WO2021259037A1 - 一种光源装置以及投影显示设备 - Google Patents

一种光源装置以及投影显示设备 Download PDF

Info

Publication number
WO2021259037A1
WO2021259037A1 PCT/CN2021/098229 CN2021098229W WO2021259037A1 WO 2021259037 A1 WO2021259037 A1 WO 2021259037A1 CN 2021098229 W CN2021098229 W CN 2021098229W WO 2021259037 A1 WO2021259037 A1 WO 2021259037A1
Authority
WO
WIPO (PCT)
Prior art keywords
prism
light source
light
wavelength converter
excitation light
Prior art date
Application number
PCT/CN2021/098229
Other languages
English (en)
French (fr)
Inventor
陈怡学
尹蕾
Original Assignee
成都极米科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都极米科技股份有限公司 filed Critical 成都极米科技股份有限公司
Publication of WO2021259037A1 publication Critical patent/WO2021259037A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the present invention relates to the technical field of light source equipment, in particular to a light source device and a projection display device.
  • the light source refers to an object that can emit electromagnetic waves in a certain wavelength range (including visible light and ultraviolet, infrared, X-ray and other invisible light), and usually refers to a luminous body that can emit visible light.
  • a certain wavelength range including visible light and ultraviolet, infrared, X-ray and other invisible light
  • traditional light sources they are mainly used for lighting.
  • the use of light sources has become more and more extensive, such as projection display light sources.
  • the present invention provides a light source device, including: an excitation light source, a prism, and a wavelength converter;
  • the prism is arranged between the excitation light source and the wavelength converter;
  • At least a first conversion area and a second conversion area are provided on the wavelength converter
  • the excitation light source is used to transmit excitation light to the first conversion area and the second conversion area of the wavelength converter through the prism, so that the first conversion area and the second conversion area are directed toward the prism Outputting converted light with a different wavelength from the excitation light;
  • the prism is used to completely reflect the converted light incident into the prism on the first surface of the prism, and then exit through the second surface of the prism.
  • the wavelength converter further includes a reflective area
  • the excitation light source is used to pass the prism and enter the excitation light into the reflective area;
  • the prism is used to reflect the excitation light incident into the prism through the reflective area, and exit through the second surface of the prism after being totally reflected by the first surface.
  • the excitation light source is a blue light source;
  • the wavelength converter is a fluorescent wheel;
  • the first conversion area and the second conversion area are both yellow fluorescent areas arranged on the surface of the wavelength converter.
  • the excitation light source is a violet light source
  • the wavelength converter is a fluorescent wheel
  • the first conversion area is a yellow fluorescent area; the second conversion area is a blue fluorescent area.
  • the prism is a triangular prism; wherein the first surface of the triangular prism is located on the exit light path of the laser light source, and the wavelength converter is located on the second prism.
  • the exit light path of the surface, the third surface of the triangular prism is the surface of the triangular prism that emits light.
  • the triangular prism satisfies 2 ⁇ -arcsin[sin( ⁇ )/n]>arcsin(1/n), where ⁇ is the emission of the excitation light source to the prism surface The incident angle of the excitation light; ⁇ is the angle between the first surface and the third surface of the prism; n is the refractive index of the prism to the excitation line.
  • a condenser lens is provided between the second surface of the triangular prism and the wavelength converter.
  • a supplementary light source is further included, and the supplementary light source is used to enter the supplementary light rays into the prism and emit the supplementary light rays from the second surface of the prism;
  • the light rays emitted from the second surface of the prism are all parallel to each other.
  • the supplemental light source is a light source that can output light of the same color as the excitation light and the converted light; the supplementary light source is a light source that can output and the excitation light Light and the light source that converts light of different colors.
  • the light source device includes an excitation light source, a prism and a wavelength converter; wherein the prism is arranged between the excitation light source and the wavelength converter; the wavelength converter is provided with at least a first conversion area and a second conversion area; excitation The light source is used to transmit excitation light to the first conversion area and the second conversion area of the wavelength converter through the prism, so that the first conversion area and the second conversion area output converted light with different wavelengths from the excitation light to the prism; the prism is used for After the converted light incident into the prism is totally reflected on the first surface of the prism, it exits through the second surface of the prism.
  • the excitation light source and the wavelength converter are used to realize the output of a light source to generate multiple different colors of light.
  • the prism is arranged between the excitation light source and the wavelength converter to prevent the prism from affecting the excitation light. Part of the light absorption effect, the use of the prism can fully reflect the light incident inside the prism, deflect and output various light rays passing through the wavelength converter, which simplifies the optical path structure.
  • a supplementary light source is further provided, and the supplementary light source can enter the prism and output the same color light from the wavelength converter, so as to achieve the same color of light.
  • the supplementary light source can enter the prism and output the same color light from the wavelength converter, so as to achieve the same color of light.
  • the application also provides a projection display device, which has the above-mentioned beneficial effects.
  • FIG. 1 is a schematic diagram of the optical path structure of a light source device provided by an embodiment of the application
  • Fig. 2 is a schematic diagram of a wavelength converter provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of the optical path structure of a triangular prism provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of the optical path structure of another light source device according to an embodiment of the application.
  • luminescent light sources that actually emit light beams, such as the longest used laser light source and LED light source, and there is another kind of excitation beam that excites the fluorescent material to generate a fluorescent light beam with a different wavelength from the excitation beam.
  • the most typical one is a fluorescent wheel with various different fluorescent areas, and when different fluorescent areas are irradiated by the excitation light beam, they output fluorescent light beams of different wavelengths.
  • This type of optical device which is based on the excitation beam and outputs light beams of different wavelengths, is also often called a wavelength converter.
  • the advantage of the light source including the wavelength converter is that only one luminous light source can realize the output of multiple different wavelengths.
  • the optical paths overlap to a certain extent.
  • various optical path deflection components are required, resulting in the optical path Complex, the light source occupies a lot of space.
  • the present application provides a technical solution that uses a prism to realize the deflection of the output light on the wavelength converter, which simplifies the optical path to a certain extent.
  • FIG. 1 is a schematic diagram of the optical path structure of a light source device provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of a wavelength converter provided by an embodiment of the application.
  • the light source device may include:
  • the prism 3 is arranged between the excitation light source 1 and the wavelength converter 2;
  • At least a first conversion area 21 and a second conversion area 22 are provided on the wavelength converter 2;
  • the excitation light source 1 is used to transmit excitation light to the first conversion area 21 and the second conversion area 22 of the wavelength converter 2 through the prism 3, so that the first conversion area 21 and the second conversion area 22 output and excitation light to the prism 3 Converted light of different wavelengths;
  • the prism 3 is used to completely reflect the converted light incident into the prism 3 on the first surface 31 of the prism 3 and then exit through the second surface 32 of the prism 3.
  • the excitation light source 1 may be a laser light source, the most commonly used are blue laser light source and violet laser light source; the wavelength converter 2 may specifically be a fluorescent wheel provided with phosphor powder.
  • phosphors of different colors can be set in the first conversion area 21 and the second conversion area 22, that is, the first conversion area 21 is the first fluorescent area, and the second conversion area 22 is the second conversion area.
  • the fluorescent area the converted light generated by the excitation light source 1 respectively passing through the first fluorescent area and the second fluorescent area is the received laser light.
  • the excitation light source 1 injects excitation light onto the first surface 31 of the prism 3.
  • the laser light enters the third surface 33 of the prism 3 through the inside of the prism 3, and passes through the first surface 31 and the third surface of the prism 3
  • the edges and corners between 31 enable the excitation light to be transmitted through the third surface 33 of the prism 3 to the wavelength converter 2.
  • the first conversion area 21 of the wavelength converter 2 When the excitation light enters the first conversion area 21 of the wavelength converter 2, the first conversion area 21 is excited by the excitation light to generate a corresponding received laser line, which is incident into the prism 3 through the third surface 31 of the prism 3 , And enter the first surface 31 of the prism 3 again. At this time, the received laser line is totally reflected on the first surface 31 and then enters the second surface 32 of the prism 3, and is output from the second surface 32, so that the received laser light The light path direction of the line is deflected after passing through the prism 3 and then output. The light path when the excitation light enters the second conversion region 21 of the wavelength converter 2 is similar, and will not be repeated here.
  • the wavelength converter 2 is generally rotatable, so that the excitation light can be incident to different conversion regions of the wavelength converter 2 in sequence.
  • the prism 3 is used as an optical element for converting the received laser line, which does not affect the beam transmission direction of the excitation light source 1.
  • At least a fluorescent area and a reflective area are provided on the wavelength converter 2;
  • the excitation light source 1 is used to transmit the prism 3 to the fluorescent area 1 of the wavelength converter 2 and reflect the incident excitation light, so that the fluorescent area and the reflective area output fluorescent light and excitation light to the prism 3 respectively.
  • the prism 3 is used to completely reflect the fluorescent light and excitation light incident into the prism 3 on the first surface 31 of the prism 3 and then exit through the third surface 33 of the prism 3.
  • the first conversion area in FIG. 2 is the fluorescent area and the second conversion area is the light-reflecting area for description.
  • the light emitted by the excitation light source 1 is also one of the multiple different colors of light that need to be output by the light source device. Therefore, in the actual application process, the surface of the wavelength converter 2 not only contains phosphors. The area is also provided with a reflective area that reflects the laser light. Therefore, there may be some areas on the surface of the wavelength converter 2 that are fluorescent areas and some are light-reflecting areas.
  • the excitation light When the excitation light enters the fluorescent area of the wavelength converter 2, it is excited to generate the corresponding fluorescent light and enters the prism 3 to produce a total reflection output; when the excitation light enters the reflective area, it is reflected to the prism 3 and is output after total reflection. .
  • the excitation light When the excitation light enters the reflective area of the wavelength converter 2, the excitation light is first transmitted through the prism 3, then enters the wavelength converter 2 to be reflected, then enters the prism 3 again, and then undergoes a total reflection optical path deflection in the prism 3. On the whole, it is equivalent to using only one prism 3 to realize the transmission and reflection of the same kind of light, and the optical path is simple.
  • the wavelength converter 2 has only one fluorescent area as an example for description. In practical applications, the wavelength converter 2 may have multiple fluorescent areas of different colors. Different colors of the laser line. For example, in projection display equipment, a light source device is often required to output three different colors of light, red, green, and blue.
  • the surface of the wavelength converter 2 can be provided with a red fluorescent area, a blue fluorescent area, and a reflective area, and a blue light source is used.
  • the light source device may include a blue laser light source as the excitation light source 1, a wavelength converter 2 including a yellow fluorescent area and a light reflecting area, and a wavelength converter provided on the excitation light source 1 and the wavelength converter. 2 between 3 prisms.
  • the wavelength converter 2 may specifically be a fluorescent wheel.
  • the driving device can start the rotation of the fluorescent wheel, so that the light spots of the excitation beam of the excitation light source 1 are alternately incident on the yellow fluorescent area and the reflective area. Accordingly, the prism 3 can alternately output yellow light and blue light.
  • the light source device may include a violet laser light source as the excitation light source 1, and a wavelength converter 2 including a yellow fluorescent area and a blue fluorescent area. And a prism 3 arranged between the excitation light source 1 and the wavelength converter.
  • the wavelength converter 2 can also be a fluorescent wheel with optional rotation.
  • the excitation light source 1 is incident on the yellow fluorescent area and the blue fluorescent area, respectively, the surface of the wavelength converter 2 can produce yellow and blue receptors.
  • the laser line is incident on the prism 3 to be totally reflected and output.
  • the light source device may include a blue laser light source as the excitation light source 1;
  • the excitation light source 1 is a violet laser light source
  • the reflective area is a blue fluorescent area
  • the light source device may include:
  • a wavelength converter 2 including a first conversion area 1 and a second conversion area 2;
  • a prism 3 arranged between the excitation light source 1 and the wavelength converter 2, and specifically the prism 3 may be a triangular prism.
  • the first surface 31 of the triangular prism is facing the excitation light source 1
  • the third surface 33 is facing the wavelength converter
  • the second surface 32 is used as a surface for outputting light.
  • a condensing lens 4 is further provided between the wavelength converter 2 and the third surface 33 of the triangular prism, which plays a role of condensing light.
  • FIG. 3 is a schematic diagram of the optical path structure of a triangular prism provided by an embodiment of the application. According to Figure 3, the principle that the three angles of triangle ABC add up to 180° can be obtained:
  • the prism 3 used in the present application is a triangular prism, it may be a triangular prism whose edge angle and refractive index satisfy the above formula (7).
  • the triangular prism may specifically be a right-angle triangular prism.
  • the embodiment using the prism 3 of other shapes is not excluded, and the detailed description will not be listed in this application.
  • a laser light source can be specifically used, and the fluorescent light excited by the laser light source is used as the output light source.
  • the fluorescent light generated by the excitation may not meet the brightness requirements of the output light in the actual application process.
  • the supplementary light source 5 can be further provided in this application.
  • FIG. 4 is a schematic diagram of the optical path structure of another light source device according to an embodiment of the application.
  • the light source device may include:
  • a wavelength converter 2 including a first conversion area 1 and a second conversion area 2;
  • the prism 3 arranged between the excitation light source 1 and the wavelength converter 2, and specifically the prism 3 may be a triangular prism;
  • the supplementary light source 5 is arranged on the incident light path of the prism 3. Specifically, the wave light source 5 may be arranged on the incident light path of the first surface of the prism 3. The light from the supplementary light source 5 may be transmitted from the first surface of the prism 3. After entering 31, exit through the second surface 32.
  • an LED light source can be specifically used.
  • the light emitted by the LED light source and the fluorescent light are combined to output the light.
  • the speckle problem can be eliminated, and the insufficient brightness of the LED light source can be avoided. problem.
  • the excitation light source and the supplementary light source are not limited to the laser light source and the LED light source, and various different types of light sources can be selected according to actual needs. There is no specific limitation on this in this application.
  • the light of the supplementary light source 5 can be light of the same color as the light output by the wavelength converter 2, that is, the wavelength converter 2 and the supplementary light source 5 are respectively After outputting light of the same color to the prism 3 from different angles, the prism 3 can realize the mixing of light of the same color.
  • supplemental light source 5 is not limited to supplementing the brightness of the light output through the wavelength converter 2, and can also be used to supplement the lack of light in the fluorescent light.
  • the light output from the third surface 33 of the prism 3 after the wavelength converter 2 enters the prism includes blue light and yellow light
  • the complementary color light source 5 can output red light, green light and blue light at the same time.
  • the light output through the third surface 3 of the prism 3 after entering the prism 3 through the wavelength converter 2 includes blue light and green light, and the complementary color light source 5 can output red light and blue light at the same time.
  • the projection display device is one of the most typical applications.
  • the projection display device includes the light source device described in any of the foregoing embodiments.
  • the prism When the light output from the light source device through the prism is incident on the surface of the chip with the projected image, the light is reflected on the surface of the chip, and the light carrying the information of the projected image is incident on the human eye to realize the projection display of the projected image.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种光源装置,包括激发光源(1)、棱镜(3)和波长转换器(2);其中,棱镜(3)设置在激发光源(1)和波长转换器(2)之间;波长转换器(2)上至少设置有第一转换区域(21)和第二转换区域(22);激发光源(1)用于透过棱镜(3)向波长转换器(2)的第一转换区域(21)和第二转换区域(22)入射激发光线,使第一转换区域(21)和第二转换区域(22)向棱镜(3)输出和激发光线波长不同的转换光线;棱镜(3)用于将入射至棱镜(3)内的转换光线在棱镜(3)的第一表面(31)全反射后,经棱镜(3)的第二表面(32)出射。将棱镜(3)设置在激发光源(1)和波长转换器(2)之间,利用棱镜(3)可对入射至棱镜(3)内部的光线发生全反射的特性,对经过波长转换器(2)的各种光线偏转输出,简化了光路结构。还提供了一种投影显示设备,具有上述有益效果。

Description

一种光源装置以及投影显示设备 技术领域
本发明涉及光源设备技术领域,特别是涉及一种光源装置以及投影显示设备。
背景技术
光源在指能发出一定波长范围的电磁波(包括可见光与紫外线、红外线、X射线等不可见光)的物体,通常指能发出可见光的发光体。对于传统的光源而言,主要是用作照明。随着科技的发展,光源的用途越来越广泛,例如投影显示光源。
基于光源的不同应用环境的需求,需要输出多种不同颜色光线混合后的光线。在对各种不同颜色的光束进行合并时,往往需要用到二向色镜、滤光片以及合光片等光学元件并结合反射镜,通过对某一波段的光束进行反射,其他波段的光束进行透射实现光束合并的,光学元件种类数量多、光路复杂。
发明内容
为解决上述技术问题,本发明提供一种光源装置,包括:激发光源、棱镜和波长转换器;
其中,所述棱镜设置在所述激发光源和所述波长转换器之间;
所述波长转换器上至少设置有第一转换区域和第二转换区域;
所述激发光源用于透过所述棱镜向所述波长转换器的第一转换区域和第二转换区域入射激发光线,以使所述第一转换区域和所述第二转换区域向所述棱镜输出和所述激发光线波长不同的转换光线;
所述棱镜用于将入射至所述棱镜内的所述转换光线在所述棱镜的第一表面全反射后,经所述棱镜的第二表面出射。
在本申请的一种可选地实施例中,所述波长转换器上还包括反光区域;
所述激发光源用于透过所述棱镜向所述反光区域入射激发光线;
所述棱镜用于对经过所述反光区域反射入射至所述棱镜内部的 激发光线,在所述第一表面全反射后经所述棱镜的第二表面出射。
在本申请的一种可选地实施例中,所述激发光源为蓝光光源;所述波长转换器为荧光轮;
所述第一转换区域和所述第二转换区域均为设置在所述波长转换器表面的黄光荧光区域。
在本申请的一种可选地实施例中,所述激发光源为紫光光源;所述波长转换器为荧光轮;
所述第一转换区域为黄色荧光区域;所述第二转换区域为蓝光荧光区域。
在本申请的一种可选地实施例中,所述棱镜为三棱镜;其中,所述三棱镜的第一表面位于所述激光光源的出射光路,所述波长转换器位于所述三棱镜的第二表面的出射光路,所述三棱镜的第三表面为所述三棱镜出射光线的表面。
在本申请的一种可选地实施例中,所述三棱镜满足2β-arcsin[sin(α)/n]>arcsin(1/n),其中,α为所述激发光源向所述棱镜表面发射所述激发光线的入射角;β为所述三棱镜的第一表面和第三表面之间的夹角;n为所述棱镜对所述激发线的折射率。
在本申请的一种可选地实施例中,所述三棱镜的第二表面和所述波长转换器之间设置有聚光透镜。
在本申请的一种可选地实施例中,还包括补光光源,所述补光光源用于向所述棱镜入射补光光线,并从所述棱镜的第二表面出射;
其中,所述棱镜的第二表面出射的光线均相互平行。
在本申请的一种可选地实施例中,所述补光光源为可输出和所述激发光线以及所述转换光线颜色相同的光线的光源;所述补光光源为可输出和所述激发光线以及所述转换光线颜色不同的光线的光源。
本发明所提供的光源装置,包括激发光源、棱镜和波长转换器;其中,棱镜设置在激发光源和波长转换器之间;波长转换器上至少设置有第一转换区域和第二转换区域;激发光源用于透过棱镜向波长转换器的第一转换区域和第二转换区域入射激发光线,以使第一转换区 域和第二转换区域向棱镜输出和激发光线波长不同的转换光线;棱镜用于将入射至棱镜内的转换光线在棱镜的第一表面全反射后,经棱镜的第二表面出射。
本申请中所提供的光源中,采用激发光源和波长转换器实现一种光源产生多种不同颜色光线的输出,同时将棱镜设置在激发光源和波长转换器之间,避免了棱镜对激发光线中部分光线的吸收影响,利用棱镜可对入射至棱镜内部的光线发生全反射的特性,对经过波长转换器的各种光线偏转输出,简化了光路结构。
在本申请的另一可选地实施例中,还进一步地设置有补光光源,该补光光源可向该棱镜中入射和波长转换器输出的相同颜色的光线,实现同种颜色的光线的合并输出,使得光源中某一种颜色光线的光照强度不足时,仅仅通过一个棱镜即可实现同种颜色的光线的合并输出,进一步简化整个光路的结构,并满足光源的不同应用需求。
本申请中还提供了一种投影显示设备,具有上述有益效果。
附图说明
为了更清楚的说明本发明实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的光源装置的光路结构示意图;
图2为本申请实施例提供的波长转换器的示意图;
图3为本申请实施例提供的三棱镜的光路结构示意图;
图4为本申请实施例提供的另一光源装置的光路结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得 的所有其他实施例,都属于本发明保护的范围。
在光源设备中,实际发出光束的发光光源的种类包含有多种,例如目前最长用的激光光源和LED光源等,另还有一种激发光束激发荧光材料产生和激发光束的波长不同的荧光光束;最典型的是设置有各种不同荧光区域的荧光轮,在不同荧光区域接收激发光束照射时,分别输出不同波长的荧光光束。这种基于激发光束输出不同波长光束的荧光轮这一类光学器件,也常称为波长转换器。
包含有波长转换器的光源的优势在于,仅仅只采用一个发光光源即可实现多种不同波长的输出。但在实际工作过程中,波长转换器表面出射和入射的光线种类较多,光路却在一定程度上重合,要实现不同波长的光束出射,就需用到各种不同的光路偏转部件,导致光路复杂,光源占据空间大。
为此,本申请中提供了一种利用棱镜实现波长转换器上输出光线的偏转的技术方案,在一定程度上实现光路的简化。
如图1和图2所示,图1为本申请实施例提供的光源装置的光路结构示意图,图2为本申请实施例提供的波长转换器的示意图。该光源装置可以包括:
激发光源1、棱镜3和波长转换器2;
其中,棱镜3设置在激发光源1和波长转换器2之间;
波长转换器2上至少设置有第一转换区域21和第二转换区域22;
激发光源1用于透过棱镜3向波长转换器2的第一转换区域21和第二转换区域22入射激发光线,以使第一转换区域21和第二转换区域22向棱镜3输出和激发光线波长不同的转换光线;
棱镜3用于将入射至棱镜3内的转换光线在棱镜3的第一表面31全反射后,经棱镜3的第二表面32出射。
本实施例中,激发光源1可以采用激光光源,最常用的是蓝色激光光源和紫色激光光源;该波长转换器2具体可以是设置有荧光粉的荧光轮。
可以参考图2,图2中第一转换区域21和第二转换区域22内可 以设置不同颜色的荧光粉,也即是第一转换区域21为第一荧光区域,第二转换区域22为第二荧光区域,激发光源1分别透过第一荧光区域和第二荧光区域产生的转换光线,即为受激光线。
参考图1,激发光源1向棱镜3的第一表面31入射激发光线,该激光光线经过棱镜3内部入射至棱镜3的第三表面33,通过设定棱镜3的第一表面31和第三表面31之间的棱角,使得激发光线可经过棱镜3的第三表面33透射出射至波长转换器2。
当激发光线入射至波长转换器2的第一转换区域21时,第一转换区域21受激发光线激发产生相应的受激光线,该受激光线经过棱镜3的第三表面31入射至棱镜3内,并再次入射至棱镜3的第一表面31,而此时该受激光线在第一表面31发生全反射后入射至棱镜3的第二表面32,并从第二表面32输出,使得受激光线的光路方向经过棱镜3后发生偏转进而输出。激发光线入射至波长转换器2的第二转换区域21时的光路近似,在此不再赘述。
另外,需要说明的是,对于波长转换器2而言,一般是可以旋转的,使得激发光线可以依次入射至波长转换器2的不同转换区域。
根据图1可知,当激发光线入射至波长转换器2产生的受激光线是向激发光源1所方向传输的,因此需要采用光路元件使得其光路发生偏转。但是显然受激光线和激发光线的光路接近于重合,因此需要保证设置的光学元件不影响激发光线的传输并能够偏转受激光线。本实施例中采用棱镜3作为转换受激光线的光学元件,并不影响激发光源1的光束传输方向。
在本申请的一种可选地实施例中,激发光源1、棱镜3和波长转换器2;棱镜3设置在激发光源1和波长转换器2之间;
波长转换器2上至少设置有荧光区域和反光区域;
激发光源1用于透过棱镜3向波长转换器2的荧光区域1和反射入射激发光线,以使荧光区域和反光区域分别向棱镜3输出荧光光线和激发光线。
棱镜3用于将入射至棱镜3内的荧光光线和激发光线在棱镜3的第一表面31全反射后,经棱镜3的第三表面33出射。
参考图2,本实施例中是以图2中第一转换区域为荧光区域,第二转换区域为反光区域进行说明。
考虑到在某些应用环境中激发光源1所发出的光线也是需要光源装置能够输出的多种不同颜色光线之一,因此在实际应用过程中,波长转换器2表面不仅仅包含设置有荧光粉的区域,还设置有对激光光线进行反射的反光区域。因此波长转换器2的表面接可能存在部分区域为荧光区域而部分为反光区域。
当激发光线入射至波长转换器2的荧光区域,则激发产生相应地荧光光线入射至棱镜3后发生全反射输出;而激发光线入射至反光区域时,则反射至棱镜3中发生全反射后输出。
当激发光线入射至波长转换器2的反光区域,激发光线通过棱镜3先进行了透射入射至波长转换器2发生反射,再次入射至棱镜3,又在棱镜3内进行了全反射的光路偏转。整体上而言,相当于仅仅采用一个棱镜3即可实现同一种光线的透射和反射,且光路简单。
需要说明的是,本实施例中仅仅以波长转换器2只有一个荧光区域为例进行说明,在实际应用中波长转换器2可以具有多个不同颜色的荧光区域,激发光线入射时,可分别产生不同颜色的受激光线。例如,在投影显示设备中,往往需要光源装置输出红、绿、蓝三种不同颜色的光线,可以将波长转换器2表面设置红色荧光区域和蓝色荧光区域以及反光区域,并以蓝色光源作为激发光源1。也可以将反光区域变为蓝色荧光区域,并且采用紫色光源作为激发光源1,对此本申请中都不做限制。
下面以具体实施例针对波长转换器2上不同的转换区域进行说明。
在本申请的另一可选地实施例中,该光源装置可以包括作为激发光源1的蓝光激光光源、包括黄色荧光区域和反光区域的波长转换器 2,以及设置在激发光源1和波长转换器2之间的棱镜3。
该波长转换器2具体可以荧光轮。驱动装置可以启动荧光轮旋转,使得激发光源1的激发光束的光斑交替入射至黄色荧光区域和反光区域,相应地,棱镜3即可交替输出黄色光线和蓝色光线。
因为紫色激光光源也是常用的激发光源1之一,在一种具体实施例中,该光源装置可以包括作为激发光源1的紫光激光光源、包括黄色荧光区域和蓝色荧光区域的波长转换器2,以及设置在激发光源1和波长转换器之间的棱镜3。
同理,该波长转换器2同样可以是可选转的荧光轮,当该激发光源1分别入射至黄光荧光区域和蓝光荧光区域时,波长转换器2表面可以分别产生黄色和蓝色的受激光线,并入射至棱镜3中全反射输出。
在本申请的另一可选地实施例中,该光源装置可以包括作为激发光源1的蓝色激光光源;
红色荧光区域、绿色荧光区域和反光区域的波长转换器2,以及设置在激发光源1和波长转换器之间的棱镜3。
当然可以理解的是,当激发光源1为紫色激光光源时,则该反光区域则采用蓝色荧光区域。
需要说明的是,无论棱镜3最终从同一表面输出多少种颜色的光线,应当尽可能的保证不同颜色的光线平行输出,避免光路复杂化。
为了尽可能的简化光路,在本申请的另一可选地实施例中,该光源装置可以包括:
激发光源1;
包括第一转换区域1和第二转换区域2的波长转换器2;
以及设置在激发光源1和波长转换器2之间的棱镜3,具体地该棱镜3可以采用三棱镜。
其中,三棱镜的第一表面31正对激发光源1,第三表面33正对波长转换器,第二表面32作为输出光线的表面。
可选地,在波长转换器2和三棱镜的第三表面33之间还设置有聚 光透镜4,起到会聚光线的作用。
如图3所示,图3为本申请实施例提供的三棱镜的光路结构示意图。根据图3可知,由三角形ABC的三个角度相加为180°的原理可得:
(90°-γ)+(θ+90°)+β=180°,简化后可得γ=θ+β   (1)
基于几何原理可得:β=δ+Φ   (2)
由反射的对称性可得:Φ=θ   (3)
由折射定律可得:sin(α)/sin(δ)=n,其中n为三棱镜的折射率,进一步可求得:δ=arcsin[sin(α)/n]   (4)
由公式(1)、(2)、(3)和(4)可以求得:
γ=Φ+β=β-δ+β=2β-δ=2β-arcsin[sin(α)/n]   (5)
由全反射原理可得:γ>arcsin(1/n)   (6)
结合公式(5)和公式(6)可得:
2β-arcsin[sin(α)/n]>arcsin(1/n)。
由此可见,当本申请中采用的棱镜3为三棱镜时,可以是棱角和折射率满足上述公式(7)的三棱镜。
为了进一步地简化光路,该三棱镜具体地可以采用直角三棱镜。当然在实际应用过程中,也不排除采用其他形状的棱镜3的实施例,对此本申请中不再详细列举说明。
如前所述对于激发光源1其具体可以采用激光光源,以激光光源激发出的荧光光线作为输出光源输出,但是在实际应用过程中激发产生的荧光光线可能难以满足输出光线的亮度需求,因此在本申请中还可以进一步地设置补光光源5。
可以参考图4,图4为本申请实施例提供的另一光源装置的光路结构示意图。在本申请的另一可选地实施例中,该光源装置可以包括:
激发光源1;
包括第一转换区域1和第二转换区域2的波长转换器2;
设置在激发光源1和波长转换器2之间的棱镜3,具体地该棱镜3 可以采用三棱镜;
设置在棱镜3的入射光路上的补光光源5,具体地,波光光源5可以是设置在棱镜3的第一表面的入射光路上,该补光光源5的光线可以由棱镜3的第一表面31入射后经过第二表面32出射。
对于补光光源5而言,具体可以采用LED光源,经LED光源发出的光线和荧光光线合并输出的光线,相对于激光光源,能够消除散斑的问题,而又避免了LED光源光线亮度不足的问题。
当然,在实际应用过程中,激发光源和补光光源均不仅限于激光光源和LED光源,可以根据实际需要选择各种不同类型的光源,对此,本申请中不作具体限制。
因为补光光源5主要是增强光线的亮度,因此,补光光源5的光线可以是经过波长转换器2输出的光线同种颜色的光线,也即是说波长转换器2和补光光源5分别从不同角度向棱镜3输出相同颜色的光线后,该棱镜3可以实现同种颜色光线的混合。
当然,补光光源5作用也并不仅限于补充经过波长转换器2输出的光线的亮度,也可以作为补充荧光光线中所缺少的光线。
例如,经过波长转换器2入射棱镜后经过棱镜3的第三表面33输出的光线中包括蓝色光线和黄色光线,补色光源5中可以同时输出红色光线、绿色光线和蓝色光线。
或者,经过波长转换器2入射棱镜3后经过棱镜3的第三表面3输出的光线中包括蓝色光线和绿色光线,补色光源5中可以同时输出红色光线和蓝色光线。
对于本申请中的光源装置,可以应用到多种不同的环境中,投影显示设备是最典型的应用之一。
在本申请的一种具体实施例中,提供了一种投影显示设备的实施例,该投影显示设备中包括有上述任意实施例所述的光源装置。
当该光源装置经过棱镜输出的光线入射至带有投影图像的芯片表面时,光线在芯片表面发生反射,将携带有投影图像的信息的光线入射至人眼中,实现投影图像的投影显示。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。另外,本申请实施例提供的上述技术方案中与现有技术中对应技术方案实现原理一致的部分并未详细说明,以免过多赘述。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (9)

  1. 一种光源装置,其特征在于,包括:激发光源、棱镜和波长转换器;
    其中,所述棱镜设置在所述激发光源和所述波长转换器之间;
    所述波长转换器上至少设置有第一转换区域和第二转换区域;
    所述激发光源用于透过所述棱镜向所述波长转换器的第一转换区域和第二转换区域入射激发光线,以使所述第一转换区域和所述第二转换区域向所述棱镜输出和所述激发光线波长不同的转换光线;
    所述棱镜用于将入射至所述棱镜内的所述转换光线在所述棱镜的第一表面全反射后,经所述棱镜的第二表面出射。
  2. 如权利要求1所述的光源装置,其特征在于,所述波长转换器上还包括反光区域;
    所述激发光源用于透过所述棱镜向所述反光区域入射激发光线;
    所述棱镜用于对经过所述反光区域反射入射至所述棱镜内部的激发光线,在所述第一表面全反射后经所述棱镜的第二表面出射。
  3. 如权利要求2所述的光源装置,其特征在于,所述激发光源为蓝光光源;所述波长转换器为荧光轮;
    所述第一转换区域和所述第二转换区域均为设置在所述波长转换器表面的黄光荧光区域。
  4. 如权利要求1所述的光源装置,其特征在于,所述激发光源为紫光光源;所述波长转换器为荧光轮;
    所述第一转换区域为黄色荧光区域;所述第二转换区域为蓝光荧光区域。
  5. 如权利要求1所述的光源装置,其特征在于,所述棱镜为三棱镜;其中,所述三棱镜的第一表面位于所述激光光源的出射光路,所述波长转换器位于所述三棱镜的第二表面的出射光路,所述三棱镜的第三表面为所述三棱镜出射光线的表面。
  6. 如权利要求5所述的光源装置,其特征在于,所述三棱镜满足2β-arcsin[sin(α)/n]>arcsin(1/n),其中,α为所述激发光源向所述棱镜表面发射所述激发光线的入射角;β为所述三棱镜的第一表面和第三 表面之间的夹角;n为所述棱镜对所述激发线的折射率。
  7. 如权利要求1至6任一项所述的光源装置,其特征在于,还包括补光光源,所述补光光源用于向所述棱镜入射补光光线,并从所述棱镜的第二表面出射;
    其中,所述棱镜的第二表面出射的所述转换光线和所述补光光线均相互平行。
  8. 如权利要求7所述的光源装置,其特征在于,所述补光光源为可输出和所述激发光线以及所述转换光线颜色相同的光线的光源;所述补光光源为可输出和所述激发光线以及所述转换光线颜色不同的光线的光源。
  9. 一种投影显示设备,其特征在于,包括如权利要求1至8任一项所述的光源装置。
PCT/CN2021/098229 2020-06-24 2021-06-04 一种光源装置以及投影显示设备 WO2021259037A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010589289.0 2020-06-24
CN202010589289.0A CN111624840B (zh) 2020-06-24 2020-06-24 一种光源装置以及投影显示设备

Publications (1)

Publication Number Publication Date
WO2021259037A1 true WO2021259037A1 (zh) 2021-12-30

Family

ID=72272410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098229 WO2021259037A1 (zh) 2020-06-24 2021-06-04 一种光源装置以及投影显示设备

Country Status (2)

Country Link
CN (1) CN111624840B (zh)
WO (1) WO2021259037A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111624840B (zh) * 2020-06-24 2021-11-09 成都极米科技股份有限公司 一种光源装置以及投影显示设备
CN114613252B (zh) * 2020-12-09 2023-12-01 成都极米科技股份有限公司 一种光学系统及显示设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101093286A (zh) * 2006-06-19 2007-12-26 精碟科技股份有限公司 合光模组及投影装置
CN103852960A (zh) * 2012-12-07 2014-06-11 扬明光学股份有限公司 投影装置与聚光模组
US20140354892A1 (en) * 2011-03-23 2014-12-04 Panasonic Corporation Light source apparatus and image display apparatus using the same
US20150309399A1 (en) * 2014-04-24 2015-10-29 Samsung Electronics Co., Ltd. Illumination apparatus and projection-type image display apparatus having the same
CN108646510A (zh) * 2018-06-25 2018-10-12 成都九天光学技术有限公司 一种紧凑型投影光源
CN208766451U (zh) * 2018-08-29 2019-04-19 成都迅达光电有限公司 投影仪的光学引擎以及投影仪
CN111624840A (zh) * 2020-06-24 2020-09-04 成都极米科技股份有限公司 一种光源装置以及投影显示设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3757221B2 (ja) * 2003-08-14 2006-03-22 Necビューテクノロジー株式会社 投写型表示装置
KR101188202B1 (ko) * 2010-06-25 2012-10-09 스크램테크놀러지스아시아 유한회사 프로젝션 디스플레이 장치의 광학계
CN102565896B (zh) * 2010-12-30 2015-06-24 比亚迪股份有限公司 一种棱镜系统及具有该棱镜系统的投影仪
CN109375382A (zh) * 2018-12-04 2019-02-22 四川长虹电器股份有限公司 用于激光投影显示的动态消散斑装置
CN110139012A (zh) * 2019-05-28 2019-08-16 成都易瞳科技有限公司 双鱼眼全景图像采集装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101093286A (zh) * 2006-06-19 2007-12-26 精碟科技股份有限公司 合光模组及投影装置
US20140354892A1 (en) * 2011-03-23 2014-12-04 Panasonic Corporation Light source apparatus and image display apparatus using the same
CN103852960A (zh) * 2012-12-07 2014-06-11 扬明光学股份有限公司 投影装置与聚光模组
US20150309399A1 (en) * 2014-04-24 2015-10-29 Samsung Electronics Co., Ltd. Illumination apparatus and projection-type image display apparatus having the same
CN108646510A (zh) * 2018-06-25 2018-10-12 成都九天光学技术有限公司 一种紧凑型投影光源
CN208766451U (zh) * 2018-08-29 2019-04-19 成都迅达光电有限公司 投影仪的光学引擎以及投影仪
CN111624840A (zh) * 2020-06-24 2020-09-04 成都极米科技股份有限公司 一种光源装置以及投影显示设备

Also Published As

Publication number Publication date
CN111624840B (zh) 2021-11-09
CN111624840A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
EP3722874A1 (en) Light source device, image projection apparatus, light source optical system
US20110242791A1 (en) Light source module and wavelength conversion module
WO2021259037A1 (zh) 一种光源装置以及投影显示设备
CN108693690B (zh) 光源装置以及投影仪
JP2012199075A (ja) 光源装置及びプロジェクター
CN112987469B (zh) 光源装置及图像投影装置
WO2022012207A1 (zh) 一种混合光源装置以及投影显示设备
CN209388102U (zh) 一种波长转换装置、激光光源系统及投影机
US11422450B2 (en) Light source apparatus and display device
JP7070620B2 (ja) 光源装置およびプロジェクター
CN113433782A (zh) 光源装置和投影仪
WO2020088671A1 (zh) 照明系统
CN102854623A (zh) 分光装置
CN215006225U (zh) 一种投影系统
JP4530743B2 (ja) 色合成素子及びこれを用いた投影装置
WO2022037196A1 (zh) 一种三色光源设备和投影显示设备
CN113608402A (zh) 照明装置及微型投影仪
CN110361919B (zh) 一种带有复合色轮的三色激光光源
CN110297384B (zh) 一种用于投影的光源
CN210072303U (zh) 一种用于投影的光源
CN108445700A (zh) 激光投影光源与激光投影装置
JP2021086135A (ja) 光源光学系、光源装置及び画像表示装置
CN217787501U (zh) 一种光源装置及内窥镜系统
WO2022188307A1 (zh) 激光光路系统和投影设备
US20230251558A1 (en) Light source device and projection apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828726

Country of ref document: EP

Kind code of ref document: A1