WO2021254978A1 - Compounds for the treatment of viral infections - Google Patents

Compounds for the treatment of viral infections Download PDF

Info

Publication number
WO2021254978A1
WO2021254978A1 PCT/EP2021/066012 EP2021066012W WO2021254978A1 WO 2021254978 A1 WO2021254978 A1 WO 2021254978A1 EP 2021066012 W EP2021066012 W EP 2021066012W WO 2021254978 A1 WO2021254978 A1 WO 2021254978A1
Authority
WO
WIPO (PCT)
Prior art keywords
infection
subject
atr inhibitor
administered
cov
Prior art date
Application number
PCT/EP2021/066012
Other languages
French (fr)
Inventor
Ulrich Betz
Thomas Fuchss
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to CA3183649A priority Critical patent/CA3183649A1/en
Priority to EP21732306.2A priority patent/EP4168015A1/en
Priority to IL299179A priority patent/IL299179A/en
Priority to JP2022577516A priority patent/JP2023530001A/en
Priority to CN202180043104.9A priority patent/CN115697342A/en
Priority to AU2021291358A priority patent/AU2021291358A1/en
Priority to US18/009,207 priority patent/US20230226066A1/en
Publication of WO2021254978A1 publication Critical patent/WO2021254978A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention provides for the use of ataxia telangiectasia and Rad3-related protein (ATR) inhibitors in the treatment of virus infections, including SARS-CoV infections such as COVTD-19.
  • ATR Rad3-related protein
  • ATR kinase is a protein kinase involved in cellular responses to certain forms of DNA damage (e.g., double strand breaks and replication stress).
  • ATR kinase acts with ATM ("ataxia telangiectasia mutated") kinase and many other proteins to regulate a cell's response to double strand DNA breaks and replication stress, commonly referred to as the DNA Damage Response ("DDR").
  • DDR DNA Damage Response
  • the DDR stimulates DNA repair, promotes survival and stalls cell cycle progression by activating cell cycle checkpoints, which provide time for repair. Without the DDR, cells are much more sensitive to DNA damage and readily die from DNA lesions induced by endogenous cellular processes such as DNA replication or exogenous DNA damaging agents commonly used in cancer therapy.
  • ATR is upregulated in a variety of cancer cell types and plays a key role in DNA repair, cell cycle progression, and survival it is activated by DNA damage caused during DNA replication- associated stress.
  • Inhibitors of ataxia telangiectasia and rad3 -related (ATR) kinase prevents ATR- mediated signaling in the ATR-checkpoint kinase 1 (Chkl) signaling pathway. This prevents DNA damage checkpoint activation, disrupts DNA damage repair, and induces tumor cell apoptosis.
  • ATR inhibitors are in clinical development of various solid tumors, e.g. small-cell cancers, urothelial carcinoma and ovarian cancer.
  • Coronaviruses are positive-sense, single-stranded RNA (ssRNA) viruses of the order Nidovirales, in the family Coronaviridae.
  • ssRNA single-stranded RNA
  • SARS-CoV-1 severe acute respiratory syndrome
  • MERS-CoV Middle East respiratory syndrome
  • COVTD-19 SARS-CoV-2
  • SARS-CoV-2 closely resembles SARS-CoV-1, the causative agent of SARS epidemic of 2002-03 (Fung, et al, Annu. Rev. Microbiol. 2019. 73:529-57). Severe disease has been reported in approximately 15% of patients infected with SARS-CoV-2, of which one third progress to critical disease (e.g. respiratory failure, shock, or multi organ dysfunction (Siddiqi, et al, J. Heart and Lung Trans. (2020), doi: https://doi.Org/10.1016/j.healun.2020.03.012, Zhou, et al, Lancet 2020; 395: 1054-62.
  • critical disease e.g. respiratory failure, shock, or multi organ dysfunction
  • the virus has a high transmission rate, likely linked to high early viral loads and lack of pre-existing immunity (He, et. al, Nat Med 2020 https://doi.org/10.1038/s41591-020-0869-5). It causes severe disease especially in the elderly and in individuals with comorbidities.
  • the global burden of COVID-19 is immense, and therapeutic approaches are increasingly necessary to tackle the disease.
  • Intuitive anti -viral approaches including those developed for enveloped RNA viruses like HIV-1 (lopinavir plus ritonavir) and Ebola virus (remdesivir) have been implemented in testing as investigational drugs (Grein et al, NEJM 2020 https://doi.org/10.1056/NEJMoa2007016 Cao,et al, NEJM 2020 DOI: 10.1056/NEJMoa2001282).
  • HCMV Human cytomegalovirus
  • HHV-5 human betaherpesvirus 5
  • ZMV cytomegalovirus
  • CMV cytomegalovirus
  • dsDNA double-stranded DNA virus
  • HCMV Human cytomegalovirus
  • HSV1 Herpesviruses
  • polyomaviruses e.g. BKV and JCV
  • hepatitis viruses HBV and HCV
  • respiratory viruses e.g. influenza A, adenovirus
  • Cytomegalovirus is the most prevalent post-transplant pathogen, HCMV can infect most organs, and despite the availability of HCMV antivirals such as acyclovir or ganciclovir, nephrotoxic side effects and increasing rates of drug-resistance significantly reduce graft and patient survival
  • HCMV-mediated immune modulation can reactivate distinct latent viruses carried by most adults.
  • Flaviviruses which are transmitted by mosquitoes or ticks, cause life-threatening infections in man, such as encephalitis and hemorrhagic fever.
  • Four distinct, but closely related serotypes of the flavivirus dengue are known, so-called DENV-1 , -2, -3, and -4.
  • Dengue is endemic in most tropical and sub-tropical regions around the world, predominantly in urban and semi-urban areas. According to the World Health Organization (WHO), 2.5 billion people of which 1 billion children are at risk of DENV infection (WHO, 2002).
  • WHO World Health Organization
  • dengue hemorrhagic fever and dengue shock syndrome [DSS]
  • DHF dengue hemorrhagic fever
  • DSS dengue shock syndrome
  • Figure 1 shows a graph depicting the confluence of Calu-3 cells when treated with and Compound 1 of the invention in a concentration range from ImM to 81mM as compared to uninfected cells and SARS-Cov-2 infected cells without exposure to the therapeutic agent (Control infected cells (green circles); Control uninfected cells (red squares); With Compound 1 in a concentration of 81 pm (blue triangles with point upwards), 27 pm (blue triangles with point downwards), 9pm (blue diamonds), 3 pm (blue squares), lpm (blue circles)).
  • Figure 2 shows a graph depicting the confluence of Calu-3 cells when treated with and Compound 2 of the invention in a concentration range from 9mM to 81mM as compared to uninfected cells and SARS-Cov-2 infected cells without exposure to the therapeutic agent (Control infected cells (green circles); Control uninfected cells (red squares); With Compound 1 in a concentration of 81pm (black triangles with point upwards), 27 pm (black triangles with point downwards), 9pm (black diamonds)).
  • Figure 3 shows a graph depicting the influence of Compound 1 on the viral replication in human foreskin fibroblasts infected with Cytomegalovirus (black dots) and on cell viability (gray squares).
  • Figure 4 shows a graph depicting the influence of Compound 2 on the viral replication in Vero cells infected with DENV-2. Intersection of dotted lines indicates the half maximal effective concentration (ECso), which is 0.46 pm.
  • Figure 5 shows a graph depicting the influence of Compound 2 on the viability of Vero cells. Intersection of dotted lines indicates the half maximal cytotoxic concentration (CC50), which is 6.80 pm.
  • the invention provides the ATR inhibitors of the invention for use in the treatment of viral infections in a subject in need thereof.
  • the viral infection is a single-strand RNA viral infection.
  • the viral infection is a coronavirus infection.
  • the viral infection is a SARS-CoVl, MERS-CoV, or SARS-CoV-2 infection.
  • the viral infection is a SARS-CoV-2 infection.
  • a second embodiment is a method of treating a coronavirus infection in a subject in need thereof, comprising administering an effective amount of an ATR inhibitor, or a pharmaceutically acceptable salt thereof, to the subject.
  • the administration of compound reduces the viral load in the subject.
  • the ATR inhibitor is administered prior to COVID- 19 pneumonia development.
  • the subject has a mild to moderate SARS-CoV-2 infection.
  • the subject is asymptomatic at the start of the administration regimen.
  • the viral infection is a double-strand DNA viral infection.
  • the viral infection is a HCMV infection.
  • a preferred embodiment is a method of treating a Cytomegalovirus infection in a subject in need thereof, comprising administering an effective amount of an ATR inhibitor, or a pharmaceutically acceptable salt thereof, to the subject.
  • the administration of compound reduces the viral load in the subject.
  • the viral infection is a Flavivirus Dengue infection.
  • the viral infection is a DENV-1, -2, -3, and -4 infection.
  • the viral infection is a Dengue virus serotype 2 (DENV-2) infection.
  • a preferred embodiment is a method of treating a Flavivirus Dengue virus infection in a subject in need thereof, comprising administering an effective amount of an ATR inhibitor, or a pharmaceutically acceptable salt thereof, to the subject.
  • the administration of compound reduces the viral load in the subject.
  • An ATR inhibitor or a pharmaceutically acceptable salt thereof for use in the treatment of a coronavirus infection Use of an ATR inhibitor or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for the treatment of a coronavirus infection.
  • Use of an ATR inhibitor or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for the treatment of a Flavivirus Dengue infection Use of an ATR inhibitor or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for the treatment of a Flavivirus Dengue infection.
  • Coronaviruses comprise a diverse group of enveloped positive-strand RNA viruses that are responsible for several human diseases, most notably the severe acute respiratory syndrome (SARS) epidemics in 2003 and 2020.
  • SARS severe acute respiratory syndrome
  • IBV Infectious Bronchitis Virus
  • a highly infectious avian gamma-coronavirus that primarily targets cells of the respiratory tract, can inhibit cell growth by inducing cell cycle arrest in G2 and S-phases in infected cells
  • Dove B. et al. Cell cycle perturbations induced by infection with the coronavirus infectious bronchitis virus and their effect on virus replication. J. Virol. 80, 4147-4156, 2006; Li, F.Q. et al: Cell cycle arrest and apoptosis induced by the coronavirus infectious bronchitis virus in the absence of p53. Virology 365, 435-445, 2007).
  • compounds of the invention inhibit the coronavirus induced DNA damage response and the replication of the coronavirus in the host by inhibiting the virus induced activation of cellular DNA damage response. It is conceived that compounds of the invention may inhibit nucleic acid replication, virus assembly, new virus particle transport, and/or virus release. The result of administration of a compound of the invention is to reduce viral replication, which in turn will reduce viral load, and reduce the severity of disease.
  • COVTD-19 is the name of the disease which is caused by a SARS-CoV-2 infection. While care was taken to describe both the infection and disease with accurate terminology, “COVTD-19” and “SARS-CoV-2 infection” are meant to be roughly equivalent terms.
  • “mild to moderate” COVTD-19 occurs when the subject presents as asymptomatic or with less severe clinical symptoms (e.g., low grade or no fever ( ⁇ 39.1°C), cough, mild to moderate discomfort) with no evidence of pneumonia, and generally does not require medical attention.
  • “moderate to severe” infection generally patients present with more severe clinical symptoms (e.g., fever >39.1°C, shortness of breath, persistent cough, pneumonia, etc.).
  • “moderate to severe” infection typically requires medical intervention, including hospitalization. During the progression of disease, a subject can transition from “mild to moderate” to “moderate to severe” and back again in one course of bout of infection.
  • Treatment of COVTD-19 using the methods of this invention include administration of an effective amount of an ATR inhibitor of the invention at any stage of the infection to prevent or reduce the symptoms associated therewith.
  • subjects will be administered an effective amount of an ATR inhibitor of the invention after definitive diagnosis and presentation with symptoms consistent with a SARS-CoV2 infection, and administration will reduce the severity of the infection and/or prevent progression of the infection to a more severe state.
  • the clinical benefits upon such administration is described in more detail in the sections below.
  • Treatment of HCMV infection using the methods of this invention include administration of an effective amount of an ATR inhibitor of the invention at any stage of the infection to prevent or reduce the symptoms associated therewith.
  • subjects will be administered an effective amount of an ATR inhibitor of the invention after definitive diagnosis and presentation with symptoms consistent with a HCMV infection, and administration will reduce the severity of the infection and/or prevent progression of the infection to a more severe state.
  • the clinical benefits upon such administration is described in more detail in the sections below.
  • Treatment of Flavivirus Dengue infection using the methods of this invention include administration of an effective amount of an ATR inhibitor of the invention at any stage of the infection to prevent or reduce the symptoms associated therewith.
  • subjects will be administered an effective amount of an ATR inhibitor of the invention after definitive diagnosis and presentation with symptoms consistent with a Flavivirus Dengue infection, and administration will reduce the severity of the infection and/or prevent progression of the infection to a more severe state.
  • the clinical benefits upon such administration is described in more detail in the sections below.
  • One embodiment is use of a compound selected from the group consisting of: (2-Amino-6-fluoro-pyrazolo[l,5-a]pyrimidine-3-carboxylic acid [5'-fluoro-4-(4-oxetan-3-yl- piperazine-l-carbonyl)-3,4,5,6-tetrahydro-2H-[l,4']bipyridinyl-3'-yl]-amide) (hereinafter also referred to as “Compound 1”), and
  • Compound 2 2- Amino-6-fluoro-N- [5 -fluoro-4-( 1 -methyl- 1 H-imidazol-5 -y l)pyri din-3 -yl] pyrazolo [1,5- a]pyrimidine-3-carboxamide (hereinafter also referred to as “Compound 2”). or a pharmaceutically acceptable salt thereof for the treatment of a viral infection.
  • Compound 1 is disclosed in WO 2014/089379 A1 as Compound I-G-32 (Example 3f), Compound 2 is disclosed in WO 2014/089379 A1 as Compound I-C-79.
  • the above compounds may either be used in their free forms or as pharmaceutically acceptable salts.
  • the free compounds may be converted into the associated acid-addition salt by reaction with an acid, for example by reaction of equivalent amounts of the base and the acid in an inert solvent, such as, for example, ethanol, and subsequent evaporation.
  • Suitable acids for this reaction are, in particular, those which give physiologically acceptable salts, such as, for example, hydrogen halides (for example hydrogen chloride, hydrogen bromide or hydrogen iodide), other mineral acids and corresponding salts thereof (for example sulfate, nitrate or phosphate and the like), alkyl- and monoarylsulfonates (for example ethanedisulfonate (edisylate), toluenesulfonate, napthalene-2-sulfonate (napsylate), benzenesulfonate) and other organic acids and corresponding salts thereof (for example fumarate, oxalate, acetate, trifluoroacetate, tartrate, maleate, succinate, citrate, benzoate, salicylate, ascorbate and the like.
  • physiologically acceptable salts such as, for example, hydrogen halides (for example hydrogen chloride, hydrogen bromide or hydrogen iodide), other mineral acids and corresponding salt
  • Exemplary embodiments of the pharmaceutically acceptable, non-toxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid
  • organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange.
  • salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, glycolate, gluconate, glycolate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, ox
  • structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms.
  • compounds having the present structures including the replacement of hydrogen by deuterium or tritium, or the replacement of a carbon by a 13 C- or 14 C-enriched carbon are within the scope of this invention.
  • the group comprises one or more deuterium atoms.
  • the term “patient” or “subject”, as used herein, means an animal, preferably a human. However, “subject” can include companion animals such as dogs and cats.
  • the subject is an adult human patient.
  • the subject is a pediatric patient.
  • Pediatric patients include any human which is under the age of 18 at the start of treatment.
  • Adult patients include any human which is age 18 and above at the start of treatment.
  • the subject is a member of a high-risk group, such as being over 65 years of age, immunocompromised humans of any age, humans with chronic lung conditions (such as, asthma, COPD, cystic fibrosis, etc.), and humans with other co-morbidities.
  • the other co-morbidity is obesity, diabetes, and/or hypertension.
  • compositions of the present invention are administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir.
  • the compositions are administered orally.
  • the oral formulation of a compound of the invention is a tablet or capsule form.
  • the oral formulation is a solution or suspension which may be given to a subject in need thereof via mouth or nasogastric tube. Any oral formulations of the invention may be administered with or without food.
  • pharmaceutically acceptable compositions of this invention are administered without food.
  • pharmaceutically acceptable compositions of this invention are administered with food.
  • compositions of this invention are orally administered in any orally acceptable dosage form.
  • exemplary oral dosage forms are capsules, tablets, aqueous suspensions or solutions.
  • carriers commonly used include lactose and corn starch.
  • Lubricating agents such as magnesium stearate, are also typically added.
  • useful diluents include lactose and dried cornstarch.
  • aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents are optionally also added.
  • compositions of the present invention that are optionally combined with the carrier materials to produce a composition in a single dosage form will vary depending upon the host treated, the particular mode of administration.
  • provided compositions should be formulated so that a dosage of between 0.01 - 100 mg/kg body weight/day of the compound can be administered to a patient receiving these compositions.
  • the total amount of ATR inhibitor administered to the subject in need thereof is between about 20 mg to about 2000 mg, which can be applied once to four times per day to once every week. In one aspect of this embodiment, the total amount of ATR inhibitor administered is between about 50 mg and about 350 mg per day and is preferably administered once a day.
  • the ATR inhibitor is administered once a day. In another aspect of this embodiment, the ATR inhibitor is administered twice a day.
  • the ATR inhibitor is administered for a period of about 7 day to about 28 days. In one aspect of any of the above embodiments, the ATR inhibitor is administered for about 14 days.
  • the subject is suffering from COVID-19 pneumonia. In one embodiment of this invention, the subject is suffering from one or more symptoms selected from chest congestion, cough, blood oxygen saturation (SpC ) levels below 94%, shortness of breath, difficulty breathing, fever, chills, repeated shaking with chills, muscle pain and/or weakness, headache, sore throat and/or new loss of taste or smell.
  • SpC blood oxygen saturation
  • the subject is being treated inpatient in a hospital setting. In another embodiment, the subject is being treated in an outpatient setting. In one aspect of the preceding embodiments, the subject may continue administration of the ATR inhibitors after being transitioned from being treated from an inpatient hospital setting to an outpatient setting.
  • the administration of the ATR inhibitors results in one or more clinical benefit.
  • the one or more clinical benefit is selected from the group comprising: reduction of duration of a hospital stay, reduction of the duration of time in the Intensive Care Unit (ICU), reduction in the likelihood of the subject being admitted to an ICU, reduction in the rate of mortality, reduction in the likelihood of kidney failure requiring dialysis, reduction in the likelihood of being put on non-invasive or invasive mechanical ventilation, reduction of the time to recovery, reduction in the likelihood supplemental oxygen will be needed, improvement or normalization in the peripheral capillary oxygen saturation (SpCh levels) without mechanical intervention, reduction of severity of the pneumonia as determined by chest imaging (eg, CT or chest X ray), reduction in the cytokine production, reduction of the severity of acute respiratory distress syndrome (ARDS), reduction in the likelihood of developing ARDS, clinical resolution of the COVID-19 pneumonia and improvement of the Pa0 2/ Ti0 2 ratio in the subject.
  • ICU Intensive Care Unit
  • SpCh levels peripheral capillary oxygen saturation
  • the one or more clinical benefits includes the improvement or normalization in the peripheral capillary oxygen saturation (Sp0 2 levels) in the subject without mechanical ventilation or extracorporeal membrane oxygenation.
  • the one of more clinical benefits is reduction in the likelihood of being hospitalized, reduction in the likelihood of ICU admission, reduction in the likelihood being intubated (invasive mechanical ventilation), reduction in the likelihood supplemental oxygen will be needed, reduction in the length of hospital stay, reduction in the likelihood of mortality, and/or a reduction in likelihood of relapse, including the likelihood of rehospitalization.
  • the invention also provides a method of treating a viral infection in a subject in need thereof comprising administering an effective amount of a compound of the invention to the subject.
  • An amount effective to treat or inhibit a viral infection is an amount that will cause a reduction in one or more of the manifestations of viral infection, such as viral lesions, viral load, rate of virus production, and mortality as compared to untreated control subjects.
  • One embodiment of the invention is a method of treating a coronavirus infection in a subject in need thereof, comprising administering an effective amount of an ATR inhibitor, or a pharmaceutically acceptable salt thereof, to the subject.
  • the subject is infected with SARS-CoV-2.
  • the administration of the ATR inhibitor results in the reduction of the viral load in the subject.
  • the ATR inhibitor is administered prior to COVTD-19 pneumonia developing.
  • the subject has a mild to moderate SARS-CoV-2 infection.
  • the subject is asymptomatic at the start of the administration regimen.
  • the subject has had known contact with a patient who has been diagnosed with a SARS-CoV-2 infection.
  • the subject begins administration of the ATR inhibitor prior to being formally diagnosed with COVTD-19.
  • One embodiment is a method of treating a subject with COVTD-19 comprising administration of an effective amount of an ATR inhibitor to the subject.
  • the subject has been previously vaccinated with a SARS-CoV-2 vaccine and develops vaccine-related exacerbation of infection, for example, an antibody-dependent enhancement or related antibody-mediated mechanisms of vaccine/antibody-related exacerbation.
  • the administration of the ATR inhibitor results in one or more clinical benefits to the subject.
  • the one or more clinical benefits is shortening the duration of infection, reduction of the likelihood of hospitalization, reduction in the likelihood of mortality, reduction in the likelihood of ICU admission, reduction in the likelihood being placed on mechanical ventilation, reduction in the likelihood supplemental oxygen will be needed, and/or reduction in the length of hospital stay.
  • the one or more clinical benefit is the failure of the subject to develop significant symptoms of COVTD-19.
  • the compounds of the invention can be administered before or following an onset of SARS-CoV-2 infection, or after acute infection has been diagnosed in a subject.
  • the aforementioned compounds and medical products of the inventive use are particularly used for the therapeutic treatment.
  • a therapeutically relevant effect relieves to some extent one or more symptoms of a disorder, or returns to normality, either partially or completely, one or more physiological or biochemical parameters associated with or causative of a disease or pathological condition.
  • Monitoring is considered as a kind of treatment provided that the compounds are administered in distinct intervals, e.g. in order to boost the response and eradicate the pathogens and/or symptoms of the disease.
  • the methods of the invention can also be used to reduce the likelihood of developing a disorder or even prevent the initiation of disorders associated with COVTD-19 in advance of the manifestation of mild to moderate disease, or to treat the arising and continuing symptoms of an acute infection.
  • Treatment of mild to moderate COVTD-19 is typically done in an outpatient setting.
  • Treatment of moderate to severe COVTD-19 is typically done inpatient in a hospital setting. Additionally, treatment can continue in an outpatient setting after a subject has been discharged from the hospital.
  • the invention furthermore relates to a medicament comprising at least one compound according to the invention or a pharmaceutically salts thereof.
  • a “medicament” in the meaning of the invention is any agent in the field of medicine, which comprises one or more compounds of the invention or preparations thereof (e.g. a pharmaceutical composition or pharmaceutical formulation) and can be used in prophylaxis, therapy, follow-up or aftercare of patients who suffer from clinical symptoms and/or known exposure to virus infections including COVTD-19.
  • the active ingredient may be administered alone or in combination with one or more additional therapeutic agents.
  • a synergistic or augmented effect may be achieved by using more than one compound in the pharmaceutical composition.
  • the active ingredients can be used either simultaneously or sequentially.
  • the ATR inhibitor is administered in combination with one or more additional therapeutic agents.
  • the one or more additional therapeutic agents is selected from anti-inflammatories, antibiotics, anti-coagulants, antiparasitic agent, antiplatelet agents and dual antiplatelet therapy, angiotensin converting enzyme (ACE) inhibitors, angiotensin II receptor blockers, beta-blockers, statins and other combination cholesterol lowering agents, specific cytokine inhibitors, complement inhibitors, anti-VEGF treatments, JAK inhibitors, immunomodulators, anti-inflammasome therapies, sphingosine-1 phosphate receptors binders, N-methyl-d-aspartate (NDMA) receptor glutamate receptor antagonists, corticosteroids, Granulocyte-macrophage colony-stimulating factor (GM-CSF), anti- GM-CSF, interferons, angiotensin receptor-neprilysin inhibitors, calcium channel blockers, vasodilators
  • ACE angiotensin converting enzyme
  • the ATR inhibitor is administered in combination with an antiviral agent.
  • the antiviral agent is remdesivir.
  • the antiviral agent is lopinavir-ritonavir, alone or in combination with ribavirin and interferon-beta.
  • the ATR inhibitor is administrated in combination with a broad- spectrum antibiotic.
  • the ATR inhibitor is administered in combination with chloroquine or hydroxychloroquine. In one aspect of this embodiment, the ATR inhibitor is further combined with azithromycin.
  • the ATR inhibitor is administered in combination with interferon- 1-beta (Rebif ® ).
  • the ATR inhibitor is administered in combination with one or more additional therapeutic agents selected from hydroxychloroquine, chloroquine, ivermectin, tranexamic acid, nafamostat, virazole, ribavirin, lopinavir/ritonavir, favipiravir, arbidol, leronlimab, interferon beta- la, interferon beta- lb, beta-interferon, azithromycin, nitrazoxamide, lovastatin, clazakizumab, adalimumab, etanercept, golimumab, infliximab, sarilumab, tocilizumab, anakinra, emapalumab, pirfenidone, belimumab, rituximab, ocrelizumab, anifrolumab, ravulizumab-cwvz
  • the ATR inhibitor is administered in combination with one or more anti-inflammatory agent.
  • the anti-inflammatory agent is selected from corticosteroids, steroids, COX-2 inhibitors, and non-steroidal anti-inflammatory drugs (NS AID).
  • the anti-inflammatory agent is diclofenac, etodolac, fenoprofen, flurbirprofen, ibuprofen, indomethacin, meclofenamate, mefenamic acid, meloxicam, nabumetone, naproxen, oxaprozin, piroxicam, sulindac, tolmetin, celecoxib, prednisone, hydrocortisone, fludocortisone, bethamethasone, prednisolone, triamcinolone, methylprednisone, dexamethasone, fluticasone, and budesonide (alone or in combination with formoterol, salmeterol, or vilanterol).
  • the ATR inhibitor is administered in combination with one or more immune modulators.
  • the immune modulator is a calcineurin inhibitor, antimetabolite, or alkylating agent.
  • the immune modulator is selected from azathioprine, mycophenolate mofetil, methotrexate, dapson, cyclosporine, cyclophosphamide, and the like.
  • the ATR inhibitor is administered in combination with one or more antibiotics.
  • the antibiotic is a broad-spectrum antibiotic.
  • the antibiotic is a penicillin, anti-straphylococcal penicillin, cephalosporin, aminopenicillin (commonly administered with a betalactamase inhibitor), monobactam, quinoline, aminoglycoside, lincosamide, macrolide, tetracycline, glycopeptide, antimetabolite or nitroimidazole.
  • the antibiotic is selected from penicillin G, oxacillin, amoxicillin, cefazolin, cephalexin, cephotetan, cefoxitin, ceftriazone, augmentin, amoxicillin, ampicillin (plus sulbactam), piperacillin (plus tazobactam), ertapenem, ciprofloxacin, imipenem, meropenem, levofloxacin, moxifloxacin, amikacin, clindamycin, azithromycin, doxycycline, vancomycin, Bactrim, and metronidazole.
  • the ATR inhibitor is administered in combination with one or more anti-coagulants.
  • the anti-coagulant is selected from apixaban, dabigatran, edoxaban, heparin, rivaroxaban, and warfarin.
  • the ATR inhibitor is administered in combination with one or more antiplatelet agents and/or dual antiplatelet therapy.
  • the antiplatelet agent and/or dual antiplatelet therapy is selected from aspirin, clopidogrel, dipyridamole, prasugrel, and ticagrelor.
  • the ATR inhibitor is administered in combination with one or more ACE inhibitors.
  • the ACE inhibitor is selected from benazepril, captopril, enalapril, fosinopril, lisinopril, moexipril, perindopril, quinapril, ramipril and trandoliapril.
  • the ATR inhibitor is administered in combination with one or more angiotensin II receptor blockers.
  • the angiotensin II receptor blocker is selected from azilsartan, candesartan, eprosartan, irbesartan, losartan, olmesartan, telmisartan, and valsartan.
  • the ATR inhibitor is administered in combination with one or more beta-blockers.
  • the beta-blocker is selected from acebutolol, atenolol, betaxolol, bisoprolol/hydrochlorothiazide, bisoprolol, metoprolol, nadolol, propranolol, and sotalol.
  • the ATR inhibitor is administered in combination with one or more alpha and beta-blocker.
  • the alpha and beta-blocker is carvedilol or labetalol hydrochloride.
  • the ATR inhibitor is administered in combination with one or more interferons.
  • the ATR inhibitor is administered in combination with one or more angiotensin receptor-neprilysin inhibitors.
  • the angiotensin receptor-neprilysin inhibitor is sacubitril/valsartan.
  • the ATR inhibitor is administered in combination with one or more calcium channel blockers.
  • the calcium channel blocker is selected from amlodipine, diltiazem, felodipine, nifedipine, nimodipine, nisoldipine, and verapamil.
  • the ATR inhibitor is administered in combination with one or more vasodilators.
  • the one or more vasodilator is selected from isosorbide dinitrate, isosorbide mononitrate, nitroglycerin, and minoxidil.
  • the ATR inhibitor is administered in combination with one or more diuretics.
  • the one or more diuretics is selected from acetazolamide, amiloride, bumetanide, chlorothiazide, chlorthalidone, furosemide, hydrochlorothiazide, indapamide, metolazone, spironolactone, and torsemide.
  • the ATR inhibitor is administered in combination with one or more muscle relaxants.
  • the muscle relaxant is an antispasmodic or antispastic.
  • the one or more muscle relaxants is selected from carisoprodol, chlorzoxazone, cyclobenzaprine, metaxalone, methocarbamol, orphenadrine, tizanidine, baclofen, dantrolene, and diazepam.
  • the ATR inhibitor is administered in combination with one or more antiviral medications.
  • the antiviral medication is remdesivir.
  • the ATR inhibitor is administered in combination with one or more additional therapeutic agents selected from antiparasitic drugs (including, but not limited to, hydroxychloroquine, chloroquine, ivermectin), antivirals (including, but not limited to, tranexamic acid, nafamostat, virazole [ribavirin], lopinavir/ritonavir, favipiravir, leronlimab, interferon beta- la, interferon beta- lb, beta-interferon), antibiotics with intracellular activities (including, but not limited to azithromycin, nitrazoxamide), statins and other combination cholesterol lowering and anti-inflammatory drugs (including, but not limited to, lovastatin), specific cytokine inhibitors (including, but not limited to, clazakizumab, adalimumab, etanercept, golimumab, infliximab, sarilumab
  • the combination of a ATR inhibitor with one or more additional therapeutic agents reduces the effective amount (including, but not limited to, dosage volume, dosage concentration, and/or total drug dose administered) of the ATR inhibitor and/or the one or more additional therapeutic agents administered to achieve the same result as compared to the effective amount administered when the ATR inhibitor or the additional therapeutic agent is administered alone.
  • the combination of a ATR inhibitor with the additional therapeutic agent reduces the total duration of treatment compared to administration of the additional therapeutic agent alone.
  • the combination of an ATR inhibitor with the additional therapeutic agent reduces the side effects associated with administration of the additional therapeutic agent alone.
  • the combination of an effective amount of the ATR inhibitor with the additional therapeutic agent is more efficacious compared to an effective amount of the ATR inhibitor or the additional therapeutic agent alone. In one embodiment, the combination of an effective amount of the ATR inhibitor with the one or more additional therapeutic agent results in one or more additional clinical benefits than administration of either agent alone.
  • treatment refers to reversing, alleviating, delaying the onset of, or inhibiting the progress of a viral infection, or one or more symptoms thereof, as described herein.
  • treatment is administered after one or more symptoms have developed.
  • treatment is administered in the absence of symptoms.
  • treatment is administered to a susceptible individual prior to the onset of symptoms (e.g., in light of a known exposure to an infected person and/or in light of comorbidities which are predictors for severe disease, or other susceptibility factors).
  • Calu-3 cells were seeded on two 384 well plates. Plate 1 contained compounds plus virus SARS-CoV2/ZG/297-20 Passage 6 0.05 multiplicity of infection and Plate 2 contained compounds only. For each well, 15,000 Calu-3 cells were seeded in 50 pL/well in full growth medium (EMEM, 10% FCS, 1% Pen/strep). The cells were grown for 48 hours at 37°C and 5% CO2. After this time, the medium in both plates was changed and fresh medium was added to each well.
  • EMEM EM, 10% FCS, 1% Pen/strep
  • each compound with respective concentrations were added to the specified wells in duplicates for 1 hour and were infected afterwards with SARS-Cov-2 in a MOI of 0.05.
  • the final volume of each well contained 5 pL compound, 5 pL virus (diluted and amount adjusted to 0.05 MOI), and 40 pL EMEM full medium for a total of 50 pL per well.
  • the plate was monitored by Incucyte microscopy after virus addition at 2h intervals, for a total observation time of 120 hours.
  • HFF human foreskin fibroblasts
  • Cells were seeded in complete media (DMEM (Gibco, 61965026) supplemented with 10% FBS (Gibco 10500064) and IX p/s (Gibco 15070063)) at 4,000 cells/1 OOmI/well in four 96 well plates: two for the cytotoxicity assay and two for the infectivity assay. After seeding, the plates were incubated at RT for 5 minutes for even distribution, and then at 37°C, 5% C02 until the following day.
  • complete media DMEM (Gibco, 61965026) supplemented with 10% FBS (Gibco 10500064) and IX p/s (Gibco 15070063)
  • Compound 1 and Control were diluted from 10 mM stock solutions 1:50 to 200 mM in supplemented media (DMEM (Gibco, 61965026) supplemented with 5% FBS (Gibco 10500064) and IX p/s (Gibco 15070063), and 225m1 of these diluted stocks or diluent only (1% DMSO) were added in triplicate to the top raw (A) of a round bottom 96 well plate.
  • DMEM supplemented media
  • FBS Gibco 10500064
  • IX p/s Gabco 15070063
  • the virus stock (HCMV Merlin strain, 1x106 IU/ml) was diluted 5-fold with supplemented media to bring the concentration to 2x105 IU/ml. After lh pre-treatment, media/treatment was removed from the cells and 50 m ⁇ per well of treatment from the dilution plate were re-transferred to the cells in corresponding positions in the infectivity plates. 50 m ⁇ virus per well (MOI ⁇ 1) were added, except the uninfected control, where 50 m ⁇ of supplemented media without virus were added.
  • Cytotoxicity was detected by MTT assay.
  • MTT reagent Sigma, M5655
  • M5655 M5655
  • the media was removed and the precipitate solubilised with a mixture of 1:1 IsopropanokDMSO for 20 minutes.
  • the supernatant was transferred to a clean plate and signal read at 570nm.

Abstract

The present invention encompasses ATR inhibitor for use in the treatment of virus infections, including SARS-CoV infections such as COVID-19, alone or in combination with one or more additional therapeutic agents.

Description

COMPOUNDS FOR THE TREATMENT OF VIRAL INFECTIONS
TECHNICAL FIELD OF THE INVENTION
[0001] The present invention provides for the use of ataxia telangiectasia and Rad3-related protein (ATR) inhibitors in the treatment of virus infections, including SARS-CoV infections such as COVTD-19.
BACKGROUND OF THE INVENTION
[0002] ATR kinase is a protein kinase involved in cellular responses to certain forms of DNA damage (e.g., double strand breaks and replication stress). ATR kinase acts with ATM ("ataxia telangiectasia mutated") kinase and many other proteins to regulate a cell's response to double strand DNA breaks and replication stress, commonly referred to as the DNA Damage Response ("DDR"). The DDR stimulates DNA repair, promotes survival and stalls cell cycle progression by activating cell cycle checkpoints, which provide time for repair. Without the DDR, cells are much more sensitive to DNA damage and readily die from DNA lesions induced by endogenous cellular processes such as DNA replication or exogenous DNA damaging agents commonly used in cancer therapy.
[0003] ATR is upregulated in a variety of cancer cell types and plays a key role in DNA repair, cell cycle progression, and survival it is activated by DNA damage caused during DNA replication- associated stress. Inhibitors of ataxia telangiectasia and rad3 -related (ATR) kinase prevents ATR- mediated signaling in the ATR-checkpoint kinase 1 (Chkl) signaling pathway. This prevents DNA damage checkpoint activation, disrupts DNA damage repair, and induces tumor cell apoptosis. ATR inhibitors are in clinical development of various solid tumors, e.g. small-cell cancers, urothelial carcinoma and ovarian cancer.
Coronaviruses
[0004] Coronaviruses (CoVs) are positive-sense, single-stranded RNA (ssRNA) viruses of the order Nidovirales, in the family Coronaviridae. There are four sub-types of coronaviruses - alpha, beta, gamma and delta - with the Alphacoronaviruses and Betacoronaviruses infecting mostly mammals, including humans. Over the last two decades, three significant novel coronaviruses have emerged which jumped from a non-human mammal hosts to infect humans: the severe acute respiratory syndrome (SARS-CoV-1) which appeared in 2002, Middle East respiratory syndrome (MERS-CoV) which appeared in 2012, and COVTD-19 (SARS-CoV-2) which appeared in late 2019. By mid- June of 2020, over 7.8 million people are known to have been infected, and over 432,000 people have died. Both numbers likely represent a significant undercount of the devastation wrought by the disease.
COVID-19
[0005] SARS-CoV-2 closely resembles SARS-CoV-1, the causative agent of SARS epidemic of 2002-03 (Fung, et al, Annu. Rev. Microbiol. 2019. 73:529-57). Severe disease has been reported in approximately 15% of patients infected with SARS-CoV-2, of which one third progress to critical disease (e.g. respiratory failure, shock, or multi organ dysfunction (Siddiqi, et al, J. Heart and Lung Trans. (2020), doi: https://doi.Org/10.1016/j.healun.2020.03.012, Zhou, et al, Lancet 2020; 395: 1054-62. https://d01.0rg/l 0.1016/S0140-6736(20)30566-3). Fully understanding the mechanism of viral pathogenesis and immune responses triggered by SARS- CoV-2 would be extremely important in rational design of therapeutic interventions beyond antiviral treatments and supportive care. Much is still being discovered about the various ways that COVID-19 impacts the health of the people that develop it.
[0006] Severe acute respiratory syndrome (SARS)-Corona Virus-2 (CoV-2), the etiologic agent for coronavirus disease 2019 (COVID-19), has caused a pandemic affecting almost eight million people worldwide with a case fatality rate of 2-4% as of June 2020. The virus has a high transmission rate, likely linked to high early viral loads and lack of pre-existing immunity (He, et. al, Nat Med 2020 https://doi.org/10.1038/s41591-020-0869-5). It causes severe disease especially in the elderly and in individuals with comorbidities. The global burden of COVID-19 is immense, and therapeutic approaches are increasingly necessary to tackle the disease. Intuitive anti -viral approaches including those developed for enveloped RNA viruses like HIV-1 (lopinavir plus ritonavir) and Ebola virus (remdesivir) have been implemented in testing as investigational drugs (Grein et al, NEJM 2020 https://doi.org/10.1056/NEJMoa2007016 Cao,et al, NEJM 2020 DOI: 10.1056/NEJMoa2001282). But given that many patients with severe disease present with immunopathology, host-directed immunomodulatory approaches are also being considered, either in a staged approach or concomitantly with antivirals (Metha, et al, The Lancet 2020; 395(10229) DOI: https://doi.org/10.1016/S0140-6736(20)30628-0, Stebbmg, et al, Lancet Infect Dis 2020. https://doi.org/10.1016/S1473-3099(20)30132-8). [0007] While there are many therapies being considered for use in treatment of COVID-19, there are as yet no approved medications to treat the disease, and no vaccine available. To date, treatment typically consists only of the available clinical mainstays of symptomatic management, oxygen therapy, with mechanical ventilation for patients with respiratory failure. Thus, there is an urgent need for novel therapies to address the different stages of the SARS-CoV-2 infectious cycle (Siddiqi, et al).
Human cytomegalovirus (
Figure imgf000004_0001
[0008] Human cytomegalovirus (HCMV) (also human betaherpesvirus 5 (HHV-5), cytomegalovirus (ZMV), cytomegalovirus (CMV)) is an enveloped, double-stranded DNA virus (dsDNA), belongs to the family Herpesviridae, genus Cytomegalovirus and is distributed worldwide. Transmission occurs via saliva, urine, sperm secretions, and during blood transfusion.
[0009] Human cytomegalovirus (HCMV) is a major cause of birth defects and opportunistic infections in immunosuppressed individuals, and a possible cofactor in certain cancers, organ transplant patients under immunosuppressive therapy are at high risk for viral infections; activation of a latent virus as well as donor or community acquired primary infections can cause significant complications including graft rejection, morbidity, and mortality Herpesviruses (e.g HCMV, HSV1), polyomaviruses (e g. BKV and JCV), hepatitis viruses (HBV and HCV) and respiratory viruses (e.g. influenza A, adenovirus) are the 4 major viral classes infecting these patients. Cytomegalovirus (HCMV) is the most prevalent post-transplant pathogen, HCMV can infect most organs, and despite the availability of HCMV antivirals such as acyclovir or ganciclovir, nephrotoxic side effects and increasing rates of drug-resistance significantly reduce graft and patient survival In addition, HCMV-mediated immune modulation can reactivate distinct latent viruses carried by most adults.
Flavivirus Dengue
[0010] Flaviviruses, which are transmitted by mosquitoes or ticks, cause life-threatening infections in man, such as encephalitis and hemorrhagic fever. Four distinct, but closely related serotypes of the flavivirus dengue are known, so-called DENV-1 , -2, -3, and -4. Dengue is endemic in most tropical and sub-tropical regions around the world, predominantly in urban and semi-urban areas. According to the World Health Organization (WHO), 2.5 billion people of which 1 billion children are at risk of DENV infection (WHO, 2002). An estimated 50 to 100 million cases of dengue fever [DF], half a million cases of severe dengue disease (i.e. dengue hemorrhagic fever [DHF] and dengue shock syndrome [DSS]), and more than 20,000 deaths occur worldwide each year. DHF has become a leading cause of hospitalization and death amongst children in endemic regions. Altogether, dengue represents the most common cause of arboviral disease. Because of recent large outbreaks in countries situated in Latin America, South-East Asia and the Western Pacific (including Brazil, Puerto Rico, Venezuela, Cambodia, Indonesia, Vietnam, Thailand), numbers of dengue cases have risen dramatically over the past years. Not only is the number of dengue cases increasing as the disease is spreading to new areas, but the outbreaks tend to be more severe.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011] Figure 1 shows a graph depicting the confluence of Calu-3 cells when treated with and Compound 1 of the invention in a concentration range from ImM to 81mM as compared to uninfected cells and SARS-Cov-2 infected cells without exposure to the therapeutic agent (Control infected cells (green circles); Control uninfected cells (red squares); With Compound 1 in a concentration of 81 pm (blue triangles with point upwards), 27 pm (blue triangles with point downwards), 9pm (blue diamonds), 3 pm (blue squares), lpm (blue circles)).
[0012] Figure 2 shows a graph depicting the confluence of Calu-3 cells when treated with and Compound 2 of the invention in a concentration range from 9mM to 81mM as compared to uninfected cells and SARS-Cov-2 infected cells without exposure to the therapeutic agent (Control infected cells (green circles); Control uninfected cells (red squares); With Compound 1 in a concentration of 81pm (black triangles with point upwards), 27 pm (black triangles with point downwards), 9pm (black diamonds)).
[0013] Figure 3 shows a graph depicting the influence of Compound 1 on the viral replication in human foreskin fibroblasts infected with Cytomegalovirus (black dots) and on cell viability (gray squares).
[0014] Figure 4 shows a graph depicting the influence of Compound 2 on the viral replication in Vero cells infected with DENV-2. Intersection of dotted lines indicates the half maximal effective concentration (ECso), which is 0.46 pm. [0015] Figure 5 shows a graph depicting the influence of Compound 2 on the viability of Vero cells. Intersection of dotted lines indicates the half maximal cytotoxic concentration (CC50), which is 6.80 pm.
SUMMARY OF THE INVENTION
[0016] In a first embodiment, the invention provides the ATR inhibitors of the invention for use in the treatment of viral infections in a subject in need thereof. In one aspect of this embodiment, the viral infection is a single-strand RNA viral infection. In another aspect of this embodiment, the viral infection is a coronavirus infection. In a further aspect of this embodiment, the viral infection is a SARS-CoVl, MERS-CoV, or SARS-CoV-2 infection. In a final aspect of this embodiment, the viral infection is a SARS-CoV-2 infection.
[0017] A second embodiment is a method of treating a coronavirus infection in a subject in need thereof, comprising administering an effective amount of an ATR inhibitor, or a pharmaceutically acceptable salt thereof, to the subject. In one aspect of this embodiment, the administration of compound
Figure imgf000006_0001
reduces the viral load in the subject. In one aspect of this embodiment, the ATR inhibitor is administered prior to COVID- 19 pneumonia development. In a further aspect of this embodiment, the subject has a mild to moderate SARS-CoV-2 infection. In an additional aspect of this embodiment, the subject is asymptomatic at the start of the administration regimen.
[0018] In another embodiment, the viral infection is a double-strand DNA viral infection. In one aspect of this embodiment, the viral infection is a HCMV infection. A preferred embodiment is a method of treating a Cytomegalovirus infection in a subject in need thereof, comprising administering an effective amount of an ATR inhibitor, or a pharmaceutically acceptable salt thereof, to the subject. In one aspect of this embodiment, the administration of compound
Figure imgf000007_0001
reduces the viral load in the subject.
[0019] In another embodiment, the viral infection is a Flavivirus Dengue infection. In one aspect of this embodiment, the viral infection is a DENV-1, -2, -3, and -4 infection. In a final aspect of this embodiment, the viral infection is a Dengue virus serotype 2 (DENV-2) infection. A preferred embodiment is a method of treating a Flavivirus Dengue virus infection in a subject in need thereof, comprising administering an effective amount of an ATR inhibitor, or a pharmaceutically acceptable salt thereof, to the subject. In one aspect of this embodiment, the administration of compound
Figure imgf000007_0002
reduces the viral load in the subject.
[0020] The invention of this patent application can also be summarized as follows: An ATR inhibitor or a pharmaceutically acceptable salt thereof for use in the treatment of a coronavirus infection. Use of an ATR inhibitor or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for the treatment of a coronavirus infection. An ATR inhibitor or a pharmaceutically acceptable salt thereof for use in the treatment of a Cytomegalovirus infection. Use of an ATR inhibitor or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for the treatment of a Flavivirus Dengue infection. An ATR inhibitor or a pharmaceutically acceptable salt or solvate thereof for use in the treatment of a Dengue virus infection. Use of an ATR inhibitor or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for the treatment of a Flavivirus Dengue infection.
DETAILED DESCRIPTION
[0021] Coronaviruses comprise a diverse group of enveloped positive-strand RNA viruses that are responsible for several human diseases, most notably the severe acute respiratory syndrome (SARS) epidemics in 2003 and 2020.
[0022] Infectious Bronchitis Virus (IBV), a highly infectious avian gamma-coronavirus, that primarily targets cells of the respiratory tract, can inhibit cell growth by inducing cell cycle arrest in G2 and S-phases in infected cells (Dove B. et al.: Cell cycle perturbations induced by infection with the coronavirus infectious bronchitis virus and their effect on virus replication. J. Virol. 80, 4147-4156, 2006; Li, F.Q. et al: Cell cycle arrest and apoptosis induced by the coronavirus infectious bronchitis virus in the absence of p53. Virology 365, 435-445, 2007). Xu et al. have shown that activation of the cellular DNA damage response is one of the mechanisms exploited by Coronavirus to induce cell cycle arrest and that suppression of the ATR kinase activity by chemical inhibitors and siRNA-mediated knockdown of ATR reduced the IBV-induced ATR signaling and inhibited the replication of IBV (Xu L.H. et al.: Coronavirus Infection Induces DNA Replication Stress Partly through Interaction of Its Nonstructural Protein 13 with the pi 25 Subunit of DNA Polymerase J Biol Chem 286: 39546-39559, 2011).
[0023] Recent papers have suggested a correlation between SARS-CoV-2 viral load, symptom severity and viral shedding (He, et al; Liu, et al, Lancet Infect Dis 2020. https://doi.org/10.1016/S1473-3099(20)30232-2). Some antiviral drugs administered at symptom onset to blunt coronavirus replication are in the testing phase (Grein, et al; Taccone, et al), but as yet none have shown much promise. Being able to slow the viral reproduction in the early stages of infection may allow the subject to avoid severe disease. [0024] It is believed that compounds of the invention inhibit the coronavirus induced DNA damage response and the replication of the coronavirus in the host by inhibiting the virus induced activation of cellular DNA damage response. It is conceived that compounds of the invention may inhibit nucleic acid replication, virus assembly, new virus particle transport, and/or virus release. The result of administration of a compound of the invention is to reduce viral replication, which in turn will reduce viral load, and reduce the severity of disease.
[0025] Whatever the exact mechanism of action for the antiviral properties of the compounds of the invention, it is proposed that administration thereof may have one or more clinical benefits, as described further herein.
[0026] “COVTD-19” is the name of the disease which is caused by a SARS-CoV-2 infection. While care was taken to describe both the infection and disease with accurate terminology, “COVTD-19” and “SARS-CoV-2 infection” are meant to be roughly equivalent terms.
[0027] As of the writing of this application, the determination and characteristics of the severity of COVTD-19 patients/symptoms has not been definitively established. However, in the context of this invention, “mild to moderate” COVTD-19 occurs when the subject presents as asymptomatic or with less severe clinical symptoms (e.g., low grade or no fever (<39.1°C), cough, mild to moderate discomfort) with no evidence of pneumonia, and generally does not require medical attention. When “moderate to severe” infection is referred to, generally patients present with more severe clinical symptoms (e.g., fever >39.1°C, shortness of breath, persistent cough, pneumonia, etc.). As used herein “moderate to severe” infection typically requires medical intervention, including hospitalization. During the progression of disease, a subject can transition from “mild to moderate” to “moderate to severe” and back again in one course of bout of infection.
[0028] Treatment of COVTD-19 using the methods of this invention include administration of an effective amount of an ATR inhibitor of the invention at any stage of the infection to prevent or reduce the symptoms associated therewith. Typically, subjects will be administered an effective amount of an ATR inhibitor of the invention after definitive diagnosis and presentation with symptoms consistent with a SARS-CoV2 infection, and administration will reduce the severity of the infection and/or prevent progression of the infection to a more severe state. The clinical benefits upon such administration is described in more detail in the sections below.
[0029] Treatment of HCMV infection using the methods of this invention include administration of an effective amount of an ATR inhibitor of the invention at any stage of the infection to prevent or reduce the symptoms associated therewith. Typically, subjects will be administered an effective amount of an ATR inhibitor of the invention after definitive diagnosis and presentation with symptoms consistent with a HCMV infection, and administration will reduce the severity of the infection and/or prevent progression of the infection to a more severe state. The clinical benefits upon such administration is described in more detail in the sections below.
[0030] Treatment of Flavivirus Dengue infection using the methods of this invention include administration of an effective amount of an ATR inhibitor of the invention at any stage of the infection to prevent or reduce the symptoms associated therewith. Typically, subjects will be administered an effective amount of an ATR inhibitor of the invention after definitive diagnosis and presentation with symptoms consistent with a Flavivirus Dengue infection, and administration will reduce the severity of the infection and/or prevent progression of the infection to a more severe state. The clinical benefits upon such administration is described in more detail in the sections below.
1. Compounds and Definitions
[0031] One embodiment is use of a compound selected from the group consisting of:
Figure imgf000010_0001
(2-Amino-6-fluoro-pyrazolo[l,5-a]pyrimidine-3-carboxylic acid [5'-fluoro-4-(4-oxetan-3-yl- piperazine-l-carbonyl)-3,4,5,6-tetrahydro-2H-[l,4']bipyridinyl-3'-yl]-amide) (hereinafter also referred to as “Compound 1”), and
Figure imgf000011_0001
2- Amino-6-fluoro-N- [5 -fluoro-4-( 1 -methyl- 1 H-imidazol-5 -y l)pyri din-3 -yl] pyrazolo [1,5- a]pyrimidine-3-carboxamide (hereinafter also referred to as “Compound 2”). or a pharmaceutically acceptable salt thereof for the treatment of a viral infection.
[0032] Compound 1 is disclosed in WO 2014/089379 A1 as Compound I-G-32 (Example 3f), Compound 2 is disclosed in WO 2014/089379 A1 as Compound I-C-79.
[0033] The above compounds may either be used in their free forms or as pharmaceutically acceptable salts. The free compounds may be converted into the associated acid-addition salt by reaction with an acid, for example by reaction of equivalent amounts of the base and the acid in an inert solvent, such as, for example, ethanol, and subsequent evaporation. Suitable acids for this reaction are, in particular, those which give physiologically acceptable salts, such as, for example, hydrogen halides (for example hydrogen chloride, hydrogen bromide or hydrogen iodide), other mineral acids and corresponding salts thereof (for example sulfate, nitrate or phosphate and the like), alkyl- and monoarylsulfonates (for example ethanedisulfonate (edisylate), toluenesulfonate, napthalene-2-sulfonate (napsylate), benzenesulfonate) and other organic acids and corresponding salts thereof (for example fumarate, oxalate, acetate, trifluoroacetate, tartrate, maleate, succinate, citrate, benzoate, salicylate, ascorbate and the like.
[0034] Exemplary embodiments of the pharmaceutically acceptable, non-toxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange. Other pharmaceutically acceptable salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, glycolate, gluconate, glycolate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, palmoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, salicylate, stearate, succinate, sulfate, tartrate, thiocyanate, p-toluenesulfonate, undecanoate, valerate salts, and the like.
[0035] Additionally, unless otherwise stated, structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures including the replacement of hydrogen by deuterium or tritium, or the replacement of a carbon by a 13C- or 14C-enriched carbon are within the scope of this invention. In some embodiments, the group comprises one or more deuterium atoms.
2. Uses, Formulation and Administration
[0036] The term “patient” or “subject”, as used herein, means an animal, preferably a human. However, “subject” can include companion animals such as dogs and cats. In one embodiment, the subject is an adult human patient. In another embodiment, the subject is a pediatric patient. Pediatric patients include any human which is under the age of 18 at the start of treatment. Adult patients include any human which is age 18 and above at the start of treatment. In one embodiment, the subject is a member of a high-risk group, such as being over 65 years of age, immunocompromised humans of any age, humans with chronic lung conditions (such as, asthma, COPD, cystic fibrosis, etc.), and humans with other co-morbidities. In one aspect of this embodiment, the other co-morbidity is obesity, diabetes, and/or hypertension.
[0037] Compositions of the present invention are administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir. Preferably, the compositions are administered orally. In one embodiment, the oral formulation of a compound of the invention is a tablet or capsule form. In another embodiment, the oral formulation is a solution or suspension which may be given to a subject in need thereof via mouth or nasogastric tube. Any oral formulations of the invention may be administered with or without food. In some embodiments, pharmaceutically acceptable compositions of this invention are administered without food. In other embodiments, pharmaceutically acceptable compositions of this invention are administered with food.
[0038] Pharmaceutically acceptable compositions of this invention are orally administered in any orally acceptable dosage form. Exemplary oral dosage forms are capsules, tablets, aqueous suspensions or solutions. In the case of tablets for oral use, carriers commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried cornstarch. When aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents are optionally also added.
[0039] The amount of compounds of the present invention that are optionally combined with the carrier materials to produce a composition in a single dosage form will vary depending upon the host treated, the particular mode of administration. Preferably, provided compositions should be formulated so that a dosage of between 0.01 - 100 mg/kg body weight/day of the compound can be administered to a patient receiving these compositions.
[0040] In one embodiment, the total amount of ATR inhibitor administered to the subject in need thereof is between about 20 mg to about 2000 mg, which can be applied once to four times per day to once every week. In one aspect of this embodiment, the total amount of ATR inhibitor administered is between about 50 mg and about 350 mg per day and is preferably administered once a day.
[0041] In another embodiment, the ATR inhibitor is administered once a day. In another aspect of this embodiment, the ATR inhibitor is administered twice a day.
[0042] In any of the above embodiments, the ATR inhibitor is administered for a period of about 7 day to about 28 days. In one aspect of any of the above embodiments, the ATR inhibitor is administered for about 14 days. [0043] In one embodiment of the invention, the subject is suffering from COVID-19 pneumonia. In one embodiment of this invention, the subject is suffering from one or more symptoms selected from chest congestion, cough, blood oxygen saturation (SpC ) levels below 94%, shortness of breath, difficulty breathing, fever, chills, repeated shaking with chills, muscle pain and/or weakness, headache, sore throat and/or new loss of taste or smell.
[0044] In one embodiment of the invention, the subject is being treated inpatient in a hospital setting. In another embodiment, the subject is being treated in an outpatient setting. In one aspect of the preceding embodiments, the subject may continue administration of the ATR inhibitors after being transitioned from being treated from an inpatient hospital setting to an outpatient setting.
[0045] In one embodiment, the administration of the ATR inhibitors results in one or more clinical benefit. In one aspect of this embodiment, the one or more clinical benefit is selected from the group comprising: reduction of duration of a hospital stay, reduction of the duration of time in the Intensive Care Unit (ICU), reduction in the likelihood of the subject being admitted to an ICU, reduction in the rate of mortality, reduction in the likelihood of kidney failure requiring dialysis, reduction in the likelihood of being put on non-invasive or invasive mechanical ventilation, reduction of the time to recovery, reduction in the likelihood supplemental oxygen will be needed, improvement or normalization in the peripheral capillary oxygen saturation (SpCh levels) without mechanical intervention, reduction of severity of the pneumonia as determined by chest imaging (eg, CT or chest X ray), reduction in the cytokine production, reduction of the severity of acute respiratory distress syndrome (ARDS), reduction in the likelihood of developing ARDS, clinical resolution of the COVID-19 pneumonia and improvement of the Pa02/Ti02 ratio in the subject.
[0046] In another embodiment, the one or more clinical benefits includes the improvement or normalization in the peripheral capillary oxygen saturation (Sp02 levels) in the subject without mechanical ventilation or extracorporeal membrane oxygenation.
[0047] In a further embodiment, the one of more clinical benefits is reduction in the likelihood of being hospitalized, reduction in the likelihood of ICU admission, reduction in the likelihood being intubated (invasive mechanical ventilation), reduction in the likelihood supplemental oxygen will be needed, reduction in the length of hospital stay, reduction in the likelihood of mortality, and/or a reduction in likelihood of relapse, including the likelihood of rehospitalization. [0048] The invention also provides a method of treating a viral infection in a subject in need thereof comprising administering an effective amount of a compound of the invention to the subject. An amount effective to treat or inhibit a viral infection is an amount that will cause a reduction in one or more of the manifestations of viral infection, such as viral lesions, viral load, rate of virus production, and mortality as compared to untreated control subjects.
[0049] One embodiment of the invention is a method of treating a coronavirus infection in a subject in need thereof, comprising administering an effective amount of an ATR inhibitor, or a pharmaceutically acceptable salt thereof, to the subject. In one aspect of this embodiment, the subject is infected with SARS-CoV-2. In another aspect of this embodiment, the administration of the ATR inhibitor results in the reduction of the viral load in the subject.
[0050] In one embodiment, the ATR inhibitor is administered prior to COVTD-19 pneumonia developing. In another embodiment, the subject has a mild to moderate SARS-CoV-2 infection. In a further embodiment, the subject is asymptomatic at the start of the administration regimen. In another embodiment, the subject has had known contact with a patient who has been diagnosed with a SARS-CoV-2 infection. In an additional embodiment, the subject begins administration of the ATR inhibitor prior to being formally diagnosed with COVTD-19.
[0051] One embodiment is a method of treating a subject with COVTD-19 comprising administration of an effective amount of an ATR inhibitor to the subject. In one aspect of this embodiment, the subject has been previously vaccinated with a SARS-CoV-2 vaccine and develops vaccine-related exacerbation of infection, for example, an antibody-dependent enhancement or related antibody-mediated mechanisms of vaccine/antibody-related exacerbation.
[0052] In any of the above embodiments, the administration of the ATR inhibitor results in one or more clinical benefits to the subject. In one aspect of this embodiment, the one or more clinical benefits is shortening the duration of infection, reduction of the likelihood of hospitalization, reduction in the likelihood of mortality, reduction in the likelihood of ICU admission, reduction in the likelihood being placed on mechanical ventilation, reduction in the likelihood supplemental oxygen will be needed, and/or reduction in the length of hospital stay. In a further aspect of this embodiment, the one or more clinical benefit is the failure of the subject to develop significant symptoms of COVTD-19. [0053] The compounds of the invention can be administered before or following an onset of SARS-CoV-2 infection, or after acute infection has been diagnosed in a subject. The aforementioned compounds and medical products of the inventive use are particularly used for the therapeutic treatment. A therapeutically relevant effect relieves to some extent one or more symptoms of a disorder, or returns to normality, either partially or completely, one or more physiological or biochemical parameters associated with or causative of a disease or pathological condition. Monitoring is considered as a kind of treatment provided that the compounds are administered in distinct intervals, e.g. in order to boost the response and eradicate the pathogens and/or symptoms of the disease. The methods of the invention can also be used to reduce the likelihood of developing a disorder or even prevent the initiation of disorders associated with COVTD-19 in advance of the manifestation of mild to moderate disease, or to treat the arising and continuing symptoms of an acute infection.
[0054] Treatment of mild to moderate COVTD-19 is typically done in an outpatient setting. Treatment of moderate to severe COVTD-19 is typically done inpatient in a hospital setting. Additionally, treatment can continue in an outpatient setting after a subject has been discharged from the hospital.
[0055] The invention furthermore relates to a medicament comprising at least one compound according to the invention or a pharmaceutically salts thereof.
[0056] A “medicament” in the meaning of the invention is any agent in the field of medicine, which comprises one or more compounds of the invention or preparations thereof (e.g. a pharmaceutical composition or pharmaceutical formulation) and can be used in prophylaxis, therapy, follow-up or aftercare of patients who suffer from clinical symptoms and/or known exposure to virus infections including COVTD-19.
Combination Treatment
[0057] In various embodiments, the active ingredient may be administered alone or in combination with one or more additional therapeutic agents. A synergistic or augmented effect may be achieved by using more than one compound in the pharmaceutical composition. The active ingredients can be used either simultaneously or sequentially.
[0058] In one embodiment, the ATR inhibitor is administered in combination with one or more additional therapeutic agents. In one aspect of this embodiment, the one or more additional therapeutic agents is selected from anti-inflammatories, antibiotics, anti-coagulants, antiparasitic agent, antiplatelet agents and dual antiplatelet therapy, angiotensin converting enzyme (ACE) inhibitors, angiotensin II receptor blockers, beta-blockers, statins and other combination cholesterol lowering agents, specific cytokine inhibitors, complement inhibitors, anti-VEGF treatments, JAK inhibitors, immunomodulators, anti-inflammasome therapies, sphingosine-1 phosphate receptors binders, N-methyl-d-aspartate (NDMA) receptor glutamate receptor antagonists, corticosteroids, Granulocyte-macrophage colony-stimulating factor (GM-CSF), anti- GM-CSF, interferons, angiotensin receptor-neprilysin inhibitors, calcium channel blockers, vasodilators, diuretics, muscle relaxants, and antiviral medications.
[0059] In one embodiment, the ATR inhibitor is administered in combination with an antiviral agent. In one aspect of this embodiment, the antiviral agent is remdesivir. In another aspect of this embodiment, the antiviral agent is lopinavir-ritonavir, alone or in combination with ribavirin and interferon-beta.
[0060] In one embodiment, the ATR inhibitor is administrated in combination with a broad- spectrum antibiotic.
[0061] In one embodiment, the ATR inhibitor is administered in combination with chloroquine or hydroxychloroquine. In one aspect of this embodiment, the ATR inhibitor is further combined with azithromycin.
[0062] In one embodiment, the ATR inhibitor is administered in combination with interferon- 1-beta (Rebif®).
[0063] In one embodiment, the ATR inhibitor is administered in combination with one or more additional therapeutic agents selected from hydroxychloroquine, chloroquine, ivermectin, tranexamic acid, nafamostat, virazole, ribavirin, lopinavir/ritonavir, favipiravir, arbidol, leronlimab, interferon beta- la, interferon beta- lb, beta-interferon, azithromycin, nitrazoxamide, lovastatin, clazakizumab, adalimumab, etanercept, golimumab, infliximab, sarilumab, tocilizumab, anakinra, emapalumab, pirfenidone, belimumab, rituximab, ocrelizumab, anifrolumab, ravulizumab-cwvz, eculizumab, bevacizumab, heparin, enoxaparin, apremilast, coumadin, baricitinib, ruxolitinib, dapafbflozin, methotrexate, leflunomide, azathioprine, sulfasalazine, mycophenolate mofetil, colchicine, fingolimod, ifenprodil, prednisone, cortisol, dexamethasone, methylprednisolone, melatonin, otilimab, ATR-002, APN-01, camostat mesylate, brilacidin, IFX-1, PAX- 1-001, BXT-25, NP-120, intravenous immunoglobulin (IVIG), and solnatide.
[0064] In one embodiment, the ATR inhibitor is administered in combination with one or more anti-inflammatory agent. In one aspect of this embodiment, the anti-inflammatory agent is selected from corticosteroids, steroids, COX-2 inhibitors, and non-steroidal anti-inflammatory drugs (NS AID). In one aspect of this embodiment, the anti-inflammatory agent is diclofenac, etodolac, fenoprofen, flurbirprofen, ibuprofen, indomethacin, meclofenamate, mefenamic acid, meloxicam, nabumetone, naproxen, oxaprozin, piroxicam, sulindac, tolmetin, celecoxib, prednisone, hydrocortisone, fludocortisone, bethamethasone, prednisolone, triamcinolone, methylprednisone, dexamethasone, fluticasone, and budesonide (alone or in combination with formoterol, salmeterol, or vilanterol).
[0065] In one embodiment, the ATR inhibitor is administered in combination with one or more immune modulators. In one aspect of this embodiment the immune modulator is a calcineurin inhibitor, antimetabolite, or alkylating agent. In another aspect of this embodiment, the immune modulator is selected from azathioprine, mycophenolate mofetil, methotrexate, dapson, cyclosporine, cyclophosphamide, and the like.
[0066] In one embodiment, the ATR inhibitor is administered in combination with one or more antibiotics. In one aspect of this embodiment, the antibiotic is a broad-spectrum antibiotic. In another aspect of this embodiment, the antibiotic is a penicillin, anti-straphylococcal penicillin, cephalosporin, aminopenicillin (commonly administered with a betalactamase inhibitor), monobactam, quinoline, aminoglycoside, lincosamide, macrolide, tetracycline, glycopeptide, antimetabolite or nitroimidazole. In a further aspect of this embodiment, the antibiotic is selected from penicillin G, oxacillin, amoxicillin, cefazolin, cephalexin, cephotetan, cefoxitin, ceftriazone, augmentin, amoxicillin, ampicillin (plus sulbactam), piperacillin (plus tazobactam), ertapenem, ciprofloxacin, imipenem, meropenem, levofloxacin, moxifloxacin, amikacin, clindamycin, azithromycin, doxycycline, vancomycin, Bactrim, and metronidazole.
[0067] In one embodiment, the ATR inhibitor is administered in combination with one or more anti-coagulants. In one aspect of this embodiment, the anti-coagulant is selected from apixaban, dabigatran, edoxaban, heparin, rivaroxaban, and warfarin. [0068] In one embodiment, the ATR inhibitor is administered in combination with one or more antiplatelet agents and/or dual antiplatelet therapy. In one aspect of this embodiment, the antiplatelet agent and/or dual antiplatelet therapy is selected from aspirin, clopidogrel, dipyridamole, prasugrel, and ticagrelor.
[0069] In one embodiment, the ATR inhibitor is administered in combination with one or more ACE inhibitors. In one aspect of this embodiment, the ACE inhibitor is selected from benazepril, captopril, enalapril, fosinopril, lisinopril, moexipril, perindopril, quinapril, ramipril and trandoliapril.
[0070] In one embodiment, the ATR inhibitor is administered in combination with one or more angiotensin II receptor blockers. In one aspect of this embodiment, the angiotensin II receptor blocker is selected from azilsartan, candesartan, eprosartan, irbesartan, losartan, olmesartan, telmisartan, and valsartan.
[0071] In one embodiment, the ATR inhibitor is administered in combination with one or more beta-blockers. In one aspect of this embodiment, the beta-blocker is selected from acebutolol, atenolol, betaxolol, bisoprolol/hydrochlorothiazide, bisoprolol, metoprolol, nadolol, propranolol, and sotalol.
[0072] In another embodiment, the ATR inhibitor is administered in combination with one or more alpha and beta-blocker. In one aspect of this embodiment, the alpha and beta-blocker is carvedilol or labetalol hydrochloride.
[0073] In one embodiment, the ATR inhibitor is administered in combination with one or more interferons.
[0074] In one embodiment, the ATR inhibitor is administered in combination with one or more angiotensin receptor-neprilysin inhibitors. In one aspect of this embodiment, the angiotensin receptor-neprilysin inhibitor is sacubitril/valsartan.
[0075] In one embodiment, the ATR inhibitor is administered in combination with one or more calcium channel blockers. In one aspect of this embodiment, the calcium channel blocker is selected from amlodipine, diltiazem, felodipine, nifedipine, nimodipine, nisoldipine, and verapamil. [0076] In one embodiment, the ATR inhibitor is administered in combination with one or more vasodilators. In one aspect of this embodiment, the one or more vasodilator is selected from isosorbide dinitrate, isosorbide mononitrate, nitroglycerin, and minoxidil.
[0077] In one embodiment, the ATR inhibitor is administered in combination with one or more diuretics. In one aspect of this embodiment, the one or more diuretics is selected from acetazolamide, amiloride, bumetanide, chlorothiazide, chlorthalidone, furosemide, hydrochlorothiazide, indapamide, metolazone, spironolactone, and torsemide.
[0078] In one embodiment, the ATR inhibitor is administered in combination with one or more muscle relaxants. In one aspect of this embodiment, the muscle relaxant is an antispasmodic or antispastic. In another aspect of this embodiment, the one or more muscle relaxants is selected from carisoprodol, chlorzoxazone, cyclobenzaprine, metaxalone, methocarbamol, orphenadrine, tizanidine, baclofen, dantrolene, and diazepam.
[0079] In one embodiment, the ATR inhibitor is administered in combination with one or more antiviral medications. In one aspect of this embodiment, the antiviral medication is remdesivir.
[0080] In one embodiment, the ATR inhibitor is administered in combination with one or more additional therapeutic agents selected from antiparasitic drugs (including, but not limited to, hydroxychloroquine, chloroquine, ivermectin), antivirals (including, but not limited to, tranexamic acid, nafamostat, virazole [ribavirin], lopinavir/ritonavir, favipiravir, leronlimab, interferon beta- la, interferon beta- lb, beta-interferon), antibiotics with intracellular activities (including, but not limited to azithromycin, nitrazoxamide), statins and other combination cholesterol lowering and anti-inflammatory drugs (including, but not limited to, lovastatin), specific cytokine inhibitors (including, but not limited to, clazakizumab, adalimumab, etanercept, golimumab, infliximab, sarilumab, tocilizumab, anakinra, emapalumab, pirfenidone), complement inhibitors (including, but not limited to, ravulizumab-cwvz, eculizumab), anti-VEGF treatments (including, but not limited to, bevacizumab), anti-coagulants (including, but not limited to, heparin, enoxaparin, apremilast, coumadin), JAK inhibitors (including, but not limited to, baricitinib, ruxolitinib, dapafhflozin,), anti-inflammasone therapies (including, but not limited to, colchicine), sphingosine-1 phosphate receptors binders (including, but not limited to, fingolimod), N-methyl-d-aspartate (NDMA) receptor glutamate receptor antagonists (including, but not limited to, ifenprodil), corticosteroids (including, but not limited to, prednisone, cortisol, dexamethasone, methylprednisolone), GM-CSF, anti-GM-CSF (otilimab), ATR-002, APN-01, camostat mesylate, arbidol, brilacidin, IFX-1, PAX-1-001, BXT-25, NP-120, intravenous immunoglobulin (IVIG), and solnatide.
[0081] In some embodiments, the combination of a ATR inhibitor with one or more additional therapeutic agents reduces the effective amount (including, but not limited to, dosage volume, dosage concentration, and/or total drug dose administered) of the ATR inhibitor and/or the one or more additional therapeutic agents administered to achieve the same result as compared to the effective amount administered when the ATR inhibitor or the additional therapeutic agent is administered alone. In some embodiments, the combination of a ATR inhibitor with the additional therapeutic agent reduces the total duration of treatment compared to administration of the additional therapeutic agent alone. In some embodiments, the combination of an ATR inhibitor with the additional therapeutic agent reduces the side effects associated with administration of the additional therapeutic agent alone. In some embodiments, the combination of an effective amount of the ATR inhibitor with the additional therapeutic agent is more efficacious compared to an effective amount of the ATR inhibitor or the additional therapeutic agent alone. In one embodiment, the combination of an effective amount of the ATR inhibitor with the one or more additional therapeutic agent results in one or more additional clinical benefits than administration of either agent alone.
[0082] As used herein, the terms “treatment,” “treat,” and “treating” refer to reversing, alleviating, delaying the onset of, or inhibiting the progress of a viral infection, or one or more symptoms thereof, as described herein. In some embodiments, treatment is administered after one or more symptoms have developed. In other embodiments, treatment is administered in the absence of symptoms. For example, treatment is administered to a susceptible individual prior to the onset of symptoms (e.g., in light of a known exposure to an infected person and/or in light of comorbidities which are predictors for severe disease, or other susceptibility factors).
EXEMPLIFICATION
Example 1: Antiviral testing of Compounds
[0083] Calu-3 cells were seeded on two 384 well plates. Plate 1 contained compounds plus virus SARS-CoV2/ZG/297-20 Passage 6 0.05 multiplicity of infection and Plate 2 contained compounds only. For each well, 15,000 Calu-3 cells were seeded in 50 pL/well in full growth medium (EMEM, 10% FCS, 1% Pen/strep). The cells were grown for 48 hours at 37°C and 5% CO2. After this time, the medium in both plates was changed and fresh medium was added to each well.
[0084] On plate 1 : 5 pL of each compound with respective concentrations were added to the specified wells in duplicates for 1 hour and were infected afterwards with SARS-Cov-2 in a MOI of 0.05. The final volume of each well contained 5 pL compound, 5 pL virus (diluted and amount adjusted to 0.05 MOI), and 40 pL EMEM full medium for a total of 50 pL per well. The plate was monitored by Incucyte microscopy after virus addition at 2h intervals, for a total observation time of 120 hours.
[0085] Viability of cells determined with Cell Glo reagent (Promega); 50 pL reagent was added to each well, incubated at RT in dark for 10 min, then the luminescence was measured with the Biotek plate reader.
[0086] As apparent from Figures 1 and 2, both, Compound 1 and Compound 2 lead to a significant improvement of the confluence of the cells, returning the level of confluence to about the level of uninfected cells. The results shown in Figures 1 and 2 were reproducible.
Example 2: Antiviral testing - Cytomegalovirus
[0087] To determine the antiviral activity of the compounds, human foreskin fibroblasts (HFF) were treated with a 5 -fold serial dilution of each compound ranging from 100 pM to 0.0128 pM for lh before infection. Antiviral activity was determined five days later, using an immunofluorescence-based assay. Cytotoxicity was determined using anMTT assay on uninfected cells treated with the same concentrations of compound and for the same length of time. Acyclovir was included as an assay control.
Experimental Procedure
[0088] The antiviral activity of 8 dilutions of each compounds was explored following administration lh before infection with HCMV. Compound and virus were left on the cells for the entire duration of the experiment (5 days). The cytotoxicity of the same range of concentrations of compounds was determined by MTT assay. Cell plating
[0089] Cells were seeded in complete media (DMEM (Gibco, 61965026) supplemented with 10% FBS (Gibco 10500064) and IX p/s (Gibco 15070063)) at 4,000 cells/1 OOmI/well in four 96 well plates: two for the cytotoxicity assay and two for the infectivity assay. After seeding, the plates were incubated at RT for 5 minutes for even distribution, and then at 37°C, 5% C02 until the following day. Compound 1 and Control (Acyclovir) were diluted from 10 mM stock solutions 1:50 to 200 mM in supplemented media (DMEM (Gibco, 61965026) supplemented with 5% FBS (Gibco 10500064) and IX p/s (Gibco 15070063), and 225m1 of these diluted stocks or diluent only (1% DMSO) were added in triplicate to the top raw (A) of a round bottom 96 well plate.
[0090] 180 mΐ of 0.2% DMSO diluent were added in all other wells (rows B-H). In this way, the percentage of DMSO was kept constant at 0.2% across the serial dilution. Only in row A the concentration of DMSO was 1% (also in the uninfected/ untreated controls), reflecting the DMSO concentration in the first dilution from the stock. A five-fold serial dilution was performed by transferring 45 mΐ from row A into row B, mixing, and then again from row B into C etc. until row H.
Pre-treatment of cells
[0091] 50 mΐ of supplemented media per well were added to the cells in each plate (infectivity and cytotoxicity). 50 mΐ per well of treatment from the dilution plate were transferred to the cells in corresponding positions in each plate (infectivity and cytotoxicity). All plates were incubated at 37°C, 5% C02.
Infection
[0092] The virus stock (HCMV Merlin strain, 1x106 IU/ml) was diluted 5-fold with supplemented media to bring the concentration to 2x105 IU/ml. After lh pre-treatment, media/treatment was removed from the cells and 50 mΐ per well of treatment from the dilution plate were re-transferred to the cells in corresponding positions in the infectivity plates. 50 mΐ virus per well (MOI ~1) were added, except the uninfected control, where 50 mΐ of supplemented media without virus were added.
Fixation and development [0093] After five days, the infected plates were washed with PBS, fixed for 30 mins with 4% formaldehyde, washed again with PBS, and stored in PBS at 4°C overnight until staining. The cytotoxicity plates were treated with MTT to determine cell viability.
Injectivity readout
[0094] Cells were immunostained. For that any residual formaldehyde was quenched with 50 mM ammonium chloride, after which cells were permeabilised (0.1% Triton XI 00) and stained with an antibody recognising HCMV gB (The Native Antigen Company). The primary antibody was detected with an Alexa-488 conjugate secondary antibody (Life Technologies, A21207), and nuclei were stained with Hoechst. Images were acquired on an Opera Phenix high content confocal microscope (Perkin Elmer) using a 10X objective, and percentage infection calculated using Columbus software (infected cells/total cells x 100).
Cytotoxicity readout
[0095] Cytotoxicity was detected by MTT assay. For that the MTT reagent (Sigma, M5655) was added to the cells for 2h at 37°C, 5% C02, after which the media was removed and the precipitate solubilised with a mixture of 1:1 IsopropanokDMSO for 20 minutes. The supernatant was transferred to a clean plate and signal read at 570nm.
Example 3 Antiviral Testing - Flavivirus Dengue
[0096] The antiviral effect of Compounds is evaluated against Dengue virus serotype 2 (DENV-2) using cytopathic effect (CPE) inhibition assay. Cytotoxic effect was assessed in parallel.
[0097] Five-fold serial dilutions of Compound 2 were prepared at a starting concentration of 50mM and added in triplicate to 1.00E+04 Vero cells seeded in conical 96-well plates one day prior and incubated at 37°C and 5% C02 for one-hour. During the incubation time, viruses were thawed and inoculum prepared in infection medium. Stock and inoculum were maintained in wet ice at all time. Virus was then added to the Compound 2 dilutions/cells (1:1) and plates were incubated at 37°C and 5% C02 for 3-5 days.
[0098] Cells were immunostained. Then, medium was removed, cells were washed with PBS, fixed with cold 80%/20% (v/v) ethanol/methanol and incubated at -20°C for 20 minutes. After removal of fixative the plates were air-dried, washed and stained with specific Ab#l, washed and stained with Ab#2-HRP conjugated. Then, cells were washed, 3,3',5,5'-tetramethylbenzidine (TMB) substrate was added followed by addition of stop solution. The supernatant was transferred to a clean plate and signal read at 450nm.

Claims

CLAIMS WE CLAIM
1. A method of treating a coronavirus infection in a subject in need thereof, comprising administering an effective amount of an ATR inhibitor, or a pharmaceutically acceptable salt thereof, to the subject.
2. The method of claim 1 , wherein the coronavirus causes a S ARS or MERS infection.
3. The method of claim 1 or 2, wherein the coronavirus causes a SARS-CoV-1 or SARS- CoV-2 or MERS-CoV infection.
4. The method of any one of claims 1-3, wherein the coronavirus is SARS-CoV-2.
5. The method of any one of claims 1-4, wherein the ATR inhibitor is selected from the group consisting of:
Figure imgf000026_0001
and or a pharmaceutically acceptable salt thereof.
6. The method of any one of claims 1-5, wherein the administration of the ATR inhibitor results in the reduction of the viral load in the subject.
7. The method of any of claims 1-5, wherein the ATR inhibitor reduces or inhibits the virus induced activation of the DNA damage response in the infected cells.
8. The method of any one of the preceding claims, wherein the ATR inhibitor is administered prior to COVTD-19 pneumonia development.
9. The method of any one of the preceding claims, wherein the subject has a mild to moderate SARS-CoV-2 infection.
10. The method of any one of the previous claims, wherein the subject has been previously vaccinated with a SARS-CoV-2 vaccine and develops vaccine-related exacerbation of infection, for example, an antibody-dependent enhancement or related antibody-mediated mechanisms of vaccine/antibody-related exacerbation.
11. The method of any one of claims 1-10, wherein the subject is asymptomatic at the start of the treatment.
12. The method of claim 1-10, wherein the subject has had known contact with a patient who has been diagnosed with a SARS-CoV-2 infection.
13. The method of any one of claims 1-10, wherein the subject begins administration of the ATR inhibitor prior to being formally diagnosed with SARS-CoV-2 infection.
14. The method of any one of claims 1-10, wherein the administration of the ATR inhibitor results in one or more clinical benefits.
15. The method of claim 14, wherein the one or more clinical benefits is selected from: shortening the duration of infection, reduction of the likelihood of hospitalization, reduction in the likelihood of mortality, reduction in the likelihood of ICU admission, reduction in the likelihood being placed on mechanical ventilation, reduction in the likelihood supplemental oxygen will be needed, and/or reduction in the length of hospital stay.
16. The method of any one of the preceding claims, wherein the subject is undergoing outpatient treatment.
17. The method of any one of the preceding claims, further comprising administration of one or more additional therapeutic agent.
18. The method of claim 17, wherein the one or more additional therapeutic agents is selected from anti-inflammatories, antibiotics, anti-coagulants, antiparasitic agent, antiplatelet agents and dual antiplatelet therapy, angiotensin converting enzyme (ACE) inhibitors, angiotensin II receptor blockers, beta-blockers, statins and other combination cholesterol lowering agents, specific cytokine inhibitors, complement inhibitors, anti- VEGF treatments, JAK inhibitors, immunomodulators, anti-inflammasome therapies, sphingosine-1 phosphate receptors binders, N-methyl-d-aspartate (NDMA) receptor glutamate receptor antagonists, corticosteroids, Granulocyte-macrophage colony- stimulating factor (GM-CSF), anti-GM-CSF, interferons, angiotensin receptor-neprilysin inhibitors, calcium channel blockers, vasodilators, diuretics, muscle relaxants, and antiviral medications.
19. The method of claim 17, wherein the one or more additional therapeutic agents is an antiviral medication.
20. The method of claim 17, wherein the one or more additional therapeutic agents is remdesivir.
21. The method of claim 17, wherein the one or more additional therapeutic agents is lopinavir-ritonavir.
22. The method of claim 17, wherein the one or more additional therapeutic agents further includes ribavirin and interferon-beta.
23. The method of claim 17, wherein the one or more additional therapeutic agents is chloroquine or hydroxychloroquine.
24. The method of claim 17, wherein the one or more additional therapeutic agents further includes azithromycin.
25. The method of claim 17, wherein the one or more additional therapeutic agents is interferon- 1 -beta (Rebif®).
26. The method of claim 17, wherein the one or more additional therapeutic agent is selected from hydroxychloroquine, chloroquine, ivermectin, tranexamic acid, nafamostat, virazole [ribavirin], lopinavir/ritonavir, favipiravir, leronlimab, interferon beta- la, interferon beta- lb, beta-interferon, azithromycin, nitrazoxamide, lovastatin, clazakizumab, adalimumab, etanercept, golimumab, infliximab, sarilumab, tocilizumab, anakinra, emapalumab, pirfenidone, ravulizumab-cwvz, eculizumab, bevacizumab, heparin, enoxaparin, apremilast, coumadin, baricitinib, ruxolitinib, dapafliflozin, colchicine, fingolimod, ifenprodil, prednisone, cortisol, dexamethasone, methylprednisolone, GM-CSF, otilimab, ATR-002, APN-01, camostat mesylate, arbidol, brilacidin, IFX-1, PAX-1-001, BXT-25, NP-120, intravenous immunoglobulin (IVIG), and solnatide.
27. The method of any one of the preceding claims, wherein the ATR inhibitor is administered between about 20 mg to about 2000 mg, which is applied once to four times per day to once every week.
28. The method of any one of the preceding claims, wherein the total amount of ATR inhibitor administered is between about 50 mg and about 350 mg per day.
29. The method of any one of the preceding claims, wherein the ATR inhibitor is administered for about 7 days to about 21 days.
30. The method of any one of the preceding claims, wherein the ATR inhibitor is administered orally.
PCT/EP2021/066012 2020-06-18 2021-06-15 Compounds for the treatment of viral infections WO2021254978A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA3183649A CA3183649A1 (en) 2020-06-18 2021-06-15 Compounds for the treatment of viral infections
EP21732306.2A EP4168015A1 (en) 2020-06-18 2021-06-15 Compounds for the treatment of viral infections
IL299179A IL299179A (en) 2020-06-18 2021-06-15 Atr inhibitors for use in treatment of viral infections
JP2022577516A JP2023530001A (en) 2020-06-18 2021-06-15 Compounds for the treatment of viral infections
CN202180043104.9A CN115697342A (en) 2020-06-18 2021-06-15 Compounds for the treatment of viral infections
AU2021291358A AU2021291358A1 (en) 2020-06-18 2021-06-15 Compounds for the treatment of viral infections
US18/009,207 US20230226066A1 (en) 2020-06-18 2021-06-15 Compounds for the treatment of viral infections

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20180841.7 2020-06-18
EP20180841 2020-06-18

Publications (1)

Publication Number Publication Date
WO2021254978A1 true WO2021254978A1 (en) 2021-12-23

Family

ID=71108508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/066012 WO2021254978A1 (en) 2020-06-18 2021-06-15 Compounds for the treatment of viral infections

Country Status (8)

Country Link
US (1) US20230226066A1 (en)
EP (1) EP4168015A1 (en)
JP (1) JP2023530001A (en)
CN (1) CN115697342A (en)
AU (1) AU2021291358A1 (en)
CA (1) CA3183649A1 (en)
IL (1) IL299179A (en)
WO (1) WO2021254978A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022090063A1 (en) * 2020-10-26 2022-05-05 Merck Patent Gmbh Atr inhibitors for use in the treatment of viral infections

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014089379A1 (en) 2012-12-07 2014-06-12 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
WO2018049400A1 (en) * 2016-09-12 2018-03-15 University Of Florida Research Foundation, Incorporated Use of atr and chk1 inhibitor compounds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014089379A1 (en) 2012-12-07 2014-06-12 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
WO2014089379A9 (en) * 2012-12-07 2015-01-15 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
WO2018049400A1 (en) * 2016-09-12 2018-03-15 University Of Florida Research Foundation, Incorporated Use of atr and chk1 inhibitor compounds

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
CLEARITYFOUNDATION: "Berzosertib: Protein-Targeting Drug Used to Treat Cancer May Have Same Effect on Coronavirus", 17 June 2020 (2020-06-17), XP055834298, Retrieved from the Internet <URL:https://www.clearityfoundation.org/berzosertib-protein-targeting-drug-used-to-treat-cancer-may-have-same-effect-on-coronavirus/> [retrieved on 20210824] *
DOVE B. ET AL.: "Cell cycle perturbations induced by infection with the coronavirus infectious bronchitis virus and their effect on virus replication", J. VIROL., vol. 80, 2006, pages 4147 - 4156
FUNG ET AL., ANNU. REV. MICROBIOL., vol. 73, 2019, pages 529 - 57
GREIN ET AL., NEJM, 2020
HE, NAT MED, 2020, Retrieved from the Internet <URL:https://doi.org/10.1038/s41591-020-0869-5>
LI, F.Q. ET AL.: "Cell cycle arrest and apoptosis induced by the coronavirus infectious bronchitis virus in the absence of p53", VIROLOGY, vol. 365, 2007, pages 435 - 445, XP022196433, DOI: 10.1016/j.virol.2007.04.015
METHA ET AL., THE LANCET, vol. 395, no. 10229, 2020
SIDDIQI ET AL., J. HEART AND LUNG TRANS., 2020
STEBBING ET AL., LANCET INFECT DIS, 2020, Retrieved from the Internet <URL:https://doi.org/10.1016/S1473-3099(20)30232-2>
TIARE DUNLAP: "Two UCLA scientists receive grants from California's stem cell agency for COVID-19 vaccine and treatment research", UCLA BROAD STEM CELL CENTER, 12 June 2020 (2020-06-12), XP055834512, Retrieved from the Internet <URL:https://stemcell.ucla.edu/news/two-ucla-scientists-receive-grants-california%E2%80%99s-stem-cell-agency-covid-19-vaccine-and-treatment> [retrieved on 20210824] *
XU L.H. ET AL.: "Coronavirus Infection Induces DNA Replication Stress Partly through Interaction of Its Nonstructural Protein 13 with the p 1 25 Subunit of DNA Polymerase", J BIOL CHEM, vol. 286, 2011, pages 39546 - 39559
XU LING HUI ET AL: "Coronavirus Infection Induces DNA Replication Stress Partly through Interaction of Its Nonstructural Protein 13 with the p125 Subunit of DNA Polymerase [delta]", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 286, no. 45, 1 November 2011 (2011-11-01), US, pages 39546 - 39559, XP055833965, ISSN: 0021-9258, DOI: 10.1074/jbc.M111.242206 *
ZHOU ET AL., LANCET, vol. 395, 2020, pages 1054 - 62, Retrieved from the Internet <URL:https://doi.org/l0.1016/S0140-6736(20)30566-3>

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022090063A1 (en) * 2020-10-26 2022-05-05 Merck Patent Gmbh Atr inhibitors for use in the treatment of viral infections

Also Published As

Publication number Publication date
AU2021291358A1 (en) 2022-12-15
CN115697342A (en) 2023-02-03
CA3183649A1 (en) 2021-12-23
JP2023530001A (en) 2023-07-12
EP4168015A1 (en) 2023-04-26
IL299179A (en) 2023-02-01
US20230226066A1 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
JP6626437B2 (en) Combination of histone deacetylase inhibitor and either Her2 inhibitor or PI3K inhibitor
US10596144B2 (en) Treating or preventing nephrogenic diabetes insipidus
EP4125881A1 (en) New use of angiotensin ii type 2 receptor agonist
US20230226066A1 (en) Compounds for the treatment of viral infections
WO2022063869A2 (en) Compounds for the treatment of viral infections
US20240024308A1 (en) Tlr7/8 antagonists for the treatment of coronavirus infections
US20230226041A1 (en) Compounds for the treatment of viral infections
US20230301991A1 (en) Compounds for the treatment of viral infections
US20220233480A1 (en) Use of angiotensin ii type 2 receptor agonist
US20240033259A1 (en) Compositions and methods for treating or preventing disease associated with beta coronavirus infection
KR20220150348A (en) PLD for use in combination in the treatment of coronavirus
WO2022058323A1 (en) Compounds for the treatment of viral infections
CN116507335A (en) ATR inhibitors for the treatment of viral infections
WO2023222332A1 (en) Diphenyl ureas for the treatment of viral infections
RU2774928C2 (en) Use of glutarimide derivative for therapy of diseases associated with aberrant activity of interleukin-6
Lee et al. Efficacy and Safety of Ultra-Low-Dose Valganciclovir Chemoprophylaxis for Cytomegalovirus Infection in High-Risk Kidney Transplantation Patients
CN116600797A (en) Composition comprising tetrahydrocannabinol for the treatment of acute respiratory failure and/or acute respiratory distress syndrome

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21732306

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3183649

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021291358

Country of ref document: AU

Date of ref document: 20210615

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022577516

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021732306

Country of ref document: EP

Effective date: 20230118