し、殊に溶接構造体においては、溶接凝固現象の結果として、これら不可避的析出物・介在物がさらに発生しやすいが、その体積率が合計で0.5体積%未満であるならば、主相であるγオーステナイト相からεマルテンサイト相への変形誘起マルテンサイト変態とその逆変態の交互発生により金属疲労を遅延させる効果を損なわない。
 さらに、変形誘起εマルテンサイトは、逐次の繰り返し弾塑性変形に応じて体積率が逐次増加する間に、その一部が変形誘起α’マルテンサイト相に変化する場合がある(二次ε→α’マルテンサイト変態)。変形誘起α’マルテンサイト相はFCC構造からBCC構造への結晶構造変化に伴う体積膨張のためにα'相内や周辺のγ相に転位を発生させ、しかも、ひとたびα’相に変態すると変形だけではγ相に逆変態することはない。また、自己触媒反応によってさらなる変形誘起α’マルテンサイト変態の連鎖反応を生じて、急激な体積率増加により材料を著しく加工硬化させる性質を有する。さらには、γオーステナイト相からεマルテンサイト相への変形誘起マルテンサイト変態とその逆変態の交互発生に対して、γオーステナイト相と変形誘起εマルテンサイト相の界面に存在するショックレー部分転位の反復運動を阻害して疲労寿命を低下させるが、その疲労破断材における体積率が12体積%未満であれば、有害な連鎖反応によるα’相の増加は繰り返し変形中に生じなかったことを意味し、そのような低体積率の変形誘起α’マルテンサイト相は、溶接構造体の金属疲労を遅延させる効果を損なわない。
 上記体積率未満であれば変形誘起α’マルテンサイト相の含有率は特に制限されず、疲労破断直前または疲労破断時における母材、溶接熱影響部、及び溶接金属の金属組織は、変形誘起α’マルテンサイト相を0体積%以上12体積%未満含んでいてもよく、0体積%以上10体積%未満含んでいてもよく、0体積%以上8体積%未満含んでいてもよく、0体積%以上7.5体積%未満含んでいてもよく、0体積%以上6体積%未満含んでいてもよく、0体積%以上5体積%未満含んでいてもよく、0体積%以上4体積%未満含んでいてもよく、0体積%以上3体積%未満含んでいてもよく、0体積%以上2体積%未満含んでいてもよく、0体積%以上1体積%未満含んでいてもよい。より具体的には、本実施形態の溶接構造体は、振幅1%のひずみ制御繰り返し引張圧縮変形によって疲労破断にいたった後の微細組織において、変形誘起α’マルテンサイト相の体積率が、0体積%以上12体積%未満であることが好ましく、0体積%以上6体積%未満であることがより好ましく、0体積%以上2体積%未満であることがさらにより好ましく、0体積%以上1体積%未満であることがなおさらにより好ましい。なお、変形誘起α’マルテンサイト相の含有率の測定には、フェライトメーターなどの測定機器を用いることができる。フェライトメーターは、磁化の強さを測定することにより、磁性相であるα’マルテンサイト相の含有率(試料中のα’マルテンサイト相の含有割合)を簡便に測定できる機器である。
 疲労破断材中の残留γオーステナイト相は、γオーステナイト相からεマルテンサイト相への変形誘起マルテンサイト変態とその逆変態の交互発生が、金属疲労の遅延に有効に作用している痕跡であり、後述するγ相とε相のギブス自由エネルギー差ΔGγ→εが低下するほど、疲労破断直前または疲労破断時における母材、溶接熱影響部、及び溶接金属の金属組織における残留γオーステナイト相の体積率は低下する。ΔGγ→εが-150J/mol以下になると、γオーステナイト相から変形誘起マルテンサイト変態によって生じたεマルテンサイト相は逆変態しにくくなり、疲労破断直前または疲労破断時における母材、溶接熱影響部、及び溶接金属の金属組織において、残留γオーステナイト相の体積率は10%未満となる。このように変形誘起マルテンサイト変態の可逆性が低下すると、金属疲労の遅延効果が低下するため、溶接構造体の、振幅1%のひずみ制御繰り返し引張圧縮変形に対する破断繰り返し数は、4000サイクル未満に低下する。
 以上の溶接金属の凝固モード、母材、溶接熱影響部(HAZ)、及び溶接金属の微細組織構造、ならびに、微細組織の変形機構の条件を満たすことにより、本実施形態の溶接構造体は、溶接部での疲労欠陥が抑制された、長疲労寿命の構造体である。そのため、本実施形態の溶接構造体は、建築構造物用の制振部材として好ましく用いることができる。
 以下、本実施形態の溶接構造体を制振部材として用いる態様について説明する。
 本態様では、繰り返し弾塑性変形前の母材、溶接熱影響部、及び溶接金属の成分組成が、
 必須元素として、12質量%≦Mn≦18質量%、5質量%≦Cr≦15質量%、5質量%≦Ni<12質量%、2質量%≦Si≦6質量%を含有し、
 任意元素、あるいは、不可避的に含まれる不純物元素として、Al、Co、Cu、Nb、Ta、V、Ti、Moを合計で0質量%以上1質量%以下、C、N、Bを合計で0質量%以上0.2質量%以下含有し、
 残部Fe及び不可避不純物からなり、
 次式1~5と表1の熱力学パラメーターで規定されるγ相とε相のギブス自由エネルギー差ΔGγ→εが、
   -150J/mol<ΔGγ→ε<50J/mol
である条件、かつ、
 次式6で規定されるCr当量([%Cr]eq)と次式7で規定されるNi当量([%Ni]eq)の比([%Cr]eq/[%Ni]eq)が、
   1.33<[%Cr]eq/[%Ni]eq≦1.96
である条件を満足することが好ましい。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
 上述したように、本実施形態の溶接構造体では、繰り返し弾塑性変形による微細組織構造の変化が、γオーステナイト相と変形誘起εマルテンサイト相との二方向マルテンサイト変態によって、可逆的に進行する状態を作り出すことが重要である。これまでに、単調引張試験で得られた実験結果から、γオーステナイト相からεマルテンサイト相への変形誘起マルテンサイト変態は、合金の強度・延性バランスの改善に有効であることが知られている。例えば、変態誘起塑性(Transformation-induced plasticity:TRIP)効果とγ双晶変形による双晶誘起塑性(Twinning-induced plasticity:TWIP)効果により、Fe-Mn-Si―Al系合金の強度と延びの積が著しく改善できることが報告されている(O. Grassel, G. Frommeyer, Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels, Mater Sci Technol 14(12) (1998) 1213-1217.)。TRIP/TWIP効果による合金の強度・延性バランスの改善には、上記変形誘起マルテンサイト変態やγ双晶変形の発生条件として、合金の成分組成で決まるγ相の積層欠陥エネルギー(ΓSFE)の値を用いた塑性変形メカニズムの予測が行われる。ここで、積層欠陥エネルギー(ΓSFE)は、次式8~9により、γ相とε相のギブス自由エネルギー差ΔGγ→εと関連付けられる。
Figure JPOXMLDOC01-appb-M000021
 この関係を用いて、従来、熱力学計算によりΔGγ→εを求め、さらにΓSFEを求めて、上記変形誘起マルテンサイト変態やγ双晶が発生するΓSFEの範囲に関する経験的知見から、合金の塑性変形メカニズムや力学特性が予測されている。例えば、Fe-Mn-Si-Al-C系合金のΓSFEの計算には非特許文献2において、また、Fe-Mn-Cr-Ni-Al-Si-N系合金のΓSFEの計算には非特許文献3において、Fe-Mn-C系合金のΓSFEの計算には非特許文献4において、それぞれ新たな熱力学パラメーター・セットが提案されている。また、非特許文献2、3、4によれば、単調引張でγオーステナイト相からεマルテンサイト相への変形誘起マルテンサイト変態が生じる条件は、ΓSFE<18mJ/m、γ双晶変形が生じる条件は、12mJ/m<ΓSFE<35mJ/mなどとされている。
 しかしながら、これまでに提案されてきた熱力学パラメーター・セットでは、未知のパラメーターを、特定の成分系における単調引張試験の結果から最適化しているため、対象成分系の成分範囲内では一定の予測精度が確保されるものの、異なる成分系に適用可能な普遍性の高い熱力学パラメーター・セットは未だ確立されていない。また、上記変形誘起マルテンサイト変態やγ双晶変形が生じる条件についても、特定の成分系における知見によるところが大きく、研究者によって提示するΓSFEの範囲が異なっていた。
 本発明者らは、非特許文献1において、Fe-Mn-Cr-Ni-Si系合金の長疲労寿命化に、γオーステナイト相からεマルテンサイト相への変形誘起マルテンサイト変態と、その逆変態との交互発生が重要な役割を持つこと、また、そのための熱力学的条件として、積層欠陥エネルギー(ΓSFE)の値がおよそ20mJ/mであることを示した。しかし、積層欠陥エネルギー(ΓSFE)の計算値は、用いる熱力学パラメーター・セットによって異なるため、所定の疲労寿命を達成するためのより高精度な合金成分設計指針は明らかではなかった。
 このような状況下、鋭意検討を進めた結果、本発明者らは、非特許文献2に記載のFe-Mn-Si-Al-C系合金に関するモデル、及び、非特許文献3に記載のFe-Mn-Cr-Ni-Al-Si-N系合金に関するモデルで用いられる熱力学パラメーターから取捨選択し、かつ、非特許文献2、3では使用されていない、本発明者らが独自に採用した熱力学パラメーターを組み合わせて、Fe-Mn-Cr-Ni-Si-Al系合金の繰り返し引張圧縮変形試験(低サイクル疲労試験)の結果に最もよく一致するギブス自由エネルギー差ΔGγ→εを計算可能な、新しい熱力学パラメーターのセット(表1)を見出すに至った。
 以下の表1Aには、上掲の表1に示す熱力学パラメーターについて、参考文献の発行年と筆頭著者名を角括弧書きで示した。また、表2Aには、本発明で使用する熱力学パラメーター(記号N)、非特許文献2に記載のモデルで用いられる熱力学パラメーター(記号P)、及び、非特許文献3に記載のモデルで用いられる熱力学パラメーター(記号C)を比較して示した。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
 なお、表1A及び表2Aで挙げた参考文献の情報は以下の通りである。
[1991_Dinsdale] A.T. Dinsdale, Sgte Data for Pure Elements, Calphad 15(4) (1991) 317-425.
[2008_Dumay] A. Dumay, J.P. Chateau, S. Allain, S. Migot, O. Bouaziz, Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel, Mater Sci Eng A, 483-84 (2008) 184-187.
[2011_Curtze] S. Curtze, V.T. Kuokkala, A. Oikari, J. Talonen, H. Hanninen, Thermodynamic modeling of the stacking fault energy of austenitic steels, Acta Mater, 59(3) (2011) 1068-1076.
[1989_Huang] W.M. Huang, An Assessment of the Fe-Mn System, Calphad 13(3) (1989) 243-252.
[2010_Nakano] J. Nakano, P.J. Jacques, Effects of the thermodynamic parameters of the hcp phase on the stacking fault energy calculations in the Fe-Mn and Fe-Mn-C systems, Calphad 34(2) (2010) 167-175.
[1991_Lacaze] J. Lacaze, B. Sundman, An assessment of the Fe-C-Si system, MTA 22(10) (1991) 2211-2223.
[1998_Cotes] S. Cotes, A.F. Guillermet, M. Sade, Phase stability and fcc/hcp martensitic transformation in Fe-Mn-Si alloys: Part II. Thermodynamic modelling of the driving forces and the M-s and A(s) temperatures, J Alloy Compd 280(1-2) (1998) 168-177.
[1993_Forsberg] A. Forsberg, J. Agren, Thermodynamic evaluation of the Fe-Mn-Si system and the γ/ε martensitic transformation, J Phase Equil 14(3) (1993) 354-363.
[1999_Yakubutsov] I.A. Yakubtsov, A. Ariapour, D.D. Perovic, Effect of nitrogen on stacking fault energy of f.c.c. iron-based alloys, Acta Mater 47(4) (1999) 1271-1279. 
[1987_Andersson] J.-O. Andersson, B. Sundman, Thermodynamic properties of the Cr-Fe system, Calphad 11(1) (1987) 83-92.
[1990_Frisk] K. Frisk, A thermodynamic evaluation of the Cr-Fe-N system, MTA 21(9) (1990) 2477-2488.
[1990_Yang] W.S. Yang, C.M. Wan, The Influence of Aluminum Content to the Stacking-Fault Energy in Fe-Mn-Al-C Alloy System, J Mater Sci 25(3) (1990) 1821-1823.
[1997_Li] L. Li, T.Y. Hsu, Gibbs free energy evaluation of the fcc(gamma) and hcp(epsilon) phases in Fe-Mn-Si alloys, Calphad 21(3) (1997) 443-448.
 本発明における熱力学パラメーター・セットで計算したギブス自由エネルギー差ΔGγ→εから、上記式8の関係を用いて、γ相の積層欠陥エネルギー(ΓSFE)の値を計算することができる。ここで、この計算に必要なγ/εの界面エントロピー(σγ/ε)としては、非特許文献2に記載の、次式10を用いることが好ましい。
Figure JPOXMLDOC01-appb-M000024
 上記式8~10を用いて、疲労寿命(すなわち、振幅1%のひずみ制御繰り返し引張圧縮変形に対する破断繰り返し数)が4000サイクル以上となるγ相とε相のギブス自由エネルギー差ΔGγ→εをγ相の積層欠陥エネルギー(ΓSFE)に換算すると、以下のような条件が導かれる。
   10mJ/m<ΓSFE<22.5mJ/m
 すなわち、本発明における熱力学パラメーター・セットによれば、従来、単調引張における塑性変形モード予測に用いられた熱力学パラメーターである積層欠陥エネルギー(ΓSFE)を用いて、所定の疲労寿命が得られる値の範囲を予測することが可能となる。そして、この値は、非特許文献1に開示されたFe-Mn-Cr-Ni-Si系合金に関する値(20mJ/m)を包含し、かつ、精度良く合金成分範囲を予測することが可能となる。さらに、本発明者らは、当該熱力学パラメーター・セットは、Fe-Mn-Cr-Ni-Si-Al系合金以外の合金、具体的には、Fe-Mn-Cr-Ni-Si系合金の繰り返し引張圧縮変形試験(低サイクル疲労試験)の結果にもよく一致することを確認した。従って、本発明における熱力学パラメーター・セットは、複数の成分系に適用可能な、高い普遍性を有するものであると言える。加えて、本発明における熱力学パラメーター・セットによれば、複数の成分系(より具体的には、Fe-Mn-Cr-Ni-Si系合金、Fe-Mn-Si系合金、Fe-Mn-Si-Al系合金、Fe-Mn-Si-Cr系合金等)の疲労寿命に関する温度依存性と組成依存性を等価に評価することができる点で、従来のモデルに対して新規かつ優位なものである。
 具体的には、本発明者らは、以下に示す成分組成を有する合金について、後述する実施例と同様の手順及び条件で低サイクル疲労試験を行い、様々な温度条件下での疲労寿命(破断繰り返し数Nf)を測定したところ(総試験数23)、ΔGγ→εの値が-150J/mol<ΔGγ→ε<50J/molの範囲内にある場合に、Nfの値が4000サイクル以上となる相関関係を見出している。なお、以下の成分組成において、数字は質量%であり、例えば、「15Mn」とは、Mnの含有量が「14.5質量%以上15.5質量%未満の範囲」であることを意味する。Mn以外の元素の含有量についても同様である。
(Fe-Mn-Cr-Ni-Si系合金)
 成分組成:Fe-15Mn-10Cr-8Ni-4Si
 温度条件:-20℃、0℃、25℃、40℃、60℃、80℃、100℃、120℃
(Fe-Mn-Si系合金、Fe-Mn-Si-Al系合金)
 成分組成:
  Fe-30Mn-6Si
  Fe-30Mn-5Si-1Al
  Fe-30Mn-4Si-2Al
  Fe-30Mn-3Si-3Al
  Fe-30Mn-2Si-4Al
  Fe-30Mn-1Si-5Al
  Fe-30Mn-6Al
 温度条件:25℃
(Fe-Mn-Si-Cr系合金)
 成分組成:Fe-28Mn-6Si-5Cr
 温度条件:-50℃、0℃、25℃、50℃、100℃、150℃、200℃、250℃
 以上より、本態様では、疲労寿命(すなわち、振幅1%のひずみ制御繰り返し引張圧縮変形に対する破断繰り返し数)が4000サイクル以上となるγ相とε相のギブス自由エネルギー差ΔGγ→εの条件を、-150J/mol<ΔGγ→ε<50J/molとする。
 以下、本態様の溶接構造体を構成する鋼材及び溶接材の成分元素について説明する。
 Mn(マンガン)は、γオーステナイト相からεマルテンサイト相への変形誘起マルテンサイト変態を生じさせるための必須元素である。Mnはγオーステナイト相を最も安定化させ、次いで変形誘起εマルテンサイト相を安定化させ、変形誘起α’マルテンサイト相の形成は強く抑制する作用がある。従って、Mnの含有量を調整することにより、γオーステナイト相を安定化させ、かつ、溶接構造体の繰り返し弾塑性変形時に、γオーステナイト相からεマルテンサイト相への変形誘起マルテンサイト変態とこの逆変態を交互発生させ、かつ、変形誘起α’マルテンサイト相の形成を抑制して、疲労特性を改善することができる。
 なお、Mnがγオーステナイト相を安定化させ、溶接構造体の繰り返し弾塑性変形時に、γオーステナイト相からεマルテンサイト相への変形誘起マルテンサイト変態とこの逆変態を交互発生させる作用は一部Ni(ニッケル)とCr(クロム)で代替可能である。本態様では、溶接構造体を構成する鋼材及び溶接材の観点から、溶解コストを低減するため、Mnの代替元素として、Cr及びNiを含むことが好ましい。また、従来のFe-Mn―Si形状記憶合金の制振特性改善効果を有することが知られているAl(アルミニウム)も、必要に応じてMnの代替元素として添加してもよい。
 Mn、Cr、Ni、及びAlが溶接構造体の繰り返し弾塑性変形機構に及ぼす効果は、同等の効果を与えるMnの質量%で代表させることができる。本態様では、これをMn当量([%Mn]eq)と定義して、Mn当量を、各成分元素の含有量(質量%)を用いて以下の式で表す。
  Mn当量([%Mn]eq)=[%Mn]+[%Cr]+2[%Ni]+5[%Al]
 なお、式中の[%Mn]、[%Cr]、[%Ni]、[%Al]は、上記成分組成におけるMn、Cr、Ni、Alの質量%を意味する。
 また、本態様では、γオーステナイト相-εマルテンサイト相間の二方向の変形誘起マルテンサイト変態を発現させるためのMn当量の範囲として、以下の式で表す条件を満たすことが好ましい。
  36<[%Mn]eq<50
 Mn当量が36以下であると、εマルテンサイト相の熱力学的安定性が非常に高くなるため、ひとたび変形誘起されたεマルテンサイト相は、その後逆方向に変形されてもγオーステナイト相に逆変態しなくなる。その結果、繰り返し弾塑性変形によって変形誘起εマルテンサイト相の体積率は単調に増加し、形成された変形誘起εマルテンサイト相同士が互いに衝突する箇所で亀裂発生確率や亀裂伸展速度が上昇して破断繰り返し数が低下する。
 更に、Mn当量が30以下であると、溶接構造体を構成する鋼材の作製時に、溶体化熱処理温度から室温に冷却された時点で既に体積率が10体積%以上の初期εマルテンサイト相が形成され、溶接構造体における変形誘起εマルテンサイト相の形成に対する阻害要因となるため、破断繰り返し数が低下する。
 また、Mn当量が50質量%以上であると、γオーステナイト相が強く安定化されすぎて、変形誘起εマルテンサイト相が形成されなくなる。
 なお、特許文献1には、Fe-Mn-(Cr、Ni)-Si系合金において破断繰り返し数を2000サイクル以上とする条件として、Mn当量の範囲を、37<[%Mn]eq<45とすることが開示されている。そのため、本実施形態の溶接構造体において、Mn当量を第一の指標として、振幅1%のひずみ制御繰り返し引張圧縮変形に対する破断繰り返し数が4000サイクル以上を達成する条件を設定する場合には、満足すべきMn当量の範囲は、特許文献1に記載の範囲より狭くなると当然予想された。しかし、発明者らによる実験の結果、後述する実施例において具体的に示すように、Mnの含有量を15質量%とし、Cr、Niの含有量を変化させた結果得られる合金や、Mnの含有量を15質量%付近で変化させた結果得られる合金(Fe-Mn-Cr-Ni-Si系合金)は、特許文献1に記載の特性予測とは異なり、より広いMn当量で4000サイクル以上の疲労寿命を示した。この結果は、多元系合金の破断繰り返し数Nfが成分組成に非線形に依存するため、Mn当量による線形予測が適用できる成分範囲に限界があることを示すものであった。すなわち、主に合金の成分組成におけるMnやAlの含有量の影響に着目して見いだされたMn当量の式と長寿命を得るためのMn当量範囲の条件は、Alを必須の成分元素とはせず、主にMn、Cr、Niの含有量の変化に着目した本発明の成分範囲では予測精度を確保することが困難であることが判明した。このため、発明者らは鋭意研究を進めた結果、新しい熱力学パラメーター・セットを用いたギブス自由エネルギー計算による疲労寿命予測技術の開発に至り、これを第一の指標として用い、さらに必要に応じてMn当量の条件を組み合わせることで、予測精度をより高めることができることを知見し、本発明の完成に至ったものである。
 以上より、本態様では、Mn当量の好ましい範囲は、36<[%Mn]eq<50とし、より好ましくは、38<[%Mn]eq<44とする。
 Si(ケイ素)は、Mn当量にはほとんど影響しないが、Siを含有することにより、γオーステナイト相とεマルテンサイト相との二方向マルテンサイト変態の可逆性を向上させて、破断繰り返し数を改善することができる。一方、Siを過度に含有すると、破断繰り返し数を低下させたり、合金(溶接金属など)が著しく硬化して、繰り返し弾塑性変形の応力振幅が上昇したりするなどの問題が生じる場合がある。
 なお、Mn、Cr、Ni、Siの含有量については、繰り返し弾塑性変形前の母材、溶接熱影響部、及び溶接金属の金属組織がγオーステナイト相を主相とするように、オーステナイト安定化元素であるMn、Niの総量と、フェライト安定化元素であるCr、Siの総量のバランス調整が重要である。フェライト安定化元素濃度が高く、オーステナイト安定化元素濃度が低くなるほどδフェライト相が形成されやすく、フェライト安定化元素濃度とオーステナイト安定化元素濃度がともに低い場合には変形誘起α’マルテンサイト相が形成されやすくなる。
 また、本態様では、溶接金属の成分組成がFA凝固モードとなるように、溶接構造体の成分組成が調整される。溶接金属の特性は、溶接金属の成分組成に基づいて、次式6で規定されるCr当量([%Cr]eq)と次式7で規定されるNi当量([%Ni]eq)の点座標([%Cr]eq,[%Ni]eq)をシェフラー型組織図上にプロットすることにより把握することができる。
  式6
Cr当量([%Cr]eq)=[%Cr]+[%Mo]+1.5[%Si]+0.5[%Nb]
  式7
Ni当量([%Ni]eq)=[%Ni]+30[%C]+0.28[%Mn]
 なお、式6及び式7中、[%Cr]、[%Mo]、[%Si]、[%Nb]、[%Ni]、[%C]、[%Mn]は、Cr、Mo、Si、Nb、Ni、C、Mnの質量%を意味する。
 本態様では、溶接金属の成分組成がFA凝固モードとなるために、Cr当量とNi当量の比([%Cr]eq/[%Ni]eq)が、1.33<[%Cr]eq/[%Ni]eq≦1.96である条件を満足することとする。
 なお、本明細書において、Cr当量とNi当量の比([%Cr]eq/[%Ni]eq)の値の有効数字は3桁とする。ただし、当該値がゼロ未満である場合には、小数点第三位を四捨五入することとする。
 また、以下の実施例では、合金の成分組成に基づいて点座標([%Cr]eq,[%Ni]eq)をシェフラー型組織図上にプロットした例を示す。
 以上の各条件の他、本態様では、溶接構造体を構成する鋼材及び溶接材の製造上の制約等により、Mn、Cr、Ni、Siの各成分元素の含有量は限定される。以下に詳細に説明する。
<Mn>
 Mn(マンガン)は、γオーステナイト相を安定化させ、溶接構造体の繰り返し弾塑性変形時に、γオーステナイト相からεマルテンサイトへの変形誘起マルテンサイト変態とこの逆変態を交互発生させるための必須元素である。本態様では、後述するCr及びNiの含有量を考慮して、Mnの含有量を18質量%以下とする。
 溶接構造体を構成する鋼材及び溶接材の観点からは、Mnを過度に含有すると、Mnの蒸発や酸化によるMn歩留の低下、溶解炉耐火物との反応などが避けられず、実用化可能なコストでの溶解が困難である。そのため、Mnの含有量を18質量%以下とすることにより、溶解コストを低下させることができ、また、量産化に適したアーク炉溶解で合金を作製することが可能である。
 一方、Mnの含有量が12質量%未満になると、Cr及びNiの含有量をどのように調整しても疲労特性に有害な変形誘起α’マルテンサイト相の形成を避けることができない。そのため、本態様では、Mnの含有量を少なくとも12質量%以上とすることが好ましい。
 以上より、本態様では、Mnの含有量を12質量%≦Mn≦18質量%の範囲とする。
<Cr>
 Cr(クロム)は、Mnが、溶接構造体の繰り返し弾塑性変形時に、γオーステナイト相からεマルテンサイトへの変形誘起マルテンサイト変態とこの逆変態を交互発生させ、本態様の溶接構造体の疲労特性を向上させる作用を代替する元素である。また、Crは更に耐食性や耐高温酸化性の向上にも寄与する。しかし、Crの含有量が15質量%を超えると他の成分をどのように調整しても変形誘起α’マルテンサイト相の形成を抑制することが難しくなる。また、溶接構造体を構成する鋼材及び溶接材の観点からは、Siと低融点の金属間化合物を形成するため合金の溶製が困難となる。
 以上より、本態様では、Crの含有量は5質量%≦Cr≦15質量%の範囲とする。
<Ni>
 Ni(ニッケル)は、Mnがγオーステナイト相を安定化させ、かつ、溶接構造体の繰り返し弾塑性変形時に、γオーステナイト相からεマルテンサイトへの変形誘起マルテンサイト変態とこの逆変態を交互発生させ、本態様の溶接構造体の疲労特性を向上させる作用を代替する元素である。特に本態様ではMnの含有量を18質量%以下とするため、オーステナイト安定化元素としてのNiを5質量%以上含有させなければ、弾塑性変形前の状態としてγオーステナイト相を主相とする微細組織構造が得られなくなる。
 一方、溶接構造体を構成する鋼材及び溶接材の観点からは、Niの含有量が12質量%以上になるとSiと低融点の金属間化合物を形成するため合金の熱間加工性を劣化させる。また、材料コストの観点からは、高価な元素であるNiは10質量%未満であることがより好ましい。
 以上より、本態様では、Niの含有量を5質量%≦Ni<12質量%、より好ましくは5質量%≦Ni<10質量%の範囲とする。
<Si>
 Si(ケイ素)は、ショックレー部分転位の反復運動に可逆性を与え、疲労寿命を改善させるための必須元素であり、その効果が得られる含有量は2質量%≦Si≦6質量%である。Siの含有量が2質量%未満では可逆性向上の効果が不十分であり、6質量%を超えると脆性的なケイ化物が形成されて疲労寿命が低下する。
 以上より、本態様では、振幅1%のひずみ制御繰り返し引張圧縮変形に対する破断繰り返し数を4000サイクル以上とするため、Siの含有量を2質量%≦Si≦6質量%の範囲とする。なお、Siの含有量がこの範囲を満たすことにより、溶接構造体を構成する鋼材自体の破断繰り返し数としても4000サイクル以上を達成することができる。
<その他>
 本態様では、必要に応じて、鉄基合金の特性調整のために微量添加する任意元素、あるいは、不可避的に含まれる不純物元素として、Al(アルミニウム)、Co(コバルト)、Cu(銅)、Nb(ニオブ)、Ta(タンタル)、V(バナジウム)、Ti(チタン)、Mo(モリブデン)を合計で1質量%以下、C(炭素)、N(窒素)、B(ホウ素)を合計で0.2質量%以下含んでもよい。
 上述したように、本態様の溶接構造体では、繰り返し弾塑性変形前の母材、溶接熱影響部、及び溶接金属の金属組織は、γオーステナイト相を主相としていればよく、δフェライト相や初期εマルテンサイト相が含まれてもよい。実際に、上記変形によりγオーステナイト相からεマルテンサイト相への変形誘起マルテンサイト変態が発生しやすい状態に成分調整された合金は、溶接凝固時の成分偏析によりCrやSiが濃化した箇所には溶接後の冷却時にδフェライト相が形成されやすく、溶接凝固時の成分偏析によりMnやNiが濃化した箇所には、溶接後の冷却やその後の環境の温度変化や加工の影響等により、意図せずに初期εマルテンサイト相が形成される場合がある。
 これら、δフェライト相や初期εマルテンサイト相は、金属疲労の遅延に有効なγオーステナイト相からεマルテンサイト相への変形誘起マルテンサイト変態と逆変態の交互発生には何ら寄与しないが、δフェライト相と初期εマルテンサイト相の体積率は合計で14.5体積%未満であれば、主相であるγオーステナイト相と変形誘起εマルテンサイト相との二方向マルテンサイト変態を阻害しない。
一方、意図せずに形成された初期εマルテンサイト相は、通常結晶学的方位がその後、繰り返し弾塑性変形によって現れた変形誘起εマルテンサイト相とは異なり、変形誘起εマルテンサイト相の成長に対する障壁となるので、その体積率は10体積%以下であることが好ましい。
 本態様の溶接構造体の繰り返し弾塑性変形は、主としてγオーステナイト相からεマルテンサイト相への変形誘起マルテンサイト変態とその逆変態が交互に発生することによって行われる。具体的には、引張圧縮弾塑性変形を受けると、引張変形時に誘起されたεマルテンサイト相は、変形方向が圧縮に反転するとγオーステナイト相に逆変態する。
 一方、圧縮変形は引張誘起されたεマルテンサイト相の逆変態と同時に、引張変形時とは異なる結晶方位の新たなεマルテンサイト相を生じる。この圧縮誘起εマルテンサイト相も、変形が再び引張へと反転するとγオーステナイト相に逆変態する。このように引張誘起εと圧縮誘起εが、引張圧縮の繰り返しにより交互に発生・消滅を繰り返すことで、γオーステナイト相と変形誘起εマルテンサイト相の界面に存在するショックレー部分転位が金属疲労損傷を蓄積させることなく反復運動し、かつ、引張圧縮弾塑性変形の繰り返しによる変形誘起εマルテンサイト相の累積体積率増加が小さいために、可逆的な二方向マルテンサイト変態の状態が繰り返し弾塑性変形の間保たれることが、本態様の溶接構造体が疲労特性に優れている理由である。
 しかし、ひずみ振幅やサイクル数が増加するに従い変形誘起εマルテンサイト相の体積率は徐々にではあるが増加し、90体積%以上になると亀裂発生確率や亀裂伸展速度が増大して破断にいたる場合がある。従って、振幅1%のひずみ制御繰り返し引張圧縮変形に対する破断繰り返し数を4000サイクル以上とするためには、4000サイクル変形した後の変形誘起εマルテンサイトの体積率を90体積%未満とするのが望ましい。
 また、ひずみ振幅やサイクル数が増加するに従い変形誘起εマルテンサイト相の体積率が徐々に増加する結果、結晶方位が異なる変形誘起εマルテンサイト相が交差する箇所に変形誘起α’マルテンサイト相が形成される場合がある(二次ε→α’マルテンサイト変態)。変形誘起α’マルテンサイト相はFCC構造からBCC構造への結晶構造変化に伴う体積膨張のためにα'相内や周辺のγ相に転位を発生させ、しかも、ひとたびα’相に変態すると変形だけではγ相に逆変態することはない。また、自己触媒反応によってさらなる変形誘起α’マルテンサイト変態の連鎖反応を生じて、急激な体積率増加により材料を著しく加工硬化させる性質を有し、応力レベル上昇による制振部材性能の低下のみならず、破断繰り返し数の低下にもつながる。さらには、γオーステナイト相からεマルテンサイト相への変形誘起マルテンサイト変態とその逆変態の交互発生に対して、γオーステナイト相と変形誘起εマルテンサイト相の界面に存在するショックレー部分転位の反復運動を阻害して疲労寿命を低下させるが、その疲労破断材における体積率が12体積%未満であれば、有害な連鎖反応によるα’相の増加は繰り返し変形中に生じなかったことを意味し、そのような低体積率の変形誘起α’マルテンサイト相は、溶接構造体の金属疲労を遅延させる効果を損なわない。したがって、変形誘起α’マルテンサイト相の体積率は12体積%未満とすべきである。
 本態様の溶接構造体は、制振部材として、超高層ビルや大規模展示場などの大型建築構造物の制振装置に用いることを目的とするものであるから、振幅1%のひずみ制御繰り返し引張圧縮変形に対して破断または座屈にいたる最終繰り返し数は4000サイクル以上とする。
 本態様の溶接構造体では、繰り返し弾塑性変形前の母材、溶接熱影響部、及び溶接金属の成分組成は、実質的に同一であってよい。
 本明細書において、母材、溶接熱影響部、及び溶接金属の成分組成に関して「実質的に同一」とは、各成分元素の含有量の差が±0.5質量%の範囲内であることを意味し、±0.3質量%の範囲内であることがより好ましく、±0.25質量%の範囲内であることが更に好ましく、±0.2質量%の範囲内であることが特に好ましい。
 本態様の溶接構造体では、繰り返し弾塑性変形前の母材、溶接熱影響部、及び溶接金属の成分組成は、互いに異なっていてもよい。
 本明細書において、母材、溶接熱影響部、及び溶接金属の成分組成に関して「互いに異なる」とは、1種以上の成分元素の含有量の差が±0.5質量%を超えることを意味する。
[Fe-Mn-Cr-Ni-Si系合金]
 本発明の実施形態に係る合金鋼は、上述した本実施形態の溶接構造体に用いられる合金であり、成分元素として、Mn、Cr、Ni、Siを含有し、残部Fe及び不可避不純物からなる、Fe-Mn-Cr-Ni-Si系合金である。
 本実施形態に係るFe-Mn-Cr-Ni-Si系合金(以下、「本実施形態の合金」ともいう。)は、成分組成が、上述した本実施形態の溶接構造体における繰り返し弾塑性変形前の母材、溶接熱影響部、及び溶接金属の成分組成条件を満たす。
 すなわち、本実施形態の合金は、成分組成が、
 必須元素として、12質量%≦Mn≦18質量%、5質量%≦Cr≦15質量%、5質量%≦Ni<12質量%、2質量%≦Si≦6質量%を含有し、
 任意元素、あるいは、不可避的に含まれる不純物元素として、Al、Co、Cu、Nb、Ta、V、Ti、Moを合計で0質量%以上1質量%以下、C、N、Bを合計で0質量%以上0.2質量%以下含有し、
 残部Fe及び不可避不純物からなり、
 次式1~5と表1の熱力学パラメーターで規定されるγ相とε相のギブス自由エネルギー差ΔGγ→εが、
   -150J/mol<ΔGγ→ε<50J/mol
である条件、かつ、
 次式6で規定されるCr当量([%Cr]eq)と次式7で規定されるNi当量([%Ni]eq)の比([%Cr]eq/[%Ni]eq)が、
   1.33<[%Cr]eq/[%Ni]eq≦1.96
である条件を満足することが好ましい。
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
 上記の成分組成条件を満たすことにより、本実施形態の合金は、本実施形態の溶接構造体に用いる鋼材または溶接材として、好ましく用いることができる。より具体的には、本実施形態の溶接構造体を制振部材として用いる態様において、本実施形態の合金は、溶接材で溶接される鋼材として用いるのに適しており、また、当該鋼材を溶接するための溶接材として用いるのに適している。
 なお、本実施形態の合金において、各成分元素の効果及び望ましい含有量の範囲などについては、本実施形態の溶接構造体に関して上述したのと同様であるので、詳細な説明を省略する。
 また、本実施形態の合金を、本実施形態の溶接構造体を構成する鋼材または溶接材に適用する場合、長周期地震動にも対応可能な制振ダンパー等の制振部材用の心材として用いることを目的とするものであるから、振幅1%のひずみ制御繰り返し引張圧縮変形に対して破断または座屈にいたる最終繰り返し数は4000サイクル以上であることが好ましい。
 以下、実施例に基づいて本発明を更に詳細に説明する。
 以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
 以下の表3に示す例1-1~例1-22の成分組成を有する合金(Fe-Mn-Cr-Ni-Si系合金)を、高周波真空誘導加熱炉を用いて各10kg溶解して金型に鋳造して作製した後、各鋳塊に1000℃で熱間鍛造及び熱間圧延を施して厚さ20mm、幅50mm、長さ900mmの板材に成形し、アルゴン雰囲気中、1000℃、1時間熱処理を行い水冷することにより、ランダム等軸粒の初期γ相組織を有する均一材とした。
 各例の板材よりゲージ部直径8mmのドックボーン型疲労試験片を切り出し、ゲージ部を平滑研磨して低サイクル疲労試験に供した。低サイクル疲労試験は、軸ひずみ制御、振幅1%の両振り引張圧縮(ひずみ比R=-1)、0.4%/秒の一定ひずみ速度、三角波、室温(25℃)、の条件で疲労破断まで行い、疲労寿命(破断繰り返し数Nf)を測定した。また、フライス加工を施した板材表面に、拘束引張応力を付与した状態で溶接メルトラン実験を行い、溶接による凝固割れが発生するかどうかを調べた。これらの結果を表3にまとめて示す。
 なお、表3において、各成分元素の含有量の単位は質量%であり、ΔGγ→εの単位はJ/molであり、α’体積率(変形誘起α’マルテンサイト相の含有率)の単位は%であり、「-」は未測定を意味する。また、表3には、各例の番号に加え、成分組成の特徴等を示す記号を併記している。
 また、表3の「Nf」及び「凝固割れ」の欄の括弧書きの記載は、それぞれ、各合金の成分組成、ならびに、Mn当量、Cr当量、Ni当量、及びCr当量とNi当量の比の値に基づいて本発明者らがシミュレーションを行って得た、破断繰り返し数の推定値(上限値または下限値)及び凝固割れの有無の予測を示す。
Figure JPOXMLDOC01-appb-T000029
 表3に示すように、例1-1では、破断繰り返し数が11000サイクル以上の高い値が得られたが、溶接メルトラン実験において凝固割れが発生した。この結果から、例1-1では、ΔGγ→εの値(-65.0J/mol)が上述した好ましい条件(-150J/mol<ΔGγ→ε<50J/mol)を満たしているため、4000サイクル以上の疲労寿命が得られたが、Cr当量とNi当量の比([%Cr]eq/[%Ni]eq)の値(1.31)が上述した好ましい条件(1.33<[%Cr]eq/[%Ni]eq≦1.96)を満たしていないため、凝固割れが発生したと理解することができる。
 また、例1-5では、低サイクル疲労試験において合金が脆化したため破断繰り返し数が計測できず、溶接メルトラン実験において凝固割れが発生した。この結果から、例1-5では、Crの含有量(16質量%)が15質量%を超えるため、変形誘起α’マルテンサイト相の形成が過剰となり、合金の脆化をもたらし、Cr当量とNi当量の比([%Cr]eq/[%Ni]eq)の値(2.39)が上述した好ましい条件(1.33<[%Cr]eq/[%Ni]eq≦1.96)を満たしていないため、凝固割れが発生したと理解することができる。
 一方、例1-2、例1-3、及び例1-4では、4000サイクルを有意に上回る破断繰り返し数が得られ、かつ、溶接メルトラン実験において凝固割れは発生しなかった。これらの結果は、ΔGγ→εの値、Cr当量とNi当量の比([%Cr]eq/[%Ni]eq)の値、各成分元素の含有量が、上述した好ましい条件を満たすことにより、本発明の効果が得られることを示している。加えて、例1-2、例1-3、及び例1-4では、Mn当量の値が41であり、上述した好ましい条件(36<[%Mn]eq<50、より好ましくは、38<[%Mn]eq<44)を満たしているため、γオーステナイト相-εマルテンサイト相間の二方向の変形誘起マルテンサイト変態が効果的に発現されたことが示唆される。
 なお、比較のために、市販のオーステナイト系ステンレス鋼材(SUS316)を用い、上記と同一の条件で疲労寿命の測定、及び溶接メルトラン実験を行った結果、溶接メルトラン実験において凝固割れは発生しなかったが、破断繰り返し数は1531サイクルであり、本発明での基準値である4000サイクルよりも有意に低い値であった。
 図1(a)及び(b)は、それぞれ、例1-1及び例1-2の、溶接メルトラン実験における凝固割れの有無の確認結果を示す顕微鏡画像である。
 また、例1-1~例1-5の合金の成分組成に基づいて点座標([%Cr]eq,[%Ni]eq)をシェフラー型組織図上にプロットし、凝固モードの境界を示す直線と、Siの含有量が4質量%である場合(例1-1~例1-5の合金の成分組成に対応する)のMn当量の範囲(36<[%Mn]eq<50、または、38<[%Mn]eq<44)を示す直線を描いた図を作成した。
 これらの結果から、例1-2~例1-4では、例1-1と比べてCr当量の増加、Ni当量の減少により、Cr当量とNi当量の比([%Cr]eq/[%Ni]eq)が、1.33<[%Cr]eq/[%Ni]eq≦1.96の条件を満たすことによって、溶接メルトラン実験における溶接金属の成分組成がFA凝固モードとなり、凝固割れの発生が抑制されたと考えられる。
 また、フェライトメーターを用いて、疲労破断後の例1-1~例1-4の試験材のα’マルテンサイト相の含有率を測定した結果、例1-1~例1-3の試験材では0体積%超1体積%未満(表3では「<1」と記載)であり、例1-4の試験材では1.26体積%であった。
 また、電子線後方散乱回折法により、疲労破断後の例1-1及び例1-4の試験材のεマルテンサイト相の体積率を測定した結果、それぞれ、61体積%、74体積%であった。
 図2には、例1-1~例1-10、及び例1-15~例1-22の合金の成分組成に基づいて点座標([%Cr]eq,[%Ni]eq)をシェフラー型組織図上にプロットした図を示す。
 図2において、丸印で示す5つのプロットは、x軸(Cr当量)に沿って左側から順に、例1-1、例1-2、例1-3、例1-4、例1-5に対応している。
 また、四角印で示す5つのプロットは、y軸(Ni当量)に沿って上から順に、例1-6、例1-7、例1-8、例1-9、例1-10に対応している。
 また、上向き三角印で示す4つのプロットは、x軸(Cr当量)に沿って左側から順に、例1-18、例1-17、例1-16、例1-15に対応している。
 また、菱形印で示す4つのプロットは、x軸(Cr当量)に沿って左側から順に、例1-22、例1-21、例1-20、例1-19に対応している。
 なお、図2には、凝固モードの境界を示す2本の直線も描かれている。
 表3、及び図2に示すシェフラー型組織図から、例1-2~例1-4、例1-7、例1-15~例1-17、例1-20、及び例1-21の合金は、上述した本発明の実施形態に係る合金鋼の好ましい成分組成条件を満たし、かつ、ΔGγ→εの値、Cr当量とNi当量の比([%Cr]eq/[%Ni]eq)の値が、上述した好ましい条件を満たすことにより、4000サイクルを有意に上回る破断繰り返し数を達成し、かつ、溶接メルトラン実験において溶接金属の成分組成がFA凝固モードとなり、凝固割れが発生しないことがわかる。
 ここで、ΔGγ→εの値について見ると、例1-1~例1-22のうち、例1-18以外は、上述した好ましい条件(-150J/mol<ΔGγ→ε<50J/mol)を満たしているため、ΔGγ→εの値のみを指標とした場合には、4000サイクル以上の疲労寿命が得られる可能性があるとも言える。しかしながら、実際には、多元系合金においては、別の影響因子(変形誘起α’マルテンサイト相の形成など)も複合的に作用するため、破断繰り返し数が4000サイクル未満の試験材もある。すなわち、本発明によって得られる効果は、上述した個々の条件、指標、パラメーター等の単なる組み合わせによってもたらされるというよりは、むしろ、FMS合金に代表される制振合金を母材とする溶接構造体において、その微細組織構造、ならびに、微細組織の変形機構が満たすべき条件を、合金成分設計指針という観点で整理する場合には、各々の条件等の特徴(技術的意義)を生かし、複数の条件等を効果的に組み合わせることが有効であることを示唆している。
 具体的には、例えば、例1-8、例1-9、及び例1-10では、いずれも、ΔGγ→εの値は上述した好ましい条件(-150J/mol<ΔGγ→ε<50J/mol)を満たしているが、破断繰り返し数はそれぞれ、3487サイクル、1622サイクル、890サイクルである。また、疲労破断後の各試験材について、フェライトメーターを用いてα’マルテンサイト相の含有率を測定した結果、それぞれ、12.5体積%、58.8体積%、70.4体積%であり、変形誘起α’マルテンサイト相の体積率の増加に伴って疲労寿命が低下する傾向が見られた。これらの結果は、変形誘起α’マルテンサイト相の形成及びその体積率が、疲労寿命と一定の相関関係を有していることを示唆している。
 次に、例1-1及び例1-3の二種類の合金を伸線加工して溶接ワイヤを作製し、MIG溶接によりそれぞれ同一成分組成の板材と溶接ワイヤの組み合わせで溶接継手を作製し、溶接部の溶接金属から微小疲労試験片(ゲージ部直径3mmのドッグボーン型疲労試験片)を切り出して疲労試験を行った。疲労試験条件は上記と同一である。また、各溶接継手の溶接部の溶接金属での凝固割れの有無を調査した。これらの結果を表4にまとめて示す。
Figure JPOXMLDOC01-appb-T000030
 表4に示すように、例2-1では、疲労寿命の長い例1-1の合金を板材(母材)と溶接ワイヤ(溶接材)の両方に用いているが、上述したようにこの合金は溶接による凝固割れが発生しやすい性質を有するため、作製した溶接継手の溶接部の溶接金属での凝固割れが発生し、また、溶接継手の疲労寿命は破断繰り返し数が3130サイクルとなり、板材自体の疲労寿命(破断繰り返し数11000サイクル以上)よりも大幅に低下した。
 一方、例2-2のように、長疲労寿命化と溶接による凝固割れが発生しにくい凝固モードの両方の条件を満足するように選択された板材(母材)と溶接ワイヤ(溶接材)の組み合わせでは、溶接継手の溶接部の溶接金属での凝固割れが発生せず、溶接継手の溶接部でも4000サイクルを有意に上回る高い疲労寿命が得られた。
 また、母材と溶接材が異なる成分組成であっても、その任意の混合成分が長疲労寿命化と溶接による凝固割れが発生しにくい凝固モードの両方の条件を満足する場合には4000サイクルを有意に上回る疲労寿命が得られる。表3に示す成分組成を有する合金を用いて溶接構造体を作製する場合の、母材と溶接材の好ましい組み合わせを例示すると、以下の表5のようになる。
Figure JPOXMLDOC01-appb-T000031
 本発明の溶接構造体は、溶接部においても母材の鋼材と同等の優れた疲労特性を示すので、地震、風揺れ等による建築構造物の振動を抑制する弾塑性ダンパーとして好適であり、従来の制振ダンパーを上回る高性能ダンパーとして、超高層ビルや大規模展示場などの大型建築構造物の制振構造に特に好適である。

Claims (12)

  1.  複数の鋼材が溶接材で溶接された溶接構造体において、
     溶接金属の成分組成がFA凝固モードであり、
     繰り返し弾塑性変形前の母材、溶接熱影響部(HAZ)、及び溶接金属の金属組織が、γオーステナイト相(FCC構造)を85体積%以上100体積%未満、δフェライト相(BCC構造もしくはBCT構造)と初期εマルテンサイト相を合計0体積%以上14.5体積%未満、炭化物、窒化物、酸化物、ケイ化物等の不可避的析出物・介在物を合計0体積%以上0.5体積%未満含み、
     疲労破断直前または疲労破断時における母材、溶接熱影響部、及び溶接金属の金属組織が、変形誘起εマルテンサイト相(HCP構造)を10体積%以上90体積%未満、変形誘起α’マルテンサイト相(BCC構造もしくはBCT構造)を0体積%以上12体積%未満、残留γオーステナイト相を10体積%以上90体積%以下、δフェライト相と初期εマルテンサイト相を合計0体積%以上14.5体積%未満、炭化物、窒化物、酸化物、ケイ化物等の不可避的析出物・介在物を合計0体積%以上0.5体積%未満含み、そして、
     繰り返し弾塑性変形を受けると、微細組織構造が、前記繰り返し弾塑性変形前の金属組織から、前記疲労破断直前または疲労破断時における金属組織へ変化し、逐次の繰り返し弾塑性変形に応じて、γオーステナイト相からεマルテンサイト相への変形誘起マルテンサイト変態と、この逆変態の交互発生を繰り返し、変形誘起εマルテンサイト相の体積率が逐次増加することを特徴とする、溶接構造体。
  2.  前記繰り返し弾塑性変形前の母材、溶接熱影響部、及び溶接金属の成分組成が、
     必須元素として、12質量%≦Mn≦18質量%、5質量%≦Cr≦15質量%、5質量%≦Ni<12質量%、2質量%≦Si≦6質量%を含有し、
     任意元素、あるいは、不可避的に含まれる不純物元素として、Al、Co、Cu、Nb、Ta、V、Ti、Moを合計で0質量%以上1質量%以下、C、N、Bを合計で0質量%以上0.2質量%以下含有し、
     残部Fe及び不可避不純物からなり、
     次式1~5と表1の熱力学パラメーターで規定されるγ相とε相のギブス自由エネルギー差ΔGγ→εが、
       -150J/mol<ΔGγ→ε<50J/mol
    である条件、かつ、
     次式6で規定されるCr当量([%Cr]eq)と次式7で規定されるNi当量([%Ni]eq)の比([%Cr]eq/[%Ni]eq)が、
       1.33<[%Cr]eq/[%Ni]eq≦1.96
    である条件を満足することを特徴とする請求項1に記載の溶接構造体。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
  3.  前記繰り返し弾塑性変形前の母材、溶接熱影響部、及び溶接金属の成分組成が、実質的に同一であることを特徴とする請求項2に記載の溶接構造体。
  4.  前記繰り返し弾塑性変形前の母材、溶接熱影響部、及び溶接金属の成分組成が、互いに異なることを特徴とする請求項2に記載の溶接構造体。
  5.  振幅1%のひずみ制御繰り返し引張圧縮変形に対する破断繰り返し数が4000サイクル以上であることを特徴とする請求項1~4のいずれか一項に記載の溶接構造体。
  6.  請求項1~5のいずれか一項に記載の溶接構造体に用いられるFe-Mn-Cr-Ni-Si系合金であって、成分組成が、
     必須元素として、12質量%≦Mn≦18質量%、5質量%≦Cr≦15質量%、5質量%≦Ni<12質量%、2質量%≦Si≦6質量%を含有し、
     任意元素、あるいは、不可避的に含まれる不純物元素として、Al、Co、Cu、Nb、Ta、V、Ti、Moを合計で0質量%以上1質量%以下、C、N、Bを合計で0質量%以上0.2質量%以下含有し、
     残部Fe及び不可避不純物からなり、
     次式1~5と表1の熱力学パラメーターで規定されるγ相とε相のギブス自由エネルギー差ΔGγ→εが、
       -150J/mol<ΔGγ→ε<50J/mol
    である条件、かつ、
     次式6で規定されるCr当量([%Cr]eq)と次式7で規定されるNi当量([%Ni]eq)の比([%Cr]eq/[%Ni]eq)が、
       1.33<[%Cr]eq/[%Ni]eq≦1.96
    である条件を満足することを特徴とするFe-Mn-Cr-Ni-Si系合金。
    Figure JPOXMLDOC01-appb-M000005
    Figure JPOXMLDOC01-appb-M000006
    Figure JPOXMLDOC01-appb-M000007
    Figure JPOXMLDOC01-appb-M000008
  7.  11質量%≦Cr≦14質量%、6質量%≦Ni≦7.5質量%を含有することを特徴とする請求項6に記載のFe-Mn-Cr-Ni-Si系合金。
  8.  振幅1%のひずみ制御繰り返し引張圧縮変形に対する破断繰り返し数が4000サイクル以上であることを特徴とする請求項6または7に記載のFe-Mn-Cr-Ni-Si系合金。
  9.  請求項6~8のいずれか一項に記載のFe-Mn-Cr-Ni-Si系合金が溶接材で溶接されたことを特徴とする溶接構造体。
  10.  前記溶接材が、請求項6~8のいずれか一項に記載のFe-Mn-Cr-Ni-Si系合金を用いて作製されたことを特徴とする請求項9に記載の溶接構造体。
  11.  制振部材であることを特徴とする請求項9または10に記載の溶接構造体。
  12.  請求項6~8のいずれか一項に記載のFe-Mn-Cr-Ni-Si系合金を用いて作製されたことを特徴とする溶接材。
PCT/JP2021/016266 2020-06-24 2021-04-22 溶接構造体及びこれに用いられるFe-Mn-Cr-Ni-Si系合金 WO2021261067A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227038885A KR20230029598A (ko) 2020-06-24 2021-04-22 용접 구조체 및 이것에 사용되는 Fe-Mn-Cr-Ni-Si계 합금
JP2022532343A JP7468874B2 (ja) 2020-06-24 2021-04-22 溶接構造体及びこれに用いられるFe-Mn-Cr-Ni-Si系合金
EP21829952.7A EP4174204A1 (en) 2020-06-24 2021-04-22 Welded structure and fe-mn-cr-ni-si-based alloy

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-108313 2020-06-24
JP2020108313 2020-06-24
JP2020209933 2020-12-18
JP2020-209933 2020-12-18

Publications (1)

Publication Number Publication Date
WO2021261067A1 true WO2021261067A1 (ja) 2021-12-30

Family

ID=79282410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016266 WO2021261067A1 (ja) 2020-06-24 2021-04-22 溶接構造体及びこれに用いられるFe-Mn-Cr-Ni-Si系合金

Country Status (4)

Country Link
EP (1) EP4174204A1 (ja)
JP (1) JP7468874B2 (ja)
KR (1) KR20230029598A (ja)
WO (1) WO2021261067A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114749827A (zh) * 2022-04-24 2022-07-15 燕山大学 一种实心焊丝及其制备方法和应用
WO2024150606A1 (ja) * 2023-01-12 2024-07-18 国立研究開発法人物質・材料研究機構 Fms鋼用溶接ワイヤおよび溶接継手

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000501778A (ja) * 1995-07-11 2000-02-15 ウラコ,カリ,マーティ 含窒素鉄系形状記憶及び振動減衰合金
JP2004218060A (ja) * 2003-01-10 2004-08-05 Nippon Sangyo Kagaku Kenkyusho 耐震性能を有する鋳造材
JP2009155719A (ja) * 2007-12-25 2009-07-16 Tk Techno Consulting:Kk 制振性鋼管及びその製造方法
JP2010090472A (ja) * 2008-10-03 2010-04-22 Tk Techno Consulting:Kk 制振性ステンレス鋼、その製造方法及びその成形体
JP2014129567A (ja) 2012-12-28 2014-07-10 National Institute For Materials Science 制振合金
JP2015150586A (ja) 2014-02-14 2015-08-24 国立研究開発法人物質・材料研究機構 Fms鋼用溶接ワイヤおよび溶接継ぎ手

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000501778A (ja) * 1995-07-11 2000-02-15 ウラコ,カリ,マーティ 含窒素鉄系形状記憶及び振動減衰合金
JP2004218060A (ja) * 2003-01-10 2004-08-05 Nippon Sangyo Kagaku Kenkyusho 耐震性能を有する鋳造材
JP2009155719A (ja) * 2007-12-25 2009-07-16 Tk Techno Consulting:Kk 制振性鋼管及びその製造方法
JP2010090472A (ja) * 2008-10-03 2010-04-22 Tk Techno Consulting:Kk 制振性ステンレス鋼、その製造方法及びその成形体
JP2014129567A (ja) 2012-12-28 2014-07-10 National Institute For Materials Science 制振合金
JP2015150586A (ja) 2014-02-14 2015-08-24 国立研究開発法人物質・材料研究機構 Fms鋼用溶接ワイヤおよび溶接継ぎ手

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
A. DUMAYJ.P. CHATEAUS. ALLAINS. MIGOTO. BOUAZIZ: "Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel", MATER SCI ENG A, vol. 483-84, 2008, pages 184 - 187
A. FORSBERGJ. AGREN: "Thermodynamic evaluation of the Fe-Mn-Si system and the γ/ε martensitic transformation", J PHASE EQUIL, vol. 14, no. 3, 1993, pages 354 - 363
D. T. PIERCEJ.A. JIMENEZJ. BENTLEYD. RAABEC. OSKAYJ.E. WITTIG: "The influence of manganese content on the stacking fault and austenite/epsilon-martensite interfacial energies in Fe-Mn-(Al-Si) steels investigated by experiment and theory", ACTA MATER, vol. 68, no. 15, 2014, pages 238 - 253
I.A. YAKUBTSOVA. ARIAPOURD.D. PEROVIC: "Effect of nitrogen on stacking fault energy of f.c.c. iron-based alloys", ACTA MATER, vol. 47, no. 4, 1999, pages 1271 - 1279, XP027395730
J. LACAZEB. SUNDMAN: "An assessment of the Fe-C-Si system", MTA, vol. 22, no. 10, 1991, pages 2211 - 2223
J. NAKANOP.J. JACQUES: "Effects of the thermodynamic parameters of the hcp phase on the stacking fault energy calculations in the Fe-Mn and Fe-Mn-C systems", CALPHAD, vol. 34, no. 2, 2010, pages 167 - 175, XP027057294
J.-O. ANDERSSONB. SUNDMAN: "Thermodynamic properties of the Cr-Fe system", CALPHAD, vol. 11, no. 1, 1987, pages 83 - 92
K. FRISK: "A thermodynamic evaluation of the Cr-Fe-N system", MTA, vol. 21, no. 9, 1990, pages 2477 - 2488
L. LIT.Y. HSU: "Gibbs free energy evaluation of the fcc(gamma) and hcp(epsilon) phases in Fe-Mn-Si alloys", CALPHAD, vol. 21, no. 3, 1997, pages 443 - 448
O. GRASSELG. FROMMEYER: "Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels", MATER SCI TECHNOL, vol. 14, no. 12, 1998, pages 1213 - 1217, XP009116713
S. ALLAINJ.P. CHATEAUO. BOUAZIZS. MIGOTN. GUELTON: "Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys", MATERI SCI ENG A, vol. 387, 2004, pages 158 - 162, XP004664167, DOI: 10.1016/j.msea.2004.01.059
S. COTESA.F. GUILLERMETM. SADE: "Phase stability and fcc/hcp martensitic transformation in Fe-Mn-Si alloys: Part II. Thermodynamic modelling of the driving forces and the M-s and A(s) temperatures", J ALLOY COMPD, vol. 280, no. 1-2, 1998, pages 168 - 177, XP004182276, DOI: 10.1016/S0925-8388(98)00660-4
S. CURTZEV.T. KUOKKALAA. OIKARIJ. TALONENH. HANNINEN: "Thermodynamic modeling of the stacking fault energy of austenitic steels", ACTA MATER, vol. 59, no. 3, 2011, pages 1068 - 1076
T. SAWAGUCHI ET AL.: "Designing Fe-Mn-Si alloys with improved low-cycle fatigue lives", SCRIPTA MATER, vol. 99, no. 0, 2015, pages 49 - 52
W.S. YANGC.M. WAN: "The Influence of Aluminum Content to the Stacking-Fault Energy in Fe-Mn-Al-C Alloy System", J MATER SCI, vol. 25, no. 3, 1990, pages 1821 - 1823, XP055720614

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114749827A (zh) * 2022-04-24 2022-07-15 燕山大学 一种实心焊丝及其制备方法和应用
CN114749827B (zh) * 2022-04-24 2022-12-20 燕山大学 一种实心焊丝及其制备方法和应用
WO2024150606A1 (ja) * 2023-01-12 2024-07-18 国立研究開発法人物質・材料研究機構 Fms鋼用溶接ワイヤおよび溶接継手

Also Published As

Publication number Publication date
JP7468874B2 (ja) 2024-04-16
KR20230029598A (ko) 2023-03-03
EP4174204A1 (en) 2023-05-03
JPWO2021261067A1 (ja) 2021-12-30

Similar Documents

Publication Publication Date Title
WO2021261067A1 (ja) 溶接構造体及びこれに用いられるFe-Mn-Cr-Ni-Si系合金
JP6064896B2 (ja) 耐疲労き裂伝ぱ特性に優れた鋼材およびその製造方法並びに耐疲労き裂伝ぱ特性に優れた鋼材の判定方法
WO2011152009A1 (ja) 銅系合金及びそれを用いた構造材
JP5096088B2 (ja) 靭性および疲労亀裂発生抑制特性に優れた溶接継手
JP6572876B2 (ja) 低降伏比高張力厚鋼板およびその製造方法
JP5385760B2 (ja) 耐震性に優れた冷間成形角形鋼管
WO2008007572A1 (fr) PLAQUE EN ACIER INOXYDABLE EN AUSTÉNITE ROULÉE AYANT UNE ÉPAISSEUR SUPÉRIEURE OU ÉGALE À 100 mm ET PROCÉDÉ DE PRODUCTION DE CELLE-CI
JP4676871B2 (ja) 疲労亀裂進展抑制に優れた鋼板
EP1396552B1 (en) Double phase stainless steel strip for steel belt
JP4984272B2 (ja) 制振性に優れた鋼その製造方法及び該鋼を含んで構成される制振体
JP2009074104A (ja) 高弾性合金
KR102144708B1 (ko) 제진합금
JP2006194287A (ja) 鉄系形状記憶合金を用いた制振材料とこの材料を用いた制振・免震装置
Cheng et al. Microstructure and dynamic mechanical behavior of wire-arc additive manufactured high-strength steel
JP2011214127A (ja) 制振・免震ダンパー装置
JP6036615B2 (ja) 溶接性および耐疲労き裂伝ぱ特性に優れた溶接構造物用鋼板およびその製造方法
Hathesh A review on welding related problems and remedy of austenitic stainless steels
EP3608435B1 (en) Fe-mn-si-based alloy casting material having excellent low-cycle fatigue properties
Jha Investigation of micro-structure and mechanical properties of three steel alloys
JP5906868B2 (ja) 板厚方向の耐疲労特性に優れた厚鋼板およびその製造方法
JPH0483852A (ja) 高マンガン鋼材および該高マンガン鋼材の製造方法
JP5046065B2 (ja) 組合せ計量装置
WO2020116538A1 (ja) 鋼板およびその製造方法
JP2020094281A (ja) 鋼板およびその製造方法
JP2013036115A (ja) 組合せ計量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829952

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022532343

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021829952

Country of ref document: EP

Effective date: 20230124