WO2021253431A1 - 物理下行控制信道pdcch的监听方法及装置 - Google Patents

物理下行控制信道pdcch的监听方法及装置 Download PDF

Info

Publication number
WO2021253431A1
WO2021253431A1 PCT/CN2020/097201 CN2020097201W WO2021253431A1 WO 2021253431 A1 WO2021253431 A1 WO 2021253431A1 CN 2020097201 W CN2020097201 W CN 2020097201W WO 2021253431 A1 WO2021253431 A1 WO 2021253431A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration information
serving cell
monitoring
terminal device
pdcch monitoring
Prior art date
Application number
PCT/CN2020/097201
Other languages
English (en)
French (fr)
Inventor
胡奕
李海涛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/097201 priority Critical patent/WO2021253431A1/zh
Priority to EP20941038.0A priority patent/EP4156760A4/en
Priority to CN202080100170.0A priority patent/CN115462115A/zh
Publication of WO2021253431A1 publication Critical patent/WO2021253431A1/zh
Priority to US18/082,855 priority patent/US20230119565A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06964Re-selection of one or more beams after beam failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communications, and in particular to a method and device for monitoring a physical downlink control channel PDCCH.
  • the NR power saving project of 3GPP Rel-17 plans to conduct further research on the energy-saving solution of the connected user equipment (User Equipment, UE) in the case of Discontinuous Reception (DRX) configuration, including reducing UE blind inspection physics
  • UE connected user equipment
  • DRX Discontinuous Reception
  • One of the solutions for the Physical Downlink Control Channel (PDCCH) is to introduce the PDCCH skipping mechanism, that is, the network can send dynamic signaling to instruct the UE to skip PDCCH monitoring for a period of time.
  • the UE monitors the PDCCH at the DRX active time.
  • the UE when the UE receives the PDCCH skipping instruction, the UE should follow the PDCCH skipping instruction, that is, skip the PDCCH monitoring during the subsequent PDCCH skipping duration, even if the UE is in the DRX active time during this PDCCH skipping duration.
  • the network will be based on the UE’s downlink service requirements and the UE’s previous uplink service requirements reported through the BSR.
  • the network can instruct the UE to Skip PDCCH monitoring to achieve the purpose of UE power saving.
  • the UE itself will trigger the uplink transmission and expect a further response from the network.
  • the UE has uplink data arriving but there is no uplink resource used for the Buffer Status Report (BSR) report to trigger scheduling.
  • Request (Scheduling Requst, SR for short), or the UE triggers Beam Failure Recovery (BFR for short).
  • BSR Buffer Status Report
  • the UE expects a response from the network so that the UE has a demand for PDCCH monitoring. From the perspective of the network, the network can learn the scheduling requirements of the UE only after receiving these uplink transmissions of the UE, and the network does not know the scheduling requirements of the UE before the network receives these uplink transmissions of the UE.
  • the UE first sends the uplink transmission and enters the state of monitoring the PDCCH. During this period, the UE receives the PDCCH from the network.
  • the skipping instruction at this time, the UE skips PDCCH monitoring based on the PDCCH skipping instruction of the network. Even the UE may think that the network does not allocate resources according to the scheduling requirements, resulting in inconsistent understanding between the network and the terminal.
  • the embodiment of the application provides a method and device for monitoring the physical downlink control channel PDCCH, so as to at least solve the problem that the terminal device in the related art receives the network response to the triggered scheduling request or the triggered beam failure recovery response.
  • the problem of inconsistent understanding between the network and the terminal caused by the PDCCH skipping instruction sent by the network is reached.
  • a method for monitoring the physical downlink control channel PDCCH which includes: a terminal device sends a scheduling request to a network device; the terminal device obtains a monitoring instruction message sent by the network device, wherein The monitoring instruction message is used to instruct to skip PDCCH monitoring on the first serving cell set corresponding to the network device; in the case that the network device does not receive a response to the scheduling request, the terminal device The configuration information determines that the PDCCH monitoring is not skipped on the target serving cell in the first serving cell set indicated by the monitoring instruction message.
  • a method for monitoring and indicating physical downlink control channel PDCCH which includes: a network device sends configuration information to a terminal device; the network device obtains a schedule sent by the terminal device according to the configuration information Request; the network device sends a monitoring instruction message to the terminal device, where the monitoring instruction message is used to instruct to skip PDCCH monitoring on the first serving cell set corresponding to the network device; wherein the configuration information is used for Instruct the terminal device to determine, according to the configuration information, a target serving cell in the first serving cell set indicated by the monitoring instruction message without receiving a response from the network device to the scheduling request
  • the PDCCH monitoring is not skipped on the above.
  • a physical downlink control channel PDCCH monitoring device including: a first sending module, configured to send a scheduling request to a network device; and a first acquiring module, configured to acquire the network device The sent monitoring instruction message, where the monitoring instruction message is used to instruct to skip PDCCH monitoring on the first serving cell set corresponding to the network device; the first processing module is configured to respond to the network device when the network device is not received In the case of a response to the scheduling request, it is determined according to the acquired configuration information that the PDCCH monitoring is not skipped on the target serving cell in the first serving cell set indicated by the monitoring indication message.
  • a device for monitoring and indicating physical downlink control channel PDCCH including: a second sending module, configured to send configuration information to a terminal device; and a second acquiring module, configured to acquire the terminal The scheduling request sent by the device according to the configuration information; the third sending module is configured to send a monitoring instruction message to the terminal device, where the monitoring instruction message is used to indicate the set of first serving cells corresponding to the network device Skip PDCCH monitoring; wherein, the configuration information is used to instruct the terminal device to determine, according to the configuration information, that the monitoring indication message indicates that the terminal device does not receive a response from the network device to the scheduling request The PDCCH monitoring is not skipped on the target serving cell in the first serving cell set.
  • a terminal device which is characterized by comprising: a first processor, and a first transceiver connected to the first processor, wherein the first transceiver , Used to send a scheduling request to a network device; obtain a monitoring instruction message sent by the network device; wherein the monitoring instruction message is used to instruct to skip PDCCH monitoring on the first serving cell set corresponding to the network device;
  • the first processor is configured to determine, according to the obtained configuration information, in the first serving cell set indicated by the monitoring instruction message in a case where the response of the network device to the scheduling request is not received The PDCCH monitoring is not skipped on the target serving cell in.
  • a network device including: a second processor, and a second transceiver connected to the first processor, wherein the second transceiver is configured to:
  • the terminal device sends configuration information; obtains the scheduling request sent by the terminal device according to the configuration information; sends a monitoring instruction message to the terminal device, where the monitoring instruction message is used to indicate the first network device corresponding to the network device PDCCH monitoring is skipped on the serving cell set;
  • the second processor is configured to determine the configuration information; wherein, the configuration information is used to indicate that the terminal device has not received the scheduling request from the network device In the case of a response, it is determined according to the configuration information that the PDCCH monitoring is not skipped on the target serving cell in the first serving cell set indicated by the monitoring instruction message.
  • a storage medium in which a computer program is stored, wherein the computer program is configured to execute the steps in any one of the foregoing method embodiments when running.
  • the terminal device determines the target serving cell not to skip the PDCCH monitoring based on the configuration information used for the scheduling request and the monitoring instruction message sent by the network device, rather than just determining the skipping based on the monitoring instruction message sent by the network device
  • the serving cell of the PDCCH monitoring therefore, it can solve the inconsistency in understanding between the network and the terminal caused by the UE sending the PDCCH skipping indication before the terminal device receives the triggered scheduling request or the triggered beam failure recovery response in the related technology
  • the problem is to ensure the scheduling performance of the UE, while taking into account the power saving requirements of the UE.
  • Fig. 1 is a flowchart of a method for monitoring a physical downlink control channel PDCCH according to an embodiment of the present application
  • FIG. 2 is a flowchart of a physical downlink control channel PDCCH monitoring indication according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a first serving cell set based on supporting carrier aggregation scenarios
  • FIG. 4 is a schematic diagram based on a first serving cell set in a scenario where dual links are supported
  • Figure 5 is a schematic diagram of PDCCH monitoring in a DRX cycle based on scenario one;
  • Fig. 6 is a schematic diagram of PDCCH monitoring in a DRX cycle based on scenario 3;
  • Fig. 7 is a schematic diagram of PDCCH monitoring in a DRX cycle based on scenario 5;
  • Fig. 8 is a structural block diagram of a device for monitoring a physical downlink control channel PDCCH according to an embodiment of the present application
  • Fig. 9 is a structural block diagram of a physical downlink control channel PDCCH monitoring indication according to an embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • evolution system of NR system LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) unlicensed spectrum, NR-U) system, non-terrestrial communication network (Non-Terrestrial Networks, NTN) system, Universal Mobile Telecommunication System (UMTS), wireless local area network (Wireless Local Area Networks, WLAN), wireless fidelity (Wireless Fidelity, WiFi), the fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • V2X vehicle to everything
  • the terminal device may also be a wearable device.
  • Wearable devices can also be referred to as wearable smart devices. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device used to communicate with mobile devices, the network device may be an access point (AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA It can also be a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB, or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, wearable device, and NR network
  • gNB network equipment in the PLMN network or the network equipment in the PLMN network that will evolve in the future, or the network equipment in the NTN network, etc.
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, or a high elliptical orbit (High Elliptical Orbit, HEO). ) Satellite etc.
  • the network device may also be a base station installed in a location such as land or water.
  • the network equipment may provide services for the cell, and the terminal equipment communicates with the network equipment through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network equipment ( For example, the cell corresponding to the base station.
  • the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: Metro cell, Micro cell, and Pico cell ( Pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • the network can configure the DRX function for the terminal so that the terminal can monitor the PDCCH non-continuously to achieve the purpose of saving power for the terminal.
  • Each Media Access Control (MAC) entity has a DRX configuration, and DRX configuration parameters include:
  • -drx-onDurationTimer the duration of UE waking up at the beginning of a DRX cycle
  • UE starts the time delay of drx-onDurationTimer
  • -drx-InactivityTimer When the UE receives a PDCCH indicating uplink initial transmission or downlink initial transmission, the UE continues to monitor the duration of the PDCCH;
  • -drx-RetransmissionTimerDL The longest duration for the UE to monitor the PDCCH indicating downlink retransmission scheduling. Except for the Broadcast Hybrid Automatic Repeat reQuest (HARQ) process, each downlink HARQ process corresponds to a drx-RetransmissionTimerDL;
  • HARQ Broadcast Hybrid Automatic Repeat reQuest
  • -drx-RetransmissionTimerUL The longest duration for the UE to monitor the PDCCH indicating uplink retransmission scheduling.
  • Each uplink HARQ process corresponds to a drx-RetransmissionTimerUL;
  • -drx-LongCycleStartOffset used to configure the long DRX cycle and the subframe offset at which the long DRX cycle and the short DRX cycle start;
  • Short DRX cycle optional configuration
  • -drx-ShortCycleTimer the duration of the UE in the short DRX cycle (and not receiving any PDCCH), which is an optional configuration
  • -drx-HARQ-RTT-TimerDL The minimum waiting time required for the UE to expect to receive the PDCCH indicating the downlink scheduling.
  • Each downlink HARQ process except the broadcast HARQ process corresponds to a drx-HARQ-RTT-TimerDL;
  • -drx-HARQ-RTT-TimerUL The minimum waiting time that UE expects to receive the PDCCH indicating uplink scheduling.
  • Each uplink HARQ process corresponds to one drx-HARQ-RTT-TimerUL.
  • DRX Active Time includes the following situations:
  • any one of the 5 timers is running.
  • the terminal has not received an initial transmission of the PDCCH indication scrambled by the Cell-RadioNetwork Temporary Identifier (C-RNTI) after successfully receiving the random access response .
  • C-RNTI Cell-RadioNetwork Temporary Identifier
  • the terminal determines the time to start drx-onDurationTimer according to whether it is currently in a short DRX cycle or a long DRX cycle.
  • the specific regulations are as follows:
  • the drx-onDurationTimer is started at a time after drx-SlotOffset timeslots from the beginning of the current subframe.
  • the terminal If the terminal receives a PDCCH indicating downlink or uplink initial transmission, the terminal starts or restarts the drx-InactivityTimer.
  • the terminal When the terminal receives a PDCCH indicating downlink transmission, or when the terminal receives a media access control protocol data unit (Media Acces is Control Protocol Dara Unit, MAC PDU for short) on the configured downlink authorized resources, the terminal stops the HARQ The drx-RetransmissionTimerDL corresponding to the process. After completing the transmission of the HARQ process feedback for this downlink transmission, the terminal starts the drx-HARQ-RTT-TimerDL corresponding to the HARQ process.
  • Media Acces Control Protocol Dara Unit
  • the terminal starts the drx-RetransmissionTimerDL corresponding to this HARQ process.
  • the terminal When the terminal receives a PDCCH indicating uplink transmission, or when the terminal sends a MAC PDU on the configured uplink authorization resource, the terminal stops the drx-RetransmissionTimerUL corresponding to the HARQ process. After completing the first repetition of the PUSCH this time, the terminal starts the drx-HARQ-RTT-TimerUL corresponding to the HARQ process.
  • the terminal starts the drx-RetransmissionTimerUL corresponding to this HARQ process.
  • the terminal device receives the configuration information carried in the radio resource control signaling configured and sent by the network device.
  • the radio resource control signaling includes: configuration information.
  • the radio resource control signaling also carries DRX parameter configuration information.
  • the configuration information includes:
  • radio resource control signaling can be sent through dedicated radio resource control signaling, public radio resource control signaling, or broadcast, paging, or the like.
  • DRX configuration information refers to DRX related configuration parameters. For example, long DRX cycle, drx-onDurationTimer and drx-InactivityTimer and other timers.
  • SR configuration information refers to whether each uplink logical channel of a terminal device is configured as a physical uplink control channel (Physical Uplink Control Channel, PUCCH for short when a scheduling request is triggered or beam failure recovery is triggered). )resource. If the uplink logical channel is configured to transmit SR PUCCH resources, the network device will configure 0 or 1 for each uplink bandwidth part (Bandwidth Part, BWP) of each serving cell of the terminal device for the uplink logical channel. One PUCCH resource used to transmit SR.
  • PUCCH Physical Uplink Control Channel
  • the configuration information may also include uplink logical channel configuration information.
  • the uplink logical channel configuration information includes at least one of the following: uplink logical channel configuration, LCP restriction configuration, and PDCCH monitoring configuration.
  • the uplink logical channel configuration LCP restriction configuration is used to limit the serving cell that allows the uplink logical channel transmission, including the following configuration parameters:
  • allowedServingCells that is, a list of serving cells that are allowed to transmit the uplink logical channel
  • allowedSCS-List that is, a list of subcarrier intervals allowed to transmit the uplink logical channel.
  • the PDCCH monitoring configuration is used to configure the indication information of whether the uplink logical channel is allowed to not skip the PDCCH monitoring before the SR is triggered but the network response to the SR is not received.
  • the network device will configure the uplink logical channel to allow PDCCH monitoring not to be skipped. If the uplink logical channel is not a logical channel for delay-sensitive services, the network device will configure the uplink logical channel to allow skipping of PDCCH monitoring.
  • Fig. 1 is a flowchart of a method for monitoring a physical downlink control channel PDCCH according to an embodiment of the present application. As shown in Fig. 1, the process includes the following steps:
  • Step S102 the terminal device sends a scheduling request to the network device
  • Step S104 The terminal device obtains a monitoring instruction message sent by the network device, where the monitoring instruction message is used to instruct to skip PDCCH monitoring on the first serving cell set corresponding to the network device;
  • Step S106 In the case that the network device does not receive a response to the scheduling request, the terminal device determines the target in the first serving cell set indicated by the monitoring instruction message according to the obtained configuration information The PDCCH monitoring is not skipped on the serving cell.
  • the configuration information includes: first configuration information, where the first configuration information is used to configure the transmission station when the target uplink logical channel corresponding to the terminal device triggers a scheduling request or beam failure recovery.
  • the uplink resource requested by the scheduling is: first configuration information, where the first configuration information is used to configure the transmission station when the target uplink logical channel corresponding to the terminal device triggers a scheduling request or beam failure recovery.
  • the uplink resource requested by the scheduling is: first configuration information, where the first configuration information is used to configure the transmission station when the target uplink logical channel corresponding to the terminal device triggers a scheduling request or beam failure recovery.
  • the terminal device determines according to the configuration information Not skipping the PDCCH monitoring on the target serving cell in the first serving cell set indicated by the monitoring indication message includes: the terminal device determines, according to the first configuration information, that the monitoring indication message indicates The PDCCH monitoring is not skipped on all serving cells in the first serving cell set.
  • the configuration information further includes: second configuration information, where the second configuration information is used to configure the logical channel restriction of the uplink logical channel.
  • the terminal device determines that the monitoring instruction is displayed according to the configuration information.
  • the step of not skipping the PDCCH monitoring on the target serving cell in the first serving cell set indicated by the message includes: the terminal device determines, according to the second configuration information, that the monitoring indication message indicates that the PDCCH is not skipped. The PDCCH monitoring is not skipped on the serving cell corresponding to the logical channel restriction in the serving cell set.
  • the logical channel restriction includes at least one of: a list of serving cells allowed to transmit the uplink logical channel; and an SCS list of subcarrier intervals allowed to transmit the uplink logical channel.
  • the terminal device determines, according to the second configuration information, not to skip the PDCCH monitoring on the serving cell corresponding to the logical channel restriction in the first serving cell set indicated by the monitoring instruction message Including: the terminal device determines a second serving cell set according to a list of serving cells allowed to transmit the uplink logical channel and/or an SCS list of subcarrier intervals allowed to transmit the uplink logical channel, wherein the second serving cell The set is a set of serving cells used to allow transmission of the uplink logical channel; the terminal device determines according to the second serving cell set to be on the target serving cell in the first serving cell set indicated by the monitoring indication message The PDCCH monitoring is not skipped.
  • the terminal device determining, according to the second serving cell set, not to skip the PDCCH monitoring on the target serving cell in the first serving cell set indicated by the monitoring instruction message includes: The terminal device determines the third serving cell set corresponding to the second serving cell set according to the cross-carrier scheduling configuration; the terminal device determines according to the third serving cell set to be in the first serving cell set indicated by the monitoring indication message The PDCCH monitoring is not skipped on the target serving cell.
  • the method further includes: the terminal device determines according to the second serving cell set to ignore skipping on the target serving cell belonging to the first serving cell set indicated by the monitoring indication message PDCCH monitoring; the terminal device determines according to the second serving cell set to skip the PDCCH monitoring on the target serving cell that does not belong to the first serving cell set indicated by the monitoring indication message.
  • the method further includes: the configuration information further includes: third configuration information, wherein the third configuration information is used to configure the uplink logical channel to allow skipping PDCCH monitoring or configuring the uplink logical channel It is not allowed to ignore skipping PDCCH monitoring.
  • the method further includes: when the configuration information includes the third configuration information and the terminal device does not receive a response from the network device to the scheduling request, the terminal device is based on
  • the configuration information determining that the PDCCH monitoring is not skipped on the target serving cell in the first serving cell set indicated by the monitoring instruction message includes: configuring the uplink logic in the third configuration information
  • the terminal device determines that the PDCCH monitoring is not skipped on all serving cells in the first serving cell set
  • the third configuration information is used to configure the uplink If the logical channel does not allow skipping of PDCCH monitoring, the terminal device determines to skip the PDCCH monitoring on all serving cells in the first serving cell set.
  • the third configuration information is used to configure the uplink logical channel to allow skipping of PDCCH monitoring or configure the uplink logical channel to not allow skipping of PDCCH monitoring, including: supporting delay on the uplink logical channel
  • the third configuration information is used to configure the uplink logical channel to allow skipping PDCCH monitoring; when the uplink logical channel supports non-delay sensitive services, the third configuration information is used to The configuration of the uplink logical channel is not allowed to ignore skipping PDCCH monitoring.
  • the method further includes: the terminal device determines that it is in the first serving cell set indicated by the monitoring indication message according to the time period between receiving the monitoring indication message and sending the scheduling request The PDCCH monitoring is not skipped on the target serving cell of.
  • the method further includes: the terminal device determines in the first serving cell set indicated by the monitoring indication message according to the time interval between receiving the monitoring indication message and sending the scheduling request The PDCCH monitoring is not skipped on the target serving cell of.
  • the terminal device may also advance the TA value according to the time interval between receiving the monitoring indication message and sending the scheduling request and the time of the UE or the non-continuous reception hybrid automatic repeat request round-trip transmission delay timer duration (drx- The relationship between HARQ-RTT-TimerUL (RTT for short) determines whether the target cell in the first serving cell set skips PDCCH monitoring.
  • drx- The relationship between HARQ-RTT-TimerUL (RTT for short) determines whether the target cell in the first serving cell set skips PDCCH monitoring.
  • the terminal device determines that the monitoring instruction message indicates the second Skip the PDCCH monitoring on all serving cells in a serving cell set
  • the terminal device determines that the first serving cell set indicated by the monitoring indication message The PDCCH monitoring is not skipped on all serving cells in.
  • Fig. 2 is a flowchart of a physical downlink control channel PDCCH monitoring instruction according to an embodiment of the present application. As shown in Fig. 2, the process includes the following steps:
  • S202 The network device sends configuration information to the terminal device
  • the network device obtains a scheduling request sent by the terminal device according to the configuration information
  • the network device sends a monitoring instruction message to the terminal device, where the monitoring instruction message is used to instruct to skip PDCCH monitoring on the first serving cell set corresponding to the network device;
  • the configuration information is used to instruct the terminal device to determine, according to the configuration information, to be in the first serving cell indicated by the monitoring indication message without receiving a response from the network device to the scheduling request.
  • the PDCCH monitoring is not skipped on the target serving cell in the set.
  • the configuration information includes: first configuration information, where the first configuration information is used to configure the transmission station when the target uplink logical channel corresponding to the terminal device triggers a scheduling request or beam failure recovery.
  • the uplink resource requested by the scheduling is: first configuration information, where the first configuration information is used to configure the transmission station when the target uplink logical channel corresponding to the terminal device triggers a scheduling request or beam failure recovery.
  • the uplink resource requested by the scheduling is: first configuration information, where the first configuration information is used to configure the transmission station when the target uplink logical channel corresponding to the terminal device triggers a scheduling request or beam failure recovery.
  • the configuration information further includes: second configuration information, where the second configuration information is used to configure the logical channel restriction of the uplink logical channel.
  • the logical channel restriction includes at least: a list of serving cells allowed to transmit the uplink logical channel; and an SCS list of subcarrier intervals allowed to transmit the uplink logical channel.
  • the resource scheduling configuration information further includes: third configuration information, where the third configuration information is used to configure the uplink logical channel to allow skipping PDCCH monitoring or configure the uplink logical channel to not allow skipping Skip PDCCH monitoring.
  • the third configuration information is used to configure the uplink logical channel to allow skipping PDCCH monitoring; support non-delay-sensitive services on the uplink logical channel
  • the third configuration information is used to configure the uplink logical channel to not allow skipping of PDCCH monitoring.
  • Figure 3 is a schematic diagram of a first serving cell set based on a scenario supporting carrier aggregation.
  • the first serving cell set may include a primary cell (Pcell for short) in a scenario supporting carrier aggregation, one or more Secondary Cell (Secondary Cell, SCell for short).
  • Pcell primary cell
  • SCell Secondary Cell
  • Figure 4 is a schematic diagram based on the first serving cell set in the scenario supporting dual link.
  • the first serving cell set may include a master cell group (Master Cell Group, abbreviated as Master Cell Group).
  • Master Cell Group namely PCell, SCell, cells in Secondary Cell Group (MCG), namely Primary Secondary Cell (PSCell), SCell.
  • MCG Master Cell Group
  • PSCell Primary Secondary Cell
  • the following scenarios can be used in the network structure of FIG. 3 or FIG. 4.
  • the carrier aggregation network structure in Figure 3 is selected.
  • the dual-link scenario is also within the scope of protection of this scenario, and can be combined based on the content recorded in FIG. 4 and FIG. 5, which will not be repeated here.
  • Fig. 5 is a schematic diagram of PDCCH monitoring in a DRX cycle based on scenario 1.
  • Step S1 The network device determines the configuration content in the configuration information, including DRX configuration information and SR configuration information.
  • the SR configuration information is used to configure the PUCCH resource for transmitting the SR when the logical channel LC1 triggers the SR or the terminal triggers the BFR.
  • the network configures one PUCCH resource for transmitting SR on each uplink bandwidth part of each serving cell;
  • Step S2 the network device sends configuration information to the terminal device
  • step S3 the terminal device configures the PUCCH resource for transmitting SR when the logical channel LC1 triggers the SR or the terminal device triggers the BFR according to the acquired configuration information.
  • SCell1 sends SR;
  • Step S4 The network sends monitoring instruction information to the terminal device through SCell1.
  • the monitoring indication information is used to indicate that in the serving cell set with PCell and SCell1, PCell and SCell1 skip PDCCH monitoring.
  • the monitoring indication information may also indicate PDCCH skipping and continuing. time;
  • Step S5 the terminal device has not received a response from the network to the scheduling request. Therefore, according to the configuration content of the network device, that is, the DRX configuration information, and the SR configuration information, it is determined that the PDCCH monitoring is not skipped in the PCell and SCell1.
  • the terminal device determines not to skip PDCCH monitoring within the PDCCH skip duration on the PCell and SCell1;
  • Step S6 The terminal device receives the response of SCell1 to the scheduling request, and the terminal device skips the PDCCH monitoring in the PCell and SCell1 in the set of serving cells with PCell and SCell1 according to the monitoring indication information.
  • the terminal device may also maintain the PDCCH skipping duration on the PCell and SCell1 without skipping PDCCH monitoring.
  • the steps S1-S4 in the second scenario are the same as the steps S1-S4 in the first scenario, and will not be repeated here.
  • the schematic diagram of PDCCH monitoring in FIG. 5 is also applicable to the second scenario.
  • the interaction process in scenario two also includes:
  • step S5 the terminal device determines whether the time interval between the time when the SR is sent in step S3 and the time when the monitoring instruction information is received in step S4 is less than the TA value or the RTT timer of the terminal device;
  • Step S6 if it is greater than or equal to the TA value or greater than or equal to the RTT timer, the terminal device determines to skip PDCCH monitoring in the PCell and SCell1;
  • Step S7 if it is less than the TA value or less than the RTT timer, the terminal device has not received a response from the network to the scheduling request at this time, so according to the configuration content of the network device, that is, DRX configuration information, and SR configuration information It is determined not to skip PDCCH monitoring in PCell and SCell1.
  • the terminal device determines the PDCCH skip duration on PCell and SCell1 Do not skip PDCCH monitoring;
  • step S8 the terminal device receives the response of the SCell1 to the scheduling request, but the terminal device maintains the PCell, and the PDCCH skipping duration does not skip PDCCH monitoring on the SCell1.
  • the terminal setting can also skip PDCCH monitoring in the PCell and SCell1 in the serving cell set with the PCell and SCell1 according to the monitoring indication information.
  • the TA value or the RTT timer is configured at the same time, according to actual needs, it can be used according to the TA value and the maximum value in the RTT timer or the TA value and the minimum value in the RTT timer.
  • Fig. 6 is a schematic diagram of PDCCH monitoring in a DRX cycle based on scenario 3.
  • the scenario based on FIG. 6 may include the following interaction process:
  • Step S1 The network device determines the configuration content in the configuration information, including DRX configuration information, SR configuration information, and LCP restriction configuration of LC2.
  • the SR configuration information is used to configure the logical channel LC1
  • the LC2 transmits the PUCCH resource of the SR when the terminal device triggers the SR.
  • one PUCCH resource for transmitting SR is configured on each uplink bandwidth part of each serving cell of LC1 and LC2.
  • the uplink logical channel configuration LCP restriction configuration of LC2 includes: the serving cell PCell that allows transmission of the uplink logical channel.
  • Step S2 the network device sends configuration information to the terminal device
  • step S3 the terminal device configures the PUCCH resource that triggers the SR to transmit the SR on the terminal device according to the acquired configuration information, that is, configures the logical channel LC1 to trigger the UE to send the SR to the network on the PUCCH of SCell1 as shown in FIG. 6;
  • Step S4 The network sends monitoring instruction information to the terminal device on SCell1.
  • the monitoring indication information is used to indicate that in the serving cell set with PCell and SCell1, PCell and SCell1 skip PDCCH monitoring.
  • the monitoring indication information may also indicate PDCCH skipping and continuing. time;
  • Step S5 the terminal device determines, according to the configuration content of the network device, that is, the DRX configuration information and the SR configuration information, that PDCCH monitoring is not skipped in the PCell and SCell1.
  • the terminal device determines not to skip PDCCH monitoring within the PDCCH skip duration on PCell and SCell1;
  • Step S6 The terminal device configures the PUCCH resource of the SR that triggers the SR transmission on the terminal device according to the acquired configuration information, that is, configures the logical channel LC2 on the terminal device. As shown in FIG. 6, the UE is triggered by LC2 to send the SR to SCell1 on the PUCCH of SCell1;
  • Step S7 SCell1 sends monitoring instruction information to the terminal device.
  • the monitoring indication information is used to indicate that in the serving cell set with PCell and SCell1, PCell and SCell1 skip PDCCH monitoring.
  • the monitoring indication information may also indicate PDCCH skipping and continuing. time;
  • step S8 the terminal device determines, according to the configuration content of the network device, that is, the DRX configuration information, the SR configuration information, and the uplink logical channel configuration of the LC2 LCP restriction configuration to not skip the PDCCH monitoring in the PCell, and skip the PDCCH monitoring in the SCell1.
  • the terminal device determines not to skip PDCCH monitoring within the PDCCH skip duration on the PCell, and the PDCCH skips on the SCell1 Skip PDCCH monitoring after the duration.
  • step S9 the terminal equipment respectively receives the scheduling request response on LC1 and LC2 sent by the network on SCell1; for LC1, the terminal equipment maintains the PCell and does not skip PDCCH monitoring within the PDCCH skip duration on SCell1; for LC2, The terminal equipment is in the PCell according to the monitoring instruction information of the SCell1, and the SCell1 skips the PDCCH monitoring.
  • the terminal setting can also skip PDCCH monitoring in the serving cell set with PCell and SCell1 according to monitoring indication information.
  • the terminal setting can also skip PDCCH monitoring in the serving cell set with PCell and SCell1 according to monitoring indication information.
  • PDCCH monitoring is not skipped in PCell, and PDCCH monitoring is skipped in SCell1.
  • Steps S2-S7 in scenario four are the same as steps S2-S7 in scenario three, and will not be repeated here.
  • the schematic diagram of PDCCH monitoring in FIG. 6 is also applicable to scenario four.
  • the interaction process in scenario four also includes:
  • step S2 The difference between step S2 and step S2 is that the uplink logical channel configuration LCP restriction configuration of LC2 includes a list of sub-carrier intervals allowed to transmit LC2 and is: 15KHZ, 60KHZ.
  • Step S8 since the sub-carrier spacing of PCell is 15KHZ and the sub-carrier spacing of Scell1 is 30KHZ, the terminal equipment determines the configuration based on the configuration content of the network equipment, that is, DRX configuration information, SR configuration information, and the uplink logical channel configuration of LC2. PDCCH monitoring is not skipped in PCell, and PDCCH monitoring is skipped in SCell1.
  • Step S9 The terminal device determines, according to the cross-carrier scheduling configuration, that the PCell can send the PDCCH indicating the uplink scheduling of the PCell. Therefore, the terminal device determines not to skip PDCCH monitoring in PCell, and skips PDCCH monitoring in SCell1.
  • the terminal device determines not to skip PDCCH monitoring within the PDCCH skip duration on the PCell, and the PDCCH skips on the SCell1 Skip PDCCH monitoring after the duration.
  • step S10 the terminal device receives the scheduling request response from SCell1 for LC1 and LC2 respectively; for LC1, the terminal device maintains the PDCCH skipping duration on PCell and SCell1 without skipping PDCCH monitoring; for LC2, the terminal device according to SCell1 The monitoring indication information is in the PCell, and SCell1 skips PDCCH monitoring.
  • the terminal setting can also skip PDCCH monitoring in the serving cell set with PCell and SCell1 according to monitoring indication information.
  • the terminal setting can also skip PDCCH monitoring in the serving cell set with PCell and SCell1 according to monitoring indication information.
  • PDCCH monitoring is not skipped in PCell, and PDCCH monitoring is skipped in SCell1.
  • the terminal equipment needs to be configured on the uplink logical channel. Determine the serving cell that satisfies the above two lists at the same time.
  • the value range of the subcarrier interval list of the allowed transmission of LC2 in this application is applicable to the value range of the subcarrier interval of NR.
  • Fig. 7 is a schematic diagram of PDCCH monitoring in a DRX cycle based on scenario 5.
  • the scenario based on FIG. 7 may include the following interaction process:
  • Step S1 The network device determines the configuration content in the configuration information, including DRX configuration information, SR configuration information, and PDCCH monitoring configuration of LC2.
  • the SR configuration information is used to configure the logical channel LC1, and the LC2 transmits the PUCCH resource of the SR when the terminal device triggers the SR.
  • one PUCCH resource for transmitting SR is configured on each uplink bandwidth part of each serving cell of LC1 and LC2.
  • the PDCCH monitoring configuration of LC2 includes: configuring the indication information that LC2 allows skipping PDCCH monitoring;
  • Step S2 the network device sends configuration information to the terminal device
  • step S3 the terminal device configures the PUCCH resource of the SR that triggers the SR transmission on the terminal device according to the acquired configuration information, that is, configures the logical channel LC1 to trigger the UE to send the SR to SCell1 on the PUCCH of SCell1 through LC1;
  • Step S4 The network device sends monitoring instruction information to the terminal device.
  • the monitoring indication information is used to indicate that in the serving cell set with PCell and SCell1, PCell and SCell1 skip PDCCH monitoring.
  • the monitoring indication information may also indicate PDCCH skipping and continuing. time;
  • Step S5 The terminal device determines, according to the configuration content of the network device, that is, the DRX configuration information, and the SR configuration information that PDCCH monitoring is not skipped in the PCell and SCell1.
  • the terminal device determines not to skip PDCCH monitoring within the PDCCH skip duration on PCell and SCell1;
  • step S6 the terminal equipment respectively receives the network equipment's response to the scheduling request on the LC1; for the LC1, the terminal equipment maintains the PCell, and the PDCCH skipping duration on the SCell1 does not skip PDCCH monitoring.
  • Step S7 The terminal device configures the PUCCH resource of the SR that triggers the SR transmission on the terminal device according to the acquired configuration information, that is, configures the logical channel LC2 on the terminal device. As shown in FIG. 7, the UE is triggered through LC2 to send the SR to the network device on the PUCCH of SCell1;
  • Step S8 The network device sends monitoring instruction information to the terminal device.
  • the monitoring indication information is used to indicate that in the serving cell set with PCell and SCell1, PCell and SCell1 skip PDCCH monitoring.
  • the monitoring indication information may also indicate PDCCH skipping and continuing. time;
  • Step S9 The terminal device determines to skip PDCCH monitoring on the PCell and SCell1 according to the configuration content of the network device, that is, the DRX configuration information, the SR configuration information, and the indication information that configures LC2 to allow skipping of PDCCH monitoring.
  • the terminal device determines to skip PDCCH monitoring within the PDCCH skip duration on the PCell and SCell1.
  • the terminal setting can also skip PDCCH monitoring in the serving cell set with PCell and SCell1 according to monitoring indication information.
  • step S1 includes: configuring the indication information that LC2 allows skipping PDCCH monitoring, then in step S8, the terminal device determines to skip PDCCH monitoring on PCell and Scell1.
  • Scenario 6 can include the following interactive process:
  • Step S1 The network device determines the configuration content in the configuration information, including DRX configuration information, SR configuration information, and the uplink logical channel configuration of LC2.
  • the uplink logical channel configuration of LC2 includes: PDCCH monitoring configuration of LC2 and LCP restriction configuration of LC2.
  • the SR configuration information is used to configure the logical channel LC1, and the LC2 transmits the PUCCH resource of the SR when the terminal device triggers the SR.
  • one PUCCH resource for transmitting SR is configured on each uplink bandwidth part of each serving cell of LC1 and LC2.
  • the PDCCH monitoring configuration of LC1 includes: configuring the indication information of LC1 to allow not skipping PDCCH monitoring;
  • the PDCCH monitoring configuration of LC2 includes: configuring the indication information of configuring LC2 not to skip PDCCH monitoring;
  • the LCP restriction configuration of LC2 includes: allowing the transmission of this The serving cell PCell of the uplink logical channel; the list of subcarrier intervals allowed to transmit LC2 and is: 15KHZ, 60KHZ.
  • Step S2 the network device sends configuration information to the terminal device
  • Step S3 The terminal device configures the PUCCH resource of the SR that triggers the SR transmission on the terminal device according to the acquired configuration information, that is, configures the logical channel LC1 to trigger the UE to send the SR to the network device on the PUCCH of SCell1 through LC1;
  • Step S4 The network device sends monitoring instruction information to the terminal device.
  • the monitoring indication information is used to indicate that in the serving cell set with PCell and SCell1, PCell and SCell1 skip PDCCH monitoring, where the subcarrier interval of PCell is 30KHZ, and the subcarrier interval of SCell1 is 15KHZ; at the same time, optionally, The monitoring indication information may also indicate the PDCCH skip duration;
  • Step S5 The terminal device determines, according to the configuration content of the network device, that is, the DRX configuration information, and the SR configuration information that PDCCH monitoring is not skipped in the PCell and SCell1.
  • the terminal device determines not to skip PDCCH monitoring within the PDCCH skip duration on PCell and SCell1;
  • step S6 the terminal equipment respectively receives the network equipment's response to the scheduling request on the LC1; for the LC1, the terminal equipment maintains the PCell, and the PDCCH skipping duration on the SCell1 does not skip PDCCH monitoring.
  • Step S7 the terminal device according to the acquired configuration information, that is, configure the logical channel LC2 in the terminal device to trigger the SR to transmit the PUCCH resource of the SR, and trigger the UE to send the SR to the network device on the PUCCH of SCell1 through LC2;
  • Step S8 The network device sends monitoring instruction information to the terminal device.
  • the monitoring indication information is used to indicate that in a serving cell set with PCell and SCell1, PCell and SCell1 skip PDCCH monitoring.
  • the monitoring indication information may also indicate the PDCCH skip duration;
  • Step S9 The terminal device determines the PDCCH monitoring status on the PCell and SCell1 according to the configuration content of the network device, that is, the DRX configuration information, the SR configuration information, and the uplink logical channel configuration of the LC2.
  • the PDCCH monitoring configuration of LC2 includes: configuring the indication information that LC2 allows not skipping PDCCH monitoring, therefore, the indication information that PCell and SCell1 do not skip PDCCH monitoring.
  • the LCP restriction configuration of LC2 includes the serving cell PCell that allows transmission of the uplink logical channel, the list of subcarrier intervals allowed to transmit LC2 is 15KHZ, 60KHZ. Therefore, it is finally determined that both PCell and SCell1 skip PDCCH monitoring.
  • the terminal setting can also skip PDCCH monitoring in the serving cell set with PCell and SCell1 according to monitoring indication information.
  • step S1 includes: configuring the indication information that LC2 allows skipping PDCCH monitoring, then in step S8, the terminal device determines to skip PDCCH monitoring on PCell and Scell1.
  • Steps S2-S8 in scenario seven are the same as steps S2-S8 in scenario six, and will not be repeated here.
  • Scene 7 also includes the following interactive process:
  • step S1 of scenario 7 The difference between step S1 of scenario 7 and step S1 of scenario 6 is that the uplink logical channel configuration LCP restriction configuration of LC2 includes a list of subcarrier intervals allowed to transmit LC2 and is: 30KHZ, 60KHZ.
  • Step S9 The terminal device determines the PDCCH monitoring status on the PCell and SCell1 according to the configuration content of the network device, that is, the DRX configuration information, the SR configuration information, and the uplink logical channel configuration of the LC2.
  • the PDCCH monitoring configuration of LC2 includes: configuring the indication information that LC2 allows not skipping PDCCH monitoring, therefore, the indication information that PCell and SCell1 do not skip PDCCH monitoring.
  • the LCP restriction configuration of LC2 includes the serving cell PCell that allows the transmission of the uplink logical channel, the list of subcarrier intervals allowed to transmit the LC2 is 30KHZ, 60KHZ. Therefore, it is finally determined that the PCell does not skip PDCCH monitoring, but skips PDCCH monitoring in SCell1.
  • step S10 the terminal device receives the network device's response to the scheduling request on LC2; for LC2, the terminal device skips PDCCH monitoring within the PDCCH skip duration on the PCell and SCell1 according to the monitoring instruction information.
  • the terminal setting can also skip PDCCH monitoring in the serving cell set with PCell and SCell1 according to monitoring indication information.
  • the terminal device can also maintain the PCell not to skip PDCCH monitoring, but skip PDCCH monitoring in SCell1.
  • step S1 includes: configuring the indication information that LC2 allows skipping PDCCH monitoring, then in step S9, the terminal device determines to skip PDCCH monitoring on PCell and Scell1.
  • scenario 6 and scenario 7 if both the PDCCH monitoring configuration and the LCP restriction configuration exist in the uplink logical channel configuration, it can also be determined based on only one of the configurations, for example, only the PDCCH monitoring configuration is considered. Regardless of LCP restriction configuration. According to the configuration priority of the PDCCH monitoring configuration and the LCP restriction configuration, the priority can be considered according to one of the configurations. For example, after determining a set of serving cells through the LCP restriction configuration, the target serving cell is selected from the set of serving cells according to the PDCCH monitoring configuration. It can also be considered at the same time, which is described in Scene 6 and Scene 7.
  • the terminal device before the terminal device determines the skipped PDCCH monitoring status of the serving cell according to the configuration information, it can first determine whether the time period between the time when the SR is sent and the time when the monitoring instruction information is received is less than TA value or RTT timer of the terminal device.
  • the terminal determines the principle of not skipping the PDCCH monitoring on the target serving cell according to the configuration information of multiple uplink logical channels.
  • An alternative method is based on network equipment
  • the configuration through the radio resource control signaling may also be pre-negotiated with the network device, or may be determined by the terminal device itself.
  • the method according to the above embodiment can be implemented by means of software plus the necessary general hardware platform, of course, it can also be implemented by hardware, but in many cases the former is Better implementation.
  • the technical solution of this application essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to enable a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to execute the method described in each embodiment of the present application.
  • a device for monitoring the physical downlink control channel PDCCH is also provided.
  • the device is used to implement the above-mentioned embodiments and preferred implementations, and what has been described will not be repeated.
  • the term "module" can implement a combination of software and/or hardware with predetermined functions.
  • the devices described in the following embodiments are preferably implemented by software, implementation by hardware or a combination of software and hardware is also possible and conceived.
  • Fig. 8 is a structural block diagram of a device for monitoring a physical downlink control channel PDCCH according to an embodiment of the present application. As shown in Fig. 8, the device includes: a first sending module 82, a first acquiring module 84, and a first processing module 86. ,
  • the first sending module 82 is configured to send a scheduling request to a network device
  • the first obtaining module 84 is configured to obtain a monitoring instruction message sent by the network device, where the monitoring instruction message is used to instruct to skip PDCCH monitoring on the first serving cell set corresponding to the network device;
  • the first processing module 86 is configured to determine, according to the acquired configuration information, which is in the set of first serving cells indicated by the monitoring indication message without receiving a response from the network device to the scheduling request The PDCCH monitoring is not skipped on the target serving cell.
  • the configuration information includes: first configuration information, where the first configuration information is used to configure the transmission station when the target uplink logical channel corresponding to the terminal device triggers a scheduling request or beam failure recovery.
  • the uplink resource requested by the scheduling is: first configuration information, where the first configuration information is used to configure the transmission station when the target uplink logical channel corresponding to the terminal device triggers a scheduling request or beam failure recovery.
  • the uplink resource requested by the scheduling is: first configuration information, where the first configuration information is used to configure the transmission station when the target uplink logical channel corresponding to the terminal device triggers a scheduling request or beam failure recovery.
  • the method includes: determining according to the first configuration information The PDCCH monitoring is not skipped on all serving cells in the first serving cell set indicated by the monitoring instruction message.
  • the configuration information further includes: second configuration information, where the second configuration information is used to configure the logical channel restriction of the uplink logical channel.
  • the method includes: the terminal device determines that it is located according to the second configuration information The PDCCH monitoring is not skipped on the serving cell corresponding to the logical channel restriction in the first serving cell set indicated by the monitoring instruction message.
  • the logical channel restriction includes at least one of: a list of serving cells allowed to transmit the uplink logical channel; and an SCS list of subcarrier intervals allowed to transmit the uplink logical channel.
  • the second serving cell set is determined according to the list of serving cells allowed to transmit the uplink logical channel and/or the SCS list of subcarrier spacing allowed to transmit the uplink logical channel, wherein the second set of serving cells is used For the set of serving cells that allow the uplink logical channel transmission; the terminal device determines according to the second set of serving cells not to skip on the target serving cell in the first set of serving cells indicated by the monitoring instruction message The PDCCH monitoring.
  • a third serving cell set corresponding to the second serving cell set is determined according to a cross-carrier scheduling configuration; the terminal device determines, according to the third serving cell set, to be in the first serving cell indicated by the monitoring indication message The PDCCH monitoring is not skipped on the target serving cell in the set.
  • the second serving cell set determines to skip the PDCCH monitoring on the target serving cell that does not belong to the first serving cell set indicated by the monitoring indication message.
  • the configuration information further includes: third configuration information, where the third configuration information is used to configure the uplink logical channel to allow skipping PDCCH monitoring or to configure the uplink logical channel not to skip skipping PDCCH monitoring.
  • the configuration information includes the third configuration information and the terminal device does not receive a response from the network device to the scheduling request, it includes: when the third configuration information is used for When configuring the uplink logical channel to allow skipping of PDCCH monitoring, it is determined that the PDCCH monitoring is not skipped on all serving cells in the first serving cell set; the third configuration information is used to configure the When the uplink logical channel does not allow skipping of PDCCH monitoring, the terminal device determines to skip the PDCCH monitoring on all serving cells in the first serving cell set.
  • the third configuration information is used to configure the uplink logical channel to allow skipping of PDCCH monitoring or configure the uplink logical channel to not allow skipping of PDCCH monitoring, including: supporting delay on the uplink logical channel
  • the third configuration information is used to configure the uplink logical channel to allow skipping PDCCH monitoring; when the uplink logical channel supports non-delay sensitive services, the third configuration information is used to The configuration of the uplink logical channel does not allow skipping of PDCCH monitoring.
  • the target serving cell in the first serving cell set indicated by the monitoring indication message is not skipped. PDCCH monitoring.
  • the target serving cell in the first serving cell set indicated by the monitoring indication message is not skipped. PDCCH monitoring.
  • the terminal device determines that the monitoring instruction message indicates the second Skip the PDCCH monitoring on all serving cells in a serving cell set
  • the terminal device determines that the first serving cell set indicated by the monitoring indication message The PDCCH monitoring is not skipped on all serving cells in.
  • each of the above-mentioned modules can be implemented by software or hardware.
  • it can be implemented in the following way, but not limited to this: the above-mentioned modules are all located in the same processor; or, the above-mentioned modules are in any combination The forms are located in different processors.
  • a physical downlink control channel PDCCH monitoring instruction is also provided.
  • the device is used to implement the above-mentioned embodiments and preferred implementations, and what has been described will not be repeated.
  • the term "module" can implement a combination of software and/or hardware with predetermined functions.
  • the devices described in the following embodiments are preferably implemented by software, implementation by hardware or a combination of software and hardware is also possible and conceived.
  • Fig. 9 is a structural block diagram of a physical downlink control channel PDCCH monitoring indication according to an embodiment of the present application.
  • the device includes: a second sending module 92, a second acquiring module 94, and a third sending module 96 ,in,
  • the second sending module 92 is configured to send configuration information to the terminal device
  • the second obtaining module 94 is configured to obtain the scheduling request sent by the terminal device according to the configuration information
  • the third sending module 96 is configured to send a monitoring instruction message to the terminal device, where the monitoring instruction message is used to instruct to skip PDCCH monitoring on the first serving cell set corresponding to the network device;
  • the configuration information is used to instruct the terminal device to determine, according to the configuration information, to be in the first serving cell indicated by the monitoring indication message without receiving a response from the network device to the scheduling request.
  • the PDCCH monitoring is not skipped on the target serving cell in the set.
  • the configuration information includes: first configuration information, where the first configuration information is used to configure the transmission station when the target uplink logical channel corresponding to the terminal device triggers a scheduling request or beam failure recovery.
  • the uplink resource requested by the scheduling is: first configuration information, where the first configuration information is used to configure the transmission station when the target uplink logical channel corresponding to the terminal device triggers a scheduling request or beam failure recovery.
  • the uplink resource requested by the scheduling is: first configuration information, where the first configuration information is used to configure the transmission station when the target uplink logical channel corresponding to the terminal device triggers a scheduling request or beam failure recovery.
  • the configuration information further includes: second configuration information, where the second configuration information is used to configure the logical channel restriction of the uplink logical channel.
  • the logical channel restriction includes at least: a list of serving cells allowed to transmit the uplink logical channel; and an SCS list of subcarrier intervals allowed to transmit the uplink logical channel.
  • the resource scheduling configuration information further includes: third configuration information, where the third configuration information is used to configure the uplink logical channel to allow skipping PDCCH monitoring or configure the uplink logical channel to not allow skipping Skip PDCCH monitoring.
  • the third configuration information is used to configure the uplink logical channel to allow skipping PDCCH monitoring; support non-delay-sensitive services on the uplink logical channel
  • the third configuration information is used to configure the uplink logical channel to not allow skipping of PDCCH monitoring.
  • each of the above-mentioned modules can be implemented by software or hardware.
  • it can be implemented in the following way, but not limited to this: the above-mentioned modules are all located in the same processor; or, the above-mentioned modules are in any combination The forms are located in different processors.
  • Fig. 10 is a schematic structural diagram of a terminal device according to an embodiment of the present application. As shown in Fig. 10, the terminal device can be used to execute the foregoing method for monitoring the PDCCH on the terminal device side.
  • the terminal device 100 may include: a processor 1001, a receiver 1002, a transmitter 1003, a memory 1004, and a bus 1005.
  • the processor 1001 includes one or more processing cores, and the processor 1001 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1002 and the transmitter 1003 may be implemented as a transceiver 1006, and the transceiver 1006 may be a communication chip.
  • the memory 1004 is connected to the processor 1001 through a bus 1005.
  • the memory 1004 may be used to store a computer program, and the processor 1004 is used to execute the computer program to implement each step executed by the terminal device in the foregoing method embodiment.
  • the memory 1004 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes but is not limited to: RAM (Random-Access Memory, random access memory) And ROM (Read-Only Memory), EPROM (Erasable Programmable Read-Only Memory, Erasable Programmable Read-Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory, Electrically Erasable Programmable Read-Only Memory) Memory), flash memory or other solid-state storage technology, CD-ROM (Compact Disc Read-Only Memory), DVD (Digital Video Disc, high-density digital video disc) or other optical storage, tape cartridges, magnetic tapes, disks Storage or other magnetic storage devices. in:
  • the monitoring instruction message is used to instruct to skip PDCCH monitoring on the first serving cell set corresponding to the network device;
  • the response of the network device to the scheduling request is not received, it is determined according to the acquired configuration information that the target serving cell in the first serving cell set indicated by the monitoring indication message is not skipped. PDCCH monitoring.
  • FIG. 11 is a schematic structural diagram of a network device according to an embodiment of the present application. As shown in FIG. 11, the network device can be used to execute the above-mentioned method for monitoring the PDCCH on the network device side.
  • the network device 110 may include: a processor 1101, a receiver 1102, a transmitter 1103, a memory 1104, and a bus 1105.
  • the processor 1101 includes one or more processing cores, and the processor 1101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1102 and the transmitter 1103 may be implemented as a transceiver 1106, and the transceiver 1106 may be a communication chip.
  • the memory 1104 is connected to the processor 1101 through the bus 1105.
  • the memory 1104 may be used to store a computer program, and the processor 1104 is used to execute the computer program to implement each step executed by the terminal device in the foregoing method embodiment.
  • the memory 1104 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes but is not limited to: RAM (Random-Access Memory, random access memory) And ROM (Read-Only Memory), EPROM (Erasable Programmable Read-Only Memory, Erasable Programmable Read-Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory, Electrically Erasable Programmable Read-Only Memory) Memory), flash memory or other solid-state storage technology, CD-ROM (Compact Disc Read-Only Memory), DVD (Digital Video Disc, high-density digital video disc) or other optical storage, tape cartridges, magnetic tapes, disks Storage or other magnetic storage devices. in:
  • the configuration information is used to instruct the terminal device to determine, according to the configuration information, that the first terminal device indicated by the monitoring instruction message does not receive a response from the network device to the scheduling request.
  • the PDCCH monitoring is not skipped on the target serving cell in the serving cell set.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments may be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application For the sake of brevity, I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • it is not here. Repeat it again.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种物理下行控制信道PDCCH的监听方法。具体而言,该方法描述了:终端设备向网络设备发送调度请求;所述终端设备获取所述网络设备发送的监听指示消息,其中,所述监听指示消息用于指示在所述网络设备对应的第一服务小区集合上跳过PDCCH监听;在未收到所述网络设备针对所述调度请求的响应的情况下,所述终端设备根据获取的配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听。通过本申请,达到了保证UE的调度性能,同时又兼顾了UE省电的需求的效果。

Description

物理下行控制信道PDCCH的监听方法及装置 技术领域
本申请涉及通信领域,具体而言,涉及一种物理下行控制信道PDCCH的监听方法及装置方法及装置。
背景技术
3GPP Rel-17的NR power saving项目计划对连接态用户设备(User Equipment,简称UE)在配置非连接接收(Discontinuous Reception,简称DRX)情况下的节能方案进行进一步的研究,包括减少UE盲检物理下行控制信道(Physical Downlink Control Channel简称PDCCH)的方案,其中一种方式是引入PDCCH skipping机制,即网络可以通过发送动态信令指示UE跳过一段时间的PDCCH监听。对于配置了DRX的UE,UE在DRX active time监听PDCCH。总体原则上,当UE收到PDCCH skipping指示时,UE应该遵循PDCCH skipping指示,即在随后的PDCCH skipping duration期间跳过PDCCH的监听,即使UE在这段PDCCH skipping duration期间处于DRX active time。
一般情况下,网络会基于UE的下行业务需求以及UE之前通过BSR上报的上行业务需求,当网络认为该UE在未来一段时间没有上下行数据传输需求的情况下网络可以指示UE在这段时间内跳过PDCCH监听以达到UE省电的目的。
但是在一些场景下,UE自己会触发上行传输从而期待网络有进一步的响应,比如:UE有上行数据到达而没有用于缓冲区状态报告(Buffer Status Report,简称BSR)上报的上行资源从而触发调度请求(Scheduling Requst,简称SR),或者UE触发了波束失败恢复(Beam Failure Recovery,简称BFR),这些情况下由于UE期待网络的响应从而使UE有了PDCCH监听的需求。从网络的角度来看,网络只有在收到UE的这些上行传输之后才可以获知该UE的调度需求,而在网络收到UE的这些上行传输之前,网络是不知道该UE的调度需求的。然而如果网络在收到UE的这些上行传输之前向UE发送了PDCCH skipping指示,从UE的调度来看,UE先发送了上行传输从而进入监听PDCCH的状态,在此期间UE收到了来自网络的PDCCH skipping指示,此时UE基于网络的PDCCH skipping指示跳过PDCCH监听。甚至UE会认为网络没有根据调度需求分配资源,造成了网络与终端理解不一致。
发明内容
本申请实施例提供了一种物理下行控制信道PDCCH的监听方法及装置方法及装置,以至少解决相关技术中终端设备在接收到网络针对触发的调度请求或者触发的波束失败恢复的响应之前,收到了网络发送的PDCCH skipping指示所导致的网络与终端理解不一致的问题。
根据本申请的一个实施例,提供了一种物理下行控制信道PDCCH的监听方法,包括:终端设备向网络设备发送调度请求;所述终端设备获取所述网络设备发送的监听指示消息,其中,所述监听指示消息用于指示在所述网络设备对应的第一服务小区集合上跳过PDCCH监听;在未收到所述网络设备针对所述调度请求的响应的情况下,所述终端设备根据所述配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听。
根据本申请的一个实施例,提供了一种物理下行控制信道PDCCH的监听指示方法,包括:网络设备向终端设备发送配置信息;所述网络设备获取所述终端设备根据所述配置信息发送的调度请求;所述网络设备向所述终端设备发送监听指示消息,其中,所述监听指示消息用于指示在所述网络设备对应的第一服务小区集合上跳过PDCCH监听;其中,配置信息用于指示所述终端设备在未收到所述网络设备针对所述调度请求的响应的情况下,根据所述配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听。
根据本申请的另一个实施例,提供了一种物理下行控制信道PDCCH的监听装置,包括:第一发送模块,用于向网络设备发送调度请求;第一获取模块,用于获取所述网络设备发送的监听指示消息,其中,所述监听指示消息用于指示在所述网络设备对应的第一服务小区集合上跳过PDCCH监听;第一处理模块,用于在未收到所述网络设备针对所述调度请求的响应的情况下,根据获取的配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听。
根据本申请的另一个实施例,提供了一种物理下行控制信道PDCCH的监听指示装置,包括:第二发送模块,用于向终端设备发送配置信息;第二获取模块,用于获取所述终端设备根据所述配置信息发送的调度请求;第三发送模块,用于向所述终端设备发送监听指示消息,其中,所述监听指示消息用于指示在所述网络设备对应的第一服务小区集合上跳过PDCCH监听;其中,配置信息用于指示所述终端设备在未收到所述网络设备针对所述调度请求的响应的情况下,根据所述配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听。
根据本申请的另一个实施例,提供了一种终端设备,其特征在于,包括:第一处理器,以及与所述第一处理器相连的第一收发器,其中,所述第一收发器,用于,向网络设备发送调度请求;获取所 述网络设备发送的监听指示消息;其中,所述监听指示消息用于指示在所述网络设备对应的第一服务小区集合上跳过PDCCH监听;所述第一处理器,用于,在未收到所述网络设备针对所述调度请求的响应的情况下,根据获取的配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听。
根据本申请的另一个实施例,提供了一种网络设备包括:第二处理器,以及与所述第一处理器相连的第二收发器,其中,所述第二收发器,用于,向终端设备发送配置信息;获取所述终端设备根据所述配置信息发送的调度请求;向所述终端设备发送监听指示消息,其中,所述监听指示消息用于指示在所述网络设备对应的第一服务小区集合上跳过PDCCH监听;第二处理器,用于,确定所述配置信息;其中,所述配置信息用于指示所述终端设备在未收到所述网络设备针对所述调度请求的响应的情况下,根据所述配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听。
根据本申请的又一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
通过本申请,终端设备根据用于调度请求的配置信息以及网络设备发送的监听指示消息共同确定不跳过所述PDCCH监听的目标服务小区,而非仅根据网络设备发送的监听指示消息确定跳过所述PDCCH监听的服务小区,因此,可以解决相关技术中终端设备在接收到触发的调度请求或者触发的波束失败恢复的响应之前,收到了UE发送了PDCCH skipping指示所导致的网络与终端理解不一致的问题,达到了保证UE的调度性能,同时又兼顾了UE省电的需求的效果。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本申请实施例的一种物理下行控制信道PDCCH的监听方法的流程图;
[根据细则91更正 23.07.2020] 
图2是根据本申请实施例的一种物理下行控制信道PDCCH的监听指示的流程图;
图3是基于支持载波聚合场景的第一服务小区集合的示意图;
图4是基于支持双链接场景中的第一服务小区集合的示意图;
图5是基于场景一的在一个DRX周期内PDCCH监听的示意图;
图6是基于场景三的在一个DRX周期内PDCCH监听的示意图;
图7是基于场景五的在一个DRX周期内PDCCH监听的示意图;
图8根据本申请实施例的一种物理下行控制信道PDCCH的监听装置的结构框图;
图9根据本申请实施例的一种物理下行控制信道PDCCH的监听指示的结构框图;
图10根据本申请实施例的一种终端设备的结构示意图;
图11根据本申请实施例的一种网络设备的结构示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称, 如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在5G NR中,网络可以为终端配置DRX功能,使终端非连续地监听PDCCH,以达到终端省电的目的。每个媒体接入控制(Media Access Control,简称MAC)实体有一个DRX配置,DRX的配置参数包含:
-drx-onDurationTimer:在一个DRX周期的开始UE醒来的持续时间;
-drx-SlotOffset:UE启动drx-onDurationTimer的时延;
-drx-InactivityTimer:当UE收到一个指示上行初传或者下行初传的PDCCH后,UE继续监听PDCCH的持续时间;
-drx-RetransmissionTimerDL:UE监听指示下行重传调度的PDCCH的最长持续时间。除广播混合自动重传请求(Hybrid Automatic Repeat reQuest,简称HARQ)进程之外的每个下行HARQ进程对应一个drx-RetransmissionTimerDL;
-drx-RetransmissionTimerUL:UE监听指示上行重传调度的PDCCH的最长持续时间。每个上行HARQ进程对应一个drx-RetransmissionTimerUL;
-drx-LongCycleStartOffset:用于配置长DRX周期,以及长DRX周期和短DRX周期开始的子帧偏移;
-drx-ShortCycle:短DRX周期,为可选配置;
-drx-ShortCycleTimer:UE处于短DRX周期(并且没有接收到任何PDCCH)的持续时间,为可选配置;
-drx-HARQ-RTT-TimerDL:UE期望接收到指示下行调度的PDCCH需要的的最少等待时间,除广播HARQ进程之外的每个下行HARQ进程对应一个drx-HARQ-RTT-TimerDL;
-drx-HARQ-RTT-TimerUL:UE期望接收到指示上行调度的PDCCH需要的最少等待时间,每个上行HARQ进程对应一个drx-HARQ-RTT-TimerUL。
如果终端配置了DRX,则终端需要在DRX Active Time监听PDCCH。DRX Active Time包括如下几种情况:
-drx-onDurationTimer,drx-InactivityTimer,drx-RetransmissionTimerDL,drx-RetransmissionTimerUL以及ra-ContentionResolutionTimer这5个定时器中的任何一个定时器正在运行。
-在PUCCH上发送了SR并处于pending状态。
-在基于竞争的随机接入过程中,终端在成功接收到随机接入响应后还没有接收到小区-无线网络临时标识(Cell-RadioNetworkTemporaryIdentifier,简称C-RNTI)加扰的PDCCH指示的一次初始传输。
终端根据当前是处于短DRX周期还是长DRX周期,来决定启动drx-onDurationTimer的时间,具体规定如下:
1>如果使用的是短DRX周期,并且当前子帧满足[(SFN×10)+subframe number]modulo(drx-ShortCycle)=(drx-StartOffset)modulo(drx-ShortCycle);或者
1>如果使用的是长DRX周期,并且当前子帧满足[(SFN×10)+subframe number]modulo (drx-LongCycle)=drx-StartOffset:
2>在当前子帧开始的drx-SlotOffset个时隙之后的时刻启动drx-onDurationTimer。
终端启动或重启drx-InactivityTimer的条件为:
如果终端接收到一个指示下行或者上行初始传输的PDCCH,则终端启动或者重启drx-InactivityTimer。
终端启动和停止drx-RetransmissionTimerDL的条件为:
当终端接收到一个指示下行传输的PDCCH,或者当终端在配置的下行授权资源上接收到一个媒体接入控制协议数据单元(Media Acces是Control Protocol Dara Unit,简称MAC PDU),则终端停止该HARQ进程对应的drx-RetransmissionTimerDL。终端在完成针对这次下行传输的HARQ进程反馈的传输之后启动该HARQ进程对应的drx-HARQ-RTT-TimerDL。
如果终端的某个HARQ对应的定时器drx-HARQ-RTT-TimerDL超时,并且使用这个HARQ进程传输的下行数据解码不成功,则终端启动这个HARQ进程对应的drx-RetransmissionTimerDL。
终端启动和停止drx-RetransmissionTimerUL的条件为:
当终端接收到一个指示上行传输的PDCCH,或者当终端在配置的上行授权资源上发送一个MAC PDU,则终端停止该HARQ进程对应的drx-RetransmissionTimerUL。终端在完成这次PUSCH的第一次重复传输(repetition)之后启动该HARQ进程对应的drx-HARQ-RTT-TimerUL。
如果终端的某个HARQ对应的定时器drx-HARQ-RTT-TimerUL超时,则终端启动这个HARQ进程对应的drx-RetransmissionTimerUL。
终端设备接收网络设备配置并发送的无线资源控制信令中携带的配置信息。具体而言,在无线资源控制信令中包括:配置信息。此外,在该无线资源控制信令中还携带DRX参数配置信息。
具体而言,该配置信息包括:
需要指出的是,上述无线资源控制信令可以通过专用无线资源控制信令,也可以通过公共无线资源控制信令,还可以通过广播、寻呼等方式发送。
DRX配置信息是指,DRX的相关配置参数。例如,长DRX周期,drx-onDurationTimer以及drx-InactivityTimer等定时器。
SR配置信息是指,对于终端设备的每个上行逻辑信道,是否被配置为用于在触发了调度请求或波束失败恢复的情况下传输调度请求的物理上行控制信道(Physical Uplink Control Channel,简称PUCCH)资源。如果该上行逻辑信道配置用于传输SR的PUCCH资源,则网络设备会为该上行逻辑信道在终端设备的每个服务小区的每个上行带宽部分(Bandwidth Part,简称BWP)上配置0个或者1个用于传输SR的PUCCH资源。
此外,在该配置信息中还可以包括,上行逻辑信道配置信息。
其中,上行逻辑信道配置信息包括以下至少之一:上行逻辑信道配置LCP限制配置,PDCCH监听配置。
具体而言,上行逻辑信道配置LCP限制配置用于限定允许该上行逻辑信道传输的服务小区,包括如下的配置参数:
allowedServingCells,即允许传输该上行逻辑信道的服务小区列表;
allowedSCS-List,即允许传输该上行逻辑信道的子载波间隔列表。
具体而言,PDCCH监听配置用于配置上行逻辑信道在触发了SR但未收到网络针对所述SR的响应之前是否允许不跳过PDCCH监听的指示信息。
例如,如果上行逻辑信道是时延敏感业务的逻辑信道的情况下,则网络设备会为该上行逻辑信道配置为允许不跳过PDCCH监听。如果上行逻辑信道不是时延敏感业务的逻辑信道的情况下,则网络设备会为该上行逻辑信道配置为允许跳过PDCCH监听。
图1是根据本申请实施例的一种物理下行控制信道PDCCH的监听方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,终端设备向网络设备发送调度请求;
步骤S104,所述终端设备获取所述网络设备发送的监听指示消息,其中,所述监听指示消息用于指示在所述网络设备对应的第一服务小区集合上跳过PDCCH监听;
步骤S106,在未收到所述网络设备针对所述调度请求的响应的情况下,所述终端设备根据获取的配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听。
可选地,所述配置信息包括:第一配置信息,其中,所述第一配置信息用于配置在所述终端设备对应的目标上行逻辑信道触发了调度请求或波束失败恢复的情况下传输所述调度请求的上行资源。
可选地,当所述配置信息仅包括所述第一配置信息且所述终端设备未收到所述网络设备针对所述调度请求的响应的情况下,所述终端设备根据所述配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听,包括:所述终端设备根据所述第一配置 信息确定在所述监听指示消息指示的所述第一服务小区集合中的全部服务小区上不跳过所述PDCCH监听。
可选地,所述配置信息还包括:第二配置信息,其中,所述第二配置信息用于配置所述上行逻辑信道的逻辑信道限制。
可选地,当所述配置信息包括所述第二配置信息且未收到所述服务小区针对所述调度请求的响应的情况下,所述终端设备根据所述配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听,包括:所述终端设备根据所述第二配置信息确定在所述监听指示消息指示的所述第一服务小区集合中与所述逻辑信道限制对应的服务小区上不跳过所述PDCCH监听。
可选地,所述逻辑信道限制包括至少之一:允许传输所述上行逻辑信道的服务小区列表;允许传输所述上行逻辑信道的子载波间隔SCS列表。
可选地,所述终端设备根据所述第二配置信息确定在所述监听指示消息指示的所述第一服务小区集合中与所述逻辑信道限制对应的服务小区上不跳过所述PDCCH监听,包括:所述终端设备根据允许传输所述上行逻辑信道的服务小区列表和/或允许传输所述上行逻辑信道的子载波间隔SCS列表确定第二服务小区集合,其中,所述第二服务小区集合为用于允许所述上行逻辑信道传输的服务小区集合;所述终端设备根据所述第二服务小区集合确定在所述监听指示消息指示的第一服务小区集合中的所述目标服务小区上不跳过所述PDCCH监听。
可选地,所述终端设备根据所述第二服务小区集合确定在所述监听指示消息指示的第一服务小区集合中的所述目标服务小区上不跳过所述PDCCH监听,包括:所述终端设备根据跨载波调度配置确定所述第二服务小区集合对应的第三服务小区集合;所述终端设备根据所述第三服务小区集合确定在所述监听指示消息指示的第一服务小区集合中的所述目标服务小区上不跳过所述PDCCH监听。
可选地,所述方法还包括:所述终端设备根据所述第二服务小区集合确定在属于所述监听指示消息指示的第一服务小区集合中的所述目标服务小区上忽略跳过所述PDCCH监听;所述终端设备根据所述第二服务小区集合确定在不属于所述监听指示消息指示的第一服务小区集合中的所述目标服务小区上跳过所述PDCCH监听。
可选地所述方法还包括:所述配置信息还包括:第三配置信息,其中,所述第三配置信息用于配置所述上行逻辑信道允许忽略跳过PDCCH监听或配置所述上行逻辑信道不允许忽略跳过PDCCH监听。
可选地,所述方法还包括:当所述配置信息包括所述第三配置信息且所述终端设备未收到所述网络设备针对所述调度请求的响应的情况下,所述终端设备根据所述配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听,包括:在所述第三配置信息用于配置所述上行逻辑信道允许忽略跳过PDCCH监听的情况下,所述终端设备确定所述第一服务小区集合中的全部服务小区上不跳过所述PDCCH监听;在所述第三配置信息用于配置所述上行逻辑信道不允许忽略跳过PDCCH监听的情况下,所述终端设备确定所述第一服务小区集合中的全部服务小区上跳过所述PDCCH监听。
可选地,所述第三配置信息用于配置所述上行逻辑信道允许忽略跳过PDCCH监听或配置所述上行逻辑信道不允许忽略跳过PDCCH监听,包括:在所述上行逻辑信道支持时延敏感业务的情况下,所述第三配置信息用于配置所述上行逻辑信道允许忽略跳过PDCCH监听;在所述上行逻辑信道支持不时延敏感业务的情况下,所述第三配置信息用于配置所述上行逻辑信道不允许忽略跳过PDCCH监听。
可选地,所述方法还包括:所述终端设备根据接收所述监听指示消息与发送所述调度请求之间的时间段,确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听。
可选地,所述方法还包括:所述终端设备根据接收所述监听指示消息与发送所述调度请求之间的时间间隔,确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听。
可选地,终端设备还可以根据接收监听指示消息与发送所述调度请求之间的时间间隔与UE的时间提前TA值或者非连续接收混合自动重传请求往返传输时延定时器时长(drx-HARQ-RTT-TimerUL,简称RTT)之间的关系确定第一服务小区集合中目标小区是否跳过PDCCH监听。
具体而言,如果大于或等于TA值,或者大于或等于非连续接收混合自动重传请求往返传输时延定时器时长的情况下,所述终端设备确定在所述监听指示消息指示的所述第一服务小区集合中的全部服务小区上跳过所述PDCCH监听
具体而言,如果小于TA值,或者小于非连续接收混合自动重传请求往返传输时延定时器时长的情况下,所述终端设备确定在所述监听指示消息指示的所述第一服务小区集合中的全部服务小区上不跳过所述PDCCH监听。
图2是根据本申请实施例的一种物理下行控制信道PDCCH的监听指示的流程图,如图2所示,该流程包括如下步骤:
S202,网络设备向终端设备发送配置信息;
S204,所述网络设备获取所述终端设备根据所述配置信息发送的调度请求;
S206,所述网络设备向所述终端设备发送监听指示消息,其中,所述监听指示消息用于指示在所述网络设备对应的第一服务小区集合上跳过PDCCH监听;
其中,配置信息用于指示所述终端设备在未收到所述网络设备针对所述调度请求的响应的情况下,根据所述配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听。
可选地,所述配置信息包括:第一配置信息,其中,所述第一配置信息用于配置在所述终端设备对应的目标上行逻辑信道触发了调度请求或波束失败恢复的情况下传输所述调度请求的上行资源。
可选地,所述配置信息还包括:第二配置信息,其中,所述第二配置信息用于配置所述上行逻辑信道的逻辑信道限制。
可选地,所述逻辑信道限制至少包括:允许传输所述上行逻辑信道的服务小区列表;允许传输所述上行逻辑信道的子载波间隔SCS列表。
可选地,所述资源调度配置信息还包括:第三配置信息,其中,所述第三配置信息用于配置所述上行逻辑信道允许忽略跳过PDCCH监听或配置所述上行逻辑信道不允许忽略跳过PDCCH监听。
可选地,在所述上行逻辑信道支持时延敏感业务的情况下,所述第三配置信息用于配置所述上行逻辑信道允许忽略跳过PDCCH监听;在所述上行逻辑信道支持不时延敏感业务的情况下,所述第三配置信息用于配置所述上行逻辑信道不允许忽略跳过PDCCH监听。
图3是基于支持载波聚合场景的第一服务小区集合的示意图,如图3所示,第一服务小区集合可以包括支持载波聚合场景当中的主小区(Primary Cell,简称Pcell),一个或者多个辅小区(Secondary Cell,简称SCell)。
如果进一步在支持双链接的场景当中,图4是基于支持双链接场景中的第一服务小区集合的示意图,如图4所示,第一服务小区集合可以包括主小区组(Master Cell Group,简称MCG)中的小区,即PCell,SCell,辅小区组(Secondary Cell Group,简称MCG)中的小区,即主辅小区(Primary Secondary Cell,简称PSCell),SCell。
具体而言,为了更加清楚地了解上述记载地技术方案,本申请实施例中还提供了如下场景以便理解:
需要说明的时,下述场景可以用于与图3或者图4中的网络结构当中。本说明书为了方便描述,选用了图3当中的载波聚合的网络结构。当然,双链接的场景也在本场景的保护范围之内,能够基于图4与图5中记载的内容进行结合,在此不做过多赘述。
需要说明的是,载波集合和双链接场景只是举例说明。
需要指出的是,如下场景之中仅举出了针对具有PCell和SCell1服务小区集合。但实际上,能够知晓的是,下述场景可以应道到任何数量的服务小区。例如,只有多个SCell作为服务小区的场景,PSCell与多个SCell作为服务小区的场景。因此,不再赘述。总而言之,只要是能够涵括下本申请思路中的场景均在如下场景的保护范围之内。
场景一:
图5是基于场景一的在一个DRX周期内PDCCH监听的示意图。
具体而言,基于图5的场景的交互过程如下:
步骤S1,网络设备确定配置信息中的配置内容,包括DRX配置信息,以及SR配置信息。其中,SR配置信息用于配置在逻辑信道LC1触发了SR或者终端触发了BFR时传输SR的PUCCH资源。同时,针对LC1或者BFR,网络在每个服务小区的每个上行带宽部分上配置了1个用于传输SR的PUCCH资源;
步骤S2,网络设备向终端设备发送配置信息;
步骤S3,终端设备根据获取的配置信息,即,配置在逻辑信道LC1触发了SR或者终端设备触发了BFR时传输SR的PUCCH资源,如图5所示,通过LC1触发UE在SCell1的PUCCH上向SCell1发送SR;
步骤S4,网络通过SCell1向终端设备发送监听指示信息。该监听指示信息用于指示在具有PCell,SCell1的服务小区集合中PCell,SCell1跳过PDCCH监听,同时,可选地,如图5所示,在该监听指示信息中还可以指示PDCCH跳过持续时间;
步骤S5,终端设备还未收到网络针对所述调度请求的响应,因此根据网络设备的配置内容,即DRX配置信息,以及SR配置信息确定在PCell,SCell1不跳过PDCCH监听,可选地,如图5所示,如果监听指示信息中指示了PDCCH跳过持续时间的情况下,终端设备确定在PCell,SCell1上PDCCH跳过持续时间内不跳过PDCCH监听;
步骤S6,终端设备收到SCell1针对所述调度请求的响应,终端设备根据监听指示信息,在具有PCell,SCell1的服务小区集合中PCell,SCell1跳过PDCCH监听。
需要说明的是,在步骤S6当中,终端设备也可以维持在PCell,SCell1上PDCCH跳过持续时间内不跳过PDCCH监听。
场景二:
场景二中的步骤S1-S4与场景一中的步骤S1-S4相同,在此不做过多赘述。同时图5中的PDCCH监听的示意图也适用于场景二当中。具体而言,场景二中的交互过程还包括:
步骤S5,终端设备确定步骤S3中发送SR的时刻与步骤S4中接收监听指示信息的时刻之间的时间间隔是否小于终端设备的TA值或者RTT定时器;
步骤S6,如果大于或等于TA值或者大于或等于RTT定时器的情况下,终端设备确定在PCell,SCell1跳过PDCCH监听;
步骤S7,如果小于TA值或者小于RTT定时器的情况下,终端设备此时还未收到网络针对所述调度请求的响应,因此根据网络设备的配置内容,即DRX配置信息,以及SR配置信息确定在PCell,SCell1不跳过PDCCH监听,可选地,如图5所示,如果监听指示信息中指示了PDCCH跳过持续时间的情况下,终端设备确定在PCell,SCell1上PDCCH跳过持续时间内不跳过PDCCH监听;
步骤S8,终端设备收到SCell1针对所述调度请求的响应,但终端设备维持在PCell,SCell1上PDCCH跳过持续时间内不跳过PDCCH监听。
需要说明的是,在步骤S8当中,终端设置也可以根据监听指示信息,在具有PCell,SCell1的服务小区集合中PCell,SCell1跳过PDCCH监听。
如果同时配置TA值或者RTT定时器的情况下,根据实际需要,可以根据TA值以及RTT定时器中的最大值或者TA值以及RTT定时器中的最小值使用。
场景三:
图6是基于场景三的在一个DRX周期内PDCCH监听的示意图。具体而言,基于图6的场景可以包括如下的交互过程:
步骤S1,网络设备确定配置信息中的配置内容,包括DRX配置信息,SR配置信息以及LC2的LCP限制配置。其中,SR配置信息用于配置逻辑信道LC1,LC2在终端设备触发了SR时传输SR的PUCCH资源。同时,LC1,LC2每个服务小区的每个上行带宽部分上配置了1个用于传输SR的PUCCH资源。其中,LC2的上行逻辑信道配置LCP限制配置包括:允许传输该上行逻辑信道的服务小区PCell。
步骤S2,网络设备向终端设备发送配置信息;
步骤S3,终端设备根据获取的配置信息,即,配置逻辑信道LC1在终端设备触发了SR传输SR的PUCCH资源,如图6所示,通过LC1触发UE在SCell1的PUCCH上向网络发送SR;
步骤S4,网络在SCell1上向终端设备发送监听指示信息。该监听指示信息用于指示在具有PCell,SCell1的服务小区集合中PCell,SCell1跳过PDCCH监听,同时,可选地,如图6所示,在该监听指示信息中还可以指示PDCCH跳过持续时间;
步骤S5,终端设备根据网络设备的配置内容,即DRX配置信息,SR配置信息确定在PCell,SCell1不跳过PDCCH监听,可选地,如图6所示,如果监听指示信息中指示了PDCCH跳过持续时间的情况下,终端设备确定在PCell,SCell1上PDCCH跳过持续时间内不跳过PDCCH监听;
步骤S6,终端设备根据获取的配置信息,即,配置逻辑信道LC2在终端设备触发了SR传输SR的PUCCH资源,如图6所示,通过LC2触发UE在SCell1的PUCCH上向SCell1发送SR;
步骤S7,SCell1向终端设备发送监听指示信息。该监听指示信息用于指示在具有PCell,SCell1的服务小区集合中PCell,SCell1跳过PDCCH监听,同时,可选地,如图6所示,在该监听指示信息中还可以指示PDCCH跳过持续时间;
步骤S8,终端设备根据网络设备的配置内容,即DRX配置信息,SR配置信息以及LC2的上行逻辑信道配置LCP限制配置确定在PCell不跳过PDCCH监听,而在SCell1跳过PDCCH监听。可选地,如图6所示,如果监听指示信息中指示了PDCCH跳过持续时间的情况下,终端设备确定在PCell上PDCCH跳过持续时间内不跳过PDCCH监听,而在SCell1上PDCCH跳过持续时间内跳过PDCCH监听。
步骤S9,终端设备分别收到网络在SCell1上发送的针对LC1,LC2上的调度请求响应;对于LC1,终端设备维持在PCell,SCell1上PDCCH跳过持续时间内不跳过PDCCH监听;对于LC2,终端设备根据SCell1的监听指示信息在PCell,SCell1跳过PDCCH监听。
需要说明的是,在步骤S9当中,对于LC1,终端设置也可以根据监听指示信息,在具有PCell,SCell1的服务小区集合中PCell,SCell1跳过PDCCH监听。对于LC2,也可以维持在PCell不跳过PDCCH监听,而在SCell1跳过PDCCH监听。
场景四:
场景四中的步骤S2-S7与场景三中的步骤S2-S7相同,在此不做过多赘述。同时图6中的PDCCH监听的示意图也适用于场景四当中。场景四中的交互过程还包括:
步骤S2与步骤S2的不同之处在于,LC2的上行逻辑信道配置LCP限制配置包括允许传输LC2的子载波间隔列表且为:15KHZ,60KHZ。
步骤S8,由于PCell的子载波间隔为15KHZ,Scell1的子载波间隔为30KHZ,因此,终端设备根据网络设备的配置内容,即DRX配置信息,SR配置信息以及LC2的上行逻辑信道配置LCP限制配置确定在PCell不跳过PDCCH监听,而在SCell1跳过PDCCH监听。
步骤S9,终端设备根据跨载波调度配置确定PCell可以发送指示PCell的上行调度的PDCCH。因此,终端设备确定在PCell不跳过PDCCH监听,而在SCell1跳过PDCCH监听。可选地,如图6所示,如果监听指示信息中指示了PDCCH跳过持续时间的情况下,终端设备确定在PCell上PDCCH跳过持续时间内不跳过PDCCH监听,而在SCell1上PDCCH跳过持续时间内跳过PDCCH监听。
步骤S10,终端设备分别收到SCell1针对LC1,LC2上的调度请求响应;对于LC1,终端设备维持在PCell,SCell1上PDCCH跳过持续时间内不跳过PDCCH监听;对于LC2,终端设备根据SCell1的监听指示信息在PCell,SCell1跳过PDCCH监听。
需要说明的是,在步骤10当中,对于LC1,终端设置也可以根据监听指示信息,在具有PCell,SCell1的服务小区集合中PCell,SCell1跳过PDCCH监听。对于LC2,也可以维持在PCell不跳过PDCCH监听,而在SCell1跳过PDCCH监听。
需要说明的是,对于场景三与场景四,如果同时在上行逻辑信道配置LCP限制配置包括允许传输LC2的子载波间隔列表以及允许传输该上行逻辑信道的服务小区列表的情况下,终端设备则需要确定同时满足上述两个列表的服务小区。
需要指出的是,本申请当中的允许传输LC2的子载波间隔列表的取值范围适用NR的子载波间隔的取值范围。例如,15KHZ,30KHZ,60KHZ,120KHZ,240KHZ等。以下实施例如果涉及的话,不再赘述。
场景五:
图7是基于场景五的在一个DRX周期内PDCCH监听的示意图。具体而言,基于图7的场景可以包括如下的交互过程:
步骤S1,网络设备确定配置信息中的配置内容,包括DRX配置信息,SR配置信息以及LC2的PDCCH监听配置。其中,SR配置信息用于配置逻辑信道LC1,LC2在终端设备触发了SR时传输SR的PUCCH资源。同时,LC1,LC2每个服务小区的每个上行带宽部分上配置了1个用于传输SR的PUCCH资源。其中,LC2的PDCCH监听配置包括:配置LC2允许跳过PDCCH监听的指示信息;
步骤S2,网络设备向终端设备发送配置信息;
步骤S3,终端设备根据获取的配置信息,即,配置逻辑信道LC1在终端设备触发了SR传输SR的PUCCH资源,如图7所示,通过LC1触发UE在SCell1的PUCCH上向SCell1发送SR;
步骤S4,网络设备向终端设备发送监听指示信息。该监听指示信息用于指示在具有PCell,SCell1的服务小区集合中PCell,SCell1跳过PDCCH监听,同时,可选地,如图7所示,在该监听指示信息中还可以指示PDCCH跳过持续时间;
步骤S5,终端设备根据网络设备的配置内容,即DRX配置信息,SR配置信息确定在PCell,SCell1不跳过PDCCH监听,可选地,如图7所示,如果监听指示信息中指示了PDCCH跳过持续时间的情况下,终端设备确定在PCell,SCell1上PDCCH跳过持续时间内不跳过PDCCH监听;
步骤S6,终端设备分别收到网络设备针对LC1上的调度请求响应;对于LC1,终端设备维持在PCell,SCell1上PDCCH跳过持续时间内不跳过PDCCH监听。
步骤S7,终端设备根据获取的配置信息,即,配置逻辑信道LC2在终端设备触发了SR传输SR的PUCCH资源,如图7所示,通过LC2触发UE在SCell1的PUCCH上向网络设备发送SR;
步骤S8,网络设备向终端设备发送监听指示信息。该监听指示信息用于指示在具有PCell,SCell1的服务小区集合中PCell,SCell1跳过PDCCH监听,同时,可选地,如图7所示,在该监听指示信息中还可以指示PDCCH跳过持续时间;
步骤S9,终端设备根据网络设备的配置内容,即DRX配置信息,SR配置信息以及配置LC2允许跳过PDCCH监听的指示信息,确定在PCell与SCell1上跳过PDCCH监听。可选地,如图7所示,如果监听指示信息中指示了PDCCH跳过持续时间的情况下,终端设备确定在PCell与SCell1上PDCCH跳过持续时间内跳过PDCCH监听。
需要说明的是,在步骤10当中,对于LC1,终端设置也可以根据监听指示信息,在具有PCell,SCell1的服务小区集合中PCell,SCell1跳过PDCCH监听。
需要说明的是,如果步骤S1中,LC2的PDCCH监听配置包括:配置LC2允许跳过PDCCH监听的指示信息,则在步骤S8中,终端设备确定确定在PCell与Scell1上跳过PDCCH监听。
场景六:
场景六可以包括如下的交互过程:
步骤S1,网络设备确定配置信息中的配置内容,包括DRX配置信息,SR配置信息以及LC2的上行逻辑信道配置。其中,LC2的上行逻辑信道配置当中包括:LC2的PDCCH监听配置以及LC2的LCP限制配置。其中,SR配置信息用于配置逻辑信道LC1,LC2在终端设备触发了SR时传输SR的PUCCH资源。同时,LC1,LC2每个服务小区的每个上行带宽部分上配置了1个用于传输SR的PUCCH资源。其中,LC1的PDCCH监听配置包括:配置LC1允许不跳过PDCCH监听的指示信息;LC2的PDCCH监听配置包括:配置LC2允许不跳过PDCCH监听的指示信息;LC2的LCP限制配置包括:允许传输该上行逻辑信道的服务小区PCell;允许传输LC2的子载波间隔列表且为:15KHZ,60KHZ。
步骤S2,网络设备向终端设备发送配置信息;
步骤S3,终端设备根据获取的配置信息,即,配置逻辑信道LC1在终端设备触发了SR传输SR的PUCCH资源,通过LC1触发UE在SCell1的PUCCH上向网络设备发送SR;
步骤S4,网络设备向终端设备发送监听指示信息。该监听指示信息用于指示在具有PCell,SCell1的服务小区集合中PCell,SCell1跳过PDCCH监听,其中,PCell的子载波间隔为30KHZ,SCell1的子载波间隔为15KHZ;同时,可选地,在该监听指示信息中还可以指示PDCCH跳过持续时间;
步骤S5,终端设备根据网络设备的配置内容,即DRX配置信息,SR配置信息确定在PCell,SCell1不跳过PDCCH监听,可选地,如果监听指示信息中指示了PDCCH跳过持续时间的情况下,终端设备确定在PCell,SCell1上PDCCH跳过持续时间内不跳过PDCCH监听;
步骤S6,终端设备分别收到网络设备针对LC1上的调度请求响应;对于LC1,终端设备维持在PCell,SCell1上PDCCH跳过持续时间内不跳过PDCCH监听。
步骤S7,终端设备根据获取的配置信息,即,配置逻辑信道LC2在终端设备触发了SR传输SR的PUCCH资源,通过LC2触发UE在SCell1的PUCCH上向网络设备发送SR;
步骤S8,网络设备向终端设备发送监听指示信息。该监听指示信息用于指示在具有PCell,SCell1的服务小区集合中PCell,SCell1跳过PDCCH监听,同时,可选地,在该监听指示信息中还可以指示PDCCH跳过持续时间;
步骤S9,终端设备根据网络设备的配置内容,即DRX配置信息,SR配置信息以及LC2的上行逻辑信道配置确定PCell与SCell1上的PDCCH监听情况。具体而言,由于,LC2的PDCCH监听配置包括:配置LC2允许不跳过PDCCH监听的指示信息,因此,PCell与SCell1不跳过PDCCH监听的指示信息。但由于LC2的LCP限制配置包括允许传输该上行逻辑信道的服务小区PCell,允许传输LC2的子载波间隔列表且为:15KHZ,60KHZ。因此最终确定,PCell与SCell1均跳过PDCCH监听。
需要说明的是,在步骤10当中,对于LC1,终端设置也可以根据监听指示信息,在具有PCell,SCell1的服务小区集合中PCell,SCell1跳过PDCCH监听。
需要说明的是,如果步骤S1中,LC2的PDCCH监听配置包括:配置LC2允许跳过PDCCH监听的指示信息,则在步骤S8中,终端设备确定在PCell与Scell1上跳过PDCCH监听。
场景七:
场景七步骤S2-S8与场景六中的步骤S2-S8相同,在此不做过多赘述。场景七还包括如下的交互过程:
场景七步骤S1与场景六步骤S1的不同之处在于,LC2的上行逻辑信道配置LCP限制配置包括允许传输LC2的子载波间隔列表且为:30KHZ,60KHZ。
步骤S9,终端设备根据网络设备的配置内容,即DRX配置信息,SR配置信息以及LC2的上行逻辑信道配置确定PCell与SCell1上的PDCCH监听情况。具体而言,由于,LC2的PDCCH监听配置包括:配置LC2允许不跳过PDCCH监听的指示信息,因此,PCell与SCell1不跳过PDCCH监听的指示信息。但由于LC2的LCP限制配置包括允许传输该上行逻辑信道的服务小区PCell,允许传输LC2的子载波间隔列表且为:30KHZ,60KHZ。因此最终确定,PCell不跳过PDCCH监听,但是在SCell1跳过PDCCH监听。
步骤S10,终端设备收到网络设备针对LC2上的调度请求响应;对于LC2,终端设备根据监听指示信息在PCell,SCell1上PDCCH跳过持续时间内跳过PDCCH监听。
需要说明的是,在步骤10当中,对于LC1,终端设置也可以根据监听指示信息,在具有PCell,SCell1的服务小区集合中PCell,SCell1跳过PDCCH监听。对于LC2,终端设备也可以维持PCell不 跳过PDCCH监听,但是在SCell1跳过PDCCH监听。
需要说明的是,如果步骤S1中,LC2的PDCCH监听配置包括:配置LC2允许跳过PDCCH监听的指示信息,则在步骤S9中,终端设备确定在PCell与Scell1上跳过PDCCH监听。
需要说明的是,在场景六和场景七中,如果上行逻辑信道配置当中同时存在PDCCH监听配置以及LCP限制配置的情况下,也可以只根据其中一种配置确定,例如,只考虑PDCCH监听配置,不考虑LCP限制配置。可以根据PDCCH监听配置与LCP限制配置的配置优先权,优先按照其中一种配置进行考虑。例如,先通过LCP限制配置确定一个服务小区集合之后,然后再根据PDCCH监听配置从该服务小区集合中选去目标服务小区。还可以同时考虑,即场景六和场景七所描述的。
需要说明的是,在场景六和场景七中,如果同时存在多种LCP限制配置的情况下,则可以只考虑其中一种的限制方式,例如子载波间隔列表,或者允许传输该上行逻辑信道的服务小区列表。也可以综合考虑多种LCP限制配置同时能够满足的服务小区。由于举例过多,因此不再赘述。
需要说明的是,在场景三至七中,在终端设备根据配置信息确定服务小区的跳过PDCCH监听情况之前,可以先确定发送SR的时刻与接收监听指示信息的时刻之间的时间段是否小于终端设备的TA值或者RTT定时器。
需要说明的是,例如在场景六和场景七中,终端根据多种上行逻辑信道的配置信息确定目标服务小区上不跳过所述PDCCH监听的原则,一种可选的方式是是基于网络设备通过无线资源控制信令配置的,也可以是与网络设备预先协商的,还可以是终端设备自身确定的。
总结而言,上述场景只是示意性地说明。实际上,本申请地保护范围可以基于上述场景在不冲突地情况下任何得进行组合。因此,任何涵括在上述场景以及上述场景组合的技术方案,均在本申请的保护范围之内。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
在本实施例中还提供了一种物理下行控制信道PDCCH的监听装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图8根据本申请实施例的一种物理下行控制信道PDCCH的监听装置的结构框图,如图8示,该装置包括:第一发送模块82,第一获取模块84,第一处理模块86,其中,
第一发送模块82,用于向网络设备发送调度请求;
第一获取模块84,用于获取所述网络设备发送的监听指示消息,其中,所述监听指示消息用于指示在所述网络设备对应的第一服务小区集合上跳过PDCCH监听;
第一处理模块86,用于在未收到所述网络设备针对所述调度请求的响应的情况下,根据获取的配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听。
可选地,所述配置信息包括:第一配置信息,其中,所述第一配置信息用于配置在所述终端设备对应的目标上行逻辑信道触发了调度请求或波束失败恢复的情况下传输所述调度请求的上行资源。
可选地,当所述配置信息仅包括所述第一配置信息且所述终端设备未收到所述网络设备针对所述调度请求的响应的情况下,包括:根据所述第一配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的全部服务小区上不跳过所述PDCCH监听。
可选地,所述配置信息还包括:第二配置信息,其中,所述第二配置信息用于配置所述上行逻辑信道的逻辑信道限制。
可选地,当所述配置信息包括所述第二配置信息且未收到所述服务小区针对所述调度请求的响应的情况下,包括:所述终端设备根据所述第二配置信息确定在所述监听指示消息指示的所述第一服务小区集合中与所述逻辑信道限制对应的服务小区上不跳过所述PDCCH监听。
可选地,所述逻辑信道限制包括至少之一:允许传输所述上行逻辑信道的服务小区列表;允许传输所述上行逻辑信道的子载波间隔SCS列表。
可选地,根据允许传输所述上行逻辑信道的服务小区列表和/或允许传输所述上行逻辑信道的子载波间隔SCS列表确定第二服务小区集合,其中,所述第二服务小区集合为用于允许所述上行逻辑信道传输的服务小区集合;所述终端设备根据所述第二服务小区集合确定在所述监听指示消息指示的第一服务小区集合中的所述目标服务小区上不跳过所述PDCCH监听。
可选地,根据跨载波调度配置确定所述第二服务小区集合对应的第三服务小区集合;所述终端设 备根据所述第三服务小区集合确定在所述监听指示消息指示的第一服务小区集合中的所述目标服务小区上不跳过所述PDCCH监听。
可选地,根据所述第二服务小区集合确定在属于所述监听指示消息指示的第一服务小区集合中的所述目标服务小区上忽略跳过所述PDCCH监听;所述终端设备根据所述第二服务小区集合确定在不属于所述监听指示消息指示的第一服务小区集合中的所述目标服务小区上跳过所述PDCCH监听。
可选地,所述配置信息还包括:第三配置信息,其中,所述第三配置信息用于配置所述上行逻辑信道允许忽略跳过PDCCH监听或配置所述上行逻辑信道不允许忽略跳过PDCCH监听。
可选地,当所述配置信息包括所述第三配置信息且所述终端设备未收到所述网络设备针对所述调度请求的响应的情况下,包括:在所述第三配置信息用于配置所述上行逻辑信道允许忽略跳过PDCCH监听的情况下,确定所述第一服务小区集合中的全部服务小区上不跳过所述PDCCH监听;在所述第三配置信息用于配置所述上行逻辑信道不允许忽略跳过PDCCH监听的情况下,所述终端设备确定所述第一服务小区集合中的全部服务小区上跳过所述PDCCH监听。
可选地,所述第三配置信息用于配置所述上行逻辑信道允许忽略跳过PDCCH监听或配置所述上行逻辑信道不允许忽略跳过PDCCH监听,包括:在所述上行逻辑信道支持时延敏感业务的情况下,所述第三配置信息用于配置所述上行逻辑信道允许忽略跳过PDCCH监听;在所述上行逻辑信道支持不时延敏感业务的情况下,所述第三配置信息用于配置所述上行逻辑信道不允许忽略跳过PDCCH监听。
可选地,根据接收所述监听指示消息与发送所述调度请求之间的时间段,确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听。
可选地,根据接收所述监听指示消息与发送所述调度请求之间的时间间隔,确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听。
可选地,还可以根据接收监听指示消息与发送所述调度请求之间的时间间隔与UE的时间提前TA值或者非连续接收混合自动重传请求往返传输时延定时器时长(drx-HARQ-RTT-TimerUL,简称RTT)之间的关系确定第一服务小区集合中目标小区是否跳过PDCCH监听。
具体而言,如果大于或等于TA值,或者大于或等于非连续接收混合自动重传请求往返传输时延定时器时长的情况下,所述终端设备确定在所述监听指示消息指示的所述第一服务小区集合中的全部服务小区上跳过所述PDCCH监听
具体而言,如果小于TA值,或者小于非连续接收混合自动重传请求往返传输时延定时器时长的情况下,所述终端设备确定在所述监听指示消息指示的所述第一服务小区集合中的全部服务小区上不跳过所述PDCCH监听。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
在本实施例中还提供了一种物理下行控制信道PDCCH的监听指示,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图9根据本申请实施例的一种物理下行控制信道PDCCH的监听指示的结构框图,如图9所示,所述装置包括:第二发送模块92,第二获取模块94以及第三发送模块96,其中,
第二发送模块92,用于向终端设备发送配置信息;
第二获取模块94,用于获取所述终端设备根据所述配置信息发送的调度请求;
第三发送模块96,用于向所述终端设备发送监听指示消息,其中,所述监听指示消息用于指示在所述网络设备对应的第一服务小区集合上跳过PDCCH监听;
其中,配置信息用于指示所述终端设备在未收到所述网络设备针对所述调度请求的响应的情况下,根据所述配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听。
可选地,所述配置信息包括:第一配置信息,其中,所述第一配置信息用于配置在所述终端设备对应的目标上行逻辑信道触发了调度请求或波束失败恢复的情况下传输所述调度请求的上行资源。
可选地,所述配置信息还包括:第二配置信息,其中,所述第二配置信息用于配置所述上行逻辑信道的逻辑信道限制。
可选地,所述逻辑信道限制至少包括:允许传输所述上行逻辑信道的服务小区列表;允许传输所述上行逻辑信道的子载波间隔SCS列表。
可选地,所述资源调度配置信息还包括:第三配置信息,其中,所述第三配置信息用于配置所述上行逻辑信道允许忽略跳过PDCCH监听或配置所述上行逻辑信道不允许忽略跳过PDCCH监听。
可选地,在所述上行逻辑信道支持时延敏感业务的情况下,所述第三配置信息用于配置所述上行 逻辑信道允许忽略跳过PDCCH监听;在所述上行逻辑信道支持不时延敏感业务的情况下,所述第三配置信息用于配置所述上行逻辑信道不允许忽略跳过PDCCH监听。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
图10根据本申请实施例的一种终端设备的结构示意图,如图10所示,该终端设备可以用于执行上述终端设备侧PDCCH的监听方法。具体来讲:该终端设备100可以包括:处理器1001、接收器1002、发射器1003、存储器1004和总线1005。
处理器1001包括一个或者一个以上处理核心,处理器1001通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1002和发射器1003可以实现为一个收发器1006,该收发器1006可以是一块通信芯片。
存储器1004通过总线1005与处理器1001相连。
存储器1004可用于存储计算机程序,处理器1004用于执行该计算机程序,以实现上述方法实施例中的终端设备执行的各个步骤。
此外,存储器1004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:RAM(Random-Access Memory,随机存储器)和ROM(Read-Only Memory,只读存储器)、EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、EEPROM(Electrically Erasable Programmable Read-Only Memory,电可擦写可编程只读存储器)、闪存或其他固态存储其技术,CD-ROM(Compact Disc Read-Only Memory,只读光盘)、DVD(Digital Video Disc,高密度数字视频光盘)或其他光学存储、磁带盒、磁带、磁盘存储或其他磁性存储设备。其中:
收发器1006,用于
向网络设备发送调度请求;
获取所述网络设备发送的监听指示消息;
其中,所述监听指示消息用于指示在所述网络设备对应的第一服务小区集合上跳过PDCCH监听;
处理器1001,用于,
在未收到所述网络设备针对所述调度请求的响应的情况下,根据获取的配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听。
图11根据本申请实施例的一种网络设备的结构示意图,如图11所示,该网络设备可以用于执行上述网络设备侧PDCCH的监听方法。具体来讲:该网络设备110可以包括:处理器1101、接收器1102、发射器1103、存储器1104和总线1105。
处理器1101包括一个或者一个以上处理核心,处理器1101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1102和发射器1103可以实现为一个收发器1106,该收发器1106可以是一块通信芯片。
存储器1104通过总线1105与处理器1101相连。
存储器1104可用于存储计算机程序,处理器1104用于执行该计算机程序,以实现上述方法实施例中的终端设备执行的各个步骤。
此外,存储器1104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:RAM(Random-Access Memory,随机存储器)和ROM(Read-Only Memory,只读存储器)、EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、EEPROM(Electrically Erasable Programmable Read-Only Memory,电可擦写可编程只读存储器)、闪存或其他固态存储其技术,CD-ROM(Compact Disc Read-Only Memory,只读光盘)、DVD(Digital Video Disc,高密度数字视频光盘)或其他光学存储、磁带盒、磁带、磁盘存储或其他磁性存储设备。其中:
收发器1106,用于,
向终端设备发送配置信息;
获取所述终端设备根据所述配置信息发送的调度请求;
向所述终端设备发送监听指示消息,其中,所述监听指示消息用于指示在所述网络设备对应的第一服务小区集合上跳过PDCCH监听;
处理器1101,用于,
确定所述配置信息;
其中,所述配置信息用于指示所述终端设备在未收到所述网络设备针对所述调度请求的响应的情况下,根据所述配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中, 上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信 连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (35)

  1. 一种物理下行控制信道PDCCH的监听方法,其特征在于,包括:
    终端设备向网络设备发送调度请求;
    所述终端设备获取所述网络设备发送的监听指示消息,其中,所述监听指示消息用于指示在所述网络设备对应的第一服务小区集合上跳过PDCCH监听;
    在未收到所述网络设备针对所述调度请求的响应的情况下,所述终端设备根据获取的配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听。
  2. 根据权利要求1所述的方法,其特征在于,
    所述配置信息包括:第一配置信息,其中,所述第一配置信息用于配置在所述终端设备对应的目标上行逻辑信道触发了调度请求或波束失败恢复的情况下传输所述调度请求的上行资源。
  3. 根据权利要求2所述的方法,其特征在于,当所述配置信息仅包括所述第一配置信息且所述终端设备未收到所述网络设备针对所述调度请求的响应的情况下,所述终端设备根据所述配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听,包括:
    所述终端设备根据所述第一配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的全部服务小区上不跳过所述PDCCH监听。
  4. 根据权利要求2所述的方法,其特征在于,
    所述配置信息还包括:第二配置信息,其中,所述第二配置信息用于配置所述上行逻辑信道的逻辑信道限制。
  5. 根据权利要求4所述的方法,其特征在于,当所述配置信息包括所述第二配置信息且未收到所述服务小区针对所述调度请求的响应的情况下,所述终端设备根据所述配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听,包括:
    所述终端设备根据所述第二配置信息确定在所述监听指示消息指示的所述第一服务小区集合中与所述逻辑信道限制对应的服务小区上不跳过所述PDCCH监听。
  6. 根据权利要求5所述的方法,其特征在于,所述逻辑信道限制包括至少之一:
    允许传输所述上行逻辑信道的服务小区列表;
    允许传输所述上行逻辑信道的子载波间隔SCS列表。
  7. 根据权利要求6所述的方法,其特征在于,所述终端设备根据所述第二配置信息确定在所述监听指示消息指示的所述第一服务小区集合中与所述逻辑信道限制对应的服务小区上不跳过所述PDCCH监听,包括:
    所述终端设备根据允许传输所述上行逻辑信道的服务小区列表和/或允许传输所述上行逻辑信道的子载波间隔SCS列表确定第二服务小区集合,其中,所述第二服务小区集合为用于允许所述上行逻辑信道传输的服务小区集合;
    所述终端设备根据所述第二服务小区集合确定在所述监听指示消息指示的第一服务小区集合中的所述目标服务小区上不跳过所述PDCCH监听。
  8. 根据权利要求7所述的方法,其特征在于,所述终端设备根据所述第二服务小区集合确定在所述监听指示消息指示的第一服务小区集合中的所述目标服务小区上不跳过所述PDCCH监听,包括:
    所述终端设备根据跨载波调度配置确定所述第二服务小区集合对应的第三服务小区集合;
    所述终端设备根据所述第三服务小区集合确定在所述监听指示消息指示的第一服务小区集合中的所述目标服务小区上不跳过所述PDCCH监听。
  9. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述第二服务小区集合确定在属于所述监听指示消息指示的第一服务小区集合中的所述目标服务小区上忽略跳过所述PDCCH监听;
    所述终端设备根据所述第二服务小区集合确定在不属于所述监听指示消息指示的第一服务小区集合中的所述目标服务小区上跳过所述PDCCH监听。
  10. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述配置信息还包括:第三配置信息,其中,所述第三配置信息用于配置所述上行逻辑信道允许忽略跳过PDCCH监听或配置所述上行逻辑信道不允许忽略跳过PDCCH监听。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:当所述配置信息包括所述第三配置信息且所述终端设备未收到所述网络设备针对所述调度请求的响应的情况下,所述终端设备根据所述配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听,包括:
    在所述第三配置信息用于配置所述上行逻辑信道允许忽略跳过PDCCH监听的情况下,所述终端设备确定所述第一服务小区集合中的全部服务小区上不跳过所述PDCCH监听;
    在所述第三配置信息用于配置所述上行逻辑信道不允许忽略跳过PDCCH监听的情况下,所述终 端设备确定所述第一服务小区集合中的全部服务小区上跳过所述PDCCH监听。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第三配置信息用于配置所述上行逻辑信道允许忽略跳过PDCCH监听或配置所述上行逻辑信道不允许忽略跳过PDCCH监听,包括:
    在所述上行逻辑信道支持时延敏感业务的情况下,所述第三配置信息用于配置所述上行逻辑信道允许忽略跳过PDCCH监听;
    在所述上行逻辑信道支持不时延敏感业务的情况下,所述第三配置信息用于配置所述上行逻辑信道不允许忽略跳过PDCCH监听。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据接收所述监听指示消息与发送所述调度请求之间的时间段,确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听。
  14. 根据权利要求13所述的方法,其特征在于,所述终端设备根据接收所述监听指示消息与发送所述调度请求之间的时间段,确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听,包括:
    在所述时间段大于或等于所述终端设备的预设时长时,所述终端设备确定在所述监听指示消息指示的所述第一服务小区集合中的全部服务小区上跳过所述PDCCH监听;
    在所述时间段小于所述终端设备的预设时长时,所述终端设备确定在所述监听指示消息指示的所述第一服务小区集合中的全部服务小区上忽略跳过所述PDCCH监听;
    其中,所述预设时长包括以下之一:
    时间提前TA值,重传定时器RTT的定时器时长。
  15. 根据权利要求1-12任一项所述的方法,其特征在于,在收到所述网络设备针对所述调度请求的响应之后,所述方法还包括:
    所述终端设备根据所述监听指示消息在所述网络设备对应的第一服务小区集合上跳过PDCCH监听,或,
    所述终端设备维持在所述目标服务小区上不跳过所述PDCCH监听。
  16. 根据权利要求1-15任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备通过无线资源控制信令获取非连续接收DRX配置信息,其中,所述DRX配置信息用于指示所述终端设备非连续地监听所述PDCCH。
  17. 根据权利要求16所述的方法,其特征在于,所述DRX配置信息包括:
    长DRX周期,DRX持续监听定时器以及DRX非激活定时器。
  18. 根据权利要求1-15任一项所述的方法,其特征在于,在支持载波聚合的情况下,所述第一服务小区集合包括以下至少之一:主小区,一个或者多个辅小区。
  19. 根据权利要求18所述的方法,其特征在于,在支持双链接的情况下,所述第一服务小区集合包括以下之一:主小区组MCG中的小区,辅小区组SCG中的小区。
  20. 一种物理下行控制信道PDCCH的监听指示方法,其特征在于,包括:
    网络设备向终端设备发送配置信息;
    所述网络设备获取所述终端设备根据所述配置信息发送的调度请求;
    所述网络设备向所述终端设备发送监听指示消息,其中,所述监听指示消息用于指示在所述网络设备对应的第一服务小区集合上跳过PDCCH监听;
    其中,配置信息用于指示所述终端设备在未收到所述网络设备针对所述调度请求的响应的情况下,根据所述配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听。
  21. 根据权利要求20所述的方法,其特征在于,
    所述配置信息包括:第一配置信息,其中,所述第一配置信息用于配置在所述终端设备对应的目标上行逻辑信道触发了调度请求或波束失败恢复的情况下传输所述调度请求的上行资源。
  22. 根据权利要求20所述的方法,其特征在于,
    所述配置信息还包括:第二配置信息,其中,所述第二配置信息用于配置所述上行逻辑信道的逻辑信道限制。
  23. 根据权利要求20所述的方法,其特征在于,所述逻辑信道限制至少包括:
    允许传输所述上行逻辑信道的服务小区列表;
    允许传输所述上行逻辑信道的子载波间隔SCS列表。
  24. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    所述资源调度配置信息还包括:第三配置信息,其中,所述第三配置信息用于配置所述上行逻辑信道允许忽略跳过PDCCH监听或配置所述上行逻辑信道不允许忽略跳过PDCCH监听。
  25. 根据权利要求24所述的方法,其特征在于,
    在所述上行逻辑信道支持时延敏感业务的情况下,所述第三配置信息用于配置所述上行逻辑信道 允许忽略跳过PDCCH监听
    在所述上行逻辑信道支持不时延敏感业务的情况下,所述第三配置信息用于配置所述上行逻辑信道不允许忽略跳过PDCCH监听。
  26. 根据权利要求20-25所述的方法,其特征在于,
    所述网络设备通过无线资源控制信令发送非连续接收DRX配置信息,其中,所述DRX配置信息用于指示所述终端设备非连续地监听所述PDCCH。
  27. 根据权利要求26所述的方法,其特征在于,所述DRX配置信息包括:
    长DRX周期,DRX持续监听定时器以及DRX非激活定时器。
  28. 根据权利要求20-25任一项所述的方法,其特征在于,在支持载波聚合的情况下,所述第一服务小区集合包括以下至少之一:主小区,一个或者多个辅小区。
  29. 根据权利要求28所述的方法,其特征在于,在支持双链接的情况下,所述第一服务小区集合包括以下之一:主小区组MCG中的小区,辅小区组SCG中的小区。
  30. 一种物理下行控制信道PDCCH的监听装置,其特征在于,包括:
    第一发送模块,用于向网络设备发送调度请求;
    第一获取模块,用于获取所述网络设备发送的监听指示消息,其中,所述监听指示消息用于指示在所述网络设备对应的第一服务小区集合上跳过PDCCH监听;
    第一处理模块,用于在未收到所述网络设备针对所述调度请求的响应的情况下,根据获取的配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听。
  31. 一种物理下行控制信道PDCCH的监听配置装置,其特征在于,包括:
    第二发送模块,用于向终端设备发送配置信息;
    第二获取模块,用于获取所述终端设备根据所述配置信息发送的调度请求;
    第三发送模块,用于向所述终端设备发送监听指示消息,其中,所述监听指示消息用于指示在所述网络设备对应的第一服务小区集合上跳过PDCCH监听;
    其中,配置信息用于指示所述终端设备在未收到所述网络设备针对所述调度请求的响应的情况下,根据所述配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听。
  32. 一种终端设备,其特征在于,包括:第一处理器,以及与所述第一处理器相连的第一收发器,其中,
    所述第一收发器,用于,
    向网络设备发送调度请求;
    获取所述网络设备发送的监听指示消息;
    其中,所述监听指示消息用于指示在所述网络设备对应的第一服务小区集合上跳过PDCCH监听;
    所述第一处理器,用于,
    在未收到所述网络设备针对所述调度请求的响应的情况下,根据获取的配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听。
  33. 一种网络设备,其特征在于,包括:第二处理器,以及与所述第一处理器相连的第二收发器,其中,
    所述第二收发器,用于,
    向终端设备发送配置信息;
    获取所述终端设备根据所述配置信息发送的调度请求;
    向所述终端设备发送监听指示消息,其中,所述监听指示消息用于指示在所述网络设备对应的第一服务小区集合上跳过PDCCH监听;
    第二处理器,用于,
    确定所述配置信息;
    其中,所述配置信息用于指示所述终端设备在未收到所述网络设备针对所述调度请求的响应的情况下,根据所述配置信息确定在所述监听指示消息指示的所述第一服务小区集合中的目标服务小区上不跳过所述PDCCH监听。
  34. 一种存储介质,其特征在于,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至19任一项中所述的方法。
  35. 一种存储介质,其特征在于,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求20至29任一项中所述的方法。
PCT/CN2020/097201 2020-06-19 2020-06-19 物理下行控制信道pdcch的监听方法及装置 WO2021253431A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/097201 WO2021253431A1 (zh) 2020-06-19 2020-06-19 物理下行控制信道pdcch的监听方法及装置
EP20941038.0A EP4156760A4 (en) 2020-06-19 2020-06-19 METHOD AND APPARATUS FOR MONITORING A PHYSICAL DOWNLINK CONTROL CHANNEL (PDCCH)
CN202080100170.0A CN115462115A (zh) 2020-06-19 2020-06-19 物理下行控制信道pdcch的监听方法及装置
US18/082,855 US20230119565A1 (en) 2020-06-19 2022-12-16 Physical downlink control channel (pdcch) monitoring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/097201 WO2021253431A1 (zh) 2020-06-19 2020-06-19 物理下行控制信道pdcch的监听方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/082,855 Continuation US20230119565A1 (en) 2020-06-19 2022-12-16 Physical downlink control channel (pdcch) monitoring method and apparatus

Publications (1)

Publication Number Publication Date
WO2021253431A1 true WO2021253431A1 (zh) 2021-12-23

Family

ID=79269018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097201 WO2021253431A1 (zh) 2020-06-19 2020-06-19 物理下行控制信道pdcch的监听方法及装置

Country Status (4)

Country Link
US (1) US20230119565A1 (zh)
EP (1) EP4156760A4 (zh)
CN (1) CN115462115A (zh)
WO (1) WO2021253431A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023130396A1 (zh) * 2022-01-07 2023-07-13 北京小米移动软件有限公司 一种监听方法、装置及可读存储介质
WO2023235643A1 (en) * 2022-06-01 2023-12-07 Qualcomm Incorporated Downlink monitoring skipping based on a scheduling request (sr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109863780A (zh) * 2019-01-22 2019-06-07 北京小米移动软件有限公司 省电信号图案的使用方法、装置、设备及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115314978B (zh) * 2018-08-09 2023-06-02 华为技术有限公司 一种控制信息的传输方法及设备

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109863780A (zh) * 2019-01-22 2019-06-07 北京小米移动软件有限公司 省电信号图案的使用方法、装置、设备及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Report on [105bis#27][NR/Power Saving] – PDCCH skipping", 3GPP DRAFT; R2-1905665, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, Nevada, USA; 20190513 - 20190517, 3 May 2019 (2019-05-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 24, XP051710021 *
HUAWEI, HISILICON: "Further discussion on the impact of DCI-based PDCCH skipping", 3GPP DRAFT; R2-1906904 FURTHER DISCUSSION ON THE IMPACT OF DCI-BASED PDCCH SKIPPING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 3 May 2019 (2019-05-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051711203 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023130396A1 (zh) * 2022-01-07 2023-07-13 北京小米移动软件有限公司 一种监听方法、装置及可读存储介质
WO2023235643A1 (en) * 2022-06-01 2023-12-07 Qualcomm Incorporated Downlink monitoring skipping based on a scheduling request (sr)

Also Published As

Publication number Publication date
EP4156760A1 (en) 2023-03-29
EP4156760A4 (en) 2023-08-16
US20230119565A1 (en) 2023-04-20
CN115462115A (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
US10149339B2 (en) Base station, user equipment and methods for random access
US11101939B2 (en) Efficient sparse network resource usage and connection release
US20230131188A1 (en) Wireless communication method and terminal device
WO2021253412A1 (zh) 无线通信的方法和终端设备
US20230119565A1 (en) Physical downlink control channel (pdcch) monitoring method and apparatus
WO2020077643A1 (zh) 无线通信方法和终端设备
US20230189349A1 (en) Data transmission method and terminal device
US20220124824A1 (en) Method for random access and communication device
WO2022067519A1 (zh) 随机接入方法和终端设备
US20230129426A1 (en) Wireless communication method and terminal device
WO2022268175A1 (en) Method for small data transmission in power saving state and related devices
CN116192337A (zh) 无线通信的方法及装置
WO2022067614A1 (zh) 无线通信方法、终端设备和网络设备
WO2020020352A1 (zh) 随机接入方法、终端设备和网络设备
WO2021217615A1 (zh) 无线通信方法、终端设备和网络设备
WO2022205346A1 (zh) 终端设备切换搜索空间集分组sssg的方法、终端设备和网络设备
US20220322424A1 (en) Method for processing random access procedure, and terminal device
WO2023169353A1 (en) Method for small data transmission in power saving state and related devices
WO2023019409A1 (zh) 信息指示方法、终端设备、网络设备、芯片和存储介质
WO2023044655A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023133760A1 (zh) 小数据传输过程中的上行重传方法、装置、设备及介质
WO2022233033A1 (zh) 无线通信的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941038

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020941038

Country of ref document: EP

Effective date: 20221221

NENP Non-entry into the national phase

Ref country code: DE