WO2021253156A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2021253156A1
WO2021253156A1 PCT/CN2020/096093 CN2020096093W WO2021253156A1 WO 2021253156 A1 WO2021253156 A1 WO 2021253156A1 CN 2020096093 W CN2020096093 W CN 2020096093W WO 2021253156 A1 WO2021253156 A1 WO 2021253156A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
display panel
conductive
area
size
Prior art date
Application number
PCT/CN2020/096093
Other languages
English (en)
French (fr)
Inventor
张兵
李尚鸿
樊萌月
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/281,013 priority Critical patent/US11980070B2/en
Priority to EP20941468.9A priority patent/EP4067984A4/en
Priority to CN202080000991.7A priority patent/CN114270251B/zh
Priority to PCT/CN2020/096093 priority patent/WO2021253156A1/zh
Publication of WO2021253156A1 publication Critical patent/WO2021253156A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display panel and a display device.
  • OLED Organic Light Emitting Diode, organic light-emitting diode
  • OLED Organic Light Emitting Diode, organic light-emitting diode
  • a display panel has a display area and at least one binding area located beside the display area.
  • the display panel includes: a substrate; and, a plurality of conductive pads arranged on one side of the substrate and located in the bonding area.
  • the plurality of conductive pads are arranged at intervals along a first direction; the plurality of conductive pads include at least one first-type conductive pad configured to transmit a DC voltage signal to the display area, and A plurality of second-type conductive pads transmitting pulse voltage signals in the display area.
  • the size of the first type of conductive pad in the first direction is larger than the size of the second type of conductive pad in the first direction.
  • the size of the first type of conductive pad in the first direction is W 1
  • the size of the second type of conductive pad in the first direction is W 2
  • W 1 nW 2
  • n is any value greater than 1.
  • the size of the first type of conductive pads in the first direction is smaller than the area occupied by n of the second type of conductive pads in the The size in the first direction.
  • the plurality of conductive pads extend along the second direction.
  • the sizes of the first type conductive pad and the second type conductive pad in the second direction are equal or substantially equal.
  • the first direction and the second direction intersect.
  • the first direction and the second direction are not perpendicular.
  • the first-type conductive pad is configured to transmit at least one of a VDD signal and a VSS signal to the display area.
  • the number of conductive pads of the first type configured to transmit the same DC voltage signal in the same binding area is one.
  • the display panel has at least one bendable area.
  • the display panel includes a plurality of sub-display panels divided by the at least one bendable area.
  • the display panel has a plurality of binding areas, and the plurality of binding areas are arranged at an edge of the display panel perpendicular to an extension direction of the bendable area.
  • One sub-display panel has at least one binding area, and the binding areas of each sub-display panel are located on the same edge of the display panel.
  • the distance between the binding area close to the bendable area and the bendable area is larger than that of the sub-display. The distance between two adjacent binding areas among the multiple binding areas of the panel.
  • a display device in another aspect, includes: the display panel as described in any of the above-mentioned embodiments; and at least one flip chip film respectively bound to at least one bonding region of the display panel.
  • the chip-on-chip film includes: a plurality of conductive pins that are respectively bound to a plurality of conductive pads in the bonding area and are arranged at intervals along a first direction.
  • the plurality of conductive pins includes: at least one first-type conductive pin electrically connected to at least one first-type conductive pad of the plurality of conductive pads, and at least one first-type conductive pin electrically connected to the plurality of conductive pads.
  • the plurality of second-type conductive pads in the pad are electrically connected to a plurality of second-type conductive pins.
  • the size of the conductive pin of the first type in the first direction is larger than the size of the conductive pin of the second type in the first direction.
  • the size of the first-type conductive pin in the first direction is smaller than the size of the first-type conductive pad in the first direction.
  • the size of the second type conductive pin in the first direction is smaller than the size of the second type conductive pad in the first direction.
  • the plurality of conductive pins extend along the second direction, and the sizes of the first type conductive pins and the second type conductive pins in the second direction are equal or substantially equal.
  • the display device further includes: an array type anisotropic conductive glue disposed between the chip on film and the plurality of conductive pads.
  • the chip on film is electrically connected with the plurality of conductive pads through the array type anisotropic conductive glue.
  • FIG. 1 is a structural diagram of a display panel in some embodiments according to the present disclosure
  • Fig. 2 is an equivalent circuit diagram of a sub-pixel according to some embodiments of the present disclosure
  • FIG. 3 is an enlarged view of area D of the display panel shown in FIG. 1;
  • FIG. 4 is another enlarged view of area D of the display panel shown in FIG. 1;
  • FIG. 5 is another enlarged view of area D of the display panel shown in FIG. 1;
  • FIG. 6 is a structural diagram of another display panel in some embodiments according to the present disclosure.
  • FIG. 7 is a structural diagram of still another display panel in some embodiments of the present disclosure.
  • FIG. 8 is a structural diagram of a display device in some embodiments according to the present disclosure.
  • FIG. 9 is a structural diagram of a chip-on-chip film in some embodiments according to the present disclosure.
  • FIG. 10 is a cross-sectional view of the display device of FIG. 8 along the M-M' direction;
  • FIG. 11 is a structural diagram of another display device in some embodiments according to the present disclosure.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • plural means two or more.
  • connection and its extensions may be used.
  • the term “connected” may be used when describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the embodiments disclosed herein are not necessarily limited to the content of this document.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C", and both include the following combinations of A, B, and C: only A, only B, only C, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and the combination of A and B.
  • the exemplary embodiments are described herein with reference to cross-sectional views and/or plan views as idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Therefore, variations in the shape with respect to the drawings due to, for example, manufacturing technology and/or tolerances can be envisaged. Therefore, the exemplary embodiments should not be construed as being limited to the shapes of the regions shown herein, but include shape deviations due to, for example, manufacturing.
  • the etched area shown as a rectangle will generally have curved features. Therefore, the areas shown in the drawings are schematic in nature, and their shapes are not intended to show the actual shape of the area of the device, and are not intended to limit the scope of the exemplary embodiments.
  • the screen-to-body ratio of OLED display devices continues to increase, making the frame area of the display panel in the OLED display device narrower and narrower.
  • a bonding area is provided in the frame area of the display panel, and a plurality of conductive pads (bonding pads) arranged sequentially and spaced apart are provided in the bonding area.
  • the plurality of conductive pads are electrically connected to the plurality of signal lines of the display panel, and are bound to the chip on film (Chip On Film, or Chip On Flex, COF for short), so that the COF can pass through the plurality of conductive pads Transmission of electrical signals to the above-mentioned multiple signal lines.
  • different conductive pads can be electrically connected to different types of signal lines, and the COF can transmit different types of electrical signals through different conductive pads.
  • the different types of electrical signals may include, for example, Data signals, GOA signals, and VSS. Signal and VDD signal, etc.
  • a plurality of conductive pads in the related art generally have the same or approximately the same size, and two adjacent conductive pads also have the same or approximately the same size, so as to be able to reduce
  • the preparation process of the plurality of conductive pads is difficult, and the risk of binding misalignment of the COF and the plurality of conductive pads is reduced.
  • the bonding resistance between the plurality of conductive pads is relatively large.
  • the bonding resistance may be the sum of the resistances of a plurality of conductive pads corresponding to the same type of signal line.
  • the different types of electrical signals transmitted by COF can be roughly divided into two types according to the corresponding voltage types, namely, DC voltage signals (for example, including VSS signals and VDD signals) and pulse voltage signals (for example, including Data signals and GOA signal).
  • DC voltage signals for example, including VSS signals and VDD signals
  • pulse voltage signals for example, including Data signals and GOA signal.
  • IR drop voltage drop
  • some embodiments of the present disclosure provide a display device 1000.
  • the display device 1000 includes a display panel 100.
  • the display panel 100 has a display area A and at least one binding area B located beside the display area A (for example, it may be one side, two sides, or peripheral side of the display area A). That is, the display panel 100 may have one binding area B or multiple binding areas B.
  • the display device 1000 further includes: at least one COF 200.
  • the at least one COF 200 is respectively bound to at least one binding area B in the display panel 100.
  • the display device 1000 may include a COF 200 bound to the binding area B, and the COF 200 may be moved into the display area A through the binding area B Transmission of electrical signals.
  • the display device 1000 may include multiple COF 200.
  • the multiple COFs 200 may be bound to multiple binding areas B in a one-to-one correspondence, for example.
  • the display panel 100 has a larger size.
  • the display area A of the display panel 100 can be divided into multiple sub-display areas, and each COF 200 can independently transmit electrical signals in the sub-display area corresponding to the corresponding binding area B.
  • Multiple COFs 200 can cooperate with each other to transmit electrical signals to the display area A, so that the display panel 100 with a larger size can realize image display; of course, some COFs 200 of the multiple COFs 200 can transmit to the corresponding sub-display area
  • the electrical signal enables a partial area of the display panel 100 to realize image display.
  • the display panel 100 provided by some embodiments of the present disclosure includes: a substrate 1.
  • the substrate 1 has a variety of structures, which can be selected and set according to actual needs.
  • the substrate 1 is a blank base substrate.
  • the substrate 1 includes a blank base substrate and a functional film (for example, a buffer layer) provided on the blank base substrate.
  • blank base substrate There are many types of the blank base substrate, which can be selected and set according to actual needs.
  • the blank base substrate may be a rigid base substrate.
  • the rigid base substrate may be, for example, a glass base substrate or a PMMA (Polymethyl methacrylate) base substrate.
  • the blank base substrate may be a flexible base substrate.
  • the flexible base substrate may be, for example, a PET (Polyethylene terephthalate, polyethylene terephthalate) base substrate, a PEN (Polyethylene naphthalate two formal acid glycol ester, polyethylene naphthalate) base substrate, or PI (Polyimide, polyimide) substrate substrate.
  • the above-mentioned display panel 100 may be a flexible display panel.
  • the flexible display panel for example, can realize functions such as curling or folding, and then can realize curved display or folding display (that is, the flexible display panel displays in the folded state).
  • the above-mentioned display panel 100 further includes: a plurality of signal lines arranged on one side of the substrate 1.
  • the multiple signal lines are insulated from each other.
  • the plurality of signal lines may include: a plurality of gate lines GL extending in a first direction X, a plurality of data lines GL extending in a third direction Y, and a plurality of data lines GL extending in a third direction Y.
  • the first voltage signal line VL1 and the second voltage signal line VL2 may also extend along the first direction X, which is not limited in this example.
  • the first direction X crosses the third direction Y.
  • the size of the included angle between the first direction X and the third direction Y can be selected and set according to actual needs.
  • the first direction X and the third direction Y may be perpendicular to each other, that is, the angle between the two is 90°.
  • the plurality of gate lines GL and the plurality of DL intersect each other to define a plurality of sub-pixel regions P located in the display area A.
  • the plurality of sub-pixel regions P are arranged in an array, for example.
  • the above-mentioned display panel 100 further includes: sub-pixels Q arranged in each sub-pixel area P.
  • the sub-pixels Q arranged in a row along the first direction X may be referred to as the same row of sub-pixels Q, and the sub-pixels Q arranged in a row along the third direction Y may be referred to as the same column of sub-pixels Q.
  • the sub-pixels Q in the same row may be electrically connected to a gate line GL, and the sub-pixels Q in the same column may be electrically connected to a data line DL.
  • each sub-pixel Q may include: a pixel driving circuit PD provided on a side of the substrate 1, and a pixel driving circuit PD provided on a side of the pixel driving circuit PD away from the substrate 1 and electrically connected to the pixel driving circuit PD. OLED.
  • the pixel driving circuit PD may be composed of multiple thin film transistors (TFT for short) and at least one capacitor (Capacitance, C for short).
  • TFT thin film transistor
  • Capacitance, C for short The plurality of TFTs include one driving transistor DT and at least one switching transistor ST.
  • the pixel driving circuit PD includes various structures.
  • T represents thin film transistors
  • the number before “T” represents the number of thin film transistors
  • C represents storage capacitors
  • the number before “C” represents the number of storage capacitors.
  • the pixel driving circuit PD has a "2T1C" structure as an example.
  • the pixel driving circuit PD may be electrically connected to a gate line GL, a data line DL, a first voltage signal line VL1, and a second voltage signal line VL2.
  • the gate line GL is configured to transmit a Gate signal to the corresponding sub-pixel Q
  • the data line GL is configured to transmit a Data signal to the corresponding sub-pixel Q
  • the first voltage signal line VL1 is configured to transmit to the corresponding sub-pixel Q VDD signal
  • the second voltage signal line VL2 is configured to transmit the VSS signal to the corresponding sub-pixel Q.
  • each sub-pixel Q By transmitting the above-mentioned various electric signals to each sub-pixel Q, but not limited to transmitting the various electric signals, the light-emitting state of each OLED can be controlled, so that the display panel 100 can perform image display.
  • the above-mentioned display panel 100 further includes: a plurality of conductive pads 2 arranged on one side of the substrate 1 and located in each bonding area B.
  • the substrate 1 includes a blank base substrate and a functional film disposed on the blank base substrate
  • the plurality of conductive spacers 2 may be disposed on the functional film away from the blank base substrate.
  • multiple conductive pads 2 in each binding area B are bound to the corresponding COF 200 and electrically connected to multiple signal lines.
  • the COF 200 can transmit various electrical signals to the corresponding multiple signal lines through the corresponding multiple conductive pads 2.
  • the gate line GL in the plurality of signal lines may be electrically connected to the corresponding conductive pad 2 through a gate driving circuit, and the gate driving circuit may convert the GOA signal transmitted by the COF200 into a Gate signal and transmit it to the gate line GL , In order to reduce the number of conductive pads 2 and reduce the size of the binding area B in the first direction X.
  • the plurality of conductive pads 2 are arranged at intervals along the first direction X and extend along the second direction Z.
  • each conductive pad 2 may have a strip shape. That is, the shape of its orthographic projection on the substrate 1 may be a rectangle, and the size of the rectangle in the second direction Z is larger or much larger than the size in the first direction X.
  • each conductive pad 2 This is beneficial to simplify the wiring design of each conductive pad 2; moreover, the size of each binding area B along the first direction X can also be reduced, which in turn is beneficial to realize a narrow frame of the display panel 100.
  • each two adjacent conductive pads 2 can be in an insulated state, and the formation of two adjacent conductive pads 2 can be avoided. Short-circuit, thereby avoiding electrical signal transmission errors (for example, the gate signal is transmitted to the first voltage signal line VL1 due to the short-circuiting of two adjacent conductive pads 2).
  • the spacing between every two adjacent conductive pads 2 is equal or approximately the same, that is, the plurality of conductive pads 2 are arranged at equal intervals. This is beneficial to simplify the wiring design of the signal lines in the display panel 100.
  • the first direction X and the second direction Z intersect.
  • the size of the included angle between the first direction X and the second direction Z can be selected and set according to actual needs.
  • first direction X and the second direction Z may be perpendicular to each other, that is, the angle between the two is 90°.
  • the first direction X and the second direction Z may not be perpendicular, that is, the angle between the two may not be equal to 90°.
  • the included angle between the first direction X and the second direction Z may be, for example, 80°, 82°, or 84°. This is beneficial to reduce the alignment adjustment accuracy of the binding of the COF 20 and the plurality of conductive gaskets 20.
  • the above-mentioned relationship between the second direction Z and the third direction Y includes multiple types, which can be selected and set according to actual needs.
  • the second direction Z and the third direction Y may be parallel to each other, that is, the extending direction of the plurality of conductive pads 2 included in the display panel 100 It is the same or approximately the same as the extension direction of the multiple signal lines.
  • the second direction Z and the third direction Y may cross each other, that is, the extension direction of the plurality of conductive pads 2 included in the display panel 100 and the plurality of signal lines
  • the extension direction of the two is different, and there is an angle between the two.
  • the size of the included angle can be selected and set according to actual needs.
  • the plurality of conductive pads 2 include at least one first-type conductive pad 21 configured to transmit a DC voltage signal to the display area A, and configured There are a plurality of second-type conductive pads 22 for transmitting pulse voltage signals to the display area A.
  • the aforementioned DC voltage signal includes at least one of a VDD signal and a VSS signal, that is, the aforementioned at least one first-type conductive pad 21 is configured to transmit at least one of the VDD signal and the VSS signal to the display area A.
  • the number of the conductive pads 2 of the first type is at least two.
  • the above-mentioned DC voltage signal also includes other types of DC voltage signals
  • the above-mentioned at least one first-type conductive pad 21 may also be configured to transmit this type of DC voltage signal to the display area A.
  • the embodiment of the present disclosure The example does not limit this.
  • the above-mentioned pulse voltage signal includes a GOA signal, a Data signal, etc., that is, the above-mentioned plurality of second-type conductive pads 22 are configured to transmit a GOA signal, a Data signal, and the like.
  • the size of the first type conductive pad 21 in the first direction X is larger than the size of the second type conductive pad 22 in the first direction X.
  • the resistance (for example, line resistance) of the conductive pad 2 is inversely proportional to its size in the first direction X. That is, the smaller the size of the conductive pad 2 in the first direction X, the greater its resistance; the larger the size of the conductive pad 2 in the first direction X, the smaller its resistance.
  • the aforementioned size in the first direction X may be any position of the conductive pad 2 in the first direction.
  • some examples of the present disclosure are schematically illustrated by taking the shape of the orthographic projection of the conductive pad 2 on the substrate 1 as a rectangle as an example.
  • the resistance of the first type of conductive pad 21 can be adjusted, for example, In order to reduce the resistance of the first type conductive pad 21.
  • the plurality of conductive pads 2 are divided into at least one second transmitting DC voltage signal according to the types of electrical signals transmitted by the plurality of conductive pads 2
  • One type of conductive pads 21 and a plurality of second type conductive pads 22 that transmit pulse voltage signals and the size of the first type of conductive pads 21 in the first direction X is set to be larger than that of the second type of conductive pads 22
  • the size in the first direction X can reduce the resistance of the first-type conductive pad 21.
  • the contact area between the COF 200 and the at least one first type conductive gasket 21 can be increased, and the contact area between the COF 200 and the at least one first type conductive gasket 21 can be reduced.
  • the bonding resistors can further effectively improve the IR drop phenomenon caused by the above bonding resistors, and improve the display effect of the display panel 100.
  • first voltage signal line VL1 and/or the second voltage signal line VL2 electrically connected to the first type conductive pad 21, and the data line electrically connected to the second type conductive pad 22 DL, etc. can be located on different layers to avoid cross-wiring and short-circuiting.
  • the sizes of the first type conductive pad 21 and the second type conductive pad 22 in the second direction Z are the same or approximately the same.
  • the size of the first type of conductive pad 21 in the first direction X is W 1
  • the size of the second type of conductive pad 22 in the first direction X is W 2
  • W 1 nW 2
  • n is any value greater than 1.
  • the maximum value of n may be the number of conductive pads that transmit the same electrical signal as the first-type conductive pad 21 in a bonding area of the display panel in the related art; for display panels of different sizes, the maximum value of n The value can be different.
  • n may be between 1 and 5. Any number (except 1).
  • n may be 1.2, 1.5, 2, 2.5, 3, 4, or 5, etc.
  • the resistance of the first-type conductive pad 21 can be effectively reduced, and the IR drop phenomenon and display effect of the display panel 100 can be effectively improved.
  • the first type conductive pad 21 and the second type conductive pad 22 can be easily prepared.
  • the conductive pads that transmit different types of electrical signals in the related art have the same or approximately the same size.
  • Each first-type conductive pad 21 is formed by integrally forming n conductive pads that transmit the same type of DC voltage electrical signal. Further, it can be understood that each first-type conductive pad 21 is composed of n and second-type conductive pads.
  • the conductive gasket 22 has a structure of the same size and is integrally formed.
  • the size of the first type conductive pad 21 in the first direction X is smaller than that of n second type conductive pads 22 The size of the occupied area in the first direction X.
  • n may be 5. That is, each first-type conductive gasket 21 may be integrally formed with five structures having the same size as the second-type conductive gasket 22. At this time, the size of the first type conductive pad 21 in the first direction X is 5W 2 ; since there is a distance a between every two adjacent second type conductive pads 22, five second type conductive pads The size of the area occupied by the pad 22 in the first direction X is 5W 2 +4a.
  • the difference between the size of the first-type conductive pad 21 in the first direction X and the size of the area occupied by the n second-type conductive pads 22 in the first direction X is n In the second-type conductive pads 22, the sum of the distances between every two adjacent second-type conductive pads 22.
  • the number of the first-type conductive pads 21 gradually decreases.
  • the number of the first type conductive pads 21 configured to transmit the same DC voltage signal is one.
  • the number of conductive pads 21 of the first type configured to transmit VDD signals is one, and/or the number of conductive pads 21 of the first type configured to transmit VSS signals is one.
  • the number is one.
  • all conductive pads in the same binding area B in the related art that are configured to transmit the same DC voltage signal can be integrally molded to form a first-type conductive pad in the present disclosure. twenty one. This is beneficial to further increase the contact area between the first-type conductive gasket 21 and the COF 200, further reduce the resistance of the first-type conductive gasket 21, and further effectively improve the IR drop phenomenon caused by the above-mentioned binding resistance, and improve the display The display effect of the panel 100. In addition, the area of the binding area B can be further reduced, and a narrow frame of the display panel 100 can be realized.
  • the distance between two adjacent bonding regions B can be further increased, which is a COF that is bonded to the plurality of conductive pads 2 in the bonding region B 200 provides a larger layout space.
  • the structure of the plurality of conductive pads 2 included in the display panel 100 and the connection relationship between them and the plurality of signal lines include multiple types, which can be selected and set according to actual needs.
  • the data line GL, the first voltage signal line VL1, and the second voltage signal line VL2 of the above-mentioned multiple signal lines may be arranged in the same layer.
  • the plurality of conductive pads 2 may be arranged in the same layer as the gate lines GL in the plurality of signal lines.
  • a part of the conductive pads 2 that are electrically connected to the gate line GL may have an integral structure with the corresponding gate line GL.
  • the first voltage signal line VL1, and the second voltage signal line VL2 may be electrically connected through via holes.
  • the plurality of conductive pads 2 may include a portion provided in the same layer as the gate line GL and a portion provided in the same layer as the data line DL.
  • the part provided in the same layer as the gate line GL may be an integral structure with the corresponding gate line GL.
  • the first voltage signal line VL1, and the second voltage signal line VL2 the part disposed on the same layer as the data line DL may be connected to the corresponding data line DL and the corresponding first voltage line DL, respectively.
  • the voltage signal line VL1 and the corresponding second voltage signal line VL2 are arranged in the same layer.
  • the "same layer” mentioned in this article refers to a layer structure formed by using the same film forming process to form a film layer for forming a specific pattern, and then using the same mask plate to form a layer structure through a patterning process.
  • a patterning process may include multiple exposure, development or etching processes, and the specific patterns in the formed layer structure may be continuous or discontinuous, and these specific patterns may also be at different heights. Or have different thicknesses. In this way, multiple structures arranged in the same layer can be prepared at the same time, which is beneficial to simplify the manufacturing process of the display panel 100.
  • the display panel 100 has at least one bendable area C.
  • the display panel 100 includes a plurality of sub-display panels 100a divided by the at least one bendable area C.
  • the display panel 100 has a bendable area C.
  • the bendable area C may be located in the middle of the display panel 100, for example.
  • the display panel 100 includes two sub-display panels 100a divided by the one bendable area C, and the two sub-display panels 100a can rotate around the bendable area C to realize the foldable function of the display panel 100, so that the display The panel 100 is easy to carry.
  • the display panel 100 has two bendable regions C.
  • the display panel 100 may include three sub-display panels 100a divided by the one bendable area C, and the three sub-display panels 100a can rotate around the bendable area C to realize the foldable function of the display panel 100, and further make The display panel 100 is easy to carry.
  • the display panel 100 may have multiple binding areas B, and each sub-display panel 100a may have at least one binding area B. Wherein, each sub-display panel 100a may have one binding area B or multiple binding areas B.
  • the COF 200 bound to each binding area B can transmit electrical signals into each sub-display panel 100a at the same time, so that multiple sub-display panels 100a can display images at the same time.
  • the COF 200 bound to each binding area B only part of the COF 200 may transmit electrical signals to the corresponding sub-display panel 100a, so that part of the sub-display panel 100a performs image display.
  • the above-mentioned multiple binding regions B may be arranged in the extension direction of the display panel 100 perpendicular to the bendable region C
  • the binding area B of each sub-display panel 100a is located on the same edge of the display panel 100.
  • each binding area B can be more unified, which is convenient to plan the overall wiring structure of the display panel 100, and avoid reducing the area of the display area A due to the non-uniform arrangement position of each binding area B, which is convenient for implementation.
  • the narrow bezel of the display panel 100 is convenient to plan the overall wiring structure of the display panel 100.
  • the size of the binding area B in the first direction X can be reduced, thereby increasing the size of two adjacent ones.
  • the distance between the binding areas B and the distance between the binding area B and the bendable area C close to the bendable area C are increased.
  • the force generated in the COF 200 has an adverse effect on the binding between the COF 200 and the conductive pad 2 in the binding area B, thereby avoiding affecting the transmission of electrical signals in each sub-display panel 100a.
  • a hot pressing process can be used for binding.
  • the higher temperature equipment for example, pressure head
  • the distance L between the binding area B and the bendable area C close to the bendable area C BC is greater than the distance L BB between two adjacent binding areas B of the plurality of binding areas B of the sub-display panel 100a.
  • each COF 200 includes: a plurality of conductive pads 2 that are respectively bound to a plurality of conductive pads 2 in the corresponding binding area B and are arranged at intervals along the first direction X.
  • Pin 3 and flexible circuit board 4 carrying the plurality of conductive pins.
  • the spacing between the plurality of conductive pins 3 is equal or approximately the same, that is, the plurality of conductive pins 3 are arranged at equal intervals. This helps to reduce the difficulty of alignment and calibration when binding the COF 200 and multiple conductive pads 2.
  • the plurality of conductive pins 3 include: at least one first-type conductive pin electrically connected to at least one first-type conductive pad 21 of the plurality of conductive pads 2 respectively.
  • the feet 31 and the plurality of second-type conductive pins 32 respectively electrically connected to the plurality of second-type conductive pads 22 of the plurality of conductive pads 2.
  • the plurality of conductive pins 3 and the plurality of conductive pads 2 may be electrically connected in a one-to-one correspondence. That is, the at least one first-type conductive pin 31 and the at least one first-type conductive pad 21 may have the same number and are electrically connected in a one-to-one correspondence; the plurality of second-type conductive pins 32 are The plurality of second-type conductive pads 22 may have the same number and be electrically connected in a one-to-one correspondence.
  • the COF 200 can transmit electrical signals into the display area A of the display panel 100 through the conductive pins 3 and the corresponding conductive pads 2, so that the display panel 100 can display images.
  • the plurality of conductive pins 3 extend along the second direction Z, that is, the extending direction of the plurality of conductive pins 3 is the same or substantially the same as the extending direction of the plurality of conductive pads 2 same.
  • each conductive pin 3 is only electrically connected to the corresponding conductive pad 2 and avoids electrical connection errors between the conductive pin 3 and the conductive pad 2 (for example, the conductive pin 3 that transmits the Gate signal is simultaneously connected to the gate signal.
  • the conductive pad 2 and the conductive pad 2 for transmitting the Data signal are electrically connected).
  • the sizes of the first-type conductive pins 31 and the second-type conductive pins 32 in the second direction Z are equal or substantially equal. This can make the shape of the area occupied by the first-type conductive pins 31 and the second-type conductive pins 32 more regular, so that the first-type conductive pins 31 and the second-type conductive pins 32 occupy a small amount in the COF 200 The area of the COF 200 is prevented from increasing the area of the COF 200 due to the first-type conductive pins 31 and the second-type conductive pins 32.
  • the size of the conductive pin 31 of the first type in the first direction X is larger than the size of the conductive pin 32 of the second type in the first direction.
  • the COF 200 is connected to the binding area B.
  • binding it can be ensured that each first-type conductive pin 31 and the corresponding first-type conductive pad 21 have a larger contact area.
  • each first-type conductive pin 31 can also be understood as being formed by integrally forming n conductive pins that transmit the same type of direct current voltage electrical signal.
  • the size of the first-type conductive pad 21 in the first direction X is increased to reduce the resistance of the first-type conductive pad 21 and increase
  • the size in the first direction X of the first-type conductive pins 31 that are electrically connected to the first-type conductive gasket 21 in the COF 200 can effectively increase the size of each first-type conductive pin 31 and the corresponding first-type conductive pin 31
  • the pads 21 have a larger contact area. In this way, when the COF 200 transmits electrical signals, the VDD signal and/or VSS signal with less loss can be transmitted to the display area A of the display panel 100, which effectively improves the IR drop phenomenon caused by the bonding resistance, and improves the display device 1000 The display effect.
  • the size of the first-type conductive pin 31 in the first direction X is smaller than the size of the first-type conductive pad 21 in the first direction X; the second-type conductive pin 32 The size in the first direction X is smaller than the size of the second-type conductive pad 22 in the first direction X.
  • the display device 1000 further includes: an array type anisotropic conductive glue 300 arranged between the COF 200 and the plurality of conductive pads 2 in the corresponding binding area B.
  • the COF 200 is electrically connected to the plurality of conductive pads 2 through the array type anisotropic conductive adhesive 300.
  • the array type anisotropic conductive glue 300 includes a glue material and a plurality of conductive particles arranged in the glue material, and the plurality of conductive particles are arranged in an array in the glue material. After the array-type anisotropic conductive adhesive 300 is used to make the COF 200 and the plurality of conductive pads 2 in the binding area B form an electrical connection, the plurality of conductive particles are still arranged in an array.
  • the COF 200 is connected to the multiple conductive pads in the binding area B by using the array type anisotropic conductive adhesive 300 2
  • the formation of electrical connections can avoid the formation of short-circuit, overlap, and low conduction area due to uneven distribution or aggregation of conductive particles.
  • the electrical connection has an undesirable effect,
  • the above-mentioned display device 1000 may be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a foldable notebook computer, a digital photo frame, or a navigator.
  • a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a foldable notebook computer, a digital photo frame, or a navigator.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板(100),具有显示区(A)以及位于显示区(A)旁侧的至少一个绑定区(B)。显示面板(100)包括:衬底(1);以及,设置在衬底(1)的一侧、且位于绑定区(B)内的多个导电衬垫(2)。多个导电衬垫(2)沿第一方向(X)间隔排布。多个导电衬垫(2)包括被配置为向显示区(A)传输直流电压信号的至少一个第一类导电衬垫(21),以及被配置为向显示区(A)传输脉冲电压信号的多个第二类导电衬垫(22)。其中,第一类导电衬垫(21)在第一方向(X)上的尺寸大于第二类导电衬垫(22)在第一方向(X)上的尺寸。

Description

显示面板及显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种显示面板及显示装置。
背景技术
OLED(Organic Light Emitting Diode,有机发光二极管)因具有高亮度、全视角、响应速度快以及可柔性显示等优点,已在显示领域得到广泛应用。
发明内容
一方面,提供一种显示面板。所述显示面板具有显示区以及位于所述显示区旁侧的至少一个绑定区。所述显示面板包括:衬底;以及,设置在所述衬底的一侧、且位于所述绑定区内的多个导电衬垫。所述多个导电衬垫沿第一方向间隔排布;所述多个导电衬垫包括被配置为向所述显示区传输直流电压信号的至少一个第一类导电衬垫,以及被配置为向所述显示区传输脉冲电压信号的多个第二类导电衬垫。其中,所述第一类导电衬垫在所述第一方向上的尺寸大于第二类导电衬垫在所述第一方向上的尺寸。
在一些实施例中,所述第一类导电衬垫在所述第一方向上的尺寸为W 1,所述第二类导电衬垫在所述第一方向上的尺寸为W 2,其中,W 1=nW 2,n为大于1的任意数值。
在一些实施例中,在n为整数的情况下,所述第一类导电衬垫在所述第一方向上的尺寸,小于n个所述第二类导电衬垫所占据的区域在所述第一方向上的尺寸。
在一些实施例中,所述多个导电衬垫沿第二方向延伸。所述第一类导电衬垫和所述第二类导电衬垫在所述第二方向上的尺寸相等或大致相等。所述第一方向和所述第二方向相交叉。
在一些实施例中,所述第一方向和所述第二方向不垂直。
在一些实施例中,所述第一类导电衬垫被配置为向所述显示区传输VDD信号和VSS信号中的至少一者。
在一些实施例中,同一个所述绑定区内,被配置为传输同一种直流电压信号的第一类导电衬垫的数量为一个。
在一些实施例中,所述显示面板具有至少一个可弯折区。所述显示面板包括被所述至少一个可弯折区划分的多个子显示面板。所述显示面板具有多个绑定区,所述多个绑定区设置在所述显示面板的垂直于所述可弯折区的延伸方向的边缘。一个子显示面板具有至少一个绑定区,各子显示面板所具有 的绑定区均位于所述显示面板的同一边缘。
在一些实施例中,在所述子显示面板具有多个绑定区的情况下,靠近所述可弯折区的绑定区与所述可弯折区之间的间距,大于所述子显示面板所具有的多个绑定区中相邻两个绑定区之间的间距。
另一方面,提供一种显示装置。所述显示装置,包括:如上述如上述任一实施例所述的显示面板;以及,分别与所述显示面板的至少一个绑定区绑定的至少一个覆晶薄膜。其中,所述覆晶薄膜包括:分别与所述绑定区内的多个导电衬垫绑定、且沿第一方向间隔排布的多个导电引脚。所述多个导电引脚包括:分别与所述多个导电衬垫中的至少一个第一类导电衬垫电连接的至少一个第一类导电引脚,以及,分别与所述多个导电衬垫中的多个第二类导电衬垫电连接的多个第二类导电引脚。所述第一类导电引脚在所述第一方向上的尺寸大于第二类导电引脚在所述第一方向上的尺寸。
在一些实施例中,所述第一类导电引脚在第一方向上的尺寸小于所述第一类导电衬垫在所述第一方向上的尺寸。所述第二类导电引脚在所述第一方向上的尺寸小于第二类导电衬垫在所述第一方向上的尺寸。
在一些实施例中,所述多个导电引脚沿第二方向延伸,所述第一类导电引脚和所述第二类导电引脚在所述第二方向上的尺寸相等或大致相等。
在一些实施例中,所述显示装置,还包括:设置在所述覆晶薄膜和所述多个导电衬垫之间的阵列式各向异性导电胶。所述覆晶薄膜通过所述阵列式各向异性导电胶与所述多个导电衬垫形成电连接。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程等的限制。
图1为根据本公开的一些实施例中的一种显示面板的结构图;
图2为根据本公开的一些实施例中的一种子像素的等效电路图;
图3为图1所示显示面板的区域D的一种放大图;
图4为图1所示显示面板的区域D的另一种放大图;
图5为图1所示显示面板的区域D的又一种放大图;
图6为根据本公开的一些实施例中的另一种显示面板的结构图;
图7为根据本公开的一些实施例中的又一种显示面板的结构图;
图8为根据本公开的一些实施例中的一种显示装置的结构图;
图9为根据本公开的一些实施例中的一种覆晶薄膜的结构图;
图10为图8所述显示装置的沿M-M'向的一种剖视图;
图11为根据本公开的一些实施例中的另一种显示装置的结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
随着全面屏技术的发展,OLED显示装置的屏占比在不断提高,使得OLED显示装置中显示面板的边框区越来越窄。
在相关技术中,显示面板的边框区内设置有绑定区,该绑定区内设置有依次间隔排布的多个导电衬垫(Bonding pad)。该多个导电衬垫与显示面板的多条信号线电连接,并与覆晶薄膜(Chip On Film,或Chip On Flex,简称COF)绑定,这样可以使得COF能够通过该多个导电衬垫向上述多条信号线中传输电信号。其中,不同的导电衬垫可以与不同类型的信号线电连接,进而COF可以通过不同的导电衬垫传输不同类型的电信号,该不同类型的电信号例如可以包括:Data信号、GOA信号、VSS信号及VDD信号等。
本公开的发明人经研究发现:相关技术中的多个导电衬垫通常具有相同或大致相同的尺寸,且相邻两个导电衬垫之间也具有相同或大致相同的尺寸,以便于能够降低该多个导电衬垫的制备工艺难度,并降低COF与该多个导电衬垫绑定错位的风险。
此外,由于显示面板中每种类型的信号线的数量较多,因此,与各种类型的信号线对应电连接的导电衬垫的数量较多,进而会使得COF与不同类型的信号线所对应的多个导电衬垫之间的绑定电阻较大。此处,绑定电阻可以为同一类型的信号线所对应的多个导电衬垫的电阻之和。
COF所传输的不同类型的电信号,根据其所对应的电压的类型大致可以分为两类,也即,直流电压信号(例如包括VSS信号及VDD信号)和脉冲 电压信号(例如包括Data信号及GOA信号)。其中,COF在向对应类型的信号线传输直流电压信号的过程中,会因上述较大的绑定电阻而出现电压降(IR drop)现象,影响显示面板的显示效果。
基于此,如图11所示,本公开的一些实施例提供了一种显示装置1000。
在一些示例中,如图8所示,该显示装置1000包括:显示面板100。该显示面板100具有显示区A以及位于显示区A旁侧(例如可以为显示区A的一侧、两侧或者周侧等)的至少一个绑定区B。也即,显示面板100可以具有一个绑定区B,也可以具有多个绑定区B。
在一些示例中,如图8所示,该显示装置1000还包括:至少一个COF 200。该至少一个COF 200分别与显示面板100中的至少一个绑定区B绑定。
示例性的,在显示面板100具有一个绑定区B的情况下,显示装置1000可以包括一个与该绑定区B绑定的COF 200,该COF 200可以通过绑定区B向显示区A中传输电信号。
示例性的,在显示面板100具有多个绑定区B的情况下,显示装置1000可以包括多个COF 200。该多个COF 200例如可以与多个绑定区B一一对应地绑定。
在此情况下,例如,显示面板100具有较大的尺寸。此时,显示面板100的显示区A可以划分为多个子显示区,每个COF 200可以独立地通过对应的绑定区B相对应的子显示区中传输电信号。多个COF 200可以相互配合地向显示区A中传输电信号,使得具有较大尺寸的显示面板100实现图像显示;当然,多个COF 200中的一部分COF 200可以向对应的子显示区内传输电信号,使得显示面板100的部分区域实现图像显示。
下面结合附图对本公开的一些实施例所提供的显示装置1000中的显示面板100的结构进行示意性说明。
如图1所示,本公开的一些实施例所提供的显示面板100,包括:衬底1。
上述衬底1的结构包括多种,具体可以根据实际需要选择设置。例如,衬底1为空白的衬底基板。又如,衬底1包括空白的衬底基板以及设置在该空白的衬底基板上的功能薄膜(例如可以包括缓冲层)。
上述空白的衬底基板的类型包括多种,具体可以根据实际需要选择设置。
例如,空白的衬底基板可以为刚性衬底基板。该刚性衬底基板例如可以为玻璃衬底基板或PMMA(Polymethyl methacrylate,聚甲基丙烯酸甲酯)衬底基板。
又如,空白的衬底基板可以为柔性衬底基板。该柔性衬底基板例如可以 为PET(Polyethylene terephthalate,聚对苯二甲酸乙二醇酯)衬底基板、PEN(Polyethylene naphthalate two formic acid glycol ester,聚萘二甲酸乙二醇酯)衬底基板或PI(Polyimide,聚酰亚胺)衬底基板。
在空白的衬底基板为柔性衬底基板的情况下,上述显示面板100可以为柔性显示面板。该柔性显示面板例如可以实现卷曲或折叠等功能,进而可以实现曲面显示或折叠显示(也即柔性显示面板在折叠状态下进行显示)。
在一些实施例中,如图1所示,上述显示面板100还包括:设置在衬底1的一侧的多条信号线。该多条信号线之间相互绝缘。
上述多条信号线的种类包括多种。示例性的,如图1所示,该多条信号线可以包括:沿第一方向X延伸的多条栅线GL、沿第三方向Y延伸的多条数据线GL、沿第三方向Y延伸的多条第一电压信号线VL1以及沿第三方向Y延伸的多条第二电压信号线VL2。当然,第一电压信号线VL1和第二电压信号线VL2也可以沿第一方向X延伸,本示例对此不做限定。
在一些示例中,第一方向X与第三方向Y相交叉。
第一方向X和第三方向Y之间的夹角的大小可以根据实际需要选择设置。示例性的,第一方向X和第三方向Y可以相互垂直,也即两者之间的夹角为90°。
在一些示例中,如图1所示,上述多条栅线GL和上述多条DL相互交叉限定出位于显示区A内的多个子像素区域P。该多个子像素区域P例如呈阵列状排布。
在一些实施例中,如图2所示,上述显示面板100还包括:设置在每个子像素区域P内的子像素Q。
示例性的,可以把沿第一方向X排列成一排的子像素Q称为同一行子像素Q,把沿第三方向Y排列成一排的子像素Q称为同一列子像素Q。同一行子像素Q可以与一条栅线GL电连接,同一列子像素Q可以与一条数据线DL电连接。
在一些示例中,每个子像素Q可以包括:设置在衬底1的一侧像素驱动电路PD,以及设置在像素驱动电路PD远离衬底1的一侧、且与该像素驱动电路PD电连接的OLED。
在一些示例中,像素驱动电路PD可以由多个薄膜晶体管(Thin Film Transistor,简称TFT)和至少一个电容(Capacitance,简称C)组成。该多个TFT包括一个驱动晶体管DT和至少一个开关晶体管ST。
在一些示例中,像素驱动电路PD包括多种结构。例如,“2T1C”、“6T1C”、 “7T1C”、“6T2C”或“7T2C”等结构。此处,“T”表示为薄膜晶体管,位于“T”前面的数字表示为薄膜晶体管的个数,“C”表示为存储电容器,“C”前面的数字表示为存储电容器的个数。
示例性的,如图2所示,以像素驱动电路PD为“2T1C”结构为例。该像素驱动电路PD可以与一条栅线GL、一条数据线DL、一条第一电压信号线VL1以及一条第二电压信号线VL2电连接。其中,栅线GL被配置为向相应的子像素Q传输Gate信号,数据线GL被配置为向相应的子像素Q传输Data信号,第一电压信号线VL1向相应的子像素Q被配置为传输VDD信号,第二电压信号线VL2被配置为向相应的子像素Q传输VSS信号。
通过向各子像素Q传输上述多种电信号,但不限于传输该多种电信号,可以控制各OLED的发光状态,进而可以使得显示面板100进行图像显示。
在一些实施例中,如图1所示,上述显示面板100还包括:设置在衬底1的一侧、且位于各绑定区B内的多个导电衬垫2。此处,在衬底1包括空白的衬底基板以及设置在该空白的衬底基板上的功能薄膜的情况下,该多个导电衬垫2可以设置在功能薄膜的远离空白的衬底基板的一侧。
在一些示例中,每个绑定区B内的多个导电衬垫2与对应的COF 200绑定,并与多条信号线电连接。这样COF 200便可以通过对应的多个导电衬垫2向对应的多条信号线传输多种电信号。其中,该多条信号线中的栅线GL可以通过栅极驱动电路与相应的导电衬垫2电连接,栅极驱动电路可以将COF200所传输的GOA信号转换为Gate信号,传输至栅线GL,以便于减少导电衬垫2的数量,减小绑定区B在第一方向X上的尺寸。
在一些示例中,如图3~图5所示,上述多个导电衬垫2沿第一方向X间隔排布,并沿第二方向Z延伸。
示例性的,各导电衬垫2可以呈条状。也即,其在衬底1上的正投影的形状可以呈矩形,且该矩形在第二方向Z上的尺寸大于或远大于在第一方向X上的尺寸。
这样有利于简化各导电衬垫2的布线设计;而且,还可以减小各绑定区B在沿第一方向X上的尺寸,进而有利于实现显示面板100的窄边框。
此外,通过将上述多个导电衬垫2沿第一方向X间隔排布设置,可以使得每相邻的两个导电衬垫2之间处于绝缘状态,避免相邻的两个导电衬垫2形成短接,进而避免出现电信号传输错误(例如因相邻两个导电衬垫2短接导致Gate信号传输至第一电压信号线VL1)的情况。
示例性的,每相邻的两个导电衬垫2之间的间距相等或大致相等,也即, 上述多个导电衬垫2等间隔设置。这样有利于简化显示面板100中各信号线的布线设计。
在一些示例中,第一方向X与第二方向Z相交叉。
第一方向X和第二方向Z之间的夹角的大小可以根据实际需要选择设置。
例如,第一方向X和第二方向Z可以相互垂直,也即两者之间的夹角为90°。
又如。第一方向X和第二方向Z可以不垂直,也即两者之间的夹角可以不等于90°。其中,第一方向X和第二方向Z之间的夹角例如可以为80°、82°或84°等。这样有利于降低COF 20与多个导电衬垫20绑定的对位调节精度。
在一些实施例中,上述第二方向Z和第三方向Y之间的关系包括多种,可以根据实际需要选择设置。
在一些示例中,如图1、图3及图4所示,第二方向Z与第三方向Y之间可以相互平行,也即,显示面板100所包括的多个导电衬垫2的延伸方向和多条信号线的延伸方向相同或大致相同。
在另一些示例中,如图5所示,第二方向Z与第三方向Y之间可以相互交叉,也即,显示面板100所包括的多个导电衬垫2的延伸方向和多条信号线的延伸方向不同,两者之间具有夹角。该夹角的大小可以根据实际需要选择设置。
在一些示例中,如图1及图3~图5所示,上述多个导电衬垫2包括被配置为向显示区A传输直流电压信号的至少一个第一类导电衬垫21,以及被配置为向显示区A传输脉冲电压信号的多个第二类导电衬垫22。
示例性的,上述直流电压信号包括VDD信号和VSS信号中的至少一者,也即,上述至少一个第一类导电衬垫21被配置为向显示区A传输VDD信号和VSS信号中的至少一者。此处,在既传输VDD信号、又传输VSS信号的情况下,第一类导电衬垫2的数量为至少两个。
当然,在上述直流电压信号还包括其他类型的直流电压信号的情况下,上述至少一个第一类导电衬垫21还可以被配置为向显示区A传输该种类型的直流电压信号,本公开实施例对此不做限定。
示例性的,上述脉冲电压信号包括GOA信号和Data信号等,也即上述多个第二类导电衬垫22被配置为传输GOA信号和Data信号等。
在一些示例中,如图1及图3~图5所示,第一类导电衬垫21在第一方向X上的尺寸大于第二类导电衬垫22在第一方向X上的尺寸。
需要说明的是,在导电衬垫2在第二方向Z上的尺寸一定的情况下,导电衬垫2的电阻(例如为线电阻)和其在第一方向X上的尺寸成反比。也即,导电衬垫2在第一方向X上的尺寸越小,其电阻越大;导电衬垫2在第一方向X上的尺寸越大,其电阻越小。
示例性的,在导电衬垫2在衬底1上的正投影的形状为矩形的情况下,上述在第一方向X上的尺寸,可以为导电衬垫2的任一位置处在第一方向上的尺寸;在导电衬垫2在衬底1上的正投影的形状为非规则(例如椭圆形)的情况下,上述在第一方向X上的尺寸,可以为导电衬垫2的不同位置处在第一方向上的尺寸的平均尺寸。此处,本公开的一些示例以导电衬垫2在衬底1上的正投影的形状为矩形为例进行示意性说明。
通过将第一类导电衬垫21在第一方向X上的尺寸设置为大于第二类导电衬垫22在第一方向X上的尺寸,可以调整第一类导电衬垫21的电阻,例如可以为降低第一类导电衬垫21的电阻。
由此,本公开的一些实施例所提供的显示面板100,通过根据多个导电衬垫2所传输的电信号的类型,将该多个导电衬垫2划分为至少一个传输直流电压信号的第一类导电衬垫21和多个传输脉冲电压信号的第二类导电衬垫22,并将第一类导电衬垫21在第一方向X上的尺寸设置为大于第二类导电衬垫22在第一方向X上的尺寸,这样可以降低第一类导电衬垫21的电阻。在将COF 200与导电衬垫2绑定时,可以增大COF 200与上述至少一个第一类导电衬垫21之间的接触面积,降低COF 200与上述至少一个第一类导电衬垫21的绑定电阻,进而可以有效改善因上述绑定电阻而引起的IR drop现象,改善显示面板100的显示效果。
需要说明的是,在一些示例中,与第一类导电衬垫21电连接的第一电压信号线VL1和/或第二电压信号线VL2,以及与第二类导电衬垫22电连接数据线DL等,可以位于不同层,以避免出现走线交叉、进而导致短接的现象。
在一些实施例中,如图1及图3~图5所示,第一类导电衬垫21和第二类导电衬垫22在第二方向Z上的尺寸相等或大致相等。
这样有利于简化导电衬垫2的布线设计,简化导电衬垫2的制备工艺。此外,还有利于确保绑定区B的形状较为规整,减小绑定区B的面积,实现显示面板100的窄边框。
在一些实施例中,如图4所示,第一类导电衬垫21在第一方向X上的尺寸为W 1,第二类导电衬垫22在第一方向上X的尺寸为W 2,其中,W 1=nW 2,n为大于1的任意数值。此处,n的最大值可以为相关技术中显示面板的一个 绑定区内,与第一类导电衬垫21传输相同电信号的导电衬垫的数量;对于不同尺寸的显示面板,n的最大值可以不同。示例性的,相关技术中显示面板的一个绑定区内,与第一类导电衬垫21传输相同电信号的导电衬垫的数量为5个,此时,n可以为1至5之间的任意数值(除1以外)。示例性的,n可以为1.2、1.5、2、2.5、3、4或5等。
这样可以有效降低第一类导电衬垫21的电阻,有效改善显示面板100的IR drop现象及显示效果。此外,通过量化W 1和W 2之间的关系,可以便于制备形成第一类导电衬垫21和第二类导电衬垫22。
可以理解的是,相关技术中传输不同类型的电信号的导电衬垫具有相同或大致相同的尺寸。本公开的一些实施例将第一类导电衬垫21在第一方向X上的尺寸和第二类导电衬垫22在第一方向上X的尺寸设置为W 1=nW 2,可以理解为,每个第一类导电衬垫21由n个传输相同类型的直流电压电信号的导电衬垫一体成型构成,进一步的,可以理解为每个第一类导电衬垫21由n个与第二类导电衬垫22具有相同尺寸的结构一体成型构成。
在一些实施例中,如图3~图5所示,在n为整数的情况下,第一类导电衬垫21在第一方向X上的尺寸,小于n个第二类导电衬垫22所占据的区域在第一方向X上的尺寸。
示例性的,如图4所示,n可以为5。也即,每个第一类导电衬垫21可以由5个与第二类导电衬垫22具有相同尺寸的结构一体成型构成。此时,第一类导电衬垫21在第一方向X上的尺寸即为5W 2;由于每相邻的两个第二类导电衬垫22之间具有间距a,5个第二类导电衬垫22所占据的区域在第一方向X上的尺寸,即为5W 2+4a。由此,第一类导电衬垫21在第一方向X上的尺寸和n个第二类导电衬垫22所占据的区域在第一方向X上的尺寸之间的差值,即为n个第二类导电衬垫22中,每相邻的两个第二类导电衬垫22之间的间距之和。
这样有利于减小绑定区B在第一方向X上的尺寸,减小绑定区B的面积,进而有利于实现显示面板100的窄边框。此外,在显示面板100具有多个绑定区B的情况下,可以增大相邻两个绑定区B之间的间距,为与绑定区B内的多个导电衬垫2绑定的COF 200提供排布空间。
在一些实施例中,同一个绑定区B内,随着第一类导电衬垫21在第一方向X上的尺寸逐渐的增大,第一类导电衬垫21的数量逐渐减小。
这样可以在增大第一类导电衬垫21与COF 200之间的接触面积、并减小第一类导电衬垫21的电阻的基础上,避免增大绑定区B在第一方向X上的尺 寸,并避免增大相邻两个绑定区B之间的尺寸。
在一些实施例中,如图4和图5所示,同一个绑定区B内,被配置为传输同一种直流电压信号的第一类导电衬垫21的数量为一个。
示例性的,同一个绑定区B内,被配置为传输VDD信号的第一类导电衬垫21的数量为一个,和/或,被配置为传输VSS信号的第一类导电衬垫21的数量为一个。
这也就意味着,可以将相关技术中,同一个绑定区B内的、被配置为传输同一种直流电压信号的所有导电衬垫一体成型,构成本公开中的一个第一类导电衬垫21。这样有利于进一步增大第一类导电衬垫21与COF 200的接触面积,进一步降低第一类导电衬垫21的电阻,进而进一步有效改善因上述绑定电阻而引起的IR drop现象,改善显示面板100的显示效果。此外,还可以进一步减小绑定区B的面积,实现显示面板100的窄边框。在显示面板100具有多个绑定区B的情况下,可以进一步增大相邻两个绑定区B之间的间距,为与绑定区B内的多个导电衬垫2绑定的COF 200提供较大的排布空间。
在一些实施例中,显示面板100所包括的多个导电衬垫2的结构及其与多条信号线之间的连接关系包括多种,可以根据实际需要选择设置。
示例性的,上述多条信号线中的数据线GL、第一电压信号线VL1以及第二电压信号线VL2可以同层设置。
在一些示例中,上述多个导电衬垫2可以与上述多条信号线中的栅线GL同层设置。
此时,多个导电衬垫2中,与栅线GL电连接的部分导电衬垫2,可以与相应的栅线GL为一体结构。多个导电衬垫2中,与数据线GL、第一电压信号线VL1以及第二电压信号线VL2电连接的部分导电衬垫2,可以通过过孔进行电连接。
在另一些示例中,上述多个导电衬垫2可以包括与栅线GL同层设置的部分,以及与数据线DL同层设置的部分。
此时,与栅线GL电连接的部分导电衬垫2中,与栅线GL同层设置的部分可以与相应的栅线GL为一体结构。与数据线GL、第一电压信号线VL1以及第二电压信号线VL2电连接的部分导电衬垫2中,与数据线DL同层设置的部分可以分别与相应的数据线DL、相应的第一电压信号线VL1以及相应的第二电压信号线VL2同层设置。
需要说明的是,本文中提及的“同层”指的是采用同一成膜工艺形成用于形成特定图形的膜层,然后利用同一掩模板通过一次构图工艺形成的层结 构。根据特定图形的不同,一次构图工艺可能包括多次曝光、显影或刻蚀工艺,而形成的层结构中的特定图形可以是连续的也可以是不连续的,这些特定图形还可能处于不同的高度或者具有不同的厚度。这样一来,可以同时制备形成同层设置的多个结构,有利于简化显示面板100的制备工艺。
在一些实施例中,如图6和图7所示,显示面板100具有至少一个可弯折区C。显示面板100包括被该至少一个可弯折区C划分的多个子显示面板100a。
示例性的,如图6所示,显示面板100具有一个可弯折区C。该一个可弯折区C例如可以位于显示面板100的中部。此时,显示面板100包括包括被该一个可弯折区C划分的两个子显示面板100a,该两个子显示面板100a可以绕可弯折区C旋转,实现显示面板100的可折叠功能,使得显示面板100便于携带。
示例性的,如图7所示,显示面板100具有两个可弯折区C。此时,显示面板100可以包括被该一个可弯折区C划分的三个子显示面板100a,该三个子显示面板100a可以绕可弯折区C旋转,实现显示面板100的可折叠功能,进一步使得显示面板100便于携带。
基于此,在一些示例中,显示面板100可以具有多个绑定区B,各个子显示面板100a可以具有至少一个绑定区B。其中,每个子显示面板100a可以具有一个绑定区B,也可以具有多个绑定区B。
示例性的,与各个绑定区B绑定的COF 200,可以同时向各个子显示面板100a内传输电信号,使得多个子显示面板100a能够同时进行图像显示。当然,与各个绑定区B绑定的COF 200中,也可以仅有部分COF 200向相应的子显示面板100a内传输电信号,使得部分子显示面板100a进行图像显示。
在一些示例中,如图6和图7所示,考虑到显示面板100的结构及制备工艺等,上述多个绑定区B可以设置在显示面板100的垂直于可弯折区C的延伸方向的边缘,各子显示面板100a所具有的绑定区B均位于显示面板100的同一边缘。
这样可以使得各绑定区B的排布位置较为统一,便于规划显示面板100的整体布线结构,并避免因各绑定区B的排布位置不统一而减小显示区A的面积,便于实现显示面板100的窄边框。
此外,本公开的一些实施例通过调整第一类导电衬垫21在第一方向X上的尺寸,可以减小绑定区B在第一方向X上的尺寸,进而可以增大相邻两个绑定区B之间的间距,并增大靠近可弯折区C的绑定区B与可弯折区C之间 的间距。这样在将COF 200与绑定区B进行绑定时,可以增大COF 200与可弯折区C之间的间距,对可弯折区C进行避让,避免在折叠各子显示面板100a的过程中所产生的力,对COF 200及其与绑定区B内的导电衬垫2之间的绑定产生不良影响,进而避免影响各子显示面板100a内电信号的传输。
需要说明的是,在对COF 200和绑定区B进行绑定的过程中,可以采用热压工艺进行绑定。通过增大相邻两个绑定区B之间的间距,可以避免热压工艺所使用的具有较高温度的设备(例如压头)影响到相邻COF 200的性能。
在一些实施例中,如图6所示,在子显示面板100a具有多个绑定区B的情况下,靠近可弯折区C的绑定区B与可弯折区C之间的间距L BC,大于子显示面板100a所具有的多个绑定区B中相邻两个绑定区B之间的间距L BB
通过设置L BC和L BB之间的位置关系,可以确保L BC具有较大的值,进而可以确保COF 200与可弯折区C之间的间距具有较大的值,避免在折叠各子显示面板100a的过程中所产生的力,对COF 200及其与绑定区B内的导电衬垫2之间的绑定产生不良影响。
下面结合附图,对本公开的一些实施例所提供的显示装置1000中的COF 200的结构进行示意性说明。
在一些实施例中,如图9所示,每个COF 200包括:分别与相应的绑定区B内的多个导电衬垫2绑定、且沿第一方向X间隔排布的多个导电引脚3,以及承载该多个导电引脚的柔性电路板4。
在一些示例中,上述多个导电引脚3之间的间距相等或大致相等,也即,该多个导电引脚3等间隔排布。这样有利于降低绑定COF 200及多个导电衬垫2时的对位校准难度。
在一些示例中,如图10所示,该多个导电引脚3包括:分别与该多个导电衬垫2中的至少一个第一类导电衬垫21电连接的至少一个第一类导电引脚31,以及,分别与该多个导电衬垫2中的多个第二类导电衬垫22电连接的多个第二类导电引脚32。
示例性的,上述多个导电引脚3和上述多个导电衬垫2可以一一对应地电连接。也即,上述至少一个第一类导电引脚31与上述至少一个第一类导电衬垫21可以具有相同的数量,且一一对应地电连接;上述多个第二类导电引脚32与上述多个第二类导电衬垫22可以具有相同的数量,且一一对应地电连接。
这样COF 200便可以通过各个导电引脚3及其相对应的导电衬垫2向显示面板100的显示区A内传输电信号,使得显示面板100能够实现图像显示。
在一些示例中,如图9所示,该多个导电引脚3沿第二方向Z延伸,也即,多个导电引脚3的延伸方向与多个导电衬垫2的延伸方向相同或大致相同。
这样有利于确保各导电引脚3仅与相应的导电衬垫2形成电连接,避免出现导电引脚3与导电衬垫2电连接错误(例如传输Gate信号的导电引脚3同时与传输Gate信号的导电衬垫2及传输Data信号的导电衬垫2电连接)的情况。
在一些示例中,如图9所示,第一类导电引脚31和第二类导电引脚32在第二方向Z上的尺寸相等或大致相等。这样可以使得第一类导电引脚31和第二类导电引脚32所占据的区域的形状较为规则,使得第一类导电引脚31和第二类导电引脚32在COF 200中占据较小的面积,避免因第一类导电引脚31和第二类导电引脚32而增大COF 200的面积。
在一些示例中,如图9所示,第一类导电引脚31在第一方向X上的尺寸大于第二类导电引脚32在第一方向上的尺寸。
在增大第一类导电衬垫21在第一方向X上的尺寸的基础上,通过增大第一类导电引脚31在第一方向X上的尺寸,在将COF 200与绑定区B绑定时,可以确保各第一类导电引脚31与相对应的第一类导电衬垫21之间具有较大的接触面积。
需要说明的是,本公开的一些示例中,每个第一类导电引脚31也可以理解为由n各传输相同类型的直流电压电信号的导电引脚一体成型构成。
由此,本公开的一些实施例所提供的显示装置1000,通过增大第一类导电衬垫21在第一方向X上的尺寸,以降低第一类导电衬垫21的电阻,并增大COF 200中与第一类导电衬垫21电连接的第一类导电引脚31在第一方向X上的尺寸,可以有效增大各第一类导电引脚31与相对应的第一类导电衬垫21之间具有较大的接触面积。这样在COF 200传输电信号时,可以使得损耗较小的VDD信号和/或VSS信号传输至显示面板100的显示区A内,有效改善因绑定电阻而引起的IR drop现象,改善显示装置1000的显示效果。
在一些示例中,如图10所示,第一类导电引脚31在第一方向X上的尺寸小于第一类导电衬垫21在第一方向X上的尺寸;第二类导电引脚32在第一方向X上的尺寸小于第二类导电衬垫22在第一方向X上的尺寸。
这样有利于降低COF 200与绑定区B绑定时的对位误差精度,降低COF 200与绑定区B绑定时的对位难度,并提高各导电引脚3与相应导电衬垫2之间电连接的准确度。也即,即便COF 200与绑定区B之间的错位尺寸较大, 也可以确保各导电引脚3与相应的导电衬垫2之间形成电连接,并避免各导电引脚3与相应导电衬垫2相邻的导电衬垫2形成电连接。
在一些实施例中,如图10所示,显示装置1000还包括:设置在COF 200和相应的绑定区B内的多个导电衬垫2之间的阵列式各向异性导电胶300。COF 200通过阵列式各向异性导电胶300与该多个导电衬垫2形成电连接。
在一些示例中,阵列式各向异性导电胶300包括胶材以及设置在该胶材内的多个导电粒子,该多个导电粒子在胶材内呈阵列状排布。在利用阵列式各向异性导电胶300使得COF 200与绑定区B内的多个导电衬垫2形成电连接后,上述多个导电粒子仍呈阵列状排布。
由于多个导电衬垫2和COF 200中的多个导电引脚3之间的接触面积不一致,通过采用阵列式各向异性导电胶300使得COF 200与绑定区B内的多个导电衬垫2形成电连接,可以避免因导电粒子分布不均或聚集而形成短接、搭接、导通面积较低等现象,对COF 200与绑定区B内的多个导电衬垫2之间的电连接形成不良影响,
在一些实施例中,上述显示装置1000可以为手机、平板电脑、电视机、显示器、笔记本电脑、可折叠笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种显示面板,具有显示区以及位于所述显示区旁侧的至少一个绑定区;所述显示面板包括:
    衬底;以及,
    设置在所述衬底的一侧、且位于所述绑定区内的多个导电衬垫;所述多个导电衬垫沿第一方向间隔排布;所述多个导电衬垫包括被配置为向所述显示区传输直流电压信号的至少一个第一类导电衬垫,以及被配置为向所述显示区传输脉冲电压信号的多个第二类导电衬垫;
    其中,所述第一类导电衬垫在所述第一方向上的尺寸大于第二类导电衬垫在所述第一方向上的尺寸。
  2. 根据权利要求1所述的显示面板,其中,所述第一类导电衬垫在所述第一方向上的尺寸为W 1,所述第二类导电衬垫在所述第一方向上的尺寸为W 2,其中,W 1=nW 2,n为大于1的任意数值。
  3. 根据权利要求2所述的显示面板,其中,在n为整数的情况下,所述第一类导电衬垫在所述第一方向上的尺寸,小于n个所述第二类导电衬垫所占据的区域在所述第一方向上的尺寸。
  4. 根据权利要求1~3中任一项所述的显示面板,其中,所述多个导电衬垫沿第二方向延伸;
    所述第一类导电衬垫和所述第二类导电衬垫在所述第二方向上的尺寸相等或大致相等;
    所述第一方向和所述第二方向相交叉。
  5. 根据权利要求4所述的显示面板,其中,所述第一方向和所述第二方向不垂直。
  6. 根据权利要求1~5中任一项所述的显示面板,其中,所述第一类导电衬垫被配置为向所述显示区传输VDD信号和VSS信号中的至少一者。
  7. 根据权利要求6所述的显示面板,其中,同一个所述绑定区内,被配置为传输同一种直流电压信号的第一类导电衬垫的数量为一个。
  8. 根据权利要求1~7中任一项所述的显示面板,其中,所述显示面板具有至少一个可弯折区;
    所述显示面板包括被所述至少一个可弯折区划分的多个子显示面板;
    所述显示面板具有多个绑定区,所述多个绑定区设置在所述显示面板的垂直于所述可弯折区的延伸方向的边缘;
    一个子显示面板具有至少一个绑定区,各子显示面板所具有的绑定区均 位于所述显示面板的同一边缘。
  9. 根据权利要求8所述的显示面板,其中,在所述子显示面板具有多个绑定区的情况下,
    靠近所述可弯折区的绑定区与所述可弯折区之间的间距,大于所述子显示面板所具有的多个绑定区中相邻两个绑定区之间的间距。
  10. 一种显示装置,包括:
    如权利要求1~9中任一项所述的显示面板;以及,
    分别与所述显示面板的至少一个绑定区绑定的至少一个覆晶薄膜;
    其中,所述覆晶薄膜包括:分别与所述绑定区内的多个导电衬垫绑定、且沿第一方向间隔排布的多个导电引脚;
    所述多个导电引脚包括:
    分别与所述多个导电衬垫中的至少一个第一类导电衬垫电连接的至少一个第一类导电引脚,以及,分别与所述多个导电衬垫中的多个第二类导电衬垫电连接的多个第二类导电引脚;
    所述第一类导电引脚在所述第一方向上的尺寸大于第二类导电引脚在所述第一方向上的尺寸。
  11. 根据权利要求10所述的显示装置,其中,所述第一类导电引脚在第一方向上的尺寸小于所述第一类导电衬垫在所述第一方向上的尺寸;
    所述第二类导电引脚在所述第一方向上的尺寸小于第二类导电衬垫在所述第一方向上的尺寸。
  12. 根据权利要求10或11所述的显示装置,其中,所述多个导电引脚沿第二方向延伸,所述第一类导电引脚和所述第二类导电引脚在所述第二方向上的尺寸相等或大致相等。
  13. 根据权利要求10~12中任一项所述的显示装置,还包括:设置在所述覆晶薄膜和所述多个导电衬垫之间的阵列式各向异性导电胶;
    所述覆晶薄膜通过所述阵列式各向异性导电胶与所述多个导电衬垫形成电连接。
PCT/CN2020/096093 2020-06-15 2020-06-15 显示面板及显示装置 WO2021253156A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/281,013 US11980070B2 (en) 2020-06-15 2020-06-15 Display panel and display apparatus
EP20941468.9A EP4067984A4 (en) 2020-06-15 2020-06-15 DISPLAY PANEL AND DISPLAY DEVICE
CN202080000991.7A CN114270251B (zh) 2020-06-15 2020-06-15 显示面板及显示装置
PCT/CN2020/096093 WO2021253156A1 (zh) 2020-06-15 2020-06-15 显示面板及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/096093 WO2021253156A1 (zh) 2020-06-15 2020-06-15 显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2021253156A1 true WO2021253156A1 (zh) 2021-12-23

Family

ID=79268954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096093 WO2021253156A1 (zh) 2020-06-15 2020-06-15 显示面板及显示装置

Country Status (4)

Country Link
US (1) US11980070B2 (zh)
EP (1) EP4067984A4 (zh)
CN (1) CN114270251B (zh)
WO (1) WO2021253156A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050058905A (ko) * 2003-12-13 2005-06-17 주식회사 팬택 무선통신 단말기에서의 긴급 메시지 처리 방법
CN103984145A (zh) * 2013-12-09 2014-08-13 上海天马微电子有限公司 一种内嵌式触摸屏彩膜基板及其制造方法
CN104916242A (zh) * 2014-03-14 2015-09-16 群创光电股份有限公司 显示装置及其测试垫
CN106019676A (zh) * 2016-07-29 2016-10-12 京东方科技集团股份有限公司 显示基板、显示面板
CN107369692A (zh) * 2017-06-09 2017-11-21 厦门天马微电子有限公司 显示面板及显示装置
CN107490885A (zh) * 2017-09-05 2017-12-19 武汉天马微电子有限公司 一种显示装置
CN109166851A (zh) * 2018-10-29 2019-01-08 昆山国显光电有限公司 显示面板及显示装置
CN110794991A (zh) * 2019-10-31 2020-02-14 上海天马有机发光显示技术有限公司 一种显示面板、其制作方法及显示装置
CN110910758A (zh) * 2019-12-17 2020-03-24 厦门天马微电子有限公司 显示基板、显示模组及其控制方法
CN210323695U (zh) * 2019-06-11 2020-04-14 滁州惠科光电科技有限公司 一种显示面板和显示装置
CN210605298U (zh) * 2019-06-11 2020-05-22 滁州惠科光电科技有限公司 一种显示面板和显示装置
CN111208916A (zh) * 2019-12-31 2020-05-29 厦门天马微电子有限公司 一种触控显示面板及显示装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102638304B1 (ko) * 2016-08-02 2024-02-20 삼성디스플레이 주식회사 표시장치
KR102325171B1 (ko) * 2017-03-20 2021-11-10 삼성디스플레이 주식회사 표시 장치
CN113342201B (zh) * 2017-03-24 2022-09-20 南京瀚宇彩欣科技有限责任公司 一种内嵌式触控显示装置的测试方法
CN106951125B (zh) * 2017-03-30 2019-09-13 上海天马微电子有限公司 一种触控显示面板及触控显示装置
CN107300793A (zh) * 2017-06-30 2017-10-27 厦门天马微电子有限公司 显示面板及显示装置
CN107884994B (zh) * 2017-11-29 2021-04-16 武汉天马微电子有限公司 阵列基板、显示面板及显示装置
CN115113762A (zh) * 2018-03-05 2022-09-27 瀚宇彩晶股份有限公司 触控显示装置
CN109449140B (zh) * 2018-10-31 2020-09-11 昆山国显光电有限公司 显示面板及母板
KR20200115750A (ko) * 2019-03-25 2020-10-08 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 검사 방법
CN109949711B (zh) * 2019-03-29 2021-08-31 上海天马微电子有限公司 显示面板、显示装置和显示面板的制作方法
CN110286534A (zh) * 2019-06-19 2019-09-27 武汉天马微电子有限公司 阵列基板、显示面板及其显示装置
CN110707097B (zh) * 2019-09-23 2021-11-19 上海中航光电子有限公司 显示模组及显示装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050058905A (ko) * 2003-12-13 2005-06-17 주식회사 팬택 무선통신 단말기에서의 긴급 메시지 처리 방법
CN103984145A (zh) * 2013-12-09 2014-08-13 上海天马微电子有限公司 一种内嵌式触摸屏彩膜基板及其制造方法
CN104916242A (zh) * 2014-03-14 2015-09-16 群创光电股份有限公司 显示装置及其测试垫
CN106019676A (zh) * 2016-07-29 2016-10-12 京东方科技集团股份有限公司 显示基板、显示面板
CN107369692A (zh) * 2017-06-09 2017-11-21 厦门天马微电子有限公司 显示面板及显示装置
CN107490885A (zh) * 2017-09-05 2017-12-19 武汉天马微电子有限公司 一种显示装置
CN109166851A (zh) * 2018-10-29 2019-01-08 昆山国显光电有限公司 显示面板及显示装置
CN210323695U (zh) * 2019-06-11 2020-04-14 滁州惠科光电科技有限公司 一种显示面板和显示装置
CN210605298U (zh) * 2019-06-11 2020-05-22 滁州惠科光电科技有限公司 一种显示面板和显示装置
CN110794991A (zh) * 2019-10-31 2020-02-14 上海天马有机发光显示技术有限公司 一种显示面板、其制作方法及显示装置
CN110910758A (zh) * 2019-12-17 2020-03-24 厦门天马微电子有限公司 显示基板、显示模组及其控制方法
CN111208916A (zh) * 2019-12-31 2020-05-29 厦门天马微电子有限公司 一种触控显示面板及显示装置

Also Published As

Publication number Publication date
CN114270251A (zh) 2022-04-01
EP4067984A1 (en) 2022-10-05
CN114270251B (zh) 2023-10-24
US11980070B2 (en) 2024-05-07
US20220199740A1 (en) 2022-06-23
EP4067984A4 (en) 2023-04-26

Similar Documents

Publication Publication Date Title
WO2021169879A1 (zh) 可拉伸的显示面板及显示装置
TWI329230B (en) Electrical connection pattern in an electronic panel
WO2019095764A1 (zh) 阵列基板、显示面板及显示装置
WO2017140055A1 (zh) 基板、覆晶薄膜及电子设备
US20070195763A1 (en) Mount structure, electrooptic device, and electronic device
US10606388B2 (en) Array substrate, manufacturing method thereof and touch display panel
US20070222777A1 (en) Electrooptic device, wiring board, method for manufacturing electrooptic device, and electronic device
US11121331B2 (en) Flexible substrate and display panel using the same
WO2021190034A1 (zh) 显示基板、其制备方法及显示装置
WO2017152581A1 (zh) 阵列基板及其制作方法以及显示装置
WO2015051602A1 (zh) 超窄边框液晶显示器及其驱动电路的 cof 封装结构
WO2022057503A1 (zh) 显示面板及其驱动方法、显示装置
WO2021248489A1 (zh) 显示基板及显示装置
US20200394946A1 (en) Chip-on-Film and Display Including the Same
CN104216159A (zh) 一种显示面板及其制备方法、显示装置
US20200411562A1 (en) Array substrate and fabrication method thereof, display panel and display module
WO2021253156A1 (zh) 显示面板及显示装置
US9807881B2 (en) Semiconductor device
TW200530655A (en) Display panel, lead pad structure, lead pad array structure and method of fabricating the same
WO2022266830A1 (zh) 显示面板及显示装置
WO2024011597A1 (zh) 显示面板和显示装置
TWI595298B (zh) 顯示面板
CN106873267B (zh) 显示面板
CN218160380U (zh) 显示模组及显示装置
WO2023178700A1 (zh) 阵列基板、显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941468

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020941468

Country of ref document: EP

Effective date: 20220629

NENP Non-entry into the national phase

Ref country code: DE