WO2021254013A1 - 一种数据传输方法、装置、通信节点及存储介质 - Google Patents

一种数据传输方法、装置、通信节点及存储介质 Download PDF

Info

Publication number
WO2021254013A1
WO2021254013A1 PCT/CN2021/091902 CN2021091902W WO2021254013A1 WO 2021254013 A1 WO2021254013 A1 WO 2021254013A1 CN 2021091902 W CN2021091902 W CN 2021091902W WO 2021254013 A1 WO2021254013 A1 WO 2021254013A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
division multiplexing
space division
multiplexing group
antenna channel
Prior art date
Application number
PCT/CN2021/091902
Other languages
English (en)
French (fr)
Inventor
张德坤
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP21825541.2A priority Critical patent/EP4167496A4/en
Publication of WO2021254013A1 publication Critical patent/WO2021254013A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/362Aspects of the step size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range

Definitions

  • This application relates to a wireless communication network, for example, to a data transmission method, device, communication node, and storage medium.
  • MIMO Multiple-Input Multiple-Output
  • MIMO Multiple-Input Multiple-Output
  • a space division multiplexing group the precoding weights corresponding to each antenna channel are different, and the transmission power of the transmitted data needs to be controlled separately.
  • the pros and cons of the precoding weights and the rationality of the power allocation strategy directly affect the entire multi-user The spectral efficiency of the space division multiplexing group.
  • the precoding weights obtained by joint calculation of multi-user space division multiplexing are generally non-constant modulus weights. Due to the lack of effective mechanisms to comprehensively consider the orthogonality of the weights, the reliability of power allocation is low. If the power allocation is unreasonable, it will also affect the data transmission performance. For example, the interference between each antenna channel is large, the signal to interference plus noise ratio (SINR) and spectrum efficiency of the space division multiplexing group On the low side.
  • SINR signal to interference plus noise ratio
  • An embodiment of the application provides a data transmission method, including: determining a power control factor and a reference power of an antenna channel in a space division multiplexing group; according to the power control factor and the reference power, based on the space division multiplexing group Calculate the power allocation factor of each antenna channel corresponding to the precoding weight value of each antenna channel; and transmit data through the corresponding antenna channel according to the power allocation factor and precoding weight value of each antenna channel.
  • An embodiment of the present application also provides a data transmission device, including: a parameter determination module configured to determine the power control factor and reference power of the antenna channels in the space division multiplexing group; the power distribution module configured to determine the power control factor according to the power control factor And the reference power, based on the precoding weight corresponding to each antenna channel in the space division multiplexing group, calculate the power allocation factor of each antenna channel; the transmission module is set to be based on the The power allocation factor and precoding weight are used to transmit data through the corresponding antenna channel.
  • An embodiment of the present application also provides a communication node, including: one or more processors; a storage device for storing one or more programs; when the one or more programs are used by the one or more processors Execution, so that the one or more processors implement the above-mentioned data transmission method.
  • the embodiment of the present application also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium, and when the program is executed by a processor, the above-mentioned data transmission method is realized.
  • FIG. 1 is a flowchart of a data transmission method provided by an embodiment of this application.
  • FIG. 2 is a flowchart of another data transmission method provided by an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of a data transmission device provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of the hardware structure of a communication node provided by an embodiment of the application.
  • the present application provides a data transmission method, device, communication node, and storage medium to improve the reliability of the power distribution of each antenna channel, thereby improving data transmission performance.
  • a data transmission method is provided.
  • the precoding weight corresponding to each antenna channel is comprehensively considered, and the transmission power of each antenna channel is reasonably allocated, and the power control of each antenna channel is performed. And sending data on this basis can reduce the interference between the antenna channels and improve the SINR and spectrum efficiency of the space division multiplexing group.
  • FIG. 1 is a flowchart of a data transmission method provided by an embodiment of the application.
  • This method can be applied to communication nodes, which are network terminals, such as base stations.
  • the network Based on the sounding reference signal (Sounding Reference Signal, SRS), the network estimates the channel matrix H or the codebook for channel state information (Channel Statement Information, CSI) feedback.
  • SRS Sounding Reference Signal
  • CSI Channel State Information
  • the users who meet the constraints are divided into empty spaces.
  • Division multiplexing group Multiple space division multiplexing groups can be formed in the same time slot (slot), and each space division multiplexing group includes at least one user, and one user refers to one User Equipment (UE).
  • UE User Equipment
  • this method is used to allocate power to the antenna channels and transmit data.
  • the method provided in this embodiment includes steps 110-130.
  • step 110 the power control factor and reference power of the antenna channels in the space division multiplexing group are determined.
  • step 120 the power allocation factor of each antenna channel is calculated based on the precoding weight corresponding to each antenna channel in the space division multiplexing group according to the power control factor and the reference power.
  • step 130 according to the power allocation factor and precoding weight of each antenna channel, data is transmitted through the corresponding antenna channel.
  • each space division multiplexing group has a corresponding power control factor and reference power as a basis for the power allocation of each antenna channel in the space division multiplexing group.
  • the power control factor is related to the comprehensive SINR of each user in the space division multiplexing group and the number of space layers; the reference power is related to the power sharing between the carriers of each user in the space division multiplexing group, and single resource block (Resource Block, RB)
  • the basic power of is related to the number of unscheduled (idle) RBs.
  • the power control factor and reference power can be calculated by the Media Access Control (MAC) layer and passed to the Physical Layer (Physical Layer).
  • the physical layer combines the precoding weights corresponding to each antenna channel to calculate the power allocation factor and base it on The allocated power transmits data.
  • the power control factor is obtained by equalizing the SINR of each user between the different spatial layers of the space division multiplexing group, and referring to the reference power, the power of each antenna channel can be allocated and controlled, and the corresponding antenna channel is combined.
  • the precoding weight of each antenna can be comprehensively considered for the transmission of data on each user in the entire space division multiplexing group, and the transmission power of each antenna channel can be reasonably allocated.
  • the data can be transmitted based on the allocated transmission power, which can reduce each antenna Interference between channels, thereby improving the SINR and spectrum efficiency of the space division multiplexing group, and improving data transmission performance.
  • Fig. 2 is a flowchart of another data transmission method provided by an embodiment of the application. This method can be applied to the network side, such as a base station.
  • the precoding weight of each terminal in the space division multiplexing group is related to the following factors: the size of the spatial correlation between users in the space division multiplexing group; the channel of each user in the space division multiplexing group The size of the quality indicator (Channel Quality Indicator, CQI); the number of users in the space division multiplexing group; the size of the beamforming gain of each user in the space division multiplexing group.
  • CQI Quality Indicator
  • the method includes steps 201-210.
  • Step 201 Calculate each user according to the CQI of each user, the shaping gain, the correlation between the users in the space division multiplexing group, the feedback information to convert the SINR, and the number of users in the space division multiplexing group SINR.
  • the space division multiplexing group includes at least two users, and the power control factor is related to the integrated SINR and the number of space layers of each user in the space division multiplexing group.
  • the adjusted SINR can be calculated to obtain the integrated SINR of the space division multiplexing group, and then the power control factor of the space division multiplexing group can be calculated according to the number of space divisions.
  • the demodulated SINR of each user in the case of space division multiplexing, its own CQI, the shaping gain of the precoding weight, the size of the spatial correlation between its space division multiplexed users, and the space division is related.
  • f() represents the function of calculating the SINR of each user
  • CQI (UE i ) represents the channel quality indicator value of the i-th UE in the space division multiplexing group
  • BFgain (UE i ) represents the space division multiplexing group
  • corrMU (UE i ) represents the correlation between the i-th UE in the space division multiplexing group and other UEs
  • NumMU represents the number of users in the space division multiplexing group
  • deltaSINR represents The converted SINR value of the acknowledgement information (Acknowledge character, ACK) and the non-acknowledgement information (Non-Acknowledge character, NACK) fed back by the UE.
  • This embodiment does not limit the specific function of f().
  • Step 202 Determine the integrated SINR of the space division multiplexing group according to the SINR of each user.
  • each space division multiplexing group corresponds to an integrated SINR to prepare for the power allocation of the antenna channels.
  • step 202 includes: selecting the largest SINR among the SINRs of each user as the integrated SINR; or, using the average or weighted average of the SINRs of each user as the integrated SINR.
  • the comprehensive SINR of the space division multiplexing group is determined based on two methods.
  • the first method is based on the maximum SINR principle, that is, for a space division multiplexing group, the largest SINR in the space division multiplexing group is selected as the The integrated SINR of the space division multiplexing group;
  • the second method is based on the average SINR principle, that is, for a space division multiplexing group, calculate the average SINR of all users in the space division multiplexing group (it can also be a weighted average), as The integrated SINR of the space division multiplexing group.
  • the integrated SINR of the space division multiplexing group is denoted as SINR_intraGrp.
  • Step 203 Determine the power control factor according to the integrated SINR of the space division multiplexing group and the number of space layers.
  • the power control factor (denoted as Pf_Ant(k_MU)) of the space division multiplexing group is calculated based on the integrated SINR and the number of space division multiplexing groups.
  • the space division multiplexing group includes an aligned space division multiplexing group or an unaligned space division multiplexing group; the number of empty layers is the maximum number of empty layers in the frequency domain of the space division multiplexing group.
  • the space division multiplexing group includes aligned and unaligned space division multiplexing groups, where the aligned space division multiplexing group is one user for each frequency domain layer space division, and the unaligned space division multiplexing group is each The frequency domain layer can spatially divide multiple users.
  • the number of empty layers of the space division multiplexing group is the largest number of empty layers in the frequency domain, denoted as LayerMax_intraGrp.
  • Step 204 Determine the reference power according to the inter-carrier power sharing of the space division multiplexing group, the basic power of a single RB, and the number of unscheduled RBs.
  • Step 205 Pass the power control factor and the reference power to the physical layer through the MAC layer, and calculate the precoding weight corresponding to each antenna channel in the space division multiplexing group through the physical layer.
  • the MAC layer passes the calculated Pf_Ant (k_MU) and Pbase_Ant (k_MU) corresponding to each space division multiplexing group to the physical layer.
  • the physical layer is based on the precoding scheme for each space division multiplexing group. Calculate the precoding weight of each antenna channel of the space division multiplexing group on the corresponding frequency band.
  • Step 206 Calculate the weighted power of each antenna channel under the precoding weight of the corresponding frequency band.
  • the power corresponding to the precoding weight of each antenna channel in the occupied frequency domain bandwidth is calculated. For example, there are M UEs in the k_MU space division multiplexing group, and there are N antenna channels in total.
  • the corresponding precoding weight on the j UE is w j , then the ka antenna channel ,
  • the power under the precoding weight of the corresponding frequency band is denoted as E(ka,k_MU), which can be expressed as:
  • Step 207 Calculate the normalized corrected power of each antenna channel according to the weighted power corresponding to each antenna channel and the power control factor.
  • the normalized correction power is mainly calculated based on the antenna channel power being normalized to a single RB, and the power control factor of the space division multiplexing group is considered to be calculated, so as to control the difference between the weighted power and the maximum power of each antenna channel. The difference between.
  • Step 208 Calculate the power allocation factor of each antenna channel according to the normalized corrected power of each antenna channel and the reference power.
  • the power allocation factor of each antenna channel in each space division multiplexing group can be obtained through cyclic calculation.
  • Step 209 Apply each of the power allocation factors to the corresponding antenna channel to adjust the transmission power of the corresponding antenna channel.
  • the calculated power allocation factor of each antenna channel of each space division multiplexing group is applied to the corresponding antenna channel of the precoding weights of all the space division users corresponding to the RB of the space division multiplexing group. To control the transmit power of the antenna channel.
  • Step 210 Apply the precoding weight of each antenna channel to the corresponding data, and transmit the corresponding data through each antenna channel based on the corresponding transmission power.
  • the precoding weight that enables the power allocation factor is applied to the data, and the demodulation reference signal (Demodulation Reference Signal, DMRS), the data and DMRS are mapped to the corresponding antenna channel together, and the corresponding transmission power is used for transmission That's it.
  • DMRS Demodulation Reference Signal
  • step 207 includes: determining the maximum power value in the weighted power corresponding to each antenna channel; calculating the difference between the weighted power corresponding to each antenna channel and the maximum power value; The difference, the power control factor, the weighted power corresponding to each antenna channel, and the number of scheduled RBs are used to calculate the normalized corrected power of each antenna channel.
  • the process of calculating the normalized correction power is as follows: select the maximum power value among the weighted power of each antenna channel in the space division multiplexing group, denoted as E max (k_MU); and then calculate the value of each antenna channel The difference between the weighted power and the maximum power value.
  • the normalized corrected power of each antenna channel is:
  • E(ka,k_MU) is the weight of the kath antenna channel of the space division multiplexing group k under the precoding weight of the corresponding frequency band Power
  • RBNum(k_MU) is the number of RBs scheduled by space division multiplexing group k
  • Pf_Ant(k_MU) is the power control factor of space division multiplexing group k
  • ⁇ E BF (ka,k_MU) is the number of space division multiplexing group k
  • the power allocation factor of each antenna channel is:
  • ⁇ (ka,k_MU) is the power allocation factor of the kath antenna channel of the space division multiplexing group k
  • Pbase_Ant(k_MU) is the reference power of the space division multiplexing group k
  • the following uses an example to illustrate the power distribution and data transmission process.
  • the MAC layer is based on scheduled users and forms 2 space division multiplexing groups under the condition of space division multiplexing.
  • the first space division multiplexing group includes 2 users, and the second space division multiplexing group includes 4 users;
  • the demodulation SINR corresponding to each user in each space division multiplexing group is ⁇ 10,20 ⁇ dB and ⁇ 15,12,18,25 ⁇ dB;
  • the first space division multiplexing group schedules 52 RBs, and the second space division multiplexing group schedules 48 RBs.
  • Step 1 For each space division multiplexing group, determine the integrated SINR.
  • Step 2 Determine the number of empty layers in each space division multiplexing group.
  • LayerMax_intraGrp(1) 2 of the first space division multiplexing group
  • LayerMax_intraGrp(2) 4 of the second space division multiplexing group.
  • Step 3 Calculate the power control factor of each space division multiplexing group.
  • the power control factor of the k-th space division multiplexing group Pf_Ant(k_MU) g(SINR_intraGrp, LayerMax_intraGrp)
  • g() can be designed as a piecewise function, corresponding to 11 thresholds (Thr1 ⁇ Thr11), and the thresholds can be obtained through simulation or testing.
  • Step 4 Calculate the reference power of each space division multiplexing group.
  • Step 5 The MAC layer passes the following parameters to the physical layer:
  • Step 6 The physical layer calculates the power allocation factor for each antenna channel. include:
  • the normalized correction power is mainly to normalize the weighted power of the antenna channel to a single RB, while considering the channel power control factor (the difference between the main control and the maximum power value) of the space division multiplexing group, as follows:
  • the power additive adjustment ⁇ is set to zero.
  • Step 7 Enable the precoding weight according to the power allocation factor. That is, the two sets of antenna power allocation factors are respectively applied to the corresponding antenna channels of the precoding weights of all the space division users corresponding to the RB of the two space division multiplexing groups.
  • Step 8 Enable the precoding weight of the power allocation factor to act on the data and DMRS, and map them to the antenna channel for transmission together.
  • the data transmission method of this embodiment is suitable for the adaptive power allocation of antenna channels under the multi-user space division multiplexing of the MIMO system, and is mainly suitable for the massive MIMO system.
  • This method has strong engineering feasibility and considers the space division multiplexing.
  • Demodulation SINR and integrated SINR of each user in the group equalize the SINR of each user between the different spatial layers of the space division multiplexing group to obtain the power control factor, and control the difference between the weighted power and the maximum power of each antenna channel to obtain Normalize the corrected power, and then refer to the reference power to obtain the power allocation factor; on this basis, combined with the precoding weights for power allocation and control, it can ensure that the space division users can obtain better traffic gains under different channel conditions and improve SINR And spectral efficiency.
  • Fig. 3 is a schematic structural diagram of a data transmission device provided by an embodiment of the application. As shown in FIG. 3, the data transmission device includes: a parameter determination module 310, a power distribution module 320, and a transmission module 330.
  • the parameter determination module 310 is configured to determine the power control factor and the reference power of the antenna channels in the space division multiplexing group;
  • the power allocation module 320 is configured to calculate the power allocation factor of each antenna channel based on the precoding weight corresponding to each antenna channel in the space division multiplexing group according to the power control factor and the reference power ;
  • the transmission module 330 is configured to transmit data through the corresponding antenna channel according to the power allocation factor and precoding weight of each antenna channel.
  • the data transmission device of this embodiment comprehensively considers the precoding weights corresponding to each antenna channel according to the power control factor and the reference power, reasonably allocates the transmission power of each antenna channel, performs power control on each antenna channel and transmits on this basis Data can reduce the interference between antenna channels and improve the SINR and spectrum efficiency of the space division multiplexing group.
  • the parameter determination module 310 includes: a power control factor determination unit configured to determine the power control factor according to the integrated SINR of the space division multiplexing group and the number of space layers.
  • the parameter determining module 310 includes a reference power determining unit configured to determine the reference power according to the inter-carrier power sharing of the space division multiplexing group, the single RB basic power, and the number of unscheduled RBs.
  • the space division multiplexing group includes at least two users.
  • the device also includes a comprehensive SINR calculation module, which is configured to: before determining the power control factor of the antenna channel in the space division multiplexing group, according to the CQI of each user, the shaping gain, and the number of users in the space division multiplexing group. Calculate the SINR of each user by converting the SINR and the number of users in the space division multiplexing group into the correlation of the feedback information and the feedback information;
  • the integrated SINR of the space division multiplexing group is determined according to the SINR of each user.
  • the determining the integrated SINR of the space division multiplexing group according to the SINR of each user includes: selecting the largest SINR among the SINRs of each user as the integrated SINR; or The average value or weighted average value of the user's SINR is used as the comprehensive SINR.
  • the space division multiplexing group includes an aligned space division multiplexing group or an unaligned space division multiplexing group
  • the number of empty layers is the maximum number of empty layers in the frequency domain of the space division multiplexing group.
  • the power allocation module 320 includes: a weighted power calculation unit configured to calculate the weighted power of each antenna channel under the precoding weight of the corresponding frequency band; The weighted power corresponding to the antenna channel and the power control factor are used to calculate the normalized corrected power of each antenna channel; the power allocation unit is set to be based on the normalized corrected power of each antenna channel and the reference power , Calculate the power distribution factor of each antenna channel.
  • the normalization correction unit is configured to: determine the maximum power value in the weighted power corresponding to each antenna channel; calculate the difference between the weighted power corresponding to each antenna channel and the maximum power value; Calculate the normalized corrected power of each antenna channel according to each of the difference, the power control factor, the weighted power corresponding to each of the antenna channels, and the number of unscheduled RBs.
  • the normalized corrected power of each antenna channel is:
  • E(ka,k_MU) is the weight of the kath antenna channel of the space division multiplexing group k under the precoding weight of the corresponding frequency band Power
  • RBNum(k_MU) is the number of RBs scheduled by space division multiplexing group k
  • Pf_Ant(k_MU) is the power control factor of space division multiplexing group k
  • ⁇ E BF (ka,k_MU) is the number of space division multiplexing group k
  • the power allocation factor of each antenna channel is:
  • ⁇ (ka,k_MU) is the power allocation factor of the kath antenna channel of the space division multiplexing group k
  • Pbase_Ant is the reference power of the space division multiplexing group k
  • E(ka,k_MU) is the space division multiplexing group The normalized correction power of k.
  • the device further includes: a weight calculation module, configured to, after determining the power control factor and reference power of the antenna channels in the space division multiplexing group, combine the power control factor and the reference power through the media intervention control MAC layer The reference power is transmitted to the physical layer, and the precoding weight corresponding to each antenna channel in the space division multiplexing group is calculated through the physical layer.
  • a weight calculation module configured to, after determining the power control factor and reference power of the antenna channels in the space division multiplexing group, combine the power control factor and the reference power through the media intervention control MAC layer The reference power is transmitted to the physical layer, and the precoding weight corresponding to each antenna channel in the space division multiplexing group is calculated through the physical layer.
  • the transmission module 330 is configured to: apply each of the power allocation factors to the corresponding antenna channel to adjust the transmission power of the corresponding antenna channel; and apply the precoding weight of each antenna channel to the corresponding antenna channel.
  • the corresponding data is transmitted through each of the antenna channels based on the corresponding transmission power.
  • the data transmission device proposed in this embodiment and the data transmission method proposed in the above embodiment belong to the same inventive concept.
  • the embodiment of the present application also provides a communication node.
  • the data transmission method may be executed by a data transmission device, which may be implemented in software and/or hardware, and integrated in the communication node.
  • the communication node is a network terminal, such as a base station.
  • FIG. 4 is a schematic diagram of the hardware structure of a communication node provided by an embodiment of the application.
  • a communication node provided in this embodiment includes a processor 410 and a storage device 420.
  • one processor 410 is taken as an example.
  • the processor 410 and the storage device 420 in the device may be connected through a bus or other methods.
  • FIG. Take bus connection as an example.
  • the one or more programs are executed by the one or more processors 410, so that the one or more processors implement the data transmission method described in any of the foregoing embodiments.
  • the storage device 420 in the communication node is used as a computer-readable storage medium and can be used to store one or more programs.
  • the programs can be software programs, computer-executable programs, and modules, such as the data transmission method in the embodiment of the present application.
  • Corresponding program instructions/modules (for example, the modules in the data transmission device shown in FIG. 3 include: a parameter determination module 310, a power distribution module 320, and a transmission module 330).
  • the processor 410 executes various functional applications and data processing of the communication node by running the software programs, instructions, and modules stored in the storage device 420, that is, implements the data transmission method in the foregoing method embodiment.
  • the storage device 420 mainly includes a storage program area and a storage data area.
  • the storage program area can store an operating system and an application program required by at least one function; the storage data area can store data created according to the use of the device, etc.
  • the storage device 420 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the storage device 420 may further include a memory remotely provided with respect to the processor 410, and these remote memories may be connected to a communication node through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the following operations are implemented: determine the power control factor and reference power of the antenna channels in the space division multiplexing group; The power control factor and the reference power are calculated based on the precoding weight corresponding to each antenna channel in the space division multiplexing group, and the power allocation factor of each antenna channel is calculated; according to the power of each antenna channel The allocation factor and precoding weight are used to transmit data through the corresponding antenna channel.
  • the communication node proposed in this embodiment and the data transmission method proposed in the above embodiment belong to the same inventive concept.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions, and the computer-executable instructions are used to execute a data transmission method when executed by a computer processor.
  • the method includes: determining the power control factor and the reference power of the antenna channels in the space division multiplexing group; according to the power control factor and the reference power, based on the preset corresponding to each antenna channel in the space division multiplexing group; The coding weight is used to calculate the power distribution factor of each antenna channel; and the data is transmitted through the corresponding antenna channel according to the power distribution factor and the precoding weight of each antenna channel.
  • this application can be implemented by software and general-purpose hardware, or can be implemented by hardware.
  • the technical solution of the present application can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as a computer floppy disk, Read-Only Memory (ROM), Random Access Memory (RAM), flash memory (FLASH), hard disk or optical disk, etc., including multiple instructions to make a computer device (which can be a personal computer, server, or network device, etc.) execute any of this application The method described in the embodiment.
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read-only memory (ROM), random access memory (RAM), optical storage devices and systems (digital multi-function discs) (Digital Versatile Disc, DVD) or compact disc (Compact Disc, CD), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field-Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASICs application specific integrated circuits
  • FPGA Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请提供一种数据传输方法、装置、通信节点及存储介质。该方法确定空分复用组中天线通道的功率控制因子和基准功率;根据所述功率控制因子和所述基准功率,基于所述空分复用组中的每个天线通道对应的预编码权值,计算各所述天线通道的功率分配因子;根据各所述天线通道的功率分配因子和预编码权值,通过对应的天线通道传输数据。

Description

一种数据传输方法、装置、通信节点及存储介质
交叉引用
本申请基于申请号为“202010544304.X”、申请日为2020年06月15日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请涉及无线通信网络,例如涉及一种数据传输方法、装置、通信节点及存储介质。
背景技术
多入多出(Multiple-Input Multiple-Output,MIMO)技术能够显著提高系统的吞吐量,随着MIMO的大规模应用,多用户的空分复用(多个用户在相同的频域资源发送不同的数据)成为可能,采用空分复用的方式传输数据,可以极大地提升小区频谱效率,从而提升小区吞吐量。在空分复用组中,每个天线通道对应的预编码权值不同,传输数据的发送功率也需要分别控制,预编码权值的优劣和功率分配策略的合理性直接影响到整个多用户空分复用组的频谱效率。此外,在MIMO中,多用户空分复用联合计算获得的预编码权值一般都是非恒模权值,由于目前缺乏有效的机制能够综合考虑权值的正交性,功率分配的可靠性低,如果功率分配不合理,还会影响数据传输性能,例如各天线通道之间的干扰较大,空分复用组的信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)和频谱效率偏低。
发明内容
本申请实施例提供一种数据传输方法,包括:确定空分复用组中天线通道的功率控制因子和基准功率;根据所述功率控制因子和所述基准功率,基于所 述空分复用组中的每个天线通道对应的预编码权值,计算各所述天线通道的功率分配因子;根据各所述天线通道的功率分配因子和预编码权值,通过对应的天线通道传输数据。
本申请实施例还提供了一种数据传输装置,包括:参数确定模块,设置为确定空分复用组中天线通道的功率控制因子和基准功率;功率分配模块,设置为根据所述功率控制因子和所述基准功率,基于所述空分复用组中的每个天线通道对应的预编码权值,计算各所述天线通道的功率分配因子;传输模块,设置为根据各所述天线通道的功率分配因子和预编码权值,通过对应的天线通道传输数据。
本申请实施例还提供了一种通信节点,包括:一个或多个处理器;存储装置,用于存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述的数据传输方法。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现上述的数据传输方法。
附图说明
图1为本申请实施例提供的一种数据传输方法的流程图;
图2为本申请实施例提供的另一种数据传输方法的流程图;
图3为本申请实施例提供的一种数据传输装置的结构示意图;
图4为本申请实施例提供的一种通信节点的硬件结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
本申请提供一种数据传输方法、装置、通信节点及存储介质,以提高各天线通道的功率分配的可靠性,从而提高数据传输性能。
在本申请实施例中,提供一种数据传输方法,根据功率控制因子和基准功率,综合考虑各天线通道对应的预编码权值,合理分配各天线通道的发送功率,对各天线通道进行功率控制并在此基础上发送数据,能够降低各天线通道之间的干扰,提高空分复用组的SINR和频谱效率。
图1为本申请实施例提供的一种数据传输方法的流程图。该方法可应用于通信节点,通信节点为网络端,例如基站。网络端基于探测参考信号(Sounding Reference Signal,SRS)估计出信道矩阵H或者信道状态信息(Channel Statement Information,CSI)反馈的码本,基于空间相关性的约束,将满足约束条件的用户划分成空分复用组。在同一时隙(slot)内可以形成多个空分复用组,每个空分复用组中包含至少一个用户,一个用户指一个用户终端(User Equipment,UE)。针对每个空分复用组,分别采用该方法对天线通道进行功率分配并传输数据。如图1所示,本实施例提供的方法包括步骤110-130。
在步骤110中,确定空分复用组中天线通道的功率控制因子和基准功率。
在步骤120中,根据所述功率控制因子和所述基准功率,基于所述空分复用组中的每个天线通道对应的预编码权值,计算各所述天线通道的功率分配因子。
在步骤130中,根据各所述天线通道的功率分配因子和预编码权值,通过对应的天线通道传输数据。
本实施例中,每个空分复用组具有相应的功率控制因子和基准功率,作为该空分复用组中各天线通道功率分配的依据。其中,功率控制因子与空分复用组中各用户的综合SINR以及空分层数有关;基准功率与空分复用组中各用户的载波间功率共享、单资源块(Resource Block,RB)的基础功率和未被调度(空闲)的RB数有关。功率控制因子和基准功率可由媒体介入控制(Media Access Control,MAC)层计算得出并传递到物理层(Physical Layer),物理层结合各天线通道对应的预编码权值,计算功率分配因子并基于分配后的功率传输数据。
本实施例中,通过在空分复用组不同空分层之间均衡各用户的SINR得到功率控制因子,并参考基准功率,可对各天线通道的功率进行分配和控制,结 合各天线通道对应的预编码权值,可综合考虑每个天线通道在整个空分复用组中各用户上发送数据的情况,合理分配各天线通道的发送功率,基于分配的发送功率传输数据,能够降低各天线通道之间的干扰,从而提高空分复用组的SINR和频谱效率,提高数据传输性能。
图2为本申请实施例提供的另一种数据传输方法的流程图。该方法可应用于网络端,例如基站。本实施例中,空分复用组中每个终端的预编码权值与以下因素有关:空分复用的用户之间的空间相关性的大小;空分复用组中每个用户的信道质量指示(Channel Quality Indicat,CQI)的大小;空分复用组中用户的数目;空分复用组中每个用户的波束赋形增益的大小。在进行功率分配和数据传输时,综合考虑每个用户的预编码权值与其他用户的信道响应之间的正交性(保证该用户的接收端能够消除其他用户传输数据带来的干扰),以及每个用户在对应的预编码权值下每根天线通道的功率大小(决定该用户的接收端的信号功率大小)。
如图2所示,该方法包括步骤201-210。
步骤201:根据每个用户的CQI、赋形增益、所述空分复用组中用户之间的相关性、反馈信息折算SINR以及所述空分复用组中的用户数量,计算每个用户的SINR。
本实施例中,空分复用组中包括至少两个用户,功率控制因子与空分复用组中各用户的综合SINR以及空分层数有关,根据空分复用组中每个用户解调的SINR可计算得到该空分复用组的综合SINR,再根据空分层数可以计算该空分复用组的功率控制因子。每个用户在空分复用的情况下的解调的SINR,与自身的CQI、预编码权值的赋形增益、与其空分复用的用户之间的空间相关性的大小、以及空分复用的用户数量有关,对于空分复用组中的第i个UE的SINR(记为SINR_MU(UE i))计算过程可表示为:SINR_MU(UE i)=f(CQI(UE i),BFgain(UE i),corrMU(UE i),NumMU,deltaSINR)。其中,f()表示计算每个用户的SINR的函数,CQI(UE i)表示空分复用组中的第i个UE的信道质量指示值,BFgain(UE i)表示空分复用组中的第i个UE的赋形增益,corrMU(UE i)表示空分复用组中第i个UE与其他UE之间的相关性,NumMU表示空分复用组中用户的个数,deltaSINR表示UE反馈的确认信息(Acknowledge character,ACK)、 非确认信息(Non-Acknowledge character,NACK)的折算SINR值。本实施例对f()的具体函数不作限定。
步骤202:根据各所述用户的SINR确定所述空分复用组的综合SINR。
本实施例中,每个空分复用组均对应于一个综合SINR,为天线通道的功率分配做准备。
在一实施例中,步骤202包括:选择各用户的SINR中最大的SINR作为综合SINR;或者,将各用户的SINR的均值或加权平均值作为综合SINR。
本实施例中,基于两种方式确定空分复用组的综合SINR,方式一是基于最大SINR原则,即对于一个空分复用组,选择该空分复用组中最大的一个SINR作为该空分复用组的综合SINR;方式二是基于平均SINR原则,即对于一个空分复用组,计算该空分复用组中所有用户SINR的平均值(也可以为加权平均值),作为该空分复用组的综合SINR。空分复用组的综合SINR记作SINR_intraGrp。
步骤203:根据所述空分复用组的综合SINR以及空分层数,确定所述功率控制因子。
本实施例中,对于每个空分复用组,基于综合SINR和空分层数计算得到该空分复用组的功率控制因子(记作Pf_Ant(k_MU),计算过程可表示为:Pf_Ant(k_MU)=g(SINR_intraGrp,LayerMax_intraGrp),其中,g()表示天线通道功率控制因子的计算函数,LayerMax_intraGrp表示空分层数。本实施例对g()的具体函数不作限定。
在一实施例中,空分复用组包括对齐空分复用组或非对齐空分复用组;所述空分层数为所述空分复用组的频域最大空分层数。
本实施例中,空分复用组包括对齐和非对齐空分复用组,其中,对齐空分复用组为每一频域层空分一个用户,非对齐空分复用组为每一频域层可以空分多个用户。空分复用组的空分层数为频域最大的空分层数,记作LayerMax_intraGrp。
步骤204:根据所述空分复用组的载波间功率共享、单RB基础功率和未被调度RB数确定所述基准功率。
本实施例中,每个天线通道的单RB基础功率(记作Power_AAU)是确定的 (不同的设备厂家的有源天线处理单元AAU的单RB基础功率略有差异),同时考虑载波间功率共享(记作Powershare)的情况,以及未被调度RB数(RBrestNum),计算出该空分复用组的基准功率(记作Pbase_Ant(k_MU)),具体可表示为:Pbase_Ant=h(Power_AAU,Powershare,RBrestNum),其中,h()表示基准功率的计算函数。本实施例对h()的具体函数不作限定。
步骤205:通过MAC层将所述功率控制因子和所述基准功率传递至物理层,通过所述物理层计算所述空分复用组中的每个天线通道对应的预编码权值。
本实施例中,MAC层将计算获得的每个空分复用组对应的Pf_Ant(k_MU)和Pbase_Ant(k_MU)传递给物理层,物理层针对每个空分复用组,基于预编码方案,计算该空分复用组的各天线通道在对应频带上的预编码权值。
步骤206:计算各所述天线通道在对应频带的预编码权值下的加权功率。
本实施例中,针对每个空分复用组,计算每个天线通道在占用频域带宽内预编码权值对应的功率。例如,第k_MU个空分复用组中有M个UE,共有N个天线通道,对于第ka个天线通道,第j个UE上对应的预编码权值为w j,则第ka个天线通道,在对应频带的预编码权值下的功率记作E(ka,k_MU),可表示为:
Figure PCTCN2021091902-appb-000001
步骤207:根据各所述天线通道对应的加权功率和所述功率控制因子,计算各所述天线通道的归一化校正功率。
本实施例中,归一化校正功率,主要是基于天线通道功率归一到单RB,同时考虑该空分复用组的功率控制因子计算得到,从而控制各天线通道的加权功率与最大功率之间的差异。
步骤208:根据各所述天线通道的归一化校正功率和所述基准功率,计算各所述天线通道的功率分配因子。
本实施例中,通过循环计算可以得到每个空分复用组中每根天线通道功率分配因子。
步骤209:将各所述功率分配因子作用于对应的天线通道,以调整对应的天线通道的发送功率。
本实施例中,将计算得到的每个空分复用组的每个天线通道的功率分配因 子作用到该空分复用组对应RB的所有空分用户的预编码权值的对应的天线通道,控制该天线通道的发送功率。
步骤210:将各所述天线通道的预编码权值作用于对应的数据,并通过各所述天线通道,基于对应的发送功率传输对应的数据。
本实施例中,使能功率分配因子的预编码权值作用于数据,以及解调参考信号(Demodulation Reference Signal,DMRS),将数据和DMRS一起映射到对应的天线通道,使用对应的发送功率发送即可。
在一实施例中,步骤207包括:确定各所述天线通道对应的加权功率中的最大功率值;计算各所述天线通道对应的加权功率与所述最大功率值的差值;根据各所述差值、所述功率控制因子、各所述天线通道对应的加权功率、调度的RB数计算各所述天线通道的归一化校正功率。
本实施例中,计算归一化校正功率的过程如下:选择该空分复用组中各天线通道的加权功率中的最大功率值,记作E max(k_MU);然后计算每个天线通道的加权功率与该最大功率值之间的差值,第k个空分复用组中第ka个天线通道的加权功率与该最大功率值之间的差值记作ΔE BF(ka,k_MU),则计算过程可表示为:ΔE BF(ka,k_MU)=E max(k_MU)-E(ka,k_MU),ka=0,1,...N;然后计算每个天线通道的归一化校正功率,归一化校正功率关联于加权功率与该最大功率值之间的差值、加权功率、功率控制因子、调度的RB数,主要是将天线通道的加权功率归一到单RB,同时考虑该空分复用组的功率控制因子得到,从而控制各天线通道的加权功率与最大功率之间的差异。
在一实施例中,各所述天线通道的归一化校正功率为:
Figure PCTCN2021091902-appb-000002
其中,
Figure PCTCN2021091902-appb-000003
为空分复用组k的第ka个天线通道的归一化校正功率,E(ka,k_MU)为空分复用组k的第ka个天线通道在对应频带的预编码权值下的加权功率,RBNum(k_MU)为空分复用组k调度的RB数,Pf_Ant(k_MU)为空分复用组k的功率控制因子,ΔE BF(ka,k_MU)为空分复用组k的第ka个天线通道的加权功率与所述最大功率值的差值,ε为功率加性调整量。
在一实施例中,各所述天线通道的功率分配因子为:
Figure PCTCN2021091902-appb-000004
其中,ρ(ka,k_MU)为空分复用组k的第ka个天线通道的功率分配因子,Pbase_Ant(k_MU)为空分复用组k的基准功率,
Figure PCTCN2021091902-appb-000005
为空分复用组k的归一化校正功率。
以下通过一示例对功率分配和数据传输过程进行说明。
假设MAC层基于调度的用户,在满足空分复用的条件下,形成2个空分复用组。第一个空分复用组中包括2个用户,第二个空分复用组中包括4用户;每个空分复用组中每个用户对应的解调SINR分别为{10,20}dB和{15,12,18,25}dB;第一个空分复用组调度52个RB,第二个空分复用组调度48个RB。
步骤1:对于每个空分复用组,确定综合SINR。
以基于平均SINR原则为例,第一个空分复用组的SINR_intraGrp(1)=(10+20)/2=15dB;第二个空分复用组的SINR_intraGrp(2)=(15+12+18+25)/4=17.5dB。
步骤2:确定每个空分复用组的空分层数。
例如,第一个空分复用组的LayerMax_intraGrp(1)=2;第二个空分复用组的LayerMax_intraGrp(2)=4。
步骤3:计算每个空分复用组的功率控制因子。第k个空分复用组的功率控制因子Pf_Ant(k_MU)=g(SINR_intraGrp,LayerMax_intraGrp)
Figure PCTCN2021091902-appb-000006
其中,g()可设计为分段函数,对应于11个门限值(Thr1~Thr11),门限值可通过仿真或者测试获得。
基于两个空分复用组的综合SINR和空分层数,分别获得Pf_Ant(1)=0.1;Pf_Ant(2)=0.4。
步骤4:计算每个空分复用组的基准功率。
例如,每个天线通道单RB基础功率设置为1,暂时不考虑载波间功率共享,也不考虑未满调度的情况(未被调度RB数为0),则Pbase_Ant(1)=1;Pbase_Ant(2)=1。
步骤5:MAC层将以下参数传递给物理层:
Pf_Ant(1)=0.1;Pf_Ant(2)=0.4;Pbase_Ant(1)=1;Pbase_Ant(2)=1。
步骤6:物理层计算每个天线通道的功率分配因子。包括:
1)计算每个天线通道对应的预编码权值;
2)计算每个天线通道在对应频带的预编码权值下的加权功率;
3)根据每个天线通道对应的加权功率计算归一化校正功率。
其中,归一化校正功率,主要是将天线通道的加权功率归一到单RB,同时考虑该空分复用组通道功率控制因子(主要控制与最大功率值的差异),具体如下:
第一个空分复用组的归一化校正功率
Figure PCTCN2021091902-appb-000007
第二个空分复用组的归一化校正功率
Figure PCTCN2021091902-appb-000008
其中,功率加性调整量ε设置为0。
4)计算每个天线通道的功率分配因子:第一个空分复用组的第ka个天线通道的功率分配因子
Figure PCTCN2021091902-appb-000009
第二个空分复用组的第ka个天线通道的功率分配因子
Figure PCTCN2021091902-appb-000010
步骤7:根据功率分配因子使能预编码权值。即,分别将2组天线功率分配因子,作用到两个空分复用组对应RB的所有空分用户的预编码权值的对应的天线通道。
步骤8:使能功率分配因子的预编码权值作用于数据和DMRS,一起映射到天线通道发送。
本实施例的数据传输方法,适用于MIMO系统多用户空分复用下天线通道自适应功率分配的情况,主要适用于大规模MIMO系统,该方法工程可实现性强,考虑了空分复用组中各用户的解调SINR和综合SINR,在空分复用组不同空分层之间均衡各用户的SINR得到功率控制因子,并控制各天线通道的加权功率与最大功率之间的差异得到归一化校正功率,然后参考基准功率得到功率分配因子;在此基础上结合预编码权值进行功率分配和控制,能够保证空分用户在不同信道条件均能获得更好的流量增益,提高SINR和频谱效率。
本申请实施例还提供一种数据传输装置。图3为本申请实施例提供的一种 数据传输装置的结构示意图。如图3所示,所述数据传输装置包括:参数确定模块310、功率分配模块320和传输模块330。
参数确定模块310,设置为确定空分复用组中天线通道的功率控制因子和基准功率;
功率分配模块320,设置为根据所述功率控制因子和所述基准功率,基于所述空分复用组中的每个天线通道对应的预编码权值,计算各所述天线通道的功率分配因子;
传输模块330,设置为根据各所述天线通道的功率分配因子和预编码权值,通过对应的天线通道传输数据。
本实施例的数据传输装置,根据功率控制因子和基准功率,综合考虑各天线通道对应的预编码权值,合理分配各天线通道的发送功率,对各天线通道进行功率控制并在此基础上发送数据,能够降低各天线通道之间的干扰,提高空分复用组的SINR和频谱效率。
在一实施例中,参数确定模块310,包括:功控因子确定单元,设置为根据所述空分复用组的综合SINR以及空分层数,确定所述功率控制因子。
在一实施例中,参数确定模块310,包括:基准功率确定单元,设置为根据所述空分复用组的载波间功率共享、单RB基础功率和未被调度RB数确定所述基准功率。
在一实施例中,空分复用组中包括至少两个用户。
该装置还包括综合SINR计算模块,设置为:在确定空分复用组中天线通道的功率控制因子之前,根据每个用户的CQI、赋形增益、所述空分复用组中用户之间的相关性、反馈信息折算SINR以及所述空分复用组中的用户数量,计算每个用户的SINR;
根据各所述用户的SINR确定所述空分复用组的综合SINR。
在一实施例中,所述根据各所述用户的SINR确定所述空分复用组的综合SINR,包括:选择各所述用户的SINR中最大的SINR作为所述综合SINR;或者,将各所述用户的SINR的均值或加权平均值作为所述综合SINR。
在一实施例中,所述空分复用组包括对齐空分复用组或非对齐空分复用组;
所述空分层数为所述空分复用组的频域最大空分层数。
在一实施例中,功率分配模块320,包括:加权功率计算单元,设置为计算各所述天线通道在对应频带的预编码权值下的加权功率;归一化校正单元,设置为根据各所述天线通道对应的加权功率和所述功率控制因子,计算各所述天线通道的归一化校正功率;功率分配单元,设置为根据各所述天线通道的归一化校正功率和所述基准功率,计算各所述天线通道的功率分配因子。
在一实施例中,归一化校正单元设置为:确定各所述天线通道对应的加权功率中的最大功率值;计算各所述天线通道对应的加权功率与所述最大功率值的差值;根据各所述差值、所述功率控制因子、各所述天线通道对应的加权功率、未被调度RB数计算各所述天线通道的归一化校正功率。
在一实施例中,各所述天线通道的归一化校正功率为:
Figure PCTCN2021091902-appb-000011
其中,
Figure PCTCN2021091902-appb-000012
为空分复用组k的第ka个天线通道的归一化校正功率,E(ka,k_MU)为空分复用组k的第ka个天线通道在对应频带的预编码权值下的加权功率,RBNum(k_MU)为空分复用组k调度的RB数,Pf_Ant(k_MU)为空分复用组k的功率控制因子,ΔE BF(ka,k_MU)为空分复用组k的第ka个天线通道的加权功率与所述最大功率值的差值,ε为功率加性调整量。
在一实施例中,各所述天线通道的功率分配因子为:
Figure PCTCN2021091902-appb-000013
其中,ρ(ka,k_MU)为空分复用组k的第ka个天线通道的功率分配因子,Pbase_Ant为空分复用组k的基准功率,E(ka,k_MU)为空分复用组k的归一化校正功率。
在一实施例中,该装置还包括:权值计算模块,设置为在确定空分复用组中天线通道的功率控制因子和基准功率之后,通过媒体介入控制MAC层将所述功率控制因子和所述基准功率传递至物理层,通过所述物理层计算所述空分复用组中的每个天线通道对应的预编码权值。
在一实施例中,传输模块330设置为:将各所述功率分配因子作用于对应的天线通道,以调整对应的天线通道的发送功率;将各所述天线通道的预编码 权值作用于对应的数据,并通过各所述天线通道,基于对应的发送功率传输对应的数据。
本实施例提出的数据传输装置与上述实施例提出的数据传输方法属于同一发明构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行数据传输方法相同的有益效果。
本申请实施例还提供一种通信节点。所述数据传输方法可以由数据传输装置执行,该数据传输装置可以通过软件和/或硬件的方式实现,并集成在所述通信节点中。所述通信节点为网络端,例如为基站。
图4为本申请实施例提供的一种通信节点的硬件结构示意图。如图4所示,本实施例提供的一种通信节点,包括:处理器410和存储装置420。该通信节点中的处理器可以是一个或多个,图4中以一个处理器410为例,所述设备中的处理器410和存储装置420可以通过总线或其他方式连接,图4中以通过总线连接为例。
所述一个或多个程序被所述一个或多个处理器410执行,使得所述一个或多个处理器实现上述任一实施例所述的数据传输方法。
该通信节点中的存储装置420作为一种计算机可读存储介质,可用于存储一个或多个程序,所述程序可以是软件程序、计算机可执行程序以及模块,如本申请实施例中数据传输方法对应的程序指令/模块(例如,附图3所示的数据传输装置中的模块,包括:参数确定模块310、功率分配模块320和传输模块330)。处理器410通过运行存储在存储装置420中的软件程序、指令以及模块,从而执行通信节点的各种功能应用以及数据处理,即实现上述方法实施例中的数据传输方法。
存储装置420主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等(如上述实施例中的功率控制因子和基准功率等)。此外,存储装置420可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置420可进一步包括相对于处理器410远程设置的存储器,这些远程存储器可以通过网络连接至通信节点。上述网络的实例包括但不限于互 联网、企业内部网、局域网、移动通信网及其组合。
并且,当上述通信节点中所包括一个或者多个程序被所述一个或者多个处理器410执行时,实现如下操作:确定空分复用组中天线通道的功率控制因子和基准功率;根据所述功率控制因子和所述基准功率,基于所述空分复用组中的每个天线通道对应的预编码权值,计算各所述天线通道的功率分配因子;根据各所述天线通道的功率分配因子和预编码权值,通过对应的天线通道传输数据。
本实施例提出的通信节点与上述实施例提出的数据传输方法属于同一发明构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行数据传输方法相同的有益效果。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种数据传输方法。该方法包括:确定空分复用组中天线通道的功率控制因子和基准功率;根据所述功率控制因子和所述基准功率,基于所述空分复用组中的每个天线通道对应的预编码权值,计算各所述天线通道的功率分配因子;根据各所述天线通道的功率分配因子和预编码权值,通过对应的天线通道传输数据。
通过以上关于实施例的描述,所属领域的技术人员可以了解到,本申请可借助软件及通用硬件来实现,也可以通过硬件实现。基于这样的理解,本申请的技术方案可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请任意实施例所述的方法。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于 只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟(Digital Versatile Disc,DVD)或光盘(Compact Disc,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。
通过示范性和非限制性的示例,上文已提供了对本申请的示范实施例的详细描述。但结合附图和权利要求来考虑,对以上实施例的多种修改和调整对本领域技术人员来说是显而易见的,但不偏离本申请的范围。因此,本申请的恰当范围将根据权利要求确定。

Claims (15)

  1. 一种数据传输方法,包括:
    确定空分复用组中天线通道的功率控制因子和基准功率;
    根据所述功率控制因子和所述基准功率,基于所述空分复用组中的每个天线通道对应的预编码权值,计算各所述天线通道的功率分配因子;
    根据各所述天线通道的功率分配因子和预编码权值,通过对应的天线通道传输数据。
  2. 根据权利要求1所述的方法,其中,确定空分复用组中天线通道的功率控制因子,包括:
    根据所述空分复用组的综合信号与干扰加噪声比SINR以及空分层数,确定所述功率控制因子。
  3. 根据权利要求1所述的方法,其中,确定空分复用组中天线通道的基准功率,包括:
    根据所述空分复用组的载波间功率共享、单资源块RB基础功率和未被调度RB数确定所述基准功率。
  4. 根据权利要求2所述的方法,其中,所述空分复用组中包括至少两个用户;
    在确定空分复用组中天线通道的功率控制因子之前,还包括:
    根据每个用户的信道质量指示CQI、赋形增益、所述空分复用组中用户之间的相关性、反馈信息折算SINR以及所述空分复用组中的用户数量,计算每个用户的SINR;
    根据各所述用户的SINR确定所述空分复用组的综合SINR。
  5. 根据权利要求4所述的方法,其中,所述根据各所述用户的SINR确定所述空分复用组的综合SINR,包括:
    选择各所述用户的SINR中最大的SINR作为所述综合SINR;或者,
    将各所述用户的SINR的均值或加权平均值作为所述综合SINR。
  6. 根据权利要求2所述的方法,其中,所述空分复用组包括对齐空分复用组或非对齐空分复用组;
    所述空分层数为所述空分复用组的频域最大空分层数。
  7. 根据权利要求1所述的方法,其中,所述根据所述功率控制因子和所述基准功率,基于所述空分复用组中的每个天线通道对应的预编码权值,计算各所述天线通道的功率分配因子,包括:
    计算各所述天线通道在对应频带的预编码权值下的加权功率;
    根据各所述天线通道对应的加权功率和所述功率控制因子,计算各所述天线通道的归一化校正功率;
    根据各所述天线通道的归一化校正功率和所述基准功率,计算各所述天线通道的功率分配因子。
  8. 根据权利要求7所述的方法,其中,所述根据各所述天线通道对应的加权功率和所述功率控制因子,计算各所述天线通道的归一化校正功率,包括:
    确定各所述天线通道对应的加权功率中的最大功率值;
    计算各所述天线通道对应的加权功率与所述最大功率值的差值;
    根据各所述差值、所述功率控制因子、各所述天线通道对应的加权功率、调度的RB数计算各所述天线通道的归一化校正功率。
  9. 根据权利要求8所述的方法,其中,各所述天线通道的归一化校正功率为:
    Figure PCTCN2021091902-appb-100001
    其中,
    Figure PCTCN2021091902-appb-100002
    为空分复用组k的第ka个天线通道的归一化校正功率,E(ka,k_MU)为空分复用组k的第ka个天线通道在对应频带的预编码权值下的加权功率,RBNum(k_MU)为空分复用组k调度的RB数,Pf_Ant(k_MU)为空分复用组k的功率控制因子,ΔE BF(ka,k_MU)为空分复用组k的第ka个天线通道的加权功率与所述最大功率值的差值,ε为功率加性调整量。
  10. 根据权利要求7所述的方法,其中,各所述天线通道的功率分配因子为:
    Figure PCTCN2021091902-appb-100003
    其中,ρ(ka,k_MU)为空分复用组k的第ka个天线通道的功率分配因子,Pbase_Ant为空分复用组k的基准功率,
    Figure PCTCN2021091902-appb-100004
    为空分复用组k的归一化校正功率。
  11. 根据权利要求1-10任一项所述的方法,其中,在确定空分复用组中天线通道的功率控制因子和基准功率之后,还包括:
    通过媒体介入控制MAC层将所述功率控制因子和所述基准功率传递至物理层;
    通过所述物理层计算所述空分复用组中的每个天线通道对应的预编码权值。
  12. 根据权利要求1-10任一项所述的方法,其中,所述根据各所述天线通道的功率分配因子和预编码权值,通过对应的天线通道传输数据,包括:
    将各所述功率分配因子作用于对应的天线通道,以调整对应的天线通道的发送功率;
    将各所述天线通道的预编码权值作用于对应的数据,并通过各所述天线通道,基于对应的发送功率传输对应的数据。
  13. 一种数据传输装置,包括:
    参数确定模块,设置为确定空分复用组中天线通道的功率控制因子和基准功率;
    功率分配模块,设置为根据所述功率控制因子和所述基准功率,基于所述空分复用组中的每个天线通道对应的预编码权值,计算各所述天线通道的功率分配因子;
    传输模块,设置为根据各所述天线通道的功率分配因子和预编码权值,通过对应的天线通道传输数据。
  14. 一种通信节点,包括:
    一个或多个处理器;
    存储装置,用于存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-12中任一所述的数据传输方法。
  15. 一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如权利要求1-12中任一所述的数据传输方法。
PCT/CN2021/091902 2020-06-15 2021-05-06 一种数据传输方法、装置、通信节点及存储介质 WO2021254013A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21825541.2A EP4167496A4 (en) 2020-06-15 2021-05-06 DATA TRANSMISSION METHOD AND APPARATUS AND COMMUNICATION NODE AND STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010544304.XA CN113810085A (zh) 2020-06-15 2020-06-15 一种数据传输方法、装置、通信节点及存储介质
CN202010544304.X 2020-06-15

Publications (1)

Publication Number Publication Date
WO2021254013A1 true WO2021254013A1 (zh) 2021-12-23

Family

ID=78944152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091902 WO2021254013A1 (zh) 2020-06-15 2021-05-06 一种数据传输方法、装置、通信节点及存储介质

Country Status (3)

Country Link
EP (1) EP4167496A4 (zh)
CN (1) CN113810085A (zh)
WO (1) WO2021254013A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103152811A (zh) * 2013-03-04 2013-06-12 京信通信系统(广州)有限公司 一种调整功率值的方法和装置
CN105393623A (zh) * 2013-07-12 2016-03-09 夏普株式会社 终端装置、方法以及集成电路
CN110120829A (zh) * 2018-02-06 2019-08-13 中兴通讯股份有限公司 功率控制方法、设备及存储介质
WO2019158193A1 (en) * 2018-02-14 2019-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Link adaptation correction for low latency mu-mimo
CN111130606A (zh) * 2018-11-01 2020-05-08 大唐移动通信设备有限公司 基于功率分配的预编码方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10411771B2 (en) * 2015-03-30 2019-09-10 Kabushiki Kaisha Toshiba Wireless communication methods and apparatus
CN107182131A (zh) * 2016-03-10 2017-09-19 株式会社Ntt都科摩 一种调整信道质量指示的方法、用户设备及基站
JP2018029375A (ja) * 2017-10-06 2018-02-22 株式会社Nttドコモ 基地局装置、ユーザ端末及び通信制御方法
CN110784292B (zh) * 2018-07-31 2021-10-01 华为技术有限公司 参考信号的处理方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103152811A (zh) * 2013-03-04 2013-06-12 京信通信系统(广州)有限公司 一种调整功率值的方法和装置
CN105393623A (zh) * 2013-07-12 2016-03-09 夏普株式会社 终端装置、方法以及集成电路
CN110120829A (zh) * 2018-02-06 2019-08-13 中兴通讯股份有限公司 功率控制方法、设备及存储介质
WO2019158193A1 (en) * 2018-02-14 2019-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Link adaptation correction for low latency mu-mimo
CN111130606A (zh) * 2018-11-01 2020-05-08 大唐移动通信设备有限公司 基于功率分配的预编码方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4167496A4 *

Also Published As

Publication number Publication date
EP4167496A4 (en) 2024-06-26
CN113810085A (zh) 2021-12-17
EP4167496A1 (en) 2023-04-19

Similar Documents

Publication Publication Date Title
US10856164B2 (en) Method for scheduling resources in unlicensed frequency band, base station and terminal
CN104702324B (zh) 大规模mimo下行链路自适应传输方法
US11296817B2 (en) Method and network node, for handling link adaption of a channel
WO2018202083A9 (zh) 功率余量的上报方法和装置
JP2010045783A (ja) マルチセル協調送信方法
WO2013007088A1 (zh) 一种信道状态信息的处理方法、装置及系统
EP3800945B1 (en) Power allocation method and related device
WO2013139139A1 (zh) 一种下行信道质量信息获取方法和装置
WO2022048497A1 (zh) 信道状态信息发送方法、信道状态信息接收方法、信令信息传输方法、节点和介质
WO2015139419A1 (zh) 干扰消除或抑制的信令通知方法及系统、接收方法及装置
CN111345055A (zh) 用于重复传输的方法和装置
WO2014010716A1 (ja) 通信システム、通信方法、移動局の送信方法、移動局装置及び基地局装置
WO2018157365A1 (zh) 一种被用于功率调整的用户设备、基站中的方法和装置
WO2021007810A1 (zh) 预编码的方法和通信设备
WO2016121257A1 (ja) 無線通信装置および信号処理の制御方法
WO2016019741A1 (zh) 信道质量/状态指示信息处理方法、装置、终端及基站
WO2021254013A1 (zh) 一种数据传输方法、装置、通信节点及存储介质
WO2023016522A1 (zh) 一种通信方法和通信装置
EP3817481A1 (en) Method and apparatus in user equipment and base station used for wireless communication
CN107579762B (zh) 一种基于量化和统计信道信息的多小区协作预编码方法
WO2021185315A1 (en) Method and device in ue and base station used for wireless communication
CN110233650B (zh) 一种mimo-noma系统中功率调整方法及系统
WO2016161616A1 (zh) 一种分配网络资源的方法、装置和基站
Gómez-Cuba et al. Full-stack hybrid beamforming in mmWave 5G networks
WO2015100546A1 (zh) 一种数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021825541

Country of ref document: EP

Effective date: 20230116